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ABSTRACT

INFORMATIONALLY COMPLETE MEASUREMENTS AND OPTIMAL

REPRESENTATIONS OF QUANTUM THEORY

August 2020

John B. DeBrota, B.S., Indiana University Bloomington
M.Sc., University of Waterloo

Ph.D, University of Massachusetts Boston

Directed by Professor Christopher A. Fuchs

Minimal informationally complete quantum measurements (MICs) furnish probabilistic

representations of quantum theory. These representations cleanly present the Born rule as

an additional constraint in probabilistic decision theory, a perspective advanced by QBism.

Because of this, their structure illuminates important ways in which quantum theory differs

from classical physics. MICs have, however, so far received relatively little attention. In

this dissertation, we investigate some of their general properties and relations to other topics

in quantum information. A special type of MIC called a symmetric informationally com-

plete measurement makes repeated appearances as the optimal or extremal solution in dis-

tinct settings, signifying they play a significant foundational role. Once the general struc-

ture of MICs is more fully explicated, we speculate that the representation will have unique

advantages analogous to the phase space and path integral formulations. On the conceptual

iv



side, the reasons for QBism continue to grow. Most recently, extensions to the Wigner’s

friend paradox have threatened the consistency of many interpretations. QBism’s resolution

is uniquely simple and powerful, further strengthening the evidence for this interpretation.
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CHAPTER 1

INTRODUCTION

Ninety-five years ago, physicists got something right. Quantum theory has since en-

joyed experimental confirmation of a degree unprecedented in the history of science. Its

application in materials allowed us to understand semiconductors well enough to design

microchips, enabling the modern technological era. Stimulated emission led to lasers and

nuclear spin led to magnetic resonance imaging. In the decades following 1925, physi-

cists produced each part of what is now known as the Standard Model, a “quantum field

theory” which has allowed for incredible predictive precision in high energy collision ex-

periments. For example, the National Institute of Standards and Technology reports the

value of the fine structure constant to a relative standard uncertainty of 1.5 × 10−10 [1].

Even more excitingly, the very same quantum theory is now pointing the way to the next

technological era; fully fault-tolerant quantum computers are still speculative, but the so-

called Noisy Intermediate-Scale Quantum era, which already promises advantages, has

begun [2].

So quantum theory is “right,” but what is it right about? What about nature makes it

the right theory? In classical physics, physical postulate and formalism closely play off

of one another. One might, roughly speaking, think about the classical laws of physics in

much the same way that an engineer looks at the schematics of a machine, with the calcu-

lations neatly following from a description of its constituents. Classical mechanics even
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has this conception in the name—one was to think of it as the physics of the machine that

is our reality. Quantum theory frustrates this view. Some try to view quantum theory as a

point-for-point substitution of classical notions, with wavefunctions as direct, drop-in re-

placements for the so-called elements of reality. From this perspective, quantum mechan-

ics is simply a more complicated schematic; one with complex numbers and operators,

but conceptually the same kind of entity as classical mechanics before it. However, this

style of approach is fraught with difficulties which may be insuperable. More importantly,

such an association ignores all evidence that the formalism is a different kind of theory,

one more about our knowledge than a representation of physical fact [3].

Discussing the relative merits and weaknesses of different approaches to the under-

standing of quantum theory is not our purpose in this dissertation.1 Instead, our primary

intent is to pursue technical questions which arise from one particularly flexible and com-

pelling epistemic view: QBism, the “subjective Bayesian” approach to quantum theory.

There are several excellent accounts of this interpretation [4–8].2 Although the technical

questions we address were motivated by QBist intuitions, it is not necessary for the reader

to fully familiarize themselves with QBism prior to reading this dissertation as the perti-

nent concepts are introduced as they arise in each chapter.

QBism says that quantum theory is an addition to probabilistic decision theory. What

does this mean? The basic quantum scenario goes like this. An experimentalist plans to

perform an experiment and would like to forecast their expectations for what they will

find upon making a measurement at the end. Quantum theory instructs them to pick an

initial quantum state for reasoning about the system, a quantum channel to transform the

state in accordance with their understanding of the experiment, and a particular quantum

1Although we do indulge in Chapter 8.
2For nearly 3000 combined pages of correspondence chronicling the development of QBism, see [9]

and [10].
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measurement comprised of effect operators associated to the outcomes of the measure-

ment they intend to perform. If they manage to do so, the probabilities they seek can then

be computed from the final quantum state and the measurement with the Born rule.3

The theory tells you how to use quantum states, channels, and measurements, but

it doesn’t prescribe a particular way of determining them. Take, for example, quantum

states. In textbook exercises, the quantum state one needs is typically in the problem

statement, but in the lab it is never so simple. Experimenters need to familiarize them-

selves with the lab, their equipment, calibration samples, and likely many other things

before they start to have a hunch that one quantum state will work better than another.

Having finally done enough to confidently express a quantum state is often a momen-

tous occasion, involving quite a bit of statistical and probabilistic legwork. This process

may take many forms, but the key point is that one’s expectations for a sufficient diver-

sity of potential interactions with a system is what determines the state that an experi-

menter uses. In other words, probabilities fix the quantum state and the quantum state, in

turn, may be used to produce probabilities. A similar story can be told for channels and

measurements [4]. Cast in this way, quantum theory is about how such input and output

probabilities are constrained and these constraints are in addition to the logical constraints

probability theory itself already mandates.

If this is what quantum theory is from a conceptual standpoint, one immediately ques-

tions the necessity of actually using the intermediate mathematical tools of states, chan-

nels, and effects. After all, these objects only figure in the figuring; probabilities are the

ultimate deliverable. That quantum theory can, in principle, be expressed purely in terms

of probabilities is not altogether surprising. And, of course, the particular packaging rep-

3The technical setting for what we have sketched is the general formulation used in quantum informa-
tion theory. For a concise and complete introduction, see [11].
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resented by the standard representation has many advantages—there are reasons it is the

standard and little reason to expect that any alternative would ever fully supplant it. But

useful alternatives may expose traits of the theory which are obscured in the typical con-

ception. For example, in phase space representations of quantum theory, the principle ad-

vantage is that aspects of classical phase space analysis become possible within quantum

theory. Another example is the path integral formulation. Although equivalent to the stan-

dard representation, this purely representational innovation enabled significant advances.

On the face of it, a purely probabilistic representation is likely to be hopelessly messy and

unilluminating. Wootters put it this way [12]:

It is obviously possible to devise a formulation of quantum mechanics with-

out probability amplitudes. One is never forced to use any quantities in one’s

theory other than the raw results of measurements. However, there is no rea-

son to expect such a formulation to be anything other than extremely ugly.

If this intuition holds, then while the considerations above may express quantum theory’s

conceptual meaning, these insights may have less lasting practical value than the analo-

gies which led to previous representations have had.

The central theme of this dissertation is that this intuition does not hold. Not only are

there formulations which are not extremely ugly, there are clean and physically illumi-

nating options. The key to these formulations is a class of quantum measurements called

minimal informationally complete quantum measurements (MICs).

In Chapter 2 we will thoroughly introduce this class of measurements. MICs are quan-

tum reference measurements. This means that a probability distribution for the outcomes

of a single MIC measurement is equivalent to a specification of a quantum state, and

the fact that they are “minimal” refers to the fact that the probability distribution has the
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fewest number of entries possible. MICs illuminate the structure of quantum theory and

how it departs from the classical. In this chapter, we establish general properties of MICs,

explore constructions of several classes of them, and make some developments to the the-

ory of MIC Gram matrices, that is, the matrix of Hilbert–Schmidt inner products of MIC

effect operators. These Gram matrices turn out to be a rich subject of inquiry, relating

linear algebra, number theory and probability. Unlike the measurement operators corre-

sponding to quantum observables, a MIC can never be an orthogonal set. In a deep sense,

we will see that the ideal measurements of quantum physics are not orthogonal bases.

In this chapter we also meet the symmetric informationally complete quantum measure-

ments (SICs), a special class of MICs distinguished by being rank-1, meaning all effects

are proportional to rank-1 projectors, and equiangular, meaning the Hilbert–Schmidt in-

ner product between any two distinct effects is the same. SICs are in many ways optimal

among MICs. This chapter provides further context to this view.

In Chapter 3 we describe a general procedure for associating a MIC with a purely

probabilistic representation of the Born Rule. Such representations provide a way to un-

derstand the Born Rule as a consistency condition between probabilities assigned to the

outcomes of one experiment in terms of the probabilities assigned to the outcomes of

other experiments. In this setting, the difference between quantum and classical physics

is the way their physical assumptions augment bare probability theory: Classical physics

corresponds to a trivial augmentation—one just applies the Law of Total Probability (LTP)

between the scenarios—while quantum theory makes use of the Born Rule expressed in

one or another of the forms of our general procedure. To mark the irreducible difference

between quantum and classical, one should seek the representations that minimize the

disparity between the expressions. We prove that the representation of the Born Rule ob-

tained from a SIC minimizes this distinction in at least two senses—the first to do with
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unitarily invariant distance measures between the rules, and the second to do with avail-

able volume in a reference probability simplex (roughly speaking a new kind of uncer-

tainty principle). Both of these arise from a useful result in majorization theory.

The reference process described in Chapter 3 constitutes an “entanglement breaking”

quantum channel, a channel which always produces a probabilistic mixture of a previ-

ously agreed upon set of states. In Chapter 4 we consider an alternative channel based on

the most familiar quantum state update rule, the Lüders rule. Using this construction, we

establish an if-and-only-if condition for the existence of a d-dimensional SIC in terms of

a particular depolarizing channel. Moreover, the channel in question satisfies two entropic

optimality criteria.

