

JRC SCIENTIFIC AND POLICY REPORTS

Choice of steel material for bridge bearings to avoid brittle fracture

Background documents in support to the implementation, harmonization and further development of the Eurocodes

M. Feldmann, B. Eichler, G. Sedlacek, W. Dahl, P. Langenberg, C. Butz, H. Leendertz, G. Hanswille

Editors: A. Pinto, A. Athanasopoulou and H. Amorim-Varum

2012

European Commission

Joint Research Centre Institute for the Protection and Security of the Citizen

Contact information

Artur Pinto Address: Joint Research Centre, Via Enrico Fermi 2749, TP 480, 21027 Ispra (VA), Italy E-mail: artur.pinto@jrc.ec.europa.eu Tel.: +39 0332 78 9294 Fax: +39 0332 78 9049

http://ipsc.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/

Legal Notice

Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication.

Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11

(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/.

JRC72676

EUR 25390 EN

ISBN 978-92-79-25439-0

ISSN 1831-9424

doi:10.2788/33897

Luxembourg: Publications Office of the European Union, 2012

© European Union, 2012

Reproduction is authorised provided the source is acknowledged.

Printed in Italy

Choice of steel material for bridge bearings to avoid brittle fracture

M. Feldmann, B. Eichler, G. Sedlacek, W. Dahl, P. Langenberg, C. Butz, H. Leendertz, G. Hanswille

Background documents in support to the implementation, harmonization and further development of the Eurocodes

Joint Report

Prepared in cooperation of experts from CEN / TC 250, CEN / TC 167 and from metallurgy

Editors: A. Pinto, A. Athanasopoulou and H. Amorim-Varum

The European Convention for Constructional Steelwork (ECCS) is the federation of the National Associations of Steelwork industries and covers a worldwide network of Industrial Companies, Universities and Research Institutes.

http://www.steelconstruct.com/

Contact information Address: Mies-van-der-Rohe-Straße 1, D-52074 Aachen E-mail: sed@stb.rwth-aachen.de Tel.: +49 241 80 25177 Fax: +49 241 80 22140 http://www.stb.rwth-aachen.de

In the memory of Professor Dr.-Ing. Gerhard Sedlacek;

With his high scientific and technical skills, Professor Sedlacek he has been a guide and an example to all of us. He was an innovator, a bright and young-minded person. Professor Sedlacek was a real European in spirit and action and his work for the Eurocodes has left a lasting legacy. He has given full support to the Joint Research Centre for the activities concerning the implementation, harmonization and further development of the Eurocodes and he has enthusiastically defended the involvement of the JRC in the Eurocodes activities from the very beginning. Professor Sedlacek will always be remembered.

Joint Research Centre – Eurocodes Team

Foreword

The construction sector is of strategic importance to the EU as it delivers the buildings and infrastructure needed by the rest of the economy and society. It represents more than 10% of EU GDP and more than 50% of fixed capital formation. It is the largest single economic activity and the biggest industrial employer in Europe. The sector employs directly almost 20 million people. In addition, construction is a key element for the implementation of the Single Market and other construction relevant EU Policies, e.g.: Environment and Energy.

In line with the EU's strategy for smart, sustainable and inclusive growth (EU2020), **Standardization** will play an important part in supporting the strategy. The **EN Eurocodes** are a set of **European standards** which provide common rules for the design of construction works, to check their strength and stability against live and extreme loads such as earthquakes and fire.

With the publication of all the 58 Eurocodes parts in 2007, the implementation of the Eurocodes is extending to all European countries and there are firm steps towards their adoption internationally. The Commission Recommendation of 11 December 2003 stresses the importance of **training in the use of the Eurocodes**, especially in engineering schools and as part of continuous professional development courses for engineers and technicians, noting that they should be promoted both at national and international level.

In light of the Recommendation, DG JRC is collaborating with DG ENTR and CEN/TC250 "Structural Eurocodes" and is publishing the Report Series 'Support to the implementation, harmonization and further development of the Eurocodes' as JRC Scientific and Technical Reports. This Report Series include, at present, the following types of reports:

1. Policy support documents – Resulting from the work of the JRC and cooperation with partners and stakeholders on 'Support to the implementation, promotion and further development of the Eurocodes and other standards for the building sector.

2. Technical documents – Facilitating the implementation and use of the Eurocodes and containing information and practical examples (Worked Examples) on the use of the Eurocodes and covering the design of structures or their parts (e.g. the technical reports containing the practical examples presented in the workshops on the Eurocodes with worked examples organized by the JRC).

3. Pre-normative documents – Resulting from the works of the CEN/TC250 Working Groups and containing background information and/or first draft of proposed normative parts. These documents can be then converted to CEN technical specifications.

4. Background documents – Providing approved background information on current Eurocode part. The publication of the document is at the request of the relevant CEN/TC250 Sub-Committee.

5. Scientific/Technical information documents – Containing additional, non-contradictory information on current Eurocodes parts which may facilitate implementation and use, preliminary results from pre-normative work and other studies, which may be used in future revisions and further development of the standards. The authors are various stakeholders involved in Eurocodes process and the publication of these documents is authorized by the relevant CEN/TC250 Sub-Committee or Working Group.

Editorial work for this Report Series is **assured by the JRC** together with partners and stakeholders, when appropriate. The publication of the reports type 3, 4 and 5 is made after approval for publication from the CEN/TC250 Co-ordination Group.

The publication of these reports by the JRC serves the purpose of implementation, further harmonization and development of the Eurocodes, However, it is noted that neither the Commission nor CEN are obliged to follow or endorse any recommendation or result included in these reports in the European legislation or standardization processes.

This report is part of the so-called Scientific/Technical information documents (Type 5 above). It is a joint JRC-ECCS report and it part of a series of documents in support to the implementation and further evolution of Eurocode 3.

The editors and authors have sought to present useful and consistent information in this report. However, users of information contained in this report must satisfy themselves of its suitability for the purpose for which they intend to use it.

The report is available to download from the "Eurocodes: Building the future" website (http://eurocodes.jrc.ec.europa.eu).

Ispra, June 2012

Artur Pinto and Adamantia Athanasopoulou

European Laboratory for Structural Assessment (ELSA) Institute for the Protection and Security of the Citizen (IPSC) Joint Research Centre (JRC) – European Commission

Humberto Amorim-Varum

Departamento de Engenharia Civil Universidade de Aveiro (Former Seconded National Expert at the Joint Research Centre)

Acknowledgement

- (1) This JRC-Scientific and Technical Report has been prepared in cooperation with the producers of transition joints and bearings for civil engineering works, in particular with the member companies of VHFL, that also sponsored the works.
- (2) The draft has been discussed with experts from WG8 of CEN/TC 167, from CEN/TC 250 and other invited experts to achieve consistency across different fields of application of steel. The works of Dr. B. Kühn and Dr. M. Lukic from ECCS-TC6 have been most valuable.
- (3) The financial support of the works and the valuable contributions from the cooperation and discussion are gratefully acknowledged.
- (4) Particular thanks are to the Joint Research Centre for the editorial works.

Aachen, March 2011

Prof. Dr.-Ing. G. Sedlacek

Director of ECCS-Research

Introduction

- (1) This JRC-Scientific and Technical Report deals with the choice of steel material for the production of bearings to avoid brittle fracture of the steel components of these bearings under low temperature conditions.
- (2) This report has been initiated by the "VHFL-Vereinigung der Hersteller von Fahrbahnübergangen und Lagern für Bauwerke " (Association of producers of transition joints and bearings for civil engineering works).
- (3) The objective was to prepare a tool on the basis of the procedure in EN 1993-1-10 Choice of material to avoid brittle fracture - for normal steel fabrication, that allows to select the suitable steels for the various components of bearings such, that the regulatory requirements for safety under low temperatures are met.
- (4) As this JRC-Report is connected with the product standards for bearings, in particular EN 1337, it has been prepared in cooperation of experts from CEN/TC 250, CEN/TC 167 and invited metallurgists.
- (5) The purpose of the JRC-Report is to serve as an information and guidance and also to be used for the further development of EN 1337 and EN 1993.

Executive summary

- (1) Due to a significant decrease of toughness properties of structural steel with decreasing temperatures there is a risk that structural steel components may under low temperatures be susceptible to brittle fracture.
- (2) EN 1993-1-10 provides a method to avoid such brittle fracture by an appropriate choice of steel grade.
- (3) The background of this method is a fracture mechanics safety assessment for a particular accidental scenario that includes extremely low temperatures, the presence of crack-like flaws at critical Hot-Spots, that have grown by fatigue effects, the presence of nominal stresses σ_{Ed} , and of material properties as specified in EN 10025.
- (4) The purpose of this report is to adapt the method in EN 1993-1-10 used for normal steel structures to the specific case of steel components of structural bearings that are produced according to EN 1337 and are subject to specific design, fabrication and installation methods.
- (5) In this adaptation the specific shapes of components generally machined from plates and the particular loading and verification models for the design of the components have been taken into account, so that eventually selection tables as in EN 1993-1-10 could be established.
- (6) In case a Finite-Element analysis is applied in the design of the components of bearings the appropriate method to determine the reference stress σ_{Ed} is a Hot-Spot-stress σ_{HS} as defined by Dong.
- (7) For usual dimensions of bearings a simplified procedure is offered that refers to nominal values of $\sigma_{bend,d}$ as the surface stress from the linear bending theory.
- (8) A worked example illustrates the use of the simplified procedure.

Ispra, September 2011

J.A. Calgaro, U. Kuhlmann, G. Sedlacek, CEN/TC250

H. Leendertz, CEN/TC 167

A. Pinto, JRC

Table of contents

1	Obj	ective		. 1
2	Frac EN :	cture n 1993-1	nechanics safety assessment to avoid brittle fracture as used i -10	n . 3
	2.1	Gener	al	3
	2.2	Basics	of the fracture mechanics procedure	. 3
	2.3	Desigr	n situation	. 5
	2.4	Assum	ptions for the structural detail and the magnitude of hypothetical crack	. 7
	2.5	Table 2	2.1 of EN 1993-1-10	.9
3	Stru	ictural	bearings for bridges, types, product specification and selection	n
	of s	tandar	rd components for fracture mechanics assessments	11
	3.1	Types	of bearings and product specifications	11
	3.2	Selecti 14	ion of standard components of bearings for facture mechanics assessmen	ts
4	Mo	dificat	ion of the fracture mechanics safety assessment	16
	4.1	Gener	al	16
	4.2	Definit	tion of structural parameters typical for bearings	16
		4.2.1	Model for fracture mechanics assessments	16
		4.2.2	Shape and magnitude of the design crack	16
		4.2.3	Assumption for residual stresses	16
		4.2.4	Critical crack length b_{eff}	17
		4.2.5	Determination of the stress limit σ_{gy}	19
		4.2.6	Inhomogenity of toughness in through-thickness direction	19
		4.2.7	Strain rate effects, cold forming	20
	4.3	Definit compo	tion of the nominal values σ_{Ed} from the geometry and loading of steel onents of bearings	20
		4.3.1	General	20
		4.3.2	Determination of the reference stress $\sigma_{Ed} = \sigma_{HS}$ according to Dong	23
		4.3.3	Example for the determination of structural stress according to Dong	25
5	Nur	nerica	l investigations and results	29
	5.1	Gener	al	29

etry, load assumptions and boundary conditions	
oot-stresses	1
intensity factors	2
sments to avoid brittle fracture	3
lo. 2A – Axisymmetric top component (sliding plate and guiderail) 3 etry, load and assumption and boundary condition	4
etry, load and assumption and boundary condition	8
	8
oot-stresses	8
intensity factors	8
ments to avoid brittle fracture4	1
o. 2B – Axisymmetric top component of reference bearing type B nt)44	4
etry, load assumptions and boundary conditions44	4
oots-stresses	7
intensity factors	9
ments to avoid brittle fracture5	5
o. 3 – Axisymmetric bottom component of bearing	4
etry, load assumptions and boundary conditions64	4
oot stresses	5
-intensity factors	6
ments to avoid brittle fracture6	7
o. 4 – Axisymmetric anchor plate7	2
etry, load assumptions and boundary conditions7	2
oot-stresses	2
intensity factors	3
ments to avoid brittle fracture7	3
o. 5 – Bearing for horizontal forces without rotation and capacity rces7	5
etry, load assumptions and boundary conditions7	5
oot-stresses	6
intensity factors	7
ments to avoid brittle fracture	8
	oot-stresses

6

7	Wo	rked e	xample for the assessment to avoid brittle fracture	using FE-
	calc	ulatio	ns	88
	7.1	Gener	al	
	7.2	Deteri	mination of the Hot-Spot-stresses	89
	7.3	Assess	sment	90
8	Sim	plified	l assessment with reference to ultimate limit state v	verifications
		•••••		92
	8.1	Gener	al	
	8.2	Correl	ations	92
	8.3	Conse	quences for the choice of material to avoid brittle fracture	93
9	Wo	rked e	xamples	95
	9.1	Gener	al	95
	9.2	Desigr	n situation	
	9.3	Choice	e of material for the bearings to avoid brittle fracture	100
		9.3.1	Bearings in axis 8u/A	
		9.3.2	Bearings in axis 8u/C	
		9.3.3	Bearings in axis 10/B	
	9.4	Altern	ative procedure: Full fracture mechanics assessment	103
		9.4.1	General	
		9.4.2	Design value of initial crack	
		9.4.3	Determination of K_1 -values from the FE-analysis	
		9.4.4	Fracture mechanics assessments	
10	Ref	erence	es	110
Ann	iex E	to sec	tion 9 – Worked Example	111
	Obje	ective		
	Basi	c requir	rements for a National Annex to EN 1990 for preparing the te	chnical
		specif	ications for bearings	

List of symbols

Capital

A(T _{Ed})	Accidental action A(T _{Ed}) which is defined as an extreme value of low temperature with a mean return period of 50 years.
D	Width of the sliding plate
E _{cm}	Mean value of the Young's modulus of concrete
E _d	Accidental combination of actions
G, G _k ,	The magnitudes of dead loads
н	Force acting in horizontal direction
H _d [kN]	Design force acting in horizontal direction
J _c	Material toughness expressed in terms of J-Integral
KV	Charpy-V-notch impact energy [Joule] determined at a certain temperature T_{KV} contributing to a KV-T-curve.
K ₁	Stress intensity factor in mode 1-opening
K ₂	Stress intensity factor in mode 2-opening
К	Stress intensity factor
K* _{appl,d}	Design value of the stress intensity factor
K _{appl}	Stress intensity factor determined from a linear elastic fracture mechanics analysis
K _{eff}	Effective stress intensity factor considering that the main stresses are not perpendicular to the crack path
K _{Ic}	Fracture toughness determined from fracture mechanics small scale specimens
$\overline{\mathrm{K}}$, $\overline{\mathrm{K}}_{\mathrm{eff}}$	Normalized distribution of stress-intensity factors for a specific geometry and loading
Q, Q _k , Q _{ki}	The magnitudes of variable loads
S275	Steel grade for structural steel with minimum yield strength 275 N/mm ²
T_{md}	Lowest environmental temperature
T _{27J,nom}	Nominal transition temperature corresponding to 27 J acc. to e.g. EN 10025
T _{mrd}	Extreme value of low temperature
T_{min}	Minimum temperature value
$T_{min,d}$	Minimum design temperature value
Т	Temperature [°C]
Т _{27Ј}	Test temperature [°C] for notch-impact Charpy-V-tests (CNV-tests) to achieve an impact energy of 27J.
T_{Ed}	Reference temperature [°C] of steel structures for choice of steel material

to avoid brittle fracture according to EN 1993-1-10.

T_{Ed} is the minimum temperature of air $T_{m\nu}$ [°C] (corresponding to a 50 years
return period) minus temperature loss by radiation (-5K), when the
standardized conditions for the design size of crack at the hot-spot of
notched structural components, for neglecting cold-forming effects and
strain rate effects and for the reliability of results all specified in EN 1993-1-
10 are adopted.

For other conditions, e.g. with additional cold-forming, T_{Ed} can be modified by temperature shifts, e.g. by ΔT_{cf} [K].

T_{Rd} Temperature [°C] at which a safe level of fracture toughness can be relied upon under the conditions being evaluated.

V Force acting in vertical direction

Regular

а	Crack size
a ₀	Initial crack size
a _d	Design crack size
a _w	Weld throat size
b	Geometric value
b _{eff}	Critical crack length
С	Crack width
C ₀	Initial crack width
d	Geometric value
f_{cd}	Design value of the concrete strength
f _{y,nom}	Nominal value of yield strength
f _y	Yield strength of material as specified in EN 10025
h _{d,max}	Maximum horizontal force on lateral supports
k _{Dong}	Correlation coefficient between the Dong-Hot-Spot-stress σ_{HS} and the stress σ_{bend} approximately determined by the bending theory
k _{R6}	Factor to consider the interaction between brittle behaviour and local yielding
m	Mean value
r	Geometric value
S	Coordinate along the theoretical crack path
t	element thickness
t ₁ , t ₂ , t ₃	Geometric dimension
t _{Walz}	Thickness of the parent plate

Greek symbols

Δ a, Δ c	Crack growth increment from fatigue loading
$\overline{\Delta T}_R$	Temperature shift [K] between the mean value of b_i and the design fractile m+3.03 σ of the distribution of b_i , that represents the design value for measured input values.
ΔT_{cf}	Temperature shift [K] in the notch impact energy-temperature diagram due to cold-forming (cf), also designated as ΔT_{DCF} .
$\Delta {\rm T}_{\rm DCF}$	See ΔT_{cf}
$\Delta T_{\rm 27J}$	Temperature shift due to the inhomogeneity of material toughness in through-thickness direction.
$\Delta T_{\dot{\epsilon}}$	Temperature shift from high strain-rates
$\Delta T_{\epsilon c f}$	Temperature shift from cold-forming effects
ΔT_r	Temperature shift due to radiation loss of the structural component
ΔT_{σ}	Temperature shift caused by K [*] _{appl,d}
ΔT_{R}	Additive safety element [K] in the limit state equation with T_{Ed} (action) and T_{Rd} (resistance), that is determined from the evaluation of large scale fracture mechanics tests and yields the required reliability of the design equation that is underlying Table 2.1 in EN 1993-1-10.
Ė	Strain rate from dynamic actions
$\dot{\varepsilon_0}$	Reference value of the strain rate
ϵ_{cf}	Degree of cold forming in %
ν	Poisson ratio
ρ	Correction factor to consider the interaction between stresses from external loads and local residual stresses, that are reduced partially by local plastic deformations.
σ	Stress
σ_1	First principal stress
$\sigma_{\text{bend,d}}$	The ultimate stress determined in a simplified way according to the elastic bending theory in the critical cross section perpendicular to the neutral axis for action effects from loads factored with γ .
σ_{Ed}	Nominal stress on service level applied from external forces to the structural component, in an accidental design situation according to EN 1993-1-10.
	The leading action is the temperature T_{Ed} acting on a structural component with a standardized severe notch situation and the design value of crack at the hot spot of the notch. The external forces are from accompanying actions (permanent loads and frequent values of variable loads without partial factors). σ_{Ed} does not include residual stresses.

Residual stresses are included in the procedure of EN 1993-1-10 by two means:

- 1. Local residual stresses from welding are included in the evaluation procedure of fracture mechanical large scale tests.
- 2. Global residual stresses from restraints to the weld shrinkage of the component are taken into account by a supplementary nominal stress $\sigma_s = 100$ MPa.

 σ_{Ed} Utilisation rate from external stresses. EN 1993-1-10 gives in its Table 2.1 f_y information for admissible plate thickness for various steel grades,
temperatures T_{Ed} and for the utilisation rates: 0.25, 0.50 and 0.75.

- $\sigma_{\mbox{\tiny gy}}$ Stress to the gross section that causes yielding of the net section.
- σ_{HS} Hot-Spot stress or structural stress
- σ_{max} Maximum stress
- σ_N Nominal stress
- σ_P Primary stress resulting from the accompanying external actions
- σ_s Residual stresses from restraints to the weld shrinkage of the component.
- $\sigma_{tot} = \sigma_P + \sigma_S$
- $\psi_{1.1}$ Combination factor for frequent loads with a return period of -1 month
- $\psi_{2,i}$ Combination factor for "quasi-permanent" loads

1 Objective

- (1) The design rules for steel-structures apply in general to the upper shelf domain of the toughness-temperature diagram, where the steel material exhibits ductile behaviour. To consider the reduction of toughness in the transition range of the toughness-temperature diagram, steels should comply with a procedure for the choice of material to avoid brittle fracture. This procedure is based on a fracture mechanics safety-assessment for a scenario of hypothetical crack-distribution and loading at the time of lowest possible temperature of the structure.
- (2) EN 1993-1-10 [2] gives a table for the choice of material which applies for the usual types of dimensions and details of structural steel components and includes the following parameters:
 - the lowest possible temperature of the structure T_{Ed},
 - the structural detail at the critical spot which is contained in the detail classes in EN 1993-1-9-Fatigue.

The sketches illustrating the detail classes in EN 1993-1-9 are "cut-outs" from structural steel components, which include the "hot spots" at which fatigue cracks can be expected and are also used for the definition of "nominal stresses", to which the fatigue resistance of the detail refers.

For the choice of material the same "hot spot" and the same definition of nominal stresses σ_{Ed} as in EN 1993-1-9 is used, however stresses are not related to "fatigue loads", but to "frequent loads" according to EN 1990 – Basis of structural design. In the table in EN 1993-1-10 nominal stresses from frequent loads are classified as portion of the yield strength (0.25 f_y, 0.50 f_y, 0.75 f_y).

- the plate thickness (product thickness) at the "hot-spot".
- (3) Bearings for bridges consist of small structural steel components usually produced by machining, the sizes of which frequently do not comply with the geometrical assumptions made for applying the bending theory for steel structures, the loading of which may be dependent on the deformation conditions of interfacing parts and the quality control during fabrication is subject to specific requirements (EN 1337).
- (4) Therefore the prerequisites for the use of EN 1993-1-9 and EN 1993-1-10 do in general not apply, so that these standards are not useable for the choice of material for bearings without further information.
- (5) This report therefore addresses the choice of steel material for bearings of bridges and gives for details specific to bearings the information for a "safe-sided" choice taking reference to the lowest material temperature T_{Ed} , the type of detail, the stress level σ_{Ed} and the relevant material thickness at the hot spot.
- (6) For deriving of the tables in this report the same fracture mechanics procedure is used as in EN 1993-1-10 however with some modifications of the procedure which comprise:
 - 1. The magnitude and the shape of the hypothetical design crack, because fatigue effects as considered in EN 1993-1-10 are not relevant.
 - 2. Definition of "nominal stress" σ_{Ed} for the "hot-spot" which cannot be easily determined in the conventional way by force divided by area as specified in EN 1993-1-9. For the definition of "nominal stresses" σ_{Ed} two methods are used:

- i. method for assessing structural components with Finite Elements.
- ii. simplified method using the assessment with assumption of the "bending theory".
- (7) The report is structured into the following sections:
 - 1. Fracture mechanics assessment as used in EN 1993-1-10 to avoid brittle fracture.
 - 2. Bearings for bridges, types of bearings and specification, standard components of bearings referred to in the assessment.
 - 3. Modifications of the fracture mechanics assessment as used in EN 1993-1-10 for the specific purposes of bridge bearings.
 - 4. Numerical studies and results.
 - 5. Proposal for a standardisation when using Finite Elements.
 - 6. Proposal for referring to ultimate stress assessments according to the bending theory.
 - 7. Worked example.

2 Fracture mechanics safety assessment to avoid brittle fracture as used in EN 1993-1-10

2.1 General

- (1) The procedure for choosing the steel to avoid brittle fracture in EN 1993-1-10 [2] is explained in the JRC-Scientific and Technical Report [3] related to this standard.
- (2) In the following an abridged version is given to make the modifications for bridge bearings understandable.

2.2 Basics of the fracture mechanics procedure

(1) The design equation with fracture mechanics properties (here stress intensity factors K) reads

$$K^*_{appl,d} \leq K_{mat,d}$$
 (2-1)

where

 $\mathbf{K}^{*}_{\mathsf{appl},\mathsf{d}}$

is the design value of action effect at the tip of the hypothetical crack which is assumed to be located at the most severe notch of the structure component.

Local plastic zones at the crack tip are taken into account by the correction value k_{R6} according to the simplified Failure Assessment Diagram (FAD). The value $K^*_{appl,d}$ therefore reads

$$K^{*}_{appl,d} = K_{appl} / (k_{R6} - \rho)$$
 (2-2)

where

K _{appl}	is determined from a linear elastic fracture mechanics analysis
k _{R6}	is a factor to consider the interaction between brittle behaviour and local yielding, see [2]
ρ	is a correction factor to consider the interaction between

- stresses from external loads and local residual stresses, that are reduced partially by local plastic deformations.
- (2) The fracture mechanics resistance is defined by K_{Mat,d}. That "toughness property" can be determined experimentally. Another option is a numerical determination on the basis of correlations to "toughness properties" specified in the material standards or given in the material certificates. The "toughness properties" in the material standards are given by minimum requirements for Charpy-V-impact energies at a certain testing temperature.
- (3) To standardize the fracture mechanics assessment procedure and to adapt it to the toughness properties T_{27J} specified in the product standards, the design equation based on stress-intensity factors has been transformed to a design equation based on temperatures

$$T_{Ed} \ge T_{Rd}$$
 (2-3)

(4) The temperature term T_{Ed} contains actions from the temperature of the structural component, influences from the stress-level and strain-rate, the shape and dimensions of the structural component and the size of the hypothetical crack-like flaw.

$$T_{Ed} = T_{md} + \Delta T_r + \Delta T_{\sigma} + \Delta T_R + \Delta T_{\dot{\epsilon}} + \Delta T_{ccf}$$
(2-4)

where

- ΔT_r is the radiation loss of the structural component: ΔT_r = -5 K
- ΔT_R is an additive safety element in terms of a temperature shift

$$\Delta T_{\sigma}$$
 is the temperature shift caused by $K^{*}_{appl,d}$, i.e. by the influence of stress level, geometry of the detail and crack configuration:

$$\Delta T_{\sigma} = -52 \cdot In \left[\frac{(K^*_{appl,d} - 20) \cdot \left(\frac{b_{eff}}{25}\right)^{1/4} - 10}{70} \right] \le 120^{\circ}C$$

ΔT

is the temperature shift from high strain-rates where:

$$\Delta T_{\dot{\epsilon}} = -\frac{1440 - f_{\gamma}(t)}{550} \left(ln \frac{\dot{\epsilon}}{\dot{\epsilon}_{0}} \right)^{1,5}$$

 $f_{y}(t)$ is the yield strength depending on plate thickness t

 $\dot{\epsilon}$ is the strain rate from dynamic actions

 $\dot{\epsilon}_{_0}$ = 0.0001 s $^{\text{-1}}$ is the reference value to define static actions

 $\Delta T_{\epsilon c f}$ is the temperature shift from cold-forming effects:

$$\Delta T_{\epsilon c f} = 0 \qquad \text{for } \epsilon_{c f} \le 2\%$$

$$\Delta T_{\epsilon c f} = -3 \times \epsilon_{c f} \qquad \text{for } \epsilon_{c f} > 2\%$$

where ϵ_{cf} is the degree of cold forming (plastic strain) in %

(5) The resistance side includes the material toughness expressed by

$$T_{Rd} = (T_{27J} - 18) + \Delta T_{27J}$$
(2-5)

where

Т _{27Ј}	is the testing temperature, for which the Charpy-V-notch
	impact energy attains 27 Joule

 ΔT_{27J} is the temperature shift due to the inhomogeneity of material toughness in through-thickness direction. It should be used

where the hypothetical crack penetrates into the inner core area of the product . The inner core area for plates is defined as the inner third of the plate thickness.

2.3 Design situation

- (1) For developing EN 1993-1-10 for the choice of material to avoid brittle fracture an accidental design situation (case $A_1 A_2 A_3$ in Figure 2-1) has been assumed that includes the following conditions:
 - The assessment is carried out in the region of elastic fracture mechanics (K_{lc} -region) in the lower part of the toughness-temperature diagram.
 - The structural component has a crack at the critical hot spot and the crack has reached a critical size (the crack is understood as an initial crack from production overlooked at production control which has increased by fatigue effects during service).
 - The temperature of the structural component has obtained a minimum value T_{min} , at which the value of material toughness has reached its minimum value J_c (point A_1 in Figure 2-1). The temperature T_{Ed} on the action side may be further reduced by the temperature shifts from the influence of cold-forming or impact loads.
 - The magnitudes of variable loads Q and of the temperature of the structural component are statistically independent on each other. Therefore the accidental combination of action includes $T_{min,d}$ as the dominant action, which is combined with accompanying frequent loads $G_{K} + \psi_1 Q_{K}$ which produce the stress-level from external loads (point A₂ in Figure 2-1).
 - Because of the lower level of the frequent loads the stresses in this accidental combination of actions $\sigma_{Ed} = \sigma (G_K + \psi_1 Q_K)$ are in general in the elastic range (point A₃ in Figure 2-1).

Figure 2-1: Design situations for the choice of material to avoid brittle fracture according to EN 1993-1-10

(2) The accidental combination of actions, which is fully described by

$$E_{d} = E \{A [T_{Ed}] "+" \Sigma G_{k} "+" \psi_{1,1} Q_{k1} "+" \Sigma \psi_{2,i} Q_{ki}\}$$
(2-6)

is justified by the fact, that a series of adverse influences (low temperature simultaneously with a hypothetical crack overlooked at the most severe location of the structural component) are all combined together.

- (3) The accidental action $A(T_{Ed})$ is defined as an extreme value of low temperature with a mean return period of 50 years, e.g. for Germany T_{mrd} = -30 °C including radiation loss.
- (4) The accompanying actions are stresses from permanent and variable loads. Because of the limited duration of the accidental extreme temperature the accompanying actions will not take their extreme values but the "frequent values" due the probability of occurrence.
- (5) From the accompanying external actions the nominal values are determined using the following load-combination

$$\sigma_{P} = \sigma \{ \Sigma G_{k} "+" \psi_{1,1} Q_{k1} "+" \Sigma \psi_{2,i} Q_{ki} \}$$
(2-7)

where

- $\psi_{1,1} \hspace{1.5cm} \text{is the combination factor for frequent loads with a return} \\ \hspace{1.5cm} \text{period of} 1 \hspace{1.5cm} \text{month}$
- $\psi_{2,i}$ is the combination factor for "quasi-permanent" loads
- (6) In addition to these "primary" nominal stresses σ_P also "secondary stresses" σ_S from residual stresses and unforeseen restraints from the assembly of the structure have been taken into account in preparing the table for the choice of material in EN 1993-1-10, so that

$$\sigma_{\text{tot}} = \sigma_{\text{P}} + \sigma_{\text{S}} \tag{2-8}$$

where

- σ_P is the nominal stress from the external loads, see above
- σ_s is the residual stress defined as "global". In preparing the table in EN 1993-1-10 a lump value $\sigma_s = 100 \text{ N/mm}^2$ has been used. "Local" residual stresses, which occur in the welded area at the hot spot and may be reduced by local cracking need not to be specified as they are considered already in the model uncertainty when the numerical assessment procedure was calibrated to the results of fracture mechanics tests undertaken with large-size welded test-specimens.
- (7) The values in the table of EN 1993-1-10 refer to the stress-level $\sigma_{Ed} = \sigma_P$ only, so that for using the table σ_s needs not to be further considered.
- (8) Where σ_{Ed} is a compression stress, the structural component should be assessed for the lowest class of tension stress $\sigma_{Ed} = 0.25 f_v$.

2.4 Assumptions for the structural detail and the magnitude of hypothetical crack

- (1) EN 1993-1-10 has been initially developed for the choice of material for steel bridges; therefore the assumptions for the choice of a reference detail and the position and magnitude of the hypothetical cracks were mainly influenced by typical bridge structures.
- (2) The reference detail with geometrical parameters chosen for EN 1993-1-10 is a plate in tension with a welded longitudinal attachment as given in Figure 2-2. This detail is typical for bridge structures; because of the geometrical notch effect it represents an enhanced risk for starting brittle fracture. This detail is also included in the detail-classes in EN 1993-1-9 [5]. For determining K^{*}_{appl,d} particular ranges of dimensions (e.g. length of stiffener in relation to plate thickness and plate width, angle and size a of fillet weld) were assumed that are representative for the use in bridges.

Figure 2-2: Reference structural detail for calculating K*_{appl,d} for the choice of material in EN 1993-1-10

- (3) Other detail classes as specified in EN 1993-1-9 are covered by this reference detail and the assessment method applied for it, so that EN 1993-1-10 is safe sided for all fatigue details in EN 1993-1-9. In case of structural details that cannot be classified to EN 1993-1-9 the table for choice of material in EN 1993-1-10 is not applicable.
- (4) The assumption for a crack-like flaw is a semi elliptical surface crack at the position of the largest stress-concentration at the end of the longitudinal stiffener. Figure 2-3 shows the cross-section of a rectangular plate with a semi-elliptical crack. The ratio of the crack depth a to the crack-width c has been determined for this reference detail with a/c = 0.4.

Figure 2-3: Assumption of a semi-elliptical surface crack in a plate with rectangular crosssection

- (5) The magnitude of the design values a_d and c_d is determined from two components:
 - the initial crack size with the crack depth a_0 and the crack width c_0 is determined in dependence of the product thickness (plate thickness) according to Figure 2-4. This magnitude is considered to be detectable in inspections during production see Figure 2-7 with the usual testing methods used in steel construction.

Figure 2-4: Magnitude of the initial crack from fabrication overlooked in inspections

- the crack growth Δa , Δc from fatigue in service.
- (6) The design values a_d and c_d including crack growth from fatigue in service are functions of the fatigue loading.
- (7) For the fatigue loading the detail class $\Delta \sigma_c$ is relevant which gives a maximum total fatigue load of $\Delta \sigma_c^3 \times 2 \cdot 10^6$ for the full design life.
- (8) As for steel structures susceptible to fatigue as bridges inspections are required in certain intervals. The crack growth $\Delta a = a_d a_0$ and $\Delta c = c_d c_0$ is determined from a portion of the full fatigue load only, for which a quarter (1/4) has been selected. The crack growth was therefore determined for the fatigue load $\Delta \sigma_c^3 \times 500.000$.
- (9) The crack growth Δa at the weld toe of the longitudinal attachment with the geometry in Figure 2-2 was determined using the crack-propagation formulas by Paris. As a result the design value $a_d(t)$ dependent on the plate thickness t was obtained, see Figure 2-5.

Figure 2-5: Design values of crack depth $a_d = a_0 + \Delta a$

(10) The stress intensity-factor for this crack depth a_d is the value $K_{appl,d}$, Figure 2-6.

Figure 2-6: Stress intensity factor K_{appl,d} calculated for the design crack depth a_d in figure 2-5

(11) The interpretation of the initial crack size a_0/c_0 as a flaw "overlooked in the production control" is justified by the fact, that the magnitudes of a_0/c_0 are detectable during crack-inspections. Figure 2-7 gives the functions $2c_0$ of the initial crack and $2c_d$ of the design crack in relation to the limits for detectability by visual inspection, colour penetration test, ultrasonic inspection and magnetic particle inspection.

Figure 2-7: Assumptions for initial values and design values of crack size and detectability by testing methods

(12) Hence the initial crack assumed is detectable by production control and can be assumed to be accidentally overlooked.

2.5 Table 2.1 of EN 1993-1-10

(1) Table 2.1 in EN 1993-1-10 gives the results of the fracture mechanics safety assessments, see Figure 2-8. It is applicable for all details listed in EN 1993-1-9.

