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FOREWORD 
 
The present work is the outcome of the activities of the ENIQ Task Group on Risk 
(TGR).  
 
ENIQ, the European Network for Inspection and Qualification, is driven by the nuclear 
utilities in the European Union and Switzerland and managed by the European 
Commission’s Joint Research Centre (JRC). It is active in the field of in-service 
inspection (ISI) of nuclear power plants by non-destructive testing (NDT), and works 
mainly in the areas of qualification of NDT systems and risk-informed in-service 
inspection (RI-ISI). This technical work is performed in two task groups: TG 
Qualification and TG Risk. 
 
A key achievement of ENIQ has been the issuing of a European Methodology 
Document for Inspection Qualification, which has been widely adopted across Europe. 
This document defines an approach to the qualification of inspection procedures, 
equipment and personnel based on a combination of technical justification (TJ) and 
test piece trials (open or blind). The TJ is a crucial element in the ENIQ approach, 
containing evidence justifying that the proposed inspection will meet its objectives in 
terms of flaw detection and sizing capability. The assurance provided is nonetheless 
often qualitative. Obtaining a quantitative measure of inspection reliability is becoming 
more and more important, as structural reliability modelling and quantitative risk-
informed in-service inspection methodologies become more widely used within the 
nuclear industry in Europe. Such a measure is essential to quantify the reduction of 
failure probability, and hence risk reduction, after inspection. 
 
The purposes of this document, aimed mostly at NDT engineers and practitioners, are 
threefold: (1) to extend the conclusions of an earlier report (ENIQ report No 41: 
“Probability of Detection Curves: Statistical Best-Practices” ), (2) to justify the Rule-of-
Thumb that a valid Probability of Detection (POD) vs. size curve requires a minimum 
of 60 targets for binary response (hit/miss) data, (3) to provide guidelines for the NDE 
practitioner in designing a study to assess the effectiveness of a binary response 
inspection system using POD vs. size curves.  
 
The active members of the ENIQ Task Group on Risk are (in alphabetical order):  
 
D. Couplet  Tractebel, Belgium 
L. Gandossi   JRC, European Commission, the Netherlands 
J. Gunnars  Inspecta Oy, Sweden 
L. Horacek   NRI, Czech Republic 
E. Kichev   Kozloduy NPP, Bulgaria 
P. Lafrenière  CANDU Owners Group, Canada 
A. Leijon   Ringhals AB, Sweden 
P. Luostarinen  Fortum Engineering Ltd, Finland 
T. Meister  Ringhals AB, Sweden 
P. O’Regan   EPRI, United States 
C. Schneider  The Welding Institute, United Kingdom 
K. Simola  VTT, Finland 
A. Toft   Serco Assurance, United Kingdom 
R.  Van Sonsbeek  Applus RTD Group, Netherlands 
I. Virkkunen  Trueflaw Oy, Finland 
A. Walker   Rolls-Royce, United Kingdom 
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The authors of this report are Charles Annis (www.statisticalengineering.com/) and 
Luca Gandossi (IET JRC). 
 
The voting members of the ENIQ Steering Committee are:  
 
T. Dawood  EDF Energy, United Kingdom 
P. Dombret Tractebel, Belgium 
E. Martin EDF, France 
K. Hukkanen  Teollisuuden Voima OY, Finland 
R. Schwammberger  Kernkraftwerk Leibstadt, Switzerland 
B. Neundorf  Vattenfall Europe Nuclear Energy, Germany 
J. Neupauer  Slovenské Elektrárne, Slovakia 
S. Pérez  Iberdrola, Spain 
A. Richnau Ringhals AB, Sweden 
P. Kopcil  Dukovany NPP, Czech Republic 
D. Szabó  Paks NPP, Hungary 
 
The European Commission representatives in ENIQ are L. Gandossi and O. Martin. 
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1 Introduction 

The use of probability of detection curves to quantify NDT reliability is common in the 
aeronautical industry, but relatively less so in the nuclear industry, at least in European 
countries. The main reason for this lies in the very nature of the components being 
inspected. Sample sizes of inspected flaws tend to be much lower, and it is often very difficult 
to procure or manufacture representative flaws in test pieces in a high enough number to 
draw statistical conclusions on the reliability of the NDT system being investigated. Similar 
considerations led to the development of the ENIQ inspection qualification methodology, 
based on the idea of the Technical Justification, i.e. a document assembling evidence and 
reasoning providing assurance that the NDT system is indeed capable of finding the flaws 
which is designed to detect. The ENIQ methodology has become widely used in many 
European countries, and is gaining appreciation outside Europe as well, but the assurance it 
provides is usually of qualitative nature. The need to quantify the output of inspection 
qualification has become more and more important, especially as structural reliability 
modelling and quantitative risk-informed in-service inspection methodologies become more 
widely used. To take full credit of the inspections in structural reliability evaluations, a 
measure of the NDT reliability is necessary. A probability of detection (POD) curve provides 
such a metric. 

In 2011, the Joint Research Centre supported ENIQ by developing a technical report on 
Probability of Detection Curves, filling part of the need described above (Gandossi and Annis 
(2010)). That paper reviewed in a structured way the statistical models that have been 
proposed to quantify inspection reliability. It is now of interest to investigate further the 
question of the sample size required to determine a reliable POD curve. Manufacturing or 
procuring cracks that are representative of real defects found in nuclear power plants can be 
very expensive when not outright impossible. There is therefore a tendency to reduce sample 
sizes, in turn increasing the uncertainty associated with the resulting POD curve. Not much 
guidance on appropriate sample sizes can be found in the published literature, where often 
this kind of statement is given: "For hit/miss data experience has shown that 60 specimens is 
often adequate, and using fewer often results in confidence bounds, while valid, that are too 
broad to be useful ...”. Such a recommendation is based solely on experience and no formal 
studies have been published to substantiate it.  

The aims of the work summarised in this paper were (1) to develop numerical simulations to 
determine appropriate and effective inspection target sizes, their number, and distribution to 
produce valid POD vs. size curves, and (2) to summarize these findings as guidelines for the 
NDE practitioner in designing an experiment to assess system inspection effectiveness. 

2 Scope of study 

This study considered binary responses (i.e. hit or miss) to different size cracks (targets), 
modelled with a Generalized Linear Model using the logit link. These choices are justified by 
the following considerations. 

The main reason to focus this study on binary response data was the consideration that 
binary response data and continuous response (â vs. a) data are very different: their analysis 
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methods are different (see Gandossi and Annis, 2010) and lessons learned from one seldom 
apply to the other. Other reasons for focusing on binary response data were: 

1. In practice most NDE tests record a hit/miss response (whereas â vs. a data typically 
only arise for particular ultrasonic and electromagnetic methods). 

2. Binary data contain less information than â data, which is why MIL-HDBK-1823A 
(2009) recommends at least 40 â vs. a specimens and at least 60 hit/miss 
specimens. 

3. Although some â vs. a experiments have used fewer than 40 specimens, the penalty 
is usually wider confidence bounds. With fewer than 60 hit/miss specimens the 
practitioner can encounter numerous difficulties: bizarre parameter estimates (e.g. 
POD vs. size curves that slope downwards), non-convergence of the GLM algorithm, 
and very broad confidence bounds.  

4. The most serious problem commonly encountered with an â vs. a experiment is when 
all the targets are detected. This is usually because the detection threshold is set too 
low and much of what is "detected" is noise. This problem has nothing to do with 
number of samples or target size and distribution. 

The generalized linear model (GLM) logit link was selected for several reasons: 

1. In practice nearly all binary response NDE data are most effectively modelled using 
the logit link. The logit is the most common link used in other scientific areas such as 
medicine and pharmacology. 

2. The other commonly used symmetric link, the probit, is overly sensitive to unexpected 
behaviour in POD extremes (POD close to either zero or one) and often results in 
models that do not describe the data as effectively as does the logit link. 

3. Where an asymmetric link might be indicated, it is often because of data that do not 
meet the requirements for a two-parameter POD vs. size model, viz. that the POD 
approach zero on the left and one on the right. The problem of POD “floor” and/or 
POD “ceiling” is discussed Gandossi and Annis, 2010, section 3.5.2. 

