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Executive summary 
 

Although numerous modelling efforts have integrated food and water 

considerations at the farm or river basin level, very few agro-economic models are 

able to jointly assess water and food policies at the global level. The present report 

explores the feasibility of integrating water considerations into the CAPRI model.  

 

First, a literature review of modelling approaches integrating food and water 

issues has been conducted. Because of their capability to assess the impacts of 

water and food policies at the global level, three agro-economic models (IMPACT, 

WATERSIM and GLOBIOM) have been analysed in detail. These models handle 

water supply and demand issues quite differently. GLOBIOM shows a high 

flexibility to incorporate crop-water relationships but focuses on agricultural 

water and uses a rough proxy to account for competition between agricultural and 

non-agricultural water use. In contrast, IMPACT and WATERSIM show less 

flexibility to model crop-water links; however, as these models integrate a global 

food model and a global water model, they encompass constraints on water 

availability at the river basin level, interregional water flows and competition 

between agricultural and non-agricultural water use. In addition, biophysical and 

hydrological models estimating agricultural water use have also been studied, in 

particular the global hydrological model WATERGAP and the LISFLOOD model. 

 

Second, the potentiality of CAPRI to model water has been assessed. Thanks to the 

programming approach of its supply module, CAPRI shows a high potentiality to 

integrate environmental indicators as well as to enter new resource constraints 

(land potentially irrigated, irrigation water) and input-output relationships. At 

least in theory, the activity-based approach of the regional programming model in 

CAPRI allows differentiating between rainfed and irrigated activities.  

 

In practice, however, CAPRI is a complex model build upon a large and consistent 

database, with data series dating from the early 1980s. Since no distinction is made 

in the CAPRI database between rainfed and irrigated crops, building an irrigation 

module implies a great bulk of data work. Furthermore, data on irrigation water 

use and crop-water relationships are mostly unavailable in official datasets or only 

available at non-administrative spatial scales, adding difficulties to their 

integration in agro-economic models. Regarding sectoral water use, although a 

consistent scheme to collect data exists at EU level, the published datasets are 

often incomplete. 

  

The suggested approach to include water into the CAPRI model involves creating 

an irrigation module and a water use module. The development of the CAPRI water 
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module will enable to provide scientific assessment on agricultural water use 

within the EU and to analyse agricultural pressures on water resources. 

 

The feasibility of the approach has been tested in a pilot case study including two 

NUTS 2 regions (Andalucia in Spain and Midi-Pyrenées in France); its choice 

having been mainly motivated by data availability. Preliminary results are 

presented, highlighting the interrelations between water and agricultural 

developments in Europe. 

 

As a next step, it is foreseen to further develop the CAPRI water module to account 

for competition between agricultural and non-agricultural water use. This will 

imply building a water use sub-module to compute water use balances. 
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Abbreviations and Acronyms  
 

AGLINK Worldwide Agribusiness Linkage Program 

AGMEMOD  Agricultural Member State Modelling for the EU and Eastern 
European Countries 

CAPRI Common Agricultural Policy Regional Impact Analysis 

CROPWAT Computer Program for Irrigation Planning and Management, 

FAO, Land and Water Development Division 

ESIM European Simulation Model 

EU-FASOM EUropean Forest and Agricultural Optimisation Model 

GAEZ Global agro-ecological zones 

FAO Food and Agriculture Organization of the United Nations 

FASOM Forest and Agricultural Sector Optimization Model 

GCWM  Global Crop Water Model 

GLOBIOM Global Biomass Optimization Model 

GSWP2  Global Soil Wetness Project 

GTAP-W Global Trade Analysis Project-Water 

IFPRI Food Policy Research Institute 

IIASA International Institute for Applied Systems Analysis 

iMAP 

 

IMPACT 

Integrated Modelling Platform for Agro-economic Commodity and 
Policy Analysis 

International Model for Policy Analysis of Agricultural Commodities 
and Trade 

IPCC Intergovernmental Panel on Climate Change (WMO/UNEP) 

JRC-IES EC Joint Research Centre - Institute for Environmental Studies 

JRC-IPTS EC Joint Research Centre - Institute for Prospective and Technological 
Studies 

NUTS Nomenclature of Units For Territorial Statistics 

OECD Organisation for Economic Co-operation and Development 

SWAP Statewide Agricultural Production Model 

UNEP United Nations Environment Programme 

WATERGAP Water – Global Assessment and Prognosis 

WATERSIM Water, Agriculture, Technology, Environment and Resources 
Simulation Model 

  

 



  

 

  Page 6 
 

 

 

 

 



  

 

Page 7 
 

1. Introduction 

Water is vital for agriculture and thus food security. Also, significant impacts on 

water resources are caused by agricultural activities. As stated by a number of 

authors, more effort is required to analyse the challenges faced by agriculture, and 

the range of policies, institutions and investments needed to secure adequate 

access to water for food today and in the future (Rosegrant et al. 2009). 

In Europe, irrigation water use by agriculture has been identified as one of the 

major sustainable water management issues in the implementation of the Water 

Framework Directive (European Commission 2000). Agriculture accounts for an 

estimated 24% of total water abstraction in Europe, although in parts of southern 

Europe this figure can reach up to 80% (EEA 2009). Moreover, unlike other sectors 

like energy production, the majority of the water abstracted for agriculture is 

consumed (evaporation, transpiration, loses) and hence not returned to the water 

bodies (70% according to the EEA).  

Since 1985, the area of irrigated land in southern Europe has increased by 20%, 

contributing to the fact that the balance between water demand and availability 

has reached a critical level in many irrigated areas of Europe. But concerns about 

water scarcity and drought are not longer limited to the Mediterranean. In 

addition, more and more areas are adversely affected by changes in the 

hydrological cycle and climate change will almost certainly exacerbate these 

adverse impacts in the future, with more frequent and severe droughts expected 

across Europe and the neighbouring countries (Ciscar 2009, IPCC 2012).  

The Commission Communication on the Common Agricultural Policy towards 

2020 (European Commission 2010a), while acknowledging agriculture’s 

contribution to a greater resilience to flooding and drought, also recognised 

negative environmental externalities of farming such as soil depletion, water 

shortages, pollution, and loss of biodiversity. In order to strengthen a more 

sustainable agricultural water use, it proposes to include the Water Framework 

Directive (WFD) into cross-compliance for the Common Agricultural Policy (CAP) 

so that a farmer non-compliant with the WFD would lose part of the CAP subsidies. 

In order to analyse agricultural water use and its relation with the CAP, other 

policies or market developments, water issues need to be covered in tools used for 

policy impact assessment. The strong linkages between water, food, and 

environment call for an integrated and multidisciplinary modelling approach.  

Extensive work has been done on integrated assessment of water and food related 

policies, but most of these studies are site specific and analyse policy impacts at 

the farm or irrigation district level (Blanco and Iglesias 2005, Bazzani 2005). Some 

of these studies use a bio-economic framework, which combines economic and bio-

physical modelling. For instance, Moore et al. (2011) develop a modelling system 

that integrates two biophysical models and a whole-farm economic model to 
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assess the sustainability of alternative farming systems in Australia. However, as 

these studies remain at the farm or regional level, feedbacks through market prices 

and water flows across modelling units are lacking. 

At the global level, very few agro-economic models deal with water issues. A few 

exceptions exist, which will be reviewed in section three of this report. While 

global coverage entails a lot of simplifying assumptions, there are compelling 

arguments to choose a global level framework: 

 Markets for agricultural and derived products are globally highly integrated 

while at the same time trade and domestic support policies affecting 

agriculture are developed in the context of bi- and multilateral agreements and 

negotiations.  

 Key bio-physical processes and concerns are of global or at least supra-national 

nature such as climate change, hydrological cycles or biodiversity concerns. 

Within Europe, as a rule, the policy support tools currently used for ex ante 

assessment of EU policies do not take into account water constraints. This is the 

case with agro-economic models representing the agricultural sector like AGLINK 

(OECD 2006), ESIM (Banse et al. 2005), CAPRI (Britz and Witzke, 2008) and 

AGMEMOD (AGMEMOD Partnership 2007), as well as with integrated decision 

support tools focusing at broader issues like EURURALIS (WUR/MNP 2007), 

SENSOR SIAT (Sieber et al. 2008) and LUMOCAP (Van Delden et al. 2010).  

Therefore, a study was commissioned within the iMAP1 framework, in order to 

explore the feasibility of integrating water issues into the CAPRI model, proposing 

an approach to model agricultural water use and testing the suggested approach 

for a particular case study. In a previous attempt to include water indicators in 

CAPRI, crop-specific water balances were included as passive environmental 

indicators. Here, we investigate the possibility of expanding the CAPRI model with 

a module for irrigated agriculture, in which irrigation water will be treated as 

endogenous in the model. 

The set-up of this report is as follows: section two gives definitions and describes 

the water concepts used in this report. A review of past work on integrating water 

into agro-economic models is presented in section three. Section four discusses the 

potential approaches that could be used to include water into CAPRI. The 

suggested approach to include water into the CAPRI model is depicted in sections 

five and six and tested for a particular case study in section seven. Lastly, section 

eight discusses the limitations of the approach and suggests future advancement 

pathways. 

 

                                            

 
1
 iMAP, "An integrated Modelling Platform for Agro-economic commodity and Policy analysis – a look back 

and the way forward" (2012), EUR25267  

http://www.agri-outlook.org/
http://www.capri-model.org/
http://www.tnet.teagasc.ie/agmemod/index.htm
http://www.eururalis.eu/
http://www.sensor-ip.eu/
http://agrienv.jrc.ec.europa.eu/indexlm.htm
http://ftp.jrc.es/EURdoc/JRC69667.pdf
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2. Concepts and terminology 

The water concepts and terminology used in this report follow as close as possible 

the terminology used in official water statistics and, in particular, the EUROSTAT, 

FAOSTAT and OECD data sources. However, since some discrepancies exist across 

data sources, hereafter we clarify the terminology adopted in this report. 

 

At the global level, the water cycle - also known as the hydrological cycle - 

describes the continuous circulation of water within the Earth's hydrosphere, 

mainly driven by solar radiation. Water moves through the cycle by the physical 

processes of precipitation, evaporation, transpiration, infiltration, runoff, and 

subsurface flow. Human activities also greatly affect the individual components of 

the hydrological cycle, through actions such as water abstraction from ground and 

surface waters.  

 

At national or regional level, computing water resources requires to make a 

distinction between internal and total renewable water resources2. Internal 

renewable water resources (IRWR) refer to the water resources resulting from 

precipitation within the borders of the region and are a combination of surface 

water and groundwater. Total renewable water resources (TRWR) are obtained by 

adding incoming surface water and groundwater flows to the internal renewable 

water resources. 

 

The internal water resources figures are the only quantities that can be added 

together for regional or continental assessment. The computation of total 

renewable water resources requires the assessment of interregional water flows. 

By definition, total water resources are not additive at the MS or EU level. 

 

Water use balance refers to the influence of human activities on the water cycle. 

Here, a distinction is made between water withdrawal and water use. Also, the 

following conventions for water-user sectors will be used in this report: 

 Domestic: water use of households and other municipal water uses. 

 Industrial: water used in the manufacturing, mining and electricity 
generation sectors. 

 Irrigation: water used by irrigation. 

 Livestock: water used by livestock. 

 

Water withdrawal is the gross amount of water extracted from any source, either 

permanently or temporarily, for use in any sector (irrigation, livestock, industrial 

                                            

 
2
  The term “renewable” here is used as opposed to fossil waters, which have a negligible rate of recharge 

on the human scale and can thus be considered “non-renewable”. 
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and domestic). Water withdrawal is sometimes also called water abstraction. It can 

be either diverted towards distribution networks or directly used. It includes 

consumptive use, conveyance losses3 and return flow. 

 

Water use is the amount of water used in any sector. It is the part of the water 

withdrawn that reaches the final user. In turn water use is split into consumptive 

water use and non-consumptive water use. 

 

Consumptive water use is the part of the water lost to the immediate water 

environment through evaporation, plant transpiration, incorporation in products 

or crops, or consumption by humans and livestock. Water consumption is 

sometimes called water depletion. 

 

The difference between total water use and consumptive water use is the non-

consumptive water use, or return flow, the part of the water that is not consumed 

and returns to either the surface water or the groundwater, and thus becomes 

available for use again. For most water use sectors, only a small amount of water is 

actually consumed, whereas most of the water withdrawn is returned, probably 

with reduced quality, to the environment for subsequent use. 

 

Water-use efficiency is the ratio of consumptive water use to water withdrawal. 

Efficiency may be measured at different spatial scales, and figures may differ 

because of water reuse throughout the water cycle. In irrigation, we will define 

water use efficiency as the ratio of the consumptive water to the water abstracted 

for irrigation. Water use efficiency may be broken down into water distribution 

efficiency (ratio of total water delivered to the total water diverted for irrigation; 

sometimes differentiated into conveyance efficiency and distribution channels 

efficiency) and water application efficiency (ratio of the effective irrigation water 

evapotranspirated to the field water applied, driven mainly by the irrigation 

method used). 

 

Water stress measures the pressure put on water resources and aquatic 

ecosystems by the users of these resources. A conventional measure of water 

stress is the withdrawal-to availability ratio. This is the ratio of total annual water 

withdrawals to total water availability. 

 

Crop water requirement, irrigation requirement, irrigation water use and 

irrigation water abstraction are often used synonymously or without clear 

                                            

 
3
  Loss includes water that is lost to the supply, at the point of measurement, from a non-productive use, 

including evaporation from surface-water bodies and non-recoverable deep percolation. 
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distinction. To avoid confusion, the terminology used in this study is presented 

hereafter. 

 

Crop water requirement (CWR) is the total amount of water required for 

transpiration by a well managed crop grown under optimum growth conditions 

without water- and nutrient-stress. For practical purposes, the CWR is calculated 

as the potential crop evapotranspiration (PET) avoiding the problem of clearly 

defining optimum growth conditions and optimum crop yield (FAO 1996). 

 

Net irrigation requirement (NIR) is the amount of water that has to be applied in 

addition to rainfall to serve crop water requirements. It is expressed in millimetres 

per year or in m3/ha per year (1 mm = 10 m3/ha). NIR is commonly determined 

as the difference between CWR (i.e. potential crop evapotranspiration) and the 

actual crop evapotranspiration under rainfed conditions or effective precipitation 

(EP)4. 

 

Gross irrigation requirement (GIR) is the quantity of water to be applied to the field, 

taking into account water losses at the field level. Part of irrigation water may be 

lost by percolation rather than by crop evapotranspiration. Therefore it can 

potentially be reused for irrigation or recharge other water bodies. 

 

Gross irrigation requirement constitute only a part of the total water abstracted for 

irrigation purposes. Additional water abstraction results from the need to 

compensate for losses during transport (infiltration and percolation or 

evaporation).  

 

Another common classification of water resources is the classification into blue 

and green water flows. Blue water refers to water in rivers, lakes and groundwater. 

Green water refers to water in the rooted zone of the soil originating directly from 

rainfall that is available to plants. According to this classification, crop 

evapotranspiration originating from effective precipitation is also referred to as 

green water or soil water.  The part of crop water requirements met by irrigation 

water is called blue water. 

 

In agriculture, potential yield is defined as the maximum yield a variety can achieve 

under no input restriction conditions.  