The desire to retain some phase space concepts in quantum mechanics inspired the

development of Wigner functions. Although Wigner functions provide a way to do quan-

tum physics with a phase space, they require the use of “probability” distributions that

can go negative, that is, quasiprobabilities. This is an extremely unsatisfying move from

our perspective, as the decision theoretic character of true probabilities is central to our

strategy for developing a new representation. In Chapter 5 we lay the groundwork for

relating MIC and Wigner function representations and identify the need to translate the

many decades of phase space quasiprobability results to the language of reference prob-

abilities. We observe that the operator bases corresponding to minimal discrete Wigner

functions, which we call Wigner bases, are orthogonalizations of MICs. By not impos-

ing a particular discrete phase space structure at the outset, we are able to push Wigner

functions to their limits in a suitably quantified sense, revealing a new way in which SICs

are significant. Finally, we speculate that astute choices of MICs from the orthogonaliza-

tion preimages of Wigner bases may in general give quantum measurements conceptually

underlying the associated quasiprobability representations.
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The appearance of negative terms in quasiprobability representations of quantum the-

ory is known to be inevitable, and, due to its equivalence with the onset of contextual-

ity, of central interest in quantum computation and information. Until recently, however,

nothing has been known about how much negativity is necessary in a quasiprobability

representation. Zhu [13] proved that the upper and lower bounds with respect to one type

of negativity measure among unbiased Wigner bases are in one-to-one correspondence

with the SICs. In Chapter 6 we define a family of negativity measures which includes

Zhu’s as a special case and consider another member of the family which we call “sum

negativity.” We prove a sufficient condition for local maxima in sum negativity and find

exact global maxima in dimensions 3 and 4. Notably, we find that Zhu’s result on the

SICs does not generally extend to sum negativity, although the analogous result does hold

in dimension 4. At the end of the chapter, the Hoggar SIC in dimension 8 makes an ap-

pearance in a conjecture on sum negativity. We anticipate further developments along

these lines once the relation between MICs and Wigner bases described in Chapter 5 is

brought into the fold.

MICs have thus far received very little attention. In fact, the work in this dissertation

represents a significant portion of what has been written about them. The situation may be

beginning to change [14, 15]. We hope that the subject will continue to grow in popular-

ity. As we will articulate many times in subsequent chapters, we believe that developing

a deep understanding of the structure of these measurements will be instrumental in dis-

covering precisely what it is about reality that makes quantum theory our best means for

navigating it.

Our attitude towards physics is an intuitive interplay between the technical and con-

ceptual, striving to knead out a coherent point of view. Chapters 7 and 8 are drawn from

the conceptual side. The emphasis of each is QBism itself.
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The focus of Chapter 7 concerns two very instructive modifications of the Wigner’s

friend paradox [16]. One concerns a recent no-go theorem by Frauchiger and Renner [17]

and the other is a thought experiment by Baumann and Brukner [18]. The resolution of

Wigner’s original thought experiment was central to the development of QBist thinking.

Careful treatment of these modifications has accordingly sharpened our intuitions. We

show that the paradoxical features emphasized in these works disappear once both friend

and Wigner are understood as agents on an equal footing with regard to their individual

uses of quantum theory. Wigner’s action on his friend then becomes, from the friend’s

perspective, an action the friend takes on Wigner. When two agents take actions on each

other, each agent has a dual role as a physical system for the other agent. No user of quan-

tum theory is more privileged than any other.

Chapter 8 is a catalog of frequently asked questions about QBism. These remarks

(many of them lighthearted) should be considered supplements to more systematic treat-

ments appearing in the literature.

We take stock of the journey so far in Chapter 9, the conclusion. Although there we

conclude this dissertation, the journey has just begun.

1.1 Author Contributions

The following chapters comprise monographs coauthored by the author of this dis-

sertation during his time in the QBism Group at the University of Massachusetts Boston.

Three have been published, one will soon appear, two others have been submitted for pub-

lication, and one stands alone as a whimsical collection of essay answers to frequently

asked questions. If read like a book, the reader will encounter repetition of some concepts

in this dissertation from chapter to chapter, presented in different ways. These repetitions

are partially an artifact of the chapters being separate manuscripts, each of which had to
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set the scene anew. But preserving them was also a conscious choice because some points

bear repeating; the author himself has occasionally had to hear the same thing many times

before it stuck.

Each of the following chapters, excluding the conclusion, is a manuscript. All but

Chapter 8 have appeared in publications or have been submitted to journals. In our group,

author ordering is alphabetical rather than in contribution order. Accordingly, in the fol-

lowing list we make explicit our role in each paper, referring to other authors by their ini-

tials. The chapters have been arranged in a pedagogically motivated order, rather than

chronologically.

1. Chapter 2 “MIC Facts” is the main text of [19]:

J. B. DeBrota, C. A. Fuchs, and B. C. Stacey, “Analysis and Synthesis of Minimal
Informationally Complete Quantum Measurements,” submitted to Physical Review
X Quantum.

I was the primary contributor to this work. I produced about two thirds of the proofs

and all of the numerical content and figures. The majority of the remaining third

was contributed by BCS and a smaller amount is due to CAF, although typeset by

BCS and myself. This document has a long history and it underwent many signifi-

cant revisions. At a conceptual level, all three authors contributed substantially. The

writing portion was close to evenly split between BCS and myself. BCS is responsi-

ble for much of the text in the introduction. CAF contributed some of the direction

of research, asked important questions, suggested analysis methods for a few of the

results, and edited the draft.

2. Chapter 3 “LTP analogs” is the main text and appendices of [20]:
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J. B. DeBrota, C. A. Fuchs, and B. C. Stacey, “Symmetric informationally complete
measurements identify the irreducible difference between classical and quantum
systems,” Physical Review Research, vol. 2, pp. 013074, 2020.

I was the primary contributor this work. I produced the final versions of all proofs

and was the primary, although not sole, contributor to their development. I was re-

sponsible for the initial mathematical framing which led to the questions we ex-

plored; subsequently, we three were equally involved in the research directions. I

drafted all technical parts and figures. CAF and BCS wrote the introductory para-

graphs, asked important questions, produced early versions of some proof argu-

ments, otherwise suggested analysis methods, and edited the draft.

3. Chapter 4 “Lüders MIC Channels” is the main text and appendices of [21]:

J. B. DeBrota and B. C. Stacey, “Lüders channels and the existence of symmetric
informationally-complete measurements,” Physical Review A, vol. 100, p. 062327,
2019.

I was the primary contributor to this work, but not by a large margin. BCS and I

closely collaborated at every stage of this work. I produced the final versions of all

proofs. BCS asked important questions, originated some proof direction ideas, and

advocated for the emphases which appear in the final version. I drafted all or nearly

all technical parts and BCS drafted the majority of the conceptual content.

4. Chapter 5 “The Principal Wigner Function” is the main text of [22]:

J. B. DeBrota and B. C. Stacey, “Discrete Wigner Functions from Informationally
Complete Measurements,” submitted to Physical Review X Quantum.

I was the primary contributor to this work. I proposed the direction of research and

conjectured and proved every result in the draft. All technical sections were entirely

written by me. BCS wrote about half of the introduction, the majority of Section 2,
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and about half of the penultimate section, all of which are predominately concep-

tual content. BCS additionally asked important questions during the research phase.

5. Chapter 6, “Sum Negativity” is the main text of [23]:

J. B. DeBrota and C. A. Fuchs, “Negativity bounds for Weyl–Heisenberg quasiprob-
ability representations,” Foundations of Physics, vol. 47, pp. 1009–30, 2017.

I was the primary contributor to this work. I proved all of the results, conducted all

numerics, and drafted the paper. CAF proposed some of the direction of research,

suggested key analysis methods, asked important questions, and edited the draft.

6. Chapter 7 “Wigner’s Friends” is the main text of [24]

J. B. DeBrota, C. A. Fuchs, and R. Schack, “Respecting One’s Fellow: QBism’s
Analysis of Wigner’s Friend,” to appear in Foundations of Physics, 2020.

I was the least significant contributor to this work. My primary role was partici-

pation in the numerous discussions and brainstorming sessions over the course of

the last couple of years which eventually led to the positions represented in the pa-

per. A few of the key conclusions appearing in the draft can be traced to my ques-

tions and perspectives. RS wrote the bulk of the draft and CAF wrote some parts.

I proofread and suggested revisions and emphases at several stages of the writing

process.

7. Chapter 8 “FAQBism” is the main text of [25]:

J. B. DeBrota and B. C. Stacey, “FAQBism,” arXiv:1810.13401, 2018.

BCS was the primary author of this work. I was involved in discussions surround-

ing all of the topics addressed and I primarily drafted a minority of the subsections.
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CHAPTER 2

MIC FACTS

2.1 Introduction

A significant part of science is the pursuit of measurements that are as informative as

possible. Attempts to provide an elementary explanation of “the scientific method” some-

times convey the notion that an ideal measurement is one which is exactly reproducible,

always yielding the same answer when applied in succession. But this notion has fairly

obvious problems, for example, when the system being measured is dynamical. When the

experiment’s sought outcome is the position of Mars at midnight, the numbers will not be

the same from one night to the next, and yet Kepler could run a scientific revolution on

that data. A more refined standard would be that an ideal measurement is one that pro-

vides enough information to project the complete dynamical trajectory of the measured

system through phase space. Quantum physics frustrates this ambition by denying the

phase space: Quantum uncertainties are not uncertainties about the values of properties

that pre-exist the act of measurement. Yet the ideal of a sufficiently informative measure-

ment, the expectations for which fully fix the expectations for any other, can still be trans-

lated from classical thought to quantum, and doing so illuminates the nature of quantum

theory itself.
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LetHd be a d-dimensional complex Hilbert space, and let {Ei} be a set of positive

semidefinite operators on that space which sum to the identity:

N∑
i=1

Ei = I. (2.1)

The set {Ei} is a positive-operator-valued measure (POVM), which is the mathemati-

cal representation of a measurement process in quantum theory. Each element in the set

— called an effect — stands for a possible outcome of the measurement [1, §2.2.6]. A

POVM is said to be informationally complete (IC) if the operators {Ei} span L(Hd), the

space of Hermitian operators onHd, and an IC POVM is said to be minimal if it contains

exactly d2 elements. For brevity, we can call a minimal IC POVM a MIC.