Figure 2-8: Table 2.1	gure 2-8: Table 2.1	2-8: Table 2.1	Table 2.1	Table 2.1	Table 2.1	ble 2.1	2.7	_ 1	inE	z	66	31	-10	, he	ere	witl	n an	ex l	ten	sion	to	CO	/er	a la	rger	tei	ď	erat	ure	ran	gel	LEd	[4]													
Unarpy energy Sub- cVN 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 grade	Charpy energy C/N 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100-110	arioy tergy -VN 10 0 -10 -20 -30 -40 -50 -60 -70 80 -90 -100-110	10 0 - 10 - 20 - 30 - 40 - 50 - 60 - 70 - 80 - 90 - 100 - 110	0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100	-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 <mark>-</mark> 11	1-20 -30 -40 -50 -60 -70 -80 -90 -100	-30 -40 -50 -60 -70 -80 -90 -100 -11	-40 -50 -60 -70 -80 -90 -100 -11	-50 -60 -70 -80 -90 -100 -11(0 - 20 - 20 - 20 - 100 - 110	0 -70 -80 -90 -100 -110	0 -80 -90 -100 -110	30 -90 -100-110	90 -100 -110	100 -11(-11(<u> </u>	-120	10	0	-10	lefe	eren -30	ICE 1	tem) -60	atu) -⊼	Ire 1	<u>_</u>	<u>.</u> -10	0-11	0 -12(0 10	0	-10) -20	0 -30	-40	-50	-60	-70	-80		00-1-	10 -1	-20
at T J_{min} [°C] $\sigma_{Ed} = 0.75 fy(t)$	at T J _{min} $\sigma_{Ed} = 0.75 \text{ fy(t)}$	$\sigma_{tel} = 0.75 \text{ fy(t)}$	$\sigma_{\rm Ed} = 0.75 \rm fy(t)$	$\sigma_{Ed} = 0.75 \text{ fy(t)}$	$\sigma_{\rm Ed} = 0,75 f_{\rm V}(t)$	$\sigma_{Ed} = 0,75 \text{ fy(t)}$	$\sigma_{ed} = 0,75 \text{ fy(t)}$	$\sigma_{ed} = 0,75 \text{ fy}(t)$	$\sigma_{\rm Ed} = 0,75 \rm fy(t)$	0,75 fy(t)	fy(t)													U	$\Sigma_{Ed} = C$	0,50 f	y(t)											U	ε _{ed} = 0	,25 fy	(t)					
JR +20 27 62 51 43 36 30 25 21 18 16 14 12 11 10	+20 27 62 51 43 36 30 25 21 18 16 14 12 11 10) 27 62 51 43 36 30 25 21 18 16 14 12 11 10	62 51 43 36 30 25 21 18 16 14 12 11 10	51 43 36 30 25 21 18 16 14 12 11 10	43 36 30 25 21 18 16 14 12 11 10	36 30 25 21 18 16 14 12 11 10	30 25 21 18 16 14 12 11 10	25 21 18 16 14 12 11 10	21 18 16 14 12 11 10	i 18 16 14 12 11 10	8 16 14 12 11 10	6 14 12 11 10	14 12 11 10	12 11 10	11 10	10		6	90	77	65	55	47	41	35	31	27	7 24	l 21	. 19	9 18	3 16	134	116	5 101	1 88	3 77	67	59	53	47	42	39	35 3	33	31
J0 0 27 89 74 62 51 43 36 30 25 21 18 16 14 12	0 27 89 74 62 51 43 36 30 25 21 18 16 14 12	27 89 74 62 51 43 36 30 25 21 18 16 14 12	89 74 62 51 43 36 30 25 21 18 16 14 12	74 62 51 43 36 30 25 21 18 16 14 12	62 51 43 36 30 25 21 18 16 14 12	51 43 36 30 25 21 18 16 14 12	43 36 30 25 21 18 16 14 12	36 30 25 21 18 16 14 12	30 25 21 18 16 14 12) 25 21 18 16 14 12	5 21 18 16 14 12	1 18 16 14 12	18 16 14 12	16 14 12	14 12	12		11	125	106	6	77	65	55	47	41	35	31	27	24	1 21	. 19	176	154	1 134	4 11(6 10:	1 88	77	67	59	53	47 4	12 3	9 3	52
J2 -20 27 126 106 89 74 62 51 43 36 30 25 21 18 16	-20 27 126 106 89 74 62 51 43 36 30 25 21 18 16	1 27 126 106 89 74 62 51 43 36 30 25 21 18 16	126 106 89 74 62 51 43 36 30 25 21 18 16	106 89 74 62 51 43 36 30 25 21 18 16	89 74 62 51 43 36 30 25 21 18 16	74 62 51 43 36 30 25 21 18 16	62 51 43 36 30 25 21 18 16	51 43 36 30 25 21 18 16	43 36 30 25 21 18 16	36 30 25 21 18 16	5 30 25 21 18 16	0 25 21 18 16	5 21 18 16	21 18 16	18 16	16		14	169	146	125	106	60	77	65	55	47	7 41	35	31	. 27	7 24	199	199	176	6 154	4 13,	t 116	101	88	77	67	59	53 4	7 4	ţ2
JR +20 27 54 45 37 31 26 22 18 15 13 11 10 9 8	+20 27 54 45 37 31 26 22 18 15 13 11 10 9 8	0 27 54 45 37 31 26 22 18 15 13 11 10 9 8	54 45 37 31 26 22 18 15 13 11 10 9 8	45 37 31 26 22 18 15 13 11 10 9 8	37 31 26 22 18 15 13 11 10 9 8	31 26 22 18 15 13 11 10 9 8	26 22 18 15 13 11 10 9 8	22 18 15 13 11 10 9 8	18 15 13 11 10 9 8	3 15 13 11 10 9 8	5 13 11 10 9 8	3 11 10 9 8	11 10 9 8	10 9 8	98	8		7	81	69	58	49	42	36	31	27	24	t 21	18	17	15	14	126	109	95	82	71	62	55	49	43	39	35	32 3	0 2	28
J0 0 27 78 65 54 45 37 31 26 22 18 15 13 11 10	0 27 78 65 54 45 37 31 26 22 18 15 13 11 10	27 78 65 54 45 37 31 26 22 18 15 13 11 10	78 65 54 45 37 31 26 22 18 15 13 11 10	65 54 45 37 31 26 22 18 15 13 11 10	54 45 37 31 26 22 18 15 13 11 10	45 37 31 26 22 18 15 13 11 10	37 31 26 22 18 15 13 11 10	31 26 22 18 15 13 11 10	26 22 18 15 13 11 10	5 22 18 15 13 11 10	2 18 15 13 11 10	8 15 13 11 10	15 13 11 10	13 11 10	11 10	10		6	113	96	81	69	58	49	42	36	31	1 27	7 24	21	. 18	17	167	145	126	6 10	9 95	82	71	62	55	49	43	39 3	5 3	32
J2 -20 27 112 94 78 65 54 45 37 31 26 22 18 15 13	-20 27 112 94 78 65 54 45 37 31 26 22 18 15 13	0 27 112 94 78 65 54 45 37 31 26 22 18 15 13	112 94 78 65 54 45 37 31 26 22 18 15 13	94 78 65 54 45 37 31 26 22 18 15 13	78 65 54 45 37 31 26 22 18 15 13	65 54 45 37 31 26 22 18 15 13	54 45 37 31 26 22 18 15 13	45 37 31 26 22 18 15 13	37 31 26 22 18 15 13	7 31 26 22 18 15 13	1 26 22 18 15 13	6 22 18 15 13	2 18 15 13	18 15 13	15 13	13		11	156	133	113	96	81	69	58	49	42	26	31	27	, 24	1 21	199	191	167	7 14!	5 12(105	95	82	71	62	55 4	t9 4	3 3	39
M, N -20 40 132 111 93 77 64 53 44 37 31 25 21 18 15	-20 40 132 111 93 77 64 53 44 37 31 25 21 18 15	1 40 132 111 93 77 64 53 44 37 31 25 21 18 15	132 111 93 77 64 53 44 37 31 25 21 18 15	111 93 77 64 53 44 37 31 25 21 18 15	93 77 64 53 44 37 31 25 21 18 15	77 64 53 44 37 31 25 21 18 15	64 53 44 37 31 25 21 18 15	53 44 37 31 25 21 18 15	44 37 31 25 21 18 15	1 37 31 25 21 18 15	7 31 25 21 18 15	1 25 21 18 15	?5 21 18 15	21 18 15	18 15	15		13	179	154	132	112	95	81	68	58	149	9 42	36	31	- 27	7 23	199	199	185	9 16!	5 14,	t 125	108	94	81	71	62	55 4	8 4	t3
ML, NL 50 27 185 158 134 112 94 78 65 54 45 37 31 26 22	50 27 185 158 134 112 94 78 65 54 45 37 31 26 22	0 27 185 158 134 112 94 78 65 54 45 37 31 26 22	185 158 134 112 94 78 65 54 45 37 31 26 22	158 134 112 94 78 65 54 45 37 31 26 22	134 112 94 78 65 54 45 37 31 26 22	112 94 78 65 54 45 37 31 26 22	94 78 65 54 45 37 31 26 22	78 65 54 45 37 31 26 22	65 54 45 37 31 26 22	5 54 45 37 31 26 22	4 45 37 31 26 22	5 37 31 26 22	37 31 26 22	31 26 22	26 22	22		18	199	199	181	156	5 133	115	36	81	69	9 58	3 49	42	36	31	229	202	195	9 199	9 19:	l 167	145	126	109	95	82	71 6	2 5	55
JR +20 27 43 35 29 24 20 16 14 11 10 8 7 6 5	+20 27 43 35 29 24 20 16 14 11 10 8 7 6 5	1 27 43 35 29 24 20 16 14 11 10 8 7 6 5	43 35 29 24 20 16 14 11 10 8 7 6 5	35 29 24 20 16 14 11 10 8 7 6 5	29 24 20 16 14 11 10 8 7 6 5	24 20 16 14 11 10 8 7 6 5	20 16 14 11 10 8 7 6 5	16 14 11 10 8 7 6 5	14 11 10 8 7 6 5	t 11 10 8 7 6 5	1 10 8 7 6 5	0 8 7 6 5	8 7 6 5	7 6 5	6 5	S		5	68	57	48	40	34	29	25	21	18	3 16	14	13	11	10	112	97	83	72	. 62	54	47	42	37	33	30	27 2	5 2	23
J0 0 27 63 52 43 35 29 24 20 16 14 11 10 8 7	0 27 63 52 43 35 29 24 20 16 14 11 10 8 7	27 63 52 43 35 29 24 20 16 14 11 10 8 7	63 52 43 35 29 24 20 16 14 11 10 8 7	52 43 35 29 24 20 16 14 11 10 8 7	43 35 29 24 20 16 14 11 10 8 7	35 29 24 20 16 14 11 10 8 7	29 24 20 16 14 11 10 8 7	24 20 16 14 11 10 8 7	20 16 14 11 10 8 7) 16 14 11 10 8 7	5 14 11 10 8 7	4 11 10 8 7	11 10 8 7	10 8 7	8 7	7		9	96	80	68	57	48	40	34	29	25	5 21	18	16	5 14	1 13	150	130	112	2 97	, 83	72	62	54	47	42	37 3	33 3	0 2	27
J2 -20 27 92 76 63 52 43 35 29 24 20 16 14 11 10	-20 27 92 76 63 52 43 35 29 24 20 16 14 11 10	0 27 92 76 63 52 43 35 29 24 20 16 14 11 10	92 76 63 52 43 35 29 24 20 16 14 11 10	76 63 52 43 35 29 24 20 16 14 11 10	63 52 43 35 29 24 20 16 14 11 10	52 43 35 29 24 20 16 14 11 10	43 35 29 24 20 16 14 11 10	35 29 24 20 16 14 11 10	29 24 20 16 14 11 10	3 24 20 16 14 11 10	4 20 16 14 11 10	0 16 14 11 10	16 14 11 10	14 11 10	11 10	10		∞	133	113	96	80	68	57	48	40	34	1 25	9 25	21	- 18	16	198	173	3 15C	0 13(0 11:	97	83	72	62	54	47 4	1 2 3	7 3	33
K2,M,N -20 40 109 91 75 62 51 42 35 28 23 19 16 13 11	-20 40 109 91 75 62 51 42 35 28 23 19 16 13 11	40 109 91 75 62 51 42 35 28 23 19 16 13 11	109 91 75 62 51 42 35 28 23 19 16 13 11	91 75 62 51 42 35 28 23 19 16 13 11	75 62 51 42 35 28 23 19 16 13 11	62 51 42 35 28 23 19 16 13 11	51 42 35 28 23 19 16 13 11	42 35 28 23 19 16 13 11	35 28 23 19 16 13 11	5 28 23 19 16 13 11	8 23 19 16 13 11	3 19 16 13 11	19 16 13 11	16 13 11	13 11	11		6	155	132	112	95	80	67	56	47	40	34	1 28	24	1 21	18	199	197	7 172	2 14(9 129	9 111	96	83	71	62	54 4	47 4	1 3	5
ML, NL -50 27 155 131 110 92 76 63 52 43 35 29 24 20 16	-50 27 155 131 110 92 76 63 52 43 35 29 24 20 16	0 27 155 131 110 92 76 63 52 43 35 29 24 20 16	155 131 110 92 76 63 52 43 35 29 24 20 16	131 110 92 76 63 52 43 35 29 24 20 16	110 92 76 63 52 43 35 29 24 20 16	92 76 63 52 43 35 29 24 20 16	76 63 52 43 35 29 24 20 16	63 52 43 35 29 24 20 16	52 43 35 29 24 20 16	2 43 35 29 24 20 16	3 35 29 24 20 16	5 29 24 20 16	29 24 20 16	24 20 16	20 16	16		14	199	181	156	133	\$ 113	96	80	68	57	7 45	3 4C	34	1 29	9 25	210	199	9 195	9 19	8 173	3 150	130	112	97	83	72 (52 5	4 4	Lt
M, N -20 40 95 79 65 53 44 36 29 24 19 16 13 11 9	-20 40 95 79 65 53 44 36 29 24 19 16 13 11 9	1 40 95 79 65 53 44 36 29 24 19 16 13 11 9	95 79 65 53 44 36 29 24 19 16 13 11 9	79 65 53 44 36 29 24 19 16 13 11 9	65 53 44 36 29 24 19 16 13 11 9	53 44 36 29 24 19 16 13 11 9	44 36 29 24 19 16 13 11 9	36 29 24 19 16 13 11 9	29 24 19 16 13 11 9	24 19 16 13 11 9	4 19 16 13 11 9	9 16 13 11 9	16 13 11 9	13 11 9	11 9	6		7	139	118	66	83	70	58	49	41	34	1 25	9 24	20	17	15	199	183	3 155	9 13	8 118	3 102	87	75	64	55	48 4	12 3	7 3	33
ML, NL -50 27 137 115 96 80 66 54 44 36 29 24 20 16 13	-50 27 137 115 96 80 66 54 44 36 29 24 20 16 13	0 27 137 115 96 80 66 54 44 36 29 24 20 16 13	137 115 96 80 66 54 44 36 29 24 20 16 13	115 96 80 66 54 44 36 29 24 20 16 13	96 80 66 54 44 36 29 24 20 16 13	80 66 54 44 36 29 24 20 16 13	66 54 44 36 29 24 20 16 13	54 44 36 29 24 20 16 13	44 36 29 24 20 16 13	1 36 29 24 20 16 13	6 29 24 20 16 13	9 24 20 16 13	24 20 16 13	20 16 13	16 13	13		11	190	164	140	119	100	84	71	59	49	9 41	. 34	29	9 24	1 21	199	199	9 195	9 18!	5 16(135	119	103	88	75	65	56 4	8 4	t2
Q -20 30 77 63 52 42 34 28 23 18 15 12 10 8 7	-20 30 77 63 52 42 34 28 23 18 15 12 10 8 7	0 30 77 63 52 42 34 28 23 18 15 12 10 8 7	77 63 52 42 34 28 23 18 15 12 10 8 7	63 52 42 34 28 23 18 15 12 10 8 7	52 42 34 28 23 18 15 12 10 8 7	42 34 28 23 18 15 12 10 8 7	34 28 23 18 15 12 10 8 7	28 23 18 15 12 10 8 7	23 18 15 12 10 8 7	3 18 15 12 10 8 7	8 15 12 10 8 7	5 12 10 8 7	12 10 8 7	10 8 7	8 7	2	-	9	116	98	82	68	57	47	39	33	27	7 23	19	16	5 14	1 12	183	159	3 137	7 11	8 10:	L 86	74	63	54	47	41	36 3	1 2	8
M, N -20 40 88 73 60 49 40 32 26 21 17 14 12 9 8	-20 40 88 73 60 49 40 32 26 21 17 14 12 9 8	1 40 88 73 60 49 40 32 26 21 17 14 12 9 8	88 73 60 49 40 32 26 21 17 14 12 9 8	73 60 49 40 32 26 21 17 14 12 9 8	60 49 40 32 26 21 17 14 12 9 8	49 40 32 26 21 17 14 12 9 8	40 32 26 21 17 14 12 9 8	32 26 21 17 14 12 9 8	26 21 17 14 12 9 8	5 21 17 14 12 9 8	1 17 14 12 9 8	7 14 12 9 8	14 12 9 8	12 9 8	9 8	8		9	130	110	93	78	65	54	45	37	, 31	l 26	5 22	18	3 16	14	199	176	5 152	2 13:	1 113	3 96	82	71	61	52	45	39 3	4 3	000
QL -40 30 112 93 77 63 52 42 34 28 23 18 15 12 10	-40 30 112 93 77 63 52 42 34 28 23 18 15 12 10	0 30 112 93 77 63 52 42 34 28 23 18 15 12 10	112 93 77 63 52 42 34 28 23 18 15 12 10	93 77 63 52 42 34 28 23 18 15 12 10	77 63 52 42 34 28 23 18 15 12 10	63 52 42 34 28 23 18 15 12 10	52 42 34 28 23 18 15 12 10	42 34 28 23 18 15 12 10	34 28 23 18 15 12 10	1 28 23 18 15 12 10	8 23 18 15 12 10	3 18 15 12 10	18 15 12 10	15 12 10	12 10	10		8	160	137	116	98	82	68	57	47	, 39	9 33	3 27	23	19) 16	199	199	9 183	3 155	9 13	7 118	101	86	74	63	54 4	17 4	1 3	20
ML, NL -50 27 128 107 89 73 60 49 40 33 27 22 18 14 12	-50 27 128 107 89 73 60 49 40 33 27 22 18 14 12	0 27 128 107 89 73 60 49 40 33 27 22 18 14 12	128 107 89 73 60 49 40 33 27 22 18 14 12	107 89 73 60 49 40 33 27 22 18 14 12	89 73 60 49 40 33 27 22 18 14 12	73 60 49 40 33 27 22 18 14 12	60 49 40 33 27 22 18 14 12	49 40 33 27 22 18 14 12	40 33 27 22 18 14 12) 33 27 22 18 14 12	3 27 22 18 14 12	7 22 18 14 12	2 18 14 12	18 14 12	14 12	12		10	180	155	132	111	94	78	65	54	1 45	38	31	. 26	5 22	19	199	199	195	9 17.	7 153	3 132	114	97	83	71	61	53 4	5 3	39
QL1 -60 30 157 133 112 93 77 63 52 42 34 28 23 18 15	-60 30 157 133 112 93 77 63 52 42 34 28 23 18 15	30 157 133 112 93 77 63 52 42 34 28 23 18 15	157 133 112 93 77 63 52 42 34 28 23 18 15	133 112 93 77 63 52 42 34 28 23 18 15	112 93 77 63 52 42 34 28 23 18 15	93 77 63 52 42 34 28 23 18 15	<i>77</i> 63 52 42 34 28 23 18 15	63 52 42 34 28 23 18 15	52 42 34 28 23 18 15	2 42 34 28 23 18 15	2 34 28 23 18 15	4 28 23 18 15	28 23 18 15	23 18 15	18 15	15		12	199	186	160	137	7 116	98	82	68	57	7 47	7 35	33	3 27	7 23	222	199	195	9 19	9 18:	3 155	137	118	101	86	74 (53 5	4 4	Ľ.
Q 0 40 39 31 25 20 16 13 10 8 6 5 3 2 -	0 40 39 31 25 20 16 13 10 8 6 5 3 2 -	40 39 31 25 20 16 13 10 8 6 5 3 2 -	39 31 25 20 16 13 10 8 6 5 3 2 -	31 25 20 16 13 10 8 6 5 3 2 -	25 20 16 13 10 8 6 5 3 2 -	20 16 13 10 8 6 5 3 2 -	16 13 10 8 6 5 3 2 -	13 10 8 6 5 3 2 -	10 8 6 5 3 2 -) 8 6 5 3 2 -	1 6 5 3 2 -	5 3 2 -	5 3 2 -	3 2 -	2 -				65	54	44	36	30	24	20	16	13	3 11	6	8	9	2	120	102	3 87	73	62	52	44	38	32	28	24	21 1	8 1	9
Q -20 30 52 42 34 27 21 17 13 11 8 7 5 4 2	-20 30 52 42 34 27 21 17 13 11 8 7 5 4 2	0 30 52 42 34 27 21 17 13 11 8 7 5 4 2	52 42 34 27 21 17 13 11 8 7 5 4 2	42 34 27 21 17 13 11 8 7 5 4 2	34 27 21 17 13 11 8 7 5 4 2	27 21 17 13 11 8 7 5 4 2	21 17 13 11 8 7 5 4 2	17 13 11 8 7 5 4 2	13 11 8 7 5 4 2	3 11 8 7 5 4 2	1 8 7 5 4 2	3 7 5 4 2	7 5 4 2	5 4 2	4 2	2		1	84	69	57	47	38	31	26	21	17	7 14	1 12	10	8	7	147	126	5 107	7 91	- 77	65	55	46	39	34	29	25 2	2 1	6
QL -20 40 60 48 39 31 25 20 16 13 10 8 6 5 3	-20 40 60 48 39 31 25 20 16 13 10 8 6 5 3	1 40 60 48 39 31 25 20 16 13 10 8 6 5 3	60 48 39 31 25 20 16 13 10 8 6 5 3	48 39 31 25 20 16 13 10 8 6 5 3	39 31 25 20 16 13 10 8 6 5 3	31 25 20 16 13 10 8 6 5 3	25 20 16 13 10 8 6 5 3	20 16 13 10 8 6 5 3	16 13 10 8 6 5 3	5 13 10 8 6 5 3	3 10 8 6 5 3	0 8 6 5 3	8 6 5 3	6 5 3	5 3	e		2	95	79	65	54	44	36	30	24	1 20) 16	13	11	- 6	8	164	141	1120	0 10.	2 87	73	62	52	44	38	32 2	28 2	4 2	21
QL -40 30 78 64 52 42 34 27 21 17 13 11 8 7 5	-40 30 78 64 52 42 34 27 21 17 13 11 8 7 5	0 30 78 64 52 42 34 27 21 17 13 11 8 7 5	78 64 52 42 34 27 21 17 13 11 8 7 5	64 52 42 34 27 21 17 13 11 8 7 5	52 42 34 27 21 17 13 11 8 7 5	42 34 27 21 17 13 11 8 7 5	34 27 21 17 13 11 8 7 5	27 21 17 13 11 8 7 5	21 17 13 11 8 7 5	1 17 13 11 8 7 5	7 13 11 8 7 5	3 11 8 7 5	11 8 7 5	8 7 5	7 5	S		4	120	100	84	69	57	47	38	31	26	5 21	17	14	1 12	10	197	171	l 147	7 12(6 10	7 91	77	65	55	46	39	34 2	9 2	25
QL1 -40 89 73 60 48 39 31 25 20 16 13 10 8 6	-40 40 89 73 60 48 39 31 25 20 16 13 10 8 6	0 40 89 73 60 48 39 31 25 20 16 13 10 8 6	89 73 60 48 39 31 25 20 16 13 10 8 6	73 60 48 39 31 25 20 16 13 10 8 6	60 48 39 31 25 20 16 13 10 8 6	48 39 31 25 20 16 13 10 8 6	39 31 25 20 16 13 10 8 6	31 25 20 16 13 10 8 6	25 20 16 13 10 8 6	5 20 16 13 10 8 6	0 16 13 10 8 6	6 13 10 8 6	13 10 8 6	10 8 6	8 6	9		5	135	114	95	79	65	54	44	36	30) 24	1 2C	16	5 13	11	199	189	9 164	4 14:	1 12(102	87	73	62	52	44	38 3	2 2	8
QL1 -60 30 113 94 78 64 52 42 34 27 21 13 11 8	-60 30 113 94 78 64 52 42 34 27 21 17 13 11 8	0 30 113 94 78 64 52 42 34 27 21 17 13 11 8	113 94 78 64 52 42 34 27 21 17 13 11 8	94 78 64 52 42 34 27 21 17 13 11 8	78 64 52 42 34 27 21 17 13 11 8	64 52 42 34 27 21 17 13 11 8	52 42 34 27 21 17 13 11 8	42 34 27 21 17 13 11 8	34 27 21 17 13 11 8	t 27 21 17 13 11 8	7 21 17 13 11 8	1 17 13 11 8	17 13 11 8	13 11 8	11 8	8		7	166	142	120	100) 84	69	57	47	, 38	3 31	. 26	21	. 17	14	199	199	197	7 17:	1 14	7 126	107	91	77	65	55 4	t6 3	9 3	34

Table 2.1 in EN 1993-1-10, here with an extension to cover a larger temperature range TEd [4]

reference temperature

 T_{Ed} for hot-finished sections

 $T^*{}_{Ed} = T_{Ed} + \varDelta T_{cf}$ for cold-formed sections:

Note: The values in this table are for some parameters slightly different to those given in Table 2.1 of EN 1993-1-10. In a future revision of Table 2.1 of EN 1993-1-10 the values of Figure 2-8 could be adopted.

3 Structural bearings for bridges, types, product specification and selection of standard components for fracture mechanics assessments

3.1 Types of bearings and product specifications

- (1) Bearings for bridges are elements allowing rotation between two members of a structure and transmitting the loads defined in the relevant requirements as well as preventing displacements (fixed bearings) allowing displacements in only one direction (guided bearings) or in all directions of a plane (free bearings) as required.
- (2) The functional principles corresponding to the action effects they are built for may be taken from Figure 3-1.

Functional principle	Sliding	Rolling	Deforming
Action effect required			
Translational movement		$\stackrel{\Leftrightarrow}{\bigcirc}$	
Rotational angle			

Figure 3-1: Functional principles in response to action effects required for bearings of bridges [7]

- (3) The tasks of bearings are:
 - to transmit from the 6 spatial action effects in terms of forces and moments, which are possible at the connection between the bridge superstructure and the substructure (primary loads on the bearings), without or with limited relative movements and
 - to make relative movements between the bridge superstructure and the substructure in the sense of the other action effects (translational movements, rotations) possible at the supports. These relative movements may be responded by resistances of the bearings (secondary loads from the bearings), which are classified as follows:
 - resistances to movements from moveable bearings (from rolling, sliding and from mechanical guidances)
 - resistances to deformations (elastomeric bearings, pot bearings for rotation)
- (4) Bearings for bridges are specified in EN 1337 structural bearings, the structure of which may be taken from Figure 3-2 [7].

Figure 3-2: Structure of EN 1337-Structural bearings

(5) Table 3-1 gives an example for the relationship between the various parts of EN 1337 to the parts of former DIN 4114 (German standard) the contents of which has been fully or partially withdrawn. Such comparison may be made for any other National Standard.

Table 3-1:	Survey on FN	1337 and i	relation to	DIN 414 1
	JUIVEY UII LIV	1 1337 anu i		DIN 4141

Standard	Title	Status and remarks
DIN EN 1337-1, Februay 2001	General design rule	Standard in force, no product standard, replaces partly DIN V 4141 – 1, -2, -3
DIN EN 1337-2, July 2004	Sliding elements	Standard in force, no product standard
DIN EN 1337-3, July 2005 Product standard	Elastomeric bearing	Standard in force, replaces DIN 4141-14-14/A1, -140/A1, partly -15, -140, -150
DIN EN 1337-4, April 2004 Product standard	Roller bearings	Standard in force, does not replace any DIN-standard
DIN EN 1337-5, July 2005 Product standard	Pot bearings	Standard in force, does not replace any DIN-standard
DIN EN 1337-6, June 2004 Product standard	Rocker bearings	Standard in force, does not replace any DIN-standard

Table 3-1: continued

Standard	Title	Status and remarks
DIN EN 1337-7, August 2003	Spherical and cylindrical PTFE	Standard in force, does not replace any DIN-standard
Product standard	bearings	
DIN 1337-8, January 2008 Product standard	Guided bearings and restraint bearings	Standard in force, replaces DIN 4141-13
DIN EN 1337-9, April 1998	Protection	Standard in force, no product standard, replaces partly DIN V 4141-1
DIN EN 1337-10, November 2003	Inspection and maintenance	Standard in force replaces partly DIN V 4141-1
DIN EN 1337-11, April 1998	Transport storage and installation	Standard in force replaces DIN 4141-4

- EN 1337 deals exclusively with the construction products "bearings". EN 1337 does not (6) deal with the installation and supplementary equipments of bearings as "anchor plates" and with other requirements which were contained e.g. in Germany in "Allgemeine Bauaufsichliche Zulassungen" (General technical Approvals) and "Lager-Richtzeichungen" (Guidance drawings for bearings) before EN 1337 got into force, see Figure 9-4. As these requirements also control the quality of the bearings with respect to durability and safety of use, they are now summarized in the "Allgemeine Bauaufsichtliche Zulassungen" of the Deutsche Institut für Bautechnik (DIBt) in addition to EN 1337, e.g.
 - Z-16.7-444 "Ausstattung von RWSH-Brückenlagern mit CE-Kennzeichung" (Equipment of RWSH bridge-bearings with CE-marking) or
 - Z-16.4-436 or ETA-06/0131 "Maurer MSM[®]-Kalottenlager" (Maurer MSM[®]-spherical and cylindrical PTFE-bearings). The bearing can be installed with the supplementary equipment specified in this Technical Approvals directly into the bridge structure without further additions.

This example should be used to check the situation in other regulatory environments.

- (7) The choice of material for the supplementary equipment, e.g. anchoring parts, fasteners, fill plates, wedge plates and additional plates, the material of which should comply with the EN-Standards and be suitable for the purpose and welding, should be according to EN 1993 Part 2 [9].
- (8) The effective temperature of the bearings for determining the application field in accordance with EN 1337 [7] is the minimum and maximum air-temperature.
- (9) The aim of this report is the choice of material for steel components of bearings, which complements the rules for choice in EN 1993 Part 2.

3.2 Selection of standard components of bearings for facture mechanics assessments

- (1) From the list of type of bearings according to Figure 3-1 two reference types (Type A and Type B) are selected, see Figure 3-3.
- (2) The difference between type A and type B is the detailing of the sliding plate and of the welded lateral guiderail.

Figure 3-3: Reference type of bearings, Type A (above) and Type B (below)

- (3) The investigations comprise all components of the bridge bearing, that comply with the product standard EN 1337-Structural bearings [7] and also the "anchor plate".
- (4) The components of the bearings and their details may be taken from Table 3-2.
- (5) The choice of the reference types of bearings according to Figure 3-3 and of the Standard details according to Table 3-2 has been agreed with CEN/TC 167.
- (6) Table 3-2 also gives the hot-spots, for which the fracture mechanics assessments are carried out.
| Nr. | Steel component | Geometry
Type A | Geometry
Type B | Symmetry |
|-----|--|--|--|------------------------|
| 1 | Top component
(Sliding plate and lateral guiderail)
$t_1 \downarrow t_2 \downarrow t_2 \downarrow t_1 \downarrow t_2 \downarrow t_2 \downarrow t_1 \downarrow t_2 \downarrow $ | t: 55 – 315 mm
t ₁ : 20 – 215 mm
t ₂ : 25 – 100 mm
D: 500 – 1800 mm
d: 355 - 1385 mm
b: 50 - 505 mm | | Rotational
symmetry |
| 2A | Top component
(sliding plate and lateral guiderail)
$t_1 \downarrow t_2 \downarrow t_2 \downarrow t_1 \downarrow t_2 \downarrow t_2 \downarrow t_1 \downarrow t_2 \downarrow $ | t: 55 – 315 mm
t ₁ : 20 – 215 mm
t ₂ : 25 – 100 mm
D: 500 – 1800 mm
d: 355 - 1385 mm
b: 50 - 500 mm | | Axial
symmetry |
| 2B | Top component
(sliding plate and lateral guiderail)
$e \rightarrow b \rightarrow d \rightarrow d$ | | t ₁ : 55 – 285 mm
t ₂ : 55 – 170 mm
a _w : 12 - 42 mm
<i>(K oder Y-weld)</i>
D: 440 – 2580 mm
b: 55 - 570 mm | Axial
symmetry |
| 3 | | t: 55 – 255 mm
t_1 : 20 – 55 mm
t_2 : 20 – 60 mm
t_3 : 35 – 150 mm
D: 330 – 1800 mm
b: 40-100 mm
r: 135-590 mm | t: 55 – 255 mm
t_1 : 20 – 55 mm
t_2 : 20 – 60 mm
t_3 : 35 – 150 mm
<i>D</i> : 330 – 1800 mm
<i>b</i> : 40-100 mm
<i>r</i> : 135-590 mm | Axial
symmetry |
| 4 | Anchor plate | t: ≥ 55 mm
D: 440-3300 mm | t: ≥ 55 mm
D: 440-3300 mm | Axial
symmetry |
| 5 | Bearing for horizontal forces without rotation
and capacity for vertical forces | t: 30 – 150 mm
d: 55 – 300 mm
a _w : 5 – 25 mm
<i>D</i> : 440 - 3300 mm | t: 30 – 150 mm
d: 55 – 300 mm
a _w : 5 – 25 mm
<i>D: 440 - 3300 mm</i> | Rotational
symmetry |

Table 3-2: Standard details for bearing components to be investigated

4 Modification of the fracture mechanics safety assessment

4.1 General

- (1) The fracture mechanics safety assessment as used in EN 1993-1-10 had to be adapted to the particularities of steel components for bearings in the following respect:
 - 1. Definition of structural parameters that are typical for steel bearings
 - 2. Definition of "nominal stresses" σ_{Ed} in compliance with the geometry and the loading of the steel components.

4.2 Definition of structural parameters typical for bearings

4.2.1 Model for fracture mechanics assessments

- (1) The structural steel components of bearings are either rotationally-symmetric (e.g. for spherical bearings with restraints for all axes) or prismatic (e.g. for cylindrical bearings with unidirectional movable sliding).
- (2) For simplifying the calculations for both the rotationally-symmetric and prismatic type of bearings a strip is selected, that in the case of rotationally-symmetric design represents a sector and in the case of prismatic design represents a parallel section transverse to the generator.

In compliance with this simplified model the assumption for the size of the initial crack is that of a continuous notch along the full perimeter of the component for rotationally-symmetric components and as linearly distributed along the length of the generator for axisymmetric components. Such a crack distribution can be interpreted as resulting from an accidental defect imposed during machining or welding.

4.2.2 Shape and magnitude of the design crack

(1) In the strips (either sectors or sections) used as fracture mechanics models the crack depth is constant along the width of the strips and also straight-lined.

It is located at the spot of high stress-concentration, where - in case of fatigue - fatigue cracks could be expected. The crack depth corresponds to the initial crack size in EN 1993-1-10, see Figure 2-4. As bearings considered in this report are not subject to fatigue, the design value of the initial crack depth a_d corresponds to the value of the crack a_0

$$a_{d} = a_{0} = \frac{1}{2} \cdot In \left(1 + \frac{t}{t_{0}} \right)$$
 for $t < 15 \text{ mm}$ (4-1)

$$a_{d} = a_{0} = \frac{1}{2} \cdot \ln\left(\frac{t}{t_{0}}\right) \qquad \text{for} \quad t \ge 15 \text{ mm}$$
(4-2)

where $t_0 = 1$ mm.

(2) For the detectability of such cracks during production control see Figure 2-7.

4.2.3 Assumption for residual stresses

(1) EN 1993-1-10 provides two types of residual stresses:

- 1. Residual stresses in the local region around the welds at the hot spot from weld shrinkage which enhance the stresses in the welds and are reduced where cracks occur (primary residual stresses).
- 2. Far distance effect of weld shrinkage due to restraints resulting from the boundary conditions of the structural component (secondary residual stresses). These residual stresses are superimposed to the stresses from external loads and are not affected by local cracking at the hot spot.
- (2) For the reference types A and B of bearings (see Figure 3-3) the occurrence of significant secondary stresses is improbable. For reference type B (welded alternative to type A) there may be large weld thicknesses (e.g. $a_w = 42$ mm) which will cause large primary residual stresses.
- (3) In EN 1993-1-10 it is assumed that the primary residual stresses are covered by the calibration of the fracture mechanics assessment procedure to the results of fracture mechanics tests with typical large scale welded test specimens that include those primary stresses. For secondary residual stresses an assumption of $\sigma_s = 100$ MPa has been made.
- (4) For the steel components of bearings it is assumed that primary residual stresses that may be larger than those assumed in EN 1993-1-10 and other unidentified effects from restraints both for type A and type B bearings will be covered by the use of a secondary residual stress of $\sigma_s = 100$ MPa.

4.2.4 Critical crack length b_{eff}

(1) The term ΔT_{σ} (see 2.2 (4)) contains a function

$$f(b_{eff}) = \left(\frac{25}{b_{eff}}\right)^{1/4}$$
(4-3)

which takes into account the effect of the length of cracks on the probability of temperature shift and which has been derived from the "weakest-link-model". The term b_{eff} refers to the length of the critical crack front. [6] contains information what values b_{eff} should be used depending of the type of crack. For this case of strip-models (sectorial and sectional) with continuous crack fronts the information in [6] are not usable.

(2) Figure 4-1 shows the influence of the length of the crack front b_{eff} on the function f (b_{eff})

Figure 4-1: Influence of the length of crack front on the temperature term ΔT_{σ}

- (3) It is evident from Figure 4-1 that a progressing effective length of crack front reduces the function $f(b_{eff})$. In the limit state equation for brittle fracture a small value of b_{eff} is advantageous, as the temperature T_{Ed} on the action side, which includes ΔT_{σ} , is increased, see Figure 4-1.
- (4) In order to take account of the scale effect by $f(b_{eff})$ for bearings the term

$$f(b_{eff}) = \left(\frac{25}{b_{eff}}\right)^{1/4}$$
(4-4)

is substituted by

$$f(b_{eff}) = \left(\frac{25}{t}\right)^{1/4}$$
(4-5)

where t is the steel product (e.g. plate-) thickness at the hot spot. This assumption corresponds to the procedure to consider the reduction of fatigue resistance for thick plates in EN 1993-1-9.

(5) As a consequence of

$$f(b_{eff}) = \left(\frac{25}{t}\right)^{1/4}$$

the temperature T_{Ed} ($\geq T_{Rd}$) is the more reduced the thicker the plate thickness is.

4.2.5 Determination of the stress limit σ_{gy}

(1) The stress limit σ_{gy} is the stress to the gross section that causes yielding of the net section. This value is needed to determine the correction function k_{R6} from the CEGB-R6-diagram. For the standard case of a straight surface crack, see Figure 4-2, σ_{gy} may be determined according to [6] from

Figure 4-2: Definition of net section yielding

4.2.6 Inhomogenity of toughness in through-thickness direction

- (1) Steel components of bearings may be produced from thicker plates by machining. The thickness of the plates may be in the order of magnitude of the thickness of the machined steel component, so that the steel properties of the plate apply. The thickness of the plate may however be greater, so that the position of the steel component in through thickness direction controls whether the properties of the thick plate according to the certificate (position of test sample close to the surface) apply or not.
- (2) In case the position of the steel component is outside the position of the test sample for the certificate for the thick plate, particular material tests from the inner part from which the steel component is produced should be considered.
- (3) In the fracture mechanics assessment procedure to avoid brittle fracture a "normal" reduction of material toughness in through-thickness direction is taken into account by the term

$$\Delta T_{27J} = 12.9 \cdot \tanh(2.1 \cdot \ln(t) - 7.5) + 12.8$$
(4-7)

This case applies where the thickness of plate to be machined is in the order of the magnitude of the thickness of the steel component.

By the term ΔT_{27J} the temperature T_{Rd} on the resistance side is increased with unfavourable effects.

- (4) For the assessment of steel components of bearings the term ΔT_{27J} is generally used to model a certain "normal inhomogeneity", even if the hypothetical crack would not enter into the core part of the material (inner third of material thickness).
- (5) A condition for "normal inhomogeneity" for larger thickness of material is, that the steel-properties of the inner parts of thick plates do not "significantly" deviate from the properties at the spot where the sample is taken. Such significant deviations may e.g. be caused by insufficient rolling technology in the steel mill.

(6) As long as EN 10025 does not provide options for specifications of the inner part of thick products, additional tests should be agreed for the material delivery.

4.2.7 Strain rate effects, cold forming

(1) Temperature shifts from high strain-rates or from high degrees of cold-forming are not relevant for bearings and therefore are ignored.

4.3 Definition of the nominal values σ_{Ed} from the geometry and loading of steel components of bearings

4.3.1 General

(1) In the fracture mechanics assessment of structural steel components according to EN 1993-1-10 there is the underlying thought, that according to Figure 4-3 a fracture mechanics test specimen could be cut out of the structural steel component which contains all relevant geometrical and metallurgical parameters as shape, crack configuration and local residual stresses from welding and is loaded at the edges by uniformly distributed nominal stresses σ_{tot} from external loads and from residual stresses from long distanced restraints.

Figure 4-3: Fracture mechanics test specimen cut-out from the structural component

- (2) This fracture mechanics test specimen is taken as the fracture mechanics model for which the assessment can be carried out experimentally or numerically.
- (3) The stress σ_{Ed} from external loads will be determined using the bending theory for structural components and results from

$$\sigma_{Ed} = \frac{N_{Ed}}{A} + \frac{M_{Ed}}{W}$$
(4-8)

Where the stresses are not uniform in through thickness direction the maximum stress σ_{Ed} at the surface is taken as uniform stress on the safe side.

- (4) For bearings the geometry of steel components is more compact than that of normal steel structures; therefore the components have already the size and characteristics of fracture mechanics models; they can be reduced in size only by taking advantage of symmetrical effects.
- (5) Table 4-1 gives a survey on the fracture mechanics models for the component numbers in Table 3-2 as well as on the load assumptions and boundary conditions for deformations, on which the calculations have been based. These load assumptions and

boundary conditions in Table 4-1 are not realistic in any case, they have however been selected as reference situations suitable for a standardized procedure.

- (6) The standardized procedure cannot presume for all cases that the stresses σ_{Ed} can be determined according to the bending theory, see 4.3.1(3); to cover all cases the standard procedure is based more generally on Finite Element calculations in the first instance, on which a simplification with using the bending theory in the second instance is based.
- (7) Therefore a relationship must be established between the nominal stress σ_{Ed} used for the choice of material to avoid brittle fracture and the results of Finite Element calculations.
- (8) This relationship can be determined as follows:
 - 1. For the models, loading conditions and crack configurations in Table 4-1 the stress intensity-factors K_{appl,d} are calculated along the crack path for unit loading and varying geometrical parameters.
 - 2. For the same situations, crack configurations, unit loading and geometries the distributions of main stresses σ_1 are determined, also along the crack path, and from the distribution of σ_1 the "hot spot-stress" σ_{HS} at the point of crack initiation is derived using the method of Dong.
 - 3. By relating the distribution and the magnitude of the stress intensity factor $K_{appl,d}$ to the hot-spot-stresses σ_{HS} the distribution of the "normalized" stress-intensity factors \overline{K} for the hot-spot stress $\sigma_{HS} = 1 \text{ N/mm}^2$ is obtained.
 - 4. It can be assumed that this distribution of normalized stress intensity factor \overline{K} is not sensitive to variations of the loading and the boundary condition of the fracture mechanics model. It is therefore applicable to hot-spot-stresses σ_{HS} , which have been determined more realistically with the proper geometry, loading and boundary conditions. Hence the realistic fracture mechanics action effect is

$$K_{appl,d} = \overline{K} \cdot \sigma_{HS}$$
 (4-9)

where

- $\overline{\mathrm{K}}$ is the "normalized" distribution of stress-intensity factors for the geometry and loading according to Table 4-1
- $\sigma_{\text{HS}} \qquad \text{is the hot-spot stress according to Dong determined for realistic} \\ \text{geometrical and loading conditions}$
- 5. By this procedure the hot-spot stress σ_{HS} according to Dong determined for realistic geometrical conditions and loading receives the status of the "nominal stress" σ_{Ed} according to EN 1993-1-10, so that $\sigma_{Ed} = \sigma_{HS}$.
- (9) With this procedure the producer of bearings has the possibility to carry out Finite Element calculations of the steel components of bearings for realistic conditions and to make the choice of material using the normalised value \overline{K} and the reference stress σ_{Ed} .
- (10) As it can be shown that steel components of bearings with usual dimensions and made of steel grade S355J2 are not much limited in size by fracture mechanics assessments to avoid brittle fracture, also a simplified procedure is presented at the end of the report that has been derived from the procedure with hot-spot stresses σ_{HS} . This simplified procedure helps to decide on the basis of the results of simplified ultimate limit state

checks using the bending theory whether the usual dimensions are sufficient. This simplified procedure allows to avoid more complex Finite Element calculations.

Table 4-1:Fracture mechanics models with 2 dimension with assumptions for loading and
boundary conditions

4.3.2 Determination of the reference stress $\sigma_{Ed} = \sigma_{HS}$ according to Dong

- (1) For determining the reference stress σ_{Ed} (nominal stress) = σ_{HS} the Hot-Spot-stress method with modifications according to Dong [13], [14] is used.
- (2) The standard Hot-Spot-stress method according to IIW-document [10] yields a certain "structural stress" at the Hot-Spot, which can be determined either experimentally or numerically via stress-values at defined "reference points" in the actual elastic stress distribution by extrapolation from these stress values to the "Hot-Spot", see Figure 4-4.

Figure 4-4: Definition of the "structural stress" according to IIW-document [10]

(3) The IIW-document gives recommendations for two types of structural stresses (type "a" with extrapolation on the flat surface of the plate element and type "b" with extrapolation at the cut side (at the edge of the plate element), see Figure 4-5.

Figure 4-5: Types of structural stress (type "a" and type "b") according to IIW-document [10]

(4) The conditions for the selection of reference points and for the extrapolation function may be taken from Table 4-2.

Table 4-2: Determination of the Hot-Spot-stress σ_{HS} (structural stress) according to IIW document [10]

- (5) The modified "structural stress" method according to Dong yields the "structural stress" σ_{HS} by linearization of the actual elastic stress distribution along the linear crack-path.
- (6) There are three assumptions for the linearization that may be used for steel components of bearings, see Figure 4-6.

case a)

case b)

case c)

Inner linearization for double-sided fillet welds

Figure 4-6: Definition of the "structural stress" according to Dong

- (7) The advantages of this method in relation to the standard method for determining the Hot-Spot-stresses are the following:
 - 1. The structural stress σ_{HS} determined in this way is from a single, linearization path and clear and unmistakable
 - 2. It is taken into account that the structural stress σ_{HS} is not only controlled by small cracks at the Hot-Spot, but also by larger cracks that have progressed into the thickness of the product. Therefore σ_{HS} represents a certain equivalent for the "total stress" perpendicular to the crack. This "total stress" is approximated by the linearization.
 - 3. The method also has been calibrated to the results of fatigue tests with various geometries of detail.
 - 4. The determination of the structural stress from FE-calculations is relatively insensitive on the Finite-element-net- chosen. The conditions to be applied for fine nets given in Table 4-2 are taken into account.
 - 5. The method is specified for use for pressure vessels and pipelines in the ASME-standard [12].
- (8) For the different cases of linearization in Figure 4-6 the following applies:
 - case a): monotonous reduction of the actual elastic stress distribution (dotted line) across the section; the "inner" linearization comprises the full cross-section. This results in general in the stresses as determined from the bending theory.
 - case b): monotonous reduction of the actual elastic stress distribution (dotted line) in thick or wide cross-section or plates; the "inner" linearization is then recommended to cover only a part of the thick cross-section with a depth $t_1 < t$. It applies e.g. for cracks starting from a notch at the surface. For bearings the depth t_1 was determined at that point, where the actual elastic stress is reduced to 10 % of its maximum value.
 - case c): non-monotonous reduction of the actual elastic stress distribution across the depth of the cross-section, e.g. for thick plates with welded attachments at either sides.

This leads to a bilinear inner linearization.

For welded connections on both sides of the plate and for symmetrical stress distribution the linearization is recommended to be applied over half the plate thickness $(t_1 = t/2)$. This gives a supplementary definition of structural stress used by Dong which is applicable for monotonous reduction of stress only.

4.3.3 Example for the determination of structural stress according to Dong

(1) As an example for the determination of the structural stress according to Dong the detail 2A from Figure 4-1 is chosen, for which the dimensions according to Figure 4-7 are applied.

Figure 4-7: Example of detail 2A from Figure 4-1 for the calculation of structural stress according to Dong

- (2) The calculation was performed with the software ABAQUS with 8-nodal plate-elements with an average size of 1 x 1 mm.
- (3) In the first step the standard Hot-Spot methods according to the IIW-document were used to determine the main stress-distributions approximately perpendicular do the potential crack path and to extrapolate with a non-linear extrapolation rule in horizontal and in vertical direction, see Figure 4-8. The results are $\sigma_{HS} = 2,38$ N/mm² for the horizontal path and $\sigma_{HS} = 3,65$ N/mm² for the vertical path.
- (4) An estimation of magnitude of surface stress by the bending theory for the selected crack path would produce $\sigma_{HS} = 2.4 \text{ N/mm}^2$.

Figure 4-8: Determination of Hot-Spot-stresses with the conventional Hot-Spot-stress method with extrapolation at the surfaces

(5) The method of Dong requires an "inner" linearization of the actual stress along the hypothetical crack path (45°), see Figure 4-9. The "inner" linearization is performed automatically be the FE-software ABAQUS. The distribution of main stresses along the hypothetical crack path attains a maximum σ_{max} for $s \rightarrow 0$ at the "geometrical singularity" and is reduced monotonously for s > 0.

- (6) It is evident, that the magnitudes of the Hot-Spot-stresses are dependent on the length s used for the linearization. This length s is limited by the threshold value σ_i, under which stresses are ignored.
- (7) In Figure 4-10 the Hot-Spot-stresses are plotted versus the linearization length and the related threshold stress σ_i :

- Figure 4-10: Determination of the Hot-Spot-stress by the "inner" linearization according to Dong (a) and comparison with conventional Hot-Spot-stresses obtained by surface extrapolation (b) according to Figure 4-8
- (8) Figure 4-10 and Table 4-3 also show a comparison of results obtained with the conventional surface extrapolation method.

Table 4-3:	Comparison of Hot-Spot-stresses for the detail 2A
------------	---

				Hot-Spot-me	ethod	
	bending theory	extrapo	lation	in	iner linearizatio	n
		horizontal	vertical	σ _i > 0,0 MPa	σ _i > 0,5 MPa	σ _i > 1,0 MPa
σ _{нs} [MPa]	2,4	2,38	3,65	1,92	3,33	4,05

- (9) The comparison of results shows that the surface extrapolation gives only for the vertical extrapolation path representative values for fracture mechanics assessments. The "inner" linearization according to Dong gives only representative results for the threshold value $\sigma_i > 1,0 \text{ N/mm}^2$.
- (10) From various such comparisons the conclusion has been drawn that for the method of Dong the threshold value should be fixed with the relative value

 σ_{I} = 0.10 σ_{max} , see Figure 4-11.

(11) The results of "inner" linearization with this threshold value $\sigma_1 = 0.10 \sigma_{max}$ and of the extrapolation with the vertical surface extrapolation are given in Figure 4-11 as a function of the product thickness t.

Figure 4-11:Hot-Spot-stresses from "inner" linearization according to Dong for the threshold
value $\sigma l \ge 0.10 \sigma_{max}$ (10 % criterion) and comparison with the results of surface
extrapolation

- (12) The dependency of the Hot-Spot stresses from the product thickness is affine for all methods.
- (13) In the following report therefore the method of inner linearization according to Dong is applied.
- (14) In this application the following steps were carried out:
 - 1. Determination of the potential crack path to fix the linearization-path
 - 2. Determination of main stress along the linearization path and derivation of the tensile stress-component perpendicular to the crack path
 - 3. Determination of the length of linearization from the distribution of the maximum tensile stresses (10 % criterion)
 - 4. Performance of the linearization
 - 5. Derivation of the Hot-Spot-stress σ_{HS} .

Note: When preparing the meshing for Finite-Element-calculations it is necessary to provide a suitable radius at the point of "singularity". Unless other data are available, a radius of 1 mm should be applied.

5 Numerical investigations and results

5.1 General

- (1) For the models given in Table 3-2 and Table 4-1 the numerical investigations were performed with the FE-Software ABAQUS, Version 6.8, to obtain
 - the Hot-spot-stresses according to section 4.3 of this report
 - the stress intensity factor K,

as no catalogues of solutions were available for these details.

- (2) The calculations were carried out with a linear elastic material law.
- (3) The calculations gave the distributions the stress intensity factors K at the crack front.
- (4) Out-puts of the calculations were the K-values for the crack-opening modes K₁ and K₂, see Figure 5-1.

Figure 5-1: Crack opening modes

- (5) The assessment method assumes that the main stresses are actions for crack opening mode 1.
- (6) In order to cover the fact that the main stresses may possibly not be perpendicular to the crack-path, an effective K_{eff} is determined

$$K_{eff} = \sqrt{K_1^2 + K_1 K_2 + K_2^2}$$
(5-1)

(7) The fracture mechanics assessment is carried out with the maximum stress-intensity factor

$$K = \max(K_1, K_{eff})$$
(5-2)

(8) For simplicity reasons the investigations are performed with a unit line load resulting from $\sigma = 1$ N/mm for a section with a length of 10 mm (load introduction). Due to linear relationship a different scaling of stresses, strains or stress intensity factors is easily possible.