3 BACKGROUND 

3.1 The POD vs. size model 
As stated above, this study considered binary responses (i.e. hit or miss) to different size 
cracks (targets), modelled with a Generalized Linear Model using the logit link. The following 
overview of the model is included for completeness; Gandossi and Annis (2010) offer a much 
more complete explanation of these concepts.  

There are of course other factors, other than size, that influence probability of detection. For 
example, characteristics of the target, such as orientation, morphology, density, and 
chemical composition. There are also other influential factors related to the milieu in which 
the crack, or other target, is located, such as proximity to the surface, acoustic or electrical 
properties of the medium, and component shape, including radii of curvature. While all of 
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these can influence POD, the single most influential factor, ceteris paribus, is always target 
size, which is why size figures most prominently in POD studies like this one. Whatever else 
is to be considered, analysis of POD models begin with the influence of size, which provides 
the foundation for further investigation.  

Continuous (uncensored) response data can be modelled using the familiar ordinary least-
squares (OLS) regression, see Gandossi and Annis (2010), section 3.3. Binary response 
data can also be described with a regression model that is a generalization of the linear 
model. For ordinary regression we say that y=f(X). For hit/miss data, we need some function 
of y that can link (through the probability of the outcome) the binary response to the function 
of x, g(y)=f(X). This generalization is called a Generalized Linear Model (GLM). Obviously, for 
ordinary regression, g(y)=y.  
 
The most useful (and most widely used) link function is the logistic function (also called logit 
or log-odds): 
 
 ( )( ) ( ) log /(1 )f X g y p p= = −  (Eq. 1)
 
The “odds” are defined as the probability of occurrence of a binary outcome divided by the 
probability of non-occurrence: 
 

 
1

podds
p

≡
−

 (Eq. 2)

 
The log of the odds (hence log-odds) is the logit: 
 

 log( ) log
1

podds
p

⎛ ⎞
≡ ⎜ ⎟−⎝ ⎠

 (Eq. 3)

 
The log-odds POD model is thus 
 

 0 1
( )log

1- ( )
POD a a
POD a

β β
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 (Eq. 4)

 
or also, commonly: 
 

 0 1
( )log log( )

1- ( )
POD a a
POD a

β β
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 (Eq. 5)

 
Whether or not to transform size logarithmically depends almost entirely on the data being 
modelled, so no universal transformation is recommended. For this reason, we use h(a) to 
mean either a, or log(a), depending on the data. Solving (Eq. 5) for POD(a) produces: 
 

 
( )
( )

exp ( , )
( ,...) ( , )

1 exp ( , )
f a

POD a f a
f a

= =
+

β
β

β
 where )(),( 10 ahaf ⋅+= βββ   (Eq. 6)

 
Where β = (β0, β1)T. The parameters, (β0, β1)T, have no obvious physical interpretation and so 
it is convenient to re-parameterize as (Eq. 7):  
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 ⎟
⎠
⎞

⎜
⎝
⎛ −

Φ== −

σ
μxafPOD(a) link

1),( β  (Eq. 7)

 
where for the logit link: 
 

 ( )log
1 ( )link

x POD a
POD a

μ
σ

⎛ ⎞−⎛ ⎞Φ = ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠
 (Eq. 8)

 
Now: 
 

 1 0 1 2
( )( | , ) log ( | ), where

1- ( )
POD a xf x f a z z
POD a

μβ β
σ

⎛ ⎞ −⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 (Eq. 9)

 
Since )|(),|( 2101 zafxf =ββ  then: 
 

 0 1
xx μβ β
σ
−

+ =  (Eq. 10)

 
Solving for (μ, σ) in terms of (β0, β1)T, shows that  
 

 
1x xμ μ

σ σ σ
− −⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (Eq. 11)

 
which means that 
 

 1
1β
σ

=  and 0
μβ
σ
−

=  (Eq. 12)

 
so that 
 

 
1

1σ
β

=  and 0μ β σ= −  (Eq. 13)

 
μ and σ have useful physical interpretations. μ is the size, or log(size), at which POD = 0.5. σ 
is the inverse of the GLM regression slope. This is illustrated in Figure 1. 
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Figure 1 

The “S” shaped POD(a) curve plots as a straight line on the logit grid.  
The location parameter μ corresponds to the x value at POD=0.5.  

The scale parameter σ on the left is 1/slope on the right. 

 

 

3.2 Coordinate transformation 
All regression models having a single explanatory variable can be considered as having zero 
intercept and unit slope with the data scaled accordingly, but it is standard practice to scale 
the model parameters, rather than the data. Nonetheless it is helpful to remember that the 
plot of Y vs. X is, essentially zero intercept and unit slope while the axes are scaled to reflect 
unscaled data.  

The logit POD model can also be written, from (Eq. 5), as 
 
 )(),()(logit 10 ahafPODy ⋅+=== βββ  (Eq. 14)
 
A plot of the logit(POD) vs. size for a representative transformation (e.g. log), offset and 
scaling is illustrated in Figure 2. 
 
The scaling in the figures is arbitrary and used only to demonstrate that the underlying 
generalized linear model is the same regardless of how size is transformed, scaled, or offset. 
Thus, the results presented herein are applicable without regard to size transformation or 
scaling. A linear size scale from 0 to 0.4 was used throughout this study for convenience, 
and it is similar to that in Figure G-42 in MIL-HDBK-1823A. 
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A plot of the logit(POD) is a straight line, as in (Eq. 14) 
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POD plotted vs. offset and scaled size, as in (Eq. 6). 

 



  

13  

(Eq. 6) gives the probability of detection in explicit terms. This is plotted in Figure 3. The red 
“box” represents a uniform distribution of sizes. The bold part of the curve is the response in 
the region for which there is data. The lighter line is an extrapolation. 

3.3 Estimation of model parameters and confidence bounds 
The model parameters are estimated using the maximum likelihood method, which 
determines the parameter values that are most likely to have produced the observed 
experimental results. Parameters estimated in this way are called Maximum Likelihood 
Estimators (MLEs). 

To construct confidence bounds, let us compare MLEs with other possible parameter 
estimates. If we choose slightly different values, the resulting likelihood gets smaller (in other 
words, these parameter values are less likely to have produced the observed experimental 
results). In our case, with two model parameters, the likelihood can be visualised as a 
surface. In correspondence of the MLEs, the likelihood achieves its maximum. Values of the 
parameters that are “close” to the best estimates are plausible, and values that are “far” are 
unlikely to describe the data. The loglikelihood ratio (defined as the ratio of the logarithm of 
the likelihood evaluated at the "new" values to the logarithm of the maximum value) provides 
a criterion to express this concept of "closeness", and thus provides a means for constructing 
likelihood ratio confidence bounds on the POD vs. size curve. 

It can be shown that, as the sample size increases, the log-likelihood ratio has an asymptotic 
chi-square distribution, with degrees-of-freedom equal to the number of parameters in the 
model, specifically: 

 

 20
1 ;

(θ )2log ~
(θ) df

L
L αχ −

⎛ ⎞
− ⎜ ⎟

⎝ ⎠
 (Eq. 15)

 
The POD vs. size parameters, β0, β1, in Figure 4 are the maximum likelihood values at the 
centre of Figures 5 and 6, indicated with a red plus (+) symbol. Any parameter pair on the 
loglikelihood contour would produce a single POD vs. size curve in Figure 4. Using points 
along the 95% confidence contour produces many POD vs. size curves and the dotted lines 
in Figure 4 enclose them. Thus we have constructed two-sided 95% confidence bounds on 
the POD vs. size curve by insisting that parameter pairs in Figures 5 and 6 be no further from 
their maximum likelihood values than specified by the likelihood ratio criterion1. 

An animated demonstration of the relationship between the contours of the loglikelihood 
surface and the resulting confidence bounds on the POD vs. size curve can be seen on-line 
at http://StatisticalEngineering.com/mh1823/QNDE/mh1823-confidence.html  

 

                                                 
1 It has been suggested that the 95% bound should more properly be labelled "97½%" because for very large 
numbers of samples (N>10,000) the coverage approaches an asymptotic value of 97½%.  Changing the label 
would not change the fact that for reasonable numbers of samples the loglikelihood ratio confidence construction 
produces a value a 95% confidence value for a90 (called a90/95) that will be greater than the true a90 in 95% of 
similar experiments.  Trying to explain why we used a "97½%" label for the bound that produces 95% coverage 
for reasonable numbers of samples would, we believe, only confuse the reader.  Therefore we will observe the 
conventional, and accurate, nomenclature of 95%. 
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Representative POD vs. Size Curve 
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Loglikelihood surface, ,μ σ  parameterization, showing 95% confidence contour 
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Loglikelihood surface, 0 1,β β  parameterization. 

