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Abstract 

The main lesson learned from the recent financial crisis is the crucial role of interconnectedness 

between banks as a factor that can push the effects of bank defaults to extreme levels. 

One bank in distress can compromise the ability to repay obligations of its creditor banks, thereby 

inducing a more general crisis that spreads from the banking system towards the real economy. Several 

empirical and theoretical studies have focused on the role of the interbank market in causing contagion 

in financial crises. 

In this regard, one frequent problem encountered in dealing with contagion risk in the banking system 

is that only data on interbank credits and debts aggregated at bank level are publicly available, whereas 

the whole matrix of interbank linkages would be needed in order to estimate systemic risk correctly. 

One common solution is to assume that banks maximise the dispersion of their interbank credits and 

debts, so that the interbank matrix can be approximated by its maximum entropy. 

This paper tests the influence of this hypothesis on simulations by verifying if variations in the 

structure of the interbank matrix lead to significant changes in the magnitude of contagion. 

In order to do this, an algorithm was developed that generates interbank matrices with higher 

concentration. Then a Monte Carlo simulation was run by making use of the SYMBOL model 

(SYstemic Model of Banking Originated Losses) jointly developed by the JRC, DG MARKT, and 

experts of banking regulation (see De Lisa et al., 2010). We than compared results obtained using the 

maximum entropy approximated matrix with those obtained from more concentrated matrices. 

Numerical experiments, performed on samples of banks from four European countries, highlight that 

concentration in interbank loans does affect results but that, when considering the probability 

distribution of losses, even significant changes in the interbank matrix do not deeply affect results. 

 

 

Keywords: Financial contagion, interbank lending, systemic crisis, systemic risk.  
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1. Introduction 

 

Interbank markets are important for the proper functioning of modern financial systems. They 

therefore need to be considered in any banking model aiming at estimating the probability of a 

systemic banking crisis. One of the effects of interbank connections is that one initial bank failure 

could have domino effects on the whole system: interbank markets can be a major carrier of contagion 

among banks, as problems affecting one bank may spread to others. 

Contagion results from two risks: first, the risk that at least one component of the system could default 

(probability of a bank defaulting) and, second, the risk that this shock could propagate through the 

system (potential impact of the default). As the former can stem from a variety of unexpected 

situations, and is driven mainly by assets’ riskiness and solvency, this research focuses on the latter. In 

particular, the goal of this paper is to assess how a hypothesis on the structure of the interbank market 

(i.e. the matrix of credit and debts among banks) affects the magnitude of a systemic banking crisis. 

One common problem in dealing with interbank market structures is that only partial data are 

available, as balance sheets report only aggregated interbank assets and liabilities. Maximum entropy 

approximation offers a way to proxy interbank bilateral exposures, assuming that banks maximise the 

dispersion of their interbank credits and debts. But what is the cost of such an approximation? 

This paper assesses the influence of the maximum entropy hypothesis by verifying if variations in the 

matrix structure lead to significantly different results in systemic excess losses, i.e. losses that exceed 

capital requirements. The model generates losses in the banking systems of four countries (Belgium, 

Ireland, Italy and Portugal) via Monte Carlo simulations.  

This is achieved by making use of the SYMBOL model (SYstemic Model of Banking Originated 

Losses) jointly developed by the JRC, DG MARKT, and experts of banking regulation (see De Lisa et 

al. (2011)), that estimates aggregate losses, country by country, on the basis of individual banks’ asset 

default probabilities, calculated by means of the Basel FIRB (Foundation Internal Ratings Based) 

formula. 

Interbank exposures are initially modelled using a matrix that maximises the dispersion of banks’ 

bilateral exposures. Contagion results obtained from this scenario are then compared with those 

achieved with a more concentrated interbank matrix, in order to evaluate if contagion is influenced by 

hypotheses on interbank exposures. 

Results show that relaxing the hypothesis of a maximum entropy interbank matrix does affect systemic 

excess losses. This holds true in Belgium, Ireland and Portugal, whereas in Italy results are more 

stable. By contrast, probability distributions are rather robust to variations in the interbank matrix in all 

four countries. 
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Furthermore, a distinction is drawn between financial crises in which contagion plays a prominent role 

and cases in which contagion is not so relevant. When contagion effects are small, systemic excess 

losses seem to be underestimated by the maximum entropy hypothesis in countries with large 

interbank exposures. Conversely, with large contagion effects excess losses are overestimated. 

This paper is structured as follows: Section 2 gives an overview of the literature on interbank market 

contagion; Section 3 explains the maximum entropy matrix approximation, the algorithm to adjust the 

interbank exposures matrix and the scenario generation procedure; Section 4 presents data used to 

perform the numerical analysis; Section 5 shows results; and conclusions are drawn in Section 6. 

 

 

2. Liteterature review 

 

It is well-known that if a failing bank does not repay its obligations in the interbank market, this could 

compromise the solvency of its creditor banks and lead to a domino effect in the banking system. 

