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Abstract 

Predictions of surface water exposure to “down-the-drain” chemicals are presented 

which employ grid-based spatially-referenced data on average monthly runoff, 

population density, country-specific per capita domestic water and substance use 

rates and sewage treatment provision.  Water and chemical load are routed through 

the landscape using flow directions derived from digital elevation data, accounting for 

in-stream chemical losses using simple first order kinetics.  Although the spatial and 

temporal resolution of the model are relatively coarse, the model still has advantages 

over spatially inexplicit “unit-world” approaches, which apply arbitrary dilution 

factors, in terms of predicting the location of exposure hotspots and the statistical 

distribution of concentrations. The latter can be employed in probabilistic risk 

assessments.  Here the model was applied to predict surface water exposure to “down-

the-drain” chemicals in China for different levels of sewage treatment provision.  

Predicted spatial patterns of concentration were consistent with observed water 

quality classes for China.   

 

Key Words: Global, Exposure, Chemical, Model,  China 

 

Capsule Abstract 

A global-scale model was used to predict spatial patterns of  “down-the-drain” 

chemical concentrations in China. Predictions were consistent with observed water 

quality classes, demonstrating the potential value of the model.  
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1. Introduction 

 

“Down-the-drain” chemicals, also referred to as “daily use chemicals”, include 

ingredients used in domestic consumer products (e.g. detergent ingredients such as 

surfactants, solvents, dyes, perfumes and bleaching agents) and pharmaceuticals, 

which may be disposed of with household wastewater.  In most regions of the world, 

a significant fraction of household wastewater (either untreated or treated via 

municipal wastewater treatment plants - WWTPs) will eventually reach surface 

waters. The impact of such chemicals on receiving water bodies is typically assessed 

by comparing Predicted Environmental Concentrations (PECs) with a Predicted No 

Effect Concentration (PNEC).  The latter is generally derived from (mainly 

laboratory-based) ecotoxicological effects data for a number of different taxonomic 

groups.   

 

For consumer use of “down-the-drain” chemicals (and neglecting releases during 

factory production and/or formulation), a crude PEC for untreated sewage 

(PECSEWAGE) can be calculated by dividing the mass of substance used per capita (U, 

mg cap-1 day-1) by the domestic per capita water use (W, L cap-1 day-1).  For the 

release of a chemical in a given country or region: 

 

W
UPECSEWAGE =        (1) 

 

U can be calculated from tonnage using:  
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where PCOUNTRY is the population of the country into which the chemical is released 

and T (tonnes yr-1) is the annual mass of chemical estimated to be used in the study 

area (country).  PECSEWAGE can be adjusted for removal in WWTPs, if present, and for 

dilution of the WWTP effluent in the receiving water body to give a surface water 

PEC (PECAQ) downstream of a WWTP.  In the case of a river with an upstream 

concentration of zero, the concentration immediately after mixing but prior to any in-

stream degradation and dilution can be written: 

 

DF
PECr

PEC SEWAGE
AQ

).1( −
=       (3) 

 

where r is the proportion of chemical removed in a WWTP, which ideally should be 

commensurate with monitoring data (Ort et al., 2010) but which can also be estimated 

from the results of standard laboratory biodegradation tests (e.g. Struijs et al., 1991; 

European Commission, 2003) and DF is the dilution factor which can be defined as: 

 

qqQDF /)( +=        (4) 

 

in which Q  is the discharge of the receiving water body upstream of the effluent (L s-

1) and q is the point-source discharge (L s-1) from the WWTP.   