A matrix which captures many important properties of a MIC is its Gram matrix, that

is, the matrix G whose entries are given by

[G]ij := trEiEj . (2.2)

Of particular note among MICs are those which enjoy the symmetry property

[G]ij = [GSIC]ij :=
1

d2

dδij + 1

d+ 1
. (2.3)

These are known as symmetric informationally complete POVMs, or SICs for short [2–5].

In addition to their purely mathematical properties, SICs are of central interest to the tech-

nical side of QBism, a research program in the foundations of quantum mechanics [6–9].

Investigations motivated by foundational concerns led to the discovery that SICs are in

many ways optimal among MICs [10–12]. In this paper, we elaborate upon some of those

results and explore the conceptual context of MICs more broadly.
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MICs provide a new way of understanding the Born Rule, a key step in how one uses

quantum physics to calculate probabilities. The common way of presenting the Born Rule

suggests that it fixes probabilities in terms of more fundamental quantities, namely quan-

tum states and measurement operators. MICs, however, suggest a change of viewpoint.

From this new perspective, the Born Rule should be thought of as a consistency condition

between the probabilities assigned in diverse scenarios — for instance, probabilities as-

signed to the outcomes of complementary experiments. The bare axioms of probability

theory do not themselves impose relations between probabilities given different condi-

tionals: In the abstract, nothing ties together P (E|C1) and P (E|C2). Classical intuition

suggests one way to fit together probability assignments for different experiments, and

quantum physics implies another. The discrepancy between these standards encapsulates

how quantum theory departs from classical expectations [13, 14]. MICs provide the key

to addressing this discrepancy; any MIC may play the role of a reference measurement

through which the quantum consistency condition may be understood. To understand

MICs is to understand how quantum probability is like, and differs from, classical.

In the next section, we introduce the fundamentals of quantum information theory and

the necessary concepts from linear algebra to prove a few basic results about MICs and

comment on their conceptual meaning. Among the results included are a characterization

of unbiased MICs, a condition in terms of matrix rank for when a set of vectors in Cd can

be fashioned into a MIC, and an explicit example of an unbiased MIC which is not group

covariant. In Section 2.3, we show how to construct several classes of MICs explicitly and

note some properties of their Gram matrices. In Section 2.4, we explore several ways in

which SICs are optimal among MICs for the project of differentiating the quantum from

the classical, a topic complementing one of our recent papers [12]. To conclude, in Sec-

tion 2.5, we conduct an initial numerical study of the Gram matrix eigenvalue spectra of
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randomly-chosen MICs of four different types. The empirical eigenvalue distributions we

find have intriguing features, not all of which have been explained yet.

2.2 Basic Properties of MICs

We begin by briefly establishing the necessary notions from quantum information the-

ory on which this paper is grounded. In quantum physics, each physical system is asso-

ciated with a complex Hilbert space. Often, in quantum information theory, the Hilbert

space of interest is taken to be finite-dimensional. We will denote the dimension through-

out by d. A quantum state is a positive semidefinite operator of unit trace. The extreme

points in the space of quantum states are the rank-1 projection operators:

ρ = |ψ〉〈ψ|. (2.4)

These are idempotent operators; that is, they all satisfy ρ2 = ρ. If an experimenter as-

cribes the quantum state ρ to a system, then she finds her probability for the ith outcome

of the measurement modeled by the POVM {Ei} via the Hilbert–Schmidt inner product:

p(Ei) = tr ρEi. (2.5)

This formula is a standard presentation of the Born Rule. The condition that the {Ei} sum

to the identity ensures that the resulting probabilities are properly normalized.

If the operators {Ei} span the space of Hermitian operators, then the operator ρ can be

reconstructed from its inner products with them. In other words, the state ρ can be calcu-

lated from the probabilities {p(Ei)}, meaning that the measurement is “informationally

complete” and the state ρ can, in principle, be dispensed with. Any MIC can thus be con-
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sidered a “Bureau of Standards” measurement, that is, a reference measurement in terms

of which all states and processes can be understood [15]. Writing a quantum state ρ is

often thought of as specifying the “preparation” of a system, though this terminology is

overly restrictive, and the theory applies just as well to physical systems that were not

processed on a laboratory workbench [16].

Given any POVM {Ei}, we can always write its elements as unit-trace positive semidef-

inite operators with appropriate scaling factors we call weights:

Ei := eiρi, where ei = trEi. (2.6)

If the operators ρi are all rank-1 projectors, we will refer to the set {Ei} as a rank-1 POVM.

We will call a POVM unbiased when the weights ei are all equal. Such operator sets rep-

resent quantum measurements that have no intrinsic bias: Under the Born Rule they map

the “garbage state” (1/d)I to a flat probability distribution. For an unbiased MIC, the

condition that the elements sum to the identity then fixes ei = 1/d.

A column (row) stochastic matrix is a real matrix with nonnegative entries whose

columns (rows) sum to 1. If a matrix is both column and row stochastic we say it is dou-

bly stochastic. The following theorem allows us to identify an unbiased MIC from a glance

at its Gram matrix or Gram matrix spectrum.

Theorem 1. Let {Ei} be a MIC and λmax(G) be the maximal eigenvalue of its Gram ma-

trix G. The following are equivalent:

1. {Ei} is unbiased.

2. dG is doubly stochastic.

3. λmax(G) = 1/d.
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Proof. The equivalence of the first two conditions is readily shown. We show (2) ⇐⇒

(3). Let |v〉 := 1
d
(1, . . . , 1)T be the normalized d2 element uniform vector of 1s. If dG is

doubly stochastic, |v〉 is an eigenvector of dG with eigenvalue 1, and the Gershgorin disc

theorem [17] ensures λmax(G) = 1/d. For any MIC,

λmax(G) ≥ 〈v|G|v〉 =
1

d
, (2.7)

with equality iff |v〉 is an eigenvector of G with eigenvalue 1/d. Since G|v〉 = (e1, . . . , ed2)
T,

|v〉 is an eigenvector of G iff ei = 1/d for all i.

Given a basis for an inner product space, the dual basis is defined by the condition

that the inner products of a vector with the elements of the dual basis provide the coeffi-

cients in the expansion of that vector in terms of the original basis. In our case, let {Ẽi}

denote the basis dual to {Ei} so that, for any vector A ∈ L(Hd),

A =
∑
j

(trAẼj)Ej . (2.8)

One consequence of this definition is that if we expand the original basis in terms of itself,

Ei =
∑
j

(trEiẼj)Ej , (2.9)

linear independence of the {Ei} implies that

trEiẼj = δij , (2.10)
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from which one may easily see that the original basis is the dual of the dual basis,

A =
∑
j

(trAEj)Ẽj . (2.11)

In the familiar case when the original basis is orthonormal, the dual basis coincides with

it: When we write a vector v as an expansion over the unit vectors (x̂, ŷ, ẑ), the coeffi-

cient of x̂ is simply the inner product of x̂ with v.

A MIC is a positive semidefinite operator basis. For positive semidefinite operators A

and B, trAB = 0 iff AB = 0. Recall that a Hermitian matrix which is neither positive

semidefinite nor negative semidefinite is known as an indefinite matrix.

Theorem 2. The dual basis of a MIC is composed entirely of indefinite matrices.

Proof. Suppose Ẽ1 ≥ 0. The definition of a dual basis tells us tr Ẽ1Ek = 0 for all k 6= 1.

Because they are both positive semidefinite, Ẽ1Ek = 0 for all k 6= 1. This means the

d2−1 MIC elements other than E1 are operators on a d− rank(Ẽ1) dimensional subspace.

But

dim
[
L
(
H
d−rank(Ẽ1)

)]
≤ (d− 1)2 < d2 − 1, (2.12)

so they cannot be linearly independent. If Ẽ1 ≤ 0, −Ẽ1 is positive semidefinite and the

same logic holds.

Corollary. No element in a MIC can be proportional to an element of the MIC’s dual

basis.

Corollary. No MIC can form an orthogonal basis.

Proof. Suppose {Ei} is a MIC which forms an orthogonal basis, that is, trEiEj = ciδij

for some constants ci. Summing this over i reveals cj = ej , the weights of the MIC. Thus

the dual basis is given by Ẽj = Ej/ej = ρj which is a violation of Corollary 2.2.
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Corollary. No MIC outcome can ever be assigned probability 1.

Proof. MIC probabilities provide the expansion coefficients for a state in the dual basis.

If P (Ei) = 1 for some i, the state would equal the dual basis element, but a state must be

positive semidefinite.

Corollary. No effect of a MIC can be an unscaled projector.

Proof. Suppose E1 were equal to an unscaled projector P . Then any eigenvector of P is a

pure state which would imply probability 1 for the MIC outcome E1, which is impossible.

Theorem 2.2 and the subsequent corollaries have physical meaning. In classical prob-

ability theory, we grow accustomed to orthonormal bases. For example, imagine an ob-

ject that can be in any one of N distinct configurations. When we write a probability

distribution over these N alternatives, we are encoding our expectations about which of

these configurations is physically present — about the “physical condition” of the ob-

ject, as Einstein would say [18], or in more modern terminology, about the object’s “on-

tic state” [19]. We can learn everything there is to know about the object by measuring

its “physical condition”, and any implementation of such an ideal measurement is repre-

sented by conditional probabilities that are 1 in a single entry and 0 elsewhere. In other

words, the map from the object’s physical configuration to the reading on the measure-

ment device is, at its most complicated, a permutation of labels. Without loss of gener-

ality, we can take the vectors that define the ideal measurement to be the vertices of the

probability simplex: The measurement basis is identical with its dual, and the dual-basis

elements simply label the possible “physical conditions” of the object which the measure-

ment reads off.
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In quantum theory, by contrast, no element of a MIC may be proportional to an el-

ement in the dual. This stymies the identification of the dual-basis elements as intrinsic

“physical conditions” ready for a measurement to read.

Theorem 3. No elementwise rescaling of a proper subset of a MIC may form a POVM.

