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1. Introduction 

 

Drought is a natural hazard that can have serious consequences for a range of 

human activities. At the most catastrophic end of the scale, particularly in areas of 

the world that do not have the infrastructure to effectively mitigate its affects, 

drought can lead to famine and numerous loss of life. In Europe the impacts of 

drought are more felt economically and socially: agricultural production and water 

resource availability for industry and households being the most affected sectors. It 

is estimated that the annual average economic cost of drought events in Europe 

amounts to €5.3 billion (European Commission, 2006). 

 

Drought is often seen as a “creeping” phenomenon with slow onset and cessation. 

As a result, an effective drought monitoring system is the most important tool for 

developing and implementing efficient mitigation strategies. However, not only can 

the onset of drought conditions be rapid, an indication of how long drought 

conditions may continue will enable improved planning and resource allocation. For 

this reason, a capability to accurately forecast the onset, persistence and cessation 

of drought conditions will enable more effective drought mitigation strategies to be 

developed.  

 

Drought can be defined as a period of time with water availability less than some 

specified amount at a particular location. It is primarily driven by a shortage of 

precipitation, the effects of which can be enhanced or reduced at any stage of the 

water cycle. Therefore, as a means towards developing a drought forecasting 

system, this study concentrates on forecasting the precipitation contribution, or lack 

thereof, towards drought conditions. 

  

There are two main indicators used for monitoring precipitation in terms of drought: 

the Standardized Precipitation Index (SPI; McKee et al., 1993) and the Palmer 

Drought Severity Index (PDSI; Palmer, 1965). The SPI is a probabilistic indicator based 

purely on precipitation, whereas the PDSI uses empirical relationships to estimate 

the effect of precipitation and temperature on the soil moisture. Both of these 

indicators have been widely used in a drought monitoring context (see Mirsha and 

Singh, 2010 for a review). Guttman (1998) compared the applicability of SPI and PDSI 

to drought events in the contiguous USA and found that the SPI had the advantage 

being statistically consistent, in both time and space, as well as having the ability to 

monitor drought at any timescale. The PDSI on the other hand was found to be 

location specific with an inherent timescale of between six and twelve months.  

 

The SPI has been defined as a key indicator for monitoring drought by the World 

Meteorological Organization (WMO; 2006) and has been widely applied as an 

operational (e.g. Wilhite et al., 2000; Heim, 2002; Svoboda et al., 2002; Quiring 2009; 

McRoberts and Nielsen-Gammon, 2011) and analysis tool. For example, Lloyd-

Hughes and Saunders (2002) used the SPI to develop a drought climatology for 

Europe; Santos et al. (2010) examined both the temporal and spatial variability of 

drought in Portugal using the SPI; and Hannaford et al. (2011) used a regionally 

aggregated SPI, amongst other indicators, to analyse spatial coherence patterns of 

drought in Europe.  



 - 5 - 

 

The probabilistic nature of the SPI makes it an ideal candidate for a drought risk 

analysis tool (Guttman, 1998). However, there have only been limited attempts to 

forecast drought using SPI. Bordi et al. (2005) compared an autoregressive (AR) 

model with what they termed the Gamma Highest Probability (GAHP) method for 

forecasting the 1-month SPI. The GAHP method uses the mode of a gamma 

distribution fit to the precipitation record as the forecast variable. They found that 

the GAHP method generally performed better than the AR model, although the 

mean-squared error (MSE) was relatively high for both approaches. Cancelliere et al. 

(2007) proposed methods for forecasting transition probabilities from one drought 

class to another and for forecasting SPI. They showed that an approach based on the 

analytical derivation of the auto-covariance matrix of SPI based on the underlying 

precipitation statistics displayed some skill in predicting the transitional probability 

from one drought class to the next. Furthermore, they demonstrated that the SPI 

could be forecast with a reasonable degree of accuracy, in terms of the MSE, using 

conditional expectation based on past values of monthly precipitation. Hwang and 

Carbone (2009) used a conditional resampling technique to generate ensemble 

forecasts of SPI and found reasonable forecast performance for 1-month lead time. 

Hannaford et al. (2011) made us of spatial coherence patterns in SPI to propose a 

method for forecasting drought in the United Kingdom based on current occurrence 

of drought elsewhere.  

 

Thus far, methods used to forecast SPI are based purely on statistics. There is no 

evidence in the literature of an assessment of the performance of Numerical 

Weather Prediction (NWP) models in forecasting drought. It is well known that as 

the lead time increases, the skill of NWP models in forecasting hydrological 

processes diminishes rapidly. However, with the rapid development of NWP models, 

particularly in terms of spatial resolution and ensemble methods that estimate the 

uncertainty, an objective assessment of NWP model performance in forecasting SPI 

is timely. In this report the performance of the European Centre for Medium Range 

Weather Forecasts (ECMWF) variable resolution Ensemble Prediction System 

(varEPS) in predicting the probability of SPI for a range of drought thresholds at 1-

month lead time is assessed. 

 

Ensemble forecasts are attractive in that through the computation of the probability 

of an event from the ensemble members the uncertainty of the forecast can be 

communicated. If this information is used properly, probabilistic forecasts will 

provide improved guidance in making the most effective decisions.  



 - 6 - 

2. The Standardized Precipitation Index (SPI) 

 

The SPI was introduced by McKee et al. (1993) as measure of the precipitation deficit 

that is uniquely related to probability. It can be calculated for any accumulation 

timescale, usually from monthly precipitation observations, and is typically 

expressed as SPI-n, where n is the number of months of accumulation. The time-

series is analogous to a moving average in the sense that a new value is calculated 

each month and is auto-correlated to previous months depending on the 

accumulation timescale.  

 

The computation of SPI is based on an equi-probability transformation of the 

probability of observed precipitation to the standard normal variable with mean 0 

and variance 1. SPI is therefore expressed in units of the number of standard 

deviations from the mean, with negative (positive) values denoting drier (wetter) 

conditions than “expected” for the timescale and location. The standardization 

procedure to the standard normal variable means that the SPI is spatially and 

temporally invariant. This characteristic enables precipitation anomalies to be 

objectively compared between locations and times.  

 

The computation of the SPI is a three stage process:  

 

i. a parametric statistical distribution is fitted to the observed record from a 

reference period for precipitation accumulations over n months (where n is 

e.g. 1, 3, 6, 9, 12, 24, or 48 months); 

ii. the non-exceedance probability of a precipitation observation is computed 

related to the parametric distribution; 

iii. the non-exceedance probability is transformed to the standard normal 

variable with mean = 0 and variance = 1. 

 

For stage (i) of the process, the selection of the parametric distribution is a key 

decision for the accuracy of the final SPI value. There is some debate as to which 

parametric distribution should be selected. McKee et el. (1993, 1995) recommend 

the gamma distribution. The gamma distribution is described by only two 

parameters, but offers considerable flexibility in describing the shape of the 

distribution, from an exponential to a Gaussian form. It has the advantage that it is 

bounded on the left at zero and therefore excludes the possibility of negative 

precipitation. Additionally, it is positively skewed with an extended tail to the right, 

which is especially important for dry areas with low mean and a high variability in 

precipitation. Guttman (1999) suggests that the Pearson-III distribution is the “best” 

universal model to adopt since its three parameters give it more flexibility than the 

gamma distribution. Lloyd-Hughes and Saunders (2002) suggest that the gamma 

distribution is the most appropriate for Europe, although they do not include the 

Pearson-III distribution in their analysis. Furthermore, the method used to estimate 

the parameters of the distribution is of importance. McKee et al. (1993, 1995), Lloyd-

Hughes and Saunders (2002) are among those who have use Maximum Likelihood 

Estimation (MLE) to estimate the parameters of the fitted distribution. However, 

Guttman (1999) showed that, for the gamma distribution at least, the L-moments 

method (Hosking and Wallis, 1997) for estimating the distribution parameters results 
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in more accurate SPI values. In addition, knowledge of the L-moments of a 

precipitation record has the advantage of enabling regional frequency analyses to be 

performed (Hosking and Wallis, 1997).  

 

The computation of SPI is illustrated in Figure 2.1 for the gamma distribution, but the 

methodology equally applies for whichever distribution is selected.   

 

 
Figure 2.1 – Illustration of the method to compute SPI – (i) the parametric gamma cumulative 

distribution function (CDF) is fitted to the observed record for the reference period; (ii) the non-

exceedance probability of the observed precipitation is computed relative to the gamma distribution; 

(iii) the non-exceedance probability is transformed to the standard normal variable and the SPI is 

found. 