Hence, contagion occurs when the financial distress of a single bank affects one bank’s ability to pay 

debts to other financial institutions. Therefore, interlinkages between banks could eventually have an 

impact on the whole financial system and, beyond that, on the state of the entire economy. 

Moreover, the pattern of the interbank linkages could affect the way a crisis propagates through the 

system. Theoretical studies often apply network theory to the banking system and, in particular, focus 

on the completeness and connectedness of the interbank matrix. According to Allen and Gale (2000), 

three main forms of interbank network can be distinguished: (i) the ‘complete interbank structure’ 

where banks are linked to all other banks, (ii) the ‘incomplete interbank structure’ where banks are just 

linked to neighbouring banks (i.e. banks specialise in particular areas of business or have closer 

connections with banks that operate in the same geographical or political unit) and (iii) the 

‘disconnected (incomplete) market structure’ where there are different disconnected regions of banks 

(i.e. banks A and B trade with each other, but not with banks C and D that, in turn, hold deposits in 

each other). Allen and Gale (2000) argue that contagion effects are less likely to occur in a complete 

interbank structure, since the relationships with a large number of banks act as a buffer on the impact 

of a single bank in financial distress. A fourth form of interbank linkage is known as the ‘money 

centre’ (Freixas, Parigi and Rochet, 2000) where banks are not linked together but only a central 

money institution is connected to each financial institution. In this case, it is possible that the failure of 

a single bank will not trigger the failure of the money centre, but if the money centre itself goes 

bankrupt this can have a domino effect on the whole interbank market. In addition, a ‘multiple money 

centre’ structure occurs when the interbank market consists of a number of banking groups, each led 

by a money centre, where interbank claims are traded solely between banks in the same group. 
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Many empirical contributions have focused on the role played by the interbank market in spreading 

financial contagion. A summary can be found in Upper (2011).  

Most of these works have no detailed information on the interbank market. To circumvent this lack of 

data, some contributions have therefore focused on a segment of the market for which bilateral 

interbank exposures were available at individual bank level. For instance, Furfine (2003) investigated a 

small fraction of US interbank exposures related to the Federal Reserve’s large-value transfer system. 

Similarly, Degryse and Nguyen (2007) investigated how the structure of the interbank market 

influences contagion risk, making use of panel data on large exposures to banks in Belgium. In this 

way, they identified, over time, the pattern of contagion risk due to interbank defaults. They performed 

a sort of stress test to evaluate how the failure of an individual bank, caused by a sudden and 

idiosyncratic shock, could cause a systemic crisis in the Belgian financial system, explaining the time-

series behaviour of contagion. They found that moving from a complete structure to a multiple-money-

centre structure (i.e. a situation dominated by higher concentration on the banking market) decreases 

both the risk and the impact of domestic contagion. 

Other contributions have covered the whole interbank market and had to make some assumptions 

about the structure of the matrix. For instance, Upper and Worms (2004) used aggregate interbank 

assets and liabilities from banks’ balance sheets to estimate the matrix of interbank relationships by 

maximising the entropy of claims. In this hypothesis, each bank lends to all the others, so that the 

market is complete in the sense of Allen and Gale (2000). Wells (2004) and van Lelyveld and Liedorp 

(2006) have actual data on large bilateral exposures and used maximum entropy techniques just to 

estimate the rest of the interbank matrix. Moreover, van Lelyveld and Liedorp (2006) made a valuable 

contribution by comparing the results based on the maximum entropy proxy with survey data on 

exposures in the Netherlands. They showed that the approximation does not seem to introduce a bias in 

the estimate of the actual linkages between banks. 

With regard to the Italian interbank market, Mistrulli (2005 and 2010) carried out a survey to evaluate 

contagion in the banking system comparing the hypothesis of the ‘complete’ structure maximising the 

entropy of interbank linkages with the ‘multiple money centre’ structure observed in Italy. To this end, 

a single dataset including actual bilateral exposures was used. The results indicate that the maximum 

entropy approximation tends to provide a biased estimate of the extent of financial contagion. In 

particular, the estimated matrix overrates the vulnerability to contagion, but this does not hold true in 

general, depending on different elements such as the size of the interbank linkages, the recovery rates 

of interbank exposures and banks’ capitalisation. 

About shocks modelling, two main approaches are used in these papers. The first and most used 

approach relies on the artificial failure of single banks that (possibly) causes subsequent collapses in 
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the banking environment considered (e.g. van Lelyveld and Liedorp, 2006; Mistrulli, 2005), while the 

second is based on common shocks for the whole system (as in Elsinger, 2006).  