- (9) As a rule two calculations are carried out, one with the maximum, one with the minimum dimensions, that shall clarify, what gives the maximum influence on the risk of brittle fracture. In this report therefore fracture mechanics assessments were performed for the upper bounds and the lower bounds of the geometry of the bearings.
- (10) Calculation models were produced using symmetries to reduce the expenditure for modelling and calculation.
- (11) The modelling was made with two dimensional plate elements (8 nodal elements). In particular for the modelling of the crack tip a very fine meshing was necessary.
- (12) In addition the determination of the stress intensity factor at the crack tip requires a particular meshing of this region with special-collapsed crack tip elements, that take account of the stress singularity at that spot, see Figure 5-2 for the example of the geometry of the detail 1 according to Table 4-1.

Figure 5-2: Spider web mesh configuration at the crack tip with collapsed finite elements for detail 1 in Table 4-1

5.2 Component No 1 – Rotationally-symmetric top component, type A (sliding plate and lateral guiderail)

5.2.1 Geometry, load assumptions and boundary conditions

(1) The geometry of the top component is given in Figure 5-3.

Figure 5-3: Detail No 1 – Top component of type A (sliding plate and guiderail)

(2) The numerical values of dimensions may be taken from Table 5-1.

Table 5-1: Dimensions for detail 1

t [mm]	t ₁ [mm]	t ₂ [mm]	D [mm]	d [mm]	b [mm]
55 – 315	20 – 215	25 – 100	500 – 1800	355 – 1385	50 - 500

- (3) The loading should be independent of individual situations with realistic loading conditions. Therefore standard loading cases have been chosen that lead to representative fracture mechanics loading, see <u>variants 1-1 and 1-2</u> in Figure 5-4.
- (4) Both variants for loading lead to tension stresses in the re-entrant corner at the connection between the sliding plate and the guiderail.

Figure 5-4: Variants for loading for detail 1: Variant 1 with horizontal loading (left), variant 2 with vertical loading (right)

(5) The calculations were performed for two geometrical configurations at the lower and upper bounds of dimensions as recommended by the producers of bearings, see Table 5-2. Besides the plate-thickness t_1 also the width b of the guide-rail has proved to be relevant for the variation of the stress intensity factors. The diameter D of the sliding plate was kept maximum, to produce the maximum bending moment in particular for loading variant 2 at the re-entrant corner.

Upper	bounds	Lower	bounds
t ₁ [mm]	20 - 215	t ₁ [mm]	20 - 215
t ₂ [mm]	100	t ₂ [mm]	100
D [mm]	1800	D [mm]	1800
d [mm]	970	d [mm]	1700
b [mm]	415	b [mm]	50

 Table 5-2:
 Upper and lower bounds of the geometrical dimension for detail 1

(6) The crack orientation for both loading variants was 45°, so that the maximum stressintensity factor was achieved. Vertical or horizontal crack-configurations with equal crack depths have a small influence on the stress intensity factor and prove to be less critical than the crack configurations with 45°.

- (7) The value of the initial crack size a_0 is determined in dependence of the plate thickness t and rises with increasing plate thickness.
- (8) Figure 5-5 gives a section of the FE-model as well as the deformations with crackopening.

Figure 5-5: Section of the FE-model (left) and part with crack opening (right)

5.2.2 Hot-Spot-stresses

(1) For the <u>loading variant 1-1</u> Figure 5-6 (left) shows the Hot-Spot-stresses for the upper bounds of the geometrical dimensions according to Table 5-2 and Figure 5-6 (right) gives the values for the lower bounds.

Figure 5-6: Hot-Spot-stresses obtained with "inner" linearization according to Dong for geometric upper bounds (left) and lower bounds (right) for loading variant 1-1

(2) The influence of the product thickness t_1 is small; for the geometric lower bound there is a maximum at $t_1 = 95$ mm.

(3) For the <u>loading variant 1-2</u> Figure 5-7 gives the Hot-Spot-stresses in dependence of the product thickness t_1 for the geometric upper bounds (left) and lower bounds (right).

Figure 5-7: Hot-Spot-stresses obtained with "inner" linearization according to Dong for geometric upper bounds (left) and lower bounds (right) for loading variant 1-2

(4) The dependency on t₁ is significant; the dependency on the geometric upper bound and lower bound is smaller (slightly higher values for lower bounds)

5.2.3 Stress intensity factors

- (1) For the <u>loading variant 1-1</u> Figure 5-8 (left) shows the dependency of the stress intensity factors on the plate thickness t_1 in the range of 25 mm to 215 mm for the upper bounds of the geometrical dimensions. The function of the K₁ values versus t_1 is rather constant with some slight decrease with increasing t_1 . The effect of modus 2 is negligible.
- (2) After normalization the K-values by relating them to the unit Hot-Spot-stress $\sigma_{HS} = 1 \text{ N/mm}^2$ the normalized values \overline{K} are almost constant for increasing plate-thickness t₁, see Figure 5-8.

Figure 5-8: K-values (left) and normalized \overline{K} -values (right) related to $\sigma_{HS} = 1 \text{ N/mm}^2$ for the geometric upper bounds for loading variant 1-1

Figure 5-9: K-values (left) and normalized \overline{K} -values (right) related to $\sigma_{HS} = 1 \text{ N/mm}^2$ for the geometric lower bounds for loading variant 1-1

(4) Whereas in Figure 5-9 (left) the K-values decrease for t < 100 mm, the normalized \overline{K} -values related to σ_{HS} = 1 N/mm² (Figure 5-9, right) are linear and can be approximated by

$$\overline{K} = 2.3021e^{0.0007t_1}$$
(5-3)

(5) For <u>loading variant 1-2</u> Figure 5-10 gives the dependency of the K-values on the product thickness t_1 for the geometrical upper bounds of the dimensions.

Figure 5-10: K-values (left) and normalized \overline{K} -values (right) related to $\sigma_{HS} = 1 \text{ N/mm}^2$ for the geometric upper bounds of dimensions for loading variant 1-2

(6) After normalising the K-values by relating them to $\sigma_{HS} = 1 \text{ N/mm}^2$ the normalized K-values can be approximated by the polynomial

$$\overline{K} = 3,0779 \cdot 10^{-7} t_1^3 - 1,2514 \cdot 10^{-4} t_1^2 + 1,7547 \cdot 10^{-2} t_1 + 2,1188$$
(5-4)

(7) In Figure 5-11 similar values \overline{K} are shown for the lower bounds of the geometrical dimensions.

Figure 5-11: K-values (left) and normalized \overline{K} -values (right) related to $\sigma_{HS} = 1 \text{ N/mm}^2$ for the geometric lower bounds of dimensions for loading variant 1-2

(8) After normalizing the K-values by relating them to $\sigma_{HS} = 1 \text{ N/mm}^2$ the normalized \overline{K} -values can be approximated by the polynomial

$$\overline{K} = 1,9297 \cdot 10^{-7} t_1^3 - 7,5274 \cdot 10^{-5} t_1^2 + 1,0121 \cdot 10^{-2} t_1 + 2,1674$$
(5-5)

5.2.4 Assessments to avoid brittle fracture

- (1) The fracture mechanics assessment was performed for steel S355J2 for
 - varying product thicknesses t₁,
 - varying utilisation rates $\frac{\sigma_{Ed}}{f_y} = \frac{\sigma_{HS}}{f_y}$ and
 - temperatures T_{Ed} of the components

- (2) For the loading variant 1-1 Table 5-5 gives the numerical values for the assessments $T_{Ed} = T_{Rd}$ for $\sigma_{Ed}/f_y = 0.75$ and $T_{Ed} = -50$ °C, which all lead to a maximum thickness greater than the limit 250 mm assumed for the production.
- (3) For the <u>loading variant 1-2</u> similar calculations, listed in Table 5-6 give small restrictions of the product thickness for $\sigma_{Ed}/f_{y} = 0.75$ and $T_{Ed} = -50^{\circ}C$.
- (4) From the calculations in Table 5-5 and Table 5-6 the limits of product thickness for loading variant 1-1 are given in Table 5-3 and that for loading variant 1-2 are given in Table 5-4.
- (5) The relevant values for standardising the assessment procedure may be taken from Table 5-4.

Table 5-3:Limits of plate thickness t1 [mm] for the top component of bearing (loading variant 1-1)

Steel grade acc. to EN 10025	$\sigma_{\sf Ed}$	0°C	-10°C	-20°C	-30°C	-40°C	-50°C
\$355J2	$0,25 \cdot f_y$	250 ^{*)}					
S355J2	0,50 · f _y	250 ^{*)}					
S355J2	0,75 · f _y	250 ^{*)}					

*) Assumption of a technical manufacturing limit (in theory element thicknesses with $t \ge 250 \text{ mm would be acceptable}$)

Table 5-4:	Limits of plate thickness t ₁ [mm] for the top component of bearing	(loading
	variant 1-2)	

Steel grade acc. to EN 10025	$\sigma_{\sf Ed}$	0°C	-10°C	-20°C	-30°C	-40°C	-50°C
\$355J2	0,25 · f _y	250 ^{*)}					
\$355J2	0,50 · f _y	250 ^{*)}					
\$355J2	0,75 · f _y	250 ^{*)}	235				

*) Assumption of a technical manufacturing limit (in theory element thicknesses with $t \ge 250 \text{ mm would be acceptable}$)

_	° Ā	q _{Ed}	dfy.	с db	Js	a ₀	د	, ₽	К _{1,S}	$K_{1,ges}$	K _{1,ges} 1	h,nom	f _y (t)	g _{gy}	< ت	đ	٩	k _{R6} K _{appl.}	d K _{app}	å Pi	ŧ	4	ч Ч	/ mou'/	T₂ T₂	7J AT2.	ZJ ATR	н Н	۲, ۲	ut, ∆T	DCF TE	T _{Rd}		
- H	im² N/mm²	3/2 [-1	VN [-	nm² Nn	nm ² i	u mm	n N	Vmm ^{3/2} N	Vmm ^{3/2} N	1/mm ^{3/2} M	IPam ^{1/2} N	Vmm ² N	/mm ² N	l/mm²	•	•		- N/mm	^{3/2} MPan	n ^{1/2} m	E	•	ç	٦	۰ د د	°. C	°	ပ	ç	° °	с С	ပိ	Ed - Rd	
100	.0 3,17	0,7	75 2t	36,3 1(00	1,61	25	845	317	1163	36,8	355	349	326 0,	82 0,31	0,04	0,04 0	,87 1407	7 44,	2 2	5 14	,49 8	1,9	27 -	20 -2	0 5	7	-45	Ŷ	0	39	-33	no risk	
100	.0 3,21	0,7	75 2t	36,3 10	00	1,78	35	855	321	1176	37,2	355	346	329 0,	81 0,30	0,04	0,04 0	1,87 1421	44,	ю́ е	5 17	.13 7.	3,2	27 -	20 -2	0 12	7	-45	ŝ	0	30	-26	no risk	
-	.0 3,21	0,7	75 2t	36,3 1(00	1,90	45	856	321	1177	37,2	355	344	329 0,	81 0,30	0,04	0,04 0	1,87 1422	2 45,	с 4	5 18	,93 6	8,0	27 -	20 -2	0 19	7	-45	φ	0	25	-19	no risk	
	.0 3,17	0,7	75 26	36,3 1(00	2,00	55	845	317	1162	36,7	355	341	329 0,	81 0,30	0,04	0,04 0),87 1405	5 44,	4	5 19	,74 6:	5,8	27 -	20 -2	0 22	7	-45	ŝ	0	23	-16	no risk	
-	.0 3,08	0,7	75 2t	36,3 1(00	2,09	65	821	308	1129	35,7	355	339	328 0,	81 0,30	0,04	0,04 0	1365	5 43,	ö S	5 19	,41 6	6,7	27 -	20 -2	0 24	7	-45	Ŷ	0	24	-14	no risk	
	.0 3,04	0,7	75 2t	36,3 1(00	2,16	75	809	304	1113	35,2	355	336	327 0,	82 0,31	0,04	0,04 0	,87 1347	7 42,	5 7.	5 19	73 6	5,9	27 -	20 -2	0 25	7	-45	ŝ	0	23	-13	no risk	
-	.0 3,04	0,7	75 2t	36,3 1(00	2,22	85	809	304	1113	35,2	355	334	325 0,	82 0,31	0,04	0,04 0	1347 1347	7 42,4	ő	5 20	.68 6.	3,4	27 -	20 -2	0 25	7	-45	ŝ	0	20	-13	no risk	
- 1	.0 2,99	0,7	75 2t	36,3 1(00	2,28	95	796	299	1095	34,6	355	331	323 0,	82 0,31	0,04	0,04 0	,86 1327	7 42,4	ő	5 20	,66 6.	3,4	27 -	20 -2	0 25	7	-45	ŝ	0	20	-13	no risk	
- 1	.0 2,99	0,7	75 2t	36,3 1(00	2,33 1	105	796	299	1096	34,6	355	329	321 0,	83 0,31	0,04	0,04 0	1,86 1326	3 42,	0 10	5 21	,49 6	1,4	27 -	20 -2	0 25	7	-45	Ϋ́	0	18	-13	no risk	
- 10 M	.0 2,99	0,7	75 2t	36,3 1(00	2,37 1	115	796	299	1096	34,6	355	326	320 0,	83 0,31	0,04	0,04 0	1325 1325	9 42,	11	5 22	,26 5	9,6	27 -	20 -2	0 26	7	-45	φ	0	1	-12	no risk	
 Annull 	.0 2,99	0,7	75 2t	36,3 1(00	2,41 1	125	797	299	1096	34,7	355	324	317 0,	84 0,31	0,04	0,04 0	1331,86 1331	1 42,	12	5 23	02 5	7,8	27 -	20 -2	0 26	7	-45	Ϋ́	0	15	-12	no risk	
- - - - - - - -	0 2,99	0,7	75 2t	36,3 1(00	2,45 1	135	797	299	1096	34,7	355	321	315 0,	84 0,32	0,04	0,04 0),86 1332	2 42,	1 15	5 23	71 5	6,3	27 -	20 -2	0 26	7	-45	ς	0	13	-12	no risk	
-	.0 2,99	0,7	75 2t	36,3 1(00	2,49 1	145	797	299	1096	34,7	355	319	313 0,	85 0,32	0,04	0,03 0	1335	3 42,	1	5 24	,37 5-	4,9	27 -	20 -2	0 26	7	-45	Ϋ́	0	12	-12	no risk	-
-	0 2,99	0,7	75 2t	36,3 1(00	2,52 1	155	797	299	1096	34,7	355	316	311 0,	86 0,32	0,04	0,03 0	0,86 1334	1 42,	2 15	5 25	.01 5.	3,5	27 -	20 -2	0 26	7	-45	ŝ	0	1	-12	no risk	
	.0 2,99	0,7	75 2t	36,3 1(00	2,55 1	165	797	299	1096	34,7	355	314	309 0,	86 0,32	0,04	0,03 0	1336	3 42,	2 16	5 25	.64 5.	2,2	27 -	20 -2	0 26	7	-45	ŝ	0	6	-12	no risk	-
- - - - - - - -	0 2,99	0,7	75 2t	36,3 1(00	2,58 1	175	797	299	1097	34,7	355	311	307 0,	87 0,33	3 0,04	0,03 0	,85 1337	7 42,	3 17	5 26	24 5	1,0	27 -	20 -2	0 26	7	-45	ς	0	8	-12	no risk	
- -	.0 3,00	0,7	75 2t	36,3 1(00	2,61 1	185	798	300	1097	34,7	355	309	304 0,	87 0,33	3 0,04	0,03 0	,85 1335	9 42,	3 15	5 26	.85 4	9,8	27 -	20 -2	0 26	7	-45	ŝ	0	~	-12	no risk	
- - - - - - - -	.0 3,00	0,7	75 2t	36,3 1(00	2,64 1	195	798	300	1097	34,7	355	306	302 0,	88 0,33	3 0,04	0,03 0	1,85 1341	1 42,	4 15	5 27	.43 4	8,7	27 -	20 -2	0 26	7	-45	ς	0	9	-12	no risk	
	.0 3,00	0,7	75 2t	36,3 1(00	2,66 2	205	798	300	1098	34,7	355	304	300 0	89 0,33	3 0,04	0,03 0	,85 1345	3 42,	5 20	5 28	00	7,7	27 -	20 -2	0 26	7	-45	ŝ	0	5	-12	no risk	
- - - - - - - -	.0 3,00	0,7	75 2t	36,3 1(00	2,69 2	215	799	300	1098	34,7	355	301	297 0,	89 0,34	1 0,05	0,03 0),85 1344	1 42,	5 21	5 28	56 4	6,6	27 -	20 -2	0 26	7	-45	Ϋ́	0	4	-12	no risk	
	0 3,00	0,7	75 2t	36,3 1(00	2,71 2	225	799	300	1098	34,7	355	299	295 0,	90 0,34	1 0,05	0,03 0),84 1346	5 42,4	5 22	5 29	,07 4	5,7	27 -	20 -2	0 26	7	-45	φ	0	3	-12	no risk	
- - - - - - - -	.0 3,00	0,7	75 2t	36,3 1(00	2,73 2	235	799	300	1098	34,7	355	296	293 0,	91 0,34	1 0,05	0,03 0	1347	7 42,	5 23	5 29	57 4	4,8	27 -	20 -2	0 26	7	-45	ς	0	2	-12	no risk	
	0 3,00	0,7	75 2t	36,3 1(00	2,75 2	245	799	300	1098	34,7	355	294	290 0,	92 0,34	1 0,05	0,02 0),84 1346	3 42,4	5 24	5 30	06 4	4,0	27 -	20 -2	0 26	7	-45	φ	0	-	-12	no risk	
- 1	.0 3,00	0,7	75 2t	36,3 1(00	2,76 2	250	799	300	1098	34,7	355	293	289 0,	92 0,35	5 0,05	0,02 0	,84 1345	9 42,	7 25	0 30	30 4	3,6	27 -	20 -2	0 26	7	-45	ĥ	0	-	-12	no risk	

-
50
- ii
."
-
ğ
7
÷
Ś
2
0
11
<u>.</u> В
6
5
5
÷
2
ě
E.
SS
ġ
SS
-

ပ

Table 5-5:

Fracture mechanics assessments for loading variant 1-1 for component No. 1 (Rotationally-symmetric top component (Sliding plate and guiderail))

Rd			1.1																								Γ	Rd	T																					T	7
T _{Ed} ≥ T	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no riek	Acii Uni	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	aloin on	no risk	IN LISK	no risk	no risk	no risk	no risk			T _{Ed} ≥ T	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk		no risk	no risk	no risk	no rish	no risk	no risk	no risk	no risk	no risk	- ACT	LISK
r _{Rd} .	-33	19	-16	-14	-13	-13	13	2 4	; ;	14	21-	-12	-12	-12	-12	-12	-12	1 5		1	71-	-12	-12	-12	-12		Ļ	နှင့်	-33	-26	-19	-16	-14	-13	-13	-13	-13	-12	-12	-12	12	17	1	1 5	; ;	; ;	121	-12	-12		
F T _{Ed} °C	87	899	54	49	41	37	5	3 6	2 2	2 2	2	25	3	2	19	18	16	; ;	: (סמ	ø	ო	۲	φ	ŀ-		Ē	ະ ເ	4	73	56	44	39	3	27	25	2	19	2:	£ ;	2 3	5 9	"	0 4	• •	- 7	Ņ	-	-11	ļ	
ΔT _{DC} °C	0 0	0	0	0	0	0		• •		⊃ (0 0	0	0	0	0	0	0		0	-	Ð	0	0	0	0		AT	ိုင်	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	o 0	-	-			0	0	0		•
¢,C	0 0	0	0	0	0	0	0	0		> 0	o 0	0	0	0	0	0	0	0 0	0	-	D	0	0	0	0		۲	ီပိ	0	0	0	0	0	0	0	0	0	0	0	0	o 0	o 0	-				0	0	0		•
d AT, C °C	ע ע ע	<mark>א מ</mark>	2 2	ک	5 -5	ο γ		o u o u	рч оч	οι οι	րւ Դ	ہ ہ م	Ω Ω	2 2	2 2	5 -5	5 -5		י היק	оч оч	ې م	2 2	5 -5	ې د	ې ۲		ΔT	ိုပ္	ې 2	ې م	ې ۲	ک	ې ک	ې ۲	ې د	က ပ	က္ က	Ω Ω	ףי מים	ףי מו	ր ու	ρι οι	рч оч	рч оч	р ч о ч	<mark>o k</mark>	ο γ	5 -5	2 2		•
.Т _к С	ح -3 ح		7 -3	7 -3	7 -3	- 2	- 2	- 1	- r	~ r	~ 1	<mark>ר יי</mark>	י <mark>י</mark> רי	-9 2	7 -3	7 -3	7 -3	· ~	- 1	- r	?	7 -3	7 -3	7 -3	7 -3		L L	ξυ	7 -4	7 -4	7 -4	7 -4	7 -4	7 -4	7 -4	7 -4	4	 -	 4 -	 4 -	- r 4 -	- 1 4 .					- 4	7 -4	7 -4		
C 51 ⊅	5	10	2	54	25	5	5	, u	0 4	0, 2	0,0	9	9	90	56	56	56	99	2 2	0.6	0	56	26	56	56		< 	ι. ζυ	2	2	6	2	4	ß	ß	ស	ស្ត	9	20	e 9	e 9	8 9	8 8	8 9	9 g	e g	a g	50	90	2	2
°C ⊽	20	200	8	20	50	20					2 2	2	D N	20	20	20	20			28	20	20	20	20	50			ι ζυ	20	20	20	20	20	20	S	ຊ	្ត	2	22	28								20	00	2	
τ <mark>κ</mark> °C	-20	2 <mark>2</mark>	-20	- <mark>20</mark>	-20 -20	- <mark>-0</mark>		16		<mark>R R</mark>	- 2 8	R <mark>R 1</mark>	R N	-20 -20	-20	-20	-20	0		- 2 8	- 2		- <mark>20</mark>	- <mark>20</mark>	- <mark>20</mark>		TT	 ? ပ	-20	-20	-20	-20	-20	-20	-20	-20	- <mark>50</mark>	-20	- 07-								- <mark>-20</mark>	-20	00	2	204
nom,	27	27	27	27	27	27	70	1	17	17	7	12	72	27	27	27	27	10	5 6	5 5	71	27	27	27	27				27	27	27	27	27	27	27	1	1	27			2	2 5	5 5	5 5		1	27	27	70	ļ	
ٌ ۲	0,	2 0	00	4	9 0	6			0 0	2 0	5	20 1	ວ ວ	0	ო	7	2			2 4	-	2	2	6	9		×	- -	0	2			4	6	10	10			- -	200	7		0 1					0	0	J	
Å, S	120	66	86,	82,	73.	202	67		5 6	Å Å	201	22	22,	54	52,	50,	49.	43	ŕ	4 4	4	30,	32,	27.	25.		Υ	şΰ	120	116	66	86,	82,	73,	20,	67,	64	62	26.	2	60 L	4 7	, c	n e	2 7 7 7	4 4	4	36,	5	2	, 100
b _{eff} mm	25 25	45	55	65	75	85	35	80	2 4 2 4	0 L 1	67 L	135	145	155	165	175	185	195		202	CL7	225	235	245	250		Å		25	35	45	55	65	75	85	95	105	115	125	135	140 140	001 100	201	101	105	205	215	225	1000	2004	0.02
K _{appl,d} MPam ^{1/2}	34,8 26.0	37.6	39,0	39,2	40.5	40.7	40.8	2, 14		ν, r	4 0,1	41,7	41,9	42,0	42,2	42,4	42.5	44.1		44 5, 5	44,4	45,9	47,2	48,8	49,7		ĸ	MPam ^{1/2}	34,8	36,0	37,6	39,0	39,2	40,5	40,7	40,8	41,1	4 5, 1	4, 5 0, 1	41,7	41,9	47,0 0,0	4 7 7 7	4 7 7 1 1 1	44 74 1 0,74	- 4 - 6	4,4	45,9	C 71	1 F	1 0 0
K _{appl,d} N/mm ^{3/2}	11099	1188	1234	1239	1281	1286	1292	1000	1205	1305	1312	1318	1323	1329	1335	1340	1345	1395		1400	1403	1453	1494	1543	1571		K	N/mm ^{3/2}	1099	1140	1188	1234	1239	1281	1286	1292	1298	1305	1312	1318	1323	1329	0101	1040	1205	1400	1403	1453	1 404	101-	101
k _{r6} -	0,87	0.87	0,87	0,87	0.87	0.87	0.86	0000	0,00	0,80	0,86	0,86	0,86	0,86	0,85	0,85	0.85	0.85	50	0,00	0,85	0,84	0,84	0,84	0,84		k	°.	0,87	0,87	0,87	0,87	0,87	0,87	0,87	0,86	0,86	0,86	0,86	0,86	0,80	0,80	0,00	0,00	0,00	0.85	0,85	0,84	200	0,01	0,01
٩.	0,04	0.04	0,04	0,04	0,04	0.04	0.04	500	5 6	0,0	0,0	0,04	0,03	0,03	0,03	0,03	0.03	0.03	8	50'n	0,03	0,03	0,03	0,02	0,02		4	יב	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,0	0,04	0,04	0,03	0,03	0,0 0	0,0 0	0,0	0.03	0,03	0,03	000	0,05	0,03
ę.	0,04	0.04	0,04	0,04	0,04	0.04	0.04	500	0,0	0,04	0,04	0,04	0,0	0,04	0,04	0,04	0.04	0.04		0,04	cn'n .	0,05	0,05	0,05	0.05		ė	Σ'	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,0	0,0 4	0,0	0,0	0,0	5,6	0,0	5 6	5 6	5 6	58	0,05	0,05	500	ŝ	0,0
≯'	2 0,31	0.30	1 0,30	1 0,30	2 0.31	2 0.31	0.31	1 a 0 0	0,00	5 U,G	4 0,3	4 0,32	0,32	5 0,32	5 0,32	7 0,33	7 0.33	0.33		2,0,0	5,0 b	0,34	1 0,34	2 0,34	2 0,35		3	• •	2 0,31	1 0,30	0,30	1 0,30	1 0,30	2 0,31	2 0,31	2 0,31	3 0,31	3 0,31	1 0,31	1 0,32	0,32	0,32	20,0	0,00 v	2,00		0,34	0,34	000	- C,0	+0,0
ل ا -	0,82	0, 0	0,8	0,8,	0.82	0.8	0.8				20.00	0,8	0,8	0,86	0,86	0,87	0.87	38.0	5	50	0,0	0,90	0,9	0,92	0,92		_	י ז <u>פ</u>	0,82	0,81	0,81	0,81	0,81	0,82	0,82	0,82	0,8	0,8	0,84	0,84	500	200		10'0			0,80	0,90	0	5	0,91
σ _{gy} N/mr	326	329	329	328	327	325	323	5.5	2 8	320	212	315	313	311	309	307	304	302			R	295	293	290	289		e	N/mm	326	329	329	329	328	327	325	323	321	320	31/	315	513	115	202	100	30.4	300	297	295	000	282	282
f _y (t) V/mm²	349 246	344	341	339	336	334	331	220	275	320	324	321	319	316	314	311	309	306		304	301	299	296	294	293		f (t)	Vmm ²	349	346	344	341	339	336	334	331	329	326	324	125	319	310	0 4 7 7	- 000	306	304	301	299	000	220	230
/nom mm² 1	355 266	355	355	355	355	355	355			0 1		355	355	355	355	355	355	255		000	200	355	355	355	355			mm ²	355	355	355	355	355	355	355	355	355	222	602 102	ŝ	ŝ	ŝ	000			222	355	355	10	200	202
am ^{1/2} N/	28,7	1.1	32,3	32,4	33.5	33.6	33.7		5 C C C	2 c	4 X	6, 4 	4	74 2	34,7	34,8	34.8	19	- 0	7 0	50,3	37,5	38,5	39,8	10,5		1	am ^{1/2} N	8,7	8,6	31,1	32,3	32,4	3,5	33,6	33,7	0 0 0	0, 1	4 N 0	5 20 -	4 u	0 I	- 0	0 0	, t 2	- 6	1 6,0	37,5	10	, 0,0	0,00
. _{9es} h m ^{3/2} MF	60 9	2 22	21	25	59	62	99	8 F		2 2	5	85	88	92	96	66	02	1 64	4 ¥	5 ť	41	86	18	57 3	80		×	9es m ^{3/2} MF	60	ст ст	ŝ	21	25	59	62	99	5	92	5.0	£ 6	20 20 20 20 20 20 20 20 20 20 20 20 20 2	200	, . , .	200	3 6	1 1 1 1	47	86	10	_ o	0
,s K ₁ m ^{3/2} N/m	8 1	6	9 10	0 10	9 10	0	10		20	4 y	2 9 2 9	9	10	8	9 10	0 10	1	. 5			ς Γ	4	3 12	3 12	9 12	6	К	m ^{3/2} N/m	8	-6 -	6	9 10	0	9 10	0 10	10	10	4	6 10 10	910	01 0	2 C	0 0 0	2:		4 m	3 3 3	4 11	c.	2	2 9
, K ₁	24	26	27	28	28	56	00		2 0	22	22	5 20	22	26	. 26	8	30		5 6	5	ς.	33	33	34	34	50 °C	Ŕ	³²² N/m	24	25	26	27	28	28	29	29	29	5	5.0	67.0	67.	67 6	2 0	0,0	0 č	n m		32	5	3	000
K1,F	661 6 0 0	715	742	745	770	217	175	244	211	70/	1 20	786	791	194	197	196	801	Rac		200	230	862	886	914	930	T = -	K.,	um/N	661	686	715	742	745	770	772	775	179	782	786	88/	L6/		181	100	06.8	832	833	862	200	000	000
д, ₁	25	45	55	65	75	8	35	30	3 4	E		136	145	155	165	175	185	105			212	225	235	245	250	pur	÷	Ē	25	35	45	55	65	75	85	95	105	115	125	2	6 1 1 1					205	215	225	300	200	007
² mm	1,61	1.90	2,00	2,09	2,16	2.22	2.28	1 0	0, 0 0, 0	2,2	2 C	2,45	2,40	2,52	2,55	2,58	2.61	290	50	20,00	2,02	2,71	2,73	2,75	2,76	i-fy e	ć	2 mm	1,61	1,78	1,90	2,00	2,09	2,16	2,22	2,28	2,33	2,37	2,4	5 7 7 7 7 7 7	2,49	20,2	7,00	00,4	2,0	2,66	2,69	2,71	0 7 Z	5.0	0,10
σ _S N/mm	100	001	100	100	100	100	100	001	3 6	001	001	001	001	100	100	100	100	100		8	001	100	100	100	100),75	é	Nmm 2	100	10	100	100	10	100	100	9	9	8	90	8	8	8	3 5	3 5	3 5	3 8	6	100	5	3	8
σ⊳ /mm²	266,3 266,3	66.3	66,3	66,3	566.3	66.3	66.3	0,00	0,00	5,00	5,00,3	66,3	66,3	566,3	266,3	266,3	66.3	66.3		0000	5,003	266,3	566,3	66,3	66,3) = ^f	é	/mm ²	66.3	66,3	66,3	66,3	66,3	66,3	66,3	66,3	66,3	66,3	66,3	66,3	5,00,3	5,00	00,00	00,00	00,00	, oo	66.3	66,3	000	00'0	00'00
σ _{Ed} /f _y [-] N	0,75 2	0.75	0,75 2	0,75 2	0.75	0.75	0.75	1 1 1 0	0,75	0,/5	G//0	0,75	0,75	0,75	0,75	0,75	0.75	0.75		0,10	7 C/'N	0,75	0,75	0,75	0,75 2	or $\sigma_{\rm Er}$	د . //	z 	0,75 2	0,75 2	0,75 2	0,75 2	0,75 2	0,75 2	0,75 2	0,75 2	0,75 2	0,/5	c//0	c/ ()	G/ (0	c/ ()	0,10	0,75	0,75	0.75	0,75 2	0,75 2	24	7 C/ N	2 0, /0
K1 Umm ^{3/2}	2,481	2,685	2,788	2,797	2.891	2.900	2 912	2,014	2,324	2,936	2,950	2,961	2,971	2,982	2,992	3,001	3.009	3 117	0,117	3,125	3,130	3,238	3,326	3.433	3,494	ent fa	ĸ.	1,000 100	2.481	2.575	2,685	2,788	2,797	2,891	2,900	2,912	2,924	2,936	2,950	2,961	2,971	2,982	2,992	3,001	3,447	3 125	3,130	3,238	0000	3,320	0,320
ף זוח ² N	0,0	0.0	0	0	0	0	0	2 0	ç c	5 c	o c	0, 0	0	0	0	0	0		2 0	5 c	D,	0	0	0	0	mssa		, m ²	0	0	0	0	0	0	0	0	0	0	0,0	5,0	5,0	5,0	5,0				0	0		2	2
o M/M	÷,		-	-	-	-	· ~	•			-	- · ·	- ` ·	÷,	÷	-	-	~			-	-	2,1,	-	+	lsse	16	, EN	1.	-	,-	+	-,	-	,	÷.	÷,		- ·	- ·	- ·						-	-	-		

Table 5-6:

Fracture mechanics assessments for loading variant 1-2 for component No. 1 (Rotationally-symmetric top component (Sliding plate and guiderail))

5.3 Component No. 2A – Axisymmetric top component (sliding plate and guiderail)

5.3.1 Geometry, load and assumption and boundary condition

(1) Component No. 2A is the axis-symmetrical variant of the rotationally-symmetric component No. 1, see 5.2.1. The geometry, loading variants and boundary conditions for the strip are identical with those in section 5.2.1 and may be taken from Figure 5-3, Table 5-1, Figure 5-4 and Table 5-2.

5.3.2 Hot-Spot-stresses

(1) The results corresponding to Figure 5-6 are given in Figure 5-12.

Figure 5-12: Hot-Spot-stresses obtained with "inner" linearization according to Dong for geometrical upper bounds (left) and lower bounds (right) for loading variant 2A-1

(2) The results corresponding to Figure 5-7 and Figure 5-13.

Figure 5-13: Hot-Spot-stresses obtained with "inner" linearization according to Dong for geometrical upper bounds (left) and lower bounds (right) for loading variant 2A-2

(3) For comparison reasons in Figure 5-13 also the surface stresses determined with the bending theory are given using the resistance in the direction of the crack. The calculation leads for $t_1 > 50$ mm to a constant stress, because of the lower bound b = 50 mm. The comparison also confirms the practicality of the Hot-Spot-stress to consider the stiffness distributions on the distribution of reference stress.

5.3.3 Stress intensity factors

(1) Results corresponding to Figure 5-8 for geometrical upper bounds are shown in Figure 5-14 for the <u>loading variant 2A-1</u>.

Figure 5-14: K-values (left) and normalised \overline{K} -values (right) related to $\sigma_{HS} = 1 \text{ N/mm}^2$ for the geometric upper bounds for loading variant 2A-1

(2) The function of the normalised \overline{K} -values related to $\sigma_{HS} = 1 \text{ N/mm}^2$ can be approximated by a polynomial of 3^{rd} degree

$$\overline{K} = 3,933 \cdot 10^{-7} t_1^3 + 1,8441 \cdot 10^{-4} t_1^2 - 2,7747 \cdot 10^{-2} t_1 + 4,35$$
(5-6)

(3) The results corresponding to Figure 5-9 for the geometrical lower bound are given in Figure 5-15.

Figure 5-15: K-values (left) and normalised \overline{K} -values (right) related to σ_{HS} = 1 N/mm² for the geometric upper bounds for loading variant 2A-1

(4) The function of the normalised stress intensity factor \overline{K} in Figure 5-15 (right) can be approximated by a polynomial of 6th degree.

$$\overline{K} = -2,1617 \cdot 10^{-13} t_1^{\ 6} + 1,9489 \cdot 10^{-10} t_1^{\ 5} - 7,2084 \cdot 10^{-8} t_1^{\ 4} + 1,4030 \cdot 10^{-5} t_1^{\ 3} - 1,5232 \cdot 10^{-3} t_1^{\ 2} + 8,8669 \cdot 10^{-2} t_1 + 1,0412$$
(5-7)

where \overline{K} is an approximation of K₁.

(5) To confirm the insensitivity on other geometric parameters the influence of the width D of the sliding plate keeping the plate thickness t, constant is checked. The result in Figure 5-16 shows that the width D of the sliding plate has no significant influence on the K-values.

Figure 5-16: Influence of the width D of the sliding plate with other dimensions kept constant on the K-values for loading variant 2A-1

(6) For the <u>loading variant 2A-2</u> the results corresponding to Figure 5-10 are given in Figure 5-17.

Figure 5-17: K-values (left) and normalised \overline{K} -values (right) related to $\sigma_{HS} = 1 \text{ N/mm}^2$ for the geometric upper bounds of dimensions for loading variant 2A-2

(7) The approximation of the distribution of K_1 in Figure 5-17 (right) is possible with a polynomial of 3^{rd} degree:

$$\overline{K} = 3,1686 \cdot 10^{-7} \cdot t_1^{-3} - 1,3076 \cdot 10^{-4} \cdot t_1^{-2} + 1,8109 \cdot 10^{-2} \cdot t_1 + 2,1180$$
(5-8)

where \overline{K} denotes the approximation of K₁.

(8) For the lower bound of geometrical dimension the results corresponding to Figure 5-11 are given in Figure 5-18.

Figure 5-18: K-values (left) and normalised \overline{K} -values (right) related to $\sigma_{HS} = 1 \text{ N/mm}^2$ for the lower bounds of dimensions for loading variant 2A-2

(9) The function of \overline{K} in Figure 5-18 is approximated by a polynomial of 3^{rd} degree:

$$\overline{K} = 3,0192 \cdot 10^{-7} t_1^{3} - 0,1949 \cdot 10^{-4} \cdot t_1^{2} + 1,5920 \cdot 10^{-2} \cdot t_1 + 2,0333$$
(5-9)

where \overline{K} denotes the approximation of K_{eff} .

(10) In contrast to Figure 5-16 the width D of the sliding plate is of significant influence for the loading variant 2A-2 as demonstrated in Figure 5-19.

Figure 5-19: Influence of the width D of the sliding plate with other dimensions kept constant on the K-values for loading variant 2A-2

5.3.4 Assessments to avoid brittle fracture

(1) The assessments to avoid brittle fracture are carried out as in section 5.2 for the <u>loading</u> variant 2A-1 in Table 5-9 and for <u>loading variant 2A-2</u> in Table 5-10. The results of the calculations in Table 5-9 and Table 5-10 can be used to identify the maximum product thickness in Table 5-7 for loading variant 2A-1 in Table 5-8 for loading variant 2A-2.