 

In order to obtain a parametric distribution that accurately describes the frequency 

distribution of precipitation for a location McKee et al. (1993) recommend that at 

least 30 years of continuous observations are used. For locations where observations 

of zero precipitation occur, the fitting of a gamma distribution becomes problematic 

since it is not defined for zero. In this case the cumulative probability H(x) becomes 

 

H(x) = q + (1 - q)G(x),     (2.1) 

 

where q is the probability of zero precipitation calculated from the frequency of 

observations of zero, and G(x) is the cumulative probability derived from the gamma 

distribution. In dry seasons, or arid regions, where the probability of zero becomes 

i 

ii 
iii 
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significant, care should be taken in interpreting the SPI (Wu et al., 2007). In this case 

the probability of observed precipitation has a minimum of q, which means that the 

SPI has an equivalent minimum value. For example, if q = 0.5, the minimum SPI 

possible is 0.  

 

McKee et al. (1995) proposed a classification of the SPI that divides the SPI into 

moderate, severe and extreme classes for both negative (dry) and positive (wet) SPI 

as shown in Table 2.1. This classification has been adopted by most centres that use 

the SPI operationally to define the severity of the precipitation deficit. Whilst this 

classification is somewhat arbitrary, the probabilistic nature of the SPI means that 

return periods can be assigned to SPI values: SPI < -1 (~6 years), SPI < -1.5 (~15 

years), SPI < -2 (~44 years). 

 

 

  SPI Value Class Cumulative 

Probability 

Probability of 

Event [%] 

            SPI ≥  2.00 Extreme wet 0.977 – 1.000 2.3% 

 1.50 < SPI ≤  2.00 Severe wet 0.933 – 0.977 4.4% 

 1.00 < SPI ≤  1.50 Moderate wet 0.841 – 0.933 9.2% 

-1.00 < SPI ≤  1.00 Near normal 0.159 – 0.841 68.2% 

-1.50 < SPI ≤ -1.00 Moderate dry 0.067 – 0.159 9.2% 

-2.00 < SPI ≤ -1.50 Severe dry 0.023 – 0.067 4.4% 

            SPI ≤ -2.00 Extreme dry 0.000 – 0.023 2.3% 

 
Table 2.1 – SPI classification following McKee et al. (1995) 
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3. The ECMWF Variable Resolution Ensemble Prediction System (varEPS) 

 

3.1. An Introduction to ensemble forecasting 

 

Most atmospheric processes can be considered as chaotic. As a result, errors in the 

initial conditions of a forecasting system will propagate and likely grow as the 

forecast is integrated. This will likely have a major impact on a single deterministic 

forecast in terms of the intensity, spatial location and timing of a weather event. 

Atmospheric observations are limited in number and have an uneven spatial 

distribution around the globe, which means that there will always be some 

uncertainty in an estimate of the current state of the atmosphere. As forecast lead 

time increases, the initial state has diminishing influence on the atmosphere with 

physical and dynamical processes having an increasing influence. Our ability to 

model these processes, based on the governing equations of momentum and 

thermodynamics, for example, and approximations based on empirical relationships 

is limited by the spatial and temporal resolution of the model and the accuracy of 

the parameterizations of processes that occur at finer spatial scales than the model.  

 

Ensemble forecasting takes account of the uncertainty in the current atmospheric 

state by generating a set, or ensemble, of different, but similar, atmospheric states. 

Uncertainty in the physical processes is taken account of by applying stochastic 

perturbations to the model physics. This results in an ensemble of forecasts that 

provide an estimate of the uncertainty of the forecast. An ensemble forecast may be 

post-processed into an average forecast (the ensemble mean), a smaller number of 

alternative forecasts (clusters), or the probability of occurrence of a particular 

weather event.    

 

Forecasts of probability can provide improved guidance to decision makers over 

deterministic forecasts as the uncertainty of the forecast is communicated. When a 

probabilistic forecast is used in conjunction with a cost-loss model, the user will 

make decisions that over time have smallest economic impact. The process can be 

illustrated by summarising the decisions from a forecast in a 2x2 contingency table 

(Table 3.1). 

 

Event forecast  

Yes No 

Yes 
Hit  

Mitigated Loss (Lm) 

Miss 

Loss (L) Event 

observed 
No 

False Alarm 

Cost (C) 

Correct Rejection 

No Cost or Loss 

 

Table 3.1 – 2x2 Contingency table to illustrate the cost-loss decision model used with probabilistic 

forecasts 

 

For the forecast to have value, it is a requirement that C ≤ Lm ≤ L, i.e. the cost of 

protective action must be less than the losses incurred if no action is taken. 

Furthermore, the mitigated loss incurred when protective action is taken should be 

less than the loss incurred without that action (i.e. the preventative action must 

serve to reduce the loss). Over many events, the strategy that serves ti minimise the 
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economic impact is to take action when the probability of the event occurring is 

greater than the ratio of costs to losses, 
L

C
 (Mylne, 2002). 

 

 

3.2. Description of the model 

 

The ECMWF varEPS is a global model discretized horizontally onto a spectral grid and 

vertically onto a terrain following hybrid coordinate system. The grid resolution is 

expressed in terms of the wavenumber of the shortest wavelength that the model is 

able to resolve. For example, T639 L62 refers to 639 wavenumbers in the horizontal 

(approximately 30km) and 62 vertical levels.  

 

For short lead-times (< 10 days), the forecast is essentially an initial value problem. 

For longer lead times, ocean variability exerts an increasing influence on atmospheric 

dynamics. For this reason after 10 days the atmospheric varEPS is coupled with the 

Hamburg Ocean Primitive Equation (HOPE)  model (developed at the Max Planck 

Institute for Meteorology, Hamburg, Germany) daily at 00 UTC via the OASIS coupler 

(developed by CERFACS: Centre Européen de Recherche et de Formation Avancée en 

Calcul Scientifique). 

 

The model is run twice daily with 50 perturbed ensemble members plus the control 

member at 00 and 12 UTC. For day 1-10 the model is run at T639 L62 (~30km) 

resolution. For day 11-15 the resolution is degraded to T319 L62 (~60km) resolution 

with ocean coupling at 00 UTC. Once a week (on Thursday) an extension of the 00 

UTC varEPS is run with ocean coupling at 00 UTC and resolution degraded to T639 

L62 from day 11. 

 

As forecast lead time increases, model drift becomes a problem. In order to reduce 

the effects of model drift in the monthly forecasts, 5-member ensemble hindcasts 

are run for the same initialisation time for the previous 18 years. The hindcasts 

provide model climatology that is used to calibrate the monthly forecast.  

 

3.3. Generation of initial conditions and model perturbations 

 

The initial atmospheric state for one ensemble, the control member, is provided by 

the ECMWF operational analysis. 50 perturbed realisations of the operational 

analysis are used to provide the initial state to the other ensemble members. The 

perturbations added to the operational analysis are computed by a combination of 

three methods: 

 

i. The singular vector (SV) method computes perturbations on wind, 

temperature and pressure that will maximize the impact on total energy in 

the hemisphere away from the tropics. The SV method is computationally 

costly, so the computation is done at low resolution (T42). In the tropics (30° 

N - 30° S) moisture processes have different properties to those at mid-

latitudes so a version of the SV is created using a linearised diabatic version 

of the model.  
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ii. The perturbations generated by the SV are modified using differences 

between members of an ensemble data assimilation system. The ensemble 

data assimilation system is a 10-member set of six hour forecasts generated 

from initial states with small perturbations added to atmospheric 

observations and sea surface temperature with stochastic model physics.   

 

iii. To represent the uncertainty in the model dynamics, stochastic physics and 

stochastic backscatter are used. Stochastic physics perturbs the tendencies in 

the parametrization schemes that model sub-grid scale processes, and  

stochastic backscatter models the uncertainty in the sub-grid scale kinetic 

energy by perturbing the vorticity tendencies.       

 

 

The perturbations to be applied to the initial state are linearly combined and 

multiplied by 25 coefficients randomly sampled from a Gaussian distribution. A 

second set of 25 perturbations are obtained by reversing the sign of the first set 

resulting in 50 perturbed initial states plus the unperturbed initial state for the 

control forecast. 

 

3.4. SPI from the varEPS 

 

For the computation of SPI, model precipitation is interpolated from the spectral grid 

to a regular latitude-longitude grid with 0.5° x 0.5° horizontal resolution using a 4-

point bi     -linear interpolation. Before interpolation trace amounts of precipitation 

are adjusted to zero. 