Based on this second approach, the study reported in this paper aims to assess how an approximation 

of interbank linkages (that can possibly be very different from the actual linkages) affects the 

evaluation of systemic risk in a financial environment. It simulates the behaviour of the banking 

system in the presence of contagion, under the maximum entropy assumption. The starting point for 

this paper is a Monte Carlo simulation as in De Lisa et al. (2011) that make it possible to obtain 

directly scenarios with multiple defaults. Banks’ assets are considered to be correlated. Therefore, in 

bad economic cycles multiple banks are exposed to potential failure. In particular, this paper estimates 

the distribution of aggregated excess losses (i.e. the losses of a bank that exceed the capital buffer) in 

the banking system, assuming that the default of one bank can trigger the default of others, which are 

linked to the failed bank via the interbank market matrix. 

In order to test the soundness of the maximum entropy assumption, this hypothesis is relaxed to see if 

variations in the structure of the interbank market lead to significantly different systemic excess losses. 

Changes in the interbank matrix aim to relax the hypothesis of complete markets (as defined in Allen 

and Gale (2000)): for each bank analysed, a certain proportion of exposures are set to zero and the 

related contagion effects are compared with those obtained in maximum entropy conditions.  

 

 

3. Methodology 

 

3.1 Interbank matrix structure 

This analysis assesses the uncertainty in results of simulations, due to approximation of the interbank 

matrix. Available data for each bank cover only total credits and debts to other banks, but information 

on bilateral exposures between banks is not publicly available. For this reason, the interbank matrix 

must be inferred by making assumptions on how interbank debts and credits are spread over the 

system. 

Following Upper and Worms (2004), the first step is to approximate the interbank matrix with the 

maximum entropy one, i.e. assume that banks maximise the dispersion of their interbank credits and 

debts. This maximum entropy matrix is taken as the reference base in the numerical experiment 

presented in the next section. 

Considering a banking system made up of J banks, the interbank exposures can be represented as a J × 

J matrix IB = {xjk}, j,k = 1,…, J. 



 9 

























JJJJJ

J

J

J

JJ

xxxx

xxxx

xxxx

xxxx

IB











321

3332313

2322212

1312111

 

 

where xjk represents the exposure (debt) of bank j to bank k. 

Diagonal elements {xjj}, j = 1,…, J,  representing self-exposures, are set at zero, so the interbank 
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Only the total amount of interbank credits and interbank debts are known, i.e. 
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Keeping these constraints and assuming that the individual interbank exposures in the sample display 

maximum dispersion, so that each bank lends to each of the others in proportion to its share of the total 

interbank credit. All the other values can be calculated. In this way the largest lender will be the largest 

creditor for all other banks, and banks with no debts will evidently result in a column of zeros. 

The corresponding matrix is obtained numerically via the ENTROP algorithm (see Blien and Graef 

(1997)). 

In order to test the robustness of the maximum entropy assumption, variations were introduced in the 

interbank matrix to evaluate if these changes induce a significant variation in results. 

Variations in the matrix of bilateral interbank exposures obtained via the ENTROP algorithm were 

introduced with a procedure that preserves the totals but introduces one zero more at each step. In this 

way an incomplete matrix is obtained that concentrates interbank activities into a limited pre-set 

number of non-zero values. 

The procedure develops as follows:  

Considering, for example, a 5 × 5 IB matrix: 
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(1) Select, randomly, two different rows and two different columns, which identify four different 

elements of the matrix (e.g. rows 1 and 2 and columns 3 and 4 identify x13, x14, x23 and x24). 

Provided all four values are different from zero, these elements are going to be changed in 

order to obtain a new matrix with one additional zero.  
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(2) Evaluate which of the four elements has the lowest value (in this example this is x13 = 5). 

(3) The lowest value is subtracted from itself and also from the element in the other row and other 

column 5;05 42423131  xxxx  and added to the element in the same row but different 

column and in the same column but different row 5;5 41413232  xxxx . 

The new matrix IB’ will be: 
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In this way row and column totals are maintained, but a zero is introduced where the lowest value was 

originally placed. 

This procedure is then iterated, up to the pre-set number of zeros. 

For each country, the process starts with the maximum entropy matrix and adjusts it as described in the 

previous section in order to produce 20 series of interbank matrices with 20 %, 35 %, 50 %, 65 % and 

80 % more elements set to zero (other than the diagonal elements or elements already set at zero). To 



 12 

perform a ‘ceteris paribus’ analysis, for each simulation the variation in the interbank matrix is set 

randomly, whereas the internal losses suffered by each bank (see next section) are always the same. In 

this way different results for the same country can only be due to variations in the interbank matrix. 

 

3.2 Generating scenarios 

In order to verify the effectiveness of contagion, the authors consider it fundamental to generate 

market scenarios as close as possible to the real market situation. To do this, a Monte Carlo simulation 

coherent with a Basel II framework and based on balance-sheet data (see De Lisa et al. (2011)) was 

performed with banks’ correlated assets. The correlation between banks’ assets is fundamental, as in 

this way market scenarios often include cases where one or a few bank defaults are rounded by some 

other cases of near-to-default banks, which are situations that are more likely to start financial 

contagion. 