Proof. Since a MIC is a linearly independent set, the identity element is uniquely formed

by the defining expression

I =
d2∑
i=1

Ei. (2.13)

If a linear combination of a proper subset Ω of the MIC elements could be made to also

sum to the identity,

I =
∑
i∈Ω

αiEi, (2.14)

then subtracting (2.14) from (2.13) implies

0 =
∑
i∈Ω

(1− αi)Ei +
∑
i/∈Ω

Ei (2.15)

which is a violation of linear independence.

Corollary. No two elements in a d = 2 MIC may be orthogonal under the Hilbert–

Schmidt inner product.

Proof. An orthogonal pair of elements in dimension 2 may be rescaled such that they sum

to the identity element. Therefore, by Theorem 3, they cannot be elements of a MIC.

These results also have physics implications. For much of the history of quantum me-

chanics, one type of POVM had special status: the von Neumann measurements, which

consist of d elements given by the projectors onto the vectors of an orthonormal basis of

Cd. Indeed, in older books, these are the only quantum measurements that are considered
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(often being defined as the eigenbases of Hermitian operators called “observables”). We

can now see that, from the standpoint of informational completeness, the von Neumann

measurements are rather pathological: There is no way to build a MIC by augmenting a

von Neumann measurement with additional outcomes.

Another holdover from the early days of quantum theory concerns the process of up-

dating a quantum state in response to a measurement outcome. If one restricts attention

to von Neumann measurements, one may feel tempted to grant special importance to the

post-measurement state being one of the eigenvectors of an “observable”. This type of up-

dating is a special case of the more general theory developed as quantum mechanics was

understood more fully. The Lüders Rule [20, 21] states that the post-measurement state

upon obtaining the outcome associated with effect Ei for a POVM {Ei} is

ρ′i :=

√
Eiρ
√
Ei

tr ρEi
. (2.16)

In the special case of a von Neumann measurement, this reduces to replacing the state

for the system with the eigenprojector corresponding to the measurement outcome. A

physicist who plans to follow that procedure and then repeat the measurement imme-

diately afterward would expect to obtain the same outcome twice in succession. Some

authors regard this possibility as the essential point of contact with classical mechanics

and attempt to build an understanding of quantum theory around such “ideal” measure-

ments [22]. But, as we said in the introduction, obtaining the same outcome twice in suc-

cession is not a good notion of a “classical ideal”. Especially in view of the arbitrariness

of von Neumann measurements from our perspective, we regard this possibility as con-

ceptually downstream from the phenomenon of informationally complete measurements.
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Corollary 2.2 prompts a question: May any elements of a MIC in arbitrary dimension

be orthogonal? In other words, can any entry in a G matrix equal zero? We answer this

question in the affirmative with an explicit example of a rank-1 MIC in dimension 3 with

7 orthogonal pairs.

Example. When multiplied by 1/3, the following is a rank-1 unbiased MIC in dimension

3 with 7 orthogonal pairs.





1 0 0

0 0 0

0 0 0


,



0 0 0

0 1 0

0 0 0


,



1
2

0 1
2

0 0 0

1
2

0 1
2


,



0 0 0

0 1
2

1
2

0 1
2

1
2


,



1
2

0 i
2

0 0 0

− i
2

0 1
2


,



0 0 0

0 1
2

i
2

0 − i
2

1
2


,



1
3

i
3
− i

3

− i
3

1
3
−1

3

i
3
−1

3
1
3


,



5
8

−1
8
− i

4
−3

8
− i

8

−1
8

+ i
4

1
8

1
8
− i

8

−3
8

+ i
8

1
8

+ i
8

1
4


,



1
24

1
8
− i

12
−1

8
− i

24

1
8

+ i
12

13
24

− 7
24
− 3i

8

−1
8

+ i
24
− 7

24
+ 3i

8
5
12




.

(2.17)

These are projectors onto the following vectors inHd:

{
(1, 0, 0), (0, 1, 0),

1√
2

(1, 0, 1),
1

2
(0, 1, 1),

1√
2

(1, 0,−i), 1√
2

(0, 1,−i), 1√
3

(1,−i, i),

1√
40

(5,−1 + 2i,−3 + i),
1√
24

(1, 3 + 2i,−3 + i)

}
.

(2.18)
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The Gram matrix of the MIC elements is



1
9

0 1
18

0 1
18

0 1
27

5
72

1
216

0 1
9

0 1
18

0 1
18

1
27

1
72

13
216

1
18

0 1
9

1
36

1
18

1
36

1
27

1
144

5
432

0 1
18

1
36

1
9

1
36

1
18

0 5
144

1
48

1
18

0 1
18

1
36

1
9

1
36

0 5
144

1
48

0 1
18

1
36

1
18

1
36

1
9

1
27

1
144

5
432

1
27

1
27

1
27

0 0 1
27

1
9

1
54

1
18

5
72

1
72

1
144

5
144

5
144

1
144

1
54

1
9

1
27

1
216

13
216

5
432

1
48

1
48

5
432

1
18

1
27

1
9



. (2.19)

The process of finding this example led us to formulate the following:

Conjecture 1. A rank-1 MIC in dimension 3 can have no more than 7 pairs of orthogonal

elements.

Our next result characterizes when it is possible to build a rank-1 POVM out of a set

of vectors and specifies the additional conditions which must be met in order for it to

form a MIC. We make use of the Hadamard product [23], denoted ◦, which is element-

wise multiplication of matrices.

Theorem 4. Consider a set of N normalized vectors |φi〉 inHd and real numbers 0 ≤

ei ≤ 1. The following are equivalent:

1. Ei := ei|φi〉〈φi| forms a rank-1 POVM.

2. The Gram matrix g of the rescaled vectors
√
ei|φi〉 is a rank-d projector.
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Furthermore, if N = d2 and rank(g ◦ g∗) = d2, {Ei} forms a rank-1 MIC.

Proof. Suppose Ei forms a rank-1 POVM, that is,

∑
i

ei|φi〉〈φi| = I . (2.20)

It is easy to see that this is only possible if the set {√ei|φi〉} spansHd, and, consequently,

N ≥ d. It now follows that g is a rank-d projector because the left hand side of (2.20) is

a matrix that has the same nonzero spectrum as g [24]. On the other hand, if g is a rank-d

projector, N ≥ d and {√ei|φi〉} spans a d dimensional space because the rank of a Gram

matrix is equal to the dimension of the space spanned by the vectors. Using again the fact

the left hand side of (2.20) has the same nonzero spectrum as the Gram matrix, it must

equal the identity and thus the rank-1 POVM condition holds.

To be a MIC, N must equal d2. The remaining condition on {Ei} for it to form a rank-

1 MIC is that its elements be linearly independent. This is equivalent to the condition that

its Gram matrix G is full rank. The relation between g and G is given by the Hadamard

product of g with its conjugate,

g ◦ g∗ = G , (2.21)

and so, if N = d2 and rank(g ◦ g∗) = d2, {Ei} forms a rank-1 MIC.

For any two matrices A and B, the Hadamard product satisfies the rank inequality

rank(A ◦B) ≤ rank(A) rank(B) , (2.22)

so a rank-1 MIC is produced when rank(g ◦ g∗) achieves its maximal value with the min-

imal number of effects. Perhaps this criterion will lead to a way to conceptualize rank-1

MICs directly in terms of the vectors inHd from which they can be constructed.
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As a brief illustration, all rank-d projectors are unitarily equivalent so the specification

of g for the rescaled vectors of any rank-1 MIC is obtainable from any rank-d projector

by conjugating it with the right unitary. Specifying g specifies the MIC: g is equal to its

own square root, so its columns are the vectors up to unitary equivalence which form this

Gram matrix. To obtain these vectors as elements ofHd, one can simply write them in the

basis provided by the eigenvectors of g with nonzero eigenvalues. From a fixed starting

projector, then, finding a rank-1 MIC is equivalent to choosing a unitary in U(d2) which

maximizes rank(g ◦ g∗). Numerically this maximization appears to be typical, but we are

not aware of an explicit characterization. A further question to ask is whether there are

special classes of unitaries which give particular types of MICs.

We finish this section with a very brief discussion of the geometry of MIC space. For

this purpose it is not necessary to distinguish between MICs which differ only in permu-

tations of their effects. We further discuss this in the loose sense of not having chosen

any particular metric. The full sets of N -outcome POVMs are in general convex mani-

folds [25], but the requirement of linear independence prevents this from being true for

MICs — it is possible for a convex mixture of MICs to introduce a linear dependence and

thus step outside of the set. There do, however, exist infinite sequences and curves lying

entirely within the set of MICs. In these terms one can see that the space of MICs lacks

much of its boundary, that is, one can construct infinite sequences of MICs for which

the limit point is not a MIC. The simplest such limit point is the POVM consisting of the

identity and d2 − 1 zero matrices. Similarly there are MICs arbitrarily close to any POVM

with fewer than d2 elements which has been padded by zero matrices. Among unbiased

MICs, another limit point lying outside of the set is the trivial POVM consisting of d2

identical matrices Ei = 1
d2
I . Provided they exist, SICs are limit points, at least among

equiangular MICs (see section 2.3.4), which are contained within the set.
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2.3 Explicit Constructions of MICs

2.3.1 SICs

The MICs that have attracted the most interest are the SICs, which in many ways are

the optimal MICs [10–12, 26, 27]. SICs were studied as mathematical objects (under the

name “complex equiangular lines”) before their importance for quantum information

was recognized [28–31]. Prior to SICs becoming a physics problem, constructions were

known for dimensions d = 2, 3 and 8 [32]. Exact solutions for SICs are now known in 79

dimensions:

d = 2–28, 30, 31, 35, 37–39, 42, 43, 48, 49, 52, 53, 57, 61–63, 67, 73, 74, 78, 79, 84, 91, 93,

95, 97–99, 103, 109, 111, 120, 124, 127, 129, 134, 143, 146, 147, 168, 172, 195, 199,

228, 259, 292, 323, 327, 399, 489, 844, 1299.