 

3.4.1. Reference statistics 

 

The varEPS has been running operationally since 2004. The most recent operational 

cycle has been running since 2008. This means that the time-series of precipitation 

forecasts does not meet the requirement of 30 years of continuous data (McKee et 

al., 1993) needed to fit a parametric distribution. In order to generate the reference 

statistics, monthly precipitation from the ECMWF Interim Reanalysis (ERA-I) (Dee et 

al., 2011) is used. ERA-I is a reanalysis of the atmospheric state with horizontal 

resolution T255 (~75km) and 6-hour temporal resolution and is part of the same 

family of models as the varEPS. It uses a state-of-the-art 4-dimensional variational 

(4DVAR) data assimilation system and extends from 1979 to the present day. 24-

hour forecasts of precipitation totals are available daily at 00 UTC and are 

aggregated to monthly totals to provide a time-series of monthly precipitation.  

 

Time-series of n-month precipitation totals, where n is the SPI timescale, from 1981-

2010 are used to generate reference statistics. Following Lloyd-Hughes and Saunders 

(2002) the two-parameter gamma distribution is fitted to the data. However, as 

recommended by Guttman (1999), the parameters of the gamma distribution are 

derived from the L-moments. It should be noted that although ERA-I is from the 

same family of models as varEPS, the reference statistics are generated from daily 

precipitation forecasts aggregated to monthly totals that may not belong to the 



 - 12 - 

same distribution as the monthly forecasts. However, due to the short time-series of 

varEPS data, ERA-I is the closest precipitation dataset available for data 

homogeneity.   

  

3.4.2. SPI Forecasts 

 

varEPS forecasts to 32 days ahead once a week (on Thursday). As a result, the 

precipitation total on the last day of the month is the total from the forecasts 

initialisation date to the end of month. When the first Thursday in the month is not 

on the first day of month, the total precipitation for each ensemble member on the 

last day of the month is added to the total precipitation at the initialization time of 

the 32-day forecast from the control member initialised at 00 UTC on the first day of 

the month. The control member is used as the random nature of ensemble 

generation means that the same ensemble member from a later forecast will not 

necessarily be following the same evolution as a previous forecast.  

 

To compute the SPI-1, the cumulative probability of the forecast monthly 

precipitation from each ensemble member is computed relative to the gamma 

distribution for the 1-month ERA-I precipitation and transformed to the standard 

normal variable as described in section 2. For longer timescale SPI-n, forecast totals 

need to be generated. This is done by adding each ensemble member of the 1-

month forecast to the ERA-I precipitation totals for the previous n-1 months, where 

n is the SPI timescale. In this way, the forecast is conditioned on the observations 

from the previous n-1 months. As with the SPI-1, the SPI-n is computed relative to 

the gamma distribution for n-month ERA-I precipitation: 

 

))( ∑
−

=

−++ +=>
2n

0k

kj1ji,1ji, ERAEPSf(P1)(nSPIn    (3.1) 

 

In other words, the forecast SPI-n for ensemble member i and month j+1 is a 

function of the probability the forecast precipitation for ensemble member i for 

month j+1, the first term on the right hand side of equation (3.1) plus the total 

precipitation from ERA-I from month j-(n-2) to month j, the second term on the right 

hand side of equation (3.1). 
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4. Forecast Verification 

Forecasts of SPI from varEPS were generated for the latest operational cycle of the 

model implementation. This provided 41 forecasts of SPI from March 2004 to August 

2011. Forecasts of the probabilities of SPI-1 and SPI-3 for SPI thresholds of -1 

(moderate drought), -1.5 (severe drought), and -2 (extreme drought) are verified 

against SPI derived from independent observations. The SPI-1 represents a pure 

forecast in that the precipitation totals used to calculate the SPI come from the 

forecasting system alone. The SPI-3 forecast, however, is a forecast conditioned on 

observations in that the first two months of the precipitation are from the ERA-I and 

only the third month is from the forecasting system.  

The forecast verification methods used are the Brier Score (BS), the Brier Skill Score 

(BSS), reliability and Relative Operating Characteristics (ROC). These methods are 

described in the following sections.  

4.1. Observational data 

Observed SPIs are computed from the E-OBS dataset (Haylock et al., 2008). E-OBS is 

an interpolation of daily precipitation observations from approximately 2500 rain 

gauges throughout Europe onto 0.25° x 0.25° and 0.5° x 0.5° grids at land points only. 

For the purposes of forecast verification, the coarser 0.5° x 0.5° resolution dataset is 

used as it is the same resolution as the forecast. The precipitation observations are 

fully quality controlled and homogenised. Gaps in the time-series for a station are 

filled with data from neighbouring stations if the neighbouring stations are within 

12.5 km and have a height difference of no more than 25m. Observed SPIs are 

calculated following the method described in section 2 using a gamma distribution 

with parameters estimated from L-moments and the same reference period as the 

forecasts: 1981 – 2010. 

The verification is done for a domain stretching from 15.5°W to 60.5°E longitude and 

35.5°N to 75.5°N latitude for pixels where observations exist (i.e. only land points).   

4.2. Brier Score 

The Brier Score (BS) is used to measure the Mean Squared Error (MSE) of a 

probabilistic forecast (Brier, 1950). For N forecasts it is calculated as: 

( )∑
=

−=
N

1i

2

ii op
N

1
BS ,     (4.1) 

where pi is the forecast probability and oi is the observation: oi = 1 when the event 

occurs and oi = 0 when the event does not occur. The BS has a range from 0 to 1, 

with 0 representing the perfect score. It is sensitive to the climatological frequency 

of the event, in that the more rare an event the easier it is to achieve a good BS 

without having any real forecast skill.  

Murphy (1973) showed that the BS can be partitioned into three separate terms: 

reliability, resolution and uncertainty for K probability categories as follows 
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        BS =       RELIABILITY      -     RESOLUTION   + UNCERTAINTY     

where k is the probability category and n is the number of forecasts in the 

probability category. The reliability measures how close the forecast probabilities are 

to the observed frequency, with 0 representing perfect reliability. The reliability can 

also be illustrated with a reliability diagram (see section 4.4). The resolution 

measures the ability of the forecasting system to forecast events in different 

probability categories with larger values indicating better resolution. The uncertainty 

measures the inherent uncertainty of the event (not the uncertainty in the forecast) 

and has a maximum when the event occurs 50% of the time is zero when the event 

always or never occurs.  

For Brier Score and its components for all 41 months of the forecast are summarised 

in Table 4.1, and time-series of 1-BS (the BS is negatively oriented so 1-BS is shown 

for clarity) for each forecast are shown in Figure 4.1.  

 

 

 

SPI-1<-1 SPI-1<-1.5 SPI-1<-2 SPI-3<-1 SPI-3<-1.5 SPI-3<-2 

BS 0.119 0.061 0.027 0.108 0.054 0.025 

Reliability 0.011 0.007 0.004 0.014 0.008 0.004 

Resolution 0.009 0.003 0.001 0.026 0.010 0.004 

Uncertainty 0.118 0.057 0.024 0.120 0.057 0.025 

 

Table 4.1 – The Brier Score and its components for probabilistic forecasts of SPI-1 and SPI-3 for 

thresholds of -1 (moderate drought), -1.5 (severe drought) and -2 (extreme drought). The statistics 

are generated from forecasts for the period March 2004 to August 2008.  

 

Table 4.1 shows that as the event becomes rarer (event uncertainty closer to zero), 

the BS and reliability seem to approve as the values get closer to zero. However, the 

resolution of the forecast worsens. The SPI-3 for all thresholds has a better BS than 

the SPI-1 with improved resolution, although for thresholds of -1 and -1.5 the 

reliability of the SPI-3 forecast is not so good. The better BS for the SPI-3 is to be 

expected as the forecasts are conditioned on two months of reanalysis precipitation. 
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SPI3 1-Brier Score
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(b) 

Figure 4.1 – 1 - Brier Score for each monthly forecast of (a) SPI-1 and (b) SPI-3. The thresholds are 

SPI<-2 (red), SPI<-1.5 (blue) and SPI<-1 (green). The Brier Score was only calculated fore forecasts 

where more than 1% of the verification area met the threshold. 
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Similar to the total BS, the BS for each forecast is better for the more rare events of 

severe (SPI<-1.5) and extreme (SPI<-2) droughts. The BS is on the whole marginally 

better for the SPI-3. There are some forecasts that stand out as having less skill than 

the others. For the SPI-1, the BS is noticeably inferior for the April 2009 forecast. At 

this time much of eastern Europe was experiencing extreme drought according to 

the SPI-1 derived from E-OBS date (Fig. 4.2(a)). Extreme drought conditions were 

most prevalent in Poland, the Ukraine, Belarus, the Baltic countries, north-western 

Romania, eastern Hungary and north-eastern Serbia. The forecast probabilities for 

this event show that the spatial extent of the SPI-1 drought was reasonably well 

predicted for the SPI-1<-1 threshold (Fig. 4.2(b)), albeit with relatively low 

probability. For the SPI-1<-1.5 (Fig. 4.2(c)) and SPI-1<-2 (Fig. 4.2(d)) thresholds the 

drought area was forecast to be concentrated around the area of Serbia and 

southern Hungary, again with relatively low probabilities. The failure of the forecast 

to predict a high probability of the SPI-1 moderate drought, and the forecast 

underestimating the spatial extent of the extreme SPI-1 drought contributed to the 

relatively poor Brier Score for this event. For the SPI-3, the BS is relatively poor for 

April 2011. This event is discussed in more detail in section 6.2. 