 

Table 1: Number of primary defaults (before contagion) 

Number of primary defaults BE IE IT PT 

1 8 663 8 931 6 696 8 855 

2 959 806 1 493 840 

3 252 183 696 197 

4 73 51 330 69 

5 29 16 185 21 

> 5 24 13 600 18 

Total 10 000 10 000 10 000 10 000 

 

Simulations are based on the following three steps: 

(1) Estimate, based on assets, the average assets probability to default [PD] of each bank j  
jDP ˆ  

calculated as the PD that allows the actual value of the capital requirement for that specific 

bank Kj (extracted from balance-sheet data) to be equal to its numerically calculated value, 

setting the other variables, i.e. loss given default (LGD), maturity (M) and size (S), to their 

standard values: 

  jjj KSMLGDDPKDP  505.245.0|ˆ:ˆ  

where: 

    IiASMLGDPDCSMLGDPDK ij

j

ijijijijijijijijijj ,...,1,,,,,,   

is the sum of the capital allocation parameter (Cij) of each exposure i of bank j multiplied by its 

amount Aij . 
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(2) For each simulation n, calculate bank j’s losses njL  performing a Monte Carlo simulation based 
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where 

Nn ,...,1  simulations 

  njNznj ,1,0~   

  kjzz nknj  5.0,cov  

These primary banks’ simulated losses are then compared with banks’ capital. Whenever in 

each bank j 

  jjnjnj CAPDPzL ˆ,    

losses net of provisions exceed total capital and bank j is considered to default in simulation n. 

These net losses   jjnjnj CAPDPzL ˆ,
 
are recorded (when at least one bank defaults) as ‘no 

contagion losses’. 

This produces a wealth of synthetic market scenarios, distributed as implicitly defined by the 

Basel II Regulation, correlated between banks, and based on proxies of assets PD and actual 

values of the total capital of each bank considered. This is the starting point for testing 

contagion effects. 

(3) Following James (1991), it was assumed that, whenever a bank defaults, 40% of the amount of 

its interbank debts are passed onto creditor banks and distributed between them, so that: 

   ˆ ˆ, , ,c

nj nj j nj nj j k kj

k

L z PD IB L z PD D x   where 1kD   if bank k defaulted, and zero otherwise. 
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Considering this, bank j defaults when 

 ˆ, ,c

nj nj j jL z PD IB CAP . 

Contagion is looped up to the cycle where no more banks default. 

Finally, net losses  ˆ, ,c

nj nj j jL z PD IB CAP  are recorded (when at least one bank defaults). 

Simulations were performed in order to have 10,000 significant values for each country considered and 

for each interbank matrix. Setting the same starting seed in a random number generator assures that 

differences in contagion results are due to the interbank matrix variation. 

 

 

4. Data 

 

Some authors point out that different features of banking systems could lead to different effects of the 

maximum entropy hypothesis. For this reason, the analysis was conducted on four banking systems: 

Belgium (BE), Italy (IT), Ireland (IE) and Portugal (PT). These banking systems show different 

distributions of banks’ concentration ratio and business models. This makes it possible to evaluate if 

the impact of changes in the hypotheses over the interbank matrix is related to countries’ specific 

characteristics. Data are based on the Bankscope dataset, as of December 2009, integrated with ECB 

and central banks’ values. 

Table 2 contains aggregate information about the data considered for each country. 

 

Table 2: Description of the samples used for simulations 

 Number of 

banks 

Sample % 

population 

Capital (m€) Total assets 

(m€) 

Interbank debts 

(m€) 

Interbank 

credits (m€) 

BE 23 82.26 % 48 401 878 336 97 493 84 727 

IE 24 101.91 % 65 392 1 221 181 276 738 148 729 

IT 473 81.81 % 270 876 2 827 051 188 375 195 958 

PT 14 66.49 % 26 341 323 762 43 561 34 504 

 

 
Capital/total 

assets 

Interbank 

debts/total 

assets 

Interbank 

credits/total 

assets 

Herfindhal 

index (over 

total assets) 

Herfindhal 

index 

(over interbank 

debts) 

Herfindhal 

index 

(over interbank 

credits) 

BE 0.055 0.111 0.096 0.293 0.304 0.256 

IE 0.054 0.227 0.122 0.154 0.177 0.214 

IT 0.096 0.067 0.069 0.054 0.092 0.117 

PT 0.081 0.135 0.107 0.259 0.228 0.345 

 

The sample of banks covered in each country (‘sample population’) is calculated with reference to the 

amount of total assets reported by the ECB1. 

                                                 
1 Source: European Central Bank (2010), EU banking structures:  http://www.ecb.int/pub/pdf/other/eubankingstructure201009en.pdf. 
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Capitalisation levels, measured by the capital/total assets ratio, first approximate the extent to which 

banks are resilient to defaults of their own assets. That also depends on the riskiness of the assets, 

which is taken into account in the scenario-generating process. 

Columns containing interbank volumes represent the size of interbank debts and credits over total 

assets. Herfindhal indices monitor concentration in the banking system relative to total asset and 

interbank exposures. The index is generally calculated as: 





N

k

ksH
1

2 , 

where ks  is the market share of firm k in the market with respect to the variable considered (total 

assets, interbank debts and credits). 

