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Abstract: In the present paper, the definitions of a fuzzy continuous function and uniformly fuzzy continuous are intro-

duced. We prove that a function f from a fuzzy metric space (F̃, ℳ̃F̃) into a fuzzy metric space (G̃, ℳ̃G̃) is fuzzy con-

tinuous if and only if for every fuzzy open subset Ã of G̃, f−1(Ã) is fuzzy open in F̃. Also the composition function 

of two uniformly fuzzy continuous functions is proved to be a uniformly fuzzy continuous function. 
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1. Introduction

The foundation of the concept of the fuzzy metrics 

is given for the first time by Kramosil and Michalek in 

1975
[1]

 to enforce the fuzziness principle to the tradition-

al concepts of metric and metric spaces to introduce the 

definition of the fuzzy metrics space by generalizing the 

notion of the probabilistic metric space to the fuzzy case. 

Kaleva and Seikkala in 1984
[2]

 generalized the idea of a 

metric space to introduce the definition of the fuzzy met-

rics space by specifying the distance between two points 

(rather than the probabilistic metric space) to be a 

non-negative fuzzy number. Sostak in
[3]

 presented an 

alternative method to introduce a new version of the 

concept of a fuzzy metric called revised fuzzy metric. A 

t-conorm binary operation is used in the definition of the 

revised fuzzy metric to assess the degree of proximity of 

two points. Moreover, many researchers had different 

views on the problem of constructing a fuzzy metric 

space. In particular, the concept of fuzzy metric space 

given in
[1]

 is modified by George and Veeramani
[4]

 in 

terms of Hausdorff topology. In addition, Xie et al.
[5]

 

studied the relation between the fuzzy measure and the 

fuzzy metric space. Authors in
[6]

 gave a new definition of 

fuzzy metric space by using fuzzy scalars instead of 

fuzzy numbers or real numbers and proved basic theories 

about this space. In
[7]

 Gupta and Kanwar have made ef-

forts to introduce V-fuzzy metric spaces and to study 

their main properties. Other notations and approaches for 

fuzzy metric spaces are considered in
[8–11]

.  

The aim of this paper is to introduce the definition 

of a fuzzy continuous function and uniformly fuzzy con-

tinuous function in a fuzzy metric space (FM-space) 

(F̃, ℳ̃) given in
[12]

 and proved essentialy theorems. 

Several researcher can calculate the properties of 

the materials in applied physics using mathematical 

models by means of these theorems
[13–91]

.  

The structure of this paper is as follows. In section 2 

some properties and basic notions of the fuzzy metric 

space (FM-space) are given. The concepts of a fuzzy 

continuous and uniformly fuzzy continuous function are 

introduced in section 3, moreover, some important prop-

erties of the given definitions are investigated. 

2. Preliminaries 
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In this section, we restate basic results and some 

definitions.  

Definition 2.1
[92]

 

A fuzzy metric space (briefly, FM-space) is an or-

dered pair (F̃, ℳ̃) where F̃ is a fuzzy set and ℳ̃ is a 

mapping from F̃ × F̃ × (0,1]  into I = [0,1]  such that 

the following five properties hold, for each 

(a, α), (b, β), (c, δ) ∈ F̃: 

(ℳ̃1)ℳ̃(a, b,γ) > 0 if a ≠ b where γ = max{α, β} 

(ℳ̃2) ℳ̃(a, b,γ) = 0 if and only if a = b. 

(ℳ̃3) ℳ̃(a, b,γ) = ℳ̌(b, a,γ). 

(ℳ̃4) ℳ̃(a, b,γ) ≤ ℳ̃(a, c,γ) + ℳ̃(c, b,γ), where 

γ = max{α, β,δ} 

(ℳ̃5) If 0 <λ ≤ γ <1 then ℳ̃(a, 0,γ) ≤ ℳ̃(a, 0,λ) 

and there exists 0 < γ
n
<γ  such that 

limn→∞ ℳ̃(an, 0,γn
) = ℳ̃(a, 0,γ). 