4 METHODOLOGY 

4.1  Monte Carlo method 
Our original approach was intended to be a straightforward Monte Carlo study to determine 
the effects of parameters of interest by repeated random sampling and building logistic POD 
vs. size models of each sampling. The following methodology was devised: 

1. A true underlying POD vs. size relationship is postulated, assuming the model 
described in Section 3.1, (Eq. 5), and assigning some given values to the (β0, β1) pair, 
thus fully describing the POD curve.  

2. Fix a sample size (for instance N=30, 45, 60, etc.) and choose a set of crack sizes 
with some specified distribution. 

3. From the postulated POD vs. size relationship, and for the set of crack sizes specified 
above, generate a high number, m, of realizations of random hit/miss detection data. 

4. For each realization, find the best parameter estimates (i.e., the Maximum Likelihood 
Estimators, 10

ˆ,ˆ ββ ). 

5. From the spread of estimates ( 10
ˆ,ˆ ββ ) around the true value (β0, β1) and from the 

characteristics of the estimated POD curves when compared with the true POD 
curve, draw conclusions and give guidance on the sample size required to achieve 
adequate confidence bounds. 
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The sample size, N, is the number of defects constituting a single NDE experiment. In a real 
situation, the NDE practitioner manufactures specimens with N known defects. The NDE 
practitioner inspects the N defects and records the outcome in binary form. In this work, 
based on numerical simulation, the Monte Carlo approach is used to simulate a very high 
number of such experiments for a given sample size. We indicate with m the number of 
simulated experiments. For example, if N=30 and we choose m=10,000, we simulate 10,000 
instances of experiments, each made up of N=30 hit/miss data generated from the true POD 
curve, (Eq. 5).  

We are interested in the random, hit/miss response to given cracks (or “targets”). If the 
cracks change with each Monte Carlo realization, then the influence of the random response 
is confounded with the influence of not responding to the same set of cracks. It is well known 
in the statistics community (and less well appreciated among engineers) that random 
samples from a known probability density do not have all the characteristics of the parent 
density. An entire area of statistical study deals with "sampling distributions," i.e. the 
behaviour of samples taken from known probability distributions. Perhaps the most familiar is 
that samples taken from a normal distribution are not themselves normally distributed, but 
rather follow a Student's "t" distribution. For sample sizes more than 30 the differences are 
not usually important but for 30 or fewer the differences can be dramatic. We decided to 
avoid this difficulty altogether and thus we elected to consider only the influences of the 
binary response to known stimuli, that is, responses to the same set of targets. 

We initially set about to investigate the number of simulations, m, required for the approach 
described above. This is explained in section 4.5. This early investigation revealed a 
fundamental difficulty of Monte Carlo (MC) simulation. Because MC studies are random, 
there remains a random component in their results. If the influence of randomness is on the 
same order as the influence of the phenomenon under study then enormous numbers of 
simulations are required to distinguish what is interesting from what is only random. This 
issue is investigated in sections 4.6 and 4.7. Thus, a new method was devised, as explained 
in Section 4.8. 

4.2 Factors influencing the POD vs. size relationship 
For any real inspection, the true relationship of probability of detection with target size is 
unknown and the factors of the NDE experiment have no influence at all on that relationship. 
The purpose of the experiment is to provide a credible model of POD vs. size, and 
appropriate choices of experimental factors determine how effective that model is.  

Although not the subject of this report, it is worth reminding the reader that, in general, POD 
is influenced by more than one variable, and that the text matrix needs to reflect this, at least 
by ensuring a balanced design with respect to any ‘nuisance variables’ (ref. MIL-HDBK-1823 
Appendix E). This is especially important for Ultrasonic Testing of welding flaws in thick 
section nuclear components where the orientation (tilt and skew) of planar flaws is known to 
be highly influential (see ENIQ Recommended Practice 1 ‘Influential/essential parameters’). 
It should also be remembered that “size” can be more involved that one linear dimension. It 
can be, for example, the square root of the cross-sectional area normal to the interrogating 
UT beam. 

Our study considered the following influences on the mathematical description of the POD 
vs. size relationship: 
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1. The number of targets. We considered 30, 45, 60, 90, 120, and 500 (for some studies 
as many as 5,000).  

2. The target size distribution (uniform, symmetrical, skewed left, skewed right). 

3. The location and shape (“intercept” and “slope”) of the true POD vs. size curve. 

4. The location of targets with respect to the (unknown) true POD vs. size relationship, 
e.g. POD “coverage” that results from a given target size distribution. (A large number 
of targets, almost all of which are found, or missed, are less effective in defining the 
POD vs. size relationship than fewer samples more appropriated located.) 

4.3 Comparison criteria 
To compare these influences we concentrated on the width of the two most important parts 
of the POD vs. size curve: (1) the size range for 95% confidence at 50% POD and (2) the 
size range for 95% confidence at 90% POD, more commonly referred to as the width at a50 
and at a90, viz: a50/95 and a90/95, respectively2. 

4.4 Effects of POD location, shape and transformations of the size 
metric 

Our study of the influence of location and shape (“intercept” and “slope”) of the true POD vs. 
size curve, as well as the influence of transformations of the size metric, e.g. X = log(size), 
was greatly simplified after realizing that these are only superficial differences - the 
underlying model in every case is (Eq. 6). The scaling and transformations have no effect on 
the result, i.e. the width of the confidence intervals. They will have the units of the 
transformed size of course, but the relative influence of everything else (such as the effect of 
sample size) is unchanged. 

To proceed we at first selected parameter values of β0 and β1 and size range (before 
transformation) from -3 to +3. On the face of it, negative values for size might seem 
unrealistic, although as logarithms of size negative values are commonplace. Since these 
choices are entirely arbitrary we chose a size range (after transformation) of 0.2 to 0.4 
(undefined units, perhaps inches, for example) because it is similar to the real example G-42 
presented in MIL-HDBK-1823A. For all our studies, we selected the following values of β0 
and β1 : 

 
 β0 = -6.906754 
 β1 = 34.53377 (Eq. 16)

 
so that the result would be to plot POD from 0.001 to 0.999. That means the slope and 
intercept are only to transform some size range of interest into values that will (almost) 
completely cover POD (it is not feasible to cover POD outside that range since it would 
require an infinite range of sizes). Moreover POD predictions outside this range are not 
generally of any practical interest. Even if an NDT response is clearly observable, in practice 
the possibility of human error sets an upper limit on the POD; Marshall (1982) assumed that 
this upper limit was 99.5% (for the validated ultrasonic inspection of a nuclear pressure 

                                                 
2 See note 1. 
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vessel), whereas Bullough et al (2007) cites an upper limit of 99.9% (for radiographic 
inspection). 

The values for slope and intercept corresponding to β0 and β1 of (Eq. 16) are: 

 

 μ = 0.2 
 σ = 0.028957 (Eq. 17)

 

4.5 Number of required Monte Carlo simulations for convergence 
One objective of this study was to determine the confidence coverage based on the number 
of specimens and their size distribution. The original plan (using conventional Monte Carlo 
simulation) required knowing how many simulations are sufficient so that any conclusions 
drawn are valid and not an artefact of a poorly executed Monte Carlo simulation. To this end, 
the relationship between sample size, N, and number of simulations, m, (for that sample 
size) that converges to the theoretical confidence coverage (i.e. 95%) had to be established. 

The theoretical behaviour holds when the number of cracks is large. To find out how large 
this number must be, we conducted 10,000 true Monte Carlo simulations and counted how 
many times the true a90/95 is outside the theoretical 95% confidence bound for different 
numbers of cracks in the sample. 

It is important to note that our initial MC studies used odd numbers of targets (i.e. N=61 
rather than N=60, etc.) because even numbers necessarily omit the centremost size for 
uniform or symmetric size distributions. (On average, the centremost observation has the 
largest contribution to the likelihood function, Figure 24.) This turned out to be of miniscule 
significance for sample sizes of 60 or more and the differences are largely due to having 
more information in a sample of 61 than in a sample of 60. This comparison is illustrated in 
Appendix 1. For cosmetic reasons, all later studies used even numbers of targets.  