(2.23)

The expressions for these solutions grow complicated quickly, but there is hope that they

can be substantially simplified [33]. Numerical solutions have also been extracted, to high

precision, in the following dimensions:

d = 2–193, 204, 224, 255, 288, 528, 725, 1155, 2208. (2.24)

Both the numerical and the exact solutions have been found in irregular order and by var-

ious methods. Many entries in these lists are due to A. J. Scott and M. Grassl [4, 34, 35];

other explorers in this territory include M. Appleby, I. Bengtsson, T.-Y. Chien, S. T. Flam-

mmia, G. S. Kopp and S. Waldron.

28



Together, these results have created the community sentiment that SICs should exist

for every finite value of d. To date, however, a general proof is lacking. The current fron-

tier of SIC research extends into algebraic number theory [36–40], which among other

things has led to a method for uplifting numerical solutions to exact ones [41]. The topic

has begun to enter the textbooks for physicists [42] and for mathematicians [24].

The effects of a SIC are given by

Ei =
1

d
Πi, where Πi = |πi〉〈πi| , (2.25)

where we will take the liberty of calling any of the sets {Ei}, {Πi}, and {|πi〉} SICs. It

is difficult to find a meaningful visualization of structures in high-dimensional complex

vector space. However, for the d = 2 case, an image is available. Any quantum state for a

2-dimensional system can be written as an expansion over the Pauli matrices:

ρ =
1

2
(I + xσx + yσy + zσz) . (2.26)

The coefficients (x, y, z) are then the coordinates for ρ in the Bloch ball. The surface of

this ball, the Bloch sphere, lives at radius 1 and is the set of pure states. In this picture, the

quantum states {Πi} comprising a SIC form a regular tetrahedron; for example,

Πs,s′ =
1

2

(
I +

1√
3

(sσx + s′σy + ss′σz)

)
, (2.27)

where s and s′ take the values ±1.

The matrix GSIC has the spectrum

λ(GSIC) =

(
1

d
,

1

d(d+ 1)
, . . . ,

1

d(d+ 1)

)
. (2.28)
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The flatness of this spectrum will turn out to be significant; we will investigate this point

in depth in the next section.

2.3.2 MICs from Random Bases

It is possible to construct a MIC for any dimension d. Let {Ai} be any basis of posi-

tive semidefinite operators in L(Hd) and define Ω :=
∑
iAi. Then

Ei := Ω−1/2AiΩ
−1/2 (2.29)

forms a MIC. If {Ai} consists entirely of rank-1 matrices, we obtain a rank-1 MIC.1 If

{Ai} is already a MIC, Ω = I and the transformation is trivial; MICs are the fixed points

of this mapping from one positive semidefinite operator basis to another. Thanks to this

property, this method can produce any MIC if the initial basis is drawn from the full space

of positive semidefinite operators.

This procedure was used by Caves, Fuchs and Schack in the course of proving a quan-

tum version of the de Finetti theorem [43]. (For background on this theorem, a key result

in probability theory, see [44, §5.3] and [45].) We refer to the particular MICs they con-

structed as the orthocross MICs. As the orthocross MICs are of historical importance, we

explicitly detail their construction and provide some first properties and conjectures about

it in the remainder of this subsection.

To construct an orthocross MIC in dimension d, first pick an orthonormal basis {|j〉}.

This is a set of d objects, and we want a set of d2, so our first step is to take all possible

1In the rank-1 case, this procedure is equivalent to forming what is called the canonical tight frame as-
sociated with the frame of vectors inHd whose outer products form the Ai matrices. For more information
on this, see [24].
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combinations:

Γjk := |j〉〈k|. (2.30)

The orthocross MIC will be built from a set of d2 rank-1 projectors {Πα}, the first d of

which are given by

Πα = Γαα. (2.31)

Then, for α = d+ 1, . . . , 1
2
d(d+ 1), we take all the quantities of the form

1

2
(|j〉+ |k〉) (〈j|+ 〈k|) =

1

2
(Γjj + Γkk + Γjk + Γkj), (2.32)

where j < k. We construct the rest of the {Πα} similarly, by taking all quantities of the

form
1

2
(|j〉+ i|k〉) (〈j| − i〈k|) =

1

2
(Γjj + Γkk − iΓjk + iΓkj), (2.33)

where again the indices satisfy j < k. That is, the set {Πα} contains the projectors onto

the original orthonormal basis, as well as projectors built from the “cross terms”.

The operators {Πα} form a positive semidefinite operator basis which can be plugged

into the procedure described above. Explicitly,

Ω =
d2∑
α=1

Πα , (2.34)

and the orthocross MIC elements are given by

Eα := Ω−1/2ΠαΩ−1/2 . (2.35)

The operator Ω for the initial set of vectors has a comparatively simple matrix rep-

resentation: The elements along the diagonal are all equal to d, the elements above the
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diagonal are all equal to 1
2
(1 − i), and the rest are 1

2
(1 + i), as required by Ω = Ω†. The

matrix Ω is not quite a circulant matrix, thanks to that change of sign, but it can be turned

into one by conjugating with a diagonal unitary matrix. Consequently, the eigenvalues

of Ω can be found explicitly via discrete Fourier transformation. The result is that, for

m = 0, . . . , d− 1,

λm = d+
1

2

(
cot

π(4m+ 1)

4d
− 1

)
. (2.36)

This mathematical result has a physical implication [15].

Theorem 5. The probability of any outcome Eα of an orthocross MIC, given any quan-

tum state ρ, is bounded above by

P (Eα) ≤
[
d− 1

2

(
1 + cot

3π

4d

)]−1

< 1. (2.37)

Proof. The maximum of tr (ρEα) over all ρ is bounded above by the maximum of tr (ΠEα),

where Π ranges over the rank-1 projectors. In turn, this is bounded above by the maxi-

mum eigenvalue of Eα. We then invoke that

λmax(Eα) = λmax(Ω−1/2ΠαΩ−1/2) = λmax(ΠαΩ−1Πα) ≤ λmax(Ω−1). (2.38)

The desired bound then follows.

Note that all the entries in the matrix 2Ω are Gaussian integers, that is, numbers whose

real and imaginary parts are integers. Consequently, all the coefficients in the characteris-

tic polynomial of 2Ω will be Gaussian integers, and so the eigenvalues of 2Ω will be roots

of a monic polynomial with Gaussian-integer coefficients. This is an example of how, in

the study of MICs, number theory becomes relevant to physically meaningful quantities

— in this case, a bound on the maximum probability of a reference-measurement out-
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come. Number theory has also turned out to be very important for SICs, in a much more

sophisticated way [36–40].

The following conjectures about orthocross MICs have been motivated by numerical

investigations. We suspect that their proofs will be relatively straightforward, but so far

they have eluded us.

Conjecture 2. The entries in G for orthocross MICs can become arbitrarily small with

increasing d, but no two elements of an orthocross MIC can be exactly orthogonal.

Conjecture 3. For any orthocross MIC, the entries in G−1 are integers or half-integers.

2.3.3 Group Covariant MICs

The method discussed in the previous subsection allows us to make fully arbitrary

MICs, but it is also possible to construct MICs with much more built-in structure. The

MICs which have received the most attention in the literature to date are the group covari-

ant MICs — those whose elements are the orbit of a group of unitary matrices acting by

conjugation. For additional discussion of group covariant IC POVMs, see [46].

The Gram matrix of a group covariant MIC is very simple. Suppose {Ei} is a group

covariant MIC, so Ei = UiE0U
†
i where E0 is the first element of the MIC and the index i

gives the element of the unitary representation of the group sending this element to the ith

element. Then all distinct elements of the Gram matrix are present in the first row because

[G]ij = trEiEj = trUiE0U
†
i UjE0U

†
j = trE0UkE0U

†
k , (2.39)

for some k determined by the group. Another way to say this is that every row of the

Gram matrix of a group covariant MIC is some permutation of the first row.
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Note that any group covariant MIC is unbiased because conjugation by a unitary can-

not change the trace of a matrix, but the converse is not true; the simplest example of an

unbiased MIC which is not group covariant which we have encountered is the one given

in Example 2.2.

The most important group covariant MICs are the Weyl–Heisenberg MICs (WH MICs),

which are covariant with respect to the Weyl–Heisenberg group, defined as follows. Let

{|j〉 : j = 0, . . . , d− 1} be an orthonormal basis, and define ω = e2πi/d. Then the operator

X|j〉 = |j + 1〉, (2.40)

where addition is interpreted modulo d, effects a cyclic shift of the basis vectors. The

Fourier transform of the X operator is

Z|j〉 = ωj|j〉, (2.41)

and together these operators satisfy the Weyl commutation relation

ZX = ωXZ. (2.42)

The Weyl–Heisenberg displacement operators are

Dk,l := (−eπi/d)klXkZ l, (2.43)

and together they satisfy the conditions

D†k,l = D−k,−l, Dk,lDm,n = (−eπi/d)lm−knDk+m,l+n. (2.44)
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Each Dk,l is unitary and a dth root of the identity. The Weyl–Heisenberg group is the set

of all operators (−eπi/d)mDk,l for arbitrary integers m, and it is projectively equivalent to

Zd × Zd. Then, for any density matrix ρ such that

tr
(
D†k,lρ

)
6= 0, ∀(k, l) ∈ Zd × Zd , (2.45)

the set

Ek,l :=
1

d
Dk,lρD

†
k,l (2.46)

forms a WH MIC.

2.3.4 Equiangular MICs

An equiangular2 MIC is one for which the Gram matrix takes the form

[G]ij = αδij + ζ . (2.47)

Equiangular MICs are unbiased (see Corollary 3 in [11]) and, because
∑
ij[G]ij = d, it is

easy to see that α = 1/d− d2ζ and that

1

d2(d+ 1)
≤ ζ <

1

d3
. (2.48)

SICs are rank-1 equiangular MICs for which ζ achieves the minimum allowed value. The

upper bound ζ value is approached by MICs arbitrarily close to Ei = 1
d2
I for all i.