Table 5-7:Limits of plate thickness t1 [mm] for the top component of bearing (loading variant 2A-1)

Steel grade acc. to EN 10025	σ_{Ed}	0°C	-10°C	-20°C	-30°C	-40°C	-50°C
\$355J2	0,25 · fy	250*)	250*)	250*)	250*)	250*)	250*)
\$355J2	0,50 · fy	250*)	250*)	250*)	250*)	250*)	250*)
\$355J2	0,75 · fy	250*)	250*)	250*)	250*)	250*)	250*)

*) Assumption of a technical manufacturing limit (in theory element thicknesses with $t \ge 250 \text{ mm}$ would be acceptable)

Table 5-8:Limits of plate thickness t1 [mm] for the top component of bearing (loading variant 2A-2)

Steel grade acc. to EN 10025	σ_{Ed}	0°C	-10°C	-20°C	-30°C	-40°C	-50°C
\$355J2	0,25 · f _y	250 ^{*)}					
\$355J2	0,50 · f _y	250 ^{*)}					
S355J2	0,75 · f _y	250 ^{*)}	240				

*) Assumption of a technical manufacturing limit (in theory element thicknesses with $t \ge 250 \text{ mm}$ would be acceptable)

Table 5-9:

Fracture mechanics assessments for loading variant 2A-1 for component No. 2A (Axisymmetric top component (sliding plate and guiderail))

	Ъ	к,	$\sigma_{Ed}h_y$	g	đ	a	.	K, P	K _{1,S}	K _{1,ges}	K _{1,ges}	f _{y,nom}	f _y (t)	a _{gy}	ء ت	r Pi	d	k _{R6} K	ppl,d K	b,lqqe	b _{eff}	AT _e I	(V,nom T	Kv J	7J AT2	7J ∆T	R T _{md}	ΔT,	ΔT ₆ Δ'	T _{DCF} T	Ed T _{Rd}	T > T
ž	nm²	N/mm ^{3/2}	Ξ	N/mm [;]	² N/mm	mm ² ו	mm	N/mm ³	² N/mm ^{3/2}	N/mm ^{3/2}	MPam ^{1/2}	N/mm ²	N/mm ²	√mm²	•	:	•	- Nr	1m ^{3/2} MP	am ^{1/2} I	mn	ပ့	۔ م	ې د	ç	ç	<mark>ပ</mark>	ပ္	ပ	ç	ပ္	Ed = IRd
-	0,	3,65	0,75	266,3	100	1,61	25	973	365	1339	42,3	355	349	326	0,82 0,5	31 0,04	4 0,04	0,87 1	319 5	1,2	25 (52,1	27 -	20 -2	0 5	7	-45	ςı	0	0 1	9 -33	no risk
2	0,	3,59	0,75	266,3	100	1,78	35	956	359	1314	41,6	355	346	329	0,81 0,5	30 0,04	4 0,04	0,87 1	589 5	0,2	35 5	58,1	27 -	20 20	0 12	~	-45	Ŷ	0	0	5 -26	no risk
e	0,	3,45	0,75	266,3	100	1,90	45	920	345	1265	40,0	355	344	329	0,81 0,5	30 0,04	4 0,04	0,87 1	529 4	8,4	45	58,2	27 -	20 20	0 15		-45	Ϋ́	0	0	5 -19	no risk
4	0,	3,33	0,75	266,3	100	2,00	55	888	333	1221	38,6	355	341	329	0,81 0,5	30 0,04	4 0,04	0,87 1	476 4	6,7	55 (59,1	27 -	20 20	0 22	~	-45	Ϋ́	0	0	6 -16	no risk
ŝ	0,	3,18	0,75	266,3	100	2,09	65	848	318	1166	36,9	355	339	328	0,81 0,5	30 0,04	4 0,04	0,87 1	410 4	4,6	65 (32,0	27 -	20 20	0 24	1	-45	Ϋ́	0	0	9 -14	no risk
9	0,	3,19	0,75	266,3	100	2,16	75	848	319	1167	36,9	355	336	327	0,82 0,5	31 0,04	4 0,04	0,87 1	112 4	4,6	75 5	59,2	27 -	20 20	0 25	2	-45	Ϋ́	0	0	6 -13	no risk
2	0,	3,21	0,75	266,3	100	2,22	85	855	321	1176	37,2	355	334	325	0,82 0,5	31 0,04	4 0,04	0,87 1	124 4	5,0	85	55,7	27 -	20 20	0 25	- 3	-45	Ϋ́	0	0	3 -13	no risk
80	0,	3,23	0,75	266,3	100	2,28	95	860	323	1183	37,4	355	331	323	0,82 0,5	31 0,04	4 0,04	0,86 1	133 4	5,3	95 (52,9	27 -	20 20	0 25	- 3	-45	Ϋ́	0	0	0 -13	no risk
6	0,	3,24	0,75	266,3	100	2,33	105	863	324	1187	37,5	355	329	321	0,83 0,5	31 0,04	4 0,04	0,86 1	139 4	5,5	105 8	50,5	27 -	20 20	0 25	- 3	-45	Ϋ́	0	0	3 -13	no risk
9	0,	3,25	0,75	266,3	100	2,37	115	865	325	1190	37,6	355	326	320	0,83 0,5	31 0,04	4 0,04	0,86 1	144	5,7	115 4	48,5	27 -	20 20	0 26	2	-45	Ϋ́	0	0	-12	no risk
1	0,	3,26	0,75	266,3	100	2,41	125	867	326	1193	37,7	355	324	317	0,84 0,5	31 0,04	4 0,04	0,86 1	149 4	5,8	125 4	46,6	27 -	20 20	0 26	2	-45	Ϋ́	0	•	1 -12	no risk
12	0,	3,26	0,75	266,3	100	2,45	135	867	326	1193	37,7	355	321	315	0,84 0,5	32 0,04	4 0,04	0,86 1	450 4	5,8	135 4	45,1	27 -	20 20	0 26	2	-45	Ϋ́	0	0	-12	no risk
13	0,	3,26	0,75	266,3	100	2,49	145	869	326	1195	37,8	355	319	313	0,85 0,5	32 0,04	4 0,03	0,86 1	454 4	6,0	145	43,5	27 -	20 20	0 26	2 2	-45	Ϋ́	0	0	-12	no risk
14	0,	3,28	0,75	266,3	100	2,52	155	872	328	1200	37,9	355	316	311	0,86 0,5	32 0,04	4 0,03	0,86 1	160 4	6,2	155 4	41,9	27 -	20 20	0 26	5 7	-45	Ϋ́	0	•	1 -12	no risk
15	0,	3,28	0,75	266,3	100	2,55	165	873	328	1201	38,0	355	314	309	0,86 0,5	32 0,04	4 0,03	0,85 1	163 4	6,3	165 4	40,6	27 -	20 20	0 26	5 7	-45	Ϋ́	0	•	2 -12	no risk
16	0,	3,28	0,75	266,3	100	2,58	175	874	328	1202	38,0	355	311	307	0,87 0,5	33 0,04	4 0,03	0,85 1	165 4	6,3	175 3	39,4	27 -	20 20	0 26	5 7	-45	Ϋ́	0	, 0	4 -12	no risk
17	0,	3,29	0,75	266,3	100	2,61	185	875	329	1204	38,1	355	309	304	0,87 0,5	33 0,04	4 0,03	0,85 1	169	6,5	185	38,1	27 -	20 20	0 26	5 7	-45	Ϋ́	0	•	5 -12	no risk
18	0,	3,28	0,75	266,3	100	2,64	195	874	328	1203	38,0	355	306	302	0,88 0,5	33 0,04	4 0,03	0,85 1	169 4	6,5	195 3	37,2	27 -	20 20	0 26	~ ~	-45	Ϋ́	0	•	5 -12	no risk
19	0,	3,29	0,75	266,3	100	2,66	205	877	329	1206	38,1	355	304	300	0,89 0,5	33 0,04	4 0,03	0,85 1	475 4	6,6	205	35,9	27 -	20 20	0 26	5	-45	Ϋ́	0	0	7 -12	no risk
50	0,	3,30	0,75	266,3	100	2,69	215	877	330	1207	38,2	355	301	297	0,89 0,5	34 0,05	5 0,03	0,85 1	\$77 4	6,7	215	34,9	27 -	20 20	0 26	5	-45	Ϋ́	0	0	3 -12	no risk
51	0,	3,30	0,75	266,3	100	2,71	225	879	330	1209	38,2	355	299	295	0,90 0,5	34 0,05	5 0,03	0,84 1	481 4	6,8	225	33,9	27 -	20 20	0 26	5	-45	Ϋ́	0	۰ ٥	9 -12	no risk
22	0,	3,30	0,75	266,3	100	2,73	235	879	330	1209	38,2	355	296	293	0,91 0,5	34 0,05	5 0,03	0,84 1	482 4	6,9	235	33,1	27 -	20 20	0 26	~ ~	-45	Ϋ́	0	، ە	0 -12	no risk
23	0,	3,30	0,75	266,3	100	2,75	245	879	330	1209	38,2	355	294	290	0,92 0,5	34 0,05	5 0,02	0,84 1	184 4	6,9	245	32,3	27 -	20 20	0 26	~ ~	-45	မှ	0	،	1 -12	no risk
23	0	3,30	0,75	266.3	100	2.76	250	879	330	1209	38.2	355	293	289	0.92 0.5	35 0.05	5 0.02 1	0.84	184	6.9	250	31.9	27 -	20 -2	0 26	~	-45	ų	c	5	1 -12	no risk

Assessment for $\sigma_{Ed} = 0,75 \cdot f_y$ and $T = -50 \circ C$

		P																					2																	
	H	-	risk risk	risk	risk risk	risk	risk	risk risk	risk	risk	risk	risk Isk	risk	risk	risk risk	risk	risk	risk	risk risk	risk		ŀ	-	risk risk	risk	risk risk	risk	ris K	risk	risk	risk	risk	risk	risk K	risk I	risk	risk risk	risk	risk tisk	Ne No
		B	on on	ou		2	ou	2 2	2 2	ou	200	2 2	2	ou	2	2 2	0 U	0 U		ou			B	88	2	22	8	2 2	2 2	8	2 2	2	2	2 2	2 2	8	2 2	2	22	2
	⊢ P2	- 0	<u>ຕ</u> ຍ	6	9 4	ŝ	e	<u>~</u>	2 0	2	2 0	2 0	1 01	2	2 10	2	2	2	2 0	2		Rd	- ပ	ຕູຜູ	6	9 4	e	<u></u>	5 10	2	NO	2	2	2 2	2 0	2	2 2	2	2 2	2
	ц Т В	ŝ	ς γ γ		77 000	7	-	77	7	~ ~	ς, ω,	 + ~		5	77 70	77	-	÷.	ר ד ~			T Pi	° O	99 10 10	7	5 7 0 0	7	~ ~	ר ד או	ς ο	77 200	, .	۳ ۳	Υ. Ν.	77	7	77 		- · ·	- r
	ц	Ŷ	80 80	9	й 4	4	ŝ	n n	ິ ຕິ	ñ	ลี ถ้	N N	1 2	÷			÷	ц, о	- Y	Υ		Ξ T	Ŷ	アで	ŝ	4 M	õ	N N	1 21	Ñ		-	÷	÷ •	7	е со с	~	Ϋ́	Ϋ.	7
	TDCF	ပ္	0 0	0	o c	0	0	0 0	0	0	0 0		0	0	0 0	0	0	0	э c	0		T _{bc}	ပ္	0 0	0	0 0	0	0 0	0	0	- c	0	0	0 0	0 0	0	0 0	0	0 0	0
	. ∾	~																				⊲ _"	~		_		_	_	_	_			_			_		_	_	
	Ā	Ŷ	00	0	0 0	0	0	0 0	0	0	0 0		0	0	00	00	0	0	o c	0		4	Ŷ	00	0	00	0	00	0	0	5 0	0	0	00	00	0 0	00	0	00	0
	ΔT,	ပ္	မှ မှ	Ϋ́	η ή	γ	Ŷ	γ γ	γų	ĥ	ις ι	ρ γ	ပု	ις Γ	γ ų	γŅ	ĥ	ις Γ	η ή	-5		ΔT,	ပ္	မှမှ	Ŷ	မှ မှ	Ŷ	ų μ	ပု	Ϋ́	ဂုန	γ	÷	ις u	ρ Υ	ιĢ	ή Υ	ပု	ų μ	ဂု
	T _{md}	ပ္	<mark>ဒုဒ</mark>	-35	92 -32	-35	-35	92 - 32	မှု မှ	-35	- Se	22 	-35	-35	92 92	နှ နှ	-35	-35	92 19	-35		Tmd	ပ္	-45 -45	-45	45 45	-45	-45 45	-45	-45	45 45	-45	-45	45	45 45	-45	-45 -45	-45	-45	-45
	Ľ,	ç	~ ~	7	~ ~	~ ~	7	~ ~	. ~	~	~ ^	~ ~	. ~	~ '	~ ~		7	~ '	~ ~	7		T_R	ပ္	~ ~	2	~ ~	2	~ ~	. ~	~	~ ~	. ~	2	r - 1		~ 1	~ ~		~ ~	- 2
	▼	Ĵ																				2																		
	ΔT_{23}	ပ္	12 0	19	2 2	52	25	25	28	26	20	28	26	26	26	26	26	26	26	26		ΔT_2	ပ္	12 5	19	22	25	52	35	26	202	28	26	26	50 20	26	26	26	26	26
	27.1	ç	88	20	2 2	2	20	2 2	28	20	88	2 2	2 2	50	3 8	28	20	8		20		27.1	ပ္	5 5	20	50	20	3 2	2 2	20	2 2	2	20	8 8	2 2	50	2 2	20	50	50
	-	U U	o o	0			0			0				0			, 0			0			U	୦୦୦ ପ୍ରୁର୍	0		0		2 0	0			0		 ວິວ	<mark>2</mark>				
	F	•	99	4	99	- 4	Ģ	99	1 4	Ģ	ų i	2 4	, d	Ģ	Q Q	2 4	4	Q.	99	- 5-		F	°	9 9 9	4	9.9	4			4	7.5		4		, .,		99			2 12
	V,nom	~	27	27	27	27	27	27	57	27	27	27	27	27	27	27	27	27	27	27		V.nom	7	27	27	27	27	27	27	27	27	27	27	51	27	27	27	27	27	27
	×																					У																		
	۵T	ပ္	120,C 14,6	94,8	89,3 76,3	72,9	70,0	67,3 34 g	87,8 82,8	60,8	59,0	56.0	54,7	48,1	47,0 15 0	45,0	44,1	38,2	34,3	27,8		∆T _e	ပ္	120,0	94,8	89,3 76.3	72,9	20,07	64,9	62,8	59.0	57,5	56,0	54,7	40,1	45,9	45,0 44 1	38,2	34,3	30,1
		۽								5	ю н	0 10		د د				ю .	0 10				٤						. 10	5	 ი.	0.00	ŝ	س	, 0 10	رون		ົດ		2
	b _e f	Ē	35 25	45	55	75	85	36,0	24	125	135	- <u>1</u>	165	175	, 100 100	206	215	225	23	25(p _e q	Ē	35 25	45	22 92	75	8 8	ŞÕ	÷	ň ř	4	15	ų 19	2 80	195	3 20	55	23	24
	P.	n ^{1/2}	4 m	4			æ	ററ	. –	N	м т	स	· 10	2		ი ო	e	<u>م</u> .	4 00	7		l,d	n ^{1/2}	4 0	4		7	ωc	0	~	NC) 4	4	ы С	vю	с ,		20	4.	
	Kapp	IPan	36,5	38,	38.	64	40,	40,	4	4	4 5	4 4	4	43,	64 ç	÷.4	43,	42	46,4	48,		Kapp	IPan	36, 36,	38	38°	40,	40 40	5,4	4	4 4	4	4	4 6	φ 4 4 6 6 6 7 6 1 1 1 1 1 1 1 1 1 1 1 1 1	43,	4 4 9 8	45,	46,	47,
	_	82 N																					3/2 N					_		_			_			_				
	applic	шш	1088 1148	1214	1218	1286	1290	1294	1300	1304	1306	1310	1313	1367	1368	1370	1370	1428	1466 1513	1540		(appl.	mm,	1088 1148	1214	1218 1284	1286	1290	1297	1300	1306	1308	1310	1313	1368	1369	1370	1428	1466	1513
	-	Z										0 (0	, D IO	, N		, , 10	, IO	ं	 त त	. 4		4	Ż		~		~		0 0	O	o c	0 00	O	0 1	, D ID	5	in in		4 4	1 4
	k _{Re}	•	0 0 0	0,8	0 0	0,8	0,8	0,8	0,0	0,8	0,8	0.8	0,8	0,8	80 0 0 0	0,0	0,8,	8 ⁰	ဆဲ ထိ ဝိဝ	0,8,0		k _{R6}	'	0,8	0,8	0,0	0,8	0,0	0,8	0,8	0,0	0,8	0,8	0,0	0,0	0,8	0,0	0,0	0,8	0,0
	٩	•	2,0	0,04	8 8	8	0,04	6 6	5 8	0,04	8	20°0	0,03	0,03	0,03	30,0	0,03	0,03	0,03	0,02		٩	•	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,02
	ā		4 0 4 0	04 (40 0 4 0 0 0	6	04 (0 4 0 7 0	5 8	04 (40	4 0 7 0	5 7	64	4 2 7	5 8	05 (05	050	05 (5		<u>4</u> 4 2	8	8 8 8	8	8 2	5 4	8	5 8 8	5 8	8	8 2	3 8	8	88	02	05	02
	[- 0 0 0	о́ О	ဝ်င ဝင	6 6 	,0 0		50°	0 0	ດ໌ດ ດຸດ	ο ν Ν	ο N	o'o e o	ດ໌ດ ຕຸຕ	රි ර ර ෆ	4 0	4 · 0	4 4 2 C	50,				- 0 0 0	0	00	1			-	50	0	2	00	50 90	000	0 0 0	4	4 4	4 4
	≯	'	0,3	0,3	000	0,3	0,3	0,0	0,3	0,3	0,0	0.3	0,3	0,3	0,0	0,0	0,3	0,3	6 0 0	0,3		≥		0,3	0,3	0,0	0,3	0,0	0,3	0,3	0,0	0,3	0,3	0,0	0,0	0,3	0,0	0,3	0,3	0,3
	ٹ	•	0,82 0,81	0,81	0,81	0,82	0,82	0,82	0,83	0,84	0,84	0.86	0,86	0,87	0,87	0,89	0,89	0,90	0,91	0,92		Ľ		0,82 0,81	0,81	0,81	0,82	0,82	0,83	0,83	0,84	0,85	0,86	0,86	0,87 0,87	0,88	0,89	0,90	0,91	0,92
	≥	a2	ഗര	б	റം	~~	ŝ		- 0	~	ы С	ο .	. თ	~ ·	4 0	10	~	ц С I	mc	6		~	m²	9 0	6	റെയ	2	ŝ	, .	0	~ 10		-	<u>م</u>	- 4	0	o Þ	<u>ي</u>		0
	p	m/N	88	32	88	8	32	88	88	3	6 6	<u>, 9</u>	8	8	8	88	29	53	50.0	28		ъ	m/N	8 8	32	8 8	32	33	3 2	32	5 6	9.6	31	8	8 8	8	88	39	29	29
	÷	m2	ରୁ ଜୁ	Ŧ	z g	g	4	<u>ت</u> م	0 0	4	2 3	<u>م</u>	4	-	0 y	5 4	5	6	9 7 9	33		Ð	m2	6 <u>4</u> 94	4	11 02	36	¥ 2	5 00	9	<u>4</u> 2	6	9	4 -	- 0	90	<u>4</u> 2	6	90	2 4
	Ť,	۳/N	8 8 8	34	8 C	8	33	8 8	3 8	32	8	ირ	ю Ю	<u>ب</u>	800	5 8	30	50	20 0	26		ړ.	N/N	ર્બ ભૈ	ų	9 8	ë	88	8	ŝ	2 6	ά	ά	ာ် ကိ	n M	ж з	ю й	ដ	5 20	50
	mon	nm²	55 55	55	55 55	55	55	55 55	55 55	55	55 55	55 55	55	55	55 55	55 55	55	55	55 55	55		mon	nm²	55 55	55	55 55	55	55	55	55	22	22	55	22	22	55	55	55	55	55
	f,	ľ	8	õ	: : : : :	i rö	õ	5 6	ಂಗ	õ	<i>.</i> 65	ю <i>й</i>	6	ë i	5	ೆ ಗ	õ	ю́ і	: : : : :	3		fv.	ž	ოო	e	ოო	с	с, с	ი ი	e	ი ო) M	С	n n	იო	ς Υ	ოო	ი ი	с, с	იო
	ges	m ^{1/2}	4 0	ő	ດັດ	9	1	αğα	ຸດ	0	o o	<u>,</u> 0	2 -	ι, Ω	ດັ່	ţ4	4	<u>م</u>	ŵ C	2,1		des.	1 ¹²	4,0	ø,	6, 9	3,6	× °	ý œ́	6,0		0	0,4	- u	ດີທີ	4	4 4	6,0	8, 5	, 0,
	Ł	MPa	8 8	31	5 6	8	33	88	3 8	34	8.9	4 K	8	36	8 8	3 8	35	8 8	500	36		Ł	MPa	ж Ж	ώ	ù n	ë	ë ë	6	ë		n vy	ŝ	n i	ຕໍ່ ຕໍ່	Зё З	ň ň		6	ň
	6S	1 ^{3/2}	~ ~	4	» ر	ı ო	9	@ C	5 01	4	с С	0 1-	. ~	- 0	0	с 2		4		S0	n ^{3/2}	იი	4	<u>ه</u> ۵	e	<u>ہ</u> و	0	2	4 iC	9.00	2	N 7		<u>.</u>	0 0	, LO	9	იღ
	К _{1,9}	/mu	949 949	100	100	106	106	106	107	107	107	107	107	112	112	112	112	116	119	125		К _{1.0}	۲m	88 94	10	100	106	106	107	107	701	107	107	107	1 2	112	112	116	119	123
		3/2 P																					3/2																	
G	K _{1,S}	mm	245 259	274	275	290	291	292 292	293	293	294	294	294	306	306	306	306	318	326	342	с U	K _{1.S}	/mm	245 259	274	275 290	290	291	292	293	293	294	294	294	306	306	306	318	326	337
°.		2 2) °(27 N																	
4	4'b	nm³	354 390	730	133	773	775	776	64.4	781	782	283	783	315	315 15	814	314	847	306	912	-5(K _{1.P}	mm	654 690	730	733	773	775	178	6/1	18/	782	783	783	815	815	814	847	869	896
, II	-	ž												~			~	~		,	, u		ž																	
	÷	E	25 35	45	55	75	85	95 105	115	125	135	22 22	165	175	185	205	215	225	235	250	Τ	ţ	E	25 35	45	55 65	75	85	105	115	125	145	155	165	185	195	205	225	235	245
JUC		Ę	,	0	- 		0		~	.	С	י. ה ת	I LO	æ ·		; (O	6		 		JUC		-	~ ∞	o	ංග	9	0 0	ო	~	- vc	0	2	م	o .	4	ω σ	, .	, σ, τ	1 20
f, c	a	Ë	1,6 1,7	1,9	ο č	, , ,	2,2	0, 0	2 0	2,4	4,4	5, 4 2, 5	50 10 10	2,5	9 7 0	, v 10, v	2,6	2,7	2,7	2,7	f, c	a	Ē	1,6	1,9	2,0	2,1	0, 0	1 0, 1 0,	2,3	4 4	2 4	2,5	2,0	5,6 7,0	2,6	0,0	2,7	2,7	2,7
Š.	ŝ	nm²	88	00	88	8	00	88	88	00	8	88	8	00	88	88	00	8	88	00	5.	3s	mm²	8 8	00	8 8	00	8	8 8	8	88	8	00	8	88	00	8 8	8 8	00	00
0,7	ľ	ž	~ ~	-	~ ~	÷	-		- ÷	-			÷		~ ~	- -	-		~ ~	÷	7,0	ĺ	N/N		.		-		-	-			-			- ·	~ ~	-		1
	ß	mm	66,3 36,3	66,3	66,3 36,3	56,3	66,3	66,3 36,3	56,3 36,3	66,3	66,3	00,0 36.3	56,3	66,3	66,3 26,3	56,3	66,3	66,3	66,3 36,3	56,3) =	đ	, mm,	66,3 66,3	66,3	66,3 56,3	66,3	66,3	66,3	66,3	66,3 56,3	66,3	66,3	66,3	00,3 66,3	66,3	66,3 56,3	66,3	66,3	66,3
		≥	<u>ה</u> ה	Ñ	ñ ñ	N I	Ñ	ñ ñ	i ñi	Ñ	ο ο	ñ ř	N I	Ñ	5 M	N N	Ñ	Ñ I	ñ ñ	5	JEd		Z		Ñ		Ñ		N N	Ñ	ñ ñ		Ñ			0			0 0	× ×
J _{Ed} =	>		22	75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0.75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	r c	و∈م/	Ξ	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,7	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75
r σ _{Ed} =	σ _{Ed} ∕fy	Ξ	0 0	0																	: fo		2																	
tor σ _{Ed} =	σ_{Ed}/f_y	Z Z	0 0	0															0 10	2	ent	5	μ	10 01	~															100
ent for $\sigma_{\rm Ed}$ =	K₁ σ _{Ed} ∕f _y	nm ^{3/2} [-]	455 0,7 592 0,7	743 C	752 800	904	606	916 371	926	932	936	938	942	061	061	058	057	182	265	42		_		45	743	752	904	909	921	926	932 936	938	940	942	061	090	058	182	265	366
ment for σ_{Ed} =	K ₁ $\sigma_{Ed} f_y$	N/mm ^{3/2} [-]	2,455 0,7 2,592 0,7	2,743 C	2,752 2 800	2,904	2,909	2,916 2 921	2,926	2,932	2,936	2,938	2,942	3,061	3,061	3,058	3,057	3,182	3,265	3,42	ű	_	۳N	2,45	2,743	2,752	2,904	2,909	2,921	2,926	2,932	2,938	2,940	2,942	3,061 3,061	3,060	3,058 3,057	3,182	3,265	3,366
ssment for $\sigma_{\rm Ed}$ =	K₁ σ _{Ed} /f _y	n ² N/mm ^{3/2} [-]	2,455 0,7 2,592 0,7	2,743 0	2,752 2 Raa	2,904	2,909	2,916 2 921	2,926	2,932	2,936	2,938	2,942	3,061	3,061	3,058	3,057	3,182	3,265	3,42	ssme		n² N/m	2,45	2,743	2,752	2,904	2,909	2,921	2,926	2,932	2,938	2,940	2,942	3,061	3,060	3,058	3,182	3,265	3,366
ssessment for σ_{Ed} =	σ _P K ₁ σ _{Ed} /f _y	Vmm ² N/mm ^{3/2} [-]	1,0 2,455 0,7 1,0 2,592 0,7	1,0 2,743 0	1,0 2,752 1.0 2,899	1,0 2,904	1,0 2,909	1,0 2,916 1.0 2,926	1,0 2,926	1,0 2,932	1,0 2,936	1.0 2,938	1,0 2,942	1,0 3,061	1,0 3,061	1,0 3,058	1,0 3,057	1,0 3,182	1,0 3,265 1.0 3,365	1,0 3,42	sessme	α _P	Vmm ² N/m	1,0 2,45 1,0 2,55	1,0 2,743	1,0 2,752 1.0 2,899	1,0 2,904	1,0 2,909	1,0 2,921	1,0 2,926	1,0 2,932 1.0 2,936	1,0 2,938	1,0 2,940	1,0 2,942	1,0 3,061	1,0 3,060	1,0 3,058 1.0 3.057	1,0 3,182	1,0 3,265	1,0 3,366
Assessment for σ_{Ed} =	Nr σ _P Κ ₁ σ _{Ed} /f _y	N/mm ² N/mm ^{3/2} [-]	1 1,0 2,455 0,7 2 1,0 2,592 0,7	3 1,0 2,743 C	4 1,0 2,752 5 1,0 2,752	6 1,0 2,904	7 1,0 2,909	8 1,0 2,916 9 1.0 2,916	10 1,0 2,926	11 1,0 2,932	12 1,0 2,936	13 1,0 2,938 14 1.0 2,940	15 1,0 2,942	16 1,0 3,061	17 1,0 3,061	19 1,0 3,058	20 1,0 3,057	21 1,0 3,182	22 1,0 3,265 23 1.0 3.367	24 1,0 3,42	Assessme	Nr Gp	N/mm ² N/m	1 1,0 2,45 2 1,0 2,55	3 1,0 2,748	4 1,0 2,752 5 1.0 2,899	6 1,0 2,904	7 1,0 2,909	9 1,0 2,921	10 1,0 2,926	11 1,0 2,932 12 1.0 2,936	13 1,0 2,938	14 1,0 2,940	15 1,0 2,942	10 1,0 3,061 17 1,0 3,061	18 1,0 3,060	19 1,0 3,058 20 1.0 3.057	21 1,0 3,182	22 1,0 3,265	24 1,0 3,366

. 11
Ь
σ
2
-
Ś
1
0
11
20
6
5
_
<u>fo</u>
t foi
nt foi
ent foi
nent foi
sment for
ssment for
sessment for
ssessment for

Table 5-10:

Fracture mechanics assessments for loading variant 2A-2 for component No. 2A (Axisymmetric top component (sliding plate and guiderail))

5.4 Component No. 2B – Axisymmetric top component of reference bearing type B (welded variant)

5.4.1 Geometry, load assumptions and boundary conditions

(1) Component No. 2B has the same function as top component No. 2A except that the axisymmetric component is built up by welding according to Figure 5-20.

Figure 5-20: Component 2B: top component of reference type B (sliding plate and guiderail)

(2) Table 5-11 gives the numerical values of the dimensions.

Table 5-11:	Ranges of	geometrical	dimensions	for o	detail	2B
		Beenneenteen				

t ₁ [mm]	t ₂ [mm]	D [mm]	b [mm]	a _w [mm]
55 - 285	55 - 170	440 – 2580	55 - 570	12 - 42

- (3) In analogy to the investigations in section 5.2 and section 5.3 two loading variants, one with horizontal loading, the other with vertical loading were studied.
- (4) The toes of the welds are the potential spots for crack initiation.
- (5) For determining the limitation of the plate thickness t_2 the <u>loading variants 2B-1</u> and <u>2B-2</u> were used.

The positions of crack in the guiderails were assumed as given in Figure 5-21. The initial crack depth a0 depends on the thickness t_2 . In these regions no significant tensile stresses have to be expected under realistic external loading conditions.

Figure 5-21: Variants for loading for detail 2B: Variant 2B-1 with horizontal loading (left); variant 2B-2 with vertical loading (right)

- (6) For determining the limitation of the plate thickness t_1 the models with the loading variants
 - 2B-3,
 - 2B-4,
 - 2B-5,

- 2B-6,

were used. The crack configuration for the loading variants 2B-3 and 2B-4 is rather hypothetical, see Figure 5-22. The initial crack size for these variants depends on the thickness t_1 of the sliding plate. The occurrence of the cracks in Figure 5-22 is also rather hypothetical as no significant stresses have to be expected from realistic external loading conditions.

Figure 5-22: Loading variants for detail 2B: Variant 2B-3 with horizontal loading (left) and variant 2B-4 with vertical loading (right)

(7) A further crack configuration is assumed at the re-entrant corner as shown in Figure 5-23. For this crack configuration preliminary studies showed that the crack-orientation with 45 ° was more severe than a vertical orientation. The initial crack length depends on the plate thickness t₁ of the sliding plate. Tensile stresses in this region are realistic.

Figure 5-23: Loading variants for detail 2B: Variant 2B-5 with horizontal loading (left) and variant 2B-6 with vertical loading (right)

(8) The calculations were carried out for two different configurations of the dimensions of the bearings in Table 5-12 for the variation of t_2 and in Table 5-13 for the variation of t_1 .

The influence of the geometry of the welds on the K-value is only small when thickness is increased. The maximum possible weld thickness of $a_w = 42$ mm was assumed for the upper bound of the geometrical dimensions. For the lower bound of the geometrical dimensions a throat thickness of $a_w = 16$ mm was used.

Upper	bounds	Lower	bounds
t ₁ [mm]	285	t ₁ [mm]	55
t ₂ [mm]	50-200	t ₂ [mm]	50 – 200
D [mm]	2580	D [mm]	2580
d [mm]	1980	d [mm]	2525
b [mm]	570	b [mm]	55
a _w [mm]	42	a _w [mm]	16

Table 5-12:Upper and lower bounds of geometrical dimensions for component No. 2B for
determining the limit of plate thickness t2

Table 5-13:Upper and lower bounds of geometrical dimensions for component No. 2B for
determining the limit of plate thickness t1

Upper	bounds	Lower	bounds
t ₁ [mm]	55 – 285	t ₁ [mm]	55 – 285
t ₂ [mm]	170	t ₂ [mm]	170
D [mm]	2580	D [mm]	2580
d [mm]	1980	d [mm]	2525
b [mm]	570	b [mm]	55
a _w [mm]	42	a _w [mm]	16

(9) In Figure 5-24 to Figure 5-26 examples are given for the FE-models used (sections only) together with the associated deformations and crack opening.

Figure 5-24: Section from a FE-model (left) and from the plot of deformations including crackopening (right) for loading variant 2B-1 and 2B-2

Figure 5-25: Section from a FE-model (left) and from the plot of deformations including crackopening (right) for loading variant 2B-3 and 2B-4

Figure 5-26: Section from a FE-model (left) and from the plot of deformations including crackopening (right) for loading variant 2B-5 and 2B-6

5.4.2 Hot-Spots-stresses

- (1) For <u>loading variant 2B-1</u> the reference stress of the fracture mechanics assessment is identical with the stress loading applied to the FE-model.
- (2) For <u>loading variant 2B</u>-2 Figure 5-27 (left) shows the Hot-Spot-stress increasing linearly with increasing thickness t₂ of the guiderail for the upper bound of the geometrical dimensions.
- (3) The decreasing effect of thickness t₂ on the Hot-Spot-stresses for the lower bound of geometrical dimensions is given in Figure 5-27 (right). The decrease is also linear.

Figure 5-27: Hot-spot-stresses due to external stress loading (unit stress) for loading variant 2B-2: vertical loading: upper bound of geometrical dimensions (left), lower bound of geometrical dimensions (right)

- (4) Figure 5-28 (left) gives for <u>loading variant 2B-3</u> the function of Hot-Spot-stresses for the variation of the plate thickness t_1 at the upper bound of geometrical dimensions. The numerical values are rather small and decrease with increasing value of t_1 .
- (5) Figure 5-28 (right) gives a similar performance for the lower bound of the geometrical dimensions. For t > 160 mm the further distribution can be linearly approximated.

Figure 5-28: Hot-Spot-stresses due to external stress loading (unit stress) for loading variant 2B-3: horizontal loading; upper bound of geometrical dimensions (left), lower bound of geometrical dimensions (right)

- (6) According to Figure 5-29 (left) the Hot-Spot-stresses for <u>loading variant 2B-4</u> increase with increasing plate thickness t_1 for the upper bound of geometrical dimensions.
- (7) Figure 5-29 (right) shows the corresponding distribution of the Hot-Spot-stresses for the lower bound of the geometrical dimensions. In the range 25 mm $\leq t_1 \leq 55$ mm the increase is strong; for $t_1 > 55$ mm there is an exponential decrease.

Figure 5-29: Hot-Spot-stresses due to external unit loading for loading variant 2B-4: vertical loading; upper bound of geometrical dimensions (left), lower bound of geometrical dimensions (right)

- (8) For <u>loading variant 2B-5</u> Figure 5-30 shows the Hot-Spot-stresses for the upper bound of geometrical dimensions.
- (9) In Figure 5-30 (right) the Hot-Spot-stresses for the lower bound of geometrical dimensions are shown.

Figure 5-30: Hot-Spot-stresses due to external unit load for loading variant 2B-5 with horizontal loading: for upper bound of geometrical dimensions (left), lower bound of geometrical dimensions (right)

- (10) Figure 5-31 (left) gives for <u>loading variant 2B-6</u> the monotonously decreasing of the Hot-Spot stress for large plate thicknesses t₁ for the upper bound of the geometrical dimensions.
- (11) In Figure 5-31 (right) the decrease of the Hot-Spot-stresses for large plate thicknesses t₁ is shown for the lower bound of the geometric dimension.

Figure 5-31: Hot-Spot-stresses due to external unit load for loading variant 2B-6 vertical load: for upper bound of geometrical dimensions (left), lower bound of geometrical dimensions (right)

5.4.3 Stress intensity factors

(1) For the <u>loading variant 2B-1</u> Figure 5-32 shows the almost linear increase of the K-value with increasing plate thickness t₂ of the guiderail for the upper bound of the geometrical dimensions. The influence of mode 2-stresses is negligible.

Figure 5-32: \overline{K} -values for $\sigma_{HS} = 1 \text{ N/mm}^2$ for loading variant 2B-1, horizontal loading for variation of plate thickness t₂; upper bound of geometrical dimensions

(2) Figure 5-33 shows the distribution of the \overline{K} -values due to $\sigma_{HS} = 1 \text{ N/mm}^2$ for the loading variant 2B-1 for the lower bound of the geometrical dimensions. The \overline{K} -values decrease with increasing thickness t_2 of the guiderail due to the geometry and support conditions chosen. This effects for large t_2 -values an increasing influence of mode 2-stresses.

Figure 5-33: \overline{K} -values for $\sigma_{HS} = 1 \text{ N/mm}^2$ for loading variant 2B-1, horizontal loading; variation of plate thickness t₂; lower bound of geometrical dimensions

- (3) For <u>loading variant 2B-2</u> the increase of the thickness t_2 of the guiderail effects an increase of the K-values for the upper bound of geometrical dimensions, see Figure 5-34 (left). This is a result of the increase for the initial crack depths a_0 with increasing thickness t_2 .
- (4) Figure 5-34 (right) shows the function of the effective \overline{K} -values related to the Hot-Spot stress $\sigma_{HS} = 1 \text{ N/mm}^2$. The fracture mechanics requirement increases with increasing thickness t_2 of the guiderail.

Figure 5-34: K-values (left) and \overline{K} -values related to $\sigma_{HS} = 1 \text{ N/mm}^2$ (right) for the loading variant 2B-2: vertical loading for variation of the plate thickness t_2 and for the upper bound of geometrical dimensions

- (5) For the lower bound of geometrical dimensions and for loading variant 2B-2 the K-values are nearly constant versus the variation of plate thickness t₂, see Figure 5-32 (left). In this case the effective value K_{eff} for taking into account mode 2-stresses is relevant.
- (6) The normalized effective \overline{K} -values increase slightly with the thickness t₂ of the guiderail as shown in Figure 5-35 (right).

Figure 5-35: K-values for loading variant 2B-2 - vertical loading for variation of the plate thickness t_2 and lower bound of geometrical dimensions. K-values for unit loading (left), \overline{K} -values related to $\sigma_{HS} = 1 \text{ N/mm}^2$ at the Hot-Spot (right)

- (7) For <u>loading variant 2B-3</u> Figure 5-36 (left) shows the K_1 -values for increasing plate thickness t_1 for the upper bound of geometrical dimensions.
- (8) For the normalized values \overline{K} related to $\sigma_{HS} = 1 \text{ N/mm}^2$ there is an increasing function for large t₁ according to Figure 5-36 (right).

The function for t > 100 mm can be described by a power function

$$\overline{K}$$
= 3,1366·t₁^{0,0071} (5-10)

using the effective value K_{eff}, because in this case mode 2-stress cannot be neglected.

- (9) A qualitatively similar performance is shown for the lower bounds of geometrical dimensions in Figure 5-37 (left). The magnitudes of K-values are larger.
- (10) The normalised \overline{K} -values taking into account mode 2-stresses are increasing with increasing plate thickness t_1 , see Figure 5-37 (right).

The function can be described by the power function

$$\overline{K}$$
 = 1,3661·t₁^{1,1052} (5-11)

Figure 5-37: K-values for loading variant 2B-3 - horizontal loading for variation of the plate thickness t_1 and upper bound of geometrical dimensions; K-values for unit loading (left), \overline{K} -values related to $\sigma_{HS} = 1 \text{ N/mm}^2$ at the Hot-Spot (right)

- (11) For <u>loading variant 2B-4</u> the K-values for the upper bound of the geometrical dimensions are increasing to a maximum value for $t_1 = 250$ mm and then slightly decrease, see Figure 5-38 (left).
- (12) The normalized effective \overline{K} -value related to $\sigma_{HS} = 1 \text{ N/mm}^2$ relevant for the assessment to avoid brittle failure may be taken from Figure 5-38 (right). The maximum is obtained for $t_1 = 180 \text{ mm}$, and for $t_1 > 180 \text{ mm}$ there is a decrease. The function can be described for the range 190 mm $\leq t_1 \leq 300 \text{ mm}$ by a polynomial of 3^{rd} degree:

$$\overline{K} = -5,01730 \cdot 10^{-7} \cdot t_1^{-3} + 4,09628 \cdot 10^{-4} \cdot t_1^{-2} - 1,12831 \cdot 10^{-1} \cdot t_1 + 13,8884$$
(5-12)

Figure 5-38: K-values for loading variant 2B-4 - vertical loading for variation of the plate thickness t_1 and upper bound of geometrical dimensions; K-values for unit loading (left), \overline{K} -values related to $\sigma_{HS} = 1 \text{ N/mm}^2$ at the Hot-Spot (right)

- (13) For the lower bounds of the geometrical dimensions Figure 5-39 (left) shows a similar behaviour; a steep increase for small thicknesses t_1 and a strong decrease for thicknesses $t_1 > 50$ mm can be seen.
- (14) Figure 5-39 (right) demonstrates an almost constant function of \overline{K} -values related to the Hot-Spot stress $\sigma_{HS} = 1 \text{ N/mm}^2$ for $t_1 \ge 55 \text{ mm}$ with a maximum for $t_1 = 35 \text{ mm}$.

- (15) For the <u>loading variant 2B-5</u> the crack is in the re-entrant corner between the sliding plate and the guiderail. The function of K-values versus the plate thickness t_1 is given for the upper bound of geometrical dimensions in Figure 5-40 (left). The influence of plate thickness t_1 on K for constant external load is small.
- (16) Also the influence of the plate thickness t_1 on the normalized value K is small as demonstrated in Figure 5-40 (right).

Figure 5-40: K-values for loading variant 2B-5 - horizontal loading for variation of the plate thickness t_1 and upper bounds of geometrical dimensions; K-values for unit loading (left); \overline{K} -values related to $\sigma_{HS} = 1 \text{ N/mm}^2$ at the Hot-Spot (right)

- (17) Figure 5-41 (left) shows the monotonous increase of K-values versus plate thickness t_1 for the loading variant 2B-5 and for the lower bound of geometrical dimensions. In comparison with the value in Figure 5-40 (left) the K-values are larger but do not vary much around a certain level.
- (18) The \overline{K} -value normalised to $\sigma_{HS} = 1 \text{ N/mm}^2$ gives the function according to Figure 5-41 (right). For $t_1 > 215$ mm this function can be approximated by $\overline{K} = 2,0352e^{0,0006t1}$.

Figure 5-41: K-values for loading variant 2B-5 - horizontal loading for variation of the plate thickness t_1 and upper bounds of geometrical dimensions; K-values for unit loading (left); \overline{K} -values related to $\sigma_{HS} = 1 \text{ N/mm}^2$ at the Hot-Spot (right)

- (19) For <u>loading variant 2B-6</u> the K-values decrease for large values of t₁, for the upper bound of geometrical dimensions, see Figure 5-42 (left).
- (20) The normalised values \overline{K} related to $\sigma_{HS} = 1 \text{ N/mm}^2$ produce however a nearly constant function versus the plate thickness t_1 , see Figure 5-42 (right).

- (21) Figure 5-43 (left) shows qualitatively a similar behaviour as given in Figure 5-42 (left) for the lower bound of the geometrical dimensions.
- (22) The normalized value \overline{K} related to $\sigma_{HS} = 1 \text{ N/mm}^2$ is shown in Figure 5-43 (right) versus the plate thickness t₁. For t₁ > 215 mm the \overline{K} -value can be described by a power function

$$\overline{K} = 6,8975 \cdot 10^{-9} t_1^3 - 5,8020 \cdot 10^{-7} t_1^2 + 1,8563 \cdot 10^{-3} t_1 + 2,0015$$
(5-13)

Figure 5-43: K-values for loading variant 2B-6 - vertical loading for variation of the plate thickness t_1 and lower bounds of the geometrical dimensions; K-values for unit loading (left); \overline{K} -values related to $\sigma_{HS} = 1 \text{ N/mm}^2$ at the Hot-Spot (right)

5.4.4 Assessments to avoid brittle fracture

(1) The assessments to avoid brittle fracture were carried out in Table 5-21 to 5-26 according to the list in Table 5-14.

Table 5-14:	Allocation of tabular-calculations to loading variants
	Anocation of tabalar calculations to loading variants

Loading variant	Table	Remark
2B-1	Table 5-21	Due to compression maximum stress level $\sigma_{Ed} = 0.25 \cdot f_y^{*}$
2B-2	Table 5-22	Due to compression maximum stress level $\sigma_{Ed} = 0.25 \cdot f_{y}^{*)}$
2B-3	Table 5-23	Due to compression maximum stress level $\sigma_{Ed} = 0.25 \cdot f_y^{*}$
2B-4	Table 5-24	Due to compression maximum stress level $\sigma_{Ed} = 0.25 \cdot f_y^{(*)}$
2B-5	Table 5-25	
2B-6	Table 5-26	

*) The minimum value of tensile stress for members that are nominally in compression is specified in EN 1993-1-10

(2) The results of the tabular calculations in the Tables 5-21 to 5-26 are presented in Tables 5-15 to 5-20.