Table 1 summarizes the results of this investigation. Salient features of Table 1 are 
discussed in the following, and are summarized in Figure 7, which plots the fractions of 
sample a90 values less than the theoretical value for a90/05 and sample a90 values greater than 
the theoretical value for a90/95. 
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Table 1  
Summary of Monte Carlo simulations evaluating effects of sample size 

1 2 3 4 5 6 7 8 9 10 11 

N a50 a90/05 a90 a90/95 a50>μ(1) a90>a90
(2) >a90/95

(3) >a90/95
(4) <a90/05

(5) a90/95>a90
(6) 

31 0.2 0.2258 0.2636 0.3480 0.5139 0.4170 0.3385 0.0078 0.0752 0.9534 

61 0.2 0.2349 0.2636 0.3133 0.4990 0.4540 0.4460 0.0127 0.0581 0.9618 

61 0.2 0.2349 0.2636 0.3133 0.5040 0.4498 0.4461 0.0094 0.0580 0.9630 

61 0.2 0.2349 0.2636 0.3133 0.5032 0.4522 0.4489 0.0114 0.0550 0.9651 

61 0.2 0.2349 0.2636 0.3133 0.5023 0.4538 0.4475 0.0120 0.0582 0.9596 

61 0.2 0.2349 0.2636 0.3133 0.4899 0.4484 0.4466 0.0102 0.0611 0.9595 

61 0.2 0.2349 0.2636 0.3133 0.5083 0.4541 0.4469 0.0107 0.0546 0.9606 

61 0.2 0.2349 0.2636 0.3133 0.4899 0.4484 0.4466 0.0102 0.0611 0.9595 

61 0.2 0.2349 0.2636 0.3133 0.5051 0.4531 0.4468 0.0106 0.0555 0.9599 

61 0.2 0.2349 0.2636 0.3133 0.4949 0.4417 0.4395 0.0112 0.0587 0.9599 

121 0.2 0.2421 0.2636 0.2951 0.4999 0.4629 0.4579 0.0141 0.0466 0.9676 

501 0.2 0.2523 0.2636 0.2773 0.4989 0.4902 0.4839 0.0175 0.0320 0.9743 

1001 0.2 0.2554 0.2636 0.2730 0.4919 0.4874 0.4840 0.0203 0.0325 0.9712 

1001 0.2 0.2554 0.2636 0.2730 0.4994 0.4913 0.4866 0.0197 0.0312 0.9715 

2001 0.2 0.2578 0.2636 0.2701 0.5021 0.4946 0.4759 0.0201 0.0298 0.9721 

2001 0.2 0.2578 0.2636 0.2701 0.5007 0.4919 0.5258 0.0293 0.0433 0.9718 

5001 0.2 0.2600 0.2636 0.2676 0.4976 0.4929 0.4137 0.0216 0.0330 0.9536 

5001 0.2 0.2600 0.2636 0.2676 0.5050 0.4984 0.4185 0.0250 0.0364 0.9525 
 

NOTES:  (1) observed fraction of sample values of a50 greater than μmle 

  (2) observed fraction of sample values of a90 greater than true a90 

  (3) observed fraction of sample values of a90/95 greater than true a90/95 

  (4) observed fraction of sample values of a90 greater than true a90/95 

  (5) observed fraction of sample values of a90 less than true a90/05 

  (6) observed fraction of sample values of a90/95 greater than true a90 
 

Column 1 shows the number of targets in the sample, ranging from 31 to 5,001. Samples 
larger than 200 are of course rare in practice, and were studied here to determine how large 
a sample was required to achieve asymptotic results. Column 2 shows the true a50, which is 
0.2 in our studies. Column 4 reports the target size with 90% POD, a90, which is a particularly 
interesting quantity. The true lower bound, labelled a90/05 is reported in column 3 and the true 
upper bound, a90/95, is shown in column 5. 

Note that these labels, a90/05 and a90/95 are actually misnomers, because the asymptotic 
bounds are double sided which means that 95% of the observations are expected to fall 
within them for sufficiently large samples. There are two ways of considering the upper 
confidence bound, a90/95: the first is as the known true value, against which we can compare 
the 10,000 sample values for a90 resulting from the simulations, and the second is as the 
individually computed a90/95 values for each of the 10,000 simulations, to be compared with 
the true value for a90. The first interpretation is interesting from an asymptotic perspective 
and, as Table 1 shows, even N=5001 is not large enough to exclude the asymptotic 5% of 
a90 values. On the other hand, the NDE practitioner is less interested in the mathematical fine 
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points than in the practical performance of the method: we compute a size, which is a sample 
value of a90/95, that is supposed to be larger than the true a90, in about 95 out of 100 similar 
situations. How well does the quantity perform under this second interpretation? Column 11 
shows the fraction of observed a90/95 calculations that are greater than a90. The fraction is 
about 96% (i.e. is slightly conservative) and is comparatively insensitive to sample size.  

Column 6 shows the fraction of observed a50 values that are greater than the true a50. It 
would be expected that about half of the observed a50 values falls on either side of 0.2 and 
that is what column 6 confirms (Column 6 is a kind of sanity check to show that the 
simulations are working as they should). 

Column 7 is the observed fraction of a90 greater than true a90. Again, as with a50, it might 
appear reasonable to expect that half of the values falls on either side, but the fraction is 
closer to 0.45 than 0.5 for smaller sample sizes and only approaches symmetry (0.50) for 
very large samples. Column 8 shows the observed fraction of a90/95 greater than true a90/95 
and also demonstrates a skewed behaviour. This behaviour can be explained by examining 
Figure 4. The confidence bounds, shown in the figure with dashed lines, are nearly 
symmetric with respect to the median POD vs. size curve at POD = 50% but are clearly 
asymmetric at POD = 90%  

Columns 9 and 10 consider the left and right confidence bounds on the true a90. For very 
large samples (N=5,001) these values, summed together, approach 0.05 (5%). Recall that 
these asymptotic bounds are 95% inclusive.  

The goal was to compare the relative sizes of the confidence widths to determine reasonable 
sample sizes. Achieving the asymptotic value is of less interest, as it would require far more 
specimens than would ever be practical.  

We considered the variability in response for repeated simulations, as shown in Figure 7. 
This emphasized the lack of precision of true MC sampling. Even repeated simulations for 
N=5,001 showed noticeable variability in nominally identical simulations, which threatens to 
mask any underlying trends versus the factors of interest listed in Section 4.2. Fortunately, 
much of this discussion has only a purely academic interest. The critical fact, demonstrated 
by these tens of thousands of MC realizations, is that for the practitioner the 95% confidence 
bounds behave as advertised. 
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Figure 7 

Fraction of a90 values less than a90/05 or greater than a90/95 illustrating the variability due to 
using “only” 10,000 MC simulations. The asymptotic value of 0.025 apparently requires 5,000 

or more cracks, 

 

4.6 Conventional Monte Carlo is too inefficient 
The outcome of our early Monte Carlo studies, as shown above (4.5) showed a fundamental 
difficulty of MC simulation in studying smaller effects, like the distribution shape for a given 
number of targets, N. Because MC studies are random, there remains a random component 
in their results. If the influence of randomness is on the same order as the influence of the 
phenomenon under study then enormous numbers of simulations are required to distinguish 
what is interesting from what is only random and thus not meaningful. 

For example, performing a second, identical, study of 10,000, but using a different random 
number seed, produced a different outcome. Increasing the number of MC realizations might 
be effective in diminishing the influence of starting random number seed, but the required 
number of realizations becomes prohibitively large, especially for reasonable numbers of 
samples (e.g. 61 or 121). Even N=5,000 samples (a ridiculously large number of crack sizes) 
may not be sufficient for acceptable precision. To give an example, simulating m=10,000 
instances of N=5,000 sample crack sizes required 14 hours and 16 minutes, and m=10,000 
may not be an adequate number of simulations.  