Definition 2.2
[92]

 

Let (F̃, ℳ̃) be an FM-space, and let (a, α) ∈ F̃, 

where α ∈ (0,1]. Given real number ε> 0, then: 

(1) Õε(a1, α1)={(a, α) ∈ F̃: ℳ̃(a, a1,γ) <ε} is 

called the fuzzy open ball of radius ε  where 

γ = max{α, α1 ∈ (0,1]}. 

(2) B̃ε[a1, α1 ]={(a, α) ∈ F̃: ℳ̃(a, a1,γ) ≤ε} is 

called the fuzzy closed ball of radius ε. 

Definition 2.3
[92]

 

Let (F̃, ℳ̃) be an FM-space. A fuzzy subset Ã ⊆ F̃ 

is fuzzy open if and only if there exists a fuzzy open ball 

Õε(a, α) centered at every fuzzy point (a, α) in Ã that 

are contained in Ã . A fuzzy subset B̃ ⊆ F̃  is called 

fuzzy closed if B̃c = F̃ − B̃ is fuzzy open. 

Definition 2.4
[92]

 

In an FM-space ( F̃, ℳ̃ ), a fuzzy sequence 

{(an,αn
)} where α, α

n
∈ (0,1]is said to be 

(i) Convergent if there exists (a,α) ∈ F̃ such that 

limn→∞ ℳ̃(an, a,γ)=0 where γ = max {α
n
,α} or 

simply written {(an,αn
)} → (a,α). 

(ii) Cauchy if for all ε > 0  there is an integer 

number N ∈ ℕ such that ℳ̃(an, am, γ)<ε for every n, 

m ≥ N where γ = max{αn, αm}. 

Definition 2.5
[92]

 

A fuzzy set Ã in an FM-space (F̃, ℳ̃ ) is called 

fuzzy bounded if there exists 0< r <1 such that 

ℳ̃(a, b,γ) < r. 𝑟 call for each (a, α), (b, β) ∈ F̃ ,γ 

= max{α,β}. 

Definition 2.6
[92]

 

A fuzzy sequence {(an,αn
)}  in an FM-space 

(F̃, ℳ̃) is said to be fuzzy bounded if the corresponding 

fuzzy set is fuzzy bounded. 

Definition 2.7
[92]

 

An FM-space (F̃, ℳ̃) is called complete if every 

Cauchy fuzzy sequence inF̃ is a fuzzy convergent. 

Definition 2.8
[92]

 

Let ( F̃, ℳ̃ ) be an FM-space and let 

{(an,αn
)}n≥1 be a fuzzy sequence of real numbers. 

Given r1 < r2 < ⋯ < rn…  be strictly increasing se-

quence of natural numbers. Then {(ank,αnk
)}n≥1  is 

called a fuzzy subsequence of {(an, ∝n)}n≥1.  

Definition 2.9
[12]

 

Let U be a universal set, then for any 𝛼 ∈(0,1] 

𝑎𝑛𝑑 u ∈ U, a fuzzy subset uα of U is called a fuzzy 

point in U if  

uα(w) = {
αifu = w
0otherwise

 

for each w ∈ U. 

Now, the definition of a fuzzy metric space is given. 

3. Fuzzy continuous and uniformly 

fuzzy continuous function on fuzzy 

metric space 

In this section, the continuity of the fuzzy metric 

space is discussed. So the definition of the fuzzy contin-

uous function at a fuzzy point in the fuzzy metric space 

is introduced initially.  

Definition 3.1 

Let (F̃, ℳ̃F̃) and (G̃, ℳ̃G̃) be an FM-spaces and let 

Ã ⊆ F̃. Then the function f: Ã → G̃ is said to be fuzzy 

continuous function at a fuzzy point (a, α) ∈ Ã if for 

every ε > 0  there exists σ > 0  such that 

ℳ̃G̃(f(b), f(a),γ) < ε  whenever ( b, β) ∈ Ã  implies 

ℳ̃F̃(b, a,γ) <σ. 

The next theorem gives a characterization of the 

fuzzy continuous function. 