Table 5-15:Limits of plate thickness t2 [mm] for the top component (configuration 2B-1) for
compressive stress

Steel grade acc. to EN 10025	$\sigma_{\sf Ed}$	0°C	-10°C	-20°C	-30°C	-40°C	-50°C
\$355J2	0,25 · f _y	200*)	200	190	170	150	130

*) Assumption of a technical manufacturing limit (in theory element thicknesses with $t \ge 200 \text{ mm}$ would be acceptable)

Table 5-16:Limits of plate thickness t2 [mm] for the top component (configuration 2B-2) for
compressive stress

Steel grade acc. to EN 10025	$\sigma_{\sf Ed}$	0°C	-10°C	-20°C	-30°C	-40°C	-50°C
\$355J2	$0,25 \cdot f_y$	200 ^{*)}	200*)				

*) Assumption of a technical manufacturing limit (in theory element thicknesses with $t \ge 200 \text{ mm}$ would be acceptable)

Table 5-17:Limits of plate thickness t1 [mm] for the top component (configuration 2B-3) for
compressive stress

Steel grade acc. to EN 10025	$\sigma_{\sf Ed}$	0°C	-10°C	-20°C	-30°C	-40°C	-50°C
S355J2	$0,25 \cdot f_y$	300 ^{*)}					

*) Assumption of a technical manufacturing limit (in theory element thicknesses with $t \ge 300 \text{ mm}$ would be acceptable)

Table 5-18:Limits of plate thickness t1 [mm] for the top component (configuration 2B-4) for
compressive stress

Steel grade acc. to EN 10025	$\sigma_{\sf Ed}$	0°C	-10°C	-20°C	-30°C	-40°C	-50°C
\$355J2	0,25 · f _y	300*)	300*)	300 ^{*)}	300*)	300*)	300*)

*) Assumption of a technical manufacturing limit (in theory element thicknesses with $t \ge 300 \text{ mm}$ would be acceptable)

Table 5-19: Limits of plate thickness t₁ [mm] for the top component (configuration 2B-5)

Steel grade acc. to EN 10025	$\sigma_{\sf Ed}$	0°C	-10°C	-20°C	-30°C	-40°C	-50°C
\$355J2	0,25 · f _y	300 ^{*)}					
\$355J2	0,50 · f _y	300 ^{*)}					
S355J2	0,75 · f _y	300*)	300 ^{*)}	300*)	300*)	300*)	300 ^{*)}

*) Assumption of a technical manufacturing limit (in theory element thicknesses with $t \ge 300 \text{ mm}$ would be acceptable)

 Table 5-20:
 Limits of plate thickness t₁ [mm] for the top component (configuration 2B-6)

Steel grade acc. to EN 10025	$\sigma_{\sf Ed}$	0°C	-10°C	-20°C	-30°C	-40°C	-50°C
S355J2	0,25 · f _y	300 ^{*)}					
S355J2	0,50 · f _y	300 ^{*)}					
\$355J2	0,75 · f _y	300*)	300*)	300 ^{*)}	300*)	300*)	300 ^{*)}

*) Assumption of a technical manufacturing limit (in theory element thicknesses with $t \ge 25x0$ mm would be acceptable)

: T _{Rd}	isi k si si k	risk risk	risk risk	risk risk	×		Γ	T _{Rd}	risk	risk ie k	risk	risk risk	risk risk	risk	risk risk	×		۲.	- Rd	risk riek	risk	risk	risk Isk	risk	risk isk	risk	risk risk	risk
T _{Ed} 2	222	22	22	2 2	ris			T _{Ed} 2	o	2	2 2	22	2 2	2 2	2 2	ris		- - -	-	ou		ou		lou				- ou
° ⊒ ° ⊔ °	77 -17 58 -15 42 -14	30 -13 20 -13	12 -13 4 -13		-14 -12			ະ ເ ເ	87 -17	68 -15	40 -13	30 -13 22 -13	14 -13 -13	 -	-4 -12 -12	-15 -12		F _{Ed} T _R	ပ္ ပ္	97 -17 70 -15	62 -14 62 -14	50 -13	40 -13 32 -13	24 -13	18 -12 -12	-12	-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -	10 -12
°C T _{DCF}	000	0 0	0 0	00	0			μ υ	0	0 0	00	0 0	0 0	0	0 0	0		T _{DCF}	ပ္	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0
∆T, ∆ °C	000	0 0	0 0	00	0		LV LV	ι Γ	0	0 0	0 0	0 0	0 0	0	0 0	0		∆T _s ⊿	ပံ	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0
°C ÅT,	ကု ကု ကု		φφ	ι φι φ	ς.		۲.		ο γι	цо и	ρ φ	φ φ		о Чо С	μ μ	ŝ		d ΔT,	ပ္	ις μ	ρ γ	ις μ	ο ο ιο	φ	ο r	р ф	φφ	ις u
r ۳. ۵	 4 4 4		7 7 4	44	7 -4		F F	¥ Ω	-3 -3	7 - <mark>-</mark> 3	~ ~	7 7	7 - <mark>3</mark>	- 2	7 7	7 -3		JT _R T <mark>"</mark>	ပ္ ပ္	7 -2			 	7	~ ~		 2 7	7 -2
°C .	21 24 24	25 25	25 25	26	26				21	23	22 ⁷	25 25	25 26	26 26	26 26	26		T _{27J} 2	ပ္	21	54	25 25	52 22	25	26 26	26	26 26	26 26
T ₂₇ 」 ∆ °C	-20 -20	-20	-20	-20	-20			າ ຊີ່ ບໍ	-20	-20	-20	-20	-20	-20	-20	-20		T _{27J} ∆	ပ္	-20	-20	-20	-20 -20	-20	-20	-20	-20 -20	-20
л <mark>т</mark> К	20 -20 -20	-20 -20	-20 -20	-20 -20	-20		F	≩ ບູ	-20	-20	-20 -20	-20 -20	-20	-20	-20 -20	-20		Τ _{κν}	ပ့	-20	-20	-20	-20	-20	-20	-20	-20 -20	-20
K _{v,nom} J	27 27 27	27 27	27 27	27	27		×.	mou'	27	27	57	27 27	27	27	27	27		K _{V,nom}	٦	27 27	57	27	57	27	21	57	27	27
∆T , °C	120,0 100,6 84.8	72,7 62,9	54,6 47,3	40,6 34,5	28,8		Ť	ີ່ ບ	120,0	100,6	04.0 72,7	62,9 54,6	47,3 40.6	34,5	28,8 23.4	18,3		۵T	ပ့	120,0 100.6	84,8	72,7	54.6	47,3	40,6 34.5	28,8	23,4 18,3	13,5
b _{eff} mm	50 70	8 06	100 110	120	140		: ع		50	09	2 8	90 100	110	130	140 150	160		$\mathbf{b}_{\mathrm{eff}}$	ш ш	50 60	202	80	00 100	110	120	140	150 160	170
K _{appl,d} IPam ^{1/2}	33,8 36,2 38,3	40,4 42,4	44,4 46,4	48,4 50.5	52,7		×	APam ^{1/2}	33,8	36,2	40,4	42,4 44,4	46,4 48.4	50,5	52,7 54.9	57,2		K _{appl,d}	VIPam ^{1/2}	33,8 36 2	38,3 38,3	40,4	44,4 4,4	46,4	48,4 50.5	52,7	54,9 57,2	59,7
K _{appl,d} Vmm ^{3/2} P	1069 1143 1212	1278 1341	1404 1467	1531 1597	1666		2	appi,a 1/mm ^{3/2}	1069	1143	1278	1341 1404	1467 1531	1597	1666 1737	1810		K _{appl,d}	4/mm ^{3/2}	1069 1113	1212	1278	1404	1467	1531 1597	1666	1737 1810	1887 1065
ہ ہ ہو	0,98 0,98 0,98	0,98 0,98	0,98 0,98	0,98	0,98		j.	2 2	0,98	0,98	0,98	0,98 0,98	0,98	0,98	0,98 0.98	0,98		\mathbf{k}_{R6}		0,98	0,98	0,98	0.98	0,98	0,98	0,98	0,98 0,98	0,98
٩	4 0,04 4 0,04 4 0,04	4 0,04 4 0,04	4 0,04 4 0,04	4 0,04 0,04	4 0,04		•	יב	4 0,04	4 0,04	4 0,04	4 0,04 4 0,04	0,04	4 0,04	4 0,04 0.04	4 0,04		۹	•	4 0,04	4 0,04	4 0,04	4 0,04	4 0,04	4 0,04 0,04	4 0,04	4 0,04 0,04	4 0,04
· ۲	30 0,0 30 0,0 31 0,0	31 0,0 31 0,0	31 0,0 31 0,0	31 0,0 32 0,0	32 0,0		, a		30 0,0	30 0,0	30,00	31 0,0	31 0,0	32 0,0	32 0,0	32 0,0		۴ ۹		30 0,0 30 0,0	31 0,0	31 0,0	31 0,0	31 0,0	31 0,0 37 0,0	32 0,0	32 0,0 32 0,0	32 0,0
۔ • تـ),27 0,),27 0,),27 0,),27 0,),27 0,),28 0, 0,28 0,	0,28 0,28 0,),28 0,			r '	,27 0,),27 0,	27 0,),27 0, 0,28 0,),28 0, 28 0,),28 0,3),28 0, 0.28 0.),29 0,		۔ ت),27 0, 0,27 0,	0,27 0,	0,27 0,	0.28 0.	0,28 0,	0,28 0, 28 0,	0,28 0,	0,28 0, 0,29 0,	0,29 0,
σ _{gy} /mm²	329 (328 (327 (326 (324 (322 (319 (1	314 (/mm ²	329 (328 (326 (324 (321 (316	314 (310 (σ _{gy}	l/mm²	329 (378 (327 (326	322	321	319 316	314 0	312 310 310	308 (
f _y (t) /mm² N	343 340 338	335 333	330 328	325 323	320			/mm² N	343	340	335 335	333 330	328 325	323	320 318	315		f _y (t)	/mm² N	343 340	338 338	335 222	330	328	325 323	320	318 315	313
f _{y,nom} Vmm² N	355 355 355	355 355	355 355	355 355	355			'y,nom ² N	355	355 266	355 355	355 355	355 355	355 355	355 355	355		f _{y,nom}	√mm² N	355 355	355 355	355 255	355 355	355	355 355	355	355 355	355 266
K _{1,ges}	31,8 34,0 36,0	38,0 39,8	41,7 43,5	45,4 47,4	49,4		×	Pam ^{1/2} N	31,8	34,0 26.0	38,0 38,0	39,8 41,7	43,5 45,4	47,4	49,4 51.4	53,6		K _{1,ges}	IPam ^{1/2}	31,8 31.0	36,0 36,0	38,0	38,6 41.7	43,5	45,4 47 4	49,4	51,4 53,6	55,8
K _{1.ges} /mm ^{3/2} M	1005 1075 1139	1200 1260	1318 1377	1436 1498	1561		×	'/mm ^{3/2} M	1005	1075	1200	1260 1318	1377 1436	1498	1561 1627	1695		K _{1,ges}	Vmm ^{3/2} N	1005 1075	1139	1200	1218	1377	1436 1498	1561	1627 1695	1765
K _{1,S} 1/mm ^{3/2} N	532 569 604	636 667	698 729	761 793	827	°℃	ĸ	1/mm ^{3/2} N	532	569 604	636	667 698	729 761	793	827 862	898) °C	K _{1,S}	l/mm ^{3/2} N	532 Feo	604 604	636	00/ 698	729	761 793	827	862 898	935
K _{1,P} /mm ^{3/2} N	472 505 536	564 592	620 647	675 704	734	r = -4(ĸ	/mm ³² N	472	505 526	564	592 620	647 675	704	734 765	797	⁻ = -3(К _{1,Р}	1/mm ^{3/2} N	472 E0E	536 536	564	592 620	647	675 704	734	765 797	830
n t N	50 50 70	88	100	120	140	L pu		N F	50	60	0, 08	90 100	110	130	140 150	160	L pu	t.	mm	50 60	70	80	06 100	110	120	140	150 160	170
n nm	1,96 2,05	2,19	2,30	2,39	2,47	·f, a	đ		1,96	2,05	219	2,25	2,35	2,43	2,47	2,54	·fy a	a ₀	mm	1,96 2.05	2,12	2,19 2,15	230	2,35	2,39 2,43	2,47	2,54	2,57
σs /mm² r	100 100 100 100 100 100 100 100 100 100	6 0 0 0 0 0 0 0 0 0 0 0	6 6 6	6 6	100	0,25		/mm ² 1	,	100	<u>8</u> 6	001	100	<u>8</u> 0	100	100	0,25	as G	1/mm ²	100	3 8	900	38	100	86	001	6 6 6 6	100
σ⊳ /mm² Ν	88,8 88,8 38,8	88,8 88,8	88,8 98,8	888,8 88,8 8,8	88,8	o _{Ed} =		/mm² N	88,8	88,8	00,00 88,8	88,8 98,8	88,8 8,8,8 8,8,8	88,8 88,8	88,8 38,8	88,8	$\sigma_{Ed} =$	å	1/mm² N	88,8 9 9 9	88,8 88,8	88,8	0 0 88.8	88,8	88,8	88,8	88,8 88,8	88,8
s _{Ed} /f _y	0,25	0,25	0,25	0,25	0,25	for	#	<u>г</u> Г,	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	for	₅ _{ed} /f _y	z T	0,25 1 25	0,25	0,25	0,25	0,25	0,25	0,25	0,25 0,25	0,25
K, d	5,323 5,694 6.036	6,360	6,982 7.293	7,609	8,271	nent			5,323 (5,694	6,360 (6,673 (7,293	7,934 (8,271 (8,619 (8,980	ment	κ,	l/mm ^{3/2}	5,323	5,036 6,036	6,360	6,982 (7,293	7 934	8,271	8,619 8,980	9,353
α _P N/mm² N	1,0 1,0	1,0	1,0	0,0	1,0	ssessi		N/mm ² N	1,0	1,0	- - 0, 0	1,0	0,0	, , 0, 0	1,0	1,0	ssessi	ď	Nmm ² N	1,0	, <u>,</u> 0, 1	1,0	0, 0 0, 0	1,0	0,0	1,0	1,0	1,0
ž	ч о о	4 0	9	ගෙ	9	A	ž	-	-	2 10	04	ю Q	Γœ	ი	5 5	12	A	ž	_	- c	n w	4 4	n u	~	∞σ	, 6	12	13
									_																			

Table 5-21: Fracture mechanics assessment for loading variant 2B-1 for component No. 2B (Axisymmetric top component (sliding plate and guide-rail))

Assessment for $\sigma_{\rm Ed} = 0,25 \cdot f_y$ and T = -50 °C

	3	2																			P															
	L N		no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	risk			- I B	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk
$ \begin{array}{ $	T _{Rd}	ç	-17	-15	-14	-13	-13	-13	-13	-12	-12	-12	-12	-12	-12	-12	-12	-12		T _{Rd}	ပု	-17	-15	-14	-13	-13	-13	-13	-12	-12	-12	-12	1	12	77	
W w	T _{Ed}	ပ္	107	88	22	09	20	42	34	28	3	16	9	2	•	4	ę	-13		T_{Ed}	ပ္	117	98	82	20	60	52	44	38	31	26	20	15	ç,	<u>ہ</u> م	v ۳
	ΔT_{DCF}	ပိ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		ΔT_{DCF}	ပ္	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	
	ΔT	ပ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		ΔTε	ပ္	0	0	0	0	0	0	0	0	0	0	0	0	0 0) (
	d ∆T	ç	2 2	Ω Ω	ц ц	φ Ω	Ω	Ω	Ω Ω	Ω Ω	Ω Ω	ц ц	ч С	ς.	φ Ω	Ω Ω	ις LQ	-2		d ΔT _r	ပ ပ	-2	-2	-2	-2	-2	-2	ς.	ς.	<u>ې</u>	-2 -	ς.	ι γ	ρ.	ρι ο	
	۳ ۲	с С	-16	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	÷,	÷,	Ť	Ť	÷	-1(Γ _R T _m	о С	- <mark>-</mark>	<mark>ې</mark>	ې د	ې د	ې د	ې د	ې د	ې د	ې د	ې د	ې د				
	تر AT	°,	2	~	+	2	2	2	2	~	~	~	۲ ۵	~	~	۲ ۲	~	5 7		Γ Δ Γ ²	° °	1 7	~	4	10	10	10	10	6	6	~ ~	~ ~	(C)		- r	
	, ∆T	° °) 2′	8	5	5	5	5	5	0	0	0	0	0 26	0	0	0 26) 26		J ∆T	ç	0 2	й 0	5 0	5	5	й 0	5	5	б О	5	5	й С			
	<mark>κν</mark> Τ ₂₇	ပ ပ	20 -2(50 50	0 -50	50 -70	0 -50	0 -50	0 -20	0 -20	0 -20	0 -50	0 -20	0 -20	0 -20	0 -20	0 -20	20 -20		kv T ₂₇	ပ ပ	20 -20	0-20	0 -20	0-20	0 -20	50 -2(0 -70	0 -70	50 50	0 -20	0 -20	0 0			
	T mor	°	;	7 -2	7 -2	7 -2	7 -2	7 -2	7 -2	7 -2	7 -2	7 -2	7 -2	2	7 -2	7 -2	7 -2	7 -2		T mor	•	2	7 -2	2-	7 -2		22	-	-	7 -2	-	-				
	2	~	0 2	6	8 8	2	9	0	3	0	2	8 8	5	3	2	2	2	2		K _V	7	0 2	6	8	2	9	0	0	0	2	2	5	0 0 0 0		NÖ	N O
	۹ï	°	120,	100,	84,5	72.7	62,5	54,6	47,5	1 40,£	34,5	, 28,6	23,4	18,5	13,5	8,9	4,5	0,4		ΔT	ပ္	120,	100,	84,8	72,7	62,5	54,6	47,	40,6	34,5	28,8	1 23,4	18;	13,	ກູເ ກັນ	4 C
	b _{eff}	² mm	50	60	20	80	6	100	110	120	130	140	150	160	170	180	190	200		b _{eff}	22 mm	50	60	20	80	6	100	110	120	130	140	150	160	170		200
	K _{appl,d}	MPam ^{1/}	33,8	36,2	38,3	40,4	42,4	44,4	46,4	48,4	50,5	52,7	54,9	57,2	59,7	62,1	64,7	67,3		$K_{appl,d}$	MPam ^{1/}	33,8	36,2	38,3	40,4	42,4	44,4	46,4	48,4	50,5	52,7	54,9	57,2	59,7	62,1	67.9
	$K_{appl,d}$	V/mm ^{3/2}	1069	1143	1212	1278	1341	1404	1467	1531	1597	1666	1737	1810	1887	1965	2046	2128		K _{appl,d}	V/mm ^{3/2}	1069	1143	1212	1278	1341	1404	1467	1531	1597	1666	1737	1810	1887	1965	2128
	\mathbf{k}_{R6}	-	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98		k _{R6}	'	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,20
	٩	•	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04		٩		0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,0	0,0 6,0	500
	ę	•	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04		ę	•	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,0	0,0	500
	≯	•	0,30	0,30	0,31	0,31	0,31	0,31	0,31	0,31	0,32	0,32	0,32	0,32	0,32	0,33	0,33	0,33		٨	'	0,30	0,30	0,31	0,31	0,31	0,31	0,31	0,31	0,32	0,32	0,32	0,32	0,32	0,33	0,50
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ľ	•	0,27	0,27	0,27	0,27	0,27	0,28	0,28	0,28	0,28	0,28	0,28	0,29	0,29	0,29	0,29	0,29		Ľ	'	0,27	0,27	0,27	0,27	0,27	0,28	0,28	0,28	0,28	0,28	0,28	0,29	0,29	0,29	0,29
Nr op K, op S, a, K, Mrm	agy	N/mm ²	329	328	327	326	324	322	321	319	316	314	312	310	308	306	303	301		σ _{gy}	N/mm ²	329	328	327	326	324	322	321	319	316	314	312	310	308	306	202 201
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	f _y (t)	N/mm ²	343	340	338	335	333	330	328	325	323	320	318	315	313	310	308	305		$f_{y}(t)$	N/mm²	343	340	338	335	333	330	328	325	323	320	318	315	313	310	305
	f _{y,nom}	N/mm ²	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355		f _{y,nom}	N/mm ²	355	355	355	355	355	355	355	355	355	355	355	355	355	005 1	355
Nr o K, αe_{M} os α_{s}	$K_{1,ges}$	MPam ^{1/2}	31,8	34,0	36,0	38,0	39,8	41,7	43,5	45,4	47,4	49,4	51,4	53,6	55,8	58,1	60,5	62,9		K _{1,ges}	MPam ^{1/2}	31,8	34,0	36,0	38,0	39,8	41,7	43,5	45,4	47,4	49,4	51,4	53,6	55,8	58,1	60,0 62 g
Nr σ_{e} K ₁ σ_{e}/t_{i} σ_{e} σ_{e} τ_{e} K_{i} σ_{e}/t_{i} σ_{e} σ_{e} τ_{e} K_{i}	1,ges	mm ^{3/2}	005	075	139	200	260	318	377	436	498	561	627	695	765	838	912	988		۲, ges	mm ^{3/2}	005	075	139	200	260	318	377	436	498	561	627	695 	765	838	912 988
Nr σ_{e} Ki, σ_{ed} /i, σ_{ed} K, σ_{ed} K,	s x	n ^{3/2} N/	2	9	4	6	7	8	9	-	3	7	2	8	5	4	3	3 1	J	s v	n ^{3/2} N/	2	6	4	0	7	8	9	-		7	2	۳ س		- ·	0 m
Nr σ_{p} K, σ_{edd} σ_{eddd} σ_{eddd} </th <th>Ϋ́,</th> <th>² N/mr</th> <th>53:</th> <th>56</th> <th>09</th> <th>63</th> <th>.99</th> <th>69</th> <th>72</th> <th>26</th> <th>29:</th> <th>82.</th> <th>86.</th> <th>89</th> <th>63</th> <th>-26</th> <th>101</th> <th>105</th> <th>-10 -</th> <th>K,</th> <th>¹² N/mr</th> <th>53</th> <th>56</th> <th>09</th> <th>63</th> <th>.99</th> <th>69</th> <th>72</th> <th>26</th> <th>29:</th> <th>82.</th> <th>86.</th> <th>68</th> <th>63</th> <th>16</th> <th>101</th>	Ϋ́,	² N/mr	53:	56	09	63	.99	69	72	26	29:	82.	86.	89	63	-26	101	105	-10 -	K,	¹² N/mr	53	56	09	63	.99	69	72	26	29:	82.	86.	68	63	16	101
Nr σ_{p} Ki, σ_{Ed} , σ_{ed} , σ_{ed} t_{i} σ_{ed} t_{i} 1 1.0 5.032 0.25 88.8 100 1.96 50 2 1.0 5.694 0.25 88.8 100 2.19 80 3 1.0 6.038 0.25 88.8 100 2.19 80 4 1.0 5.994 0.25 88.8 100 2.35 100 5 1.0 5.694 0.25 88.8 100 2.35 100 1 1.0 5.7293 0.25 88.8 100 2.35 100 1 1.0 8.79 0.25 88.8 100 2.47 100 1 1.0 8.69 0.25 88.8 100 2.51 100 1 1.0 9.736 0.25 88.8 100 2.66 100 1 1.0 9.75 88.8	K,P	N/mm ^{3,}	472	505	536	564	592	620	647	675	704	734	765	797	830	864	868	935	. = L	K _{1,P}	N/mm ³	472	505	536	564	592	620	647	675	704	734	765	167	830	864	035
Nr σ_{p} K, σ_{ed} /l, <th>₽</th> <th>mm</th> <th>50</th> <th>60</th> <th>70</th> <th>80</th> <th>06</th> <th>100</th> <th>110</th> <th>120</th> <th>130</th> <th>140</th> <th>150</th> <th>160</th> <th>170</th> <th>180</th> <th>190</th> <th>200</th> <th>ana</th> <th>t,</th> <th>E E</th> <th>50</th> <th>60</th> <th>20</th> <th>80</th> <th>06</th> <th>100</th> <th>110</th> <th>120</th> <th>130</th> <th>140</th> <th>150</th> <th>160</th> <th>170</th> <th>180</th> <th>000</th>	₽	mm	50	60	70	80	06	100	110	120	130	140	150	160	170	180	190	200	ana	t,	E E	50	60	20	80	06	100	110	120	130	140	150	160	170	180	000
Nr σ_{p} k_{1} σ_{eff} σ_{e} σ_{s} 1 1.0 5333<0.25 88.8 100 2 1.0 6.089 0.25 88.8 100 3 1.0 6.038 0.25 88.8 100 5 1.0 6.589 0.25 88.8 100 5 1.0 6.589 0.25 88.8 100 7 1.0 7.289 0.25 88.8 100 10 1.0 8.71 0.25 88.8 100 11 1.0 8.71 0.25 88.8 100 12 1.0 7.289 0.25 88.8 100 12 1.0 9.78 0.25 88.8 100 13 1.0 9.78 0.25 88.8 100 14 1.0 9.78 0.25 88.8 100 14 1.0 9.78 0.25 88.8 10	a	mm	1,96	2,05	2,12	2,19	2,25	2,30	2,35	2,39	2,43	2,47	2,51	2,54	2,57	2,60	2,62	2,65	5-f	a	E	1,96	2,05	2,12	2,19	2,25	2,30	2,35	2,39	2,43	2,47	2,51	2,54	2,57	2,60	207
Nr σ_{e} K, σ_{ell} <th>g</th> <th>N/mm²</th> <th>100</th> <th>- 0,2</th> <th>σs</th> <th>N/mm²</th> <th>100</th> <th>6</th> <th>001</th> <th>001</th> <th>8 6</th>	g	N/mm ²	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	- 0,2	σs	N/mm²	100	100	100	100	100	100	100	100	100	100	100	6	001	001	8 6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	g	N/mm ²	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	G _{Ed} =	đ	N/mm ²	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	000 888 888
Nr op. K, Nrmm ²² 1 1,0 5,323 2 1,0 5,684 3 1,0 6,598 4 1,0 6,598 5 1,0 5,684 4 1,0 6,598 6 1,0 7,894 10 1,0 7,898 11 1,0 8,619 12 1,0 8,734 13 1,0 9,353 14 1,0 9,353 12 1,0 9,353 13 1,0 9,353 14 1,0 9,353 15 1,0 10,130 16 1,0 10,130 16 1,0 10,530 17 0 5,323 18 1,0 6,038 19 1,0 5,323 10 6,038 6,038 10 1,0 5,323 10 6,038 <th>σ_{Ed}/f_y</th> <th>Ξ</th> <th>0,25</th> <th>t for</th> <th>σ_{Ed}/f_y</th> <th>Ξ</th> <th>0,25</th> <th>0.25</th>	σ_{Ed}/f_y	Ξ	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	t for	σ_{Ed}/f_y	Ξ	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0.25
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Υ.	N/mm ^{3/2}	5,323	5,694	6,036	6,360	6,673	6,982	7,293	7,609	7,934	8,271	8,619	8,980	9,353	9,736	10,130	10,530	ment	, ۲	N/mm ^{3/2}	5,323	5,694	6,036	6,360	6,673	6,982	7,293	7,609	7,934	8,271	8,619	8,980	9,353	9,736	10,130
<u>ν</u> <u>ν</u> <u>ν</u> <u>ν</u> <u>ν</u> <u>ν</u> <u>ν</u> <u>ν</u> <u>ν</u> <u>ν</u>	g	N/mm ²	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	ssess	đ	V/mm ²	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	0, 0	0, 0	 0 0
	ž	-	-	2	e	4	2	9	~	8	6	9	7	12	13	14	15	16	A	ž	-	-	2	e	4	2	9	~	80	6	9	7	12	<u>2</u>	4 4	<u> </u>

Table 5-21:

continued

[e. ≥ T.,	EG KG	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk								
Rd	с С	17	15	14	13	13	13	13	12	12	12	12	12	12	12	12	12
н	°		` [` [-	` [-	י ר	י ר	` [-	` [-	` [-	` [
T _{DCF} T	ŝ	0 7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ΔT ₆ Δ	ç	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ÅT,	ç	-2	ςı	Ŷ	φ	φ	Ŷ	Υ	Ŷ	Υ	Υ	ς	ς	Υ	Υ	Υ	ç
Tmd	ပ	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45
ΔT_R	ĉ	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
$\Delta T_{\rm Z7J}$	°	21	23	24	25	25	25	25	26	26	26	26	26	26	26	26	26
T_{zr_J}	ပ္	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20
, T _{KV}	°C	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20
K _{V,nom}	٦	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27
ΔT。	င့	120,0	120,0	120,0	120,0	120,0	120,0	120,0	120,0	120,0	120,0	120,0	120,0	120,0	120,0	120,0	120.0
\mathbf{b}_{eff}	mm	50	60	20	80	6	100	110	120	130	140	150	160	170	180	190	200
K _{appl,d}	MPam ^{1/2}	8,7	11,3	13,9	15,7	17,3	18,8	20,1	21,3	22,5	23,6	24,7	25,2	25,7	25,7	25,3	25.0
K _{appl,d}	N/mm ^{3/2}	275	356	440	497	548	593	635	675	712	747	780	798	812	812	799	790
\mathbf{k}_{R6}	•	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0 9.8
٩		0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	7 0 T
ę),04 (0,04 (0,04 (0,04 (0,04 (0,04 (0,04 (0,04 (0,04 (0,04 (0,04 (0,04 (0,04 (0,04 (0,04 (04 (
≯		,30 0	30 (.31	31	31	31	.31	31	,32	,32	,32	,32	,32	,33	,33	33
Ľ		0,27 0	0,27 0	0,27 0	0,27 0	0,27 0	0,28 0	0,28 0	0,28 0	0,28 0	0,28 0	0,28 0	0,29 0	0,29 0	0,29 0	0,29 0	0 90 0
g _{gy}	N/mm²	329 (328 (327 (326 (324 (322 (321 (319 (316 (314 (312 (310 (308	306	303	301
f _y (t)	N/mm ²	343	340	338	335	333	330	328	325	323	320	318	315	313	310	308	305
f _{y,nom}	N/mm ²	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355
$\mathbf{K}_{1,ges}$	MPam ^{1/2}	8,2	10,6	13,1	14,8	16,3	17,6	18,9	20,0	21,1	22,1	23,1	23,6	24,0	24,0	23,6	23.3
K _{1,ges}	N/mm ^{3/2}	258	335	414	467	514	557	596	633	667	200	731	747	760	759	747	738
$\mathbf{K}_{1,S}$	N/mm ^{3/2}	137	177	219	248	272	295	316	335	353	371	387	396	403	402	396	391
K _{1,P}	N/mm ^{3/2}	121	157	195	220	242	262	280	298	314	329	344	351	357	357	351	347
4 7	mm	50	60	20	80	6	100	110	120	130	140	150	160	170	180	190	200
a	z mm	1,96	2,05	2,12	2,19	2,25	2,30	2,35	2,39	2,43	2,47	2,51	2,54	2,57	2,60	2,62	2.65
đs	N/mm ²	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
g	N/mm ²	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88.8
σ _{Ed} /fy	Ξ	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0.25
¥,	N/mm ^{3/2}	1,37	1,77	2,19	2,48	2,72	2,95	3,16	3,35	3,53	3,71	3,87	3,96	4,03	4,02	3,96	3 91
đ	V/mm ²	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	10
-	2	÷	2	3	4	5	9	~	8	б	2	Ξ	2	3	4	5	ų

Assessment for $\sigma_{Ed} = 0,25 \cdot f_y$ and $T = -50 \circ C$

Table 5-22:Fracture mechanics assessment for loading variant 2B-2 for component No. 2B
(Axisymmetric top component (sliding plate and guide-rail))

, z T _{5.}		no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk									
Rd T	د	14	13	13	13	13	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
T _{Ed} 1	ပံ	- 11	- 1	- 1	- 1	- 1	- 2	- 2	- 2	- 2	- F	- 2	- 2	- 2	- 1	- 22	3	- 69	- 99	- 5	62 -	99	- 28	- 26	27	۔ ي
ΔT_{DCF}	ပ့	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ΔT	ပ္	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ΔT,	ပ့	Ŷ	ς	ς	Ŷ	ς	Ϋ́	φ	φ	Ϋ́	ιņ	Ϋ́	φ	φ	Ϋ́	Ϋ́	Ϋ́	Ϋ́	φ	Ϋ́	Ϋ́	Ϋ́	Ϋ́	φ	φ	Ϋ́
F	ပ္	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45
27J ΔT _R	ပ ပ	± 1	5 7	5 7	5 7	5 7	5 7	5 7	5 7	\$ 7	5 7	5 7	5 7	5 7	\$ 7	\$ 7	5 7	5 7	5 7	5 7	\$ 7	5 7	5 7	5 7	5 7	5 7
AT .	, ,	0 2	і О	і О	і О	і О	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<mark>ν</mark> Τ ₂₇	ပ ပ	0 -2(0 -2	0 -2	0 -2	0 -2	0 -7	0 -7	0 -7	0 -7	-7 -7	0 -7														
nom T	۔ م	22	22	22	27 -2	22	27 -2	27 -2	27 -2	27 -2	27 -2	27 -2	27 -2	27 -2	27 -2	27 -2	27 -2	27 -2	27 -2	27 -2	27 -2	27 -2	27 -2	27 -2	27 -2	27 -2
⊤ ۲	<u>о</u>	0'0	0,0	0,0	0,0	0,0	0'0	0'0	0'0	0,0	0,0	0'0	0'0	0'0	0,0	7,8	4,4	2,0	9,1	6,8	4,7	2,7	0,9	3,6	5,8	5,9
4	° c	12	12	12	12	5 12	12	12	12	12	12	12	12	12	12	1	11	11	10	5	9	10	10	8	8	б б
bet	1/2 mr	99	75	85	36	10	11	12	13	4	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
K appl,	MPam	23,6	26,6	27,5	28,1	28,5	28,8	29,0	29,2	29,4	29,5	29,7	29,8	30,0	30,1	30,2	30,4	30,5	30,6	30,7	30,8	30,9	31,0	31,2	31,3	31,3
$K_{appl,d}$	N/mm ^{3/}	746	842	870	890	901	606	917	922	928	932	938	943	947	952	955	096	963	968	971	975	978	981	985	989	066
\mathbf{k}_{R6}	'	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98
٩	'	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
ę	'	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
≯	'	0,30	0,31	0,31	0,31	0,31	0,31	0,31	0,32	0,32	0,32	0,32	0,33	0,33	0,33	0,33	0,34	0,34	0,34	0,34	0,35	0,35	0,35	0,36	0,36	0,36
ٽ	'	0,27	0,27	0,27	0,27	0,28	0,28	0,28	0,28	0,28	0,29	0,29	0,29	0,29	0,29	0,30	0,30	0,30	0,30	0,31	0,31	0,31	0,31	0,32	0,32	0,32
g	, N/mm	328	327	325	323	321	320	317	315	313	311	309	307	304	302	300	297	295	293	290	288	286	283	281	279	277
f _y (t)	Nmm;	339	336	334	331	329	326	324	321	319	316	314	311	309	306	304	301	299	296	294	291	289	286	284	281	280
f _{y,nom}	N/mm;	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355
$\mathbf{K}_{1,ges}$	MPam ^{1/2}	22,2	25,0	25,8	26,4	26,7	27,0	27,2	27,3	27,5	27,6	27,8	27,9	28,0	28,1	28,2	28,3	28,4	28,5	28,6	28,7	28,8	28,8	28,9	29,0	29,1
K _{1,ges}	1/mm ^{3/2}	701	791	817	835	846	853	860	865	870	873	878	882	886	890	892	896	899	903	905	907	910	912	915	918	919
K,s	mm ^{3/2} P	371	419	433	443	448	452	456	458	461	463	465	467	469	471	473	475	476	478	479	481	482	483	485	486	487
e,	m ^{3/2} N	30	72	84	93	98	0	8	07	60	11	13	15	17	18	19	21	23	24	26	27	28	29	30	32	32
ž	m/N n	3	3.	õ S	е С	5 3	5 4	5 4	5 4	5 4	5 4	5 4	5 4	5	5 4	5 4	5 4:	5 4:	5 4:	5	5	5	5 4:	5 4:	5 4:	0
a, t	E	9 60	16 73	22 8	28 9	33 1C	37 11	41 12	45 13	49 14	52 15	55 16	58 17	61 18	64 15	66 2C	69 21	71 22	73 23	75 24	77 25	79 26	81 27	83 26	84 25	85 3C
as S	/mm² n	100 2,	100 2,	100 2,	100 2,	100 2,	100 2,	100 2,	100 2,	100 2,	100 2,	100 2,	100 2,	100 2,	100 2,	100 2,	100 2,	100 2,	100 2,	100 2,	100 2,	100 2,	100 2,	100 2,	100 2,	100 2,
ď	Vmm ² N	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8
σ _{Ed} ∕fy	z T	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25
ъ,	√mm ^{3/2}	3,71	4,19	4,33	4,43	4,48	4,52	4,56	4,58	4,61	4,63	4,65	4,67	4,69	4,71	4,73	4,75	4,76	4,78	4,79	4,81	4,82	4,83	4,85	4,86	4,87
ę	//mm² N	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
≿	2	-	3	e	4	5	9	~	8	6	0	-	2	e	4	5	9	4	8	6	2	2	2	ຕ	4	S

Table 5-23:	Fracture mechanics assessment for loading variant 2B-3 for component No. 2B
	(Axisymmetric top component (sliding plate and guide-rail))

Assessment for $\sigma_{Ed} = 0,25 \cdot f_y$ and $T = -50 \circ C$

	≥ T _{Rd}		o risk	o risk	o risk	o risk	o risk	o risk	o risk	o risk	o risk	o risk	o risk	o risk	o risk	o risk	o risk	o risk	o risk	o risk	o risk	o risk	o risk	o risk	o risk	o risk	o risk
1	T _{Ed}	~	4 D	ء د	د ۳	د ۳	ء د	ء 8	ء 8	ء 8	ء 8	ء 8	ء 8	ء 8	ء 8	ء 8	ء 8	2 ۲	2 م	ے ۲	ء 8	ء 8	ء 8	2	ء 8	ے ۲	2
T _{Ed} T	3	° °	1- 11	- 1	- 12	- 1	- 1	- 12	- 12	- 12	- 1	- 1	- 12	- 12	- 12	- 12	4	4	- 1	- 1	- 12	- 12	- 1	- 1	- 12	- 1	77 -1
Ther	3	ပ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ΔT, Δ	•	ပိ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ΔТ,	Ī	ပ္	Υ	Ϋ́	မှ	Ϋ́	မှ	မှ	ပု	ပု	Ϋ́	မှ	မှ	ပု	ပု	φ	φ	ų	ų	မု	φ	φ	မှ	Ϋ́	ပု	မု	-2
. T _{md}		ຸ ເ	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45
	2	° °	4 7	2	2	2	2	5	5	5	5	5	5	5	5	2	2	2	2	6	2	2	2	~ 2	5	6	3 7
	2	° C	0 2	0 0	0	0	0	0 2	0 2	0 2	50	0 2	0 2	0 2	0 2	0 2	0 2	0 2	0 2	0	0 2	0 2	0 2	0	0 2	0	0 2
T _{KV} T	2	ء د	-20 -2	-20	-20 -2	-20 -2	-20 -2	-20 -2	-20	-20	-20	-20 -2	-20 -2	-20	-20	-20	-20	-20	-20	- <mark>20</mark> -2	-20	-20	-20 -2	-20	-20	- <mark>20</mark> -2	-20 -2
- mon V		ſ	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27
T, K	,	c	0'0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
⊲		° u	5 12	5 12	5 12	5 12	5 12	5 12	25 12	35 12	H5 12	55 12	35 12	5 12	35 12	95 12	12 12	5 12	25 12	35 12	15 12	55 12	35 12	5 12	35 12	95 12	0 12
à	,	1/2 m	9	~	8	б	÷	÷	1	÷	1	15	16	1	18	15	50	ń	5	53	5	25	56	21	58	š	30
Kanni	u data	MParr	14,2	14,2	14,1	14,7	16,4	18,1	19,6	20,7	23,1	23,4	24,3	24,5	24,6	24,0	23,3	22,6	22,5	22,4	22,0	22,1	22,0	21,8	21,8	21,7	21,6
Kanni d	n'idda	N/mm ^{3/2}	450	449	446	466	520	573	620	656	669	739	767	776	777	758	737	725	710	707	697	669	694	069	689	685	683
k_{B6}	2	-	1 0,98	1 0,98	1 0,98	1 0,98	1 0,98	1 0,98	1 0,98	1 0,98	1 0,98	1 0,98	1 0,98	1 0,98	1 0,98	1 0,98	1 0,98	5 0,98	5 0,98	5 0,98	5 0,98	5 0,98	5 0,98	5 0,98	5 0,98	5 0,98	5 0,98
9	•	•	0,04	0,0 k	0,0 40	0,0 40	0,0 40	0,0 40	0,0 40	0,0 40	0,0 40	0,0 40	0,0 40	0,0 40	0,0 40	0,0	0,0	5 0,05	5 0,05	5 0,05	5 0,05	5 0,05	5 0,05	5 0,05	5 0,05	5 0,05	5 0,05
۵ ۲	•		,30 0,(,31 0,0	,31 0,0	,31 0,0	,31 0,0	,31 0,0	,31 0,0	,32 0,0	,32 0,0	,32 0,0	,32 0,0	,33 0,0	,33 0,0	,33 0,0	,33 0,0	,34 0,0	,34 0,0	,34 0,0	,34 0,0	,35 0,0	,35 0,0	,35 0,0	,36 0,0	,36 0,0	,36 0,(
Ľ	-		0,27 0	0,27 0	0,27 0	0,27 0	0,28 0	0,28 0	0,28 0	0,28 0	0,28 0	0,29 0	0,29 0	0,29 0	0,29 0	0,29 0	0,30 0	0,30 0	0,30 0	0,30 0	0,31 0	0,31 0	0,31 0	0,31 0	0,32 0	0,32 0	0,32 0
о С	AR -	V/mm ²	328	327	325	323	321	320	317	315	313	311	309	307	304	302	300	297	295	293	290	288	286	283	281	279	277
f.(t)	ž	√mm²	339	336	334	331	329	326	324	321	319	316	314	311	309	306	304	301	299	296	294	291	289	286	284	281	280
funom	1	N/mm ²	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355
K, nes	e a Ri	Pam ^{1/2} I	13,4	13,4	13,3	13,8	15,4	17,0	18,4	19,4	20,7	21,9	22,7	23,0	23,0	22,4	21,8	21,4	20,9	20,8	20,5	20,6	20,4	20,3	20,2	20,1	20,0
(1 nes	en Ri	mm ^{3/2} N	423	422	419	438	488	537	582	615	655	692	718	726	727	209	689	676	662	659	649	651	646	641	640	636	634
ر» ۲	2	nm ^{3/2} N/	24	224	222	232	258	285	308	326	347	367	380	385	385	376	365	358	351	349	344	345	342	340	339	337	336
_		N ^{3/2} N												.,					.,						.,		
Υ.	-	N/mr	199	199	197	206	229	253	274	289	308	325	338	341	342	333	324	318	311	310	305	306	304	302	301	299	298
ţ	-	mm	65	75	85	95	105	115	125	135	145	155	165	175	185	195	205	215	225	235	245	255	265	275	285	295	300
a	•	² mm	2,09	2,16	2,22	2,28	2,33	2,37	2,41	2,45	2,49	2,52	2,55	2,58	2,61	2,64	2,66	2,69	2,71	2,73	2,75	2,77	2,79	2,81	2,83	2,84	2,85
б	2	N/mm	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
b	ł	Nmm ²	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8	88,8
σ⊧ <i>.</i> /f.,	- FC 3	Ξ	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25
¥	-	Wmm ^{3/2}	2,240	2,237	2,221	2,319	2,584	2,848	3,083	3,258	3,468	3,665	3,804	3,847	3,850	3,755	3,649	3,583	3,510	3,492	3,439	3,447	3,422	3,398	3,389	3,371	3,359
ß	-	l/mm ²	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
ż		2	÷	2	3	4	5	9	~	8	6	9	7	12	13	4	15	16	17	18	19	20	3	52	23	24	25

Assessment for $\sigma_{Ed} = 0,25 \cdot f_y$ and $T = -50 \circ C$

Table 5-24:	Fracture mechanics assessment for loading variant 2B-4 for component No. 2B
	(Axisymmetric top component (sliding plate and guide-rail))

_	τ																									
+ /	Ed N	no risk																								
T_{Rd}	ပ္	-14	-13	-13	-13	-13	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12
Ē	ပ္	25	25	25	24	ដ	20	18	16	15	13	÷	9	6	œ	~	6	œ	~	9	9	4	e	e	2	2
ΔT _{DCF}	ပ့	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c
∆T _s	ပ္	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	С
Ľ,	ပ္	Ŷ	ĥ	ιņ	ιņ	ιņ	γ	ĥ	ιņ	ιņ	ĥ	γ	γ	ĥ	ĥ	ĥ	ιņ	γ	γ	ĥ	ĥ	ĥ	ĥ	ĥ	γ	ç
P ^m _L	ပ့	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	45
ΔT _R	ပ့	7	2	7	7	7	7	2	7	7	2	7	7	2	2	2	7	7	7	2	2	7	7	7	7	~
ΔT ₂₇	ပ္	24	25	25	25	25	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26
T _{27J}	ပ္	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	
T _{KV}	ပ္	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	00
K _{V,nom}	-	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	77
∆T₀	ပ့	68,2	68,3	67,7	66,9	64,7	62,6	60,7	59,2	57,6	55,9	54,5	53,1	51,8	50,7	50,2	52,3	51,4	50,4	49,1	48,5	47,3	46,4	45,6	44,9	11 E
b _{eff}	E E	65	75	85	95	105	115	125	135	145	155	165	175	185	195	205	215	225	235	245	255	265	275	285	295	300
K _{appl,d}	MPam ^{1/2}	42,7	41,9	41,4	41,0	41,1	41,2	41,3	41,3	41,3	41,5	41,6	41,7	41,7	41,8	41,7	40,8	40,8	40,9	41,0	41,0	41,2	41,2	41,3	41,3	11.2
K _{appl,d}	l/mm ^{3/2}	1352	1325	1308	1297	1299	1302	1305	1305	1308	1312	1314	1317	1320	1321	1317	1290	1290	1293	1297	1296	1302	1304	1305	1307	1307
k _{R6}	' z	0,87	0,87	0,87	0,86	0,86	0,86	0,86	0,86	0,86	0,86	0,85	0,85	0,85	0,85	0,85	0,85	0,84	0,84	0,84	0,84	0,84	0,83	0,83	0,83	23.0
٩	•	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,02	0,02	0,02	0,02	0,02	0,02	000
ą	'	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0.05
≯	•	0,30	0,31	0,31	0,31	0,31	0,31	0,31	0,32	0,32	0,32	0,32	0,33	0,33	0,33	0,33	0,34	0,34	0,34	0,34	0,35	0,35	0,35	0,36	0,36	0.36
Ľ	•	0,81	0,82	0,82	0,82	0,83	0,83	0,84	0,84	0,85	0,86	0,86	0,87	0,87	0,88	0,89	0,89	0,90	0,91	0,92	0,92	0,93	0,94	0,95	0,96	000
σ _{gy}	Nmm²	328	327	325	323	321	320	317	315	313	311	309	307	304	302	300	297	295	293	290	288	286	283	281	279	770
f _y (t)	N/mm ²	339	336	334	331	329	326	324	321	319	316	314	311	309	306	304	301	299	296	294	291	289	286	284	281	08C
f _{y,nom}	N/mm ²	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355
K _{1,ges}	Pam ^{1/2}	35,3	34,6	34,2	33,9	33,9	33,9	34,0	34,0	34,0	34,1	34,1	34,2	34,2	34,2	34,1	33,3	33,3	33,3	33,4	33,4	33,5	33,5	33,5	33,5	33 E
1,ges	nm ^{3/2} M	118	960	081	071	072	073	075	074	075	078	079	080	081	082	077	054	053	054	057	055	058	059	059	059	050
1,S H	1m ^{3/2} N/	05 1	99	95 1	92 1	93 1	93 1	93 1	93 1	94 1	94	95 1	95 1	95 1	95 1	94	88	88	88	89 1	88	89 1	89 1	89 1	89 1	1 1
1,P K	m ^{3/2} N/n	13 3	36 2	36 2	78 2	79 2	30 2	31 2	31 2	32 2	33 2	34 2	35 2	36 2	36 2	33 2	36 2	36 2	57 2	38 2	57 2	39 2	20	70 2	70 2	с 02
¥.	m M M	9 2	5 7	5 7	5 7.	J5 7.	15 7.	25 7.	35 7.	45 7.	55 7;	35 7.	75 71	35 7.	35 7.	35 7.	15 7(25 7(35 71	45 71	55 71	35 71	75 7.	35 7.	35 7.	
10 t	E E	9 60	16 7	22 8	28 9	33 1(37 1	41 12	45 15	49 1	52 15	55 1t	58 17	61 15	64 15	66 2(69 21	71 22	73 2:	75 24	77 2!	79 2(81 27	83 28	84 25	85 3(
σs	mm² m	00 2,	00 2,	00 2,	00 2,	00 2,	00 2,	00 2,	00 2,	00 2,	00 2,	00 2,	00 2,	00 2,	00 2,	00 2,	00 2,	00 2,	00 2,	00 2,	00 2,	00 2,	00 2,	00 2,	00 2,	00
α _P	mm ² N/I	56,3 1	36,3 1	36,3 1	36,3 1	36,3 1	36,3 1	36,3 1	36,3 1	36,3 1	36,3 1	36,3 1	36,3 1	36,3 1	36,3 1	36,3 1	36,3 1	36,3 1	36,3 1	36,3 1	36,3 1	36,3 1	36,3 1	36,3 1	36,3 1	36.2
₅edfy	ž E	0,75 2t	0,75 2t	0,75 2t	0,75 2t	0,75 2(0,75 2t	0 7E 04																		
K,	/mm ^{3/2}	3,052	2,991	2,952	2,924	2,926	2,931	2,934	2,932	2,936	2,942	2,946	2,949	2,952	2,953	2,942	2,878	2,875	2,879	2,886	2,881	2,890	2,893	2,893	2,893	2 803
g D	/mm² N/	1,0 ;	1,0	1,0 2	1,0 2	1,0 2	1,0	1,0	1,0 2	1,0 2	1,0	1,0 2	1,0	1,0	1,0	1,0	1,0 2	1,0 2	1,0	1,0	1,0	1,0	1,0	1,0	1,0	0
-	Ż	_	~	~	**	10		~			0	-	2	3	4	5	9	~	8	6	0	5	N	e	4	N N

Fracture mechanics assessment for loading variant 2B-5 for component No. 2B (Axisymmetric top component (sliding plate and guide-rail))

Assessment for $\sigma_{Ed} = 0,75 \cdot f_{\gamma}$ and T = -50 °C

Table 5-25:

Pa	2																									
T ≤ La T		no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk
T_{Rd}	°	-14	-13	-13	-13	-13	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12
T _{Ed}	ပ္	45	4	32	29	27	25	22	21	19	17	15	14	13	5	15	14	13	12	7	;	4	4	e	2	ç
ΔT _{DCF}	ပ္	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c
ÅT	ပ္	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	¢
ΔT,	ပ္	Ŷ	Ϋ́	Ŷ	Ϋ́	ιņ	Ŷ	Ϋ́	u																	
Lmd	ပ္	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	A F
ΔT	ပ္	7	7	7	2	2	2	2	2	2	2	7	7	2	2	7	2	7	7	7	2	2	2	2	2	٢
, ΔΤ ₂₇ J	ပ	24	25	25	25	25	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	00
, T _{27,}	ပ္	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	c
om T _{KV}	°	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	
⊾ K	L L	0 27	2 27	2 27	3 27	9 27	5 27	5 27	7 27	3 27	1 27	4 27	9 27	5 27	3 27	1 27	7 27	9 27	9 27	7 27	1 27	4 27	7 27	0 27	2 27	6
ΔT	ပိ	88'(84,2	75,2	72,3	69'6	67,6	65,5	63,7	61,8	60,	58,4	56,9	55,5	543	58,	56,7	55,9	54,9	53,7	53,	47,4	46,7	46,0	45,2	0 0 0
beff	^{/2} mm	65	75	85	95	105	115	125	135	145	155	165	175	185	195	205	215	225	235	245	255	265	275	285	295	000
K _{appl,d}	MPam ¹	38,0	38,1	39,5	39,6	39,7	39,8	40,0	40,0	40,2	40,3	40,4	40,5	40,6	40,7	39,4	39,6	39,6	39,6	39,7	39,7	41,1	41,2	41,2	41,2	0.44
K _{appl,d}	N/mm ^{3/2}	1203	1206	1249	1254	1257	1260	1264	1266	1271	1275	1279	1282	1285	1288	1247	1252	1251	1253	1257	1256	1301	1302	1302	1304	1001
\mathbf{k}_{R6}		0,87	0,87	0,87	0,86	0,86	0,86	0,86	0,86	0,86	0,86	0,85	0,85	0,85	0,85	0,85	0,85	0,84	0,84	0,84	0,84	0,84	0,83	0,83	0,83	000
٩	•	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,02	0,02	0,02	0,02	0,02	0,02	000
ę	•	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	500
۶	•	0,30	0,31	0,31	0,31	0,31	0,31	0,31	0,32	0,32	0,32	0,32	0,33	0,33	0,33	0,33	0,34	0,34	0,34	0,34	0,35	0,35	0,35	0,36	0,36	0000
Ľ	•	0,81	0,82	0,82	0,82	0,83	0,83	0,84	0,84	0,85	0,86	0,86	0,87	0,87	0,88	0,89	0,89	0,90	0,91	0,92	0,92	0,93	0,94	0,95	0,96	000
g _{gy}	N/mm ²	328	327	325	323	321	320	317	315	313	311	309	307	304	302	300	297	295	293	290	288	286	283	281	279	10
f _y (t)	N/mm ²	339	336	334	331	329	326	324	321	319	316	314	311	309	306	304	301	299	296	294	291	289	286	284	281	000
f _{y,nom}	N/mm ²	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	
K _{1,ges}	IPam ^{1/2}	31,5	31,5	32,6	32,7	32,8	32,8	32,9	33,0	33,0	33,1	33,2	33,2	33,3	33,3	32,3	32,3	32,3	32,3	32,4	32,3	33,4	33,4	33,4	33,4	
(1,ges	mm ^{3/2} N	36 2	997	032	035	037	039	041	042	045	047	050	051	053	054	020	023	021	022	024	022	058	057	057	057	L L C
(_{1,S} I	nm ^{3/2} N/	172	72	82	83	83	84	84	85 1	85 1	86 1	87 1	87 1	88	88	1 62	1 62	1 62	1 62	80	1 1	1 189	1 189	88	1 189	
4'' P	nm ^{3/2} N/r	23 23	25 2	50 2	52 2	54	55 2	57 23	58	.09	61 2	63	64	. 99	. 99	42	43	43	43	44	43	69	69	68	69	
t, k	u/N mu	35 7	75 7	35 7	35 7	05 7	15 7	25 7	35 7	45 7	55 7	65 7	75 7	85 7	95 7	05 7	15 7	25 7	35 7	45 7	55 7	65 7	75 7	85 7	95 7	r 00
a ₀	mm m.	;,09 é	3,16 7	3,22	,28 5	33 1	37 1	41 1.	,45 1	,49 1	,52 1	,55 1	.,58 1	,61 1.	.,64 1	,66 2	3,69 2	3,71 2	,73 2	,75 2	,77 2	,79 2	3,81 2	,83 2	3,84 2	C L C
đs	/mm² r	100 2	100 2	100 2	100 2	100 2	100 2	100 2	100 2	100 2	100 2	100 2	100 2	100 2	100 2	100 2	100 2	100 2	100 2	100 2	100 2	100 2	100 2	100 2	100 2	001
đ	V/mm ² N	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	0 000
σ _{Ed} /f _y	Z E	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	11 0
λ,	V/mm ^{3/2}	2,716	2,722	2,818	2,826	2,831	2,836	2,843	2,846	2,853	2,860	2,866	2,871	2,875	2,878	2,785	2,792	2,789	2,790	2,795	2,791	2,888	2,887	2,885	2,887	100 0
đ	l/mm ² N	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	
ż	2	÷	2	e	4	2	9	~	8	6	9	7	12	13	14	15	16	17	18	19	20	3	5	33	24	2

Fracture mechanics assessment for loading variant 2B-6 for component No. 2B (Axisymmetric top component (sliding plate and guide-rail))

Assessment for $\sigma_{Ed} = 0,75 \cdot f_y$ and T = -50 °C

Table 5-26:

5.5 Component No. 3 – Axisymmetric bottom component of bearing

5.5.1 Geometry, load assumptions and boundary conditions

(1) Component No. 3 is the axisymmetric bottom component of the bearing, see Figure 5-44.