2Appleby and Graydon introduced the term SIM for an equiangular MIC of arbitrary rank; a rank-1
SIM is a SIC [47, 48].

35



Armed with a SIC in a given dimension, one can construct an equiangular MIC for

any allowed ζ value by mixing in some of the identity to each element:

Ei =
β

d
Πi +

1− β
d2

I ,
−1

d− 1
≤ (β 6= 0) ≤ 1 . (2.49)

Even if a SIC is not known, it is generally much easier to construct equiangular MICs

when the elements are not required to be rank-1. One way to do this which always works

for any β ≤ 1
d+1

is by replacing the SIC projector in equation (2.49) with a quasi-SIC.3

Depending on the quasi-SIC, higher values of β may also work.

Another construction in odd dimensions are the Appleby MICs [50]. The Appleby

MICs are WH covariant and constructed as follows. Let the operator B be constructed as

B :=
1√
d+ 1

∑
{k,l}6={0,0}

Dk,l, (2.50)

and define Bk,l to be its conjugate under a Weyl–Heisenberg displacement operator:

Bk,l := Dk,lBD
†
k,l. (2.51)

The elements of the Appleby MIC have rank (d+ 1)/2, and are defined by

Ek,l :=
1

d2

(
I +

1√
d+ 1

Bk,l

)
. (2.52)

For any quantum state ρ, the quantities

Wk,l := (d+ 1)tr (Ek,lρ)− 1

d
(2.53)

3See Appendix A of [49] for the definition and a construction of a quasi-SIC.
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are quasiprobabilities: They can be negative, but the sum over all of them is unity. The

quasiprobability function {Wk,l} is known as the Wigner function of the quantum state

ρ. This is an example of a relation we will study much more generally in a companion

paper [51].

2.3.5 Tensorhedron MICs

So far, we have not imposed any additional structure upon our Hilbert space. How-

ever, in practical applications, one might have additional structure in mind, such as a pre-

ferred factorization into a tensor product of smaller Hilbert spaces. For example, a register

in a quantum computer might be a set of N physically separate qubits, yielding a joint

Hilbert space of dimension d = 2N . In such a case, a natural course of action is to con-

struct a MIC for the joint system by taking the tensor product of multiple copies of a MIC

defined on the component system:

Ej1,j2,...,jN := Ej1 ⊗ Ej2 ⊗ · · · ⊗ EjN . (2.54)

Since a collection of N qubits is a natural type of system to consider for quantum compu-

tation, we define the N -qubit tensorhedron MIC to be the tensor product of N individual

qubit SICs.

Theorem 6. The Gram matrix of an N -qubit tensorhedron MIC is the tensor product

of N copies of the Gram matrix for the qubit SIC out of which the tensorhedron is con-

structed.

Proof. Consider the two-qubit tensorhedron MIC, whose elements are given by

Ed(j−1)+j′ :=
1

4
Πj ⊗ Πj′ , (2.55)
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with {Πj} being a qubit SIC. The Gram matrix for the tensorhedron MIC has entries

[G]d(j−1)+j′,d(k−1)+k′ =
1

16
tr [(Πj ⊗ Πj′)(Πk ⊗ Πk′)]. (2.56)

We can group together the projectors that act on the same subspace:

[G]d(j−1)+j′,d(k−1)+k′ =
1

16
tr (ΠjΠk ⊗ Πj′Πk′). (2.57)

Now, we distribute the trace over the tensor product, obtaining

[G]d(j−1)+j′,d(k−1)+k′ =
1

16

2δjk + 1

3

2δj′k′ + 1

3
= [GSIC]jk[GSIC]j′k′ , (2.58)

which is just the definition of the tensor product:

G = GSIC ⊗GSIC. (2.59)

This extends in the same fashion to more qubits.

Corollary. The spectrum of the Gram matrix for an N -qubit tensorhedron MIC contains

only the values

λ =
1

2N
1

3m
, m = 0, . . . , N. (2.60)

Proof. This follows readily from the linear-algebra fact that the spectrum of a tensor

product is the set of products {λiµj}, where {λi} and {µj} are the spectra of the fac-

tors.

We can also deduce properties of MICs made by taking tensor products of MICs that

have orthogonal elements. Let {Ej} be a d-dimensional MIC with Gram matrix G, and
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suppose that exactly N elements of G are equal to zero. The tensor products {Ej ⊗ Ej′}

construct a d2-dimensional MIC, the entries in whose Gram matrix have the form [G]jk[G]j′k′ ,

as above. This product will equal zero when either factor does, meaning that the Gram

matrix of the tensor-product MIC will contain 2d4N − N2 zero-valued entries. It seems

plausible that in prime dimensions, where tensor-product MICs cannot exist, the possible

number of zeros is more tightly bounded, but this remains unexplored territory.

2.4 SICs are Minimally Nonclassical Reference Measurements

What might it mean for a MIC to be the best among all MICs? Naturally, it depends

on what qualities are valued in light of which one MIC may be superior to another. As

mentioned in the introduction, for a large number of metrics, SICs are optimal. The au-

thors of this paper particularly value the capacity of MICs to index probabilistic represen-

tations of the Born Rule. For this use, the best MIC is the one which provides the most

useful probabilistic representation, adopting some quantitative ideal that a representation

should approach. One codification of such an ideal is as follows. In essence, we want to

find a MIC that furnishes a probabilistic representation of quantum theory which looks as

close to classical probability as is mathematically possible. The residuum that remains —

the unavoidable discrepancy that even the most clever choice of MIC cannot eliminate —

is a signal of what is truly quantum about quantum mechanics.

In a recent paper it was shown that SICs are strongly optimal for this project [12]. To

see why, consider the following scenario. An agent has a physical system of interest, and

she plans to carry out either one of two different, mutually exclusive procedures on it.

In the first procedure, she will drop the system directly into a measuring apparatus and

thereby obtain an outcome. In the second procedure, she will cascade her measurements,

sending the system through a reference measurement and then, in the next stage, feeding
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it into the device from the first procedure. Probability theory unadorned by physical as-

sumptions provides no constraints binding her expectations for these two different courses

of action. Let P denote her probability assignments for the consequences of following the

two-step procedure and Q those for the single-step procedure. Then, writing {Hi} for the

possible outcomes of the reference measurement and {Dj} for those of the other,

P (Dj) =
∑
i

P (Hi)P (Dj|Hi). (2.61)

This equation is a consequence of Dutch-book coherence [7, 45] known as the Law of

Total Probability (LTP). But the claim that

Q(Dj) = P (Dj) (2.62)

is an assertion of physics, not entailed by the rules of probability theory alone. This as-

sertion codifies in probabilistic language the classical ideal that a reference measurement

simply reads off the system’s “physical condition” or “ontic state”.

We know this classical ideal is not met in quantum theory, that is, Q(Dj) 6= P (Dj).

Instead, as detailed in reference [12], Q(Dj) is related to P (Hi) and P (Dj|Hi) in a dif-

ferent way. To write the necessary equations compactly, we introduce a vector notation

where the LTP takes the form

P (D) = P (D|H)P (H) . (2.63)

To set up the quantum version of the above scenario, let {Hi} be a MIC and {Dj} be an

arbitrary POVM. Furthermore, let {σi} denote a set of post-measurement states for the

reference measurement; that is, if the agent experiences outcome Hi, her new state for the
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system will be σi. In this notation, the Born Rule becomes

Q(D) = P (D|H)ΦP (H) , with [Φ−1]ij := trHiσj . (2.64)

The matrix Φ depends upon the MIC and the post-measurement states, but it is always a

column quasistochastic matrix, meaning its columns sum to one but may contain negative

elements [12]. In fact, Φ must contain negative entries; this follows from basic structural

properties of quantum theory [52]. Now, the classical intution we mentioned above would

be expressed by Φ = I . However, no choice of MIC and set of post-measurement states

can achieve this. The MICs and post-measurement sets which give a Φ matrix closest to

the identity therefore supply the ideal representation we seek.

Theorem 1 in reference [12] proves that the distance between Φ and the identity with

respect to any unitarily invariant norm is minimized when both the MIC and the post-

measurement states are proportional to a SIC. Unitarily invariant norms include the Frobe-

nius norm, the trace norm, the operator norm, and all the other Schatten p-norms, as well

as the Ky Fan k-norms. Although this theorem was proven for foundational reasons, a

special case of the result turns out to answer in the affirmative a conjecture regarding a

practical matter of quantum computation [53, §VII.A].

What ended up being important for the optimality proof in [12] was that both the MIC

and the post-measurement states be proportional to SICs, but not necessarily that they be

proportional to the same SIC. Although the measures considered there were not sensitive

to this distinction, the same SIC case has obvious conceptual and mathematical advan-

tages. From a conceptual standpoint, when the post-measurement states are simply the

projectors Πi corresponding to the SIC outcome just obtained, our “throw away and repre-

pare” process is equivalent to Lüders rule updating, which there are independent reasons
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for preferring [21]. When the post-measurement states are the same SIC as the reference

measurement, Φ takes the uniquely simple form

ΦSIC = (d+ 1)I − 1

d
J , (2.65)

where J is the Hadamard identity, that is, the matrix of all 1s. Inserted into (5.8) and writ-

ten in index form, this produces the expression

Q(Dj) =
∑
i

[
(d+ 1)P (Hi)−

1

d

]
P (Dj|Hi) , (2.66)

having the advantage that for each conditional probability given an outcome Hi, only the

ith reference probability figures into that term in the sum. This is not so for two arbitrarily

chosen SICs, and, as such, that case would result in a messier probabilistic representation.

This path is not the only one from which to arrive at the conclusion that SICs furnish

a minimally nonclassical reference measurement. Recall the close association of classi-

cality and orthogonality noted in section 2.2. From this standpoint, one might claim that

most “classical” or least “quantum” reference measurement is one that is closest to an or-

thogonal measurement.