Theorem 3.2 

Suppose that ( F̃, ℳ̃F̃ ) and ( G̃, ℳ̃G̃ ) be two 

FM-spaces and let Ã ⊆ F̃. The function f: Ã → G̃ is a 

fuzzy continuous function at a fuzzy point (a, α) ∈ Ã if 

and only if the sequence {(f(bn, αn))} fuzzy converges 

to f(a, α)  for any fuzzy sequence of fuzzy points 

{(bn, αn)} in Ã that fuzzy converges to (a, α). 

Proof 

Assume that the function 𝑓: �̃� → �̃� is fuzzy con-

tinuous at a fuzzy point (𝑎, 𝛼)𝑖𝑛�̃�. Let {(𝑏𝑛, 𝛼𝑛)} be a 
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fuzzy sequence in �̃� that is fuzzy converges to (𝑎, 𝛼). 

Given 𝜀 > 0 and by the continuity of 𝑓 there is 𝜎 > 0 

such that ℳ̃�̃�(𝑓(𝑏), 𝑓(𝑎), 𝛾) < 𝜀  whenever (𝑏, 𝛽) ∈ �̃� 

satisfy ℳ̃�̃�(𝑏, 𝑎, 𝛾) < 𝜎 . Since the fuzzy sequence 

{(𝑏𝑛, 𝛼𝑛)} converges to (𝑎, 𝛼)then we can find a num-

ber 𝑛 ≥ 𝑁  with ℳ̃�̃�(𝑏n, 𝑎, 𝛾) < 𝜎 . Hence for 𝑛 ≥ 𝑁 

implies ℳ̃�̃�(𝑓(𝑏𝑛), 𝑓(𝑎), 𝛾) < 𝜀 , where 𝛾 =

max{𝛼𝑛, 𝛼 ∈ (0,1] }. Thus the fuzzy sequence 

{(𝑓(𝑏𝑛, 𝛼𝑛))} fuzzy converges to 𝑓(𝑎, 𝛼). For the con-

verse, assume that every fuzzy sequence {(𝑏𝑛 , 𝛼𝑛)} in 

�̃� converging to (𝑎, 𝛼) has the property that the fuzzy 

sequence {(𝑓(𝑏𝑛, 𝛼𝑛))} fuzzy converges to 𝑓(𝑎, 𝛼). We 

shall prove that 𝑓 is fuzzy continuous at (𝑎, 𝛼). We 

claim 𝑓 is not fuzzy continuous at (𝑎, 𝛼). Then there 

exists some 𝜀 > 0 and for which no 𝜎 > 0can satisfy 

the requirement that (𝑏, 𝛽) ∈ �̃�  and ℳ̃�̃�(𝑏, 𝑎, 𝛾) < 𝜎 

implies ℳ̃�̃�(𝑓(𝑏), 𝑓(𝑎), 𝛾) < 𝜀 , that means for each 

𝜎 > 0  there is a fuzzy point ( 𝑏, 𝛽) ∈ �̃�  with 

ℳ̃�̃�(𝑏, 𝑎, 𝛾) < 𝜎 but ℳ̃�̃�(𝑓(𝑏), 𝑓(𝑎), 𝛾) ≥ 𝜀. Now for 

each 𝑛 ∈ 𝑁, there is a fuzzy point (𝑏𝑛, 𝛼𝑛) ∈ �̃� with 

ℳ̃�̃�(𝑏𝑛, 𝑎, 𝛾) ≤ (1 −
1

𝑛
)  but ℳ̃�̃�(𝑓(𝑏𝑛), 𝑓(𝑎), 𝛾) ≥ 𝜀 . 

Then the fuzzy sequence {(𝑏𝑛 , 𝛼𝑛)}fuzzy converges to 

fuzzy point (𝑎, 𝛼) but the fuzzy sequence {(𝑓(𝑏𝑛 , 𝛼𝑛))} 

does not fuzzy converges to 𝑓(𝑎, 𝛼). This contradicts the 

assumption that each sequence {(𝑏𝑛 , 𝛼𝑛)}  in �̃�  fuzzy 

converging to (𝑎, 𝛼) with the property {(𝑓(𝑏𝑛 , 𝛼𝑛))} 

fuzzy converging to 𝑓(𝑎, 𝛼). Hence our claim that 𝑓 is 

not fuzzy continuous at (𝑎, 𝛼) must be false.  