Figure 5-44: Component No. 3 – Axisymmetric bottom component of the bearing

(2) Table 5-27 gives the range of geometrical dimensions for component No. 3.

Table 5-27:	Ranges of geometrical	dimensions for Detail 3
-------------	-----------------------	-------------------------

t ₁ [mm]	t₂ [mm]	t₃ [mm]	D [mm]	b [mm]	r [mm]
20 – 55	20 – 60	35 – 150	330 - 1800	40 - 100	135 - 590

(3) The fracture mechanics assessments are carried out for the <u>loading variant 3-1</u> for a plate welded to the cylindrical part and for the <u>loading variant 3-2</u> for the cylindrical part itself, see Figure 5-45.

Figure 5-45: Loading variants for component No. 3: Loading variant 3-1: Horizontal loading (left), Loading variant 3-2: Vertical loading (right)

- (4) For <u>loading variant 3-1</u> the welded connection is detailed as a K-weld. The location for a potential crack initiation for this detail is the weld toe according to Figure 5-45 (left); the crack path is perpendicular to the plate surface. The hypothetical loading is horizontal (perpendicular to the crack), so that the external nominal stress load σ_N is equal to the unit loading.
- (5) The <u>loading variant 3-2</u> is applied to the proper bottom component. For simplicity reasons the cylindrical recess is not modelled. The crack will be applied according to Figure 5-45 (right) at the re-entrant corner with an angle of 45°, the depth of which is determined from the plate thickness t_2 .

The loading in vertical direction as applied is not very realistic. The bottom component is loaded realistically by a horizontal loading component, which gives only small fracture mechanics requirements. Therefore the hypothetical vertical loading has been chosen, to create conservatively a significant tensile stress for the crack.

(6) The magnitude of the stress intensity factors for loading variant 3-1 depends only on the plate-thickness t₁. Therefore only a single configuration is studied.

For the loading variant 3-2 the investigations are carried out for two bounds of geometrical dimensions, see Table 5-28, taking account of the influence of the width b+r of the cylindrical part. For the upper bound of geometrical dimensions the maximum value b+r = 690 mm was used, for the lower bound the minimum value at the lower bound b+r = 175 mm was chosen. As a consequence of the choice of vertical loading and for achieving the maximum bending moment at the crack-location assumed the width of the bottom component D was fixed with the maximum value D = 1800 mm.

Table 5-28:	Upper and lower bounds of the geometrical dimensions for loading variant 3-2
	opper and lower bounds of the geometrical annensions for loading variant 5 2

Upper	bounds	Lower	bounds
t ₂ [mm]	20 - 60	t ₂ [mm]	20 - 60
t₃[mm]	150	t ₃ [mm]	150
D [mm]	1800	D [mm]	1800
b + r [mm]	690	b + r [mm]	175

(7) Figure 5-46 shows a section of the plot of deformations and the crack opening for the loading variants 3-1 and 3-2 from the FE-model.

Figure 5-46: Section of plot with deformations and crack opening for loading variant 3-1: welded plate to the bottom component (left) and for loading variant 3-2: cylindrical part of the bottom component (right)

5.5.2 Hot-Spot stresses

- (1) The stresses σ_{HS} necessary for the fracture mechanics assessment are calculated for loading variant 3-1 according to the bending theory.
- (2) The nominal stress σ_{Ed} is equal to σ_{HS} and corresponds to the external stress loading applied to the FE-model.
- (3) In Figure 5-47 (left) the distribution of the Hot-Spot-stresses for the upper bound of geometrical dimensions is shown for <u>loading variant 3-2</u>. There is a decrease of σ_{HS} converging to a small value.

Also the stress distribution as calculated from the bending theory is plotted, which is qualitatively analogous however yields about double the stresses rather than σ_{HS} for small values t_2 . The evaluation and the performance of the fracture mechanics assessment therefore is made with the Hot-Spot-stresses.

(4) Figure 5-47 (right) shows the corresponding function of Hot-Spot-stresses for the loading variant 3-2 and the lower bound for geometrical dimensions.

Figure 5-47: Hot-Spot-stresses due to external unit loading for loading variant 3-2 - vertical loading; for upper bound of geometrical dimensions (left), for lower bound of geometrical dimensions (right)

5.5.3 Stress-intensity factors

- (1) The fracture mechanics investigations for <u>loading variant 3-1</u> were carried out up to a thickness of 200 mm.
- (2) The trend from the calculations is that the stress-intensity factors K_1 increase with increasing plate thickness t_1 (and increasing crack depth a_0), see Figure 5-48 (left).

The crack depth for a plate with t = 10 mm is $a_0 = 1,151$ mm and for the maximum plate thickness (t = 100 mm) $a_0 = 2,303$ mm.

(3) Figure 5-48 (right) shows the reduction of the stress-intensity factors related to a constant load F_H with increasing plate thickness.

Figure 5-48: K-values for detail 3-1 caused by an edge loading σ_N (t) = 1 N/mm (left); K-values related to a constant load F_H = const. (right)

- (4) In addition the influence of the throat thickness a_w was checked for three thicknesses a_w. Figure 5-48 (right) makes clear that larger throat thicknesses are more critical, however the influence is rather small. For the fracture mechanics assessments the largest throat thickness was used.
- (5) For loading variant 3-2 Figure 5-49 (left) shows the functions of the K-values for the upper bound and lower bound of the geometrical dimensions. The K₁-value decreases with increasing plate thickness t₂ and is converging to zero for very large plate-thicknesses.

The smaller the width b+r of the bottom component the larger is the stress-intensity factor.

The influence of mode 2-stresses can be neglected.

(6) The Figure 5-49 (right) gives the function of the normalized \overline{K} -values related to $\sigma_{HS} = 1 \text{ N/mm}^2$ at the Hot-Spot. Apparently the relevant case for the fracture mechanics assessment is the case of lower bound of geometrical dimensions.

Figure 5-49:K-values for the loading variant 3-2 with variation of the plate thickness t2; K-values
for the unit-loading (left), \overline{K} -values related to σ_{HS} = 1 N/mm² at the Hot-Spot (right)

(7) Figure 5-50 gives the effects of a variation of the thickness t_3 of the bottom component of the bearing. The K-value is not influenced by t_3 . The relevant parameter for variation is the plate thickness t_2 as presented in Figure 5-49.

Figure 5-50: K-values for the loading variant 3-2: variation of the plate thickness t₃; K-values due to unit loading

5.5.4 Assessments to avoid brittle fracture

- The assessments to avoid brittle fracture are carried out for <u>loading variant 3-1</u> in Table 5-31 and for <u>loading variant 3-2</u> in Table 5-32.
- (2) The results for which examples of the tabular calculations are given in Table 5-31 and Table 5-32 are presented in Table 5-29 and Table 5-30.

Table 5-29:	Limits of plate thickness [mm] for the bottom component of the bearing (loading
	variant 3-1)

Steel grade acc. to EN 10025	$\sigma_{\sf Ed}$	0°C	-10°C	-20°C	-30°C	-40°C	-50°C
\$355J2	$0,25 \cdot f_y$	250 ^{*)}					
\$355J2	0,50 · f _y	250 ^{*)}					
\$355J2	0,75 · f _y	250 ^{*)}	250 ^{*)}	250 ^{*)}	200	140	110

*) Assumption of a technical manufacturing limit (in theory element thicknesses with $t \ge 250 \text{ mm}$ would be acceptable)

Steel grade acc. to EN 10025	$\sigma_{\sf Ed}$	0°C	-10°C	-20°C	-30°C	-40°C	-50°C
S355J2	$0,25 \cdot f_y$	200 ^{*)}					
\$355J2	0,50 · f _y	200 ^{*)}					
\$355J2	0,75 · f _y	200 ^{*)}	200*)				

Table 5-30:Limits of plate thickness [mm] for the bottom component of the bearing (loading
variant 3-2)

*) Assumption of a technical manufacturing limit (in theory element thicknesses with $t \ge 200 \text{ mm}$ would be acceptable)

Table 5-31:		F	rac	tu	re	me	ech	an	ics	s a	SS	es	sm	eı	nt for loadi	ng v	ar	ian	t 3	3-1	fc	r	СС	m	ро	ne	ent	; N	о.	3	
- - - - - - -	no risk no risk	no risk no risk	no risk	no risk no risk	no risk	no risk	no risk	no risk	no risk no risk	no risk	no risk	no risk	no risk no risk	no risk		T _{Ed} ≥ T _{Rd}	-	no risk no risk	no risk	no risk	no risk no risk	no risk	no risk no risk	no risk	no risk	no risk no risk	no risk	no risk	no risk	no risk	no risk no risk
L Had	0 8 7 8 7 8 7 7	8 -36 -33	4	5 -26 -22	16	17	5 - 12 5 - 15	9 	9 7 7	 	- 13	6 -13	۳ ۲ ۲ ۲	- 13		d T _{Rd}	ပ္	7 -38	8 -36	4 -33	4 -30 -26	- 7 0	10		2 -15	6 7 4 7		0 -13	÷ ÷	- - -	-13
ц Т	ະ ດ ດ 	ö ř	ڻ ٿ	ο ο	24	4 6	აფ	20	ñ ñ	1 1	÷	÷	÷ ÷			CF T		20 20	Ř	Ō	Ω.4	4	й ř	5 74	2	~ ~		÷		0 0	
° AT	000	00	0 0	00	, 0	00	>0	0 0	00	00	0	0	00			, ΔT _C	ç	00	0	0	00	0	00	, 0	0	00	, 0	0	00	00	00
Γ, ΔT	000 000	0 0	00	00	, 0	00	o د م م	0	00	0 C	0	0	00			, ∆T	ပ္ ပ	00	0	0		, 0	00) O	0	00) O	0	00		0 0
	<mark>ດ 25 5</mark>	<mark>2 22</mark>	ې به <mark>دي</mark> ا	<mark>ይ አ</mark>	<mark>ງ ເ</mark>	<mark>гу к</mark>	ດ ເ	22 22	ч <mark>22</mark> к	r y <mark>g g</mark>	22 52	5 <mark>2</mark>	ις ις κ	2 LC			ະ ບ	<mark>හි සි</mark>	92 32	ې د ک	<mark>r v</mark>	ີ ທ	<mark>ю к</mark>	າ ມີ ເ	35 35	<mark>ہ ہ</mark>	<mark>ງ ຫຼ</mark>	35	ч <mark>Ю</mark> Ч	r r	35 35 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Tr _R T	° ~ ~	~ ~	. ~ .	 	- ~		~ ~				- ~					ΔT _R T	ပ္	~ ~	- 2	-	 	- - ~		- 1-	- 2	 	- 1-		- r	- ~	7
1 ₂₇ , 1	ပ္ _၀ –	2 10	0 00 !	12	0	25	3 2	4	24 7	22	25	25	25	99		T _{27.1} /	ပ	0 -	5	5	» C	10	61	52	23	54	55	25	25	25	25 26
Z7 V.	ໍ ບ ₂ ຊ	2 2	រស	 ສ ສ	3 ຊ	2 2	3 8	8	88	2 2	1 2	50	ຊິຂ			.⊽ rz	с U	2 2	20	20	8 8	3 8	្តន	3 2	S	88	2 2	S	ខ្លួន	2 2	2 2
T Kv	۰۰۰۹ <mark>۵</mark> ۵۵	-20 -20	-20	-20 -20		- <mark>-20</mark>	- 50 - 50	-20			-20	-20		00		T _K V	° ပ	-20 -20	-20	- <mark>-20</mark>		- <mark></mark>	- <mark>-00</mark>	- <mark>50</mark>	-20	-20 -20	- <mark></mark>	-20	0 0 0		20 -20
K ^{v,nom} .	ل 27	27	27	27	27	27	27	27	27	27	27	27	27	27		K _{V,nom}	~	27	27	27	27	27	27	27	27	27	27	27	27	27	27
ΔT _e	°C 120,0 120,0	110,9 96,8	86,9	79,2 72.9	67,6	63,0 58.0	55,2	51,9	48,8	40,0 43,3	40,9	38,6	36,5	10.8		ΔTσ	ပ္	120,0 120.0	110,9	96,8	86,9 79.2	72,9	67,6 63.0	58,9	55,2	51,9 48.8	46,0	43,3	40,9 29.6	36.5	34,4 22,9
b _{eff}	mm 15	5 52	8	35 40	4 5	50 55	6 0 0	65	2 %	ç 8	85	6	95 100	000		b _{eff}	m	15 10	20	25	99 99 92 99	} 9	45	33	09	65	75	80	82	92 62	100 140
Kappl.d	² MPam ^{1/2} 34,7 37,4	39,3 40.9	42,1	43,2 44,2	45,1	45,9 46.7	40,7 47,5	48,2	48,9 10.6	4%,0 50,2	50,8	51,4	52,0 52,6	50.8		K _{appl,d}	MPam ^{1/2}	34,7 37,4	39,3	40,9	42,1 43.2	44,2	45,1 45,0	46,7	47,5	48,2 48.0	49,6	50,2	50,8 E1 A	52.0	52,6 55,8
Kappl,d	Nmm ³ 1097 1182	1244 1293	1332	1367 1398	1426	1453	14/0	1524	1546 1568	1588	1608	1627	1645 1664	1890		K _{appl,d}	Nmm [°]	1097 1182	1244	1293	1332	1398	1426	1478	1502	1524 1546	1568	1588	1608	1645	1664 1764
k _{R6}	- 0,86 0,86	0,86 0.87	0,87	0,87 0.87	0,87	0,87	0,87 0,87	0,87	0,87	0,87	0,87	0,86	0,86	0.85		k _{R6}	•	0,86 0.86	0,86	0,87	0,87 0.87	0,87	0,87	0,87	0,87	0,87	0,87	0,87	0,87	0,00 0.86	0,86 0,86
٩	0,03	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0.03		٩	•	0,03	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0.04	0,04
و	2 0,04	0,04	0,04	0,04	0,04	0,04	0,04 0,04	0,04	0,04	0,04	0,04	0,04	0,04	000		٩	•	2 0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	I 0,04	0,04	0.04	0,04
≯	5 0,32 3 0,32	2 0,3 0,3	1 0,3	1 0,3(1 0,3(1 0,3(1 0,3(1 0,3(- 0 0 0 0 0	ο Ο Ο Ν Ν	2 0,3	2 0,3	9 0 9 0 9 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		≯	1	5 0,3 0,3 0,3	2 0,3	2 0,3	1 0,3	1 0,30	1 0,3(1 0,3(1 0,3(1 0,0 0,0	- 6, 0,3, 10,1	2 0,3	э́о́ о́о́ о́о́	0.0 0.0 0	3 0,3 5 0,3
Ľ	2 0,8 0 0,8	14 0,8 0.8	8,0,8	8,0 8,0 8,0	20 0,8	0,8 0,8 0,8	0,00 0,00 0,00	8 0,8	7 0,8 7 0,8	0,8 10,8 10,8	5 0,8	4 0,8	0,8 0,8 0,8			" , Ľ	- -	2 0,8	4 0,8	6 0,8	800	6,0,8	0,0 8,0 8,0	20 08 0	8 0,8	8 0 8 7 0 8	20 70 80	6 0,8	5 0,8	1 0.8 0.8 0.8	2 0,8 0,8
ت ع	m ² N/m 31 32 32 32		8	9 9 9 9	7	6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 G 0 0	6		3 6 2 6	4 32	33		50		t) מ	m² N/m	33 37 33 37 33 37	0 32	6 33		23	4 0	3 6	0 33	ο α	9 69 9 09	5 32	4 c		33
u t ² (m ² N/m 5 35 35	5 36 36	5 34	2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	34	5 34	0 10 1 20 1 20	5 33	5 33 33	99 0 99 0 99 0	5 33	5 33	5 33 33	20		™ fy(m² N/m	5 G 32 32	5 35	5 34	27 37 37 37	5 34	5 34	0 10 17 17	5 34	5 73 33	2 2 2 2 2	5 33	5 33 33	33 o 33 o	5 33
-fyn	35 35 35	35 35	35	39.39	38	35	35	35	39	3 8	35	35	35	35	-	s f _{y,n}	m/N ™	35 35	35	35	8 8	32	35	38	35	39	38	35	9 2 2 2 2 2 2	8 8	35
K ^{1,ge}	² MPar 28,5 30,8	32,5 33,5	34,8	35,8 36,6	37,3	38,0	39,3	39,6	40,4	4 4 7 7	42,0	42,5	43,0	48.0		K _{1.9} e	⁴ MParr	30.5	32,5	33,6	34,6	36,6	37,3	38,7	39,3	39,5	41,0	41,5	42,0	43.0	43,4
K _{1,ges}	² N/mm ^{3/} 902 975	1027 1068	1102	1131 1157	1180	1202	1242	1261	1279	1312	1328	1343	1358 1373	1547		K _{1,ges}	N/mm	902 975	1027	1068	1102	1157	1180	1223	1242	1261	1296	1312	1328	1358	1373 1451
30 °C	246 266	281 292	301	309 316	322	328	339 339	344	349 354	358 358	363	367	371	422	10 °C	K _{1,S}	N/mm ^{3/}	246 266	281	292	301 309	316	322 328	334	339	344 340	354	358	363	371	375 396
T = -3	N/mm ^{3/2} 656 708	747 777	801	822 841	858	874	868 903	916	929 042	954 954	965	677	988 908	1124	T = -4	К _{1,} Р	N/mm ^{3/2}	656 708	747	777	801 822	841	858 874	889	903	916 a2a	942	954	965 0.77	988 988	998 1055
and t	10 15	25 25	8	86 9	5 8	50	88	65	۶ ¥	ç 8	85	6	95 100	000	and	1 7	E	15	20	25	8 8	6	45	32	09	65	75	80	35	8	140
5·fy	mm 1,15 1,35	1,50 1.61	1,70	1,78 1.84	5,1	1,96 2,00	2,05 2,05	2,09	2,12 2,12	2,19 2,19	2,22	2,25	2,28	2,65	5·fy	a	ш	1,15 1.35	1,50	1,61	1,70	1,84	1,90 1,90	2,00	2,05	2,09 2,13	2,16 2,16	2,19	2,22 2,22	2,28	2,30
: 0, 7!	100 100 100 100 100 100 100 100 100 100	100 100	100	100 100	100	100	100	100	100	00	100	100	100	100	: 0, 7	đ	N/mm²	100	100	100	100	100	100	100	100	100	100	100	100	001	100 100
σ _{Fd} =	Vmm ² 266,3 266,3	266,3 266,3	266,3	266,3 266,3	266,3	266,3 256,3	266,3 266,3	266,3	266,3 266,3	266,3	266,3	266,3	266,3 266,3	266.3	σ_{Ed} =	g	V/mm ²	266,3 266,3	266,3	266,3	266,3 266,3	266,3	266,3 766.3	266,3	266,3	266,3 266,3	266,3	266,3	266,3 ^ e e 3	266.3	266,3 266,3
for ^{t∈dfty}	[-] 0,75 0,75	0,75 0.75	0,75	0,75 0.75	0,75	0,75 75	0,75	0,75	0,75 75	0,75 0.75	0,75	0,75	0,75 7.5	75	for	r _{ed} /fy	ī	0,75 0.75	0,75	0,75),75),75	0,75	0,75	0,75	0,75	0,75 75	0,75	0,75	0,75	0.75	0,75
nent K	mm ^{3/2} ,462 (,661 (,805	,008	,087 158 (, 130	,282	,392 (,442	,491	,538 583	,626	,668	749 (223	ıent	K, 6	⁷¹⁰ mu	,462 (661 (,805 (,917	087	,158 (,222	,339 (,392	442	,431	,583	,626	804 ¹	,749
essn	0 2 2	0,0	0,0	0, 0 6, 6, 6	ο 	0, 0 6, 0	υ, Ο, 1. ω	,0	0, c 6, c	0, 0 1, 0	, 0, 	,0	0, 0 6, 6	0 4	essn	ę.	nm ² N/I	0,0	,0	,0	0, 0 0, 0	5 O. 6	0, 0 6, 0	ο ο ο ο	,0 3	0, c 6, c	ο 	,0	0, 0 6, 0	5 O	,0 33
Ass Ir	5 1 N	с с	2	4 6	- 80	с т о (2 -	2	с т т	4 10	1	1	<u>80</u> 0		Ass	° : +	۲		3	4	 	1	~ ~	, 0	-	2 0	24	1	1 0	~ ~	6 0;
Z	1,			- 14		-' -					-		~ ~	10		2	1		.,	•				-	-	~ ~		-	~ ~		- 0

69

Table 5-31	:				C	on	ıti	nı	ue	d											
	Ed ≥ T _{Rd}	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk								
-	<u>ະ</u> 	-38	-37	-36	93	ę	-26	-22	-19	-17	-16	-15	-14	-14	-13	-13	-13	-13	-13	-13	-13
E	ီးပိ	1	4	89	5	4	ŝ	ຄ	52	ຊ	16	5	6	و	e	•	Ņ	4	Ļ	ę.	-11
1 T	မီပိ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ļ	ီးပ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
F.	န်ဂိ	ι'n	φ	φ	φ	φ	φ	φ	φ	မှ	φ	φ	φ	ų	φ	φ	ιç	φ	φ	φ	Ŷ
<mark>⊢</mark>	<u>ະ</u> ຕ	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45
TA .	₹ ₹	7	2	2	2	7	~	~	~	7	~	~	-	-	~	~	~	~	~	~	2 3
Ţ	5 0 5	0	1	0	5	8	12	16	15	21	52	33	24	24	25	25	25	25	25	55) 25
<u> </u>	<u>ຊ</u> ່ວ 20	0 -20	0 -2C	0 -2C	0 -2C	0 -20	0 -20	0 -20	0 -20	0 9 0	0 -2C	0 -20	0 -20	0 -2C	0 -20						
F	:	?	?	?	?	ç	ç	ç	ç	Ņ	?	?	?	Ņ	?	?	4	ç	ç	?	-2
2		0 27	0 27	9 27	8 27	9 27	2 27	9 27	6 27	0 27	9 27	2 27	9 27	8 27	0 27	3 27	9 27	6 27	5 27	4 27	5 27
11 AT	ိုပ္	120,	120,	110,	96,8	86,9	79,	72,9	67,(63,(58;	55,	51,5	48,8	46,(43,	40,	38,6	36,	34,	31,
2	m m m	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	60	95	100	110
z	MPam ^{1/2}	34,7	37,4	39,3	40,9	42,1	43,2	44,2	45,1	45,9	46,7	47,5	48,2	48,9	49,6	50,2	50,8	51,4	52,0	52,6	53,3
z	Vmm ^{3/2}	1097	1182	1244	1293	1332	1367	1398	1426	1453	1478	1502	1524	1546	1568	1588	1608	1627	1645	1664	1685
د	- ⁷⁸⁶	0,86	0,86	0,86	0,87	0,87	0,87	0,87	0,87	0,87	0,87	0,87	0,87	0,87	0,87	0,87	0,87	0,86	0,86	0,86	0,86
•	<u>~</u> '	0,03	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04
•	<u>z</u> ,	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04
,	י ו	5 0,32	3 0,31	2 0,31	2 0,31	1 0,31	1 0,30	1 0,30	1 0,30	1 0,30	1 0,30	1 0,30	1 0,30	1 0,31	2 0,31	2 0,31	2 0,31	2 0,31	2 0,31	3 0,31	3 0,31
-	ינ	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8,	0,8	0,8	0,8	0,8;
	n² N/mn	312	320	324	326	328	329	329	329	329	329	328	328	327	327	326	325	324	323	322	321
1	Nmr 2	353	351	350	346	348	346	345	342	343	341	340	336	335	336	335	334	333	331	330	328
-	N/mm ²	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355
z	² MPam ¹	28,5	30,8	32,5	33,8	34,8	35,8	36,6	37,3	38,0	38,7	39,3	39,9	40,4	41,0	41,5	42,0	42,5	43,0	43,4	43,9
2	N/mm ^{3/}	902	975	1027	1068	1102	1131	1157	1180	1202	1223	1242	1261	1279	1296	1312	1328	1343	1358	1373	1389
50 °C	Nmm ^{3/}	246	266	281	292	301	309	316	322	328	334	339	344	349	354	358	363	367	371	375	379
7 = -5	N/mm ^{3/2}	656	708	747	277	801	822	841	858	874	889	903	916	929	942	954	965	677	988	966	1010
puc	Σ μ	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	06	95	100	110
i.f, c	8 E	1,15	1,35	1,50	1,61	1,70	1,78	1,84	1,90	1,96	2,00	2,05	2,09	2,12	2,16	2,19	2,22	2,25	2,28	2,30	2,35
<i>- 0,7</i> 5	N/mm²	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
σ_{Ed} :	√mm²	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3
for "		0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75
ment	Vmm ^{3/2}	2,462	2,661	2,805	2,917	3,008	3,087	3,158	3,222	3,282	3,339	3,392	3,442	3,491	3,538	3,583	3,626	3,668	3,709	3,749	3,793
sess	mm² P	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Ass	ž	-	2	e	4	5	9	~	80	б	10	1	12	13	14	15	16	17	18	19	20

ပ
-50
1=
and
75 ·f
0
σ _{Ed} =
for
ssessment
A

<u> </u>	_																				
T > T	Ed - Ro	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk
T_{Rd}	ŝ	-33	-26	-19	-16	-14	-13	-13	-13	-13	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12
Ted	ပ္	1	5	5	2	62	54	42	37	ŝ	29	26	ដ	4	15	13	7	9	2	ო	2
ΔT _{DCF}	ပိ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
, ∆T	° C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
لم ۳	° C	45 -⊹	45 	45 	4 5 4	4 5 4	45 5	45 .⊹	45 	45 	4 5 4	4 5 4	45 5	45 5	45 45	45 	4 5 4	4 5 4	45 5	45 5	4 5 45
∆T _R 1	ç	- 2	-	-	- 2	- 2	~	- -	-	-	- 2	- 2	~	~	2	-	- 2	- 2	~	~	- 2
$\Delta T_{27,J}$	ပိ	5	12	19	22	24	25	25	25	25	26	26	26	26	26	26	26	26	26	26	26
T ₂₇ J	ပ္	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20
" T _{KV}	°	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20
K _{V,nor}	ſ	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27
Å٦	ပိ	120,0	120,0	120,0	114,6	104,8	97,4	84,5	80,0	75,8	72,3	69,2	64,6	59,9	57,8	55,8	53,9	49,2	47,6	46,2	44,8
$\mathbf{b}_{\mathrm{eff}}$	m	25	35	45	55	65	75	85	95	105	115	125	135	145	155	165	175	185	195	205	215
$K_{appl,d}$	MPam ^{1/2}	30,1	31,4	33,7	34,6	35,2	35,8	37,5	37,9	38,4	38,7	39,1	39,8	40,7	40,9	41,2	41,4	42,5	42,7	42,9	43,1
K _{appl,d}	Wmm ^{3/2}	952	994	1065	1093	1114	1131	1186	1199	1213	1224	1235	1259	1287	1295	1302	1310	1345	1352	1358	1363
\mathbf{k}_{R6}	•	0,87	0,87	0,87	0,87	0,87	0,87	0,87	0,86	0,86	0,86	0,86	0,86	0,86	0,86	0,85	0,85	0,85	0,85	0,85	0,85
٩	•	1 0,04	1 0,04	1 0,04	1 0,04	1 0,04	1 0,04	1 0,04	1 0,04	1 0,04	1 0,04	1 0,04	1 0,04	1 0,03	1 0,03	1 0,03	1 0,03	1 0,03	1 0,03	1 0,03	5 0,03
ę	'	1 0,04	0'0 0	0'0 0	0'0 0	0'0 0	1 0,02	1 0,04	1 0,02	1 0,02	1 0,02	1 0,02	2 0,02	2 0,02	2 0,04	2 0,02	3 0,02	3 0,02	3 0,02	3 0,02	4 0,05
≽ י		82 0,3	81 0,3	81 0,3	81 0,3	81 0,3	82 0,3	82 0,3	82 0,3	83 0,3	83 0,3	84 0,3	84 0,3	85 0,3	86 0,3	86 0,3	87 0,3	87 0,3	88 0,3	89 0,3	89 0,3
σ _{gy} Ι	'mm²	326 0,	329 0,	329 0,	329 0,	328 0,	327 0,	325 0,	323 0,	321 0,	320 0,	317 0,	315 0,	313 0,	311 0,	309 0,	307 0,	304 0,	302 0,	300 0,	297 0,
f _y (t)	/mm² N	349	346	344	341	339	336	334	331	329	326	324	321	319	316	314	311	309	306	304	301
f _{y,nom}	l/mm² N	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355
۲ _{1,ges}	am ^{1/2} N	24,9	26,0	27,9	28,6	29,1	29,6	31,0	31,3	31,7	31,9	32,2	32,8	33,5	33,6	33,8	34,0	34,8	35,0	35,1	35,2
d,ges F	nm ^{3/2} MF	787	322	381	904	321	335	380	066	001	600	018	036	058	064	690	074	102	106	110	114
71,S F	nm ^{3/2} N/I	15	24	41	47	52	55	68	20	73 1	76 1	78 1	83	89 1	90	92	93	10	02	03	1
ч, Т	1m ^{3/2} N/n	72 2	38 2	41 2	57 2	70 2	30 2	12 2	20	28 2	34 2	40 2	53 2	59 2	73 2	77 2	31	31 3	04 3	37 3	10 3
×	m/N u	2	22	ĕ	9	20	200	2	2	5 7	5 7	5 7	5 73	5 76	5 7	5	5 78	5 8(5 8(5 8(5 8
ۍ ۲	u n	61 2	78 3ł	90 4	00 51	99 60	16 7 ¹	22 8	28 9t	33 16	37 11	41 12	45 15	49 14	52 15	55 16	58 17	61 15	64 15	66 20	69 21
5 S &	nm² m	00 1,	00 1,	00 1,	00 2,	00 2,	<u>30</u> 2,	20 2,	20 2,	20 2,	20 2,	20 2,	00 2,	00 2,	00 2,	00 2,	00 2,	00 2,	00 2,	00 2,	00 2,
4	nm² N/n	36,3 1(36,3 1(36,3 1(36,3 1(36,3 1(36,3 1(36,3 1(36,3 1(36,3 1(36,3 1(36,3 1(36,3 1(36,3 1(36,3 1(36,3 1(36,3 1(36,3 1(36,3 1(36,3 1(36,3 1(
dfy د	-] N/r	75 26	75 26	75 26	75 26	75 26	75 26	75 26	75 26	75 26	75 26	75 26	75 26	75 26	75 26	75 26	75 26	75 26	75 26	75 26	75 26
ġ	n ^{3/2} [·	,0 0,	14 0,	16 0,	38 0,	5 0,	33 O,	6 0,	13 0,	13 0,	i6 0,	⁷⁸ 0,	0,0	19 O,	14 0,	7 0,	12 0,	19 0,	1 0,	11 0,	12 0,
Υ.	n² N/mn	2,14	2,24	2,40	2,46	2,51	2,55	2,67	2,70	2,73	2,75	2,77	2,83	2,88	2,90	2,91	2,93	3,00	3,02	3,03	3,04
ę.	N/mr	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
ż		-	2	e	4	ŝ	9	~	œ	6	5	7	5	13	4	15	16	1	18	19	20

0
ñ
- 1'
- 11
ь
-
ğ
2
Ø
<u>></u>
5
10
27
1
റ്
<u> </u>
11
ъ
<u> </u>
0
5
5
ų ser
ъ.,
3
2
2
5
ŝ
Ś
نە
Š
S
A
•

ပ

Table 5-32:

Fracture mechanics assessment for loading variant 3-2 for component No. 3

5.6 Component No. 4 – Axisymmetric anchor plate

5.6.1 Geometry, load assumptions and boundary conditions

(1) The anchor plate is axis-symmetrical, Figure 5-51. It is the basement for the bottom component of the bearing and is usually connected to it by bolting.

Figure 5-51: Component No. 4. Anchor plate with axial symmetry

(2) Table 5-33 gives the ranges for geometrical dimensions on which the investigations were based.

Table 5-33: Ranges of geometrical dimensions

t [mm]	D [mm]
≥ 55	440 - 3300

(3) The bolt holes are the potential Hot-Spots for the occurrence of crack-like flaws from fabrication. However for the assessment to avoid brittle fracture a more conservative fracture mechanics model according to Figure 5-25 is used, which has a vertical continuous surface crack with the depth a(t) perpendicular to the stresses.

As the anchor plate is mainly stressed by compression from the bearing and by horizontal forces, a stress σ_{Ed} constant over the thickness of the plate is taken as a representative loading.

The crack position on the plate surface has no influence on the magnitude of the K-values and therefore is only controlled by the assumption for σ_{Ed} . The crack depth is dependent on the plate thickness t.

Figure 5-52: Boundary conditions for the FE-model for component No. 4; anchor plate (left) and section from the FE-model with opened crack under tension (right)

5.6.2 Hot-Spot-stresses

- (1) The calculation of the stresses σ_{Ed} for component No. 4 are carried out according to the bending theory.
- (2) The "nominal" stresses σ_{Ed} are equal to the stresses used as loading in the FE-model.

5.6.3 Stress intensity factors

- (1) The ranges of dimensions for the anchor plate include a standard thickness t = 75 mm and a width of 440-3300 mm.
- (2) Figure 5-53 (left) shows the results of the fracture mechanics calculations for a unit loading $\sigma = 1 \text{ N/mm}^2$ constant over the plate thickness.

Figure 5-53: K-values for component No. 4 due to the nominal stress $\sigma_N(t) = 1$ N/mm (left) K-values related to a constant load $F_H = \text{const.}$ (right)

(3) As expected, the stress intensity factors increase with increasing plate thickness due to the increasing force and the increasing initial crack depth a_0 .

The crack depth would be $a_0 = 0,805$ mm for the smallest theoretical plate thickness t = 5 mm and $a_0 = 2,303$ mm for the largest plate thickness (t = 100 mm). The plate width D does not influence the magnitude of the stress intensity factors in the fracture mechanics model selected.

(4) Figure 5-53 (right) shows the K-values related to a constant horizontal load F_{H} .

5.6.4 Assessments to avoid brittle fracture

- (1) The assessments are carried in a tabular way in Table 5-35.
- (2) The results are summarized in Table 5-34.

Table 5-34: Limits of plate thickness [mm] for the component "anchor plate"

Steel grade acc. to EN 10025	$\sigma_{\sf Ed}$	0°C	-10°C	-20°C	-30°C	-40°C	-50°C
S355J2	0,25 · f _y	250 ^{*)}					
S355J2	0,50 · f _y	250 ^{*)}					
\$355J2	0,75 · f _y	250 ^{*)}					

*) Assumption of a technical manufacturing limit (in theory element thicknesses with $t \ge 250 \text{ mm would be acceptable}$)

Table 5-	35:				F	ra	act	tu	re	n	۱e	ecl	na	ni	ics	6 a	is	se	SS	m	e	nt	s for	r Ce	on	np	or	ner	nt M	۱o.	4
	T _{Ed} ≥ T _{Rd}	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk									
	L R	, <u>8</u>	-38	-37	-36	-33	-30	-26	-22	- 19	-17	-16	-15	- 14	-14	-13	-13	-13	-13	-13	-13	2 -12									
	ъ ч	2 F	7	7	7	7	7	62	55	49	4 5	41	37	34	31	28	26	ß	21	19	18	-1;									
	_ ΔT ₀		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0									
	τγ Έ	ہ ب	5 O	ې 0	ې 0	ې ب	ې 0	5 O	ب 2	ю О	ب 2	5 0	5 0	5 0	5 0	5 0	ю О	ю О	ю О	ې 0	5 0	5 0									
	⊽° ^{pw} _L	- <mark>45</mark>	-45	-45	-45	-45	- <mark>45</mark>	-45	-42	- <mark>4</mark> 5	-42	-45	-45	-45	-45	-45	-45	-45	-45	- <mark>45</mark>	-45	-45									
	ΔT _R	2	7	2	7	7	7	7	2	7	2	2	2	2	2	2	7	7	7	7	7	7									
	ΔT _{Z7} ,	0	0	-	2	2	8	12	16	19	21	22	23	24	24	25	25	25	25	25	25	26									
	Γ _z τ	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20									
	υ Γ ^{κν}	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20									
	, K _{V,non}	0 27	0 27	0 27	0 27	0 27	9 27	0 27	27	5 27	7 27	27	9 27	7 27	3 27	27	7 27	5 27	t 27	5 27	7 27	0 27									
	Δ ^Δ	120,	120,	120,	120,	120,	113,	105,	98,	92,	87,	83,	79,9	76,	73,8	71,	68,	66,	64,4	62,	60,7	31,(
	b _{eff}	2	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	06	95	100	250									
	K _{appl,d} MDam ^{1/2}	29,0	32,4	34,1	35,3	36,3	37,0	37,7	38,3	38,8	39,3	39,7	40,1	40,5	40,8	41,1	41,4	41,7	42,0	42,2	42,5	47,3									
	K _{appl,d} N/mm ^{3/2}	916	1025	1079	1117	1147	1171	1193	1211	1228	1243	1257	1269	1281	1291	1301	1311	1319	1328	1336	1343	1496									
	к _к	0,84	0,86	0,86	0,86	0,87	0,87	0,87	0,87	0,87	0,87	0,87	0,87	0,87	0,87	0,87	0,87	0,87	0,86	0,86	0,86	0,84									
	٩ ،	0,03	0,03	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,02									
	ę,	4 0,05	2 0,04	1 0,04	1 0,04	1 0,04	1 0,04	0 0,04	0 0,04	0 0,04	0 0,04	0 0,04	0 0,04	0 0,04	1 0,04	1 0,04	1 0,04	1 0,04	1 0,04	1 0,04	1 0,04	5 0,05									
	· • (90 0,3	35 0,3	33 0,3	32 0,3	32 0,3	31 0,3	31 0,3	31 0,3	31 0,3	31 0,3	31 0,3	31 0,3	31 0,3	31 0,3	32 0,3	32 0,3	32 0,3	32 0,3	32 0,3	33 0,3	32 0,3									
	⁹⁰	97 0,9	12 0,8	20 0,8	24 0,8	26 0,8	28 0,8	50 0'8	50 50	59 0'8	50 50	29 0,8	28 0,8	28 0,8	27 0,8	27 0,8	26 0,8	25 0,8	24 0,8	23 0,8	22 0,8	90 06									
	t) σ m² N/n	4	3.3	33	0 32	33	8	33	23	4	33	11 33	0	33	8	93	533	4 33	33	33	0 32	3 29									
	m² fy(35	5 35	5 35	5 35	5 34	5 34	34	34	34	34	34	34	33	33	33	5 33	5 33	5 33	33	5 33	5 29									
	s f _{y,nc}	35	35	35	35	35	35	35	35	35	35.	35	35	35.	35	35	35	35.	35	35	35	5 35!									
	K1,96	23,7	26,6	28,	29,2	30,0	30,6	31,2	31,7	32,	32,5	32,9	33,2	33,6	33,6	34,0	34,2	34,5	34,7	34,9	35,	38,5									
	K _{1,9e}	748	842	889	922	948	696	987	1002	1016	1028	1040	1050	1059	1068	1076	1083	1090	1097	1103	1109	1218									
50 °C	K _{1,S} N/mm ³	204	230	243	252	259	265	270	274	278	281	284	287	289	292	294	296	298	299	301	303	333									
- = L	К _{1,P} М/тт ^{3/2}	544	612	646	670	689	704	718	729	739	748	756	763	770	776	782	787	792	797	802	806	886									
ana	a t	2	10	15	20	25	30	35	4	45	50	55	60	65	02	75	80	85	6	95	100	250									
5·fy	a ^o	0,80	1,15	1,35	1,50	1,61	1,70	1,78	1,84	1,90	1,96	2,00	2,05	2,09	2,12	2,16	2,19	2,22	2,25	2,28	2,30	2,30									
: 0,7	σs V/mm²	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100									
σ _{Ed} =	α _P //mm² P	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3									
for	σ _{Ed} /f _y	0.75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75									
nent	K ₁	2,043	2,300	2,428	2,518	2,588	2,645	2,695	2,737	2,775	2,808	2,839	2,866	2,892	2,915	2,937	2,957	2,976	2,994	3,011	3,027	3,326									
iseasi	σ _P /mm² _N	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0									
As	ž	-	2	e	4	5	9	~	8	6	5	÷	12	13	14	15	16	17	18	19	20	21									

5.7 Component No. 5 – Bearing for horizontal forces without rotation and capacity for vertical forces

5.7.1 Geometry, load assumptions and boundary conditions

(1) A particular investigation was made for bearings for horizontal forces only as sketched in Figure 5-54. This bearing does not provide rotation capacities.