 

This model is limited to assessing PECs in the water column and not concentrations 

of chemicals sorbed to suspended or settled sediments.  In addition, the model makes 
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the assumption that 100% of the chemical substance is disposed of via household 

wastewater which, in turn, is treated at WWTPs.  It does not consider information on 

alternative wastewater disposal routes (e.g. discharge to soil or the sea).  However, 

this assumption is supported by a number of studies which demonstrate that predicted 

concentrations of chemicals commonly used in laundry detergents derived from per 

capita consumption figures agree with monitoring data on chemical concentrations in 

raw wastewater and in rivers in Europe (e.g. Holt et al., 1998; Whelan et al., 1999; 

Price et al., 2009).  Fox et al. (2002) showed that boron loads measured at 48 WWTPs 

across Europe corresponded well with per capita inputs predicted from detergent 

product sales data.  Boron has previously been shown to be a good marker for 

substances contained in detergent products, as it is not biodegraded and is not 

substantially sorbed in sewers or in WWTPs.  Similarly, several studies have reported 

that predicted linear alkylbenzene sulfonate concentrations generally agree with 

expectations based on per capita use and removal in WWTPs (e.g. Whelan et al., 

1999; Price et al., 2009). 

 

Since both Q and q vary significantly both spatially and temporally, screening-level 

(comparative) risk assessment models commonly consider a hypothetical 

“representative” scenario for local scale regulatory exposure assessments, in which 

the dilution factor is given an arbitrary value (e.g. a value of 10 is recommended in 

the TGD - European Commission, 2003).  This approach is useful for identifying 

chemicals which may pose significant environmental risks at a given use rate and for 

facilitating the prioritisation of risk management.  However, it is probably a poor 

predictor of the distribution of actual risk which will vary spatially and temporally as 

a consequence of hydrological variability (Johnson, 2010) and the sizes of point 
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source loads relative to receiving water discharge.  These factors have been accounted 

for in models such as GREAT-ER (Geography-referenced Regional Exposure 

Assessment Tool for European Rivers: Feijtel. et al., 1997; Schroeder et al., 2002; 

Koormann et al., 2006; Price et al., 2009), LF2K-WQX (Price et al., 2010; Williams 

et al., 2009) QMX (Warren et al., 2005; 2007) and PhATE (Cunningham et al., 2009; 

Cunningham et al., 2010; Capdevielle et al., 2008) which are designed for higher tier 

risk assessments in specific catchments.  However, the application of such models is 

limited by data requirements (location and sizes of point sources and river discharge 

statistics).  Furthermore, such approaches have mainly been developed in response to, 

or in anticipation of, regulatory requirements for risk assessment in Europe, North 

America and Japan and are often inappropriate for data poor areas (Warren et al., 

2005). 

 

In this paper, we explore the possibilities for improving predictions of point-source 

pollutant concentrations in surface waters using spatially-referenced global data sets 

of predicted runoff (derived from water balance model calculations using long-term 

global climate data) and population density.  We extend the grid-based global 

estimation of dilution (Keller et al., 2006) and national-scale load estimation for non-

degradable chemicals, such as boron (Keller et al., 2007) by introducing the potential 

for in-stream chemical degradation during routing.  As an illustration, the model is 

applied to predict aquatic exposure to “down-the-drain” chemicals in China.  These 

predictions will inevitably be crude estimates of local conditions, which will vary 

significantly spatially between and within water bodies and temporally, but may 

provide a reasonable initial estimate which can be refined locally if required.  The 

greatest value of the proposed model is for better definition of overall risk to surface 
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fresh waters for a whole country or region as a viable alternative to standard scenario-

based predictions, anywhere in the world. 

 

2. Modelling Approach 

 
2.1 Conceptual model and implementation 

At a coarse level of spatial resolution point-source chemical loadings and river-reach 

specific discharge cannot be accurately estimated.  However, a proxy for exposure 

estimates (PECAQ) based on population density and predicted runoff in a given region 

(e.g. catchment or country) has previously been developed (Keller et al., 2007).  In 

this approach, runoff is estimated by hydrologically effective rainfall, i.e. all water 

transfer from the land to surface waters via all major hydrological pathways (overland 

flow, throughflow and baseflow).  River discharge (Q) is the product of the catchment 

area and the estimated mean runoff.  Domestic wastewater discharge (q) can be 

expressed as the product of catchment area, population density and domestic per 

capita water use. 