Nonetheless, in the next section we considered the effect of number of samples on 
confidence bound widths, based on 10,000 conventional MC realizations. 
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4.7 Effect of sample size on confidence bound width 
The following plots illustrate the effect of sample size (N = 31, 61, 121, 501, 1001, 2001, 
5001) on the POD vs. size curve, for an increasingly larger sample size. Except for Figure 8, 
all are based on 10,000 MC realizations. The red box in these plots illustrates the distribution 
of flaw sizes in the POD experiments (a uniform distribution between a = 0.1 and 0.3, 
throughout this section). The bold, solid red line indicates the range of flaw sizes (or 
‘coverage’) included in the POD experiments (see also section 4.8.2). 

This study illustrates why conventional MC simulation is not feasible. First of all, the total 
number of computer simulations would require inordinate computer run time. In our 
investigation, it took about three weeks to produce the plots illustrated in Figures 8–14. 
These were studies of the effects of sample size, also intended to observe the residual 
randomness that accompanies MC simulations. Each plot (except Figure 8, which was even 
more problematic, as explained below) required 10,000 runs and constant checking at the 
computer as the simulations were accumulated. All this computational effort managed to 
answer only one of the questions we set out to investigate, i.e. the effect on the relative 
widths of confidence intervals as a function of sample size.  

Perhaps more importantly, the large fraction of aberrant datasets that arose at smaller 
sample sizes (i.e. 31 and 61) made it exceedingly tedious to assemble more than a small 
number of Monte Carlo simulations. An aberrant case is the result of hit/miss data that do not 
represent the underlying true model. Despite being generated from an assumed true POD 
curve, an aberrant dataset can occur, not infrequently, purely because of chance. Such 
situations happen even in practice, which is another argument against using small samples 
of hit/miss data. The case of N=31 nicely illustrates this point. 10,000 runs simply could not 
be achieved. Ten MC simulations, starting from different seeds, were required just to 
accumulate the m=2446 realizations in Figure 8. For reference, the run lengths prior to failure 
due to aberrant data were: m=108, 2, 12, 781, 229, 256, 327, 302, and 429. Thus, the 
proportion of simulations that resulted in aberrant data was 0.4%. Similar, albeit less severe, 
difficulties were encountered for N=61.  

Numerical instabilities arose in only 0.4% of the experiments simulated in this report for 
N=31, but these examples were all for size distributions that were centred on the true a50.  
Experience suggests that numerical instabilities arise much more often, in practice, where 
the size distribution is unlikely to be perfectly centred on the true a50.  
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Figure 8 
2,446 MC simulations of hit/miss responses 

to 31 uniformly, evenly distributed crack 
sizes.  

Figure 9 
10,000 MC simulations of hit/miss responses 

to 61 uniformly, evenly distributed crack 
sizes. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 
10,000 MC simulations of hit/miss responses 

to 121 uniformly, evenly distributed crack 
sizes. 

Figure 11 
10,000 MC simulations of hit/miss responses 

to 501 uniformly, evenly distributed crack 
sizes. 
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Figure 12 
10,000 MC simulations of hit/miss responses 

to 1001 uniformly, evenly distributed crack 
sizes 

Figure 13 
10,000 MC simulations of hit/miss responses 

to 2001 uniformly, evenly distributed crack 
sizes 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14 
10,000 MC simulations of hit/miss responses to 5001 uniformly, evenly distributed crack 

sizes 
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The important features of Figures 8–14 are summarized in Figure 15 by plotting the width of 
the confidence interval at POD=0.9 as a function of number of cracks in the sample.  
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Figure 15 

Width of the 95% confidence bound on a90 narrows with increasing sample size 

Since conventional MC is exceedingly time consuming and encumbered with poor resolution 
due to inherent randomness, another approach was necessary. 

4.8 Devising a surrogate Monte Carlo method 
We asked ourselves: why do we need to produce 10,000 realizations? Why not look at the 
“confidence bounds” on the true model? Because for the true model there is no uncertainty 
(we know everything about it) so the confidence bounds, even if they existed, would be 
infinitely narrow. But if we could do such a thing it would eliminate the requirement for all 
those MC simulations. 

Fortunately, we have a more effective approach that not only does away with the excessive 
computer simulations, but also provides asymptotic (i.e. very large sample) results without 
using very large samples, other than to demonstrate that the approach works.  

How can we produce the asymptotic results of, perhaps, millions of Monte Carlo realizations 
without having to do any MC sampling at all? The new idea is simple: while it is true that 
confidence bounds on “truth” do not exist (or would be infinitely narrow), we can however 
consider an idealized, weighted, sample from the true parent POD vs. size behaviour. Rather 
than repeatedly generating random hit/miss responses to a given target size, we will take 
both hit and miss, and weight them according to their prior likelihood. This requires only a 
straightforward re-definition of the likelihood function.  
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It is convenient to describe likelihood as the “probability of the data.” This avoids all the 
statistical hair-splitting that accompanies most textbook definitions, but that definition is not 
quite correct. It would be more correct to say that “likelihood is the probability that the 
experiment turned out the way that it did.” The reason for this subtle distinction is that 
likelihood really is the probability of the parameter values, given the data.  

Statisticians define Probability (of an experimental outcome) as a function of the model 
parameters. They similarly define Likelihood as the probability (of the parameter values) as a 
function of the data. The mathematical definition (functional form) is the same. The only 
difference is what is known: the parameter values or the data. If the parameter values are 
known, and we want to know the outcome of the next experiment, the function defines 
probability. If the data are known, the function defines the likelihood that the parameter 
values describe the known data.  

The probability function for the binomial response model is  
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The likelihood function for the binomial response model and having the response = hit is  
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 (Eq. 19)

 
The likelihood function for the binomial response model for response = miss is  
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 (Eq. 20)

 
In other words, if the response is Y=1 (hit) ( , )i iL f a= β ; if the response is a miss (0), 

1 ( , )i iL f a= − β . 

4.8.1 Real Experiments vs. Simulations 
The foregoing refers to real (not simulated) data, where we know the response, hit or miss, 
for each crack, but we do not know the true parameter values, β . For simulations the 
responses are random, based on the known values for β . Since the outcome is random a 
very large number of realizations is necessary so that we can observe the long-run outcome.  

Rather than using likelihoods based on individual hit or miss results, we redefine the 
loglikelihood to be a weighted average loglikelihood with the weights supplied by the 
underlying true relationship. 

 
 ( )ˆlog( ) log ( , ) ( 1| , )i i iL f a P Y a= × =β β  (Eq. 21)
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It is important to highlight the distinction between β , the vector of known true model 
parameters, and β̂ , the estimates of the parameter values. The carat symbol (i.e. “^”) over a 
parameter is used in statistical practice to indicate that the quantity is an estimate of that 
parameter and not a known value. In a simulation, β is known. In a real experiment β is not 
known, so we must rely on β̂  as a surrogate to glean information about β.) 

4.8.2 Advantages of surrogate Monte Carlo 
The dotted confidence lines in Figures 8–14 are based on this method, and agree with the 
large sample MC simulations. As demonstrated earlier, the surrogate Monte Carlo method 
produces long-run, asymptotic responses that would otherwise require hundreds of 
thousands of simulations. Thus we can investigate things like the influence of sample size 
(number of cracks), size distribution (uniform, “normal”, skewed), specimen coverage (the 
fraction of the POD curve for which the specimens provide useful information; the POD vs. 
size plots in this report indicate coverage with a bold, solid red line) and other studies. 
Furthermore, these studies are precise. That is, small effects are more easily discernible 
since they are not obscured by MC randomness. In the following, we summarise the results 
of our studies. 

5 Results 

5.1 Effect of sample size on confidence bound width 
The surrogate Monte Carlo approach was first applied to investigate the effect of sample size 
on confidence bound width. The results of this study are shown in Figures 16-23. 

Not surprisingly, these figures demonstrate that a larger number of targets produces greater 
precision in determining a50 and a90, as measured by their respective confidence bounds, 
a50/95, and a90/95. Doubling the number of specimen, from N=30 to N=60, effectively halves the 
width of the confidence interval at POD = 90%. Doubling the number of targets again to 
N=120, however, produces a much less dramatic improvement. The increase in precision 
diminishes as number of samples increases, so that after about N=90 the addition of more 
samples does relatively little to further the improvement in precision. 
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Figure 16 
30 targets, uniformly distributed between 0.1 and 
0.3, centred on the true (but unknown) POD vs. 

size relationship. 