 

Crop water productivity is the ratio of net benefits from crop production to the 

amount of water used.  Physical water productivity is the crop output per unit of 

                                            

 
4
  In irrigation, effective precipitation is that portion of the total precipitation which is retained by the soil so 

that it is available for use for crop production. 
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water used (often expressed in kg/m3), while economic water productivity is 

defined as the value derived per unit of water used. Water productivity can be 

expressed either per unit of water used or per unit of water consumed. Economic 

water productivity per unit of water use will be retained in this study. 
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3. Previous work on agricultural water modelling  

3.1. Introduction 

In this section, we review the agro-economic models dealing with water with the 

final aim of exploring the feasibility of integrating water considerations into the 

CAPRI model. Hence, this is not a comprehensive review of food-water modelling 

systems; on the contrary, the selection of models is based on the potential to apply 

the methodology in the framework of the CAPRI model. Therefore, priority is given 

to models with global coverage and relevant for assessing EU policies as well as to 

global and EU-wide hydrological models estimating agricultural water demand. 

 

The focus will be on global agro-economic models dealing with water issues. Global 

coverage entails a lot of simplifying assumptions (regional and sectoral 

aggregation, limited data, etc.). Yet, there are compelling arguments to choose a 

global level framework: 1) some economic processes are global (i.e. impact of 

world market prices, trade policies); 2) some physical processes are of global 

nature (i.e. climate change, hydrological cycles). 

 

Conventional water demand and supply projections usually do not sufficiently 

account for economic processes and feedback mechanisms, or do so only implicitly. 

The IMPACT model, developed by the International Food Policy Research Institute 

(IFPRI) was one of the first global models to integrate a global food projections 

model with a global water model to jointly analyze water and food supply and 

demand into the future under various policy scenarios (Cai and Rosegrant 2002). 

 

Developed under a common initiative of IFPRI and IWMI (International Water 

Management Institute), the WATERSIM modelling framework enables a more 

disaggregated and comprehensive analysis of the future world food and water 

situations (De Fraiture 2007). WATERSIM takes the global food model from 

IMPACT and links it to a water balance approach at the river basin level. 

 

More recently, GLOBIOM, an agricultural and forest sectors model developed at 

IIASA, has also integrated water considerations. 

 

 

3.2. Water modelling in global agro-economic models 

3.2.1. Water representation in the IMPACT model 

The International Model for Policy Analysis of Agricultural Commodities and Trade 

(IMPACT) is a partial equilibrium agricultural sector model developed at the Food 

Policy Research Institute (IFPRI) in the early 1990s as a response to a lack of long-

term vision and consensus among policy makers and researchers regarding the 

http://www.ifpri.org/book-751/ourwork/program/impact-model
http://www.ifpri.org/
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actions required to feed the world in the future and protect the environment 

(Rosegrant et al. 1995). In 1995 the first results using IMPACT were published as a 

2020 Vision discussion paper (Rosegrant et al. 1995), in which the effects of 

population, investment, and trade scenarios on food security were analysed. 

Recognizing that water could be one of the major constraints to future food 

production, the IMPACT model was extended in 2002 and combined with a newly 

developed Water Simulation Model (WSM) that balances water availability and 

uses within various economic sectors, at the global and regional scale (Rosegrant 

et al. 2002). 

 

Table 1.  Main characteristics of the IMPACT modelling system 

Approach Global recursive-dynamic partial equilibrium agricultural model 

Responsibility Food Policy Research Institute (IFPRI) 

Spatial scope Global coverage 
115 socio-economic units (food module) intersected with 126 hydrological units (water module) 
A total of 281 food producing units, including EU-15 and eastern Europe 

Temporal scope Long-term projections (usually 30-year projections), with annual time steps 
Base year: 2000 
Projections to 2020/2025/2050, depending on the study 

Sectoral scope Agricultural and fisheries sectors 
40 crop activities 
16 livestock, sugar, fruit and vegetables and fish activities 

Model type Integrated model (food module and water module ) 

Input (key drivers) Income and population growth (to determine food and non-agricultural water demand) 
Crop productivity 
Change in available agricultural area over time 
Climate parameters and water supply information 
Trade policies 

Output (key variables) Crop area and livestock numbers, yield, production 
Demand for food, feed and other uses,  
Prices and net trade 
Percentage and number of malnourished preschool children 
Per-capita calorie availability from foods 

Software GAMS 

 

IMPACT-Water5 – through the combination of the IMPACT and WSM models – 

incorporates water availability as a driving variable with observable flows and 

storage to examine the impact of water availability on food supply, demand and 

prices. This framework allows exploration of the relationship between water 

availability and food demand at a variety of spatial scales, ranging from river 

basins, countries and more aggregated regions, to the global level (Rosegrant et al. 

2008). A further update of IMPACT in 2006 included much greater spatial 

                                            

 
5  As IMPACT-Water has become the common version of the IMPACT model, we will use the term 

IMPACT from now on. 



  

 

  Page 15 
 

disaggregation to 281 Food Producing Units (FPUs) and improved the connection 

between the food and water simulation components.  

 

The combined food-water modelling framework has been used to analyse water 

availability, food security, and environmental conservation at basin, country, and 

global scales (Sulser et al. 2010). 

 

The model incorporates data from FAOSTAT (FAO, 2003); commodity, income, and 

population data and projections from the World Bank (2000), the Millennium 

Ecosystem Assessment (UNEP 2005), the UN (2000) and USDA (2000); and a 

system of supply and demand elasticities from literature reviews and expert 

estimates (Rosegrant et al. 2001). 

 

In the food module, water stress is taken into account in the area and yield 

response functions: 

 Crop area function: Harvested area is specified as a response to the crop's own 

price, the prices of other competing crops, the projected exogenous trend in 

harvested area (capturing non-prices effects such as population pressure and 

soil degradation), and a water stress factor. Water is integrated in crop area 

functions through the term "reduction of crop area", which captures the effects 

of extreme water shortages on the crop area decisions. 

 Crop yield function: Yield is a function of the commodity price, the prices of 

labour and capital, a projected exogenous trend factor and a water stress factor. 

The trend factor reflects productivity growth driven by technology 

improvements. Water is integrated through a reduction of yield factor, based 

on seasonal water availability.  

 

The level of irrigation investment is externally determined (Nelson et al. 2009) and 

irrigation investment costs are taken from the literature. 

 

The water module divides the world in 126 river basins, to allow for a 

representation of water supply and demand at the hydrological level. The 115 

socio-economic regional units of the food module are intersected with the 126 

river basins, generating results for 281 Food Producing Units (FPUs). Of the 

countries represented within the IMPACT model, China, India and the United 

States have the highest level of sub-national disaggregation (and are divided into 9, 

13 and 14 major river basins, respectively), while the other countries or regions 

covered by the model are combined into the remaining 90 basins (Rosegrant et al. 

2008).  
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Water supply and demand are determined for each food producing unit (FPU): 

 Water demands are simulated as functions of year-to-year hydrologic 

fluctuations, irrigation development, growth of industrial and domestic water 

uses, and environmental and other flow requirements (committed flow).  

 Off-stream water supply for the domestic, industrial, livestock, and irrigation 

sectors is determined based on water allocation priorities, treating irrigation 

water as a residual. Environmental flows are included as constraints. 

 

Water demand is accounted for major water uses:  

 Irrigation water demand is computed based on hydrologic and agronomic 

characteristics: 

 Net crop water requirements (NCWR) in a basin are calculated based on 

empirical crop water requirement functions. 

 Part or all of crop water demand can be satisfied by effective rainfall (PE), 

which is the rainfall infiltrated into the root zone and available for crop use. 

Effective rainfall for crop growth can be increased through rainfall 

harvesting technology. Net crop water demand (NCWD) takes into account 

effective rainfall use. 

 Total irrigation water demand represented in water depletion (CWD) is 

calculated as net irrigation water demand divided by basin efficiency (BE). 

BE measures the ratio of beneficial water depletion (crop 

evapotranspiration and salt leaching) to the total irrigation water depletion 

at the river basin scale. 

 The projection of irrigation water demand depends on the changes of 

irrigated area and cropping patterns, water use efficiency, and rainfall 

harvest technology. 

 Livestock water demand (LWD) in the base year is estimated based on livestock 

numbers and water consumptive use per unit of livestock. For all of the 

livestock products it is assumed that the projection of livestock water demand 

in each basin, country, or region follows the same growth rate of livestock 

production. 

 Industrial water demand (IWD) depends on income and water use technology 

improvement. A linear relationship between industrial water demand intensity 

(IWDI) and GDP per capita is estimated by regression based on historical 

records and adjusted according to future perspectives on industrial water 

demand in different regions and countries. 

 Domestic water demand (DWD) in the base year is estimated based on the 

same sources and methods as those used for industrial water demand 
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assessment. Domestic water demands in future years are projected based on 

projections of population and income growth. 

 Committed Flow for Environmental, Ecological, and Navigational Uses (EWD) is 

specified as a percentage of average annual runoff. Data is lacking on this 

variable for most basins and countries, so an iterative procedure is used to 

specify this variable where data is lacking.  

 

The total demand for water withdrawal (TWW) is calculated as total water 

depletion demand (TWD) divided by the water depletion coefficient (DC): 

 

     
   

  
 

               

  
 

 

The value of the water depletion coefficient in the context of the river basin mainly 

depends on the relative fraction of agricultural and non-agricultural water use 

(that is, larger agricultural water use corresponds to a higher value of water 

depletion coefficient), as well as water conveyance/distribution/recycling systems 

and pollution discharge and treatment facilities. In the base year, DC is calculated 

by given water depletion and water withdrawal, and in the future is projected as a 

function of the fraction of non-irrigation water use. 

 

To account for the price impact on water demand, a classic Cobb-Douglas function 

is used to specify the relationship between water demand (W) and water price (P), 

based on price elasticity.  

 

Water supply is determined for each spatial unit: 

 Minimum environmental and ecological flow requirements enter the model as a 

predetermined constraint in water supply 

 Off-stream water supply for domestic, industrial, livestock, and irrigation 

sectors is determined in two steps: 

 First, the total water supply represented as depletion/consumption (WDP) 

in each month of a year is determined. 

 Second, total water supply is allocated to different sectors. Irrigation water 

supply is further allocated to different crops in the basin. 

 

For each FPU, the model simulates annually and seasonally how water supply 

meets demand with long-term monthly climatology and hydrology, projected 

water infrastructure capacities, and projected water demands of domestic, 

industrial, livestock and irrigation sectors based on drivers including population 

and income growth, changes of irrigated areas and cropping patterns, and 

improvement of water use efficiencies (Sulser et al. 2010).  
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For large river basins that include multiple FPUs, sub-models for FPUs within the 

same basin are coupled through upstream–downstream water routing. With these 

capacities, the model can take into account precipitation, evapotranspiration (ET), 

runoff, water use efficiency, flow regulation through reservoir and groundwater 

storage, non-agricultural water demand, water supply infrastructure and 

withdrawal capacity, and environmental requirements at the river basin, country, 

and regional levels (Sulser et al. 2010). 

 

The food and water modules are solved in an iterative way (see Figure 1). First, for 

each year, the food module determines crop area harvested and crop yields 

assuming that there is no water shortage. Then, the water module calculates 

effective irrigation water supply in each basin by crop and by period over a 30-

year time horizon. The results from the water module are then incorporated in the 

food module and crop areas and yields are adjusted accordingly (through the area 

and yield correction factors). In addition, net food trade and the global balance are 

calculated. If the trade balance is not closed, crop world prices are adjusted and a 

new iteration is undertaken. The loop stops when global net trade equals zero 

(Rosegrant et al. 2008). 

 

 

3.2.2. WATERSIM as a variant of IMPACT 

WATERSIM (Water, Agriculture, Technology, Environment and Resources 

Simulation Model) is a global scale model jointly developed by IFPRI and IWMI and 

designed to explore the impact of water and food related policies on water scarcity, 

food production, and environment.  

 

WATERSIM is a recursive dynamic model consisting of two fully integrated 

modules: a food production and demand module based on a partial equilibrium 

model (IMPACT), and a water supply and demand module based on a water 

balance and accounting framework (De Fraiture et al. 2007).  

 

The spatial scale differs between the food and water modules:  

 To capture food economic phenomena, the world is divided into 115 socio-

economic units (i.e., countries and country groups). The food module runs at 

the regional level. 

 To capture hydrologic processes, the world is divided 128 hydrological units. 

The water module runs at the river basin level. 

 To account for the interaction between food and water modules, the model 

includes 282 hybrid units (Food Producing Units, FPU) by intersecting regions 

and basins.  

 

http://www.iwmi.cgiar.org/Tools_And_Resources/Models_and_Software/WATSIM/index.aspx
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Table 2.  Main characteristics of the WATERSIM modelling system 

Approach Global recursive-dynamic partial equilibrium agricultural model 

Responsibility Food Policy Research Institute (IFPRI) and International Water Management Institute (IWMI) 

Spatial scope Global coverage 
115 socio-economic units (food module) 
128 hydrological units (water module) 
282 food producing units (FPU), intersecting regions and basins 

Temporal scope Long-term projections, with annual time steps 
Base year: 2000 
Last year: 2025 and 2050 

Sectoral scope Agricultural sector 
40 crop activities 
16 livestock, sugar, fruit and vegetables and fish activities 

Methodology Bio-economic framework 
Food module based on IMPACT 
Water module based on water balances at the river basin level 

Software GAMS 

 

 

The food demand and supply module of WATERSIM is based on the IMPACT model 

(Rosegrant et al. 2008). Food production is function of productivity growth and 

area expansion: 

 Productivity growth is modelled as a function of the exploitable yield gap (De 

Fraiture and Wichelns 2010). The estimates of maximum attainable yields are 

from the Global Agro Ecological Zones (GAEZ) methodology (Fischer et al. 

2002, Bruinsma 2003), which uses physical and crop management factors to 

establish maximum levels of productivity on a grid-cell basis. 

 The potential for crop area expansion is determined using GAEZ land suitability 

classes, assuming that expansion is limited to lands in classes ‘suitable’ and 

‘very suitable’ for agriculture (De Fraiture and Wichelns 2010). 

 

The water supply and demand module is based on water balances at the river 

basin level (or sub-basin level), based on the water accounting concepts developed 

by Molden (1997): 

 Water demand for human purposes, besides environmental and in-stream 

purposes, is derived from four sectors (agriculture, domestic sector, industry 

and livestock). At sub-basin level, water availability is simulated using a water 

balance approach, considering internally generated runoff, inflow from other 

units, groundwater contributions existing infrastructure and management 

practices (De Fraiture 2007). 

 Supply is matched to demand adopting an optimization approach, based on a 

traditional reservoir operation model (described in Cai and Rosegrant 2002) 

with the objective to maximize the ratio of depletive supply over demand.  
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 Sub-basins are connected in such a way that outflow from upstream becomes 

inflow into the lower sub-basin. When water supply falls short of demand, the 

shortages are distributed over months, sectors and crops using an optimization 

model and allocation rules. For most countries practice shows that the 

industrial and domestic sectors take preference over agriculture. 

 

The allocation of irrigation water to crops is based on the profitability of the crop, 

sensitivity to water stress and net irrigation demand. Higher priority is given to 

crops with higher profitability, higher drought sensitivity and higher irrigation 

water requirements (De Fraiture 2007). 

 

Water shortages lead to reductions in productivity and smaller harvested areas 

(De Fraiture et al 2011). Data are derived from the IWMI Water and Climate Atlas 

(http://www.iwmi.cgiar.org/WAtlas/), Mitchell et al. (2004) and AQUASTAT 

database (http://www.fao.org/nr/water/aquastat/main/indexesp.stm). Runoff is 

computed using the global hydrologic model WaterGap (Alcamo et al. 1997). 

 

The model computes total food production, the area under rainfed and irrigated 

conditions, water diversions to agriculture and crop water consumption at the 

basin and national scales (De Fraiture 2007). 

 

Feedback mechanisms between the water and food modules are an important 

feature of the WATERSIM model. For example, water shortage may lead to a 

reduction in food production. But this in turn leads to higher food prices, inducing 

a higher production in the next season and thus partly offsetting food shortage. 