One more characterization for the fuzzy continuous 

function is assigned in the following result.                                                                                                      

Theorem 3.3 

Let (�̃�, ℳ̃�̃�) and (�̃�, ℳ̃�̃� ) be two FM-spaces. A 

function 𝑓: �̃� → �̃� is fuzzy continuous at (𝑎, 𝛼) ∈ �̃� if 

and only if for every 𝜀 > 0 there exists 𝜎 > 0 such 

that �̃�𝜎(𝑎, 𝛼) ⊆ 𝑓−1[�̃�𝜀(𝑎, 𝛼)].  

Proof 

The function 𝑓: �̃� → �̃�  is fuzzy continuous at 

(𝑎, 𝛼) ∈ �̃� if and only if  for every 𝜀 > 0 there exists 

𝜎 > 0  with ℳ̃�̃�(𝑓(𝑏), 𝑓(𝑎), 𝛾) < 𝜀  for each 

( 𝑏, 𝛽) ∈ �̃�  implies ℳ̃�̃�(𝑏, 𝑎, 𝛾) < 𝜎  and this mean 

( 𝑏, 𝛽) ∈  �̃�𝜎(𝑎, 𝛼)  satisfying 𝑓(𝑏, 𝛽) ∈ �̃�𝜀(𝑓(𝑎, 𝛼)) or 

𝑓[�̃�𝜎(𝑎, 𝛼)] ⊆ �̃�𝜀(𝑓(𝑎, 𝛼)) . Hence �̃�𝜎(𝑎, 𝛼) ⊆

𝑓−1[�̃�𝜀(𝑎, 𝛼)]. 

According to the previous theorem, the following 

corollary is proved.  

Corollary 3.4 

A function 𝑓: �̃� → �̃� is fuzzy continuous on �̃� if 

and only if for every fuzzy open subset �̃�  of �̃� , 

𝑓−1(�̃�) is fuzzy open in �̃� where (�̃�, ℳ̃�̃�) and (�̃�, ℳ̃�̃�) 

are FM-spaces. 

Proof  

Assume that 𝑓 is a fuzzy continuous function and 

let �̃� be a fuzzy open set in �̃�. We prove that 𝑓−1(�̃�) 

is fuzzy open in �̃�. Since ∅ and �̃� are fuzzy open, we 

may assume that 𝑓−1(�̃�) ≠ ∅ and 𝑓−1(�̃�) ≠ �̃� . Con-

sider (𝑏, 𝛽) ∈ 𝑓−1(�̃�) then 𝑓(𝑏, 𝛽) ∈ �̃�. By assumption, 

�̃� is fuzzy open so there is and may assume that n ubset t 

𝜀 > 0  such that �̃�𝜀(𝑓(𝑏, 𝛽)) ⊆ �̃� , since 𝑓  is fuzzy 

continuous at (𝑏, 𝛽) by Theorem (3.3) there is some  

𝜎 > 0  with �̃�𝜎(𝑏, 𝛽) ⊆ 𝑓−1[�̃�𝜀(𝑏, 𝛽)] ⊆ 𝑓−1(�̃�) . 

Hence each fuzzy point (𝑏, 𝛽) of 𝑓−1(�̃�) is an interior 

fuzzy point and so 𝑓−1(�̃�) is a fuzzy open in �̃�.                                                                     

Conversely, suppose that 𝑓−1(�̃�) is a fuzzy open 

in �̃� for any fuzzy open set �̃� of �̃� . Now for each 

𝜀 > 0, the fuzzy ball �̃�𝜀(𝑓(𝑏, 𝛽)) where (𝑏, 𝛽) ∈ �̃� is 

fuzzy open in �̃�. Since (𝑏, 𝛽) ∈ 𝑓−1[�̃�𝜀(𝑏, 𝛽)] its fol-

lows that there is some 𝜎 > 0  with �̃�𝜎(𝑏, 𝛽) ⊆

𝑓−1[�̃�𝜀(𝑏, 𝛽)] and by Theorem (3.3) concludes that 𝑓is 

fuzzy continuous. 