4.3. Brier Skill Score 

The BS alone as a verification method can often give misleading information. For rare 

events it is easier to achieve a good BS as the computation is dominated by non-

events. The Brier Skill Score (BSS) is used to put the BS into context by comparing the 

BS from the forecasting system to the BS from a reference forecast. The 

climatological frequency of the event is normally used the reference forecast, which 

in the case of the SPI is simply the cumulative probability associated with the SPI 

class (Table 2.1). BSS is calculated as  

ref

fcst

BS

BS
1BSS −= ,     (4.3) 

Where BSfcst is the BS for the forecasting system and BSref is the BS for the reference 

forecast. Values of BSS ≤ 0 indicate no skill in the forecasting system when compared 

to the reference forecast. A value of BSS = 1 indicates a perfect forecast. BSS for all 

thresholds for SPI-1 is negative indicating that the forecasting system is no more 

skilful than the reference forecast (Table 4.2). However, for SPI-3, where the 

forecasts are conditioned on two months of observations BSS is positive for the 

moderate and severe drought classes, but negative for the extreme drought class 

(Table 4.2). This suggests that the forecasting system has some skill for the SPI-3 

compared to the reference forecast. 
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Figure 4.2 – SPI-1 April 2009. (a) Observed SPI-1 (grey areas indicate missing data); (b) Forecast probability of SPI-1<-1; (c) Forecast probability of SPI-1<-1.5 and 

(d) Forecast probability of SPI-1<-2. 

 

(a) E-OBS SPI-1 (b) Probability SPI-1 < -1 

(c) Probability SPI-1 < -1.5 (d) Probability SPI-1 < -2 
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SPI-1<-1 SPI-1<-1.5 SPI-1<-2 SPI-3<-1 SPI-3<-1.5 SPI-3<-2 

BSS -0.008 -0.060 -0.112 0.108 0.054 0.025 

Table 4.2 - The Brier Skill Score for probabilistic forecasts of SPI-1 and SPI-3 for thresholds of -1 

(moderate drought), -1.5 (severe drought) and -2 (extreme drought). The statistics are generated 

from forecasts for the period March 2004 to August 2008 and from the probabilities of the SPI 

thresholds. 

Time-series of BSS for SPI-1 and SPI-3 for each of the forecast months are shown in 

Fig. 4.3. For SPI-1 (Fig. 4.3(a)), the BSS is negative for most forecasts. The SPI-1 BSS is 

particularly poor for August 2010, a case which is discussed in section 6.1. In a 

limited number of forecasts, the SPI-1 BSS is positive. For example, in December 

2008 the BSS for all thresholds is approaching 0.5. In this case, extreme drought 

relating to the SPI-1 was observed over south-western Russia, near to the border 

with Kazakhstan, the Netherlands and north-western Germany (Fig. 4.4(a)). The 

probabilistic forecasts did a reasonably good job of predicting the drought in Russia 

with relatively high probabilities for all thresholds (Fig. 4.4(a-d)). However, for the 

Netherlands and northern Germany the probabilities were lower and central and 

southern England were forecast to have similar conditions, which was not observed. 

For the SPI-3, more than half of the forecasts achieved a positive BSS. The 

conditioning of the forecasts on 2 months of reanalysis data clearly improves 

performance against the reference forecast. 

4.4. Reliability 

As mentioned in section 4.2, an important feature of a probabilistic forecast is 

reliability. This is the ability of the forecast to predict probabilities that correspond 

with observed frequencies of the events. For example, if an event is forecast with a 

probability of 80% then for a perfectly reliable forecasting system the event would 

be observed 8 times out of every 10 that this forecast is issued. The reliability of a 

forecast can be illustrated in a reliability diagram which is a plot of the observed 

frequency as a function of the forecast probability. As well as the forecast reliability, 

the reliability diagram shows the perfect reliability line, the no skill line and the no 

resolution line (Fig. 4.5(a)). The perfect reliability line is simply the diagonal where 

the observed frequency is equal to the forecast probability. The closer the measured 

reliability is to this line, the more the reliable the forecast. If the measured reliability 

is below (above) the perfect reliability line, the forecasting system over (under) 

forecasts the probabilities i.e. the probabilities are too high (low). The no resolution 

line is simply the climatological frequency, or the sample frequency. Since this only 

has 1 value the forecast has no resolution i.e. it cannot discriminate between events 

and non-events. The no skill line is half way between the no resolution and perfect 

reliability lines. Measured reliability between the no skill line and the perfect 

reliability line indicates that the forecast has skill compared to climatology i.e. a 

positive contribution to the BSS. 
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SPI3 Brier Skill Score
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(a) 

(b) 

Figure 4.3 – Brier Skill Score for each monthly forecast of (a) SPI-1 and (b) SPI-3. The thresholds are SPI<-2 

(red), SPI<-1.5 (blue) and SPI<-1 (green). The Brier Skill Score was only calculated fore forecasts where 

more than 1% of the verification area met the threshold. 
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Figure 4.4 – SPI-1 December 2008. (a) Observed SPI-1 (grey areas indicate missing data); (b) Forecast probability of SPI-1<-1; (c) Forecast probability of  

SPI-1<-1.5 and (d) Forecast probability of SPI-1<-2. 

 

(a) E-OBS SPI-1 (b) Probability SPI-1 < -1 

(c) Probability SPI-1 < -1.5 (d) Probability SPI-1 < -2 
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The reliability diagrams for the SPI-1 are shown in Fig. 4.5. For all thresholds, the 

reliability is around the same level as the no-skill line before dropping off as the 

probability increases. As the SPI threshold goes towards the extreme the drop off occurs 

at a lower probability level. The fact that the measured reliability is below the perfect 

reliability line suggests a bias towards overforecasting the probabilities.  
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Figure 4.5 – Reliability diagrams for SPI-1 for all forecasts from March 2008 to August 2011 for thresholds of 

(a) SPI-1 < -1 (moderate drought), (b) SPI-1 < -1.5 (severe drought) and (c) SPI-1 < -2 (extreme drought). The 

perfect reliability, no skill and no resolution lines are labelled in (a). 

Furthermore, the fact that for most probabilities the reliability is below the no skill line 

confirms the negative BSS values for the SPI-1 (Table 4.2). It should be noted that the no 

resolution lines, and therefore the no skill lines, in Figure 4.5 are derived from the 

(a) (b) 

(c) 
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sample climatology for the verification period of March 2008 to August 2011. However, 

the sample climatologies for each threshold are broadly similar to the expected 

probabilities in Table 2.1. 
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Figure 4.6 – Reliability diagrams for SPI-3 for all forecasts from March 2008 to August 2011 for thresholds 

of (a) SPI-3 < -1 (moderate drought), (b) SPI-3 < -1.5 (severe drought) and (c) SPI-3 < -2 (extreme drought). 

The reliability diagrams for SPI-3 are shown in Figure 4.6. Unlike for the SPI-1 (Fig. 4.5) 

there is no drop off in the reliability as the forecast probability increases. This is likely 

due to the forecasts being conditioned on the 2-months of reanalysis precipitation. For 

all thresholds, the reliability generally follows the no skill line, although for the less 

extreme thresholds the reliability appears to be slightly better for the higher 

probabilities.  