Another example: higher food demand lead to higher water demand. But increased 

water demand may provide an incentive to improve water use efficiency (if 

feasible), thus offsetting part of the increased demand (De Fraiture et al. 2007). 

 

The basic assumption in the food module is that each year the world market for 

agricultural commodities clears. The water module is based on a water balance 

approach, i.e. inflow equals outflow plus change in basin storage. Both modules are 

connected through two variables: (1) agricultural area, which determines food 

supply and water demand; (2) crop price which determines food demand and crop 

profitability which in turn affects water allocation. In a first step, the food module 

estimates food production (area and yield) as a function of socio-economic driving 

forces. Then, the water module calculates irrigation water supply and, when water 

availability limits agricultural production, the model accounts for the effects of 

water stress through a reduction factor for area and yields, in both irrigated and 

rain fed agriculture. Updated areas and yields are then fed back into the food 

module and the market equilibrium recalculated. The model iterates between the 

water and food modules until market equilibrium and water balance is reached 

(De Fraiture 2007). 
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3.2.3. Water modelling in GLOBIOM  

The Global Biomass Optimization Model (GLOBIOM) is a mathematical 

programming-based global recursive dynamic partial equilibrium model 

integrating the agricultural, bio-energy, and forestry sectors6 (Sauer et al. 2010).  

 

The general concept and structure of GLOBIOM is similar to the US Agricultural 

Sector and Mitigation of Greenhouse Gas (ASMGHG) model (Schneider et al. 2007). 

 

Table 3.  Main characteristics of the GLOBIOM modelling system 

Approach Global recursive-dynamic partial equilibrium agricultural model 

Responsibility International Institute for Applied Systems Analysis (IIASA) 

Spatial scope Global coverage 
28 world regions for commodity markets 
geo-spatially explicit simulation units (SimU) for supply depiction 

Temporal scope Medium and long-term projections, with annual time steps 
Base year: 2000 
Last year:  2030 

Sectoral scope Agricultural and forest sectors 
40 crop activities 
16 livestock, sugar, fruit and vegetables and fish activities 

Methodology Bio-economic framework 
Food module based on IMPACT 
Water module based on water balances at the river basin level 

Software GAMS 

 

 

The objective function of GLOBIOM simulates the global agricultural and forest 

market equilibrium by maximizing economic surplus over all included regions and 

commodities subject to restrictions on resource endowments, technologies, and 

policies (Schneider et al. 2011).  

 

GLOBIOM is a bottom‐up model with a detailed representation of the supply side. 

The model explicitly depicts factor endowments in each region for (a) agricultural, 

forest, and other natural lands and (b) land suitable for irrigation.  

 

Irrigation water supply is depicted as constant elasticity, upward sloped function. 

The price elasticity of water supply is based on estimations by Darwin et al. (1995) 

and equals 0.3 for all regions (Schneider et al. 2011). 

 

                                            

 
6
  Data, concept and mathematical structure of this model are described in Havlík et al. (2011) and at 

www.globiom.org. 

http://www.globiom.org/
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Crop production parameters are obtained from international sources and through 

linkage to biophysical models: 

 The average yield level for each crop in each country is taken from FAOSTAT 

(FAO 2007a). For 17 crops - representing nearly 80% of harvested area in 2007 

as reported by FAO - fertilization and irrigation management specific yields are 

simulated with the biophysical model EPIC (Environmental Policy/Integrated 

Climate) (Williams 1995) at the level of SimUs.  

 These yields are calibrated such that the area weighted average yield 

aggregated over all observed management options in a country equals the 

reported yield from FAO. 

 Four management systems are considered (irrigated, high input–rain‐fed, low 

input–rain‐fed, and subsistence management systems) corresponding to the 

International Food and Policy Research Institute (IFPRI) crop distribution data 

classification (You and Wood, 2006). 

 The costs and technical restrictions for five irrigation systems are derived from 

a variety of sources (Sauer et al. 2010). 

 Production costs are compiled from an internal database at IIASA’s Forestry 

Program (Schneider et al. 2011). 

 

For each SimU, GLOBIOM computes irrigation water consumption, accounting for 

the beneficial water use by the crops and the application efficiency of the 

particular irrigation system. However, GLOBIOM does not compute gross water 

use in terms of actual water withdrawals from surface waters or groundwater. 

Hence, the model does not take into account the efficiency of water delivery from 

source to field, which would account for return flows and water potentially 

available for reuse (Sauer et al. 2010). 

 

The model portrays four major types of irrigation systems: surface systems 

including basin and furrow irrigation, localized drip, and sprinkler irrigation. The 

suitability of these systems depends on various factors, which influence crop 

suitability, water demand, energy requirement, labour intensity, and overall cost, 

and thus affect motivation-based decision making that aims at individual as well as 

societal welfare maximization (Sauer et al. 2010). 

 

For each irrigation method, biophysical and technical suitability are evaluated to 

exclude inappropriate system applications. Not all crop types may be irrigated by 

all irrigation systems. Among the biophysical determinants of irrigation system 

choice, the slope, soil, and crop types are directly taken into account (Sauer et al. 

2010). 
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Consumptive irrigation water requirements by irrigation system are calculated as 

beneficial-use crop irrigation demands divided by the specific field application 

efficiency. The application efficiency varies by region and is determined by 

considering regional climatic factors and indicators of sociodemographic 

development (Sauer et al. 2010). 

 

Unlike for land resources, irrigation water availability is not defined at SimU level. 

Instead, irrigation water use is constrained through an artificial supply function, 

representing the relative water scarcity through its increasing marginal cost 

(Sauer et al. 2010). The upper limit on irrigation water availability is computed by 

considering the sustainably exploitable internal renewable water amount, and 

water demands from other sectors (domestic, industry, livestock, and submitted 

environmental flow). 

 

The model chooses the extent of a particular irrigation system considering 

irrigation cost per spatial unit for all appropriate combinations of regional 

geographic background, crop type, and irrigation system (Sauer et al. 2010). 

 

This modelling approach is very data intensive and relies in a number of 

simplifications: 

 Energy use is computed as a function of irrigated area, water application, 

pressure requirement, and total irrigation time (Buchanan and Cross 2002). A 

simplified irrigation scheduling is used to consistently represent these 

interdependencies. 

 Labour requirement is the number of irrigation events times the estimated 

work hours per event. To depict variations in labour intensity by crop type, 

crop‐specific cost data is used (Sauer et al. 2010). 

 Irrigation costs include capital costs and costs for operation and maintenance 

(O&M). Operation costs are composed of pressure‐related energy costs in 

terms of energy prices by source. 

 Average capital and maintenance costs per year for each irrigation method are 

estimated. However, these costs are to be globally identical despite the fact that 

they may substantially differ across regions. 

 

 

  



  

 

  Page 24 
 

3.3. Other modelling tools assessing agricultural water use 

Because their simulation of water use in agriculture at the EU or global level, two 

hydrological models have also been analysed: WaterGAP and LISFLOOD. 

 

The global water model WaterGAP (Water – Global Assessment and Prognosis) has 

been developed since 1996 at the Center for Environmental Systems Research at 

the University of Kassel.  

 

Since 2003, further model development is done both in Kassel and at the 

University of Frankfurt. WaterGAP is an integrated environmental model, 

combining socio-economic drivers and climate change in a single integrated 

framework, developed to model water availability, use and quality on a global level 

(Döll et al. 2003). The aim of the model is to provide a basis: (1) to compare and 

assess current water resources and water use in different parts of the world, and 

(2) to provide an integrated long-term perspective of the impacts of global change 

on the water sector. 

 

WaterGAP comprises two main components, a Global Hydrology Model and a 

Global Water Use Model: the Global Hydrology Model simulates the behaviour of 

the terrestrial water cycle to estimate global water resources and water 

availability, while the Global Water Use Model computes water use for each 

economic sector (domestic, industrial, irrigation and livestock sectors). Both water 

availability and water use computations cover the globe and are performed at a 

high spatial resolution (grid cells of 0.5° by 0.5°). 

 

The Global Water Use Model comprises sub-models for each of the water use 

sectors (domestic, industrial, irrigation and livestock). For each sector, water use is 

computed as a function of ‘water-use intensity’ multiplied by the most important 

‘driving forces’ of water use (e.g. population, national electricity production, area 

of irrigated land, number of livestock). Irrigation water requirements are modelled 

as a function of cell-specific irrigated area, crop and climate, and livestock water 

use is calculated by multiplying livestock numbers by livestock-specific water use. 

 

The global water use module and the global hydrology module are linked in order 

to compute water stress indicators and to calculate the reduction of river 

discharge due to consumptive water use.  

 

WaterGAP has been mainly used for assessing the impact of global environmental 

developments (for instance climate change) on water availability and water 

demand and for determining different water-stress conditions of different regions. 

The model has been used to analyse the impacts of climate change and socio-

economic driving forces (derived from the A2 and B2 scenarios of IPCC) on future 

http://www.geo.uni-frankfurt.de/ipg/ag/dl/forschung/WaterGAP/index.html
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global water stress (Alcamo et al. 2007). WaterGAP is also used in the OECD 

Environmental Outlook to 2030, which explores possible paths of development of 

the global environment, and in other global assessments in combination with 

IMAGE and IMPACT (MEA 2005, UNEP 2007). 

 

On the other hand, LISFLOOD is a GIS-based spatially-distributed hydrological 

rainfall-runoff model developed at the JRC (De Roo et al. 2000, Van der Knijff et al. 

2010). Driven by meteorological data, the model is typically run using a daily time 

interval to simulate the long-term catchment water balance. 

 

When modelling water supply and water demand, the model output is the daily 

accumulated amount of surface water and groundwater in millimetres for each 

grid cell (daily local runoff). 

 

In a recent work, LISFLOOD has been used to assess current water availability 

versus current water demands from different economic sectors (De Roo et al. 

2012).  

 

As LISFLOOD and CAPRI use different spatial and temporal scale, linking together 

these models would not be easy. Nevertheless, both modelling systems could 

benefit from exchange of information. LISFLOOD could provide CAPRI with 

estimates of irrigation water requirements per crop, which are needed to account 

for irrigation water use. Likewise, CAPRI could provide LISFLOOD with estimates 

of future cropland allocation, which are needed in LISFLOOD to account for future 

agricultural water demand.   

 

 

3.4. Main findings from previous studies  

From the analysis of alternative approaches to model food-water relationships, we 

can conclude that one of the main factors limiting the development of global food-

water economic models is the availability of the homogeneous and precise water 

data.  Main findings regarding water data used in agro-economic modelling 

include: 

 Irrigation requirements are usually estimated using well-known procedures 

and can be obtained at a disaggregated level. 

 Apart from irrigation requirements, water data is highly aggregated (country or 

country-block level). 

 Economic data is based on other studies and/or strong assumptions. 

 Water costs: Partial equilibrium models based on a system of supply and 

demand equations do not account for water costs in an explicit way. 
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The models IMPACT, WATERSIM and GLOBIOM appear as those with a more 

advanced water depiction. Critical modelling issues include: 

 Competition for water between agricultural and non-agricultural sectors is only 

modelled in a rough way. GLOBIOM does not include water demand by non-

agricultural economic sectors and, to capture pressure on water resources, 

uses a simplified supply function implying increasing water use costs. On the 

contrary, IMPACT accounts for water demand by major water users and runs a 

water allocation model. Competition for water across sectors is modelled by 

applying allocation rules in case of water shortages.  

 Modelling of water flows across socioeconomic boundaries is only done by the 

models IMPACT and WATERSIM. These models include a food module and a 

water module that are solved in a iterative way, account for water flows across 

modelling units and use allocation rules in case of water shortages. 
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4. Promising approaches to include water into the CAPRI 
model 

4.1. Potential of the current CAPRI system to model irrigation water  

CAPRI is a partial equilibrium model for the agricultural sector developed for 

policy impact assessment of the Common Agricultural Policy and trade policies 

from global to regional scale with a focus on the EU (Britz and Witzke 2011). It is a 

deterministic comparative partial static equilibrium model, solved by sequential 

iteration between supply and market modules (Britz 2008): 

 Supply module (EU27+Norway+Western Balkans+Turkey): covering about 280 

regions (NUTS 2 level) or even up to ten farm types for each region (in total 

1900 farm-regional models, EU27).  

 Market module: spatial, global multi-commodity model for agricultural 

products, about 60 products, 77 countries in 40 trade blocks. Based on the 

Armington approach (Armington 1969), products are differentiated by origin, 

enabling to capture bilateral trade flows.  

 

The data bases underlying the model exploit wherever possible well-documented, 

official and harmonised data sources, especially data from EUROSTAT, FAOSTAT 

and OECD. Specific modules ensure that the data used in CAPRI are mutually 

compatible and complete in time and space. They cover about 50 agricultural 

primary and processed products for the EU, from farm type to global scale 

including input and output coefficients. 

 

The comparative-static structural nature of CAPRI makes this model mainly suited 

for counterfactual analysis against an existing baseline or reference scenario. The 

CAPRI baseline depicts the projected agricultural situation in the simulation year 

under exogenous assumptions and a status-quo policy setting. The baseline used in 

this study builds upon the medium-term outlook for EU agricultural markets and 

income for 2020 (European Commission 2010b) and is based on specific 

assumptions regarding macroeconomic conditions, the agricultural and trade 

policy environment, the path of technological change and international market 

developments.  

 

Focusing at the supply module, it consists of independent aggregate non-linear 

programming models representing the activities captured by the Economic 

Accounts for Agriculture (EAA). The supply module currently covers all individual 

Member States of the EU-27 and also Norway, Turkey and the Western Balkans 

broken down to about 280 administrative regions, in line with the NUTS2 

classification of EUROSTAT. 
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The programming models are a kind of hybrid approach, as they combine a 

programming approach - based on a Leontief-technology for variable costs 

covering a low and high yield variant for the different production activities and 

constraints such as land, feed and crop nutrient requirements - with a partly 

econometrically estimated non-linear cost function (Jansson and Heckelei 2011) 

which captures the effects of labour and capital on farmers’ decisions. The non-

linear cost function allows for perfect calibration of the models and a smooth 

simulation response rooted in observed behaviour (Britz and Witzke 2011).  

 

The regional supply models include a land supply and demand module for arable 

and grassland, which are treated as imperfect substitutes.  Prices are exogenous in 

the supply module and provided by the market module. Agricultural policy 

measures are captured in high detail. 

 

Some key interactions between agriculture and the environment are also modelled 

in CAPRI such as agricultural NPK balances and GHG emissions from agriculture. 

Nevertheless, as CAPRI simulates the behaviour of agricultural producers and 

consumers at the aggregated level (at the NUTS2 level), its capability to model the 

links between food production and environmental externalities is rather limited; a 

higher spatial resolution would be desirable to capture environmental effects. That 

is why most of the environmental indicators in CAPRI are "passive" indicators 

without any feedback with the supply models. Some of these indicators make part 

of the post-model analysis and downscaling techniques are used to compute them 

at a higher spatial scale. 

 

So far, CAPRI does not distinguish between rainfed and irrigated agriculture. 

Substitution between rainfed and irrigated crops is not modelled. Water 

availability, which is a real constraint for Mediterranean agriculture, is not taken 

into account.  

 

Although there was an attempt to include water indicators in CAPRI and crop-

specific water balances were included as passive environmental indicators, these 

water balances rely on out-of-date information and their applicability is very 

limited. 

 

CAPRI shows, however, a high potential to model water issues. The supply side is 

based on explicit profit optimisation under constraints, which has advantages 

when modelling resource constraints or incorporating engineering data or results 

from bio-physical models.  