Looking at the tables above, Belgium has a small number of banks and, according to its Herfindhal 

indices, a highly concentrated banking system in terms of total assets and interbank exposures. The 

Irish banking system is not highly concentrated and is made up of a small number of banks highly 

exposed in the interbank market. 

Italy has the largest number of banks, high capitalisation, low interbank exposures and low Herfindhal 

indices. Portugal has the smallest number of banks, a high capitalisation level and, together with 

Belgium, the highest level of concentration in terms of both total assets and interbank exposures. 

 

 

5. Results 

 

5.1 Effects on contagion 

The consequences of assuming ‘maximum entropy’ for interbank exposures are not evident a priori. 

On the one hand, the maximum entropy assumption could lead to underestimation of contagion risk: 

the consequences of a default are actually spread across all the other banks, limiting the effects on each 

single bank. On the other, this assumption reflects the connectedness between all banks, even where no 

real interbank links exist, thus possibly creating fictitious ways of propagating contagion. For this 

reason, the influence of variations in the interbank matrix is verified for the whole probability 

distribution of estimated losses. 

As expected, concentration in the interbank matrix does affect variability. In particular, the higher the 

concentration in interbank connections (number of zeros in the interbank matrix), the higher the 

variability in results. As can also be seen, higher interbank values (Ireland) result in higher variability, 

while a higher number of banks (Italy) possibly induces more stability. 

In this regard, Table 3 reports the average ratios constructed as standard error over average. Remember 

that simulations are run in order to have 10 000 scenarios with at least one default in each country. For 
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each scenario 20 different interbank matrices were constructed for each concentration level, so that in 

the end contagion in each country can be monitored by five matrices (one for each concentration level) 

with dimensions 10 000 x 20, for both losses and defaults. Variability in a single banking system is 

thus evaluated with the average value of the standard error/average ratio calculated for each row of the 

five matrices. 

 

Table 3:Variability — average value in standard error of contagion simulations results 

 + 20 % zeros + 35 % zeros + 50 % zeros + 65 % zeros + 80 % zeros 

BE 0.6 % 0.7 % 2.1 % 3.3 % 5.7 % 

IE 11 % 26 % 34 % 56 % 78 % 

IT 0.004 % 0.008 % 0.013 % 0.023 % 0.045 % 

PT 2 % 4 % 4 %          6 %                7 % 

 

The general trend is an increase in variability as the simulation moves up from a situation with 20 % of 

zeros added in the interbank matrices to 80 %. This trend is confirmed in all four countries considered, 

even if differences between them can be seen from the differences in the magnitude of variability (see, 

for example, the comparison between Ireland and Italy). 

The authors also investigated if changes in the interbank matrix produce an effect on losses aggregated 

on the basis of the magnitude of contagion. Tables 4.1 to 4.4 and 5.1 to 5.4 report three possible levels, 

individualised by the amount of losses originated in the cases of maximum entropy and of no 

contagion. In this regard, it must be remembered that simulations were run with and without contagion, 

in order to evaluate the effects of linkages between banks. 

In detail, the ‘Overall’ column in Tables 4.1 to 4.4 represents the average number of defaults, over the 

10 000 simulated scenarios, while Tables 5.1 to 5.4 report the average excess losses calculated per 

country. The other three columns show the same losses split on the basis of the magnitude of 

contagion. More specifically: 

 NO CONTAGION contains cases where: )()( ioBaseScenarExcessLossnNoContagioExcessLoss   

 SMALL CONTAGION contains cases where: 

( ) ( ) ( )ExcessLoss BaseScenario ExcessLoss NoContagion ExcessLoss NoContagion   

 LARGE CONTAGION contains cases where: 

( ) ( ) ( )ExcessLoss BaseScenario ExcessLoss NoContagion ExcessLoss NoContagion   

The ‘BASE’ row refers to the maximum entropy situation, whereas +20 %, +35 %, +50 %, +65 % and 

+80 % indicate subsequent changes in the interbank matrix. 
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Table 4.1: Number of defaults by contagion magnitude — Belgium 

BE  CONTAGION 

 Overall NO SMALL LARGE 

 (10 000 cases) (6 747 cases) (2 275 cases) (978 cases) 

BASE 1.84 1.00 2.67 5.75 

+20 % 1.85 1.00 2.68 5.76 

+35 % 1.87 1.00 2.72 5.82 

+50 % 1.90 1.00 2.80 5.97 

+65 % 1.96 1.04 2.95 6.00 

+80 % 2.12 1.07 3.37 6.48 

 

 

Table 4.2: Number of defaults by contagion magnitude — Ireland 

IE  CONTAGION 

 Overall NO SMALL LARGE 

 (10 000 cases) (6 174 cases) (937 cases) (2 889 cases) 