(a) (b) 

(c) 
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4.5. Relative Operating Characteristic 

The reliability diagram (section 4.4) is conditioned on the forecast. In other words it 

answers the question given X was predicted, what was the outcome? It gives information 

about the real meaning of the forecast. A good companion to the reliability diagram is 

the Relative Operating Characteristic (ROC) of the forecast. ROC is conditioned on the 

observations, answering the question given that Y occurred, what was the corresponding 

forecast? It therefore measures the ability of the forecasting system to discriminate 

between events and non-events, i.e. the resolution of the forecast. ROC is not sensitive 

to bias in the forecast – a biased forecast could give a good ROC, but it will say nothing 

about the reliability of the forecast. This means that ROC is a measure of potential 

usefulness of the forecast, and with good ROC it may be possible to improve the forecast 

through calibration.  

ROC is calculated by means of a 2x2 contingency table for each probability as in Table 

4.3, which counts the number of forecast hits (H), the number of misses (M), the number 

of false alarms (FA) and the number of correct rejections (CR).  

 

Event forecast  

Yes No 

Yes 
Hit  

(H) 

Miss 

(M) Event 

observed 
No 

False Alarm 

(FA) 

Correct Rejection 

(CR) 

Table 4.3 – 2 x 2 Contingency table for ROC calculation 

ROC is then probability of detection (PoD) as a function of the false alarm rate (FAR), 

where 

MH

H
PoD

+
=      (4.4) 

HFA

FA
FAR

+
=     (4.5) 

A ROC curve is plotted as a curve joining the PoD as a function of the FAR for all forecast 

probabilities. The area under the ROC curve gives a measure of the skill of the forecast. 

ROC curves for each threshold are shown in Figure 4.7 for (a) SPI-1 and (b) SPI-3.  
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Figure 4.7 – Relative operating characteristic (ROC) curves for forecasts of (a) SPI-1 and (b) SPI-3 for all 

forecasts from March 2008 to August 2011. The green curves are for the SPI < -1 threshold, the blue 

curves are for the SPI < -1.5 threshold and the red curves are for the SPI < -2 threshold. The grey dashed 

diagonal line is the no skill line – ROC below this line indicates no skill.  

For the SPI-1 and the SPI-3 for all thresholds the ROC curves are well above the no skill 

line indicating that, despite the poor reliability, the forecasting system does have some 

skill. The areas under the ROC curves are shown in Table 4.4. They show that the SPI-3 

forecast is more skilful than the SPI-1 forecast, as would be expected, and that the 

forecasting system has potentially greater skill for the rarer events with more extreme 

thresholds for SPI.  

 

 

 

SPI < -1 SPI < -1.5 SPI < -2 

SPI-1 0.725 0.774 0.814 

SPI-3 0.838 0.871 0.891 

Table 4.4 – Area under the ROC curves for SPI-1 and SPI-3 

Time series of the area under the ROC curves for each threshold are shown in Figure 4.8 

for (a) SPI-1 and (b) SPI-3. 

(a) (b) 
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(a) 

SPI1 Area under ROC curve
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(b) 

SPI3 Area under ROC curve
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Figure 4.8 – Area under ROC curve for each monthly forecast of (a) SPI-1 and (b) SPI-3. The thresholds are 

SPI<-2 (red), SPI<-1.5 (blue) and SPI<-1 (green). The ROC was only calculated fore forecasts where more 

than 1% of the verification area met the threshold. 
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The area under the ROC curve is quite variable from one forecast to the next, but is in 

almost all cases greater than 0.5 indicating that the forecast has some skill. Only the SPI-

1 in May 2008 for the SPI-1 < -2 threshold has an area under the ROC curve less than 0.5. 

This appears to be due to an extreme drought in the SPI-1 over coastal areas around the 

Baltic Sea as well as central Germany, western Norway and parts of Scotland (Fig. 4.9) 

that was not forecast at all with any probability, even for the SPI-1 < -1 threshold. 

 

 
Figure 4.9 – Observed SPI-1 (grey areas indicate missing data) for May 2008. 

 

4.6. Forecast Calibration 

 

The ROC statistics suggest that the forecasting system is potentially skilful in that it is 

able to discriminate between events and non-events. However, the reliability diagrams 

show that the system is biased towards overforecasting. Calibration of the forecast aims 

to remove the bias and forecast probabilities that are comparable with the observed 

frequencies of the events. 

 

The calibration strategy adopted uses the reliability diagrams to adjust the forecast 

probabilities towards their associated observed frequencies. One of the outcomes of this 

strategy is that the maximum probability that the calibrated system can forecast is 

limited by the observed frequency of the event for the uncalibrated forecast probability. 

For example, if the reliability shows the that events that are forecast with 100% 

probability are only observed 30% of the time, the maximum probability forecast of the 

calibrated system will be 30%. In essence, the calibrated system puts a limit on the 

certainty that the forecast can communicate. Care will need to be taken in interpreting 

such forecasts as low probabilities will be less likely to trigger a response when perhaps 

one is required.   

 

Figure 4.10 shows the effect of forecast calibration on BSS for (a) SPI-1 and (b) SPI-3. The 

BSS for SPI-1 for all thresholds has become positive for the majority of forecasts, and for 

SPI-3 the BSS has increased in value for all forecasts. This suggests that the calibrated 

forecast is more skilful than a forecast based on climatology, unlike that uncalibrated 

E-OBS SPI-1 May 2008 
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forecast. Table 4.5 shows the verification statistics (BS and its decomposition, BSS and 

area under the ROC curve) aggregated over the 41 forecasts from March 2004 to August 

2008, and Table 4.6 shows the change in those statistics compared with the uncalibrated 

forecast (Tables 4.1, 4.2, 4.4). 

 

 

 

SPI-1<-1 SPI-1<-1.5 SPI-1<-2 SPI-3<-1 SPI-3<-1.5 SPI-3<-2 

BS 0.110 0.055 0.024 0.094 0.047 0.021 

Reliability 0.000 0.000 0.000 0.000 0.000 0.000 

Resolution 0.010 0.004 0.001 0.026 0.010 0.004 

Uncertainty 0.118 0.057 0.024 0.120 0.057 0.025 

BSS 0.086 0.064 0.040 0.220 0.183 0.145 

ROC Area 0.723 0.752 0.766 0.817 0.822 0.808 

Table 4.5 – Verification statistics for calibrated forecast aggregated over all forecasts from March 2004 to 

August 2011. 

 

 

 

SPI-1<-1 SPI-1<-1.5 SPI-1<-2 SPI-3<-1 SPI-3<-1.5 SPI-3<-2 

BS -0.009 -0.006 -0.003 -0.014 -0.008 -0.004 

Reliability -0.011 -0.007 -0.004 -0.014 -0.008 -0.004 

Resolution 0.001 0.000 0.000 0.000 0.000 0.000 

Uncertainty 0.000 0.000 0.000 0.000 0.000 0.000 

BSS 0.094 0.124 0.152 0.119 0.135 0.152 

ROC Area -0.002 -0.022 -0.049 -0.021 -0.048 -0.084 

Table 4.6 – Difference in verification statistics between the calibrated forecast and the uncalibrated 

forecast aggregated over all forecasts from March 2004 to August 2011. 

 

The calibration has reduced the value of the BS to closer to zero for all thresholds with 

the smallest improvements for the most extreme SPI < -2 threshold. Since the calibrated 

forecast has forced the probabilities to the values of the observed frequency (i.e. perfect 

reliability), the reliability component of the BS is reduced to zero, as would be expected. 

There is no appreciable change in the resolution component of the BS of the forecast 

due to calibration meaning that the skill of the forecasting system in discriminating 

between events and non-events has not been lost. As previously discussed, the BSS is 

improved for all of the individual forecasts and this is reflected in the increases in BSS 

aggregated over the forecasts. The area under the ROC curves is reduced, more so for 

the more extreme thresholds suggesting a loss of resolution. This is most likely due to a 

smaller number of probability categories in the calibrated forecast affecting the shape of 

the ROC curves. 
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Figure 4.10 – Brier Skill Score for each monthly calibrated forecast of (a) SPI-1 and (b) SPI-3. The 

thresholds are SPI<-2 (red), SPI<-1.5 (blue) and SPI<-1 (green). The Brier Skill Score was only calculated 

fore forecasts where more than 1% of the verification area met the threshold. 
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5. Case Studies 

 

The verification statistics show that varEPS has some skill in forecasting drought events, 

which is improved through calibration. The two months of reanalysis precipitation used 

in the computation of SPI-3 forecasts mean that these forecasts are more skilful than 

those for the SPI-1. In order to further investigate the varEPS performance, two case 

studies of extreme drought events were investigated: summer 2010 in Russia, and spring 

2011 in north-western Europe. For each case study, the performance of both the 

uncalibrated and the calibrated forecasts was analysed.  