Figure 5-54: Component No. 5. – Bearing for horizontal forces without rotation and capacity for vertical forces

- (2) The component consists of a cylindrical pin, which is welded to a plate with the thickness t.
- (3) Table 5-36 gives the range of geometrical dimensions for component No. 5. The length of the cylinder does not play an important role in the fracture mechanics checks.

Table 5-36:	Ranges of geometrica	I dimensions for Detail 5
Table 5-50.	Ranges of geometrica	i unitensions for Detail

t [mm]	D [mm]	d [mm]	a _w [mm]
30 – 150	440 - 3300	55 – 300	5 - 25

- (4) For the fracture mechanics models the hypothetical loading and crack-scenarios according to Figure 5-55 are selected. The boundary conditions were selected such, that the stress intensity factors were high and also the deformation conditions of the bearings did not deviate too much from realistic conditions after installation.
- (5) For the loading variant 5-1 the crack occurs at the weld toe at the plate surface; it receives a pure mode 1 stressing.
- (6) The loading variant 5-2 considers a crack at the weld toe at the cylinder that is stressed also in bending.

Figure 5-55: Loading variants for component No. 5; loading variant 5-1: horizontal loading (left), loading variant 5-2: vertical loading (right)

(7) For <u>loading variant 5-1</u> the plate thickness t is of relevant importance. Therefor only a single configuration is investigated.

For the <u>loading variant 5-2</u> two configurations with different geometrical dimensions are checked: a cylinder with the maximum diameter d = 300 mm and with a minimum diameter d = 55 mm.

The length of the cylinder h as well as the width D of the plate of the bearing were kept constant.

Upper	bounds	Lower	bounds
t [mm]	30-150	t [mm]	30 - 150
D [mm]	3300	D [mm]	3300
d [mm]	300	d [mm]	50
h [mm]	100	h [mm]	100
a _w [mm]	25	a _w [mm]	25

Table 5-37:Upper and lower bounds of the geometrical dimensions used for loading variant
5-2

(8) Figure 5-56 shows a section from the FE-models with deformations and crack opening for the loading variants 5-1 and 5-2.

Figure 5-56: Sections from the FE-model with deformations and crack opening: for loading variant 5-1 with horizontal loading (left) and for loading variant 5-2 with vertical loading (right)

5.7.2 Hot-Spot-stresses

(1) The calculation of the reference stresses σ_{HS} necessary for the assessment to avoid brittle fracture is performed for <u>loading variant 5-1</u> according to the bending theory.

The nominal stress $\sigma_{\mbox{\scriptsize Ed}}$ are identical with the loading applied in the FE-model.

(2) Figure 5-57 (left) gives for <u>loading variant 5-2</u> the distribution of the Hot-Spot-stresses versus the plate thickness t for the upper bound of the geometrical dimensions. The Hot-Spot-stresses decrease with increasing plate thickness t.

The Hot-Spot-stresses are larger for smaller plate thicknesses t and for welds with $a_w = 5$ mm larger than those for welds with $a_w = 25$ mm.

For larger values of plate thickness t the difference between the Hot-Spot-stresses for $a_w = 5 \text{ mm}$ and $a_w = 25 \text{ mm}$ gets smaller.

(3) Figure 5-57 (right) shows an identical behaviour of the Hot-spot-stresses with variation of the plate thickness for the lower bound of the geometrical dimensions. For t > 100 mm the Hot-spot-stress does not vary anymore.

Figure 5-57: Hot-Spot-stresses due to external unit loading for the loading variant 5-2: for upper bound of geometrical dimensions (left), for lower bound of geometrical dimensions (right)

5.7.3 Stress intensity factors

- (1) Figure 5-58 (left) shows for the <u>loading variant 5-1</u> the increase of the stress intensity factor K_1 when the plate thickness t and hence the crack depth a_0 is increased, all for the unit loading $\sigma_N = 1 \text{ N/mm}^2$.
- (2) The crack depths a_0 are in the range of 1,701 mm to 2,505 mm.

The plate width D, the height h and the diameter d of the cylinder have no significant influence on K_1 .

(3) The Figure 5-58 (right) shows the minor influence of the throat thickness a_w on K_1 . The calculations were performed with the maximum values a_w .

Figure 5-58: K-values for the loading variant 5-1 for a unit loading σ_N (t) = 1 N/mm (left) and K-values related to a constant horizontal load F_H (right)

(4) For <u>loading variant 5-2</u> Figure 5-59 (left) indicates the decrease of K with increasing plate thickness for the upper bound of the geometrical dimensions.

The mode 2 stresses lead to effective K_{eff} -values which are a bit larger than the K_1 -values due to mode 1 stresses. For small weld sizes a_w the K-values get larger.

(5) Figure 5-59 (right) gives the normalized \overline{K} -values, however with the relevant values for large throat thicknesses. The \overline{K} -values increase with increasing plate thicknesses t.

Figure 5-59: K-values for the loading variant 5-2 for variation of plate thickness t and upper bound of geometrical dimensions. K-values due to unit loading (left), normalized \overline{K} -values related to σ_{HS} = 1 N/mm² (right)

- (6) For the lower bound of geometrical dimensions the function of K-values is similar as the one in Figure 5-60 (left). As derived for the upper bound of the geometrical dimensions the K-values get relevant for large weld sizes. The magnitude of K-values for the lower bound is significantly larger.
- (7) In Figure 5-60 (right) the \overline{K} -values and also \overline{K}_{eff} -values normalized for $\sigma_{HS} = 1 \text{ N/mm}^2$ are given; there is an increase of \overline{K} -values with larger t-values.

5.7.4 Assessments to avoid brittle fracture

- (1) The fracture-mechanics assessment are carried out for component No. 5 Bearing for horizontal forces – for loading variant 5-1 in Table 5-40 and for loading variant 5-2 in Table 5-41.
- (2) The results of the calculations are given in Table 5-38 and Table 5-39

 Table 5-38:
 Limits of plate thickness for the component No. 5 for loading variant 5-1

Steel grade acc. to EN 10025	$\sigma_{\sf Ed}$	0°C	-10°C	-20°C	-30°C	-40°C	-50°C
\$355J2	0,25 · f _y	250 ^{*)}					
\$355J2	0,50 · f _y	250 ^{*)}	250 ^{*)}	180	110	80	60
\$355J2	0,75 · f _y	120	80	60	40	40	30

*) Assumption of a technical manufacturing limit (in theory element thicknesses with $t \ge 250 \text{ mm would be acceptable}$)

Steel grade acc. to EN 10025	$\sigma_{\sf Ed}$	0°C	-10°C	-20°C	-30°C	-40°C	-50°C
\$355J2	0,25 · f _y	200 ^{*)}	200 ^{*)}	200 ^{*)}	200 ^{*)}	200*)	200 ^{*)}
\$355J2	0,50 · f _y	200 ^{*)}					
S355J2	0,75 · f _y	200 ^{*)}					

Table 5-39:Limits of plate thickness for the component No. 5 for loading variant 5-2

*) Assumption of a technical manufacturing limit (in theory element thicknesses with $t \ge 200 \text{ mm}$ would be acceptable)

Table 5	5-40:
---------	-------

Assessment for $\sigma_{Ed} = 0,75 \cdot f_y$ and T = 0 °C

Fracture mechanics assessment for the component No. 5 for loading variant 5-1

F ~	Ed 5 - R	no risk	2 no risk	7 no risk	5 no risk	4 no risk	3 no risk	3 no risk	3 no risk	3 no risk	2 no risk	2 risk	2 risk	2 risk	2 risk
T _{Ed} T _R	ာ ပ	29 -3(19 -22	12 -1;	6 -15	2 -1	-7	-2	-1 -13	-9	-11 -12	-13 -12	-14 -12	-15 -12	-19 -1
ΔT_{DCF}	ပ္	0	0	0	0	0	0	0	0	0	0	0	0	0	0
۹ı	ပ္	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ā	ပ္	-2	Ŷ	Ŷ	ŝ	ŝ	ŝ	ŝ	ŝ	ŝ	Ŷ	Ŷ	Ŷ	-5	-2
R L	ຸ ວ	5	5	5	5	5	5	5	5	5	5	5	5	5	5
T ₂₇ , ΔT	ູ	8 7	16 7	21 7	23 7	24 7	25 7	25 7	25 7	25 7	26 7	26 7	26 7	26 7	26 7
Z1 \	ູ	20	50	20	20	20	20	20	20	20	20	20	20	20	20
T _{KV} T	°	-20	- <mark>20</mark> -	-20	- <mark>20</mark> -	- <mark>20</mark> -	- <mark>20</mark> -	- <mark>20</mark> -	-20	-20 -					
K _{v,nom}	ſ	27	27	27	27	27	27	27	27	27	27	27	27	27	27
∆T _e	ပ္	22,3	12,1	4,7	-0,8	-5,2	-8,7	-11,6	-14,1	-16,2	-18,0	-19,6	-21,0	-22,3	-25,5
b _{eff}	mm	30	40	50	60	20	80	6	100	110	120	130	140	150	180
K _{appl,d}	MPam ^{1/2}	73,1	78,2	82,2	85,2	87,5	89,4	90,8	92,0	92,9	93,6	94,2	94,6	95,0	95,9
K _{appl,d}	N/mm ^{3/2}	2312	2474	2598	2694	2768	2827	2872	2909	2937	2960	2978	2993	3006	3034
\mathbf{k}_{R6}	•	0,87	0,87	0,87	0,87	0,87	0,87	0,86	0,86	0,86	0,86	0,86	0,86	0,86	0,85
٩	•	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,03	0,03
ę	•	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04
≯	•	0,31	0,30	0,30	0,30	0,31	0,31	0,31	0,31	: 0,31	0,31	0,32	: 0,32	0,32	0,33
Ľ	- 2	0,81	0,81	0,81	0,81	0,81	0,82	0,82	0,83	0,83	0,84	0,84	0,85	0,85	0,87
о gy	N/mm	328	329	329	328	327	326	324	322	321	319	316	314	312	306
t _y (t)	² N/mm	348	345	343	340	338	335	333	330	328	325	323	320	318	310
t _{y,nom}	² N/mm	355	355	355	355	355	355	355	355	355	355	355	355	355	355
K _{1,ges}	MPam ^{1/.}	60,5	64,7	68,0	70,5	72,4	73,9	75,0	75,9	76,6	77,1	77,5	77,9	78,1	78,6
$K_{1,ges}$	N/mm ^{3/2}	1912	2047	2150	2228	2289	2336	2372	2400	2422	2439	2452	2462	2470	2487
K _{1,S}	N/mm ^{3/2}	522	559	587	608	625	638	648	655	661	666	670	672	675	679
R F	N/mm ^{3/2}	1390	1488	1563	1620	1664	1698	1725	1745	1761	1773	1783	1790	1796	1808
5	mm	30	40	50	09	20	80	06	100	110	120	130	140	150	180
a 9	mm	1,70	1,84	1,96	2,05	2,12	2,19	2,25	2,30	2,35	2,39	2,43	2,47	2,51	2,60
в	N/mm ²	100	100	100	100	100	100	100	100	100	100	100	100	100	100
ę	N/mm ²	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3
σ _{Ed} /f _y	Ξ	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75
Ł	N/mm ^{3/2}	5,220	5,590	5,870	6,084	6,250	6,378	6,477	6,554	6,613	6,659	6,695	6,722	6,745	6,790
в	N/mm ²	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
ž		-	2	e	4	ŝ	9	~	8	6	10	7	12	13	20

0
1
11 L
11
Ē.
σ
2
0
. >
÷
Ú.
N
à.
0
11
Ø
ĥ
0
5
°.
2
2
ž
2
S
2
2
S
-

_		_										_			-
۲ ^	E I B	no risk	risk	risk	risk	risk	risk	risk	risk	- iolo					
r _{Rd -}	- ပု	30	22	17	-15	14	13	-13	-13	-13	12	12	12	-12	40
Т _{Еd}	ပ္	19.	6	N	4	۰ مې	7	-15	÷	6-	Ā	ដុ	-24	-25 -	8
ΔT_{DCF}	ပ့	0	0	0	0	0	0	0	0	0	0	0	0	0	0
∆T	ပ္	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ΔT,	ပ္	Ŷ	ĥ	ĥ	ų	ĥ	ĥ	ĥ	မု	ĥ	ĥ	ĥ	ĥ	-5	L
Tmd	ပ္	-2	Υ	Υ	Ϋ́	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	-2	Ŷ	-5	L
J AT _R	ပ္	7	7	7	7	7	7	7	7	7	7	7	7	7	٢
ΔT_{23}	ပ္	8	16	21	23	24	25	25	25	25	26	26	26	26	00
T ₂₇ J	ပ္	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	00
n T _{KV}	ပ္	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	00
K _{V,nor}	٦	27	27	27	27	27	27	27	27	27	27	27	27	27	10
ΔT _e	ပ္	22,3	12,1	4,7	-0,8	-5,2	-8,7	-11,6	-14,1	-16,2	-18,0	-19,6	-21,0	-22,3	10
b _{eff}	mm	30	40	50	09	20	80	6	100	110	120	130	140	150	001
K _{appl,d}	MPam ^{1/2}	73,1	78,2	82,2	85,2	87,5	89,4	90,8	92,0	92,9	93,6	94,2	94,6	95,0	010
K _{appl,d}	N/mm ^{3/2}	2312	2474	2598	2694	2768	2827	2872	2909	2937	2960	2978	2993	3006	P C C C
k _{R6}	•	0,87	0,87	0,87	0,87	0,87	0,87	0,86	0,86	0,86	0,86	0,86	0,86	0,86	001
٩	•	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,03	000
٩		0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	100
≯		31 (,30 (,30 (30 (31 (31 (31 (,31 (31 (31 (,32 (,32 (,32 (000
ت	•	0,81 0	0,81	0,81	0,81	0,81	0,82 (0,82 (0,83 (0,83 (0,84 0	0,84 0	0,85 (0,85 (100
g g	N/mm ²	328	329	329	328	327	326	324	322	321	319	316	314	312	000
f _y (t)	N/mm ²	348	345	343	340	338	335	333	330	328	325	323	320	318	010
f _{y,nom}	N/mm ²	355	355	355	355	355	355	355	355	355	355	355	355	355	110
K _{1,ges}	MPam ^{1/2}	60,5	64,7	68,0	70,5	72,4	73,9	75,0	75,9	76,6	77,1	77,5	77,9	78,1	001
K _{1,ges}	N/mm ^{3/2}	1912	2047	2150	2228	2289	2336	2372	2400	2422	2439	2452	2462	2470	1010
К _{1,S}	N/mm ^{3/2}	522	559	587	608	625	638	648	655	661	666	670	672	675	010
K 1,P	N/mm ^{3/2}	1390	1488	1563	1620	1664	1698	1725	1745	1761	1773	1783	1790	1796	0001
. 7	шш	30	40	50	60	20	80	06	100	110	120	130	140	150	001
a	E	1,70	1,84	1,96	2,05	2,12	2,19	2,25	2,30	2,35	2,39	2,43	2,47	2,51	000
ę	N/mm²	100	100	100	100	100	100	100	100	100	100	100	100	100	100
ę	N/mm ²	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	0000
3Ed/fy	Ξ	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	11 0
Ł,	1/mm ^{3/2}	5,220	5,590	5,870	6,084	6,250	6,378	6,477	6,554	6,613	6,659	6,695	6,722	6,745	0000
в В	N/mm ² N	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	
-	-			-	-				-	-	0	-	2	3	1

int for $\sigma_{Ed} = 0$, 75-fy and $T = -20$ °C $\zeta_1 = \sigma_{Ed} \gamma_1$ $\sigma_0 = \sigma_3 = \sigma_0 + 1 + K_{1,p} - K_{1,3} + K_{1,068}$	$r \sigma_{Ed} = 0, 75 \cdot f_y \text{ and } T = -20 °C$ $f_y \sigma_{0} \sigma_{3} a_{0} t_{1} K_{1,p} K_{1,s} K_{1,ges}$	$= 0,75 \cdot f_{y} and T = -20 °C$ $\frac{\sigma_{s} a_{0} t_{i} K_{i,p} K_{i,s} K_{i,as}}{\sigma_{s}}$	$75 \cdot f_y$ and $T = -20 ^{\circ}C$	and $T = -20$ °C t ₁ K _{1,p} K _{1,s} K _{1,ges}	- = -20 °C K _{1,P} K _{1,S} K _{1,968}	° C K _{1,S}	K _{1,ges}	1	۲, ges f _y	-ferrier ferrier ferri	(t)	۲ ۵۸	≯	ą	k _{R6}	K _{appld}	K _{appl,d}	b _{eff} Δ	ц <mark>ь К</mark>	T _K	T _{Z7}	ΔT ₂₇ , Δ	T _R T _{md}	ΔT, Δ	.Τ _ε ΔΤ _{DC}	- T _{Ed} T		F
m ^{3/2} [-] N/mm ² N/mm ² mm mm N/mm ^{3/2} N/n	N/mm ² N/mm ² mm mm N/mm ^{3/2} N/n	² N/mm ² mm mm N/mm ^{3/2} N/n	n² mm mm N/mm ^{3/2} N/n	mm N/mm ^{3/2} N/n	N/mm ^{3/2} N/n	şľ	nm ^{3/2} N	J/mm ^{3/2} MF	am ^{1/2} N/	mm² N/	mm ² N/	nm² -				N/mm ^{3/2}	APam ^{1/2}	mm	ں '	ပ္	ပ့	ပ္	ပ္	ပ္	ပ ပ	ပ္		Rd
220 0,75 266,3 100 1,70 30 1390 522 200 0.75 266,3 100 1.84 40 1488 550	5 266,3 100 1,70 30 1390 522 5 266,3 100 1,84 40 1488 550	100 1,70 30 1390 522 100 1 84 40 1488 550) 1,70 30 1390 522) 1.84 40 1488 550	30 1390 522 40 1488 550	1390 522 1488 550	523		1912 (50,5 ÷	55 55	348	28 0,8 20 0,8	1 0,31	0,04 0,0	04 0,87	2312 2474	73,1 78.2	30 40 2	0 7 0 7 0 7 0	7 -20	- 20	8 4	7 -15 7 -15	ې ب		ማ ዓ ወ ጉ		isk isk
70 0,75 266,3 100 1,96 50 1563 587	5 266,3 100 1,96 50 1563 587	100 1,96 50 1563 587	0 1,96 50 1563 587	50 1563 587	1563 587	587		2150	38,0 3	22	343 3	29 0,8	1 0,30 (0,04 0,0	74 0,87	2598	82,2	20	. 7	7 -20	-20	21	7 -15	မှ	00	• न • φ	7 no ri	isk
84 0,75 266,3 100 2,05 60 1620 608	5 266,3 100 2,05 60 1620 608	1 100 2,05 60 1620 608) 2,05 60 1620 608	60 1620 608	1620 608	608		2228	70,5 3	155	340 3	28 0,8	1 0,30 (0,04 0,0	74 0,87	2694	85,2	- 09),8 <mark>2</mark>	7 -20	-20	23	7 -15	ς	000	-14 -1	5 no ri	'isk
50 0,75 266,3 100 2,12 70 1664 625	5 266,3 100 2,12 70 1664 625	100 2,12 70 1664 625	0 2,12 70 1664 625	70 1664 625	1664 625	625		2289	72,4 5	155	338	127 0,8	1 0,31	0,04 0,0	0,87 	2768	87,5	2	5,2	7 -20	-20	24	7 -15	ιĢ	0	- 18 - 18	4 rist	¥
78 0,75 266,3 100 2,19 80 1698 638	5 266,3 100 2,19 80 1698 638	100 2,19 80 1698 638) 2,19 80 1698 638	80 1698 638	1698 638	638		2336	73,9 5	125	335 3	126 0,8	12 0,31	0,04 0,0	0,87	2827	89,4	8	3,7 2	7 -20	-20	25	7 -15	ιņ	0	 2	3	¥
177 0,75 266,3 100 2,25 90 1725 648 2	5 266,3 100 2,25 90 1725 648 2 5 266,3 100 2,25 100 1715 648 2	1 100 2,25 90 1725 648 2 100 2,26 90 1745 648 2) 2,25 90 1725 648 2 0 2 20 100 1715 645 2	90 1725 648 2 100 1745 655 2	1725 648 2 1745 665 2	648 666	0 0	372	75,0 2	355 55	333	24 0,8	2 0,31	0,04 0,0	04 0,86	2872	90,8	90	1,6	7 -20	-20	25 25	7 -15 7 -15	ې ب	00	 	3 rist	× .
104 0,73 200,0 100 2,30 100 1743 033 24 110 075 266.3 100 2,35 110 1761 661 24	2 200,3 100 2,30 100 1/43 033 24 5 266 3 100 3 35 110 1761 661 34		2420 100 1743 033 24 24 10 1761 661 24	100 1743 033 24 110 1761 661 24	47 CCO C4/1	47 CCO	5 6		20.0	222			1000 0		14 0,00	2002	92,0		- 4 - 4			25		ņч				<u>د ۽</u>
013 0,75 266.3 100 2,39 120 1773 666 243	5 266.3 100 2.39 120 1773 666 243	100 2,30 110 170 001 242 001 242 001 242 001 243	2.39 120 173 666 243	120 1773 666 243	1773 666 243	666 243	243	N O	77.1 3	22	325 3	19 0.84	4 0.31 (0.04 0.0	0.86 0.86	2960	92,9 93.6	120 -1	8.0	7 -20	-20	26	7 -15	ρų			2 rist	< _×
095 0,75 266,3 100 2,43 130 1783 670 245.	5 266,3 100 2,43 130 1783 670 245	100 2,43 130 1783 670 245	0 2,43 130 1783 670 245	130 1783 670 245	1783 670 245	670 245	245	0	77,5 3	55	323 3	16 0,84	4 0,32 (0,04 0,0	34 0,86	2978	94,2	130 -1	9,6	7 -20	-20	26	7 -15	μ	0	ŝ	2 rish	×
22 0,75 266,3 100 2,47 140 1790 672 246	5 266,3 100 2,47 140 1790 672 246;	100 2,47 140 1790 672 246) 2,47 140 1790 672 246:	140 1790 672 246	1790 672 246:	672 246:	246:	~	77,9 3	55	320 3	14 0,8;	5 0,32 (0,04 0,0	0,86 J	2993	94,6	140 -2	1,0 2	7 -20	-20	26	7 -15	ς	0	-34 -1	2 risł	×
·45 0,75 266,3 100 2,51 150 1796 675 2470	5 266,3 100 2,51 150 1796 675 2470	100 2,51 150 1796 675 247C) 2,51 150 1796 675 2470	150 1796 675 2470	1796 675 2470	675 2470	247C		78,1 3	155	318 3	12 0,8;	5 0,32 (0,04 0,0	33 0,86	3006	95,0	150 -2	2,3	7 -20	-20	26	7 -15	ς	000	-35 -1	2 risł	×
'90 0,75 266,3 100 2,60 180 1808 679 2487	5 266,3 100 2,60 180 1808 679 2487	100 2,60 180 1808 679 2487	0 2,60 180 1808 679 2487	180 1808 679 2487	1808 679 2487	679 2487	2487		78,6 3	155	310 3	06 0,8	7 0,33 (0,04 0,0	33 0,85	3034	95,9	180 -2	5,5 2	7 -20	-20	26	7 -15	-5	0 0	-39 -1	2 risł	¥
int for $\sigma_{\rm Ed}$ = 0,75-f _y and T = -30 °C	ר ס _{Ed} = 0,75-f _y and T = -30 °C	= 0,75·f _y and T = -30 °C	'5·f _y and T = -30 °C	1nd T = -30 °C), 0 ;- =.	°C																						
i σ _{εν} ίν σε σ _s a ₀ t ₁ K _{1,P} K _{1,S} K _{1,5}	fy σp σs a₀ t₁ K₁,p K₁,s K₁,	σ _s a ₀ t ₁ K _{1,P} K _{1,S} K _{1,5}	a ₀ t ₁ K _{1,P} K _{1,S} K _{1,S}	t ₁ K _{1,P} K _{1,S} K _{1,S}	K _{1,P} K _{1,S} K _{1,S}	K _{1,S} K _{1,5}	Ł,	les K	G, ges fy,	mon	,(t)	۲ 1 ₉ , ۲	≯	P.	, k _{R6}	K _{appl,d}	K _{appl,d}	b _{eff} ∆	T _e K _v	om T _K	, T ₂₇ ,	ΔT _{Z7} J Δ	T _R T _{md}	ΔT, Δ	T _s AT _{DC}	T _{Ed} T	/ + 2	ŀ
m ^{3/2} [-] N/mm ² N/mm ² mm mm N/mm ^{3/2} N/m ^{3/2} N/n	N/mm ² N/mm ^{3/2} N/mm ^{3/2} N/mm ^{3/2} N/n	² N/mm ² mm mm N/mm ^{3/2} N/mm ^{3/2} N/n	n² mm mm N/mm ^{3/2} N/mm ^{3/2} N/n	mm N/mm ^{3/2} N/mm ^{3/2} N/n	N/mm ^{3/2} N/mm ^{3/2} N/n	V/mm ^{3/2} N/n	5	1m ^{3/2} MF	am ^{1/2} N/i	nm² N/	mm ² N/i	nm² -	•		•	N/mm ^{3/2}	APam ^{1/2}	, mm	о	° °	ပ္	ပ့	<mark>ပ</mark> ပ	ů	ပ္ ပ	ပံ		Rd
20 0,75 266,3 100 1,70 30 1390 522 19	5 266,3 100 1,70 30 1390 522 19	100 1,70 30 1390 522 19	1,70 30 1390 522 19	30 1390 522 19	1390 522 19	522 19	÷	912 (30,5 3	55 3	348 3	28 0,8	1 0,31 (0,04 0,0	74 0,87	2312	73,1	30 2	2,3 2	7 -20	-20	œ	7 -25	ې ب	0 0	ې ۲	0 no ri	isk
90 0,75 266,3 100 1,84 40 1488 559 2	5 266,3 100 1,84 40 1488 559 2	100 1,84 40 1488 559 2	1,84 40 1488 559 2	40 1488 559 2	1488 559 2	559 2	Ñ	047 (34,7 3	55	345 3	29 0,8	1 0,30 (0,04 0,0	74 0,87	2474	78,2	40	2,1 2	7 -20	-20	16	7 -25	φ	0	- <u>1</u>	2 no ri	isk
70 0,75 266,3 100 1,96 50 1563 587 2	5 266,3 100 1,96 50 1563 587 2	100 1,96 50 1563 587 2	1,96 50 1563 587 2	50 1563 587 2	1563 587 2	587 2	Ń	150 6	38,0 3	55 3	343 3	29 0,8	1 0,30 (0,04 0,0	74 0,87	2598	82,2	20	t,7 2	7 -20	-20	21	7 -25	ή	0	-18	7 risł	¥
84 0,75 266,3 100 2,05 60 1620 608 2	5 266,3 100 2,05 60 1620 608 2	100 2,05 60 1620 608 2	1 2,05 60 1620 608 2	60 1620 608 2	1620 608 2	608 2	3	228	70,5 3	55	340 3	28 0,8	1 0,30 (0,04 0,0	0,87	2694	85,2	- 09),8	7 -20	-20	23	7 -25	ų	0	-24 -1	5 rist	¥
50 0,75 266,3 100 2,12 70 1664 625 2	5 266,3 100 2,12 70 1664 625 2	100 2,12 70 1664 625 2	1 2,12 70 1664 625 2	70 1664 625 2	1664 625 2	625 23	N	289	72,4 3	55	338 3	27 0,8	1 0,31 (0,04 0,0	0,87	2768	87,5	÷ 02	5,2 2	7 -20	-20	24	7 -25	φ	0	-28 -1	4 rist	¥
78 0,75 266,3 100 2,19 80 1698 638 2	5 266,3 100 2,19 80 1698 638 2	100 2,19 80 1698 638 2	1 2,19 80 1698 638 2	80 1698 638 2	1698 638 2	638 2	N)	336	73,9 3	155 3	335 3	26 0,8;	2 0,31 (0,04 0,0	0,87	2827	89,4	80	3,7 2	7 -20	-20	25	7 -25	φ	0	-32 -1	3 rist	¥
77 0,75 266,3 100 2,25 90 1725 648 23	5 266,3 100 2,25 90 1725 648 23	100 2,25 90 1725 648 23	1 2,25 90 1725 648 23	90 1725 648 23	1725 648 23	648 23	8	172	75,0 3	155 ⁽¹⁾	333 33	24 0,8;	2 0,31 (0,04 0,0	0,86	2872	90,8	90	1,6 2	7 -20	-20	25	7 -25	Ļ	0	-35 -1	3 rist	¥
54 0,75 266,3 100 2,30 100 1745 655 24	5 266,3 100 2,30 100 1745 655 24	100 2,30 100 1745 655 24	1 2,30 100 1745 655 24	100 1745 655 24	1745 655 24	655 24	3	100	75,9 3	55	330 3	22 0,8;	3 0,31 (0,04 0,0	0,86	2909	92,0	100 -1	4,1 2	7 -20	-20	25	7 -25	ų	0	-37 -1	3 rist	¥
13 0,75 266,3 100 2,35 110 1761 661 24	5 266,3 100 2,35 110 1761 661 24	100 2,35 110 1761 661 24	1 2,35 110 1761 661 24	110 1761 661 24	1761 661 24	661 24	ñ	122 7	76,6 3	55 3	328 3	21 0,8;	3 0,31 (0,04 0,0	0,86	2937	92,9	110 -1	6,2 <mark>2</mark>	7 -20	-20	25	7 -25	φ	0	-39	3 rist	¥
59 0,75 266,3 100 2,39 120 1773 666 2	5 266,3 100 2,39 120 1773 666 2	100 2,39 120 1773 666	1 2,39 120 1773 666 2	120 1773 666 2	1773 666 2	666	•••	2439 7	77,1 3	55	325 3	19 0,84	4 0,31 (0,04 0,0	0,86	2960	93,6	120 -1	8,0 2	7 -20	-20	26	7 -25	ų	0	4 -	2 risł	¥.
95 0,75 266,3 100 2,43 130 1783 670	5 266,3 100 2,43 130 1783 670	100 2,43 130 1783 670	2,43 130 1783 670	130 1783 670	1783 670	670		2452 7	77,5 3	55 3	323 3	16 0,84	4 0,32 (0,04 0,0	0,86	2978	94,2	130 -1	9,6 2	7 -20	-20	26	7 -25	φ	0	-43 -1	2 risł	¥
22 0,75 266,3 100 2,47 140 1790 672 2	5 266,3 100 2,47 140 1790 672 2	100 2,47 140 1790 672 2	1 2,47 140 1790 672 2	140 1790 672 2	1790 672 2	672 2	\sim	462 7	77,9 3	55	320 3	14 0,85	5 0,32 (0,04 0,0	0,86	2993	94,6	140 -2	1,0 2	7 -20	-20	26	7 -25	φ	0	-44 -1	2 ris	¥.
45 0,75 266,3 100 2,51 150 1796 675 24	5 266,3 100 2,51 150 1796 675 24	100 2,51 150 1796 675 24	2,51 150 1796 675 24	150 1796 675 24	1796 675 24	675 24	24	70 7	78,1 3	55 3	318 3	12 0,85	5 0,32 (0,04 0,0	33 0,86	3006	95,0	150 -2	2,3 2,3	7 -20	-20	26	7 -25	-2	000	-45 -1	2 risł	¥
60 0,75 266,3 100 2,76 250 1826 686 25 ⁻	5 266,3 100 2,76 250 1826 686 25 ⁻	100 2,76 250 1826 686 25	2,76 250 1826 686 25	250 1826 686 25	1826 686 25	686 25	25	12 7	79,5 3	55 2	93 2	.89 0,92	2 0,35 (0,05 0,0	72 0,84	3086	97,6	250 -3	1,4 2	7 -20	-20	26	7 -25	-2	000	-54 -1	2 risł	¥

L
-
-
0
2
-
G
<u>س</u>
10
21
- >
0
11
0
· ·
<u>ب</u>
6
_
~
ž
Ę
nt fe
nt fe
ent fa
nent fa
nent fa
sment fo
sment fo
ssment fo
essment fo
sessment fo
sessment fo
ssessment fo
Assessment fo
Assessment for

Table 5-40:

Continued

As	sessi	ment	for	$\sigma_{Ed} =$	0,7	5·f, c	L put	r = -4(٥ °C																						
ž	GP N/mm²	K1 Mmm ³²	σ _{Ed} /f _y	GP N/mm²	σs N/mm²	a ~	τ. 1	K _{1,P}	K _{1,S}	K _{1,ges}	K _{1,ges}	f _{y,nom} 2	f _y (t) N/mm2	σ _{gy} N/mm²	۔ ت	۔ م	۹ ۲	KR6 Kappi	And Kapple	i b _{eff}	ÅT	K _{V,nom}	L KV L KV	T _{Z7} , AT	27.) ATF	<mark>щ</mark> ,	ΔT, Δ1	Γ, ΔT _{DC}	L LE J	T Ed	≥ T _{Rd}
-	1.0	5.220	0.75	266.3	100	1.70	8	1390	522	1912	60.5	355	348	328	0.81 0.3	31 0.04	0.04 0.	.87 231	2 73.1	30	22.3	27	- 50 -	-20		-35	ہ ہ) o	, É	2 20 20	o risk
2	1,0	5,590	0,75	266,3	100	1,84	40	1488	559	2047	64,7	355	345	329	0,81 0,5	30 0,04	0,04 0,	,87 247.	4 78,2	40	12,1	27	-20	-20 1	6 7	-35	-2-	0	- 7	52	o risk
e	1,0	5,870	0,75	266,3	100	1,96	50	1563	587	2150	68,0	355	343	329 (0,81 0,5	30 0,04	0,04 0,	,87 259	·8 82,2	50	4,7	27	-20	-20 2	1 7	-35	-5	0	-28 -	17	isk
4	1,0	6,084	0,75	266,3	100	2,05	60	1620	608	2228	70,5	355	340	328 (0,81 0,5	30 0,04	0,04 0,	,87 269	14 85,2	60	-0,8	27	-20	-20 2.	3 7	-35	-5 0	0	- 44	15	isk
5	1,0	6,250	0,75	266,3	100	2,12	70	1664	625	2289	72,4	355	338	327	0,81 0,5	31 0,04	0,04 0,	,87 276	87,5	20	-5,2	27	-20	-20 2.	4 7	-35	-5	0	ë R	14	isk
9	1,0	6,378	0,75	266,3	100	2,19	80	1698	638	2336	73,9	355	335	326	0,82 0,5	31 0,04	0,04 0,	,87 282	7 89,4	80	-8,7	27	-20	-20 2.	5 7	-35	-5	0	-42	13	isk
2	1,0	6,477	0,75	266,3	100	2,25	6	1725	648	2372	75,0	355	333	324	0,82 0,5	31 0,04	0,04 0,	,86 287.	.2 90,8	6	-11,6	27	-20	-20 2.	5 7	-35	-5	0	-45	13	isk
8	1,0	6,554	0,75	266,3	100	2,30	100	1745	655	2400	75,9	355	330	322	0,83 0,5	31 0,04	0,04 0,	,86 290	92,0	100	-14,1	27	-20	-20 2.	5 7	-35	-5	0	-47	13	isk
6	1,0	6,613	0,75	266,3	100	2,35	110	1761	661	2422	76,6	355	328	321	0,83 0,5	31 0,04	0,04 0,	,86 293	17 92,9	110	-16,2	27	-20	-20 2.	5 7	-35	-5	0	-49	13	isk
10	1,0	6,659	0,75	266,3	100	2,39	120	1773	666	2439	77,1	355	325	319 (0,84 0,5	31 0,04	0,04 0,	,86 296	33,6	120	-18,0	27	-20	-20 2,	6 7	-35	-5	0	- 2	12	isk
1	1,0	6,695	0,75	266,3	100	2,43	130	1783	670	2452	77,5	355	323	316 (0,84 0,2	32 0,04	0,04 0,	,86 297,	8 94,2	130	-19,6	27	-20	-20 24	6 7	-35	-5 0	0	- 23	12	isk
12	1,0	6,722	0,75	266,3	100	2,47	140	1790	672	2462	77,9	355	320	314 (0,85 0,5	32 0,04	0,04 0,	,86 299.	3 94,6	140	-21,0	27	-20	-20 24	6 7	-35	-5	0	-24	12	isk
13	1,0	6,745	0,75	266,3	100	2,51	150	1796	675	2470	78,1	355	318	312 (0,85 0,5	32 0,04	0,03 0,	,86 300	6 95,0	150	-22,3	27	-20	-20 24	6 7	-35	-5 0	0 (- 22 -	12	isk
20	1,0	6,860	0,75	266,3	100	2,76	250	1826	686	2512	79,5	355	293	289 (0,92 0,	35 0,05	0,02 0,	,84 308	16 97,6	250	-31,4	27	-20	-20 2	6 7	-35	-5 0	0 (- 64 -	12	isk
As	issasi	ment	for	$\sigma_{Ed} =$	0,7	5 · f , c	L pur	r = -5(ر °C																						
ž	ő	Ą	σε./f.	e	ĕ	a	ţ	K,	Ķ.	K,	K,	function	f.(t)	D _{mi}	ء د	õ	د ع	ine Kand	Kandd	,,,d	ΔT.	K _{v nom}	T _{KV} T	Γ ₂₇ , ΔΤ	Te	Tmd	AT, AT	L. ATrc	. T _{E4} 1	10	Γ
	N/mm ²	N/mm ^{3/2}	Ē	N/mm²	, N/m [±]	, mm ~	E	N/mm ^{3/2}	N/mm ^{3/2}	N/mm ^{3/2}	MPam ^{1/2}	N/mm ²	N/mm ²	N/mm²				- N/mm	^{3/2} MPam ¹	^{1/2} mm	, ů	٦	ပ္	ې د ا	်ပ္ ဂ	ပ	်ပီ လ	່. ເບ	ပ္	<u>۳</u>	≥ T _{Rd}
-	1,0	5,220	0,75	266,3	100	1,70	30	1390	522	1912	60,5	355	348	328 (0,81 0,5	31 0,04	0,04 0,	,87 231;	2 73,1	30	22,3	27	-20	-20 8	7	-45	-5	0	- 71 -	30 nd	o risk
2	1,0	5,590	0,75	266,3	100	1,84	40	1488	559	2047	64,7	355	345	329 (0,81 0,5	30 0,04	0,04 0,	,87 247-	4 78,2	40	12,1	27	-20	-20 1(6 7	-45	-5	0	-31 -	22	isk
e	1,0	5,870	0,75	266,3	100	1,96	50	1563	587	2150	68,0	355	343	329 (0,81 0,5	30 0,04	0,04 0,	,87 259	82,2	50	4,7	27	-20	-20 2	1 7	-45	-5	0	- 89	17	isk
4	1.0	6 084	0.75	266.3	100	2 05	60	1620	608	2228	70.5	355	340	328 (0.81 0.5	30 0 04	0.04.0	87 2694	4 852	60	8 0- 8	27	- 00-	-20 2:	2	-45	ں ہ	0	- 44	15	isk

T < T		no risk	risk	risk	risk	risk	risk	risk	risk	risk	risk	risk	risk	risk	risk
T_{Rd}	ပ္	-30	-22	-17	-15	-14	-13	-13	-13	-13	-12	-12	-12	-12	-12
T _{Ed}	ပ္	-21	é	ဗို	44	-48	-52	-55	-21	-59	6	ធុ	64	-65	-74
ΔT_{DCF}	ပ္	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ΔT	ပ္	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ΔT,	ပ္	Ŷ	Ϋ́	Ϋ́	Ϋ́	Ϋ́	Ϋ́	ပု	ပု	ပု	ပု	ပု	ပု	-2	ŝ
Tmd	ပ္	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45	-45
J ATR	ပ္	7	7	7	7	7	7	7	7	7	7	7	7	7	7
, ∆T ₂₇	ç	8 0	0 16	0 21	0 23	0 24	0 25	0 25	0 25	0 25	0 26	0 26	0 26	0 26	0 26
v T ₂₅	ې د	<mark>0</mark> -2	5 0	5 0	5 0	5 0	5 0	ې 0	ې 0	ې 0	ې 0	ې 0	ې 0	0 -2	<mark>0</mark> -2
Ť	Ŷ	-2	-7	-7	-7	-2	-7	-7	-7	-7	-7	-7	-7	-2	-2
K _{V,nom}	٦	27	27	27	27	27	27	27	27	27	27	27	27	27	27
۵T	ပံ	22,3	12,1	4,7	-0,8	-5,2	-8,7	-11,6	-14,1	-16,2	-18,0	-19,6	-21,0	-22,3	-31,4
b _{eff}	m	30	40	50	60	20	8	6	100	110	120	130	140	150	250
K _{appl,d}	MPam ^{1/2}	73,1	78,2	82,2	85,2	87,5	89,4	90,8	92,0	92,9	93,6	94,2	94,6	95,0	97,6
K _{appl,d}	N/mm ^{3/2}	2312	2474	2598	2694	2768	2827	2872	2909	2937	2960	2978	2993	3006	3086
\mathbf{k}_{R6}	•	0,87	0,87	0,87	0,87	0,87	0,87	0,86	0,86	0,86	0,86	0,86	0,86	0,86	0,84
٩		0,04	6,0	6,0	6,0	,04	,04	6,0	6,0	6,0	6,0	6,0	6,0	,03	0,02
ē		,04 0	ą	ą	ą	<u>8</u>	,04 0	,05 (
>		31 0	30 0	30 0	30 0	31 0	31 0	31 0	31 0	31 0	31 0	32 0	32 0	32 0	35 0
-		81 0,	81 O,	81 O,	81 O,	81 O,	82 0,	82 0,	83 O,	83 O,	84 0,	84 0,	85 O,	85 0,	92 0,
	5	°,0	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	0,8	0,9
α ^{gy}	դ² N/mn	328	329	329	328	327	326	324	322	321	319	316	314	312	289
f _y (t)	¹² N/mn	348	345	343	340	338	335	333	330	328	325	323	320	318	293
f _{y,non}	2 N/mm	355	355	355	355	355	355	355	355	355	355	355	355	355	355
K _{1,ges}	MPam ^{1/;}	60,5	64,7	68,0	70,5	72,4	73,9	75,0	75,9	76,6	77,1	77,5	77,9	78,1	79,5
K _{1,9es}	N/mm ^{3/2}	1912	2047	2150	2228	2289	2336	2372	2400	2422	2439	2452	2462	2470	2512
K _{1,S}	N/mm ^{3/2}	522	559	587	608	625	638	648	655	661	666	670	672	675	686
К _{1,Р}	N/mm ^{3/2}	1390	1488	1563	1620	1664	1698	1725	1745	1761	1773	1783	1790	1796	1826
7	шш	30	40	50	60	20	80	6	100	110	120	130	140	150	250
a	Ē	1,70	1,84	1,96	2,05	2,12	2,19	2,25	2,30	2,35	2,39	2,43	2,47	2,51	2,76
đ	N/mm²	100	100	100	100	100	100	100	100	100	100	100	100	100	100
đ	N/mm²	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3
5Ed/fy	Ξ	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75
Ł	N/mm ^{3/2}	5,220	5,590	5,870	6,084	6,250	6,378	6,477	6,554	6,613	6,659	6,695	6,722	6,745	6,860
ď	V/mm ²	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
ż	<u> </u>	÷	2	e	4	5	9	~	8	6	9	7	12	13	20

-
0
Ξ.
V
L.
-
0
2
-
0
~
5
~
LO
21
1
~
0
. 11
-
.ш
5
0
r.
~
<u>.</u> 0
-
` سه
=
5
СU
ñ
5
10
22
×.
J.
S
10
~

Table 5-40:

Continued

5-41	•
	5-41

Assessment for $\sigma_{Ed} = 0,75 \cdot f_y$ and $T = -50 \ ^{\circ}C$

Fracture mechanics assessment for the component No. 5 for loading variant 5-2

т ~ т	Ed 5 Rd	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk	no risk									
TRd	ပ္	-33	-26	-19	-16	-14	-13	-13	-13	-13	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12
CF TEd	ç	11	7	99	45	35	8	27	23	21	18	16	14	13	5	9	8	~	5	4
. ΔT _D	ŝ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Т, ∆Т	ပို	5 0	5 0	5 0	5 0	5 0	5 0	5 0	5 0	5 0	5 0	5 0	5 0	5 0	5 0	5 0	5 0	5 0	5 0	5 0
L ^{md} ∆	۰ د	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45 -
ΔT _R 7	ç	- 2	-	-	-	-	-	- -	-	-	-	-	-	- 2	- -	-	- 2	-	-	7
ΔT_{27J}	ပိ	5	12	19	22	24	25	25	25	25	26	26	26	26	26	26	26	26	26	26
T ₂₇ ,	ပ္	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20
T _{KV}	°C	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20
K _{V,nom}	ſ	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27
۵T	ပိ	120,0	120,0	109,0	88,5	78,0	73,2	69,5	65,6	63,7	61,4	59,3	57,5	55,7	54,2	52,7	51,2	49,8	48,5	47,2
b _{eff}	mm	25	35	45	55	65	75	85	95	105	115	125	135	145	155	165	175	185	195	205
K _{appl,d}	MPam ^{1/2}	33,9	34,5	36,1	38,7	40,2	40,6	40,9	41,3	41,3	41,5	41,6	41,8	41,9	42,0	42,1	42,2	42,3	42,5	42,6
K _{appl,d}	N/mm ^{3/2}	1073	1090	1140	1224	1270	1284	1293	1308	1307	1312	1317	1321	1324	1328	1331	1335	1339	1343	1347
k _{R6}	-	0,88	0,88	0,87	0,87	0,87	0,87	0,87	0,87	0,86	0,86	0,86	0,86	0,86	0,86	0,85	0,85	0,85	0,85	0,85
٩	'	1 0,04	1 0,04	1 0,04	1 0,04	1 0,04	1 0,04	1 0,04	1 0,04	1 0,04	1 0,04	1 0,04	1 0,04	1 0,04	1 0,03	1 0,03	1 0,03	1 0,03	1 0,03	1 0,03
٩	'	0'0 6	0'0 6	0'0 6	0,0	0,0	0,0 0	000	1 0,0	1 0,0	1 0,0	1 0,0	2 0,0	2 0,0	2 0,0	2 0,0	3 0,0	3 0,0	3 0,0	3 0,0
≯ -		77 0,2	78 0,2	79 0,2	79 0,3	30 0,3	30 0,3	31 0,3	31 0,3	32 0,3	33 0,3	33 0,3	34 0,3	35 0,3	35 0,3	36 0,3	37 0,3	37 0,3	38 0,3	39 0,3
۲ ۲	m²	4 0,7	2 0,7	9 O,	7 0,7	4 0,8	2 0,8	3'0' 6	7 0,8	4 0,8	2 0,5	9,0,8	7 0,8	4 0,8	2 0,8	0,6	7 0,8	5 0,5	2 0,5	0 0,8
) G	n² Nm	9 34	34.	4 33	1 33	33.	33.	4 32	1 32	32.	32.	4 31:	31	31.	31.	4 31	1 30	9 30.	30.	4 30.
, f _y (t,	1 ² N/mr	346	346	344	34	335	336	334	33.	325	326	324	32.	315	316	314	31	306	306	304
f _{y,non}	² N/mn	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355	355
K _{1,ges}	² MPam ^{1//}	28,4	28,8	30,0	32,2	33,3	33,6	33,8	34,2	34,1	34,2	34,3	34,4	34,5	34,5	34,6	34,6	34,7	34,8	34,8
K _{1,ges}	² N/mm ^{3/.}	897	910	950	1017	1054	1064	1070	1081	1080	1083	1085	1088	1090	1091	1093	1095	1097	1099	1102
K _{1,S}	² N/mm ³	245	248	259	278	288	290	292	295	295	296	296	297	298	298	298	299	300	300	301
K _{1,P}	N/mm ^{3/L}	652	662	691	740	766	773	778	786	785	787	789	791	792	793	794	796	798	299	801
4	m	25	35	45	55	65	75	85	95	105	115	125	135	145	155	165	175	185	195	205
a	z mm	2,85	2,85	2,85	2,85	2,85	2,85	2,85	2,85	2,85	2,85	2,85	2,85	2,85	2,85	2,85	2,85	2,85	2,85	2,85
gs	N/mm ²	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
đ	N/mm ²	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3	266,3
σ _{Ed} /f _y	Ξ	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75
, К	N/mm ^{3/2}	2,450	2,485	2,594	2,778	2,878	2,904	2,922	2,952	2,948	2,957	2,964	2,970	2,975	2,979	2,984	2,990	2,996	3,002	3,008
đ	l/mm²	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
ž	2	-	2	e	4	5	9	~	8	6	1 0	÷	12	13	14	15	16	17	18	19

6 Proposal for a standard procedure for the assessment to avoid brittle fracture when using FE-calculations

(1) The relevant locations for the assessments to avoid brittle fracture at the steel components of bearings may be taken from Table 6-1. The locations are those where notch effects due to geometrical detailing and due to welding are present and where tensile stresses occur.