BASE 4.41 1.00 2.21 12.40 

+20 % 4.46 1.03 2.41 12.45 

+35 % 4.51 1.11 2.81 12.35 

+50 % 4.65 1.19 3.73 12.34 

+65 % 4.82 1.49 4.30 12.10 

+80 % 5.51 2.34 6.58 11.94 

 

 

Table 4.3: Number of defaults by contagion magnitude — Italy 

IT  CONTAGION 

 Overall NO SMALL LARGE 

 (10 000 cases) (6 694 cases) (3 305 cases) (0 cases) 

BASE 2.15 1.00 4.48 - 

+20 % 2.15 1.00 4.48 - 

+35 % 2.15 1.00 4.48 - 

+50 % 2.15 1.00 4.48 - 

+65 % 2.15 1.00 4.48 - 

+80 % 2.15 1.00 4.48 - 
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Table 4.4: Number of defaults by contagion magnitude — Portugal 

PT  CONTAGION 

 Overall NO SMALL LARGE 

 (10 000 cases) (6 814 cases) (2 478 cases) (708 cases) 

BASE 1.85 1.00 3.19 5.39 

+20 % 1.85 1.00 3.18 5.38 

+35 % 1.83 1.01 3.07 5.33 

+50 % 1.81 1.01 2.99 5.39 

+65 % 1.79 1.03 2.88 5.31 

+80 % 1.74 1.01 2.76 5.16 

 

Figure 1: Number of defaults by contagion magnitude — Belgium 
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Figure2: Number of defaults by contagion magnitude — Ireland 
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Figure 3: Number of defaults by contagion magnitude — Italy 
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Figure 4: Number of defaults by contagion magnitude — Portugal 
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Table 5.1: Average value of losses by contagion magnitude — Belgium 

BE  CONTAGION 

 Overall NO SMALL LARGE 

 (10 000 cases) (6 747 cases) (2 275 cases) (978 cases) 

BASE 2 696 176 498 464 5 063 463 12 352 041 

+20 % 2 693 324 498 724 5 065 719 12 314 761 

+35 % 2 693 778 498 956 5 064 582 12 320 454 

+50 % 2 703 282 499 291 5 109 217 12 311 490 

+65 % 2 710 214 504 140 5 147 584 12 259 669 

+80 % 2 761 571 512 407 5 394 238 12 153 998 
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Table 5.2: Average value of losses by contagion magnitude — Ireland 

IE  CONTAGION 

 Overall NO SMALL LARGE 

 (10 000 cases) (6 174 cases) (937 cases) (2 889 cases) 

BASE      16 998 231           989 367       2 394 299     55 946 867  

+20 %      17 049 103       1 074 374       3 407 988     55 612 516  

+35 %      16 968 441       1 291 853       5 529 794     54 180 373  

+50 %      17 206 620       1 565 217       9 522 706     53 125 572  

+65 %      17 321 954       2 517 032     12 076 994     50 662 249  

+80 %      19 941 129       6 014 341     22 203 313     48 969 972  

 

 

Table 5.3: Average value of losses by contagion magnitude — Italy 

IT  CONTAGION 

 Overall NO SMALL LARGE 

 (10 000 cases) (6 694 cases) (3 305 cases) (0 cases) 

BASE 171 048 47 199 421 817 - 

+20 % 171 046 47 199 421 812 - 

+35 % 171 045 47 199 421 807 - 

+50 % 171 052 47 199 421 828 - 

+65 % 171 047 47 199 421 815 - 

+80 % 171 042 47 200 421 800 - 

 

 

Table 5.4: Average value of losses by contagion magnitude — Portugal 

PT  CONTAGION 

 Overall NO SMALL LARGE 

 (10 000 cases) (6 814 cases) (2 478 cases) (708 cases) 

BASE 881 506 68 602 1 984 053 4 846 226 

+20 % 881 388 68 664 1 990 277 4 822 161 

+35 % 879 098 68 842 1 989 835 4 789 649 

+50 % 884 939 68 910 2 007 381 4 810 091 

+65 % 887 535 69 586 2 037 210 4 735 842 

+80 % 898 572 70 164 2 093 690 4 688 501 
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Figure 5: Average value of losses by contagion magnitude — Belgium 
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Figure 6: Average value of losses by contagion magnitude — Ireland 
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Figure 7: Average value of losses by contagion magnitude — Italy 

Italy

-

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

BASE +20% +35% +50% +65% +80%

Scenario

Lo
ss

e
s

Overall

NO

SMALL

 



 22 

Figure 8: Average value of losses by contagion magnitude — Portugal 
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The average results (‘Overall’ column) clearly indicate that, considering all 10 000 scenarios, changes 

in the interbank matrix (zeros added) do not significantly influence the amount of excess losses found 

in the base case of maximum entropy. The only exception is Ireland +80 %, where the amount of losses 

jumps when the extreme concentration level is reached. Nevertheless, some differences originate when 

the results are split into groups selected by the size of contagion. In the small contagion case, the 

maximum entropy hypothesis (base values) tends to lead to underestimation of excess losses, whereas 

in big crises (large contagion) maximum entropy seems to overestimate contagion effects (as found by 

Mistrulli, 2010). 