 

5.1. Summer 2010 – Russia 

 

An extreme drought affected the central part of European Russia in the summer of 2010. 

Much of the affected area was the Volga River basin, which is a major source of water 

for the Caspian Sea (Rodionov, 1994; Golitsyn, 1995; Arpe et al., 2011). The Caspian Sea 

can be subject to major changes in sea level with magnitudes of variability of up to 3m in 

the last century affecting industry, infrastructure and livelihoods in the region. The 

drought resulted from a blocking anticyclone that remained in place over the region for 

55 days bringing hot, dry air from the Middle East into the region (Arpe et al., 2011). The 

hot, dry conditions led to widespread crop losses and extensive forest and grassland 

fires (Arpe et al., 2011).  

 

Figure 5.1 shows the evolution of the observed SPI-1 from E-OBS for the months from 

June to September 2010. In June 2010 (Fig. 5.1(a)) a sizeable area in south-western 

Russia to the north and northwest of the Caspian Sea was affected by extreme drought 

according the SPI-1. In July 2010 (Fig. 5.1(b)) much of western Russia was affected by 

extreme SPI-1 drought, but by August 2010 (Fig. 5(c)) only a small area to the northwest 

of the Caspian Sea was affected. By September 2010 (Fig. 5.1(d)) the majority of the 

region had returned to near normal conditions for the SPI-1.  

 

The uncalibrated forecasts of the probability of SPI-1 < -1 is shown in Fig. 5.2 for June – 

September 2010. In June 2010 (Fig. 5.2(a)) varEPS forecast an area to north of the 

Caspian Sea extending west through the Ukraine into Romania with relatively high 

probabilities of SPI-1 < -1. The location the north of the Caspian was well forecast, but 

the westward extent of the relatively high probabilities was not observed, and in fact 

extreme wet conditions were observed in Romania. In July 2010, when the extreme SPI-

1 drought was most widespread in western Russia (Fig. 5.1(b)), relatively high 

probabilities of SPI-1 < -1 were forecast in this area, but similar probabilities were 

forecast for much of continental Europe where near normal conditions were observed. 

In August 2010, when the spatial extent of the SPI-1 drought was restricted to the south-

western corner of Russia (Fig. 5.1(c)), the highest probabilities of SPI-1 < -1 were 

forecast, suggesting that for a large number of ensemble members the atmospheric 

state in the initial conditions were forecast to persist through the month. In September 

2010, when SPI-1 drought conditions had completely ceased in the region (Fig. 5.1(d)) 

much lower probabilities of SPI-1 < -1 were forecast, but western Russia, to the north of 

Kazakhstan was still forecast to have some probability of drought conditions. Similar 
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patterns are forecast for the SPI-1 < -1.5 (Fig. 5.3) and SPI-1 < -2 (Fig. 5.4) probabilities. 

However, for the more extreme thresholds the forecast probabilities are lower.  

 

The main problems with the SPI-1 forecast are that similar probabilities were predicted 

in western Europe in July 2010 (Fig. 5.2(b), 5.3(b), 5.4(b)), where there was little 

evidence of widespread drought conditions (Fig. 5.1(b)), to those in Russia where 

extreme drought occurred; and that the forecast for August 2010 (Fig. 5.2(c), 5.3(c), 

5.4(c)) predicted extreme drought conditions with the highest level of certainty in Russia 

when observations showed that the drought had become less extreme. The calibrated 

forecast did not improve on these problems – the main effect of calibration was to lower 

the probabilities (Fig. 5.5, 5.6, 5.7) – with a probability of SPI-1 < -2 of only 10-20% when 

the SPI-1 was at its most extreme in July 2010. 

 

For the SPI-3, observations from E-OBS showed extreme drought in the SPI-3 had started 

in southern Russia to the north of Kazakhstan in June 2010 (Fig. 5.8(a)) with the spatial 

extent spreading through July 2010 (Fig. 5.8(b)) and August 2010 (Fig. 5.8(c)). Extreme 

drought SPI-3 conditions had mostly finished by September 2010 (Fig. 5.8(d)). The SPI-3 

forecast was somewhat better than the SPI-1 forecast. The probabilities for SPI-3 < -1 

(Fig. 5.9) showed with very high probabilities (90-100%) that the drought would begin 

over southern Russia to the north of Kazakhstan in June 2010 (Fig. 5.9(a)) becoming 

more widespread through July 2010 (Fig. 5.9(b)) and August 2010 (Fig. 5.9(c)) with the 

spatial extent reducing in September 2010 (Fig. 5.9(d)). For the more extreme SPI-3 

thresholds the probabilities remained high (Fig. 5.10, 5.11) with the extent of the SPI-3 < 

-2 drought in August 2010 particularly well forecast (Fig. 5.11(c)). The effect of 

calibration was to reduce the probabilities (Fig. 5.12, 5.13, 5.14), but not by a large 

amount. The calibrated forecast predicted SPI-3 <-2 in southern Russia with 80-90% 

certainty (Fig. 5.14(c)), which can be considered to be a very good forecast.  
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Figure 5.1 – Observed SPI-1 (grey areas indicate missing data) for (a) June 2010, (b) July 2010, (c) August 2010, (d) September 2010. 

 

(a) E-OBS SPI-1 Jun 2010 (b) E-OBS SPI-1 Jul 2010 

(c) E-OBS SPI-1 Aug 2010 (d) E-OBS SPI-1 Sep 2010 
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Figure 5.2 – Uncalibrated forecast probability SPI-1 < -1 for (a) June 2010, (b) July 2010, (c) August 2010, (d) September 2010. 

 

(a) Prob SPI-1 < -1 Jun 2010 (b) Prob SPI-1 < -1 Jul 2010 

(c) Prob SPI-1 < -1 Aug 2010 (d) Prob SPI-1 < -1 Sep 2010 
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Figure 5.3 – Uncalibrated forecast probability SPI-1 < -1.5 for (a) June 2010, (b) July 2010, (c) August 2010, (d) September 2010. 

 

(a) Prob SPI-1 < -1.5 Jun 2010 (b) Prob SPI-1 < -1.5 Jul 2010 

(c) Prob SPI-1 < -1.5 Aug 2010 (d) Prob SPI-1 < -1.5 Sep 2010 
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Figure 5.4 – Uncalibrated forecast probability SPI-1 < -2 for (a) June 2010, (b) July 2010, (c) August 2010, (d) September 2010. 

 

(a) Prob SPI-1 < -2 Jun 2010 (b) Prob SPI-1 < -2 Jul 2010 

(c) Prob SPI-1 < -2 Aug 2010 (d) Prob SPI-1 < -2 Sep 2010 
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Figure 5.5 – Calibrated forecast probability SPI-1 < -1 for (a) June 2010, (b) July 2010, (c) August 2010, (d) September 2010. 

 

(a) Prob SPI-1 < -1 Jun 2010 (b) Prob SPI-1 < -1 Jul 2010 

(c) Prob SPI-1 < -1 Aug 2010 (d) Prob SPI-1 < -1 Sep 2010 
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Figure 5.6 – Calibrated forecast probability SPI-1 < -1.5 for (a) June 2010, (b) July 2010, (c) August 2010, (d) September 2010. 

 

(a) Prob SPI-1 < -1.5 Jun 2010 (b) Prob SPI-1 < -1.5 Jul 2010 

(c) Prob SPI-1 < -1.5 Aug 2010 (d) Prob SPI-1 < -1.5 Sep 2010 
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Figure 5.7 – Calibrated forecast probability SPI-1 < -2 for (a) June 2010, (b) July 2010, (c) August 2010, (d) September 2010. 

 

(a) Prob SPI-1 < -2 Jun 2010 (b) Prob SPI-1 < -2 Jul 2010 

(c) Prob SPI-1 < -2 Aug 2010 (d) Prob SPI-1 < -2 Sep 2010 
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Figure 5.8 – Observed SPI-3 (grey areas indicate missing data) for (a) June 2010, (b) July 2010, (c) August 2010, (d) September 2010. 

 

(a) E-OBS SPI-3 Jun 2010 (b) E-OBS SPI-3 Jul 2010 

(c) E-OBS SPI-3 Aug 2010 (d) E-OBS SPI-3 Sep 2010 
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Figure 5.9 – Uncalibrated forecast probability SPI-3 < -1 for (a) June 2010, (b) July 2010, (c) August 2010, (d) September 2010. 