While we know from Corollary 2.2 that a MIC cannot be an orthogonal basis, how

close can one get? One way to quantify this closeness is via an operator distance between

the Gramians of an orthogonal basis and a MIC. From the proof of Corollary 2.2, we

know that if a MIC could be orthogonal its Gram matrix would be [G]ij = eiδij . With

no further restrictions, we can get arbitrarily close to this ideal, for instance, with a MIC

constructed as follows. Consider a set of d2 matrices {Ai} where the first d of them are

the eigenprojectors of a Hermitian matrix and the remaining d2 − d are the zero matrix.

42



Then, for an arbitrary4 MIC {Bj}, we may form a new MIC, indexed by a real number

0 < t < 1,

Et
i := tAi + (1− t)Bi . (2.67)

One may see that the Gram matrix of {Et
i} approaches the orthogonal Gram matrix in the

limit t→ 1.

But at such an extreme, the usefulness of a MIC is completely destroyed. In the above

scenario when t is close to 1, the informational completeness is all but gone, as one has

to reckon with vanishingly small probabilities when dealing with a MIC close to the limit

point. Such a MIC fails miserably at being anything like a reasonable reference measure-

ment. Although formally capable of being a reference measurement, a biased MIC de-

prives us of an even-handed treatment of indifference; the garbage state, which is poised

in Hilbert space to capture pure state preparation indifference, would be represented by a

non-flat probability distribution. Worse, for any sufficiently biased MIC, i.e., one with any

weight less than 1/d2, the flat probability distribution is not reached by any density ma-

trix. Consequently, what we’re really after is an unbiased reference measurement which

is as close to an orthogonal measurement as possible. With this additional constraint, the

following theorem demonstrates that SICs are the optimal choice.

Theorem 7. The closest an unbaised MIC can be to an orthogonal basis, as measured by

the Frobenius distance between their Gramians, is when the MIC is a SIC.5

4As long as a linear dependence does not develop.
5An earlier paper by one of us (CAF) and a collaborator [7] made the claim that the condition of being

unbiased could be derived by minimizing the squared Frobenius distance; this is erroneous as the unequally
weighted example with {Et

i} shows. For the purposes of that earlier paper, it is sufficient to impose by hand
the requirement that the MIC be unbiased, since this is a naturally desirable property for a standard refer-
ence measurement. Having made this extra proviso, the conceptual conclusions of that work are unchanged.
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Proof. We lower bound the square of the Frobenius distance:

∑
ij

(
1

d
δij − trEiEj

)2

=
∑
i

(
1

d
− trE2

i

)2

+
∑
i 6=j

(trEiEj)
2

≥ 1

d2

(∑
i

(
1

d
− trE2

i

))2

+
1

d4 − d2

∑
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∑
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.

(2.68)

The first inequality follows from two invocations of the Cauchy–Schwarz inequality and

achieves equality iff trE2
i and trEiEj , for i 6= j, are constants, that is, iff the MIC

is an equiangular MIC. The third line is easy to derive from the fact that for any MIC,∑
ij[G]ij = d. The final inequality comes from noting that

∑
i trE

2
i = 1

d2
∑
i tr ρ

2
i ≤ 1

with equality iff the MIC is rank-1. Thus the lower bound is saturated iff the equal weight

MIC is rank-1 and equiangular, that is, iff it is a SIC.

Theorem 7 concerned the Gramian of a MIC. We can, in fact, show a stronger result

on the inverse of the Gram matrix.

Theorem 8. Let G be the Gram matrix of an unbiased MIC, and let ‖·‖ be any unitarily

invariant norm (i.e., any norm where ‖A‖ = ‖UAV ‖ for arbitrary unitaries U and V ).

Then ∥∥∥∥I − 1

d
G−1

∥∥∥∥ ≥ ∥∥∥∥I − 1

d
G−1

SIC

∥∥∥∥ , (2.69)

with equality if and only if the MIC is a SIC.

Proof. This is a special case of Theorem 1 in [12].
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As with the theorems we proved above about MICs in general, this mathematical re-

sult has physical meaning. Classically speaking, the “ideal of the detached observer” (as

Pauli phrased it [13]) is a measurement that reads off the system’s point in phase space,

call it λi, without disturbance. A state of maximal certainty is one where an agent is ab-

solutely certain which λi exists. An agent having maximal certainty about each of a pair

of identically prepared systems implies that she expects to obtain the same outcome for

a reference measurement on each system. In other words, her “collision probability” is

unity: ∑
i

p(λi)
2 = 1. (2.70)

There is also a quantum condition on states of maximal certainty. As before, we can ap-

proach the question, “What is the unavoidable residuum that separates quantum from

classical?” by finding the form of this quantum condition that brings it as close as pos-

sible to the classical version.

Lemma 1. Given a MIC {Ei} with Gramian G, a quantum state is pure if and only if its

probabilistic representation satisfies

∑
ij

p(Ei)p(Ej)[G
−1]ij = 1. (2.71)

Proof. Let {Ei} be a MIC. The expansion of any quantum state ρ in the dual basis is

ρ =
∑
i

(trEiρ)Ẽi . (2.72)

By the Born Rule, the coefficients are probabilities:

ρ =
∑
i

p(Ei)Ẽi . (2.73)
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Now, recall that while tr ρ = 1 holds for any quantum state, tr ρ2 = 1 holds if and only

if that operator is a pure state, i.e., a rank-1 projector. These operators are the extreme

points of quantum state space; all other quantum states are convex combinations of them.

In terms of the MIC’s dual basis, the pure-state condition is

∑
ij

p(Ei)p(Ej)tr ẼiẼj = 1 , (2.74)

and so, because the Gramian of the dual basis is the inverse of the MIC Gram matrix,

∑
ij

p(Ei)p(Ej)[G
−1]ij = 1 , (2.75)

as desired.

Equation (2.75) closely resembles the collision probability, (2.70). If G−1 were the

identity, they would be identical. On the face of it, it looks as though we should see how

close G−1 can get to the identity. One minor wrinkle is that we should actually compare

G−1 with dI instead of just with I , because an unbiased, orthogonal MIC (if one could

exist) would have the Gram matrix 1
d
I . So, how close can we bring G−1 to dI , by choos-

ing an appropriate unbiased MIC? We know the answer to this from Theorem 8: The best

choice is a SIC.

2.5 Computational Overview of MIC Gramians

In order to explore the realm of MICs more broadly, and to connect them with other

areas of mathematical interest, it is worthwhile to generate MICs randomly and study the

typical properties which result. In this section we focus on the Gram matrix spectra of

four MIC varieties whose constructions are described in section 2.3. These types are:
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1. Generic MICs: a MIC generated from an arbitrary positive semidefinite basis

2. Generic Rank-1 MICs: a MIC generated from an arbitrary rank-1 positive semidefi-

nite basis

3. WH MICs: a MIC obtained from the WH orbit of an arbitrary density matrix

4. Rank-1 WH MICs: a MIC obtained from the WH orbit of an arbitrary pure state

density matrix.

In Hilbert space dimensions 2 through 5 we generated 105 MICs with the following method-

ologies. We constructed the generic MICs as in section 2.3.2 and the WH MICs as in sec-

tion 2.3.3. Each generic MIC was obtained from a basis of positive semidefinite operators

and each WH MIC was obtained from the orbit of an initial density matrix. In the generic

rank-1 case, the pure states defining the basis of projectors were sampled uniformly from

the Haar measure. Likewise, in the rank-1 WH case, the initial vector was also sampled

uniformly from the Haar measure. The positive semidefinite bases for the arbitrary-rank

generic MICs and the initial states for the arbitrary-rank WH MICs were constructed as

follows. First, Hermitian matrices M were sampled from the Gaussian Unitary distri-

bution, and, for each of these, the positive semidefinite matrix M †M was formed. d2 of

these sufficed to form a positive semidefinite basis without loss of generality and a trace-

normalized instance served as the initial state for the WH MICs. For each MIC, we con-

structed its Gram matrix and computed the eigenvalues. Figures 2.1, 2.2, 2.3, and 2.4 are

histograms of the eigenvalue distributions for dimensions 2, 3, 4, and 5, respectively.

We note some expected and unexpected features of these distributions. In accordance

with Theorem 1, both group covariant types, being unbiased, always have the maximal

eigenvalue 1/d, while this is the lower bound for the maximal eigenvalue for the other

two types. Particularly in the unbiased cases, because the eigenvalues must sum to 1, not
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all of them can be too large, so it is perhaps not surprising that there are few eigenvalues

approaching 1/d and that all families show exponential decay until that value. However,

the spectra of rank-1 MICs, especially in dimensions 2 and 3 (Figures 2.1 and 2.2), dis-

play a richness of features for which we have no explanation.

Most surprising of all is the small eigenvalue plateau in Figure 2.2 for the d = 3 rank-

1 WH MICs. Further scrutiny has revealed that the plateau ends precisely at 1/12, the

average value for the non-maximal eigenvalues of an unbiased d = 3 MIC Gram matrix.

The Gram matrix for a d = 3 SIC has the spectrum

(
1

3
,

1

12
,

1

12
,

1

12
,

1

12
,

1

12
,

1

12
,

1

12
,

1

12

)
, (2.76)

which has the maximal amount of degeneracy allowed. As dimension 3 is also excep-

tional in the study of SICs, we conjecture that the two are related.

Conjecture 4. The plateau in the eigenvalue distribution for d = 3, seen in Figure 2.2,

is related to the existence of a continuous family of unitarily inequivalent SICs in that

dimension [54, 55].

2.6 Conclusions

We have argued that informational completeness provides the right perspective from

which to compare the quantum and the classical. The structure of Minimal Information-

ally Complete quantum measurements and especially how and to what degree this struc-

ture requires the abandonment of classical intuitions therefore deserves explicit study. We

have surveyed the domain of MICs and derived some initial results regarding their de-

parture from such classical intuitions as orthogonality, repeatability, and the possibility
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of certainty. Central to understanding MICs are their Gram matrices; it is through prop-

erties of these matrices that we were able to derive many of our results. We have only

just scratched the surface of this topic, as our conjectures and unexplained numerical

features of Gram matrix spectra can attest. In a sequel, we will explore another applica-

tion of Gram matrices. They hold a central role in the construction of Wigner functions

from MICs [56–58], and Wigner functions are a topic pertinent to quantum computa-

tion [59–63].