 

Thanks to the programming approach of the CAPRI supply module, constraints on 

irrigable area and water availability can be directly included in the model. 
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Furthermore, since yields are endogenous in CAPRI, the yield response to water 

can also be incorporated.  

 

While CAPRI offers high potential to model water issues, it also presents non-

negligible limitations. The primal-dual approach used in CAPRI and the lack of 

differentiation between rainfed and irrigated crops in the CAPRI database 

complicate the integration of irrigation issues. Actually, the CAPRI database, which 

includes a large set of historical data, is crucial both for deriving the baseline 

scenario and for calibrating the model. Since no distinction between rainfed and 

irrigated agriculture has been made so far in this database, creating this distinction 

will imply a large bulk of data work. 

 

Hereafter, the potential extensions of CAPRI to model water are briefly discussed. 

It should be noticed that while most of the environmental indicators in CAPRI are 

"passive" indicators, irrigation water demand should be treated as endogenous in 

the model. 

 

 

4.2. Proposal to include water into the CAPRI model 

4.2.1. The step-by-step integration of water issues into CAPRI 

In the previous sections we have analysed how water has been modelled in other 

agro-economic systems and we have assessed the potentiality of the CAPRI model 

to deal with water. From this analysis, we can conclude that the most promising 

methodologies to integrate water modelling into the CAPRI system would be: 

 Given the activity-based approach of the supply module, irrigation could be 

modelled by differentiating between rainfed and irrigated activities. Estimating 

input-output coefficients for rainfed and irrigated activities would be the 

critical point. 

 Similarly, livestock water use could be computed by using livestock-specific 

coefficients of water use. Water use by head depending on the livestock 

category and production intensity is available from other studies.  

 Since CAPRI models the agricultural sector at the regional level, water use 

balances should be defined at the regional level. Assuming that sectors other 

than agriculture are exogenous, the regional water availability for irrigation 

and livestock purposes could be estimated. While linkages with non-

agricultural sectors are included in CAPRI (through the CAPRI regional CGEs), 

water use is not accounted for in the regional CGEs and, what is more, even if it 

would be included, it would not be in physical units. Therefore, domestic and 

industrial water use per region could be taken from other modelling systems 

(IMPACT or WaterGAP). 
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 Modelling competition with other sectors for water use as well as interregional 

water flows in a more accurate way will imply building a new water use 

module in CAPRI, which would interact with the supply module. The IMPACT 

water use module could be taken as a proxy.  

 

Obviously, to achieve a high level of complexity and resolution in water modelling 

will require to work at a high spatial resolution and to account for all components 

of the water cycle. This is the orientation found in global hydrologic models. 

However, these models do not represent crop-water linkages in detail and the 

feedback with agricultural markets and policies is missing.  

 

Since we aim at building a modelling tool able to provide scientific support for the 

assessment of pressures on water use driven by climate change or by changes in 

agricultural and water policies, modelling food-water linkages is essential and, 

therefore, will be the core of the study.  

 

Integrating water issues in CAPRI will involve significant changes both in the 

CAPRI database and in the supply module. Hence, for building the water module, 

we will follow a step-by-step approach: 

 Phase 1: irrigation sub-module 

 Phase 2: water use sub-module 

 

In the first phase, the focus will be on irrigation. A distinction will be made 

between rainfed and irrigated activities and between rainfed and irrigated land. 

Irrigation water will be treated as a quasi-fixed production factor, meaning that 

total availability will be limited, and input-output coefficients will be estimated at 

the regional level for each rainfed/irrigated activity. 

 

In the second phase, water use balances will be taken into account, and 

competition between agricultural and non-agricultural water use will be modelled. 

Four water use sectors will be considered (domestic, industrial, irrigation and 

livestock) and sectoral water withdrawal and use will be assessed. Total water 

supply will be taken from official statistics (EUROSTAT, FAOSTAT) and/or other 

modelling systems (IMPACT) and will be used to estimate water stress indicators. 

Furthermore, we will investigate the possibility of taking into account 

interregional water flows when estimating water availability. 

 

 

4.2.2. Irrigation sub-module 

Irrigation water use will be the focus of the first phase of construction of the water 

module. The main objective will be to include water considerations in the supply 

module of CAPRI (at the NUTS2 level).  
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Compared to other agro-economic models with EU coverage, the programming 

approach of the regional supply models in CAPRI presents advantages to add new 

activities and constraints: 

 Flexibility to incorporate crop-water relationships (input/output 

coefficients). 

 Flexibility to add new land constraints. Regional constraints on irrigable 

land could be incorporated but, since irrigated land is currently below 

irrigable land in all EU regions, these constraints would not have any effect. 

 Flexibility to enter irrigation water as a quasi-fixed production factor. In 

Southern EU regions, irrigation water is a limiting factor for agricultural 

production.  

 Flexibility to estimate environmental indicators at the regional level 

(irrigation intensity, water use intensity, water stress). 

 

The main water issues that need to be incorporated in this module are: regional 

irrigable and irrigated areas, irrigation shares per crop, irrigation water 

requirements and use, irrigation efficiencies, yield response to water and irrigation 

costs. 

 

The critical bottlenecks to build this irrigation module are related to data 

availability. Although some data on irrigable and irrigated areas is available at the 

EU-wide regional level, crop-specific irrigated areas are mostly unavailable and 

data on irrigation water use is rarely found in official statistics. As a result, building 

an irrigation module in CAPRI will imply complementing EU data sources with 

water data from national statistics as well as using econometric methods to build a 

consistent water database. 

 

 

4.2.3. Water use sub-module 

In the second phase, a water balance approach will be envisaged with the aim of 

extending the water module to non-EU regions and accounting for competition 

between agricultural and non-agricultural water uses. 

 

To include water considerations in non-EU regions, we could follow a similar 

approach as the recently developed for the land use module in CAPRI.  

 

To account for water use in other sectors, we could mirror the approach used by 

the IMPACT model. Taking into account data availability, the water sectors 

considered in this study will include domestic, industrial, irrigation and livestock. 

Water use by sector could be computed as a function of water use intensity (e.g. 
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domestic water use per capita) and the driving forces of water use (e.g. 

population). The main driving forces of water use are population in the domestic 

sector, industrial production in the industrial sector, irrigated area and climate in 

the irrigation sector and the number of livestock in the livestock sector. 

 

For each sector, we will distinguish between water withdrawal, total water use and 

consumptive water use; the ratio of consumptive water use to water withdrawal is 

the sectoral water use efficiency. Water withdrawal and use in the main sectors 

(domestic, industrial, irrigation and livestock) will be simulated following a 

balance approach and allocation rules to account for competition between users. 

As data on environmental flows is lacking, some assumption will be needed to 

account for environmental water demands. 

 

Allocation rules need to be defined. In the IMPACT model, for instance, water 

demands for the domestic, livestock and industrial sectors are assumed to be met. 

This, in fact, implies that priority is given to all other sectors than irrigation when 

allocating water. Therefore, water scarcity will mainly affect the irrigation sector. 

 

In theory, sectoral water withdrawal and use is provided by EUROSTAT at the 

national level. In practice, few data points are available and, therefore, results from 

other modelling tools will be used instead. Water stress indicators, such as the 

water exploitation index, can be calculated. 

 

Future food-water scenarios may imply changes both in water use intensity and 

the driving forces of water use and, therefore, may imply changes both in irrigation 

water demand and irrigation water availability. 

 

Water availability could be estimated taking into account interregional water 

flows. An iterative procedure could be used to ensure that agricultural water use 

does not exceed potential water availability. Basically, a similar methodology that 

the one implemented in the IMPACT model, could be developed to build the water 

module in CAPRI.  
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5. The irrigation sub-module 

5.1. Water in the supply module of CAPRI 

Irrigation water use, so far not covered in CAPRI, is the focus of the first phase of 

construction of the water module. This phase aims at including water 

considerations in the supply module of CAPRI (at the NUTS2 level), which will 

imply: 

 To make a distinction between irrigable land (land equipped for irrigation) and 

non-irrigable land. 

 To make a distinction between rainfed area and irrigated area for all potential 

irrigable activities in the model. 

 To enter crop-specific irrigation water use as a specific input and to estimate 

irrigation costs. 

 To estimate input-output coefficients for rainfed and irrigated activities. 

 To model regional irrigation water as a quasi-fixed input.  

 To model water policy measures such as irrigation water prices at the regional 

level. 

 

We first need to distinguish irrigable and non-irrigable activities. In principle, 

irrigable activities are those for which an irrigated area has been reported in 

official statistics in at least one MS. Whereas non-irrigable activities will be 

handled in the supply module just as before, irrigable activities are split into a 

rainfed and irrigated variant. If an activity is not irrigated in a particular region, 

only the rainfed variant exists in the data base and model. Potential irrigable 

activities are shown in Table 4. 

 

According to Wriedt et al. (2008), there are regions with a considerable share of 

grassland irrigation. However, these authors do not include grassland irrigation in 

their European Irrigation Map and recognize that there is currently no statistical 

data available at European level on grassland irrigation. As there is no mention to 

grassland irrigation in the Farm Structure Survey, which is the main EU-wide 

harmonized database on irrigation areas, including grassland irrigation in CAPRI 

will not be straightforward. If irrigation statistics improve in the near future, it 

would be desirable to also account for grassland irrigation.  
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Table 4.  Potential irrigable activities 

Group Activity Code 

Cereals 

Soft wheat SWHE 
Durum wheat DWHE 
Rye and Meslin RYEM 
Barley BARL 
Oats OATS 
Grain Maize MAIZ 
Paddy rice PARI 

Oilseeds 
Rape RAPE 
Sunflower SUNF 
Soya SOYA 

Other arable crops 

Pulses PULS 
Potatoes POTA 
Sugar Beet SUGB 
Flax and hemp TEXT 
Tobacco TOBA 

Vegetables and 
Permanent crops 

Tomatoes TOMA 
Other Vegetables OVEG 
Apples Pears and Peaches APPL 
Other Fruits OFRU 
Citrus Fruits CITR 
Table Grapes TAGR 
Olives for oil OLIV 
Table Olives TABO 
Wine TWIN 
Nurseries NURS 
Flowers FLOW 

Fodder activities 
Fodder maize MAIF 
Fodder root crops ROOF 

 

 

Table 5 illustrates the activity-based approach followed in the CAPRI supply 

module. For irrigable activities, input/output coefficients need to be specified both 

for the rainfed and the irrigated variants (the new components added in the 

irrigation module are highlighted in blue). 
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Table 5.  Input-output coefficients for CAPRI activities 

SWHE [Soft wheat 
production activity] 

Description Unit 

Outputs       

SWHE 3068.63 Soft wheat yield kg/ha 
STRA 2454.90 Straw yield  kg/ha 

Inputs       

NITF 73.65 Organic and anorganic N applied  kg/ha 
PHOF 31.95 Organic and anorganic P applied  kg/ha 
POTF 62.60 Organic and anorganic K applied  kg/ha 
WIRR   Irrigation water m3/ha 
SEED 4.47 Seed input const Euro 1995/ha 
PLAP 4.34 Plant protection products const Euro 1995/ha 
REPA 11.59 Repair costs const Euro 1995/ha 
ENER 52.78 Energy costs const Euro 1995/ha 
WATR   Water costs const Euro 1995/ha 
INPO 15.80 Other inputs const Euro 1995/ha 

Income indicators     

TOOU 397.33 Value of total outputs Euro/ha 
TOIN 154.85 Value of total inputs Euro/ha 
GVAP 242.47 Gross value added at producer prices Euro/ha 
PRME 145.14 CAP premiums Euro/ha 
MGVA 387.61 Gross value added at producer prices plus premiums Euro/ha 

Activity level and data relating to CAP   

LEVL 1299.16 Hectares cropped  1000 ha 
ILEV   Irrigated activity level 1000 ha 
HSTY 2.29 Historic yield used to define CAP premiums t/ha 
SETR 6.90 Set aside rate % 

 

To account for irrigation in the land balances, we include a distinction between 

rainfed and irrigated areas. For regions with irrigation (ri), arable land will be split 

into irrigable land and rainfed land (non-irrigable land). 

 

Figure 1.  Land balances in CAPRI 

AGRICULTURAL AREA 

UAAR  

ARAB GRAS  

IRRB         

IRRI          

 

The irrigable area (IRRB) is the area equipped for irrigation and, therefore, is the 

maximum area that can be irrigated. Total irrigated area in a particular year (IRRI) 

is usually lower than total irrigable area, due to increasing marginal costs, water 

scarcity, etc. 
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At the regional level (or even at the farm level), total water availability for 

irrigation purposes is limited. This will be expressed in the water supply balance, 

indicating that total water use by crops cannot exceed potential water availability. 

 

In the next sections, we will detail the steps that could be followed to integrate 

irrigation in the supply module of CAPRI.  

  

 

5.2. Irrigable and irrigated areas 

Data on area equipped for irrigation (irrigable area) and area irrigated at least 

once a year (irrigated area) are available in EUROSTAT, as they are regularly 

assessed in the Farm Structure Survey (FSS) and reported at MS and NUTS2 levels. 

 

Data on area equipped for irrigation (irrigable area) and area irrigated at least 

once a year (irrigated area) are available in EUROSTAT, as they are regularly 

collected with the Farm Structure Survey (FSS) and reported by EUROSTAT at MS 

and NUTS2 levels. The total irrigable area in EU27 was around 15 million hectares 

in 2007 (16 million hectares in 2003) or 9% of total utilized agricultural area, 

while the total irrigated area was 10.3 million hectares in 2007 (10.8 million 

hectares in 2003). As shown in Figure 2, irrigation is mainly relevant in the 

Mediterranean. 

 

Figure 2.  Irrigable and irrigated areas in 2007 (in 1000 ha) 

 
Source: Data from EUROSTAT (no data for Germany, Estonia and Ireland) 

 

 

Although irrigable area represents less than 9% of total utilized agricultural area 

at the EU level, the share of irrigable area in total UAA is higher than 30% in four 
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Mediterranean countries (Greece, Cyprus, Italy and Malta) and shares at the 

regional level are even higher in some cases. 

 

Figure 3.  Irrigable and irrigated areas in 2007 (percentage share of UAAR) 

 
Source: Data from EUROSTAT (no data for Germany, Estonia and Ireland) 

 

With regard to actual irrigated area, Spain represents almost one third of total EU 

irrigations and only four countries (Spain, Italy, France and Greece) account for 

85% of total irrigated area within the EU. 

 

 

Figure 4.  Share of irrigated area in EU27 total (2007) 

 
Source: Data from EUROSTAT 

 

 

This study is based on irrigation data from 2000, 2003, 2005 and 2007. The 

following table shows the availability of data on irrigation areas. Data at NUTS 2 

level is incomplete.  
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Table 6.  Data on irrigation area 

Variable Source Unit Temporal coverage Spatial coverage Spatial resolution 

Total irrigable area EUROSTAT 
(FSS) 

ha 2000, 2003, 2005,  
and 2007  

EU27, Norway, 
Switzerland and 

Croatia 

NUTS 0 and 2 

Total irrigated area EUROSTAT 
(FSS) 

ha 2000, 2003, 2005,  
and 2007 

EU27, Norway, 
Switzerland and 

Croatia 

NUTS 0 and 2 

Irrigated area by irrigation 
method 

EUROSTAT 
(FSS) 

ha 2003  NUTS 0 and 2 

Irrigated area per crop EUROSTAT 
(FSS) 

ha 2000, 2003, 2005,  
and 2007 

EU27, Norway, 
Switzerland and 

Croatia 

NUTS 0 and 2 

 

Crop-specific irrigated area is only provided for 10 selected crops (durum wheat, 

maize, potatoes, sugar beet, soya, sunflower, fodder plants, vines, fruit and berry 

orchards and citrus fruit). The number of crops will be higher once the FSS data for 

2010 will be available. Additional national statistics could be used to fill some gaps 

in the EUROSTAT data.  