 

Cell-specific concentrations in a global grid-based model can be calculated from a 

combination of load estimations and the water balance via simple mass balance 

concepts.  Load is routed through the flow direction network, discounting for 

degradation, which is assumed to take place according to first order kinetics.  

Concentration in each cell (Ci) is calculated from: 

 

i

INii

i

INiiii
i Q

LrFUP
Q

LUPrFUPF
C ∑∑ +−

=
+−+−

=
).1.(..).1.(.).1(

 (5) 
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where Pi and Ui are, respectively, the population and the per capita chemical 

consumption (g cap-1 day-1) of cell i, F is the fraction of the population served by (at 

least) secondary sewage treatment, Qi is total discharge (derived by a cumulative 

routing of discharge through the grid using the flow direction vectors) and LIN is the 

influent load from an upstream cell (which may be many).  LIN, itself, is derived from 

an accumulation through the network with degradation in parallel.  If Qi is expressed 

in m3 day-1 then Ci is in g m-3 i.e. mg L-1.  For each cell, load Li is passed to the 

adjacent downslope cell with the lowest altitude: 

 

)exp(].).1.(.[ γ−+−= ∑ INFiii LrFUPL      (6) 

 

where γ is a dimensionless degradation term i.e.: 

 

k.τγ =          (7) 

 

in which k is the first order rate constant (h-1) and τ is travel time (h).  The special 

cases of chemicals which degrade so rapidly that insignificant chemical loads are 

passed to downstream cells and those which are perfectly conservative, such as boron 

(with no in-river loss: Keller et al., 2007) are captured by setting k to infinity and 

zero, respectively.  Travel time is calculated as the quotient of the stream path length, 

x (m), and a nominal water velocity, v (m s-1), allowing for stream channel sinuosity 

described by a factor, S (the ratio of the talweg distance to straightline distance):  

 

3600.
..

v
Sx

=τ          (8) 
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The model was implemented in a Visual BASIC for Applications (VBA) program 

which invoked an iterative algorithm to calculate water and chemical load transfers 

between grid cells.  Iteration is required because cells are visited sequentially by row 

and column order which means that they may receive inputs from cells which occur 

later in the sequence which, in turn, need to be cascaded through the network.  In each 

iteration, chemical load is passed to downslope cells, discounting transfers for 

degradation.  Cells may receive inputs from more than one upslope cell but only 

deliver water and chemical to one downslope cell (e.g. O’Callaghan and Mark, 1984).  

Note that although flow accumulation calculations can be performed in many 

commercial GIS software packages, routing chemical loads with decay is more 

challenging and requires the construction of a customised routine. 



2.2 Hydrological data  

2.2.1 Runoff Data 

Long-term average monthly and annual runoff can be predicted using macroscale 

hydrological models.  Macroscale models are those which are capable of being 

applied, without calibration, at the catchment scale over a large geographical domain 

(Arnell, 1999b).  They have been used to define land-surface parameterization 

schemes in general circulation models (e.g. Kite et al., 1994; Abdulla & Lettenmaier, 

1997a; Nijssen et al., 1997, Wood et al., 1992; Arnell, 1999a) and for estimating 

water resource availability at global, continental or regional scales (e.g. Vorosmarty et 

al., 1989; Abdulla & Lettenmaier, 1997b; Fekete et al., 1999; Oki, 2001; Alcamo et 

al., 2003).  They are often based on a division of the global land surface into a grid, 

commonly with a spatial resolution of 0.5º latitude by 0.5º longditude (30 arc 

minutes).  The actual dimensions of each grid cell will vary with latitude.  At the 

equator cells are over 3000 km2 but are less than 100 km2 at very high latitudes.  

Typically, each cell is approximately 2000 km2 in mid latitudes (Arnell, 1999c).   