Looking at differences between countries, banking systems with a large number of banks (Italy) tend 

to have more stability in results, producing almost the same estimates for excess losses despite the 

hypothesis over the interbank matrix. 

Countries with a smaller number of banks experience more significant changes in the amount of losses. 

In particular, contagion is more vulnerable to changes in the interbank structure in countries that have 

more sizable interbank exposures (and lower capitalisation) and are therefore more exposed to 

financial contagion (Ireland). In these situations the no contagion and small contagion simulations are 

highly underestimated, whereas large contagion cases are slightly overestimated. 
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5.2 Effects on losses probability distribution 

Different evaluations can be found when considering the probability distribution of financial crises by 

crisis of final effects values (instead of contagion effects). 

Tables 6.1 to 6.4 report, for each country, the distribution of the 10 000 simulated scenarios. In each 

table, column 1 (no contagion) shows the magnitude of systemic excess losses without contagion 

effects, column 2 (base scenario) shows results for the baseline scenario (i.e. under the maximum 

entropy assumption) and columns 3 to 8 contain results for the matrices with 20 %, 35 %, 50 %, 65 % or 

80 % of matrix elements set to zero. 

Comparison between columns 1 and 2 could be useful to address the effects of contagion. For instance, 

Table 6.1 indicates that contagion in the Belgian banking system has no effect on systemic excess 

losses under the 40th percentile of the distribution. 

For each of these five classes of variation (20 %, 35 % 50 %, 65 % and 80 %), the authors estimated 20 

probability distributions obtained via 20 different interbank matrices. The averages and standard errors 

are reported in the tables below. 

The results show that variations in the structure of the interbank matrix do not really affect the 

probability distribution of banking crisis estimates. This is probably (and almost partially) due to the 

fact that when the interbank matrix is incomplete, contagion affects some banks more and does not 

affect others, thus inducing different results, but, when considering the whole system, larger effects on 

some banks and lower on others balance out and the final distribution (which is re-ordered by crisis 

size) is not deeply affected. 
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Table 6.1: Estimated losses probability distribution — Belgium 

BE 
No 

contagion 

Base 

scenario 
+20 % zeros +35 % zeros +50 % zeros +65 % zeros +80 % zeros 

   Average 
Standard 

error % 
Average 

Standard 

error % 
Average 

Standard 

error % 
Average 

Standard 

error % 
Average 

Standard 

error % 

             

90 % 4 963 902 8 076 588 8 067 476 1% 8 075 254 1% 8 083 277 1% 8 123 097 2% 8 325 802 5% 

80 % 2 124 436 3 165 878 3 169 533 0% 3 176 077 1% 3 223 853 3% 3 263 529 4% 3 559 248 8% 

70 % 696 941 1 260 621 1 267 342 1% 1 274 006 1% 1 318 665 6% 1 346 789 7% 1 489 448 13% 

60 % 238 197 269 098 269 019 0% 269 248 0% 268 486 1% 272 527 2% 273 569 4% 

50 % 113 708 119 845 119 820 0% 119 809 0% 119 648 0% 120 114 1% 120 170 1% 

40 % 60 175 61 529 61 526 0% 61 513 0% 61 499 0% 61 702 1% 61 801 1% 

30 % 31 970 32 241 32 239 0% 32 243 0% 32 237 0% 32 270 0% 32 271 0% 

20 % 16 151 16 249 16 255 0% 16 256 0% 16 259 0% 16 266 0% 16 267 0% 

10 % 6 500 6 517 6 517 0% 6 517 0% 6 518 0% 6 522 0% 6 523 0% 

 

Table 6.2: Estimated losses probability distribution — Ireland 

IE 
No 

contagion 

Base 

scenario 
+20 % zeros +35 % zeros +50 % zeros +65 % zeros +80 % zeros 

   Average 
Standard 

error % 
Average 

Standard 

error % 
Average 

Standard 

error % 
Average 

Standard 

error % 
Average 

Standard 

error % 

             

90 % 4 985 377 62 698 542 62 758 442 0% 62 717 637 1% 63 004 224 1% 63 004 066 2% 62 939 981 3% 

80 % 2 657 548 51 321 600 51 355 471 2% 50 964 341 4% 50 558 473 7% 49 386 188 8% 53 126 401 7% 

70 % 1 610 770 6 867 626 6 830 817 2% 8 176 396 91% 11 430 821 103% 12 758 165 87% 35 753 569 37% 

60 % 987 499 2 094 352 2 128 881 2% 2 210 744 12% 2 414 177 13% 2 760 687 22% 7 317 439 111% 

50 % 591 401 943 087 968 819 4% 999 867 7% 1 082 851 10% 1 192 853 15% 1 997 922 34% 