 

The main variables on irrigation areas included in the irrigation module are 

presented in Table 7. 

 

Table 7.  Main variables on irrigation areas 

Topic Variable Unit Code 

Irrigation area Total irrigable area 1000 ha IRRB 

 
Total irrigated area 1000 ha IRRI 

 
Crop-specific irrigated area 1000 ha ILEV 

Irrigation method Surface irrigation 1000 ha IMSUR 

 
Sprinkler irrigation 1000 ha IMSPR 

 
Drop irrigation 1000 ha IMDRO 

 
All irrigation methods 1000 ha IMALL 

 

 

So far, CAPRI distinguishes arable and grassland and comprises thus two land 

balances: 

 

              ∑           

    

  

 
                                          

 

Both land balances might become slack if marginal returns to land drops to zero. 

For arable land, idling land not in set-aside (activity FALL) is a further explicit 

activity. For the grassland, the model distinguishes two types with different yields 
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(GRAE: grassland extensive, GRAI: grassland intensive) so that idling grassland can 

be expressed of an average lower production intensity of grassland by changing 

the mix between the two intensities (Britz and Witzke 2011). 

 

Land available to agriculture is a function of returns to land and substitution 

between arable land and grassland is possible:  

 
    ̅̅ ̅̅ ̅̅ ̅

                                      

 

To account for irrigation, we split arable land into irrigable land and rainfed land. 

Irrigable land is the land equipped for irrigation and is then the maximum area 

which can be irrigated in a particular region at a given time.  

 

Hence, for each region with irrigation (ri) we define a new constraint for irrigable 

land, indicating that total irrigated area in the region cannot exceed total irrigable 

land: 

 

                               

 

 Total irrigated area is defined as the sum over irrigated activities (wact): 

 

∑              

    

                  

 

While data on total irrigable and irrigated area per region is provided by 

EUROSTAT, crop-specific irrigated area is only provided for a selected group of 

crops. Ex-post data on crop-specific irrigated areas will then be estimated so as to 

match the official statistics. This will be done through a joint estimation procedure 

for irrigated areas, crop yields and water use, which will be detailed further on. 

 

A survey of irrigation methods was included in the FSS in 2003, reporting the area 

covered by specific irrigation methods (surface irrigation, sprinkler irrigation and 

drop irrigation). For 2003, EUROSTAT provides data on irrigation methods at the 

NUTS2 level. In the testing case study, we assume that the share of each irrigation 

method in the CAPRI base year (2003-2005) matches the EUROSTAT figures.  

 

The share of irrigation methods will be mainly used to compute irrigation 

efficiencies. 
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5.3. Irrigation water availability 

EUROSTAT (through the OECD-EUROSTAT Joint Questionnaire on Inland Waters) 

provides country-level statistics on water availability and water use for the EU-27, 

Norway, Switzerland, Croatia and Turkey. Sectoral water abstraction and use are 

reported for the agricultural, domestic, manufacturing, mining and electricity 

production sectors. 

 

In some irrigated regions, water availability is a major constraint for agricultural 

production. The volume of water available for irrigation depends on the total 

exploitable water resources of the region but also on water needs in other sectors 

and the efficiency of water use.  

 

To compute irrigation water availability, we assume that water is allocated first to 

the domestic sector, then to the livestock and industrial sectors and finally to the 

irrigation sector. Therefore, irrigation water potential availability (or maximum 

water withdrawal) equals total water supply minus estimated water withdrawal 

over all other sectors. 

 

Since data on water availability and water use is available only at the national level 

in EU-wide statistical sources, these datasets will be complemented with national 

statistics whenever possible.  

  

WATERGAP has estimated water availability as well as potential consumption 

rates for the year 2020 (Flörke and Alcamo 2004). In the testing case study, we will 

assume that potential irrigation water availability for the CAPRI baseline matches 

WATERGAP results. 

 

Water availability constraints will be entered at regional level to express that total 

water withdrawal for irrigation purposes (IRWW) cannot exceed potential 

irrigation water availability (IRWA): 

 

                 

 

 

5.4. Irrigation water use 

5.4.1. Crop-specific water balance 

Irrigation water use is included as a crop specific input. As it is not reported in 

official statistics, estimated values will be used instead. 

 

Theoretical crop water requirements can be derived from crop-specific water 

balances at the regional level. Crop water requirement (CWR) is defined as the 
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total amount of water needed for a crop under optimum growth conditions and 

without water- and nutrient-stress. Climate and crop type are the main factors 

determining the crop water requirement, which is normally expressed in mm/day 

or mm/period. 

 

Various modelling tools have been developed to estimate crop water requirement 

and the "crop yield response to water". A widespread approach are the FAO 

guidelines (Doorembos and Kassam 1979), which estimate the crop water 

requirement (CWR) as the potential crop evapotranspiration (EPOT), avoiding the 

problem of clearly defining optimum growth conditions. This approach, based on 

the quantification of the cumulative crop evapotranspiration during the crop 

growing season, has been recently updated in the AquaCrop model (Raes et al. 

2009). 

 

Potential evapotranspiration (EPOT) refers to the maximum evapotranspiration 

over the growing period of the crop under optimum growth conditions (conditions 

where water, nutrients and pests and diseases do not limit crop growth). 

 

In turn, actual evapotranspiration (EACT) refers to the actual level of 

evapotranspiration, given the available soil water. 

 

Under non water-limited conditions, actual evapotranspiration (EACT) equals 

potential evapotranspiration (EPOT) and the potential crop yield (YPOT) will be 

reached. 

 

However, under water-limited conditions, actual evapotranspiration (EACT) will 

fall below potential evapotranspiration (EPOT) and water stress will adversely 

affect crop growth. As a result, the actual crop yield (YACT) will be lower than the 

potential crop yield (YPOT). Knowing the potential crop yield per region will allow 

to define the actual yield as a function of the potential yield and to define the 

technology variants for the irrigated activities in a way consistent with crop-water 

relationships.  

 

Several approaches could be envisaged to estimate crop-water relationships. 

Because of its simplicity and robustness, the AquaCrop model could be chosen to 

estimate crop water requirements, potential yields (non water-limited conditions) 

and rainfed yields (standard rainfed conditions). An alternative option would be to 

use data from other biophysical modelling tools (the LISFLOOD model developed 

at JRC-IES, for instance).  
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Table 8.  Estimated data on crop-specific water balances 

Variable Calculation 
method 

Unit Temporal 
coverage 

Spatial coverage Spatial resolution 

Effective precipitation AquaCrop mm MT average EU27, NO, TUR 
and WB 

NUTS 2 

Crop specific potential 
evapotranspiration 

AquaCrop mm MT average EU27, NO, TUR 
and WB 

NUTS 2 

Potential crop yield AquaCrop t/ha MT average EU27, NO, TUR 
and WB 

NUTS 2 

Rainfed crop yield AquaCrop t/ha MT average EU27, NO, TUR 
and WB 

NUTS 2 

 

 

 

5.4.2. Irrigation water requirements  

Once the crop water requirement has been estimated, we will calculate net 

irrigation requirement (CNIR) as the volume of water needed to compensate for 

the deficit of water over the growing period of the crop. 

 

Net irrigation requirement (CNIR) is commonly determined as the difference 

between CWR (i.e. potential crop evapotranspiration) and the actual crop 

evapotranspiration under rainfed conditions or effective precipitation (PEFF). It is 

expressed in millimetres per year or in m3/ha per year (1 mm = 10 m3/ha). 

 

                                    

 

Net irrigation requirement is then the total volume of water needed by a certain 

crop in addition to the rainfall for achieving the potential yield. In the absence of 

irrigation, the maximum yield under rainfed conditions is determined by the 

amount of rainfall and its distribution over the growing season. This water-limited 

yield is equal to the potential yield in the case of sufficient rainfall, and is lower 

than the potential yield in the case of water deficit.  

 

Data on crop irrigation water requirements or irrigation water use are usually not 

available in official statistics. Therefore, the first step to compute irrigation water 

use will be to estimate net irrigation requirements per crop and per region. 

 

The main variables used to model crop-water relationships in CAPRI are presented 

in Table 9. 

 

 

 



  

 

  Page 43 
 

Table 9.  Main variables for crop-water linkages 

Topic Variable Unit Code 

Irrigation water  Effective precipitation mm PEFF 

 
Reference evapotranspiration mm EREF 

 
Potential evapotranspiration mm EPOT 

 
Actual evapotranspiration mm EACT 

 
Crop water requirement mm CWR 

 
Crop net irrigation requirement mm CNIR 

 
Crop gross irrigation requirement m3/ha CGIR 

 
Water application efficiency % IRWAE 

 
Water transport efficiency % IRWTE 

 
Water use efficiency % IRWUE 

 
Crop actual irrigation water use m3/ha CAWU 

Crop yield Potential yield kg/ha YPOT 

 
Actual yield kg/ha YACT 

 
Rainfed yield kg/ha YNOI 

 

 

5.4.3. Irrigation efficiency 

FAO (2001) defines irrigation efficiency as the percentage of the irrigation water 

consumed by crops to the water diverted from the source of supply. It 

distinguishes between conveyance efficiency, which represents the efficiency of 

water transport in canals, and the field application efficiency, which represents the 

efficiency of water application in the field. 

 

In this report, the term water application efficiency (IRWAE) indicates the ratio of 

the volume of irrigation water evapotranspirated by the crop to the volume of 

water applied to the crop. Water transport efficiency (IRWTE) is the ratio of water 

used to water withdrawn. 

 

Water application efficiency depends on the irrigation method and management 

practices. Based on the regional net irrigation requirement per crop, we estimate 

regional gross irrigation requirements (CGIR) by division with the regional water 

application efficiency (IRWAE): 

 

             
           

            
  

 

According to Brouwer et al. (1989), indicative field application efficiencies range 

from 0.60, 0.75 and 0.90 for surface irrigation, sprinkler irrigation, and drip 

irrigation, respectively. Using the indicative values for each irrigation method and 

the estimated area share by irrigation method, we compute the regional 

application efficiency per activity. 

 

The transport efficiency mainly depends on irrigation infrastructure and water 

management of the canals, the soil type or permeability of the canal banks and the 
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condition of the canals. Data on irrigation efficiency are usually not easily available. 

Therefore, we consider the range 0.60-0.95 given by Brouwer et al. (1989).  

 

Taken into account the irrigation water use efficiency, the potential water 

abstraction can be estimated: 

 

            
           

       
 

           

                     
 

 

The term "irrigation efficiency" does not automatically imply a waste of water. Part 

of the unused water may flow back to a water source and be used again 

downstream. Irrigation efficiency at the river basin level or the regional level is 

usually higher than at the field level (because of reuse of return flows at the 

aggregate level). 

 

 

5.4.4. Regional irrigation water use 

Once the per hectare irrigation water requirements are calculated, these are 

multiplied by the crop-specific irrigated to give the total irrigation water 

requirements per NUTS-2 region. 

 

Both net irrigation requirement and gross irrigation requirement are theoretical 

irrigation water needs. Compared to CGIR, actual irrigation water use may be 

lower (water scarcity, decreasing marginal returns) or higher (non optimal 

irrigation scheduling, salt leaching factor, etc.).  

 

Since data on irrigation water use per crop and per region is not reported in 

official statistics, the actual irrigation water use per crop (CAWU) will be estimated 

for each irrigated region based on theoretical crop water requirements, rainfed 

and irrigated shares and crop yields.  

 

Regional irrigation water use (IRWU) will be computed by summation over all 

irrigated crops.   

 

          ∑            

    

              

 

Irrigation water withdrawal is the volume of water extracted from any source 

(rivers, lakes, aquifers, non-conventional sources) for irrigation purposes, and 

usually exceeds the consumption of water because of water lost in the distribution 

network.  
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5.5. Yield response to water  

When crop water requirements are fully met by available supply (EACT = EPOT), 

no water stress will take place and the potential yield will be attained (YACT = 

YPOT). Potential yield (YPOT) is the yield linked to potential evapotranspiration 

(EPOT) and is the maximum yield achievable in a given climate under ideal, 

constraint-free conditions (i.e. assuming perfect management of water and 

fertilizer and control of pests and diseases). 

 

When water supply is insufficient to fulfil crop water requirements (EACT < EPOT), 

a water deficit will take place,  often called crop water stress, adversely affecting 

crop growth and ultimately crop yield. As a result, the actual crop yield will not 

reach the potential yield (YACT < YPOT). 

 

The effect of water stress on growth and yield depends on the crop species on the 

one hand and the magnitude and the time of occurrence of water deficit on the 

other. Crops vary in their response to water stress. According to FAO (2009), in 

some crops a water deficit induces an increase in water productivity (i.e. sorghum) 

whereas for other crops water productivity decreases with increase in water 

deficit (i.e. maize).  

 

Furthermore, the yield response to water deficit may vary among varieties of the 

same crop. In general, high producing varieties are also the "most sensitive in their 

response to water, fertilizer and other agronomic inputs.  

 

Also, when water deficit occurs during a particular part of the total growing period 

of a crop, the yield response to water deficit can vary greatly depending on how 

sensitive the crop is at that growth period. In general, crops are more sensitive to 

water deficit during emergence, flowering and early yield formation. 

 

Finally, the response of yield to water cannot be considered in isolation from all 

the other agronomic factors, such as fertilizers, plant density and crop protection, 

because these factors also determine the extent to which actual yield (YACT) 

approaches maximum yield (YPOT). 

 

The "crop yield response to water" procedure developed at the FAO (Doorembos 

and Kassam 1979) is a widely applied approach for estimating crop yields. The 

actual crop yield can be quantified by relating the relative yield loss to relative 

reduction in evapotranspiration using the following equation: 
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The yield response to water is quantified through the yield response factor (Ky) 

which relates relative yield decrease to relative evapotranspiration deficit. The 

yield response factor is derived for each crop based on the assumption that the 

relationship between relative yield and relative evapotranspiration is linear. 

 

Table 10.  Yield response factor for selected crops (Ky) 

Crop Ky Crop Ky 

Alfalfa  0.7 - 1.1 Potato  1.1  
Banana  1.2 - 1.35 Safflower  0.8  
Bean  1.15 Sorghum  0.9  
Cabbage  0.95 Soybean  0.85  
Citrus  0.8 - 1.1 Sugar beet  0.7-1.1  
Cotton  0.85 Sugarcane  1.2  
Grape  0.85  Sunflower  0.95  
Groundnut  0.7  Tobacco  0.9  
Maize  1.25 Tomato  1.05  
Onion  1.1  Water melon  1.1  
Pea  1.15  Wheat (winter) 1.0 
Pepper  1.1  Wheat (spring) 1.15 

Source: AquaCrop 

 

The "crop yield response to water" is updated recently in the Aquastat model 

(Raes et al., 2009). AquaCrop is a water-driven simulation model that requires a 

relatively low number of parameters and input data to simulate the yield response 

to water of most of the major field and vegetable crops cultivated worldwide.  

 

The AquaCrop model could be use to compare the potential against actual yields in 

the EU at the regional level. Another possibility would be to include yields coming 

from other biophysical models which simulate the response of crop yield to water. 

This would be particularly helpful to estimate the impacts of climate change on 

crop yields when simulating climate change scenarios.  

 

 

5.6. Estimation of input-output coefficients for irrigated activities  

5.6.1. Irrigation costs 

Regarding irrigation costs, EU-wide statistics seem to be lacking. Water is included 

as a cost item in the European Farm Accounting Data Network (FADN), but this 

cost component only includes the cost of connection to a water delivery system 

and the consumption of water. Water application costs as well as irrigation 

investment costs are not reported separately in FADN. The cost of using irrigation 

equipment is recorded under "current upkeep of machinery and equipment", 
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"motor fuels and lubricants" and "electricity". As regards capital cost, it is recorded 

under “investment” and “depreciation”. 