 

In this paper, we have used the runoff predictions (Figure 1) produced by Fekete et al. 

(1999) (see also Vorosmarty et al., 1989 and Vorosmarty et al., 1998).  These data 

were generated by combining a simple water balance model with observed river 

discharge data.  The gauged discharge data used were collated by the Global Runoff 

Data Centre (GRDC) from 1348 gauging stations with tributaries larger than 2500 

km2 and with time series exceeding 12 years with < 10% missing data.  The water 

balance model uses the data set of Legates and Willmott (1990a) for global 

precipitation, the formula of Hamon (1963) to calculate evapotranspiration on the 

basis of temperature (using the data set of Legates and Willmott, 1990b), soil type 
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data from the FAO/UNESCO soil data bank (FAO/UNESCO, 1986), topographic data 

from the ETOPO5 global elevation data set (Edwards, 1989) and a contemporary land 

cover classification derived from the Terrestrial Ecosystem Model (Melillo et al., 

1993) with Olson’s land use classification (Olson, 1991).   

 

2.2.2 Flow direction 

River discharge generally accumulates downstream with increasing catchment area.  

The mean annual runoff at any point in the channel network is the mean annual 

discharge divided by the total catchment area contributing to that point and, thus, 

represents an area-weighted average of spatial variations in runoff therein.  For large 

catchments, upstream contributing cells in the runoff grid can be identified using 

topographic data derived from a Digital Terrain Model (DTM).  An appropriate data 

set identified for the purposes of this study is that described by Graham et al., (1999).  

This data set consists of flow direction and flow accumulation grids derived from the 

National Geophysical Data Center TerrainBase 5’ Global DTM (Row et al., 1995) at 

5’, 1/2° and 1° resolutions.  The flow direction and accumulation data were derived 

from a filled DTM using a single direction algorthim (flow only in the direction of the 

steepest downslope cell – e.g. O'Callaghan and Mark, 1984), with manual corrections 

for discrepancies between model coastlines.  Note that flow is accumulated across the 

entire land surface and is not influenced by national boundaries.  It should also be 

noted that this data set was selected here because we have used it for earlier work but 

more recent alternative data sets may provide better flow direction representation.  

These include DDM30 (Doll and Lehner, 2002), Hydro1k (USGS, 2000) and 

HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives 

at multiple Scales: USGS: http://hydrosheds.cr.usgs.gov/). 
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Cell areas were calculated using: 

 

))sin().(sin( 21 φφ −= AREACELL kA       (9) 

 

where ACELL is the area (km2) of a grid cell with minimum latitude φ1 and maximum 

latitude φ2 (both in radians) and kAREA is a constant defined as: 

 

 26371
180

.5.0 π
=AREAk       (10) 

 

Whilst we recognise that determining flow direction from elevation data can be 

problematic, particularly for flat areas and at such a coarse level of resolution, 

discussion of such problems is beyond the scope of this paper.  The predicted spatial 

distribution of discharge clearly shows the location of large river systems and 

confirms, qualitatively, the validity of the area-accumulation routines. 

 

2.3 Population data and household water use estimates 

2.3.1 Population data 

There are a number of data sets for the global distribution of population (e.g. UNEP / 

Environment Canada Global Population Distribution 1° x 1° Database and the 

Gridded Population of the World (GPW): CIESIN, 2000).  The GPW v.2 data set for 

1995 was used in the work described this paper.  This data set comes as population 

counts or population density (cap km-2) and has been adjusted to correspond with 
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national-level population estimates issued by the United Nations for 2005.  The 

original (2.5 arc minute) grid was amalgamated to a 0.5° x 0.5° resolution.  

 

2.3.2 Domestic Water Use Rates 

Daily per capita domestic water use (W) varies widely from country to country and 

even within countries as a consequence of water availability, infrastructure, wealth 

and habits.  Individual values for each country were taken from a range of public 

domain sources (e.g. Gleick et al., 2010).  If a country-specific estimate could not be 

found then a value from a neighbouring country was used provided that the socio-

economic status of that country was considered to be similar.  If multiple values were 

available then the value from the most reliable source was used.   