Table 6-1:	Critical	locations	for	the	assessments	to	avoid	brittle	fracture	for	the	steel
	compon	nents of be	arin	gs								

Comp.	Loading	Hot-Spot Location	Stress type	
1 2A	н	re-entrant corners	tension	
		re-entrant corners	tension	
2B		weld toe top	compress.	
		weld toe bottom	compress.	
3		re-entrant corners	tension	
		weld toe	tension	
4	H	surface defects	tension	
	⊢ ⊢ ⊢ ⊢ ⊢ ⊢ ⊢	weld toe top	tension	
5		weld toe bottom	tension	

- (2) With the assumptions, that initial cracks may occur at these locations with a critical direction of these cracks, see Table 6-2, the relevant reference stresses σ_{Ed} are determined at the surface where cracks initiate for the "frequent load combination", that is supposed to occur when the temperature of the components T_{Ed} gets its minimum value. With these two input values: σ_{Ed} and T_{Ed} , the limit of product thickness is calculated.
- (3) The references stresses σ_{Ed} are obtained from hot-spot stresses σ_{HS} from a linear extrapolation of the tensile stresses along the crack path according to the method of Dong. This "inner" extrapolation covers the distribution of the tensile stresses along the crack path between the values σ_{max} (surface) and 0,1 σ_{max} (inner point).
- (4) The maximum product thickness t is a function of the reference stress σ_{Ed} and temperature T_{Ed} determined specifically for each of the components, see Table 6-3 to Table 6-10 as associated in Table 6-2.

(5) These tables give the results for the most onerous loading variant used in section 5.

Component	Sketch	Results
1	Top component – rotationally-symmetric D t_1 t_2 t_2 b b d d d b d b d b d d b d b d d d d d d d d	Table 6-3
2A	Top component – axisymmetric D t_1 t_2 t_2 b d d d b d d b d d d d d d d d	Table 6-4
2В	Top component – axisymmetric, welded $\begin{array}{c} & & D \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & &$	Table 6-5 (element thickness t ₁) Table 6-6 (element thickness t ₂)
3	Bottom component $t_1 \downarrow c \downarrow t_3 \downarrow c \downarrow $	Table 6-7 (element thickness t ₁) Table 6-8 (element thickness t ₂)
4	Anchor plate	Table 6-9
5	Bearing for horizontal forces	Table 6-10

Table 6-2:Locations and directions of cracks as used to determined $\sigma_{ed} = \sigma_{HS}$

Steel grade acc. to	$\sigma_{\sf Ed}$	0°C	-10°C	-20°C	-30°C	-40°C	-50°C	
EN 10025		[mm]						
\$355J2	0,25 · f _y	250 ^{*)}						
\$355J2	0,50 · f _y	250 ^{*)}						
\$355J2	0,75 · f _y	250 ^{*)}	235					

Table 6-3:Limits of plate thickness for component No. 1 – Rotationally-symmetric top
component of bearing

*) Assumption of a technical manufacturing limit (in theory element thicknesses with $t \ge 250 \text{ mm}$ would be acceptable)

 Table 6-4:
 Limits of plate thickness for component No. 2A – Axisymmetric top component

Steel grade acc. to	$\sigma_{\sf Ed}$	0°C	-10°C	-20°C	-30°C	-40°C	-50°C	
EN 10025		[mm]						
S355J2	0,25 · f _y	250 ^{*)}						
S355J2	0,50 · f _y	250 ^{*)}						
\$355J2	0,75 · f _y	250 ^{*)}	240					

*) Assumption of a technical manufacturing limit (in theory element thicknesses with $t \ge 250 \text{ mm}$ would be acceptable)

Table 6-5:	Limits of plate thickness $t_1 \mbox{ for component No. 2B}$ - Welded top component of
	bearing

Steel grade acc. to EN 10025	$\sigma_{\sf Ed}$	0°C	-10°C	-20°C	-30°C	-40°C	-50°C
		[mm]					
\$355J2	0,25 · f _y	300 ^{*)}					
\$355J2	0,50 · f _y	300 ^{*)}					
S355J2	0,75 · f _y	300 ^{*)}					

*) Assumption of a technical manufacturing limit (in theory element thicknesses with $t \ge 300 \text{ mm}$ would be acceptable)

Table 6-6:Limits of plate thickness t2 for component No. 2B - Welded top component of
bearing

Steel grade acc. to	_	0°C -10°C -20°C -30°C -40°C -50°C								
EN 10025	O _{Ed}	[mm]								
S355J2	0,25 · f _y	200 ^{*)}	200	190	170	150	130			

*) Assumption of a technical manufacturing limit (in theory element thicknesses with $t \ge 200 \text{ mm}$ would be acceptable)
Steel grade acc. to	_	0°C	-10°C	-20°C	-30°C	-40°C	-50°C
EN 10025	σ _{Ed}	[mm]					
\$355J2	0,25 · f _y	250 ^{*)}					
\$355J2	0,50 · f _y	250 ^{*)}					
\$355J2	0,75 · f _y	250 ^{*)}	250 ^{*)}	250 ^{*)}	200	140	110

 Table 6-7:
 Limits of plate thickness t1 for component No. 3 - Bottom component of bearing

*) Assumption of a technical manufacturing limit (in theory element thicknesses with $t \ge 250 \text{ mm}$ would be acceptable)

Table 6-8:
 Limits of plate thickness t₂ for component No. 3 - Bottom component of bearing

Steel grade acc. to EN 10025		0°C	-10°C	-20°C	-30°C	-40°C	-50°C
	O _{Ed}	[mm]					
\$355J2	0,25 · f _y	250 ^{*)}					
\$355J2	0,50 · f _y	250 ^{*)}					
\$355J2	0,75 · f _y	250 ^{*)}	250 ^{*)}	250 ^{*)}	200	140	110

*) Assumption of a technical manufacturing limit (in theory element thicknesses with $t \ge 250 \text{ mm would be acceptable}$)

Table 6-9:	Limits of plate thickness for component No. 4 - Anchor plate
------------	--

Steel grade acc. to EN 10025	_	0°C	-10°C	-20°C	-30°C	-40°C	-50°C
	σ _{Ed}	[mm]					
\$355J2	0,25 · f _y	250 ^{*)}					
\$355J2	0,50 · f _y	250 ^{*)}					
\$355J2	0,75 · f _y	250 ^{*)}					

*) Assumption of a technical manufacturing limit (in theory element thicknesses with $t \ge 250 \text{ mm}$ would be acceptable)

 Table 6-10:
 Limits of plate thickness for component No. 5 – Bearing for horizontal loads

Steel grade acc. to EN 10025	_	0°C	-10°C	-20°C	-30°C	-40°C	-50°C
	σ _{Ed}	[mm]					
\$355J2	0,25 · f _y	250 ^{*)}					
\$355J2	0,50 · f _y	250 ^{*)}	250 ^{*)}	180	110	80	60
S355J2	0,75 · f _y	120	80	60	40	40	30

*) Assumption of a technical manufacturing limit (in theory element thicknesses with $t \ge 250 \text{ mm would be acceptable}$)

7 Worked example for the assessment to avoid brittle fracture using FEcalculations

7.1 General

(1) The worked example deals with a top component of a bearing loaded by pressure from a concrete bridge, see Figure 7-1.

Spring stiffness for concrete in compression

Figure 7-1: Top component of a bearing with elastic contact to the concrete part and horizontal load

- (2) This type of component complies with component No. 1 (spherical bearing with RS beyond the rotating part) or component No. 2A (cylindrical bearing with unidirectional sliding part).
- (3) For component No. 1 the horizontal forces would be distributed parabolically; for component No. 2A the distribution would be constant.
- (4) In this case the assessment is performed for component No. 1 using the properties and loading in Table 7-1.

 Table 7-1:
 Properties and loading for component No. 1

Geometry		
Plate thickness	t ₁ [mm]	60
Height of lateral support	t ₂ [mm]	65
Thickness of the parent plate	t _{walz} [mm]	130
Width of lateral support	b [mm]	142,5
Distance between inside of the lateral support and the calotte	x [mm]	50
Inner diameter of top component	d [mm]	543

Loading		
Horizontal force	H _d [kN]	1936
Maximum horizontal force on lateral supports	h _{d,max} [N/mm]	3404
Yield strength	f _y (t _{steel product}) [N/mm ²]	295

- (5) In order to take into account non-linear effects of the elastic contact between concrete and steel the calculation has been carried out using FEM.
- (6) For concrete C30/40 was chosen.
- (7) The concrete pressure is determined by bi-linear spring-elements, see Figure 7-2, where the limit pressure of $3 \cdot f_{cd}$ has been used.

Figure 7-2: Spring-characteristic for the concrete surface

- (8) The numerical analysis was carried with the programme ANSYS12. The use of 2dimensional sections makes the use of 2-dimensional Finite Elements possible:
 - Plane 82 for linear elastic material properties for steel, i.e. modulus of elasticity 210.000 N/mm² and Poisson ratio v = 0.3,
 - COMBIN 39 as bilinear spring model for the concrete pressure.

7.2 Determination of the Hot-Spot-stresses

(1) The mechanical model in Figure 7-1 can be simplified for the safety assessment at the potential crack location to the model given in Figure 7-3.

Springs modeling the elasticity of concrete in compression

Figure 7-3: Mechanical model for the potential crack detail

(2) The calculations are performed with a Finite-Element-model according to Figure 7-4, where the interface to the concrete is reproduced by bilinear springs.

Figure 7-4: Location and orientation of crack in the FE-mesh

- (3) The radius at the critical detail is 1 mm.
- (4) The horizontal force applied is 3404 N/mm.
- (5) The mesh-length in the area of crack is 1x1 mm and has been confirmed by convergence-studies.
- (6) For the evaluation of the principal stresses, which are nearly orientated perpendicularly to the potential crack direction, the standard hot-spot-stress method with non-linear surface extrapolation along the horizontal and the vertical path in Figure 7-4 is used.
- (7) The principal stress σ_{HS} for the horizontal extrapolation gives 106,3 N/mm² and for the vertical extrapolation 127,4 N/mm². For the vertical extrapolation the effect on the principal stress at the lateral supports at the point of the horizontal load application was separated.

extrapolation in horizontal direction

extrapolation in vertical direction

Figure 7-5: Determination of the principal hot-spot stress σ_{HS} by means of non-linear surface extrapolation

7.3 Assessment

(1) The assessment is based on

 σ_{Ed} = 178 N/mm²

resulting from the static analysis of the bearing and hence

$$\frac{\sigma_{Ed}}{f_y} = \frac{178}{295} = 0,64$$

(2) According to Table 6-3 the dimensions of the steel-component are in the safe-area.

8 Simplified assessment with reference to ultimate limit state verifications

8.1 General

- (1) The design of bearings for Ultimate Limit States yields in general the dimensions as given in Table 3-2.
- (2) In the following it is assumed that
 - 1. the ultimate limit state assessments are carried out using the elastic bending theory for bars with the stress $\sigma_{bend,d}$ limited by the yield strength,
 - 2. the loading assumptions are compatible with deformations,
 - 3. assessments are carried out for the critical sections perpendicular to the neutral axis (and not in the direction of the probable crack path),
 - 4. assessments are performed with the design values of action effects (from factored loads),
 - 5. notch effects are neglected in using the elastic bending theory for bars.
- (3) In order to establish a link between the reference stresses σ_{Ed} defined as Hot-Spotstresses according to Dong, for which the fracture mechanics assessments yielded the thickness limits in Table 6-3 to Table 6-10, and the stresses $\sigma_{bend,d}$ from the ultimate limit state assessments the following correlations are necessary:
 - 1. Difference between the load-level for "frequent" loads and the load level for ultimate limit state checks,
 - 2. Differences between the Hot-Spot-stress σ_{HS} from the linearization along the crack path and the bending stress $\sigma_{bend,d}$ limited by the yield strength f_y in the adjacent critical section perpendicular to the neutral axis.

8.2 Correlations

- (1) To estimate the difference between the load-level for "frequent loads" and for ultimate limit state assessment, the case of canal bridges is adopted, for which
 - the "frequent" load is defined by the permanent load (G+W) and
 - the design load for ultimate limit states is γ_G (G+W) where γ_G = 1,35.

Hence the "frequent" load is equal to 1/1.35 = 0.75 of the ultimate load.

- (2) As the bending stress $\sigma_{bend,d}$ for the critical cross-section perpendicular to the neutral axis according to Figure 4-6a is in general smaller than the Hot-Spot-stress σ_{Ed} along the crack path, it is assumed, that the reference stress σ_{Ed} equal to the Hot-Spot-stress along the crack path can be correlated with the bending stress $\sigma_{bend,d}$ according to the bending theory in the following way:
- (3) Using the assumptions (1) and (2) the reference stress σ_{Ed} for the fracture mechanics assessment can be defined by

$$\sigma_{Ed} = 0.75 \cdot k_{Dong} \cdot \sigma_{bend,d}$$
(8-1)

where	
σ_{Ed}	is determined according to the linear bending theory in the critical section perpendicular to the neutral axis for "frequent" loads
$\sigma_{bend,d}$	is the ultimate stress determined in a simplified way according to the elastic bending theory in the critical cross section perpendicular to the neutral axis for action effects from loads factored with γ .
f _y	is the yield strength which limits the ultimate limit state assessment in the critical section perpendicular to the neutral axis
0,75	is the correlation factor between "frequent" load and the design load for ultimate limit states.
k _{Dong}	is the correlation coefficient between the Hot-Spot-stress $\sigma_{\rm HS}$ according to Dong, see Figure 4-11 and the stress $\sigma_{\rm bend}$ determined according to the elastic bending theory for the critical cross section perpendicular to the neutral axis however with the same load level as for $\sigma_{\rm HS}.$

Figure 8-1 gives an example.

8.3 Consequences for the choice of material to avoid brittle fracture

(1) The consequences from the simplifications in 8.1 and 8.2 are demonstrated in Table 8-1. The results are safe-sided.

Table 8-1:Choice of material for steel components of bearings for the upper and bounds of
dimensions for bearing type A and type B and steel S355J2 for T_{Ed} = - 30°C

No.	Component	Geometry Type A	Geometry Type B	Limits
1	Top component (Sliding plate and lateral guiderail) $t_1 \downarrow t_2 \downarrow $	t: 55 – 315 mm t ₁ : 20 – 215 mm t ₂ : 25 – 100 mm D: 500 – 1800 mm d: 355 - 1385 mm b: 50 - 505 mm		t = 250 mm
2A	Top component (sliding plate and lateral guiderail) $t_1 \downarrow t_2 \downarrow \downarrow$	t: 55 – 315 mm t ₁ : 20 – 215 mm t ₂ : 25 – 100 mm D: 500 – 1800 mm d: 355 - 1385 mm b: 50 - 500 mm		t = 250 mm
2B	Top component (sliding plate and lateral guiderail) $t_{a_{w_1}}^{e} \xrightarrow{D} \xrightarrow{t_1} t_2$		t ₁ : 55 – 285 mm t ₂ : 55 – 170 mm a _w : 12 - 42 mm <i>(K oder Y-Naht)</i> <i>D: 440 – 2580 mm</i> <i>b: 55 - 570 mm</i>	t ₁ = 300 mm t ₂ = 170 mm
3		t: 55 – 255 mm t_1 : 20 – 55 mm t_2 : 20 – 60 mm t_3 : 35 – 150 mm D: 330 – 1800 mm b: 40-100 mm r: 135-590 mm	t: 55 – 255 mm t_1 : 20 – 55 mm t_2 : 20 – 60 mm t_3 : 35 – 150 mm D: 330 – 1800 mm b: 40-100 mm r: 135-590 mm	t ₁ = 200 mm t ₂ = 200 mm
4	Anchor plate	t: ≥ 55 mm D: 440-3300 mm	t: ≥ 55 mm D: 440-3300 mm	t = 250 mm
5	Bearing for horizontal forces without rotation and capacity for vertical forces	t: 30 – 150 mm d: 55 – 300 mm a _w : 5 – 25 mm <i>D: 440 - 3300 mm</i>	t: 30 – 150 mm d: 55 – 300 mm a _w : 5 – 25 mm <i>D: 440 - 3300 mm</i>	t = 40 mm

9 Worked examples

9.1 General

- (1) The worked examples shall demonstrate with a bridge recently built in Germany the use of the tables 6.2 to 6.10 for the choice of steel material to avoid brittle fracture for bearings.
- (2) The railway bridge located in Hamburg, from which the worked example for bearings has been selected, has been designed according EN 1993-2 in connection with the associated German National Annex in force.
- (3) The rules in this German National Annex for determining the action effects and movements for bearings, which supplement the rules given in EN 1990 and EN 1337, are given in Annex E for information. Other National Annexes may lead to other requirements for the bearings.
- (4) For comparison sake in addition to the demonstration of the use of tables 6.2 to 6.10 section 9.4 also gives a complete fracture mechanics assessment of the bearings selected as worked examples.

9.2 Design situation

(1) The bearing plan used for a railway bridge is given in Figure 9-1.

- (2) At the marked positions the bearings designed as spherical bearings for both compression and tension forces, shall be assessed.
- (3) The principle structure of the bearings may be taken from Figure 9-2.
- (4) The magnitudes of the compression forces and tension forces in the ultimate limit state for the reference bearings is given in Figure 9-3.
- (5) Details of the bearings may be taken from Figure 9-4, Figure 9-5 and Figure 9-6.

Figure 9-3: Maximum and minimum vertical forces for the reference bearings 8u/A, 8u/C, 10/B

Figure 9-4: Bearing in axis 8u/A according to Figure 9-1

Figure 9-5: Bearing in axis 8u/C according to Figure 9-1

Figure 9-6: Bearing in axis 10/B according to Figure 9-1

9.3 Choice of material for the bearings to avoid brittle fracture

9.3.1 Bearings in axis 8u/A

(1) The shape and the dimensions of the steel components may be taken from Table 9-1.

 Table 9-1:
 Steel components of bearings in axis 8u/A

No.	Steel component	Sketch	Table	Result
1	top component	$\sigma_{Ed} = \sigma_{HS} = 86 \text{ N/mm}^2 (= 0,24 \cdot f_y)$	6.3 for σ _{Ed} /f _y = 0,5 as safe-sided assumption	fulfilled
2	bottom component	$σ_{Ed} = σ_{HS} = 212 \text{ N/mm}^2 (= 0,60 \cdot f_y)$	6.3 for $\sigma_{Ed}/f_{y} = 0,75$ as safe-sided assumption	fulfilled
3	calotte	symmetry	6.3 for σ _{Ed} /f _y = 0,5 as safe-sided assumption	fulfilled
4	anchor plate	$σ_{Ed} = σ_{HS} = 31 \text{ N/mm}^2 (= 0,09 \cdot f_y)$	6.10 for $\sigma_{Ed}/f_y = 0.5$ as safe-sided assumption	not fulfilled ^{*)}

 $^{*)}$ fulfilled for $\sigma_{\text{Ed}}/f_{\text{y}}$ = 0,25

9.3.2 Bearings in axis 8u/C

(1) The shape and the dimensions of the steel components may be taken from Table 9-2.

 Table 9-2:
 Steel components of bearings in axis 8u/C

No.	Steel component	Sketch	Table	Result
1	top component	735 $G_{Ed} = \sigma_{HS} = 77 \text{ N/mm}^2 (= 0,22 \cdot f_y)$	6.3 for $\sigma_{Ed}/f_y = 0.5$ as safe-sided assumption	fulfilled
2	bottom component	$σ_{Ed} = σ_{HS} = 103 \text{ N/mm}^2 (= 0,29 \cdot f_y)$	6.3 for $\sigma_{Ed}/f_y = 0.5$ as safe-sided assumption	fulfilled
3	calotte	70 105 4 4 4 4 4 4 4 4 4 4 4 4 4	6.3 for $\sigma_{Ed}/f_y = 0,5$ as safe-sided assumption	fulfilled
4	anchor plate	τ_{1150} $\sigma_{Ed} = \sigma_{HS} = 30 \text{ N/mm}^2 (= 0,09 \cdot f_y)$	6.10 for $\sigma_{Ed}/f_y = 0.5$ as safe-sided assumption	not fulfilled ^{*)}

 $^{*)}$ fulfilled for $\sigma_{\text{Ed}}/f_{\text{y}}$ = 0,25

9.3.3 Bearings in axis 10/B

(1) The shape and the dimensions of the steel components may be taken from Table 9-3.

Table 9-3:Steel components of bearings in axis 10/B

No.	Steel component	Sketch	Table	Result
1	calotte (compression)	$\sigma_{Ed} = \sigma_{HS} = 58,2 \text{ N/mm}^2 (= 0,16 \cdot f_y)$	6.3 for $\sigma_{Ed}/f_y = 0,75$ as safe-sided assumption	fulfilled
2	calotte (tension)	$\sigma_{Ed} = \sigma_{HS} = 104,6 \text{ N/mm}^2 (= 0,29 \cdot f_y)$	6.9 for $\sigma_{Ed}/f_y = 0,75$ as safe-sided assumption	fulfilled
3	lateral guiderail	$\sigma_{Ed} = \sigma_{HS} = 43.4 \text{ N/mm}^2 (= 0.13 \cdot f_y)$	6.10 for $\sigma_{Ed}/f_y = 0.75$ as safe-sided assumption	Not fulfilled ^{*)}
4	anchor plate (connection)	$\sigma_{\rm Ed} = \sigma_{\rm HS} = 17.6 \text{ N/mm}^2 (= 0.05 \cdot f_y)$	6.5for $\sigma_{Ed}/f_y = 0,75$ as safe-sided assumption	fulfilled

 $^{*)}$ fulfilled for $\sigma_{\text{Ed}}/f_{\text{y}}$ = 0,13

9.4 Alternative procedure: Full fracture mechanics assessment

9.4.1 General

(1) As an alternative to the simplified procedure specified in this report that is applied to the three selected bearings in section 9.3 of this report, this section 9.4 gives the full fracture mechanics procedure to verify that

 $T_{Ed} \ge T_{Rd}$

see (2-3).

- (2) The calculations are based on the following assumptions
 - minimum temperature $T_{md} + \Delta T_R = -30 \text{ °C}$
 - $\sigma_{tot} = \sigma_P + \sigma_S$
 - where

Note:

- $\sigma_P = \sigma_{HS}$ is the Hot-Spot-stress from external frequent loads
- σ_s is a secondary residual stress = 100 MPa
- $K_1 (\sigma_P + \sigma_S)$ is the stress-intensity factor corresponding to $\sigma_{Ed} = \sigma_P + \sigma_S$

Example from calculation for bearing 10/B:

For $\sigma_P = \sigma_{HS} = 266 \text{ N/mm}^2$ the K₁-value from the FE-model is

 $K_1 = 1236 \text{ N/mm}^{3/2}$, see Table 9-5.

due to $\sigma_s = 100 \text{ N/mm}^2$, K₁ takes the value:

 $K(\sigma_P + \sigma_S) = 1.236 \cdot (266 + 100)/266 = 1.701 \text{ N/mm}^{3/2}$

The relevant value for assessment is

$$K_{appl,d} = \frac{K_{appl}}{k_{R6} - \rho} = \frac{1701}{0.826} = 2059 \, N/mm^{3/2}.$$

This value corresponds to

 $K^*_{appl.d} = 2059 \text{ N/mm}^{3/2} = 65,1 \text{ MPa m}^{1/2}$, see Table 9-8.

In the application of the full fracture mechanics procedure the definition

 $\sigma_{tot} = \sigma_P + \sigma_S$

shall be used, whereas the use of the tables 6.2 to 6.10 for the simplified procedure is based on

 σ_{Ed} = σ_{P} = σ_{HS}

in the same way as used for the application of table 2.1 in EN 1993-1-10.

- $f_{y,nom}$ = 355 N/mm² to be reduced for large values t (e.g. $f_{y,nom}$ = 338 N/mm² for t = 70 mm)
- $T_{27J,nom} = -20 \text{ °C} (S 355 J2)$
- $\Delta T_R = +7$ °C is the safety element related to the use of nominal values T_{27J} and f_y according to EN 10025.

9.4.2 Design value of initial crack

(1) The initial crack sizes a_0 and the values $a_{0,d}$ used for the calculation for the various plate-thicknesses are given in Table 9-4:

at a la anna an ant	axis 8u/A				axis 8u/	с	axis 10/B			
steel component	t	a₀	a _{0,d}	t	a _o	a _{0,d}	t	a ₀	a _{0,d}	
top component	163	2,55	2,60	163	2,55	2,60	70	2,12	2,50	
bottom component	53	1,99	2,00	70	2,12	2,50				
calotte (tension)	42	1,87	2,00	50	1,96	2,00	72	2,14	2,50	
anchor plate	157	2,53	2,60	67	2,56	2,60	57	2,00	2,00	
lateral guiderail							120	2,39	2,50	

Table 9-4: Design values for crack-like flaws

9.4.3 Determination of K₁-values from the FE-analysis

(1) For various values $\sigma_{Ed} = \sigma_P (0,25 \text{ f}_y, 0,50 \text{ f}_y, 0,75 \text{ f}_y)$ Table 9-5 gives the K₁-values and K_{eff}-values obtained from Finite-Element analysis for the fracture mechanics models given in Table 9-6, Table 9-7, Table 9-8.

Table 9-5:K-values from Finite-Element-Analysis of fracture mechanics models as given in
Table 9-6, Table 9-7 and Table 9-8 for various values $\sigma_{Ed}/f_y = \sigma_P/f_y$

				0,25·f _y			0,50·f _y			0,75·f _y		
No.		component		K ₁	K ₂	K _{eff}	K ₁	K ₂	K _{eff}	K ₁	K ₂	K _{eff}
		[N/mm ^{3/2}]			[N/mm ^{3/2}]			[N/mm ^{3/2}]				
1	top	1	373	-17	364	746	-35	729	1119	-52	1093	
1		component	2	325	15	333	650	30	666	975	45	998
A/u	3u/A	bottom component	1	443	15	451	886	30	902	1329	46	1353
2	Axis 8		2	391	-2	390	782	-4	780	1173	-6	1170
2	fen /		3	541	36	560	1083	71	1120	1624	107	1680
	erha		4	211	76	257	422	151	515	633	227	772
3	qo	calotte (tens.)	-	535	-4	533	1071	-9	1066	1606	-13	1600
4		anchor plate	-	1063	-306	948	2126	-612	1896	3190	-919	2844

				0,25 .f _y			0,50·f _y			0,75 .f _y			
No.		component		K ₁	K ₂	K _{eff}	K ₁	K ₂	K _{eff}	K ₁	K ₂	K _{eff}	
			[]	N/mm ^{3/}	²]	[]	[N/mm ^{3/2}]			[N/mm ^{3/2}]			
			1	357	21	368	714	43	737	1071	64	1105	
1		top	2	236	-2	235	471	-3	469	706	-5	704	
–		component	3	585	-21	575	1170	-42	1150	1755	-63	1724	
	3u/C		4	366	-51	343	732	-103	686	1098	-154	1030	
	Axis 8		1	354	-77	322	707	-155	644	1061	-232	966	
	fen /	erhafen component	2	452	-113	408	904	-227	815	1357	-340	1223	
2	erha		3	517	-106	473	1034	-212	946	1552	-318	1420	
	90	4	378	-62	351	756	-123	703	1134	-185	1054		
3		calotte (tens.)	-	685	-2	657	1317	-5	1314	1975	-7	1972	
4		anchor plate	-	1065	-304	950	2130	-608	1901	3195	-911	2851	
					0,25·f _y			0,50·f _y			0,75 .f _y		
No.		component		K ₁	K ₂	K _{eff}	K ₁	K ₂	K _{eff}	K ₁	K ₂	K _{eff}	
				[]	N/mm ^{3/}	²]	[N/mm ^{3/2}]			[[N/mm ^{3/2}]		
1	J/B	calotte (pres (load case pre	sure) ssure"	178	-26	166	355	-53	332	533	-79	498	
2	si calotte (load case "ter		nsion"	376	65	412	752	130	824	1127	195	1236	
3	-hafe	calotte (tens	calotte (tension)		20	280	540	40	560	810	60	841	
4	Ober	lateral guide	erail	612	-21	602	1224	-42	1203	1836	-63	1805	
5		anchor pla	ate	454	-123	407	909	-246	814	1363	-369	1221	

Table 9-5: continued

No.	Steel component	Fracture mechanics	K [*] appl,d	T _{mdr}	T _{Ed}	T _{27J}	T _{Rd}
		model	[MPa·m ^{+/} [≁]]	[°C]	[°C]	[°C]	[°C]
	Top component	Variant 1	40,5	-30	97	-20	-38
1		Variant 2	37,3	-30	97	-20	-38
	Bottom component	Variant 1	50	-30	33	-20	-12
		Variant 2	43,3	-30	47	-20	-12
2		Variant 3	62,1	-30	5	-20	-12
		Variant 4	28,5	-30	97	-20	-12
3	Calotte (tension)	55 105 40 5 40 5 105 105 105 105 105 105 105	59,4	-30	13	-20	-12
4	Anchor plate	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	119	-30	-61 ^{*)}	-20	-38*)

Table 9-6:Fracture mechanics assessment for bearing in axis 8u/A for $\sigma_P = 0,50 \cdot f_y$

*) calculated for $\sigma_{\text{Ed}}/f_{\text{y}}$ = 0,13

No.	Steel component	Fracture mechanics model	$\mathbf{K}^*_{appl,d}$	T _{mdr}		T _{27J}	T _{Rd}
		Variant 1	[IVIPa·m]	['C]	['C]	[-C]	['C]
			40,9	-30	52	-20	-38
		Variant 2	26,2	-30	97	-20	-38
1	Top component	Variant 3	65,5	-30	-17	-20	-38
		Variant 4	41,0	-30	34	-20	-38
	Bottom component	Variant 1	39,3	-30	57	-20	-12
2		Variant 2	50,1	-30	31	-20	-12
		Variant 3	57,4	-30	11	-20	-12
		Variant 4	42,0	-30	50	-20	-12
3	Calotte (tension)	70 105 19 17 19 17 17 17 17 175	73,0	-30	-9	-20	-12
4	Anchor plate		119,4	-30	63 ^{*)}	-20	-38 ^{*)}

Table 9-7:Fracture mechanics assessment for bearing in axis 8u/C for $\sigma_P = 0,50 \cdot f_y$

*) calculated for $\sigma_{\text{Ed}}/f_{\text{y}}$ = 0,13

No.	Steel component	Fracture mechanics	$\mathbf{K}^*_{appl,d}$	T _{mdr}	T _{Ed}	T _{27J}	T _{Rd}
		model	[MPa·m ^{-/-}]	[°C]	[°C]	[°C]	[°C]
1 Cal 1 (comp		Load case 1 – Tension	65,1	-30	-4	-20	-38
	Calotte (compression)	Load case 2 – Compression	28,1	-30	97	-20	-38
2	Calotte (tension)	Variant 1: Surface cracks located at bore holes	44,2	-30	38	-20	-12
3	Stegeisen	$\sigma_{max} = 43,3 \text{ N/mm}^2$	96,9	-30	-44*)	-20	-38 ^{*)}
4	Anchor plate (connection)	Variant 1: Welded connection $\sigma_{max} = 17.6 \text{ N/mm}^2$ $(= 0.05 \cdot f_y)$	71,7	-30	-6	-20	-38

*) calculated for $\sigma_{Ed}/f_y = 0.13$

9.4.4 Fracture mechanics assessments

- (1) In Table 9-6, Table 9-7 and Table 9-8 the fracture mechanics models used to calculate the $K(\sigma_P)$ values and the values $K^*_{appl,d}$ including residual stresses σ_S and finally T_{Ed} and T_{Rd} are given. The reference stresses are $\sigma_P = 0.50 \text{ f}_y$ in Table 9-6 and Table 9-7 and $\sigma_P = 0.75 \text{ f}_y$ in Table 9-8.
- (2) The condition

 $T_{Ed} \ge T_{Rd}$

is satisfied for all models except for the anchor plates in 9-6 and Table 9-7 and the lateral guiderail in Table 9-8.

(3) By choosing a more realistic reference stress $\sigma_P = 0.25 f_y$ for the anchor plate and $\sigma_P = 0.13 f_y$ for the lateral guiderail the improvements as given in Table 9-9 can be achieved.

Bearing	σ _P	K [*] _{appl,d}	T _{mdr}	T _{Ed}	T _{Rd}
8u/A	0,25·f _y	76,4	-30 °C	-29	-38
8u/C	0,25·f _y	76,5	-30 °C	-31	-38
10/B	0,13·f _y	38	-30 °C	52	-38

Table 9-9: Modification of assessment by improving the reference stress σ_P

10 References

- [1] DASt-Richtlinie 009: Stahlsortenauswahl für geschweißte Stahlbauten, Deutscher Ausschuss für Stahlbau. Januar 2005.
- [2] EN 1993-1-10: Eurocode 3: Design of Steel Structures Part 1-10: Material Toughness and Through Thickness Properties. 2005.
- [3] JRC Scientific and Technical Report: Commentary and Worked Examples to EN 1993-1-10 "Material Toughness and Through Thickness Properties and Other Toughness Oriented Rules in EN 1993. CRC, September 2008.
- [4] JRC Scientific and Technical Report: Choice of Steel Material to avoid Brittle Fracture for Hollow Section Structures – Addition to EN 1993-1-10. 2011.
- [5] EN 1993-1-9: Eurocode 3: Design for Steel Structures Part 1-9: Fatigue. 2005.
- [6] Kühn, B.: Beitrag zur Vereinheitlichung der europäischen Regelungen zur Vermeidung von Sprödbruch. Dissertation, Lehrstuhl für Stahlbau, RWTH Aachen, 2005, Shaker Verlag Aachen, ISBN 3-8322-3901-4.
- [7] EN 1337-1: Structural Bearings– Part 1: General Design Rules. 2000.
- [8] DIN Fachbericht 101: Einwirkungen auf Brücken. 2009.
- [9] EN 1993-2: Eurocode 3 Design of Steel Structures Part 2: Steel Bridges. 2006.
- [10] Hobbacher, A.: Recommendations for Fatigue Design of Welded Joints and Components. IIW-documentXIII-2151-07/XV-1254-07, 2007.
- [11] Marshall, P.W.: Design of Welded Tubular Connections. Basis and Use of AWS Code Provisions. Development in Civil Engineering, 37, Elsevier, 1992. pp. 412.
- [12] ASME Boiler and Pressure Vessel Code: Section III, Rule for Construction of Nuclear Power Plant Components, Division 1, Subsection NB, Class 1 Componets. New York, American Society of Mechanical Engineers, 1989.
- [13] Dong, P.: A Structural Stress Definition and Numerical Implementation for Fatigue Analysis of Welded Joints. International Journal of Fatigue, Vol. 23, 2001, pp. 865-876.
- [14] Dong, P., Hong, J.K., de Jesus, A.M.: Analysis of recent Data using the Structural Stress Procedure in ASME Div 2 Rewrite. Proceedings ASME Pressure Vessel and Piping Conference. PVP2005-71511, New York, ASME, 2005.

Annex E to section 9 – Worked Example

Objective

- (1) EN 1990 does not give a specific specification for the calculation of design values of action effects as forces, moments and movements relevant for the design of bearings.
- (2) It has been left to National Annexes to EN 1990 to give such specifications in the context of the use of the Eurocodes for the design of bridges.
- (3) Annex E is the National Annex from Germany. It may be used as an example for such a National Annex. It has been used as reference for preparing the worked example in section 9 Worked examples of the JRC-Report "Choice of steel material for bridge bearings to avoid brittle fracture Addition to EN 1993-1-10".

Basic requirements for a National Annex to EN 1990 for preparing the technical specifications for bearings

- (1) The particular specification for the calculation of design values of action effects on bearings shall take into account the following requirements:
 - 1. It shall be consistently useable for the following cases of analysis of bridges
 - 1. The bridge superstructure can be separated from the substructure at the interface of the bearings and be treated by an independent analysis model.
 - 2. Bridge superstructure and bridge substructure interact by mechanical links provided by the bearings. As a subsequence the bridge superstructure and the bridge substructure form a unique analysis model including the bearings (e.g. for elastomeric bearings).
 - 3. The bridge is an integral bridge without specific bearings.
 - 2. It shall be consistently useable for the design of transition joints.
 - 3. Long term regional experiences with measured data of movements should be reflected by the rules.
- (2) Particular features of the specification for the calculation of design values of action effect on bearings are
 - correction of γ_{F} to be applied to thermal actions from 1.50 to 1.35 (see EN 1990-A1),
 - appropriate definition of material properties e.g. for long term effects of concrete or non-metallic material in the bearings.
- (3) Annex E is a proposal from the German National Annex to EN 1990-A1 and is considered to comply with these requirements.

European Commission EUR 25390 EN- Joint Research Centre - Institute for the Protection and Security of the Citizen

Title: Choice of steel material for bridge bearings to avoid brittle fracture

Authors: M. Feldmann, B. Eichler, G. Sedlacek, W. Dahl, P. Langerberg, C. Butz, H. Leendertz, G. Hanswille Editors: A. Pinto, A. Athanasopoulou , H. Amorim-Varum

Luxembourg: Publications Office of the European Union

2012 – 136 pp. – 21.0 x 29.7 cm

EUR - Scientific and Technical Research series - ISSN 1831-9424 (online), ISSN 1018-5593 (print)

ISBN 978-92-79-25439-0

doi:10.2788/33897

Abstract

Bridge bearings need verification against brittle failure at low temperatures. The design of bearings according to EN 1337 may lead to structural components with thicknesses no longer covered in the relevant technical construction regulations. Due to its specific geometry, the loading and stressing and the fabrication process the prerequisites for using the rules in EN 1993-1-10 lead to conservative restrictions or uneconomical choice of steel material. For an economical bearing design further modifications of the existing rules are necessary. This report adapts the fracture mechanical approach used in EN 1993-1-10 and gives information for a "safe-sided" choice of steel material for bearings. The main modifications refer to the hypothetical design crack scenario and the definition of the "nominal design stress" at the geometric "hot-spot". An advanced methodology using Finite Elements and a simplified method using linear bending theory are evaluated.

As the Commission's in-house science service, the Joint Research Centre's mission is to provide EU policies with independent, evidence-based scientific and technical support throughout the whole policy cycle.

Working in close cooperation with policy Directorates-General, the JRC addresses key societal challenges while stimulating innovation through developing new standards, methods and tools, and sharing and transferring its know-how to the Member States and international community.

Key policy areas include: environment and climate change; energy and transport; agriculture and food security; health and consumer protection; information society and digital agenda; safety and security including nuclear; all supported through a cross-cutting and multi-disciplinary approach.