 

As production costs given by FADN are not broken down to the level of agricultural 

activities, CAPRI uses an econometric procedure to allocate farm input costs to 

particular agricultural activities. In spite of the difficulties to individualize 

irrigation costs, FADN data will be used as much as possible to keep consistency 

with the input allocation model in CAPRI. Nevertheless, as available data on 

irrigation costs is really limited, additional data from national statistics should 

ideally be used to fill the gaps in EU-wide statistics. 

 

Through the input allocation process, inputs as feed, NPK fertilizer, energy or plant 

protection costs are allocated to individual production activities in CAPRI. Several 

sources are combined in a statistical approach which ensures consistency to the 

Economic Accounts of Agriculture or other statistics on feed and fertilizer use, 

inter alia: (a) econometric estimates based on single farm data from the European 

Farm Accounting Data Network, (b) engineering information (e.g. requirement 

function for animals or nutrient contents of crops), (c) standard gross margins. 

 

The initial estimates for the input allocation based on FADN data was carried out in 

the framework of the first CAPRI research project and cannot be updated in an 

automated way. Separating irrigation from those cost components where it is 

currently “hidden” will imply, apart from the difficulties related to the particular 

allocation rules to use, to thoroughly reorganise the input allocation procedure. 

 

Therefore, integrating irrigation water in the supply module of CAPRI will require 

a thorough revision of the input allocation procedure. Besides, as available data on 

irrigation costs is really limited, additional data from national statistics should 

ideally be used to fill the gaps in EU-wide statistics.  

  

 

5.6.2. Irrigation shares, irrigation requirements and crop yields 

EUROSTAT (FSS) provides data on agricultural area and crop areas for 46 crop 

types. Irrigation data are reported as total area equipped for irrigation (irrigable 

area) and total area irrigated at least once a year (actual irrigated area). In addition 

to regional totals, crop-specific irrigated areas are also reported, but only for 10 

selected crops (durum wheat, vines, maize, potatoes, sugar beet, soya, sunflower, 

fodder plants, fruit and berry orchards and citrus fruits). Additional national 

statistics could be used to fill some gaps in the Eurostat data. 

 

The distinction between rainfed and irrigated activities requires splitting the total 

crop area in each region into rainfed area and irrigated area. Given the lack of data 
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on crop-specific irrigated areas, an estimation procedure could be used to estimate 

irrigation shares. 

 

With the aim of taking advantage of all the information available, a joint estimation 

procedure for irrigated shares, rainfed and irrigated crop yields and irrigation 

water use is suggested. This also ensures that irrigated areas, crop yields and 

water use will be consistent with regional figures. 

 

Since the irrigation module is under development and, therefore, no data on 

irrigation is yet included in the CAPRI database, we will take the CAPRI database as 

the starting point, that is, as the "official set of regional data". Once the irrigation 

module will be integrated in CAPRI, ideally this estimation procedure will be 

integrated in the data module.  

 

For each irrigated region, the variables in the estimation will be:  

 Rainfed and irrigated area per crop 

 Rainfed and irrigated yield per crop 

 Irrigation water use per crop 

 Share of irrigation method per crop 

 

The estimation procedure will yield the most probable values for these variables 

for the CAPRI base year (2003-2005), so that the following conditions are 

respected: 

 The total irrigated area at the NUTS2 level matches the statistical data reported 

by EUROSTAT (Farm Structure Survey for 2003) 

 The weighted average of rainfed and irrigated yields equals the regional crop 

yields in the CAPRI base year 

 The total irrigation water use at the NUTS2 level matches the statistical data on 

irrigation water use reported by EUROSTAT; 

 

and based on minimization of deviations from given information: 

 the reported irrigation shares at the NUTS2 level for 10 selected crops, 

 the area covered by each irrigation method, 

 the rainfed yield implicit in the yield response to water function 

 the actual water use per crop implicit in the yield response to water function 

 

Through this estimation procedure, estimated input-output coefficients for rainfed 

and irrigated activities will be consistent with the average regional values found in 

the CAPRI database for the base year situation. Ideally, the estimation procedure 
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should be updated with each new release of the CAPRI base year. However, 

updating of the water database will depend on availability of updated EUROSTAT 

data. In this respect, it is important to keep in mind that irrigation data is not 

published annually and the last available year, even if incomplete, is 2007.  

 

The CAPRI baseline should be recalibrated to take into account the likely 

development of irrigated shares and water use efficiency in the irrigation sector. In 

a first moment, however, as no time series are available for irrigation data, a very 

simplified method based on expert knowledge will be used. 
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6. The water use sub-module  

6.1. Introduction 

To account for water supply and demand, a water balance approach is suggested. 

For EU regions, a more detailed representation will be possible in the supply 

module of CAPRI. For non-EU regions, stylized water supply and demand functions 

could be used instead. 

 

In a further step, the linkage to a water use model could be envisaged. 

 

6.2. Water balance approach in the CAPRI supply module 

6.2.1. Accounting for water supply and demand 

For a given water availability, the water use sub-module computes water 

withdrawal and use in the domestic, industrial, irrigation and livestock sectors. 

 

While water abstraction is the quantity of water taken from any water source, 

water use is the part of the abstracted water reaching the end user and water 

consumption is the part of the water actually consumed7. The ratio of consumptive 

use to water abstraction is called water use efficiency. 

 

6.2.2. Water availability 

The OECD/Eurostat Joint Questionnaire on Inland Waters defines climatic water 

balances at the regional level, whose main components are precipitation, actual 

evapotranspiration, internal flow, actual external inflow and total outflow (Table 

10).  

 

Table 11.  Data on water availability 

Variable Source Unit 
Temporal 
coverage 

Spatial coverage 
Spatial 

resolution 

Precipitation EUROSTAT Million m3 1990-2007 EU27, NO, TUR and WB NUTS 0 
Actual evapotranspiration EUROSTAT Million m3 1990-2007 EU27, NO, TUR and WB NUTS 0 
Internal Flow EUROSTAT Million m3 1990-2007 EU27, NO, TUR and WB NUTS 0 
Actual external inflow EUROSTAT Million m3 1990-2007 EU27, NO, TUR and WB NUTS 0 
Total actual outflow EUROSTAT Million m3 1990-2007 EU27, NO, TUR and WB NUTS 0 
Actual outflow into the sea EUROSTAT Million m3 1990-2007 EU27, NO, TUR and WB NUTS 0 
Actual outflow into neighbouring territories EUROSTAT Million m3 1990-2007 EU27, NO, TUR and WB NUTS 0 
Total fresh water resources EUROSTAT Million m3 1990-2007 EU27, NO, TUR and WB NUTS 0 

 
  

                                            

 
7
  The difference between total use and consumptive use is the return flow, the part of the water that 

returns to either the surface water or the groundwater. 
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These regional water balances allow estimating the total freshwater resources. 

Ideally, this estimation could be done at the regional level, but data is only 

available at the national level so far. Although the time series at the national level 

are incomplete, the long-term annual average is provided for most countries. 

 

Table 12.  Water balance in 1000 Mio m3 per year (long term annual average) 

    Precipitation 
Evapotrans- 

piration 
Internal 

flow 
External 

inflow 
Outflow 

Freshwater 
resources 

  

  Belgium 28.9 16.56 12.33 7.61 15.34 19.93   
  Bulgaria 68.6 50.51 18.09 89.14 108.54 107.23   
  Czech Republic 54.7 39.42 15.24 0.74 15.98 15.98   
  Denmark 38.5 22.15 16.34 0.00 1.94 16.34   
  Germany 307.0 190.00 117.00 75.00 182.00 188.00   
  Estonia 29.0 : : : 12.35 12.35   
  Ireland 80.0 32.50 47.50 : : 47.50   
  Greece 115.0 55.00 60.00 12.00 : 72.00   
  Spain 346.5 235.39 111.13 0.00 111.13 111.13   
  France 485.7 310.39 175.29 11.00 168.00 186.29   
  Italy 296.0 129.00 167.00 8.00 155.00 175.00   
  Cyprus 3.1 2.75 0.33 0.00 0.08 0.33   
  Latvia 42.7 25.80 16.90 16.83 32.90 33.73   
  Lithuania 44.0 28.50 15.51 8.99 25.90 24.50   
  Luxembourg 2.0 1.13 0.91 0.74 1.60 1.64   
  Hungary 55.7 48.17 7.53 108.90 115.66 116.43   
  Malta : : : : : :   
  Netherlands 29.8 21.29 8.48 81.20 86.30 89.68   
  Austria 98.0 43.00 55.00 29.00 84.00 84.00   
  Poland 193.1 138.30 54.80 8.30 63.10 63.10   
  Portugal 82.2 43.57 38.59 35.00 34.00 73.59   
  Romania 154.0 114.59 39.42 186.32 245.62 225.74   
  Slovenia 31.7 13.15 18.60 13.50 32.27 32.09   
  Slovakia 37.4 24.28 13.07 67.25 81.68 80.33   
  Finland 222.0 115.00 107.00 3.20 110.00 110.00   
  Sweden 313.9 141.15 172.71 11.83 194.63 183.36   
  United Kingdom 283.7 111.20 172.50 2.84 175.34 175.34   
  Iceland 200.0 30.00 170.00 - 170.00 170.00   
  Norway 470.7 112.00 377.29 12.15 389.44 389.44   
  Switzerland 61.6 21.60 40.71 12.80 53.50 53.51   
  Croatia 63.1 40.13 23.01 : : :   
  FYR of Macedonia 19.5 : : 1.01 6.32 :   
  Turkey 501.0 273.60 227.40 6.90 178.00 234.30   

 

 

Human activities also greatly affect the individual components of the hydrological 

cycle, mainly through water abstraction from ground and surface water sources. 

An approximation to the degree of anthropogenic influence in the water cycle is 

the water stress indicator. Figure 5 shows the big discrepancies in water stress 

across EU. While some countries exploit more than 30% (Cyprus, Belgium) of total 

freshwater resources, in other countries the share of water withdrawal on total 

freshwater resources is less than 5% (Latvia, Sweden). 
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Figure 5.  Water stress in 2009 (% of freshwater abstraction on total freshwater resources)  

 
 

The main variables considered in CAPRI are shown in Table 13. These variables 

allow for computing a regional water balance and will be mainly used to compute 

water indicators. 

 

Table 13.  Water availability components 

Topic Variable Unit Code 

Water availability Precipitation Mio m3 WAPR 

 
Actual evapotranspiration Mio m3 WAEA 

 
Internal Flow Mio m3 WAFI 

 
Actual external inflow Mio m3 WAIN 

 
Total actual outflow Mio m3 WAOU 

 
Total fresh water resources Mio m3 TFWR 

 

Total freshwater resources are an indicator of water availability and will be used 

to compute potential water supply. Data at the national level will be complemented 

with national statistics whenever possible to compute climatic water balances at 

the regional level.  

 

 

6.2.3. Regional water withdrawal and use 

6.2.3.1. Introduction 

Data on water abstraction and use are collected regularly by Eurostat via the 

OECD/Eurostat Joint Questionnaire on Inland Waters. These data include annual 

water abstraction data per sector at national level. Sectors considered include 

agriculture, domestic sector, manufacturing sector, mining sector, construction 

and electricity production. Agriculture encloses irrigation, forestry and fisheries, 

although data for irrigation is also found in some cases. No indication about water 

use in the livestock sector is given.  
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Table 13 shows the main variables on water use balances in EUROSTAT. However, 

the datasets are very incomplete and, for some countries, only the data on total 

abstraction is reported. 

 

Table 14.  Data on water use balance 

Variable Source Unit Temporal coverage Spatial coverage Spatial 
resolution 

Total gross abstraction of freshwater EUROSTAT Million m3 1990-2009 EU27, NO, TUR and WB NUTS 0 
Returned water (before or without 
use) 

EUROSTAT Million m3 1990-2009 EU27, NO, TUR and WB NUTS 0 

Total net fresh water abstraction EUROSTAT Million m3 1990-2009 EU27, NO, TUR and WB NUTS 0 
Desalinated water EUROSTAT Million m3 1990-2009 EU27, NO, TUR and WB NUTS 0 
Reused water EUROSTAT Million m3 1990-2009 EU27, NO, TUR and WB NUTS 0 
Imports of water EUROSTAT Million m3 1990-2009 EU27, NO, TUR and WB NUTS 0 
Exports of water EUROSTAT Million m3 1990-2009 EU27, NO, TUR and WB NUTS 0 
Total water available for use within 
the territory 

EUROSTAT Million m3 1990-2009 EU27, NO, TUR and WB NUTS 0 

Losses during transport, total EUROSTAT Million m3 1990-2009 EU27, NO, TUR and WB NUTS 0 
Total water available for end users 
within the territory 

EUROSTAT Million m3 1990-2009 EU27, NO, TUR and WB NUTS 0 

Total waste water generated EUROSTAT Million m3 1990-2009 EU27, NO, TUR and WB NUTS 0 
Waste water discharged to inland 
waters 

EUROSTAT Million m3 1990-2009 EU27, NO, TUR and WB NUTS 0 

Waste water discharged to marine 
waters 

EUROSTAT Million m3 1990-2009 EU27, NO, TUR and WB NUTS 0 

Reused water EUROSTAT Million m3 1990-2009 EU27, NO, TUR and WB NUTS 0 
Discharges of used water EUROSTAT Million m3 1990-2009 EU27, NO, TUR and WB NUTS 0 
Consumptive water use EUROSTAT Million m3 1990-2009 EU27, NO, TUR and WB NUTS 0 
Total water consumption EUROSTAT Million m3 1990-2009 EU27, NO, TUR and WB NUTS 0 

 

Although data on sectoral water use is theoretically reported for all sectors (Table 

14), in fact very few data points are available. In most cases, only total supply and 

supply to agriculture are reported. In general, data on water abstractions for 

irrigation purposes is very incomplete and often based on estimates (metering 

devices are absent in most irrigation systems). 

 

Table 15.  Data on sectoral water supply 

Variable Source Unit Temporal coverage Spatial coverage Spatial 
resolution 

Total supply EUROSTAT Million m3 1990-2009 EU27, NO, TUR and WB NUTS 0 
Supply to agriculture, forestry, fishing 
(total) 

EUROSTAT Million m3 1990-2009 EU27, NO, TUR and WB NUTS 0 

Supply to mining and quarrying EUROSTAT Million m3 1990-2009 EU27, NO, TUR and WB NUTS 0 
Supply to manufacturing industries 
(Total) 

EUROSTAT Million m3 1990-2009 EU27, NO, TUR and WB NUTS 0 

Supply to the production and 
distribution of electricity (Total) 

EUROSTAT Million m3 1990-2009 EU27, NO, TUR and WB NUTS 0 

Supply to all industrial activities EUROSTAT Million m3 1990-2009 EU27, NO, TUR and WB NUTS 0 
Supply to construction EUROSTAT Million m3 1990-2009 EU27, NO, TUR and WB NUTS 0 
Supply to the domestic sector (Total) EUROSTAT Million m3 1990-2009 EU27, NO, TUR and WB NUTS 0 

 

In CAPRI, we have retained four sectors: domestic, industrial, irrigation and 

livestock. Table 15 shows the main components of the water use sub-module. In 

principle, in-situ water use will not be taken into account, as no statistical 

information is available. 
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In all sectors, sectoral water use is computed as a function of water use intensity 

and driving forces or water use. Both the water use intensity and the driving forces 

may change in future scenarios. For instance, a future scenario may imply a 

reduction/increase of water available for irrigation. Improvements in water use 

efficiency are taken into account by a sector-specific technological change factor.  