 

3. Application to China 

 

The model was applied to estimate the spatial variation of surface water 

concentrations of Linear Alkylbenzene Sulfonate (LAS) in China in order to explore 

the potential of the model as a risk assessment tool in a large and relatively data-poor 

country.  LAS is a commonly used anionic surfactant used in a range of domestic 

products – predominantly for laundry.   It was selected here as an example “down-the-

drain” chemical because a number of studies have been published on its behaviour in 

sewage treatment works (e.g. Holt et al., 1995; Holt et al., 1998; Waters and Feijtel, 

1995) and in rivers (e.g. McAvoy et al., 1993; McAvoy et al., 2003; Whelan et al., 

1999; Fox et al., 2000; Eichhorn et al., 2001; Eichhorn et al., 2002; Whelan et al., 

2007).  We assumed the current national average per capita water use of 200 L cap-1 

day-1 (personal communication, Zheng Xingcan, Chief Engineer of State Urban Water 
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Supply & Drainage Engineering, see also Zheng, 2010) and the government target for 

national urban connection to WWTPs of 70% (personal communication, Zheng 

Xingcan).  Clearly, using this target urban connection rate is illustrative only and is 

not appropriate for a current risk assessment since the actual connection rate will be 

much lower in some urban areas.  The latest official estimate for the urban population 

of China is 47% (China Statistical Yearbook, 2010).  A consumption rate for LAS 

was estimated by combining detergent sales data for China from Euromonitor 

(www.euromonitor.com) for 2009 for four key detergent products: powders, liquids, 

bars and fine fabric detergents with expected inclusion levels of LAS per product 

format to give an overall LAS tonnage for China in 2009.  Although this is 

inconsistent with the population data used (2005), the errors are assumed to be 

tolerable, given the uncertainties which exist in per capita usage and sewage treatment 

provision.  A value for U was calculated as 1.8 g cap-1 day-1 using the CEISIN 1995 

(CEISIN, 2000) estimate for the total population of China (1.28 billion).  This 

compares with estimates of 1.34 g cap-1 day-1 for Germany reported by Schroeder et 

al. (2002) and 4 g cap-1 day-1 for the UK (Holt et al., 1995).  A removal rate for LAS 

in WWTPs was assumed to be 98% which is appropriate for activated sludge type 

plants (Holt et al., 1995), the dominant type of treatment technology currently being 

deployed across China (e.g. U.S. Department of Commerce, 2005).  A riverine LAS 

degradation rate constant of 0.05 h-1 was assumed, which is equivalent to a 14 hour 

half life (Whelan et al., 1999).  This is appropriate for moderate sized temperate 

rivers.  However, more rapid degradation rates for LAS have been reported for 

tropical systems (e.g. McAvoy et al., 2003; Whelan et al., 2007) and for shallow 

streams in the UK (e.g. Fox et al., 2000).  In all river reaches, the mean river velocity 

was assumed to be 0.25 m s-1 and the sinuosity was assumed to be 1.5 (after Richards, 
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1982).  Clearly, in reality, different river reaches will have very different mean 

velocity and sinuosity but representation of these is currently beyond the scope of the 

modelling approach presented here, particularly at such a coarse spatial resolution.  