Corollary 3.5 

Let (�̃�, ℳ̃�̃�) and (�̃�, ℳ̃�̃�) be an FM-spaces. A func-

tion 𝑓: �̃� → �̃� is fuzzy continuous on �̃� if and only if  

𝑓−1(�̃�) is fuzzy closed in �̃� for each fuzzy closed sub-

set �̃� of �̃�. 

Proof 

Consider �̃� be a fuzzy closed subset of �̃�  then 

�̃� − �̃�  is fuzzy open in �̃�  therefore  𝑓−1(�̃� − �̃�) is 

fuzzy open in �̃� by Corollary (4.4). But 𝑓−1(�̃� − �̃�) =

�̃� − 𝑓−1(�̃�) so 𝑓−1(�̃�) is fuzzy closed in �̃�. 

Conversely, assume that 𝑓−1(�̃�) is fuzzy closed in 

�̃� for each fuzzy closed subset �̃� of �̃�. But the whole 

space �̃� and ∅ are fuzzy closed set, then �̃� − 𝑓−1(�̃�) 

is fuzzy open in �̃� and 𝑓−1(�̃� − �̃�) = �̃� − 𝑓−1(�̃�) is 

fuzzy open in �̃�. Since each fuzzy open subset of �̃� is 

of the type �̃� − �̃�, where �̃� is a fuzzy closed set and by 

using Corollary (3.4) it follows that 𝑓 is fuzzy continu-

ous. 

The following theorem demonstrates the composi-

tion function of two fuzzy continuous functions must be 

a fuzzy continuous function. 

Proposition 3.6 

Let ( �̃�, ℳ̃�̃� ), ( �̃�, ℳ̃�̃� ) and ( �̃�, ℳ̃�̃� ) be three 
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FM-spaces and let 𝑓: �̃� → �̃�, ℎ: �̃� → �̃� be fuzzy con-

tinuous functions. Then the composition function 

(ℎ ∘ 𝑓): �̃� → �̃� is a fuzzy continuous function. 

Proof 

Let �̃� be a fuzzy open subset of �̃�. By Corollary 

(4.4) ℎ−1(�̃�) is a fuzzy open subset of �̃�. Again by 

Corollary (3.4), we get 𝑓−1(ℎ−1(�̃�)) is a fuzzy open 

subset of �̃� , since (ℎ ∘ 𝑓)−1(�̃�) = 𝑓−1(ℎ−1(�̃�))  and 

from Corollary (3.4) we conclude that (ℎ ∘ 𝑓)is a fuzzy 

continuous function. 

The concept of uniformly fuzzy continuous function 

in an FM-space is introduced in the following definition. 

Definition 3.7 

Let (�̃�, ℳ̃�̃�) and (�̃�, ℳ̃�̃� ) be two FM-spaces. A 

function 𝑓: �̃� → �̃� is said to be uniformly fuzzy contin-

uous on �̃� if for each 𝜀 > 0 there is some 𝜎 > 0 such 

that ℳ̃�̃�(𝑓(𝑎1), 𝑓(𝑎2), 𝛾) < 𝜀  whenever 

ℳ̃�̃�(𝑎1, 𝑎2, 𝛾) < 𝜎. 

The Cauchy fuzzy property of the sequence in an 

FM-space discusses in the following theorem. 

Theorem 3.8 

Suppose that (�̃�, ℳ̃�̃� ) and ( �̃�, ℳ̃�̃� ) are two 

FM-spaces and let 𝑓: �̃� → �̃� be a uniformly fuzzy con-

tinuous function. If {(𝑎𝑛, 𝛼𝑛)} is a Cauchy fuzzy se-

quence in �̃�  then {(𝑓(𝑎𝑛 , 𝛼𝑛))} is Cauchy fuzzy se-

quence in �̃�. 