Figure 17 
45 targets, uniformly distributed on 0.1, 0.3. 
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Figure 18 
Baseline configuration: 60 targets, uniformly 

distributed between 0.1 and 0.3, centred on the 
true (but unknown) POD vs. size relationship 

Figure 19 
90 targets, uniformly distributed on 0.1, 0.3. 
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Figure 20 
120 targets, uniformly distributed on 0.1, 0.3.. 

Figure 21 
180 targets, uniformly distributed on 0.1, 0.3. 
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Figure 22 

POD vs. size curves showing confidence width decreases with increasing sample size  
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Figure 23 

Summary of Figure 22, showing width of 95% confidence bounds vs. sample size 

Figures 22 and 23 summarize the influence of sample size on the width of the 95% 
confidence bounds at POD=90%.  

It should be remembered that logistic models of POD vs. size that are based on fewer than 
60 observations are not stable. The curves here do not rely on maximum likelihood fitting to 
determine estimates of the model parameters because our method is based on the long run 
expected response (a weighted probability), rather than a large number of Monte Carlo 
simulations of binary outcomes. Thus we can compute expected behaviour for very small 
number of samples, while in practice many such samples would be incapable of producing 
credible maximum likelihood parameter estimates. This statement is substantiated by more 
than three decades engineering experience with real POD data, and by our simulation 
studies for this report. 

5.2  Effect of target size coverage on confidence bound width 
We proceeded to investigate what is the optimum range of target sizes for a POD study.  

We started by considering the likelihood function for a logistic regression model, illustrated 
graphically in Figure 24. The y-axis on the left side of the plot represents POD. The POD 
coverage for -3 ≤ X ≤ 3 is about POD=0.047 to POD =0.953.  

The y-axis on the right side of the plot shows the contributions to the log(likelihood) function. 
For our purposes the maximum value of the likelihood is one, so that the maximum value of 
the log(likelihood) is zero. The contribution of a hit from a large target (large X) is almost 
zero. In other words, a specimen with a large crack that was found tells us very little about 
the inspection capability. We expected to find it, and we did. The contribution of a hit affects 
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the likelihood dramatically (in the negative direction, since all our likelihoods are less than 
one) for smaller and smaller targets. This happens because we expect to miss smaller 
targets, so a hit is more unexpected and its contribution is therefore large. The fitting 
algorithm will try to move the POD vs. size curve to make that hit less unexpected. The 
influence of an unexpected miss is also plotted in Figure 24. 
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Figure 24 

Generic POD vs. size plot showing contributions to the loglikelihood function by a hit and 
miss. 

The following POD vs. size plots show how the confidence bound width is influenced by size 
coverage. These were obtained for a fixed (N=60) sample size, but locating the N targets in 
progressively wider intervals (widths of 0.05, 0.1, 0.15, 0.2, 0.3, and 0.35) centred near the 
true POD (but, in practice, unknown) centre (a50=0.2). 

In Figure 25, for instance, the N=60 targets are all placed in a very narrow range. Not 
surprisingly this results in very wide confidence bounds at both low and high POD (a90 and 
a10). What might be surprising, however, is that the bounds at a50 are wider than for a slightly 
wider range of sizes (Figures 26 and 27) even though most of the targets are centred near 
a50. This is because the parameter values are influenced by all the data, albeit in unequal 
amounts, as illustrated in Figure 24, so that data missing in the extremes are unable to 
influence the confidence bounds there. 

Our primary interest is in the width of the confidence bounds at a90, so we will concentrate 
there. As the figures show, increasing the width of size coverage also increases the portion 
of the POD axis being covered (solid red line on the y-axis of Figures 25–30). As more of the 
POD extremes (POD > 0.9 or POD < 0.1) are influenced by the size distribution, the 
narrower the confidence bounds in those regions become. 

Nonetheless, increasing size coverage outside corresponding POD range of about 0.03 to 
0.97 begins to degrade a90 coverage width, and these influences are summarized in Figure 
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31. This is the result of decreasing effectiveness of observations in the extremes of size (and 
therefore extremes of POD). 
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Figure 25 
Narrow size distribution produces wide bounds. 

Figure 26 
Narrow size distribution produces wide bounds. 
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Figure 27 
Narrow size distribution produces wide bounds. 

Figure 28 
Optimum size distribution covers POD = 0.3 to 

0.97. 
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Figure 29 
Increasing width past optimum increase bound 

width. 

Figure 30 
Increasing width past optimum increase bound 

width. 
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Figure 31  
Increasing size coverage outside corresponding POD range of 0.03 to 0.97 

 begins to degrade a90 coverage width. 
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Figure 31 suggests that the size range from 0.1 to 0.3 in our generic study is optimum. This 
corresponds to a POD coverage of about POD=0.031 to POD=0.969. If the size range is 
wider than that, the contributions of those specimens at either end of the range are 
diminished, leading to an effective decrease in the number of samples. Figures 25–30 show 
both the size coverage and the POD coverage as solid red lines on the x-axis and y-axis, 
respectively. In practice, the POD coverage is not known a priori. In the face of this 
uncertainty, Figure 31 suggests that the consequences of overestimating the required 
coverage are less severe than the consequences of underestimating it. 

5.3 Effects of mis-located targets 
The foregoing investigated situations where the range of sizes was centred on the centre of 
the POD vs. size curve (which, in practice, is not known a priori). It is interesting to consider 
the effects of mis-location to understand the relationship between coverage on the size axis 
and the corresponding coverage on the POD axis, as illustrated in Figure 32. 

The information in an individual specimen is a function of its location with respect to the true 
POD vs. size curve, as shown in Figure 24. That means that the target sizes must cover 
most of the POD range to be effective in parameter estimation. Figure 32 provides a 
mapping of target size coverage to POD coverage. 
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Figure 32  
The effectiveness of specimen size depends on how much of the POD range is influenced. 

The following figures (33–41) illustrate that targets that are not centred on the true a50 
adversely influence the width and location of the POD vs. size confidence bounds. The 
effects are not hard to anticipate based on our earlier look at the influence of target sample 
size, N, because mis-locating the target distribution has the effect of decreasing the number 
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of influential samples (see also Figure 24, Generic POD vs. size plot showing contributions to 
the loglikelihood function by a hit and miss). These plots were again obtained for N=60. 

Figure 33 demonstrates that having all the targets to the left of the true a50 produces wide 
confidence bounds to the right, at a90. This type of mis-location does not, however, have a 
significant influence at a10 because the effective number of specimens has decreased. This is 
easy to see by noticing that only half of the POD scale is being directly influenced by the 
targets. The POD coverage provided by the size distribution coverage is shown in Figures 
33–41 as the bold red line on the y-axis.  

Figures 34–36 show that the effect is the same for targets mislocated to the left by 
increasingly smaller shifts, but the magnitude of the influences diminishes as the shift 
diminishes. Figure 37 shows the targets centred at the true a50. 

Because of the rotational symmetry of the POD curve, the effects of moving the target size 
distribution off-centre to the right are analogous to those of mis-positioning to the left, as 
seen in Figures 38–41. Figure 41 also illustrates that diminishing the effective number of 
samples by mis-positioning has minimal influence on the confidence bounds at a90, however 
the bounds at a50 are substantially larger than those in Figure 37. 
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Figure 33 
Size distribution misplaced left, centred at 0.1 

Figure 34 
Size distribution misplaced left, centred at 0.125 
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Figure 35 
Size distribution misplaced left, centred at 0.15 

Figure 36 
Size distribution misplaced left, centred at 0.175 
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Figure 37 
Size distribution, centred on true a50 
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Figure 38 
Size distribution misplaced right, centred at 0.225

Figure 39 
Size distribution misplaced right, centred at 0.25 
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Figure 40 
Size distribution misplaced right, centred at 0.275

Figure 41 
Size distribution misplaced right, centred at 0.3 

 

5.4 Non-uniform size distributions 
Figures 42–45 show the influence of the shape of the target size distribution on the POD 
confidence bounds. Not surprisingly, grouping the targets near the true (but, in practice, 
unknown) value of a90 curve results in the narrowest bounds there, as seen in Figure 43. 
Grouping the targets near a90 with a left-skewed distribution, Figure 44, produces the 
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narrowest bounds at a90, and thus the smallest a90/95. Figure 45, the right-skewed distribution 
places the fewest targets near a90, and thus results in the widest bounds and the largest 
(“worst”) a90/95. These results are summarized as a bar chart in Figure 46. 
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Figure 42 
Uniform distribution of target sizes. 