 

Maps of predicted mean annual LAS concentration in surface waters across China is 

presented in Figure 2 for two scenarios.  In the first, current estimated sewage 

treatment provision (70%) was assumed, with 30% of waste water generated in each 

cell assumed to be discharged to surface waters untreated (Figure 2a).  In the second 

scenario, 100% of the Chinese population was assumed to be connected to secondary 

WWTPs (Figure 2b).  This represents the potential reduction in exposure (and, by 

extension, risk) resulting from large scale investment in wastewater treatment 

technologies.  It is estimated that approximately 1900 large WWTPs were operating 

in China in 2010 with targets of 7000 and 12000 set for 2015 and 2020, respectively 

(personal communication, Zheng Xingcan).  The target national design capacity for 

2020 is 200 M m3 day-1 which is equivalent to 1 billion people equivalents using 200 

L cap-1 day-1.  The additional treatment provision is predicted to decrease expected 

concentrations of LAS (and, by extension, other point-source chemicals) significantly 

in most Chinese rivers.  This implies that a significant reduction in ecotoxicological 

risks associated with such chemicals can be expected in the near future.  
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Cumulative frequency distributions of PEC values across China are shown in Figure 3 

for each treatment provision scenario.  The PNEC proposed by Dyer et al. (2003) for 

LAS (245 μg L-1) derived from a species sensitivity distribution approach is also 

shown.  These data suggest that LAS concentrations may exceed the PNEC in a 

significant number of cells, when connectivity to WWTPs is 70%.  This is not 

unexpected since it is well recognised that even relatively minor and intermittent 

untreated discharge can exert a dominant influence on pollutant concentrations in 

receiving systems (see Whelan et al., 1999).  Derivation of a statistical distribution of 

PECs allows probabilistic risk (sensu Cardwell et al., 1999) to quantified by 

integrating the product of the exposure probability density function (essentially the 

relative frequency distribution of PECs) and the species sensitivity distribution 

(representing the effect vs concentration relationship).  That said, the extent to which 

conventional risk assessment for “down-the-drain” chemicals is a useful indicator of 

ecological impact is questionable in systems receiving significant volumes of 

untreated waste water (direct discharge) because the ecosystem is often so impacted 

by high concentrations of sanitary determinands, such as BOD, ammonia and nitrite 

(McAvoy et al., 2003; Whelan et al., 2007; Finnegan et al., 2009).  In such cases, an 

alternative risk assessment model has been proposed in which i) chemical 

concentrations are compared to the PNEC at the point where the receiving system has 

recovered from conventional waste water pollution, and ii) chemical concentrations in 

the impact zone are assessed for potential inhibition of natural recovery processes 

such as nitrification and respiration (McAvoy et al., 2003).  It should also be noted 
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that large areas of China are arid or semi-arid (FAO, 1997) and have low predicted 

mean annual runoff.  This means that many surface waters draining urbanised 

catchments are likely to be effluent-dominated (i.e. most of the flow is derived from 

wastewater, especially under low flow conditions).  This explains the vertical lines in 

Figure 3 which represent the mean concentrations of LAS in treated and untreated 

waste water for the two scenarios considered.     

 

In the scenario in which 100% provision of secondary sewage treatment was assumed, 

surface water exposure to LAS is significantly reduced (Figure 2b).  In this scenario, 

predicted LAS concentrations approach the PNEC only in those river reaches where 

there is no dilution (vertical sections in the cumulative distributions shown in Figure 

3).  Ecotoxicological risk assessment in effluent-dominated systems is philosophically 

interesting since the fluvial ecology exists essentially as a consequence of the effluent 

discharge (i.e. few aquatic organisms live in naturally ephemeral rivers and streams in 

dry periods).  Thus, although high concentrations of many pollutants may be 

observed, the ecosystem has developed to tolerate this exposure, including 

commonly-occurring “down-the-drain” chemicals. 