Proof 

Let 𝑓be uniformly fuzzy continuous. Then by def-

inition(3.7) for each 𝜀 > 0 there is 𝜎 > 0  such that 

ℳ̃�̃�(𝑓(𝑎1), 𝑓(𝑎2), 𝛾) < 𝜀  whenever ℳ̃�̃�(𝑎1, 𝑎2, 𝛾) <

𝜎 , for each (𝑎1, 𝛼1), (𝑎2, 𝛼2) ∈ �̃� , where 𝛾 =

max{𝛼1, 𝛼2 ∈ (0,1]} . Since {(𝑎𝑛 , 𝛼𝑛)}  is a Cauchy 

fuzzy sequence in �̃� corresponding to 𝜎 > 0 there is 

an integer number 𝑁 ∈ ℕ with ℳ̃�̃�(𝑎𝑛 , 𝑎𝑚, 𝛾) < 𝜎 for 

any 𝑚, 𝑛 ≥ 𝑁 . Hence we conclude that 

ℳ̃�̃�(𝑓(𝑎𝑛), 𝑓(𝑎𝑚), 𝛾) < 𝜀 for each 𝑚, 𝑛 ≥ 𝑁 and this 

implies that {(𝑓(𝑎𝑛, 𝛼𝑛))} is a Cauchy fuzzy sequence. 

The following theorem demonstrates the composi-

tion function of two uniformly fuzzy continuous func-

tions must be a uniformly fuzzy continuous function. 

Proposition 3.9 

Let (�̃�, ℳ̃�̃�), (�̃�, ℳ̃�̃�) and (�̃�, ℳ̃�̃�) be an FM-spaces. 

Let 𝑓: �̃� → �̃�  and ℎ: �̃� → �̃� . Then if 𝑓  is uniformly 

fuzzy continuous on �̃� and ℎ is uniformly fuzzy con-

tinuous on 𝑓(�̃�)  then (ℎ ∘ 𝑓): �̃� → �̃�  is uniformly 

fuzzy continuous on �̃�. 

Proof 

Let 𝜀 > 0be given. We want to find a𝜎 > 0 such 

that if (𝑎1, 𝛼1), (𝑎2, 𝛼2) ∈ �̃�  and ℳ̃�̃�(𝑎1, 𝑎2, 𝛾) <

𝜎 then ℳ̃�̃�(ℎ(𝑓(𝑎1)), ℎ(𝑓(𝑎2)), 𝛾) < 𝜀 . Since ℎ  is 

uniformly fuzzy continuous on𝑓(�̃�) then there exists a 

𝜎1 > 0  such that if  𝑓(𝑎1, 𝛼1), 𝑓(𝑎2, 𝛼2) ∈ �̃�  and 

ℳ̃�̃�(𝑓(𝑎1), 𝑓(𝑎2), 𝛾) < 𝜎1. 

Then, ℳ̃�̃�(ℎ(𝑓(𝑎1)), ℎ(𝑓(𝑎2)), 𝛾) < 𝜀              

(1) 

Now, since 𝑓 is uniformly fuzzy continuous on�̃� 

then there exists a 𝜎2 > 0  such that if 

(𝑎1, 𝛼1), (𝑎2, 𝛼2) ∈ �̃� and ℳ̃�̃�(𝑎1, 𝑎2, 𝛾) < 𝜎2. 

Then, ℳ̃�̃�(𝑓(𝑎1), 𝑓(𝑎2), 𝛾) < 𝜎1             

(2) 

Put 𝜎 = 𝜎2 , then for each (𝑎1, 𝛼1), (𝑎2, 𝛼2) ∈ �̃�  we 

have that (1) holds. Since (1) holds we have that (2) 

holds. Thus (ℎ ∘ 𝑓) is uniformly fuzzy continuous on �̃�.  

4. Conclusion 

In this paper, the definitions of fuzzy continuous 

function from fuzzy metric space (�̃�, ℳ̃�̃�) into a fuzzy 

metric space (�̃�, ℳ̃�̃�) is introduced then several proper-

ties are discussed. Also the definition of uniformly fuzzy 

continuous function from a fuzzy metric space (�̃�, ℳ̃�̃�) 

into a fuzzy metric space (�̃�, ℳ̃�̃�) is given and essential 

theorems are proved.  
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