Figure 43 
Symmetrical “normal” distribution of target sizes. 
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Figure 44 
Left-skewed distribution of target sizes. 

Figure 45 
Right-skewed distribution of target sizes. 
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Figure 46  

Right-skew has widest bounds at a90. 

 
 
Considering such outcome, the question arises as to why anyone would consider anything 
other than a uniform or symmetrical distribution of target sizes. 

All of our discussions have been based on placing the specimens with respect to a 
symmetrical POD vs. size curve whose location, while unknown, can be reasonably deduced 
(at least approximately) by a knowledgeable NDE practitioner, based on his experience with 
similar inspections. On the other hand, it is true that many POD vs. size relationships are 
only symmetrical with respect to a transformed size, for example log(size)3.  

Figure 47 shows a symmetric POD vs. size curve with respect to a log(size) axis. As stated 
earlier, transformation, scaling or offset has no direct influence on the Generalized Linear 
Model of POD as a function of size. However, transformations such as log(size) can have a 
significant indirect influence by changing the relationship of the distribution of target sizes 
with respect to the (unknown) true POD vs. size.  

 
 

                                                 
3   Not all POD vs. size curves are symmetric or can be transformed into symmetry.  Examples are the loglog link 
and complementary loglog link used by generalized linear models.  While these links are used infrequently, they 
should be considered when transformations on size are not satisfactory.  See MIL-HDBK-1823A for further 
details. 
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Figure 47 
POD vs. untransformed size. 

Figure 48 
POD vs. transformed size. 

 

Figures 47 and 48 have the same a90 as our earlier baseline curves, a90 = -1.33322 in Figure 
47 and a90 = exp(-1.33322) = 0.2636 in Figure 48. Figure 48 is Figure 47 re-plotted on a 
Cartesian x-axis. The resulting plot no longer has the familiar “S” shape. The mathematical 
description of Figures 47 and 48 is given in (Eq. 6), with h(a)=log(a) for both Figures 47 and 
48. Thus these curves are mathematically identical: their only difference is in how they are 
plotted. 

Notice that the uniform distribution of log target sizes in Figure 47 has now become a right-
skewed distribution of transformed sizes in Figure 48. Notice also that even though the range 
of coverage in the figures is from size = 0.05 to 0.3, which is wider than our baseline range of 
0.1 to 0.3, the resulting POD coverage is only POD = 0.5 to 0.91, and our earlier discussion 
concluded the most effective coverage should be from POD = 0.03 to 0.97.   

The difficulty in practice is that the true shape and location of the POD vs. size curve is 
unknown a priori, but if it is suspected (e.g. from previous experience or theoretical insight) 
that the underlying relationship of POD is not directly linear with size but with log(size), or 
some other similar transformation, then a right-skewed distribution of sizes would afford 
some protection against ineffective specimen size allocation. 

As the histogram of sizes in Figure 48 suggests, there is not a simple probability distribution 
that can be used to model the transformed sizes that is useful in all cases. That is because 
the degree of nonlinearity between a and h(a) depends on two factors: (1) the range of sizes, 
and (2) the proximity of the smallest size to zero. To help the practitioner in designing a POD 
vs. size study the Guidelines (section 6.2) presents a worksheet for allocating experimental 
resources to determine how many of what size targets should be fabricated. 

Figure 48 also illustrates the dangers of extrapolating a mathematical model beyond the 
range of the data supporting it. In the figure, the range of support ends at POD = 0.5. That 
means that the convergence of confidence bounds at a = 0 is an artefact of the log(size) 
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model (since log(0) is undefined) and less likely due to observable behaviour. This is more 
evident in Figure 48, showing divergent confidence bounds as size approaches zero. The 
limits of extrapolation are too often overlooked, especially if there is no indication on the plot 
of what is extrapolated. 

Figure 49 compares the POD curves of Figure 4 and Figure 48 and reveals that they share 
the same a90, but a50 = 0.2 for Figure 4 is four times larger than a50 =0.05 for Figure 48. Does 
Figure 48, with the smaller a50, represent the better inspection because it can find smaller 
targets? Probably not, but it would take an ancillary study of Probability of False Positive 
(PFP) to confirm that. Parallel studies of POD and PFP are recommended best practices in 
MIL-HDBK-1823A and in Gandossi and Annis (2010).  
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Figure 49 
Inspection with the smaller a50 is inferior. 

The inspection capability for targets larger than a90 demonstrates that the inspection 
described by the curve in Figure 4 is superior in two regards: (1) it has a higher POD for 
targets larger than a90, and (2) it has a much narrower confidence bound at that crack size. 
What differentiates a good inspection from a less effective one usually depends on how 
rapidly the POD changes from smaller (innocuous) sizes to larger (pernicious) ones. Thus 
finding smaller sizes is not helpful if the inspection is unable to discriminate tolerable defects 
from those that are not. Finally, Figure 49 illustrates why comparing POD vs. size curves on 
the basis of a single point, like a90, is very misleading. 

How can it be decided if the unknown POD vs. size relationship is more effectively described 
with a log(size) transform? With real binary data this is straightforward: perform a likelihood 
ratio test to see which model is better at describing the data. In some instances, theoretical 
insight or evidence from previous experience can also inform the selection of a suitable 
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model. Provided that the range of POD coverage is adequate, the mh1823POD4 software 
can be used to perform this comparison.  

Suppose that it is believed that the true POD vs. size relationship will require a log(size) 
transform. How would one determine appropriate sizes for NDE lab specimens? A simple 
uniform distribution of sizes in log-space has a simple one-to-one transform back to 
Cartesian space (viz. exp(log(X)), however the result depends on the proximity to zero of the 
smallest size. This is illustrated for N=60 in the following figures.  

Figure 50 shows three uniform distributions of log target size. Each distribution is 0.2 size 
units wide. The histogram shows ten intervals, each with the same width. The number of 
targets in each interval is indicated by the height of the histogram bars and is determined by 
counting the number of sizes in each interval (6 in this example).  

Standardized Crack Size, a  (log scale)

0

2

4

6

8

10

10-3 10-2 10-1 100
2 4 7 2 4 7 2 4 7

Size range = 0.1 to 0.3
Size range = 0.2

Standardized Crack Size, a  (log scale)

0

2

4

6

8

10

10-3 10-2 10-1 100
2 4 7 2 4 7 2 4 7

Size range = 0.01 to 0.21
Size range = 0.2

Standardized Crack Size, a  (log scale)

0

2

4

6

8

10

10-3 10-2 10-1 100
2 4 7 2 4 7 2 4 7

Size range = 0.001 to 0.201
Size range = 0.2

StatisticalEngineering  

Figure 50 
Three size ranges, all 0.2 wide, uniformly distributed in log(X) 

Figure 51 plots the sizes on a Cartesian X-axis, again with ten intervals of constant width. 
The height of the bar for each interval is determined as in Figure 50, by counting the number 
of sizes in that interval. The histograms are all right-skewed and, although they all are 0.2 
units wide with ten intervals, and each interval is 0.02 wide, the numbers in each interval vary 
considerably. Which one is "best"? 

There is no single answer, and in practice the distribution is usually determined empirically, 
based on experience. The examples is this paper augment that experience by illustrating the 
effects of having too wide or too narrow a distribution of sizes, the influence of not centring 
the distribution on the true (but unknown) POD vs. size relationship, and the effects of 
distributions other than uniform (e.g. symmetric (“normal”), left- and right-skewed. A sketch of 
the desired distribution of sizes can then be converted into a histogram and thus the number 
of targets in each size range can be determined. We present a refinement of the “sketch” 
method in the Guidelines. 

                                                 
4 One of the authors of this report (C. Annis) has written a software add-on (mh1823 POD) to carry out POD 
analyses, applying the methods presented in MIL-HDBK-1823A (2009). The add-on has been developed for R, 
the emerging world standard for statistical computing and graphics. R is a free software environment for 
statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and 
MacOS (see http://www.r-project.org/). The software add-on mh1823 POD, that works on Windows and 
Windows emulators, is available for free at http://mh1823.com/mh1823.  
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Figure 51 

The degree of skew for a log(X) transform depends on proximity of Xmin to zero. 