40 % 338 844 470 510 475 435 4% 489 601 8% 518 941 12% 566 961 19% 759 291 40% 

30 % 182 764 225 856 227 429 3% 231 543 6% 241 571 8% 257 633 13% 289 531 16% 

20 % 87 586 98 216 98 576 2% 99 634 3% 102 256 4% 106 534 7% 112 791 10% 

10 % 33 409 35 908 35 957 1% 36 246 2% 36 883 3% 37 968 5% 39 415 9% 
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Table 6.3: Estimated losses probability distribution — Italy 

IT 
No 

contagion 

Base 

scenario 
+20 % zeros +35 % zeros +50 % zeros +65 % zeros +80 % zeros 

   Average 
Standard 

error % 
Average 

Standard 

error % 
Average 

Standard 

error % 
Average 

Standard 

error % 
Average 

Standard 

error % 

             

90 % 314 591 316 000 315 998 0% 315 992 0% 315 954 0% 315 892 0% 315 887 0% 

80 % 119 961 120 194 120 204 0% 120 184 0% 120 188 0% 120 174 0% 120 158 0% 

70 % 65 722 65 722 65 722 0% 65 728 0% 65 732 0% 65 739 0% 65 739 0% 

60 % 40 647 40 647 40 647 0% 40 647 0% 40 647 0% 40 647 0% 40 647 0% 

50 % 26 612 26 612 26 612 0% 26 612 0% 26 612 0% 26 612 0% 26 614 0% 

40 % 16 822 16 822 16 822 0% 16 822 0% 16 822 0% 16 822 0% 16 822 0% 

30 % 10 481 10 481 10 481 0% 10 481 0% 10 481 0% 10 481 0% 10 481 0% 

20 % 5 828 5 828 5 828 0% 5 828 0% 5 828 0% 5 828 0% 5 828 0% 

10 % 2 368 2 368 2 368 0% 2 368 0% 2 368 0% 2 368 0% 2 368 0% 

 

Table 6.4: Estimated losses probability distribution — Portugal 

PT 
No 

contagion 

Base 

scenario 
+20 % zeros +35 % zeros +50 % zeros +65 % zeros +80 % zeros 

   Average 
Standard 

error % 
Average 

Standard 

error % 
Average 

Standard 

error % 
Average 

Standard 

error % 
Average 

Standard 

error % 

             

90 % 1 731 395 2 465 932 2 469 978 0% 2 466 611 1% 2 496 896 1% 2 519 816 2% 2 593 774 5% 

80 % 567 998 866 993 862 903 1% 856 110 3% 877 474 2% 895 202 4% 964 488 13% 

70 % 196 915 274 012 272 333 1% 268 626 4% 270 659 3% 268 213 3% 268 228 5% 

60 % 85 532 96 355 96 196 0% 96 170 1% 95 781 1% 95 759 2% 94 690 1% 

50 % 42 275 44 584 44 569 0% 44 629 1% 44 438 0% 44 615 2% 44 240 1% 

40 % 22 892 23 454 23 463 0% 23 507 1% 23 436 0% 23 518 1% 23 367 0% 

30 % 12 956 13 306 13 283 0% 13 263 1% 13 219 0% 13 252 1% 13 160 0% 

20 % 6 778 6 833 6 830 0% 6 833 0% 6 825 0% 6 835 0% 6 813 0% 

10 % 2 933 2 942 2 942 0% 2 944 0% 2 943 0% 2 948 0% 2 942 0% 



 26 

6. Conclusions 

 

This paper tested maximum entropy approximation for the interbank matrix in simulating contagion 

effects in banking systems. In the process, an uncertainty test was performed on the maximum entropy 

matrix by developing an algorithm that allows more concentrated interbank exposures to be obtained. 

A Monte Carlo method was applied to generate banking crises scenarios that were used to test 

contagion effects. Results obtained from the maximum entropy interbank matrix were then compared 

with the results derived from higher concentration in the matrices. 

The probability distribution of losses is rather stable even with 80 % more zeros in the matrix. 

Conversely, when considering the magnitude of contagion, it can be seen that excess losses tend to be 

underestimated when the maximum entropy matrix is used in banking systems with large interbank 

exposures and in ‘small contagion crises’. Otherwise ‘large contagion crises’ tend to be associated 

with overestimation of excess losses. 

As in Mistrulli (2010), the authors found that underestimation of contagion by maximum entropy is 

heightened by the specific features of the banking system. More specifically, high levels of 

capitalisation, low interbank exposure and large samples seem to produce more stable results. On the 

other hand, low capitalisation, high interbank exposure and a small number of banks result in 

underestimation of excess losses in ‘small contagion crises’ and overestimation in ‘large contagion 

crises’. 

Therefore, the results for different countries seem to be clearly affected by certain characteristics of the 

banking system. Precise quantification of their individual effects would go beyond the scope of this 

paper. Nevertheless it is worth developing this approach further and performing a sensitivity analysis 

in order to quantify better the effects of banking systems’ characteristics on financial contagion. 
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