 

Table 16.  Water abstraction and use components 

Topic Variable Unit Code 

Total water abstraction/use Total water withdrawal Mio m3/year TOWW 

 
Total water use Mio m3/year TOWU 

 
Total water consumption Mio m3/year TOWC 

Domestic sector Domestic water withdrawal Mio m3/year DOWW 

 
Domestic water use Mio m3/year DOWU 

 
Domestic water consumption Mio m3/year DOWC 

 
Water use efficiency in the domestic sector % DOWUE 

 
Water use intensity in the domestic sector m3/capita.year DOWUI 

Industrial sector Industrial water withdrawal Mio m3/year INWW 

 
Industrial water use Mio m3/year INWU 

 
Industrial water consumption Mio m3/year INWC 

 
Water use efficiency in the industrial sector % INWUE 

 
Water use intensity in the industrial sector m3/GVA.year INWUI 

Irrigation sector Irrigation water withdrawal Mio m3/year IRWW 

 
Irrigation water use Mio m3/year IRWU 

 
Irrigation water consumption Mio m3/year IRWC 

 
Water use efficiency in the irrigation sector % IRWUE 

 
Water use intensity in the irrigation sector m3/capita.year IRWUI 

Livestock sector Livestock water withdrawal Mio m3/year LVWW 

 
Livestock water use Mio m3/year LVWU 

 
Livestock water consumption Mio m3/year LVWC 

 
Water use efficiency in the livestock sector % LVWUE 

 
Water use intensity in the livestock sector m3/capita.year LVWUI 

 

 

6.2.3.2. Water use in the domestic sector 

Water in the domestic sector accounts for the annual withdrawals and use of water 

by the domestic sector (households and small businesses) at country level.  

 

Total water use in the domestic sector (DOWU) is calculated as the water use 

intensity (DOWUI, measured in cubic meters per capita per year) multiplied by the 

regional population (POP). Country-wide values can be allocated to regions based 

on population density.  

 

                      

 

Over time, water use intensity may change depending on income growth and 

technological changes. For European countries, it has been observed that water 

use intensity first increases as income per capita increases but then tend to 

stabilize or even decline (Kuznets curve). 



  

 

  Page 55 
 

 

The relationship between water use intensity and income is derived for each 

country as a function of gross domestic product (GDP) and water price (WPRI). A 

technological change factor (TCH) is entered to account for the fact that improving 

technology leads to improvements in water use efficiency. 

 

                           

 

Domestic water withdrawal (DOWW) accounts for losses in the distribution 

systems. As in all other sectors, we distinguish transport efficiency (DOWTE) and 

application efficiency. 

 

       
     

      
  

     

      
 

 

EU-wide estimations on domestic water use are available from WaterGAP (Florke 

and Alcamo 2004). 

  

 

6.2.3.3. Industrial water use 

It is assumed that the industrial sector includes the manufacturing, the mining, the 

construction and the energy production sectors. Water use in the manufacturing 

sector is mainly driven by the GVA in this sector. In the energy sector, the main 

driver of water use is electricity consumption. 

 

Industrial water use is calculated as water use intensity times the main driver of 

water use. A technological change factor is also included to account for water use 

efficiency improvements. 

 

      ∑        
 

                  

  

The industrial water withdrawal is obtained by division by the water transport 

efficiency. 

 

       
     

      
  

     

      
 

 

EU-wide estimations on industrial water use are also available from WaterGAP 

(Florke and Alcamo 2004). 
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6.2.3.4. Irrigation water use 

As in other user sectors, we distinguish between water consumption, water use 

and water withdrawal.  

 

Irrigation water withdrawal refers to the total volume of water that is withdrawn 

from its source for irrigation purposes. In turn, irrigation water used is the volume 

of water used for irrigation, that is, once the transportation losses have been 

discounted. Finally, water consumption refers to the volume of water 

evapotranspirated by crops. 

 

        
      

       
 

 

        
      

       
  

      

       
 

 

Irrigation water use is computed in the supply module of CAPRI:  

 

       ∑            

    

             

 

 

6.2.3.5. Livestock water use 

There is no database available reporting livestock water use. To compute water 

use in the livestock sector, we will use livestock-specific water use intensities and 

multiply them by the number of livestock of each category given by CAPRI. 

 

        ∑                         

    

 

 

Livestock-specific water use intensities refer to water use coefficients by animal 

type, and will be taken from other studies (Mc Nitt 1983, van der Leeden 1990). 

 

 

6.2.4. Balancing supply and demand for water 

The total water supply by region can be estimated from regional water balances 

and historic data. We could assume that domestic water demand is satisfied first, 

then industrial and livestock water demand and, finally, irrigation water demand. 

The approach used by the IMPACT model is similar to this one. 
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Assuming that domestic and industrial water demands are exogenous, potential 

agricultural water supply can be obtained as total water supply minus demand on 

the domestic and industrial sectors.  

 

Livestock water requirements are assumed to be always met. Irrigation being the 

last-priority water user, total water available for irrigation will be limited. In most 

regions, irrigation water demand will be lower than water availability but, in some 

regions, irrigation water demand will reach potential water availability and, 

therefore, water will be a limiting factor.  

 

This approach allows accounting for competition between agricultural and non-

agricultural water use. An increase in water demand by other economic sectors 

(following a high population or GDP growth) will be translated in a higher pressure 

on agricultural water use. In addition, the effects of climate change on agricultural 

water demand and supply could be also taken into account.  

 

 

6.3. Water balance approach in the CAPRI global market model 

6.3.1. Crop-water linkages at the global level 

While the detailed supply models for EU regions present great advantages for 

integrating water considerations, the CAPRI market module faces similar 

limitations than other multi-commodity models to deal with crop-water 

relationships. 

 

To date, only the IMPACT model enables analysing linkages between food and 

water at the global level. The IMPACT food module integrates irrigation water in 

the behavioural functions. Above all domestic crop production is determined by 

area and yield response functions and both area and yield are function of irrigation 

water applied. To account for competition between agricultural and non-

agricultural water uses, the food module is linked to a water allocation module.  

 

In the following it is suggested to incorporate water in the supply behavioral 

functions of CAPRI as well as to investigate the possibility to link CAPRI to a water 

allocation model. 

 

6.3.2. Water supply and demand system 

Contrary to the IMPACT framework, the current CAPRI market model drives 

supply quantities by behavioural equations that do not distinguish between an 

area and a yield response. 
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However, in the context of the GLUES project, it is envisaged to introduce explicit 

land allocation in the global market model of CAPRI. One medium term goal of the 

initiative is to improve the interaction with plant growth models world-wide. 

Equally, the project aims to develop an approach to model agricultural land use 

change which is as far as possible empirically based and allows taking, if possible, 

differences in agricultural land quality into account. 

 

A similar approach could be envisaged to integrate water allocation in the CAPRI 

market module.  

 

In the current implementation of the land allocation system, land supply and 

demand are function of the land price. Integration of land demand consists in 

treating land as a net put in the normalized quadratic profit function of CAPRI.  

Hence, land demand from agriculture reacts to changes in the land price and 

output quantities depend on land prices. In order to parameterize the function, 

information about yield and supply elasticities is used. Land supply is integrated 

through a land supply curve with exogenous given elasticities. 

 

Adopting a similar approach, we could integrate water allocation in the market 

module of CAPRI. Irrigation water could be incorporated in the normalized 

quadratic profit function of CAPRI. Assuming that irrigation water demand 

depends on water price, we could account for changes in irrigation water use. A 

specific assumption on the relation between yield and water use will be needed. 

Data requirements will include: 

1. Data on total irrigation water use for countries / country blocks. 

2. Supply elasticities for irrigation water. 

 

Water supply could be integrated through a water supply curve with exogenous 

given elasticities. 

 

Information needed to parameterize the demand and supply functions could be 

borrowed from other models and studies, such as the IMPACT and WATERGAP 

models.  

 

6.3.3. Link to a water allocation model 

A further development of the CAPRI water module could be achieved by linking 

CAPRI to a water allocation module. This approach, already used by the IMPACT 

model, will enable to improve the representation of global water balances in 

CAPRI, taking into account sectoral water competition and interregional water 

flows.  
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The implementation of this approach will noticeably raise the computational 

requirements to run the CAPRI system. Therefore, the pros and cons of the 

approach should be carefully balanced prior to its adoption.   

 

 

6.4. Water indicators 

So far, CAPRI does not distinguish between rainfed and irrigated agriculture and 

does not include indicators on water availability and use. 

 

There has been a previous attempt to include water indicators in CAPRI. Crop-

specific water balances were included in a previous project at a high spatial scale. 

As these water balances, which have not been updated recently, were included as 

passive indicators, their applicability in the framework of the new water module 

remains unclear.  

 

Within the water module, a number of water indicators could be estimated, 

including: 

 Share of irrigable area on total utilized agricultural area 

 Share of irrigated area on total utilized agricultural area 

 Crop-specific water deficit/surplus by region 

 Share of irrigation water consumption on total water consumption 

 Share of irrigation water use on total water use 

 Share of irrigation water withdrawal on total water withdrawal 

 Share of livestock water consumption on total water consumption 

 Share of livestock water use on total water use 

 Share of livestock water withdrawal on total water withdrawal 

 Water exploitation index 
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7. Case study for the irrigation sub-module 

7.1. Choice of test regions  

The approach has been applied to a specific case study in order to test its 

feasibility. Two NUTS2 regions have been selected: one with high share of 

irrigation (e.g. Andalucía) and one with a likely increasing need for irrigation in the 

future (Midi-Pyrenees). 

 

Differentiation between rainfed and irrigated cultivation has been considered for 

the main irrigated activities in these regions: wheat, sunflower, maize, rice, potato, 

tomato, other vegetables, olive groves, citrus fruit and other fruits. Ex-post data on 

rainfed and irrigated areas and yields come from EUROSTAT as well as national 

statistics. Data on water use and irrigation projections to 2020 are derived from 

other studies (Junta de Andalucía 2011). Data and model structure for all other 

NUTS 2 regions remain unchanged. 

 

As shown in Figure 6, agriculture is the major water user in Andalucía, accounting 

for about 78% of total water use in 2005 and reaching 82% in 2009. 

 

Figure 6.  Total water use in Andalucía and sectoral distribution  

 
Source: Own elaboration based on data from the Andalusian Water Agency (www.juntadeandalucia.es). 

 

 

The increasing share of agricultural water use is mainly due to the gradual 

expansion of the irrigated area (in particular, to the irrigation of formerly dry land 

crops such as olive), while the average water application rate is decreasing. The 

declining trend in water use per hectare can be explained both for the increase in 

low water intensity crops and for the fast adoption of drop irrigation, replacing 

surface irrigation (see Figure 7). 

 

Domestic
14%

Industrial
3%

Agricultural
78%

Other
5%

2005 (total water use = 5661 Mm3) 

Domestic
14%

Industrial
3%

Agricultural
82%

Other
1%

2009 (total water use = 6197 Mm3) 



  

 

  Page 61 
 

Figure 7.  Recent evolution of irrigated area in Andalucia 

 
Source: Own elaboration based on data from MAPA 2011. 

 

 

7.2. Definition of crop activities in the irrigation sub-module 

Crop activities in the supply module of CAPRI have been separated into non-

irrigable and irrigable. In principle, irrigable activities are those for which an 

irrigated area has been reported in official statistics in at least one MS. 

Nevertheless, since EUROSTAT only provides irrigated areas for a selected group 

of crops, we decided to consider as irrigable those activities which are being 

effectively irrigated in at least one of the selected regions.   

 

No change has been entered in CAPRI for non-irrigable activities: they will be 

handled in the supply module just as before. On the contrary, irrigable activities 

will be split into two separated activities: rainfed and irrigated. To keep 

consistence with the general CAPRI framework, this separation between rainfed 

and irrigated production methods is done for all regions in the supply module, 

meaning that when an activity is not irrigated in a particular region, only the 

rainfed variant exists. 

 
  

0

200

400

600

800

1000

1200

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Ir
ri
g
a
te

d
 a

re
a
 (

1
0
0
0
 h

a
)

Drop

Sprinkler

Surface



  

 

  Page 62 
 

Table 17.  Irrigable activities split into rainfed and irrigated variants 

Activity 
Average 
activity 

Rainfed 
activity 

Irrigated 
activity 

Soft wheat SWHE SWHE0 SWHE1 
Durum wheat DWHE DWHE0 DWHE1 
Barley BARL BARL0 BARL1 
Grain Maize MAIZ MAIZ0 MAIZ1 
Paddy rice PARI PARI0 PARI1 

Rape RAPE RAPE0 RAPE1 
Sunflower SUNF SUNF0 SUNF1 
Soya SOYA SOYA0 SOYA1 

Potatoes POTA POTA0 POTA1 
Sugar Beet SUGB SUGB0 SUGB1 
Flax and hemp TEXT TEXT0 TEXT1 
Tobacco TOBA TOBA0 TOBA1 

Tomatoes TOMA TOMA0 TOMA1 
Other Vegetables OVEG OVEG0 OVEG1 
Apples Pears and Peaches APPL APPL0 APPL1 
Other Fruits OFRU OFRU0 OFRU1 
Citrus Fruits CITR CITR0 CITR1 
Table Grapes TAGR TAGR0 TAGR1 
Olives for oil OLIV OLIV0 OLIV1 
Table Olives TABO TABO0 TABO1 
Wine TWIN TWIN0 TWIN1 
Nurseries NURS NURS0 NURS1 
Flowers FLOW FLOW0 FLOW1 

Fodder maize MAIF MAIF0 MAIF1 
Fodder root crops ROOF ROOF0 ROOF1 

 

Data for total irrigable and irrigated land are taken from official data sources. 

Table 18 displays the share of irrigable and irrigated areas in the base year 

(average 2003-2005) and in the last data year available (2007). 

 

Table 18.  Share of irrigable and irrigated areas in the test regions (EUROSTAT, FSS) 

 
Irrigable area (%) Irrigated area (%) 

 
BAS 2007 BAS 2007 

ES000000 15.18 14.75 13.60 13.12 

ES610000 19.18 19.22 18.14 18.01 

FR000000 9.80 9.72 6.56 5.50 

FR620000 15.46 15.42 11.45 9.09 

 

 

For each irrigable activity, rainfed and irrigated areas have been estimated based 

on EUROSTAT data (FSS), when available, and other national data sources. 

EUROSTAT data on crop-specific irrigated areas is not available for all 

regions/years. In particular, for the Andalucía region no data on crop-specific 

irrigated areas is reported in EUROSTAT for 2003, 2005 and 2007 (Table 19). For 

the Midi-Pyrenees region, only 2003 data is available. 
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Table 19.   Irrigated share per crop in the base year 2003-2005 (EUROSTAT, FSS) 

 
ES000000 ES610000 FR000000 FR620000 

DWHE 7.31 -- 15.05 0.98 

MAIZ 100.00 -- 43.36 78.88 

SUNF 12.18 -- 2.08 1.26 

SOYA 13.53 -- 69.11 85.32 

POTA 40.18 -- 36.15 20.74 

SUGB 82.75 -- 12.65 -- 

APPL 25.87 -- 71.18 76.83 

OFRU 25.87 -- 71.18 76.83 

CITR 88.95 -- 100.00 -- 

TAGR 21.08 -- 3.45 2.98 

TWIN 21.08 -- 3.45 2.98 

 

 

Technology variants, as they are defined in the supply module of CAPRI, apply both 

for rainfed and irrigated activities. 

 

 

7.3. Input-output coefficients for rainfed and irrigated activities  

In order to keep consistency with the current CAPRI database, for each irrigable 

crop, rainfed and irrigated variants have been defined so as to match the "average" 

crop activity. That is, not only the sum of rainfed and irrigated areas will give the 

total crop area, but also yields and input costs for the "average" activity will be 

recovered as a weighted average over irrigation methods. 