 

(a) Prob SPI-3 < -1 Jun 2010 (b) Prob SPI-3 < -1 Jul 2010 

(c) Prob SPI-3 < -1 Aug 2010 (d) Prob SPI-1 < -3 Sep 2010 
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Figure 5.10 – Uncalibrated forecast probability SPI-3 < -1.5 for (a) June 2010, (b) July 2010, (c) August 2010, (d) September 2010. 

 

(a) Prob SPI-3 < -1.5 Jun 2010 (b) Prob SPI-3 < -1.5 Jul 2010 

(c) Prob SPI-3 < -1.5 Aug 2010 (d) Prob SPI-3 < -1.5 Sep 2010 
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Figure 5.11 – Uncalibrated forecast probability SPI-3 < -2 for (a) June 2010, (b) July 2010, (c) August 2010, (d) September 2010. 

 

(a) Prob SPI-3 < -2 Jun 2010 (b) Prob SPI-3 < -2 Jul 2010 

(c) Prob SPI-3 < -2 Aug 2010 (d) Prob SPI-3 < -2 Sep 2010 



 - 42 - 

 

  
 

 

 

 
 

 
Figure 5.12– Calibrated forecast probability SPI-3 < -1 for (a) June 2010, (b) July 2010, (c) August 2010, (d) September 2010. 

 

(a) Prob SPI-3 < -1 Jun 2010 (b) Prob SPI-3 < -1 Jul 2010 

(c) Prob SPI-3 < -1 Aug 2010 (d) Prob SPI-1 < -3 Sep 2010 
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Figure 5.13 – Calibrated forecast probability SPI-3 < -1.5 for (a) June 2010, (b) July 2010, (c) August 2010, (d) September 2010. 

 

(a) Prob SPI-3 < -1.5 Jun 2010 (b) Prob SPI-3 < -1.5 Jul 2010 

(c) Prob SPI-3 < -1.5 Aug 2010 (d) Prob SPI-3 < -1.5 Sep 2010 
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Figure 5.14 – Calibrated forecast probability SPI-3 < -2 for (a) June 2010, (b) July 2010, (c) August 2010, (d) September 2010. 

(a) Prob SPI-3 < -2 Jun 2010 (b) Prob SPI-3 < -2 Jul 2010 

(c) Prob SPI-3 < -2 Aug 2010 (d) Prob SPI-3 < -2 Sep 2010 
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5.2. Spring 2011 – north-western Europe 

 

From March to May 2011, north-western Europe experienced extreme dry 

conditions. The most affected countries were England, France, Belgium, The 

Netherlands, Germany and northern Italy. The SPI-1 derived from E-OBS shows 

extreme drought conditions over southern England in March 2011 (Fig. 5.15(a)) that 

persisted into April 2011 (Fig. 5.15(b)). North-western Germany, the Ukraine, Belarus 

and the Baltic countries were similarly affected in March 2011 (Fig. 5.15(a)) with 

northern France and northern Italy becoming affected in April 2011 (Fig. 515(b)). By 

May 2011, conditions had returned to near normal in England, but much of northern 

and western France had become affected by the extreme dry conditions (Fig. 

5.15(c)). By June 2011, most of western Europe had returned to near normal 

conditions (Fig. 5.15(d)).  

 

The forecast for SPI-1 suggested relatively high probabilities of widespread dry 

conditions over Europe in March 2011 mostly to the east of France (Fig. 5.16(a), 

5.17(a), 5.18(a)). For April 2011, the forecast suggested the most extreme dry 

conditions would be over southern Europe, particularly over an area stretching from 

the Mediterranean to the Black Sea (Fig. 5.16(b), 5.17(b), 5.18(b)) with zero 

probability of severe or extreme dry conditions over northern parts of Europe (Fig. 

5.17(b), 5.18(b)) where these conditions occurred (Fig. 5.15(b)). For May 2011, lower 

probabilities of dry SPI-1 were forecast over western Europe (Fig. 5.16(c), 5.17(c), 

5.18(c)), with no indication of severe or extreme SPI-1 drought over western France 

(Fig. 5.17(c), 5.18(c)). The forecast for June 2011 suggested relatively high 

probabilities of severe or extreme dry conditions over eastern Europe (Fig. 5.16(d), 

5.17(d), 5.18(d)), which were not observed except over Latvia (Fig. 5.15(d)), and in 

fact extreme wet conditions were observed over the Ukraine (Fig. 5.15(d)).  

Calibration did not improve the forecast for SPI-1, but only reduced the probabilities 

(Fig. 5.19, 5.20, 5.21).  

 

The observations for SPI-3 (Fig. 5.22) were similar to those for SPI-1 (Fig. 5.15) except 

that they showed the extreme conditions to start in April 2011 (Fig. 5.22(b)) and to 

be more widespread in May 2011 (Fig. 5.22(c)) and to persist in France into June 

2011 (Fig. 5.22(d)). The forecast for SPI-3 showed relatively high probabilities of 

widespread SPI-3 drought from France in the west stretching east across Russia in 

Mar 2011 (Fig. 5.23 (a)). Highest probabilities of SPI-3 <-1 were forecast over 

southern Germany, Austria, the Czech Republic, Slovakia and Hungary (Fig. 5.23(a)) 

where severe (Fig. 5.24(a)) and extreme (Fig. 5.25(a)) were predicted with lower 

probabilities. For April 2011, the highest probabilities of dry SPI-3 were forecast over 

eastern France and Germany (Fig. 5.23(b), 5.24(b), 5.25(b)) becoming more 

widespread in May 2011 (Fig. 5.23(c), 5.24(c), 5.25(c)) with the most extreme 

conditions forecast with the highest probability over western central Germany (Fig. 

5.25(c)). The June 2011 forecast suggested the dry SPI-3 to be less widespread (Fig. 

5.23(d), 5.24(d), 5.25(d)) with the most extreme SPI-3 forecast with the highest 

probability to be over northern France adjacent to Belgium (Fig. 5.25(d)). The SPI-3 

forecast was not able to predict the extreme dry SPI-3 observed over southern 
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England and western France (Fig. 5.22) with a high level of probability (Fig. 5.24, 

5.25). 

 

The effect of calibration on the forecast was to reduce the probabilities of passing 

each SPI-3 threshold everywhere (Fig. 5.26, 5.27, 5.28) without improving the spatial 

characteristics of the forecasts.  
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Figure 5.15 – Observed SPI-1 (grey areas indicate missing data) for (a) March 2011, (b) April 2011, (c) May 2011, (d) June 2011. 

 

(a) E-OBS SPI-1 Mar 2011 (b) E-OBS SPI-1 Apr 2011 

(c) E-OBS SPI-1 May 2011 (d) E-OBS SPI-1 Jun 2011 
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Figure 5.16 – Uncalibrated forecast probability SPI-1 < -1 for (a) March 2011, (b) April 2011, (c) May 2011, (d) June 2011. 

 

(a) Prob SPI-1 < -1 Mar 2011 (b) Prob SPI-1 < -1 Apr 2011 

(c) Prob SPI-1 < -1 May 2011 (d) Prob SPI-1 < -1 Jun 2011 
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Figure 5.17 – Uncalibrated forecast probability SPI-1 < -1.5 for (a) March 2011, (b) April 2011, (c) May 2011, (d) June 2011. 

 

(a) Prob SPI-1 < -1.5 Mar 2011 (b) Prob SPI-1 < -1.5 Apr 2011 

(c) Prob SPI-1 < -1.5 May 2011 (d) Prob SPI-1 < -1.5 Jun 2011 
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Figure 5.18 – Uncalibrated forecast probability SPI-1 < -2 for (a) March 2011, (b) April 2011, (c) May 2011, (d) June 2011. 

 

(a) Prob SPI-1 < -2 Mar 2011 (b) Prob SPI-1 < -2 Apr 2011 

(c) Prob SPI-1 < -2 May 2011 (d) Prob SPI-1 < -2 Jun 2011 
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Figure 5.19 – Calibrated forecast probability SPI-1 < -1 for (a) March 2011, (b) April 2011, (c) May 2011, (d) June 2011. 

 

(a) Prob SPI-1 < -1 Mar 2011 (b) Prob SPI-1 < -1 Apr 2011 

(c) Prob SPI-1 < -1 May 2011 (d) Prob SPI-1 < -1 Jun 2011 
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Figure 5.20 – Calibrated forecast probability SPI-1 < -1.5 for (a) March 2011, (b) April 2011, (c) May 2011, (d) June 2011. 