6 Summary and conclusions: guidelines for practitioners 
The primary objective of this work was to provide guidelines for NDE practitioners for 
designing experiments to assess the effectiveness of a binary response inspection system 
using POD vs. size curves. A second, related, objective was to substantiate these guidelines 
through Monte Carlo studies. As such this work expands on our earlier effort, Gandossi and 
Annis (2010), "Probability of Detection Curves: Statistical Best-Practices, ENIQ report No 41.  

Before proceeding, we remind the reader of the scope of applicability of MIL-HDBK-1823A 
methods. It is often taken for granted that NDE practitioners are well aware of the following 
criteria, but experience has shown that this may not always be the case.  

6.1 Reminder of the Scope of Applicability of MIL-HDBK-1823A Hit/Miss Methods 
 

1. The specimens must have targets with measurable characteristics, like size or 
chemical composition. This precludes amorphous targets like corrosion unless a 
specific measure can be associated with it, such that other corrosion having that 
same measure will produce essentially the same output from the NDE equipment. 

2. The mh1823 POD software assumes that the input data are correct. That is, if the 
size is X, then that is the true size. If the response is Y, then that is the true response. 
Situations where these conditions cannot be ensured (e.g. where target sizing is only 
approximate) will necessarily result in only approximate results. (The problem of 
accurate crack sizing is discussed in MIL-HDBK-1823A, Appendix I.1 "Departures 
from Underlying Assumptions – Crack Sizing and POD Analysis of Images.") 

3. The MIL-HDBK-1823A statistical methods used in this paper require that a POD 
curve goes to zero on the left, and to one on the right. These conditions are easily 
met by most, BUT NOT ALL, POD data. Data for which min(POD)>0 (perhaps due to 
signal contamination by excessive background noise), or max(POD)<1 (resulting from 
random misses not related to target size) cannot be correctly represented by a model 
for which min(POD)=0 and max(POD)=1. This is illustrated in Figure 52. (See MIL-
HDBK-1823, Appendix I.4 "Asymptotic POD Functions"). As discussed earlier and 
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illustrated in Figure 24, specimens with large targets that will almost surely be found, 
or very small targets that will almost surely be missed don’t contribute significantly to 
the likelihood function. But if there is a POD “floor” or POD “ceiling” then these 
specimens would be very important because without them the existence of these 
asymptotes would go undetected.  

How can a practitioner tell if the model agrees with the data? One way is to look at the POD 
vs. size plot. If there are misses at large sizes where the POD is near 1, or hits at small sizes 
where the POD is near 0, then the model does not agree with the data. Whenever any 
model disagrees with the data being modelled, the result will be wrong. The software may 
be coaxed into producing a POD(a) curve, but it will be a wrong curve, sometimes with a90/95 
values where none exist. Further guidance on assessing the adequacy of logistic regression 
models, including formal tests of goodness-of-fit, can be found in Chapter 5 of Hosmer and 
Lemeshow (1989). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 52 
The methods in this paper are valid only for inspections for which PODmin= 0 and PODmax= 1. 

 

6.2 Guidelines 
 

1. The recommended minimum number of targets for hit/miss POD vs. size modelling is 
N=60. 

2. A uniform distribution (after transformation where appropriate) of target sizes is 
recommended. 

3. The target range should result in POD coverage from about POD=3% to POD = 97%. 
(See Figure 32.) 
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4. Fewer than 60 targets should not be used: 

a. Using as few as 30 or 45 specimens occasionally results in numerically 
unstable situations with non-convergent GLM parameter estimation, or 
convergence to nonsense parameter values, for example POD that gets 
worse as size increases. 

b. Even with successful convergence, the confidence bounds are quite wide and 
so the precision in estimating a90 is poor. (See Figure 23.) 

5. While N=90 specimens is often worthwhile, increasing the number further produces 
diminishing returns and is often not cost-effective. (See Figure 23.) 

6. If it suspected that the POD vs. size model will use a log(size) transform, then a right-
skewed distribution of targets is recommended.  

a. As with non-transformed sizes the POD coverage should be about 3% to 97%. 
If in doubt, it is generally preferable to overestimate the required coverage 
than to underestimate it. (See Section 5.2.) 

b. Figure 53 illustrates a schematic diagram that may be helpful in determining 
appropriate size ranges for skewed size distributions.  

7. The possibility of the existence of POD “floor” or POD “ceiling” should be kept well in 
mind: 

a. Not all inspections can achieve 100% POD for very large crack sizes. The 
existence of a POD ceiling will require special statistical analysis methods. 

b. Some inspections are so confounded with noise, especially for small size 
targets, that the assumption of PODmin = 0 is untenable. This situation, too, will 
require special statistical procedures. 

 

6.3 How to allocate target sizes in lab specimens 
Allocating NDE specimens can be more problematic than it might seem, from a practical 
point of view. This is especially true when the desired crack size distribution is not uniform. 
Indeed, experience has shown that, when specifying to the machine shop what size cracks 
are to be placed in the specimen, it is not a good idea to indicate exact crack sizes. It can be 
quite costly to manufacture an exact crack size and much easier and less expensive to 
specify a size range. 

Thus, we recommend to specify (1) a set of size intervals and (2) how many cracks should 
be manufactured in each of these intervals. As a starting point, try to place about half of the 
targets on each side of the anticipated a50. This involves some guesswork, of course, since 
the location of a50 is one of the things to be determined by the POD experiment. 

We suggest using an approach as depicted in the schematic diagram of Figure 53. The idea 
is to draw a series of boxes that can be rearranged to form the desired size distribution. 
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unit size interval

Uniform distribution

60 specimens, 2 per block

 
1 2 3 4 5 6 7 8 9 100

unit size interval

Uniform distribution

60 specimens, 2 per block

 

Step 1 – Make a single square Step 2 – Copy once and paste 9 times 

1 2 3 4 5 6 7 8 9 100

unit size interval

Uniform distribution

60 specimens, 2 per block 60 specimens, 2 per block

1 2 3 4 5 6 7 8 9 100
unit size interval

Having 2 specimens where the 
POD is large (so they will likely 
be detected) provides little 
information unless the POD is 
much lower than anticipated 
and the specimens are missed.

Right-skewed distribution

c(6,7,5,4,2,2,1,1,1,1)

Step 3 – Copy the 10 and paste 2 times Step 4 – Rearrange the boxes 

Figure 53 
Worksheet for allocating cracks in NDE lab specimens 

The following steps describe how to make a worksheet like Figure 53. We assume that 
N=60. 

• Create a size X-axis and a quantity Y-axis, and a single square. Each square will 
represent 2 lab specimens, thus 30 squares are required. 

• Make the square small enough that ten can be placed side-by-side horizontally.  

• Next, copy the square and paste it nine times, making ten boxes.  

• Place the ten boxes side-by-side together and copy all ten as a single unit.  

• Then paste twice, producing 30 boxes in all.  

• Experiment by moving the individual boxes to form the desired distribution of 
sizes (see Figure 53).  

• Finally translate the dimensionless boxes into meaningful dimensions by dividing 
the real size range by 10, and adding the minimum size to each endpoint. 

 
Figure 54 shows two examples of the method applied to symmetrical (“normal”) crack size 
distributions. 
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1 2 3 4 5 6 7 8 9 100

unit size interval

Symmetric distribution #1

60 specimens, 2 per block

1 2 3 4 5 6 7 8 9 100

unit size interval

Symmetric distribution #2

60 specimens, 2 per block

Example: Symmetrical Distribution #1 Example: Symmetrical Distribution #2 
Figure 54 

Examples of symmetrical (“normal”) crack size distributions. 
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Appendix 1 
Our early simulations used odd numbers of targets to avoid having half the “data” on each 
half of the centre and thus omitting the greatest contributor to the likelihood function, which is 
the centre point for uniform and symmetrical distributions.   

We investigated this matter, and the outcome was that our concern was overwrought.  Figure 
55 shows that the differences between 60 and 61 targets are quite small, with, for example, a 
difference in a90/95 of 0.0005868 (less than 1% of the width of the 95% confidence band at 
a90). 
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Figure 55 

The differences between 60 and 61 specimens are very small 
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