 

Because lack of accurate data, a rough procedure has been used in this case study 

to allocate inputs to rainfed and irrigated variants. Accounting for irrigation costs 

will imply a re-estimation of input costs in CAPRI, a task that is well beyond the 

framework of this research project. Meanwhile, irrigation costs are computed as a 

share of general costs.  

 

Irrigation water use has been included as a specific input. Crop-specific water use 

is commonly estimated from site specific crop irrigation requirements and climatic 

data. Since no data on net irrigation requirements has been received by the 

contractor so far, data coming from a regional study has been used as an 

alternative for testing purposes in the Andalucía region. In contrast, no data has 

been found for the Midi-Pyrenees region. 
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Water use efficiency has been computed based on the share of irrigation methods 

in the region. Indicative water application efficiencies of 0.60, 0.75 and 0.90 has 

been used for surface irrigation, sprinkler irrigation and drip irrigation (see 

Brower et al. 1989). 

 

Table 20.  Share of irrigation methods in the test regions (FSS, 2003) and irrigation efficiency 

Irrigation method Andalucía Midi-Pyrenees 

Surface irrigation (%) 31.02 3.45 

Sprinkler irrigation (%) 6.27 95.06 

Drop irrigation (%) 62.73 9.61 

Water application efficiency 0.86 0.82 

 

A big inconsistency exists between the share of irrigation methods according to 

FSS data and regional statistics for Andalucía. Further work will be needed to 

improve the estimates on irrigation efficiency. 

 

Regarding water transport efficiency, data is not easily available. For testing 

purposes, we will consider an average value of 0.80 (see Brower et al. 1989). 

 

Technology variants for irrigated activities are entered in the same way as 

previously for the “average” activities in the supply model. Estimating crop-water 

relationships could facilitate further improvements on the way technology variants 

are defined.  

 

 

7.4. Reference run 

Once the irrigated activities have been defined and the associated input-output 

coefficients have been added to the CAPRI database, a new CAPRI baseline has 

been calibrated. The resulting baseline scenario represents the continuation of 

current policies and the most probable technology development until 2020. It is to 

a larger extend based on existing medium term outlooks for agricultural markets, 

but incorporates for the test regions an estimate about the development of 

irrigations. 

 

For the time being, changes have been only entered in CAPMOD. In a further step, 

water data should ideally be incorporated in COCO and CAPREG and trends on 

water supply and demand should be estimated in CAPTRD.  

 

Water considerations mainly affect the supply module in CAPRI. In CAPMOD, 

irrigable activities are split into rainfed and irrigated variants before solving the 
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regional supply models and are aggregated again in the reporting part in order to 

allow for model comparison.  

 

The reference run has shown the feasibility of the proposed approach. With 

irrigated activities, CAPRI calibrates to the same calibration point than without the 

irrigation module, as shown in tables 21 and 22. 

  

 

Table 21.  Welfare overview for the baseline scenario (without and with the irrigation module) 

 
 

 



  

 

  Page 66 
 

Table 22.  Supply results for the baseline scenario (without and with the irrigation module) 

 
 

 

Tables 23 and 24 compare results for the CAPRI baseline with and without the 

irrigation module, with a special focus on rainfed and irrigated areas. 

 

 

Table 23.  Rainfed and irrigated areas in the Andalusian region (1000 ha) 

 
Baseline Baseline (with irrigation module) 

  
Average Rainfed Irrigated 

Utilized agricultural area 5469.3 5469.3 4468.9 1000.4 

Cereals 680.3 680.3 592.4 87.9 

Oilseeds 172.0 172.0 152.2 19.8 

Other arable crops 190.3 190.3 190.3 0.0 

Vegetables and Permanent crops 1972.5 1972.5 1079.9 892.7 

Soft wheat 96.6 96.6 88.8 7.7 

Durum wheat 318.7 318.7 293.2 25.5 

Barley 113.6 113.6 113.6 
 

Grain Maize 27.8 27.8 
 

27.8 

Paddy rice 26.9 26.9 
 

26.9 

Rape 1.3 1.3 1.3 
 

Sunflower 165.0 165.0 145.2 19.8 

Soya 0.9 0.9 0.9 
 

Potatoes 8.3 8.3 
 

8.3 

Sugar Beet 13.1 13.1 13.1 
 

Tobacco 0.5 0.5 0.5 
 

Tomatoes 8.7 8.7 
 

8.7 

Other Vegetables 21.8 21.8 
 

21.8 

Apples Pears and Peaches 25.7 25.7 10.3 15.4 
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Other Fruits 199.5 199.5 
 

199.5 

Citrus Fruits 84.6 84.6 
 

84.6 

Table Grapes 1.4 1.4 1.4 
 

Olives for oil 1476.6 1476.6 959.8 516.8 

Table Olives 107.3 107.3 69.7 37.5 

Wine 27.1 27.1 27.1 
 

Source: Own elaboration from CAPRI-Water results 

 

 

 

Table 24.  Rainfed and irrigated areas in the Midi-Pyrenees region (1000 ha) 

 
Baseline Baseline (with irrigation module) 

  
Average Rainfed Irrigated 

Utilized agricultural area 2469.7 2469.7 2290.3 179.4 

Cereals 644.7 644.7 516.6 128.1 

Oilseeds 260.4 260.4 218.4 42.0 

Other arable crops 9.8 9.8 9.8 0.0 

Vegetables and Permanent crops 202.2 202.2 192.9 9.2 

Soft wheat 185.0 185.0 185.0 
 

Durum wheat 179.4 179.4 175.8 3.6 

Barley 70.6 70.6 70.6 
 

Grain Maize 157.7 157.7 33.1 124.6 

Rape 19.1 19.1 19.1 
 

Sunflower 190.1 190.1 186.3 3.8 

Soya 45.0 45.0 6.8 38.2 

Potatoes 0.4 0.4 0.3 0.1 

Sugar Beet 0.0 0.0 0.0 
 

Tobacco 0.4 0.4 
  

Tomatoes 0.4 0.4 0.4 
 

Other Vegetables 22.2 22.2 22.2 
 

Apples Pears and Peaches 4.1 4.1 1.0 3.2 

Other Fruits 7.8 7.8 1.8 6.0 

Citrus Fruits 0.1 0.1 0.1 
 

Table Grapes 1.2 1.2 1.2 
 

Wine 32.6 32.6 32.6 
 

Source: Own elaboration from CAPRI-Water results 

 

 

The irrigation sub-module has been built in such a way that baseline results will be 

similar to the previous CAPRI baseline without endogenous water considerations. 

 

Even if splitting irrigable activities into two separate activities will almost 

duplicate the number of endogenous crop activities in the supply module, this 

approach shows great advantages. First, it is fully consistent with the current 

CAPRI framework, meaning that the water module could be further developed step 
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by step without interfering with the CAPRI master version. Second, it is fully 

modular in the way that CAPRI could be applied both with and without the water 

module. 

 

7.5. Testing policy scenarios 

Water policy scenarios like the Water Framework Directive could be modelled in 

CAPRI once the irrigation module will be fully operational. The irrigation module 

will also enable CAPRI to simulate the potential impact of climate change and 

water availability on agricultural production at the regional level. 

 

To illustrate the potentiality of the approach, water policy scenarios, consisting in 

introducing irrigation water prices, are compared to the baseline situation. In this 

first testing application of the module, the counterfactual water pricing scenario 

differs from the baseline only in the irrigation water price, ranging between 0.2 to 

0.4 Euros per cubic meter. 

 

Tables 25 and 26 display the impact of irrigation water pricing on irrigated areas 

and water use. As expected, total irrigated land decreases as the water price 

increases. This effect is more acute in the Midi-Pyrenees region.  

 

Table 25.  Impacts of water prices on irrigated areas and water use (Andalucía) 

 Baseline Irrigation water price scenario 

 scenario 0.2 €/m3 0.3 €/m3 0.4 €/m3 

Irrigated area (1000 ha)     

     Cereals 87.87 71.69 63.13 54.55 

     Oilseeds 19.81 14.74 11.9 9.15 

     Fruits and vegetables 338.33 328.34 321.91 315.05 

     Olive groves 554.34 551.89 548.81 545.22 

     Total irrigated land 1000.35 966.66 945.75 923.97 

Utilized agricultural area (1000 ha) 5469.25 5469.25 5461.8 5452.23 

Irrigation share (%) 18.29 17.67 17.32 16.95 

Water use (Mio m3) 3633.93 3383.99 3246.2 3105.48 

Source: Own elaboration from CAPRI-Water results 
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Table 26.  Impacts of water prices on irrigated areas and water use (Midi-Pyrenees) 

 Baseline Irrigation water price scenario 

 scenario 0.2 €/m3 0.3 €/m3 0.4 €/m3 

Irrigated area (1000 ha)     

     Cereals 128.14 72.66 44.46 25.84 

     Oilseeds 42.03 36.31 33.34 30.21 

     Fruits and vegetables 9.24 9.22 9.21 9.2 

     Olive groves     

     Total irrigated land 179.41 118.19 87.01 65.25 

Utilized agricultural area (1000 ha) 2469.73 2469.73 2469.73 2469.73 

Irrigation share (%) 7.26 4.79 3.52 2.64 

Water use (Mio m3) 963.93 562.57 358.65 240.48 

Source: Own elaboration from CAPRI-Water results 

 

 

Figure 8.  Regional irrigated land under alternative water pricing scenarios 

 
Source: Own elaboration from CAPRI-Water results 

 

 

Figure 8 displays changes in irrigated land in both regions as a result of increasing 

water prices. 

 

Figures 9 and 10 show the simulated impacts on regional agricultural income and 

total irrigation water use. Because of decreasing supply for irrigated crops, 

producer prices increase as the water price increases. However, in our case study 

for one European region, that effect is minor, mainly because we simulated a water 

price increase in only one European region. Consequently, impacts in demand are 

also not significant. Only for paddy rice a clear price effect is observed. 

Baseline w=0.2 €/m3 w=0.3 €/m3 w=0.4 €/m3

1000.35 966.66 945.75 923.97

179.41 118.19 87.01 65.25

Irrigated land (1000 ha)

Andalucia Midi-Pyrenees
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Figure 9.  Agricultural income and irrigation water use under alternative water pricing 

scenarios (Andalucía) 

 
Source: Own elaboration 

 

 

Figure 10.   Agricultural income and irrigation water use under alternative water pricing 

scenarios (Midi-Pyrenees) 

 
Source: Own elaboration 

 

These results are very preliminary as the water module is still under development. 

Nonetheless, they already illustrate the potentiality of the approach to analyse 

agrifood and water policies in a joint framework. In contrast with most commonly 

used approaches, feedback through market prices is taken into account.  
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8. Concluding remarks and further steps 

Incorporating water issues in EU-wide agro-economic models is crucial to analyse 

future agricultural policies in a context of climate change and increasing pressure 

on water resources.  

 

The development of the CAPRI water module will enable to provide scientific 

assessment on agricultural water use within the EU and to analyse agricultural 

pressures on water resources at the regional level: 

 In the irrigated regions, the impacts on irrigation water demand of alternative 

agricultural and water policies could be evaluated. Even if the approach does 

not account for the heterogeneity of climate and water conditions inside each 

region, it will give an indication on the futures changes in water use following 

changes in agricultural and water policies. 

 In all regions, crop-specific water balances could be combined with NPK 

balances to evaluate impacts of water leaching on pollution. Also, the results 

from CAPRI could serve as input into biophysical models to derive future 

irrigation water demand at a higher spatial resolution. 

 

Nevertheless, for the water module to become operational, several steps are still 

required: 

1. Re-estimation of input costs to differentiate irrigation costs (water, 

electricity, etc.) from other input costs. 

2. Estimation of crop net irrigation requirements at the EU regional level, as 

well as water-limited and non-water-limited crop yields. The AquaCrop 

model is a good alternative to compute irrigation requirements as well as 

potential yields. Furthermore, AquaCrop calculates both water use and 

leaching with and without irrigation. 

3. In irrigated regions, estimation of input-output coefficients for rainfed 

and irrigated activities for all irrigated activities within the EU. For this 

step to be undertaken, the two previous steps have to be accomplished.  

4. Estimation of water availability and sectoral water use at the regional 

level. Results from other studies could be used instead.  

5. Integration of the water database into the CAPRI database. 

 

A limiting factor for the development of the water module is the lack of 

homogeneous and accurate data at EU-wide level for a good number of relevant 

variables such as irrigation costs, irrigation water use, irrigation efficiency, crop-
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specific irrigated areas, crop yields under rainfed and irrigated conditions, etc. In 

some cases, input from other biophysical models could be used as an alternative 

option. 

 

Furthermore, the lack of adequate data to calibrate the model limits its 

applicability to simulate policy regulatory constraints on irrigation. For instance, 

since data on irrigation methods is very limited, policy measures related to 

irrigation equipment can only be modelled in a rough way.  

 

Also, data on irrigation costs needs to be improved if adoption of irrigation in 

rainfed regions is to be modelled. Although substitution between rainfed and 

irrigated crops will be possible, methodological problems could arise to calibrate 

irrigation costs in newly irrigated regions. Assuming that a rainfed crop will be 

irrigated (at least partially) in the simulation year, a cost transfer approach could 

be used to estimate irrigation costs in the baseline for this crop. 

 

Other limitation of the approach refers to its potentiality to simulate climate 

change scenarios. Because of the missing link with climatic data, climate change 

scenarios will imply higher/lower irrigation requirements or higher/lower 

irrigation water availability, both entered as exogenous changes.  
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Abstract 

Although numerous modelling efforts have integrated food and water considerations at the farm or river 

basin level, very few agro-economic models are able to jointly assess water and food policies at the global 

level. The present report explores the feasibility of integrating water considerations into the CAPRI model.  

First, a literature review of modelling approaches integrating food and water issues has been conducted. 

Three agro-economic models, IMPACT, WATERSIM and GLOBIOM, have been analysed in detail. In addition, 

biophysical and hydrological models estimating agricultural water use have also been studied, in particular 

the global hydrological model WATERGAP and the LISFLOOD model. 

Thanks to the programming approach of its supply module, CAPRI shows a high potentiality to integrate 

environmental indicators as well as to enter new resource constraints (land potentially irrigated, irrigation 

water) and input-output relationships. At least in theory, the activity-based approach of the regional 

programming model in CAPRI allows differentiating between rainfed and irrigated activities.  

The suggested approach to include water into the CAPRI model involves creating an irrigation module and a 

water use module. The development of the CAPRI water module will enable to provide scientific assessment 

on agricultural water use within the EU and to analyze agricultural pressures on water resources. 

The feasibility of the approach has been tested in a pilot case study including two NUTS 2 regions 

(Andalucia in Spain and Midi-Pyrenees in France). Preliminary results are presented, highlighting the 

interrelations between water and agricultural developments in Europe. 

As a next step, it is foreseen to further develop the CAPRI water module to account for competition 

between agricultural and non-agricultural water use. This will imply building a water use sub-module to 

compute water use balances. 
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As the Commission’s in-house science service, the Joint Research Centre’s mission is to provide EU 
policies with independent, evidence-based scientific and technical support throughout the whole 
policy cycle. 
 
Working in close cooperation with policy Directorates-General, the JRC addresses key societal 
challenges while stimulating innovation through developing new standards, methods and tools, 
and sharing and transferring its know-how to the Member States and international community. 
 
Key policy areas include: environment and climate change; energy and transport; agriculture and 
food security; health and consumer protection; information society and digital agenda; safety and 
security including nuclear; all supported through a cross-cutting and multi-disciplinary approach. 