 
 

4. Evaluation of the model 

 

Long-term measurements of specific “down-the-drain” chemical concentrations in 

rivers are rare which makes validation of the proposed model difficult.  The results 

presented here for China are qualitatively consistent with other spatial assessments of 

water quality (Tang and Bi, 1996) in which water pollution was identified as being 

most serious in the north and north east of the country, particularly around Beijing, 
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Yinchuan and Shanghai.  In the absence of spatially-resolved data for measured LAS 

concentrations, the PECs presented in Figure 2 were compared in relative terms with 

water quality classes assigned to specific reaches of several major rivers from across 

China.  According to Chen and Xia (2000) there are over 3000 water quality 

monitoring stations in China.  Rivers are assigned a class from I (excellent) to “worse 

than V” (very poor) on the basis of monitoring data for a range of water quality 

determinands.  Some of these criteria may be related to point sources (such as 

domestic waste water or industrial effluent), although some may be the result of 

diffuse-source pollution.  Caution should, therefore, be applied to their interpretation 

in the context of this study.  It should be remembered that the main objective was to 

identify the quality of spatial patterns predicted, rather than to validate absolute 

concentration values.   River water quality classes were digitised manually from maps 

published by the Ministry of Environmental Protection (2009) onto an existing digital 

river network in ArcGIS (Figure 4).  Spatially coincident values of predicted LAS 

concentrations and assigned river water quality class were then extracted using an 

intersection function in the GIS, following the raster to vector conversion of predicted 

concentration data.  This procedure resulted in river reaches of different lengths 

assigned different classes, with differing numbers of intersected cells containing 

predicted LAS concentrations (i.e. the number of sampled cells for each class was not 

the same).  There were a total of 1907 paired values of water quality class and 

predicted LAS concentration, with between 96 (Class V) and 498 (Class II) pairs in 

each class.  Figure 5 shows the average LAS concentration predicted for each river 

water quality class (assuming 70% connection to secondary waste water treatment), 

along with upper and lower quartiles and the 90th and 10th percentile concentrations to 

indicate the variability of predicted concentrations in each class.    Although the 
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variability of predicted LAS concentrations in each class is very high, there is a 

consistent increase in average concentration with water quality class, suggesting that 

predicted concentrations are in approximate agreement with observed water quality.  

This probably reflects a deterioration of water quality in densely populated areas 

(where wastewater generation and industrial activity are likely to be higher) or areas 

where dilution of wastewater effluent is low.  The fact that the mean concentration 

exceeds the 75th percentile for four of the six water quality classes is due simply to the 

fact that the predicted concentrations are highly skewed positively.  The 90th 

percentile concentration predicted for Class VI river reaches is lower than the 

maximal (undiluted) concentration predicted for arid zones, with 70% connection to 

waste water treatment (2.83 mg L-1), in part reflecting a paucity of sampled surface 

waters in these areas.  Further work should be done to validate the model predictions 

for specific pollutants.  
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5. Conclusions 

 

The model described here allows consistent, spatially explicit, hydrologically-based 

environmental risk assessments for “down-the-drain” chemicals discharged to 

freshwaters to be performed in any country in the world.  The method represents an 

intermediate level between generic (and crude) multi-media models or “back-of-the-

envelope” exposure calculations and detailed (but rather data hungry) process-based 

models, such as GREAT-ER (Feijtel et al., 1997; Koormann et al., 2006; Price et al., 

2009).  A key output from this approach is the ability to identify particular regions in 

which concentrations of certain chemicals may be a cause for concern.  In this way, it 

provides a means of targeting more detailed local-scale risk assessments and risk 

management measures (such as improving sewage treatment provision or even 

changing product formulations).  It represents a step-change in thinking about risk 

assessment of chemicals which, up to now, has focussed on environmental protection 

in the developed world using generic scenarios to indicate relative risk.  In addition to 

improving environmental risk assessments for “down-the-drain” chemicals by better-

predicting the spatial variability in exposure, combining information on runoff and 

socio-economic factors (such as population density and per capita water 

consumption) can be used to predict potential water stress and associated threats (e.g. 

Vorosmarty et al., 2010). 