 

(a) Prob SPI-1 < -1.5 Mar 2011 (b) Prob SPI-1 < -1.5 Apr 2011 

(c) Prob SPI-1 < -1.5 May 2011 (d) Prob SPI-1 < -1.5 Jun 2011 
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Figure 5.21 – Calibrated forecast probability SPI-1 < -2 for (a) March 2011, (b) April 2011, (c) May 2011, (d) June 2011. 

 

(a) Prob SPI-1 < -2 Mar 2011 (b) Prob SPI-1 < -2 Apr 2011 

(c) Prob SPI-1 < -2 May 2011 (d) Prob SPI-1 < -2 Jun 2011 
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Figure 5.22 – Observed SPI-3 (grey areas indicate missing data) for (a) March 2011, (b) April 2011, (c) May 2011, (d) June 2011. 

 

(a) E-OBS SPI-3 Mar 2011 (b) E-OBS SPI-3 Apr 2011 

(c) E-OBS SPI-3 May 2011 (d) E-OBS SPI-3 Jun 2011 
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Figure 5.23 – Uncalibrated forecast probability SPI-3 < -1 for (a) March 2011, (b) April 2011, (c) May 2011, (d) June 2011. 

 

(a) Prob SPI-3 < -1 Mar 2011 (b) Prob SPI-3 < -1 Apr 2011 

(c) Prob SPI-3 < -1 May 2011 (d) Prob SPI-3 < -1 Jun 2011 
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Figure 5.24 – Uncalibrated forecast probability SPI-3 < -1.5 for (a) March 2011, (b) April 2011, (c) May 2011, (d) June 2011. 

 

(a) Prob SPI-3 < -1.5 Mar 2011 (b) Prob SPI-3 < -1.5 Apr 2011 

(c) Prob SPI-3 < -1.5 May 2011 (d) Prob SPI-3 < -1.5 Jun 2011 
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Figure 5.25 – Uncalibrated forecast probability SPI-3 < -2 for (a) March 2011, (b) April 2011, (c) May 2011, (d) June 2011. 

 

(a) Prob SPI-3 < -2 Mar 2011 (b) Prob SPI-3 < -2 Apr 2011 

(c) Prob SPI-3 < -2 May 2011 (d) Prob SPI-3 < -2 Jun 2011 
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Figure 5.26 – Calibrated forecast probability SPI-3 < -1 for (a) March 2011, (b) April 2011, (c) May 2011, (d) June 2011. 

 

(a) Prob SPI-3 < -1 Mar 2011 (b) Prob SPI-3 < -1 Apr 2011 

(c) Prob SPI-3 < -1 May 2011 (d) Prob SPI-3 < -1 Jun 2011 
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Figure 5.27 – Calibrated forecast probability SPI-3 < -1.5 for (a) March 2011, (b) April 2011, (c) May 2011, (d) June 2011. 

 

(a) Prob SPI-3 < -1.5 Mar 2011 (b) Prob SPI-3 < -1.5 Apr 2011 

(c) Prob SPI-3 < -1.5 May 2011 (d) Prob SPI-3 < -1.5 Jun 2011 
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Figure 5.28 – Calibrated forecast probability SPI-3 < -2 for (a) March 2011, (b) April 2011, (c) May 2011, (d) June 2011. 

 

(a) Prob SPI-3 < -2 Mar 2011 (b) Prob SPI-3 < -2 Apr 2011 

(c) Prob SPI-3 < -2 May 2011 (d) Prob SPI-3 < -2 Jun 2011 
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6. Conclusions 

 

The performance of the ECMWF varEPS monthly forecasts for predicting the 

probability of meteorological drought has been analysed for the most recent 

operational cycle of the model from March 2004 to August 2011. varEPS forecasts 

are made up of 50 ensemble members, each starting from slightly different 

atmospheric states to represent the observation uncertainty. Drought intensity was 

measured by the SPI and forecasts of SPI-1 and SPI-3 were verified against 

independent observations from the E-OBS dataset. The SPI-1 forecasts were pure 

forecasts whereas the SPI-3 forecasts were derived from 2 months of precipitation 

from the ECMWF ERA-Interim reanalysis and 1 month of forecasts.  

 

Standard verification measures for probabilistic forecasts were used to assess the 

accuracy of the forecasts. The Brier Score, which measures the mean squared error 

in the forecast probabilities suggested that varEPS has some skill for the SPI-1 and is 

more skilful for the SPI-3. However, the Brier Skill Score, which measures the 

forecast skill against a forecast derived from climatology, showed that the SPI-1 

forecast was no more skilful than climatology, but that the SPI-3 forecast was on the 

whole slightly more skilful than climatology. Furthermore the reliability of both the 

SPI-1 and SPI-3 forecasts was shown to be weak, with the system tending to forecast 

probabilities that were too high. However, an analysis of the relative operating 

characteristics of the forecasting system suggested that it is able to discriminate 

between events and non-events relatively well. This being the case, improved 

forecasts may be achieved simply through calibration. Calibration of the forecast 

showed improved Brier Skill Scores for both the SPI-1 and SPI-3, with calibrated SPI-1 

forecasts proving to be more skilful than climatology for most forecasts. 

 

The guidance provided by the forecasts was assessed for two case studies of 

extreme drought – in Russia in the summer of 2010 and in north-western Europe in 

the spring of 2011. The forecasts of SPI-1 were found to provide poor information, in 

both cases predicting dry conditions where they were not observed and in the case 

for spring 2011 not predicting extreme conditions in the correct locations. 

Calibration of the forecasts led to lower probabilities of the event being forecast, 

which could, in areas where the uncalibrated forecast correctly gave high 

probabilities, be regarded as reducing the skill of the forecast. The SPI-3 forecasts 

were much better than those for SPI-1, generally predicting the timing and location 

of the drought events quite well. However, some locations of extreme drought were 

not predicted at all in the SPI-3 forecasts. 

 

The poor performance of the SPI-1 forecasts is mostly due to the model’s inability to 

predict the hydrological cycle with any degree of skill at long lead times. This is a well 

known weakness in Numerical Weather Prediction models. Although the 

performance of NWP models is always improving and advances in the representation 

of physical processes in the models is an area of intense active research, the 

performance is not sufficient to provide useful guidance for drought prediction at 

one month lead time, even when using ensemble techniques to model the 

uncertainty. SPI-3 forecasts however, do provide useful guidance, but most of the 

skill in these forecasts is due to the 2-months of reanalysis data used to compute the 

SPI-3.  
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Another source of error in the forecasts is in the computation of the SPI itself. The 

precipitation used to model the reference distribution comes from daily forecasts 

from the slightly coarser resolution ERA-Interim reanalysis model. Therefore to 

compute the monthly SPI, monthly forecasts compared with aggregated daily 

forecasts. The climatology of the aggregated daily forecasts is unlikely to be the 

same as that from monthly forecasts, so the anomaly may not be accurate. This 

problem may be lessened by using statistics from the varEPS model itself as the 

reference climatology. ECMWF runs 5-member hindcasts of the varEPS for 18 years 

into the past for each forecast, which is not considered to be a long enough time 

period to produce a representative distribution. However, it is expected that these 

hindcasts will be extended further back in the near future and could be used as 

reference statistics for the SPI forecast. 

 

It is currently not recommended to use forecasts of SPI with one month lead time to 

provide guidance. They are likely to give misleading information that could result in 

numerous costly false alarms and missed events. At present, an accurate drought 

monitoring system is still the best tool for aiding strategic decisions and mitigation 

procedures.  
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Abstract 

This report describes an assessment of the performance of the European Centre for Medium Range 

Weather Forecasts variable resolution ensemble prediction system as a tool for forecasting drought 

using the Standardized Precipitation Index (SPI) with one month lead time. The model is verified using 

standard verification measures of the Brier Score, the Brier Skill Score, reliability and relative 

operating characteristics. It is found that for the 1-month SPI, the model has little skill in forecasting 

drought events and the forecast is generally unreliable. For the 3-month SPI the model has more skill, 

but this skill comes from the use of 2 months of reanalysis precipitation in and 1-month of forecast 

precipitation in building in the 3-month SPI. Calibration of the forecasts through adjusting the forecast 

probabilities to observed frequencies improved the verification statistics. Two case studies using the 

model were analysed and it was found that the model did not give useful guidance, and in fact 

calibration had the effect of underestimating the probability of extreme events where the model had 

some skill. It is recommended that ensemble probabilistic forecasts not be used as a tool for decision 

making with regard to drought without further improvement in the model performance.  
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