 

Given the critical importance of dilution and conveyance for the predicted exposure of 

“down-the-drain” chemicals discussed in this paper, further work is required to 

evaluate the quality of the hydrological predictions, with respect to gauged flows.  In 
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addition, the influence of flow seasonality (along with any mitigating influence of 

groundwater) and of major artificial influences (e.g. reservoirs and abstractions) on 

patterns of associated risk should be further evaluated.  Whilst the use of mean flow is 

useful for predicting the spatial pattern of expected exposure to pollutants, it does not 

capture seasonal and episodic variations in concentration resulting from temporal flow 

variations (Johnson, 2010).  Seasonality is likely to be particularly pronounced in 

those parts of China which have a strong monsoon climate, where 70% of 

precipitation can fall in just four months of the year (Jiang, 2009).   Actual 

concentrations and loads will vary greatly spatially (in relation to dilution, upstream 

loads and, importantly in China, spatial differences in sewage treatment provision), 

even in relatively small geographical areas (Johnson 2010).  It is likely that it will 

only be possible to validate hydrological and pollution predictions rigorously in a few 

key catchments where data are available on per capita “down-the-drain” chemical and 

water use, wastewater disposal routes, hydrology and observed water quality.  As a 

consequence of this analysis, it may be necessary to refine both the hydrological 

model and the assumed spatial pattern of emission in some key areas, to calibrate 

some key model parameters or to increase spatial and temporal resolution.   

 

It is recognised that in many countries, particularly in the developing world, consumer 

habits and overall consumption of household products containing the types of 

chemicals discussed here will vary spatially (perhaps most dramatically between 

urban and rural areas: Hodges et al., 2011).  This variability has not been taken into 

account here, although it is likely to be lower for “essential” household products like 

laundry detergents than for some “luxury” products.  Other factors were also not 

considered explicitly, which may be important for PECAQ locally, including 
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alternative wastewater disposal routes (e.g. septic tanks, cesspits, use of grey-water in 

irrigation and disposal to the marine environment).  For example, in some areas 

clothes may be washed directly in-stream or on river banks (e.g. Gordon et al., 2009). 

Alternatively waste laundry liquor from manual laundry operations may be disposed 

of to soil, rather than to a sewer.  Nevertheless, we maintain that the predominant 

factors influencing surface water exposure to “down-the-drain” chemicals will be 

population density (as a surrogate for loading), wastewater treatment facilities and 

river discharge (providing dilution and conveyance).  The method of exposure 

assessment described here provides a practicable means of identifying the gross 

spatial patterns of concentration regionally, including highlighting likely exposure 

“hotspots”.  However, the extent to which it can generate accurate absolute 

predictions of chemical concentrations is currently uncertain.  Should further work 

show that the model does provide a good predictor of absolute exposure it has great 

potential for predicting the statistical distribution of concentrations as an input to 

regional scale probabilistic risk assessments.  
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Figure Captions 

Figure 1.  Predicted mean annual river discharge (m3 s-1) using runoff data generated 

by Fekete et al. (1999) for (a) The land surface of the world excluding Antarctica, 

Greenland and small islands and (b) China. 

 

Figure 2.  Predicted mean annual LAS concentration in surface waters across China 

given a target sewage treatment provision for urban areas of 70% (a) and 100% 

connection to secondary WWTPs (b). 

 

Figure 3.  Cumulative frequency distributions of predicted mean annual LAS 

concentrations in surface waters across China for 70% and 100% connection to 

secondary sewage treatment.  Also shown is the LAS PNEC (Dyer et al., 2003). 

 

Figure 4.  River water quality Classes for major Chinese river reaches (Red 

designates poor water quality “worse than Class V”; Green designates good water 

quality at Class I).  Derived from the Chinese Ministry of Environmental Protection 

(2010). 

 

Figure 5.  Average annual predicted LAS concentrations in Chinese river reaches 

(Ministry of Environmental Protection, 2010) with different water quality classes.  

Error bars show the 90th and 10th percentile concentrations, boxes show the 75th and 

25th percentile concentrations. 
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Figure 3 
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Figure 4 
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Figure 5 
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