Many properties of MIC Gram matrices remain unknown. Numerical investigations

have, in some cases, outstripped the proving of theorems, resulting in the conjectures we

have enumerated. Another avenue for potential future exploration is the application of

Shannon theory to MICs. Importing the notions of information theory into quantum me-

chanics has proved quite useful over the years at illuminating strange or surprising fea-

tures of the physics [64–66]. One promising avenue of inquiry is studying the probabilis-

tic representations of quantum states using entropic measures. In the case of SICs, this

has already yielded intriguing connections among information theory, group theory and

geometry [56, 67–70]. The analogous questions for other classes of MICs remain open

for investigation.
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Figure 2.1: d = 2 random MIC Gram matrix spectra, N = 105, bin size 1/200.

Figure 2.2: d = 3 random MIC Gram matrix spectra, N = 105, bin size 1/198.
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Figure 2.3: d = 4 random MIC Gram matrix spectra, N = 105, bin size 1/200.

Figure 2.4: d = 5 random MIC Gram matrix spectra, N = 105, bin size 1/200.
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CHAPTER 3

LTP ANALOGS

Quantum information theory represents a change of perspective. Rather than regard-

ing quantum physics as a limitation on our abilities—the typical sentiment of older texts—

we have learned that it can augment them. In frustrating some ambitions, it enables more

subtle ones. Deviation from classicality is a resource, and the idea that this resource can

be quantified as a modification of the classical probability calculus dates to the beginning

of the field [1]. More recent inquiries have developed this notion precisely: The “neg-

ativity” in a Wigner-function representation of quantum states is now understood to be

valuable in its own right [2–11]. But what does this line of thinking say about quantum

mechanics itself? Can one, following the lead of Carnot, take what might seem a state-

ment of “mere” engineering and find a physical principle? In this paper, we prove some

strong results in this regard in the context of finite dimensional Hilbert spaces. In particu-

lar, we find the unique form of the quantum mechanical Born Rule that makes it resemble

the classical Law of Total Probability (LTP) as closely as possible in at least two senses.

Both come from a significant majorization result which may be of general interest for re-

source theory. This way of tackling the distinction between quantum and classical arises

naturally in the quantum interpretive project of QBism [12, 13], where the Born Rule is

seen as an empirically motivated constraint that one adds to probability theory when us-

ing it in the context of alternative (complementary) quantum experiments. We expect the
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techniques developed here to give an alternative way to explore the paradigm of negativity

and to be of use for a range of practical problems.

The standard procedure in quantum theory for generating probabilities starts with an

observer, or agent, assigning a quantum state ρ to a system. When the agent plans to mea-

sure the system, she represents the outcomes of her measurement with a positive operator-

valued measure (POVM) {Dj}. Assigning ρ implies that she assigns the Born Rule prob-

abilities Q(Dj) = tr ρDj for the outcomes of her measurement. In this way, any quantum

state ρ may be regarded as a compilation of probability distributions for all possible mea-

surements. However, one does not have to consider all possible measurements to com-

pletely specify ρ. In fact, there exist measurements which are informationally complete

(IC) in the sense that ρ is uniquely specified by the agent’s expectations for the outcomes

of that single measurement [14]. With respect to an IC measurement, any quantum state,

pure or mixed, is equivalent to a single probability distribution. In this paper, we consider

minimal informationally-complete POVMs (MICs) for finite dimensional quantum sys-

tems. These sets of operators form bases for the vector space of Hermitian operators and

lead to probability distributions with the fewest number of entries necessary for recon-

structing the quantum state. MICs furnish a convenient way to bypass the language of

quantum states, making quantum theory analogous to classical stochastic process theory,

in which one puts probabilities in and gets probabilities out.

One can eliminate the need to use the operators ρ and Dj in the Born Rule by reex-

pressing it as a relation between an agent’s expectations for different experiments. Sup-

pose our agent has a preferred reference process consisting of a measurement to which

she ascribes the MIC {Hi}, and, upon obtaining outcome i, the preparation of a state σi,

drawn from a linearly independent set of post-measurement states {σi}. (See Fig. 3.1.) In

her choice of this reference process, she requires linearly independent post-measurement
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states so that the inner products trDjσi will uniquely characterize the operators Dj . Let

P (Hi) be her probabilities for the measurement {Hi} and P (Dj|Hi) be her conditional

probabilities for a subsequent measurement of {Dj}. What consistency requirement among

Q(Dj), P (Hi), and P (Dj|Hi) does quantum physics entail?

Using the fact that {σi} is a basis, we may write

ρ =
∑
j

αjσj , (3.1)

for some set of real coefficients αj . The probability of outcome Hi is then

P (Hi) =
∑
j

αj trHiσj =
∑
j

[
Φ−1

]
ij
αj , (3.2)

where we have defined the matrix Φ via its inverse,

[
Φ−1

]
ij

:= trHiσj = hitr ρiσj , (3.3)

for ρi := Hi/hi and hi := trHi. The invertibility of Φ is assured by the linear indepen-

dence of the MIC and post-measurement sets. This implies that the coefficients of ρ in the

σi basis may be written as an application of the Φ matrix on the vector of probabilities,

ρ =
∑
i

[∑
k

[Φ]ikP (Hk)

]
σi . (3.4)

The probability of Dj is given by another application of the Born Rule, which becomes

Q(Dj) =
d2∑
i=1

 d2∑
k=1

[Φ]ikP (Hk)

P (Dj|Hi) , (3.5)
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Figure 3.1: The solid and dashed lines represent two hypothetical procedures an agent
contemplates for a system assigned state ρ. The solid line represents making a direct mea-
surement of a POVM {Dj}. The dotted line represents making the MIC measurement
{Hi} first, preparing a post-measurement state σi, and then finally making the {Dj} mea-
surement. For the solid path, the agent assigns one set of probabilities Q(Dj). For the
dotted path, she assigns two sets of probabilities: P (Hi) and P (Dj|Hi). Unadorned by
physical assumptions, probability theory does not suggest a relation between these paths.
The Born Rule in the form of Eq. (5.8) is such a relation.

where P (Dj|Hi) = trDjσi is the probability for outcome Dj conditioned on obtaining

Hi in the reference measurement. In more compact matrix notation, we can write

Q(D) = P (D|H) ΦP (H) , (3.6)

where P (D|H) is a matrix of conditional probabilities.

A SIC [15–24] is a MIC for which all the Hi are rank-1 and

trHiHj =
1

d2

dδij + 1

d+ 1
. (3.7)
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SICs have yet to be proven to exist in all finite dimensions d, but they are widely believed

to [23] and have even been experimentally demonstrated in some low dimensions [25–

28]. The SIC projectors associated with a SIC are the pure states ρi = dHi. In dimension

2, a SIC can be represented as a regular tetrahedron inscribed in the Bloch sphere. (States

defining a qubit SIC can be extracted from Feynman’s 1987 essay “Negative probabili-

ties” [29].) In higher dimensions, they are, of course, harder to visualize. When there is

no chance of confusion, we will refer to the set of projectors as SICs as well. Prior work

has given special attention to the reference procedure where the measurement and post-

measurement states are the same SIC [12, 30, 31]. In this case we denote Φ by ΦSIC and

Eq. (3.5) takes the particularly simple form

Q(Dj) =
d2∑
i=1

[
(d+ 1)P (Hi)−

1

d

]
P (Dj|Hi) . (3.8)

Recall that the LTP expresses the simple consistency relation between the probabil-

ities one assigns to the second of a sequence of measurements, the probabilities one as-

signs to the first, and the conditional probabilities for the second given the outcome of the

first. Written in vector notation, this is

P (D) = P (D|H)P (H) . (3.9)

We write P (D) as opposed to Q(D) to indicate that it is the probability vector for the

second of two measurements. Q(D), on the other hand, is the vector of probabilities as-

sociated with a single measurement. Aside from the presence of Φ matrix, Eq. (5.8) is

functionally equivalent to the LTP.

Although P (H), P (D|H), and Q(D) are probabilities, ΦP (H) often is not. One may

see by summing both sides of Eq. (3.5) over j that the vector is normalized, but in gen-
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eral it may contain negative numbers and values greater than 1. Such a vector is known

as a quasiprobability, and matrices like Φ—real-valued matrices with columns summing

to 1—which take probabilities to quasiprobabilites are called column-quasistochastic ma-

trices [32]. The subset of column-quasistochastic matrices with nonnegative entries are

the column-stochastic matrices. The inverse of a column-stochastic matrix is generally

a column-quasistochastic matrix; in our case, inspection of Eq. (3.3) reveals that Φ−1 is

column-stochastic.

What would it mean if Φ could equal I? In this case we would have Q(D) = P (D).

Then, conceptually, it wouldn’t matter if the intermediate measurement were performed

or not. Put another way, we could behave as though measurements simply revealed a pre-

existing property of the system, as in classical physics where measurements provide infor-

mation about a system’s coordinates in phase space.

Some amount of what makes quantum theory nonclassical resides in the fact that Φ

cannot equal I . How close, then, can we make Φ to I by wisely choosing our MIC and

post-measurement states? It turns out that ΦSIC is closest to the identity with respect to

the distance measure induced by any member of a large family of operator norms called

unitarily invariant norms (see section 3.5 in [33]). A unitarily invariant norm is one such

that ‖A‖ = ‖UAV ‖ for all unitary matrices U and V . These norms include the Schatten

p-norms (among which are the trace norm, the Frobenius norm, and the operator norm

when p = 1, 2, and∞ respectively) and the Ky Fan k-norms. This result codifies the

intuition that Eq. (3.8) represents the “simplest modification one can imagine to the LTP”

[34, p. 1971].

To prove this, we will make use of the theory of majorization [33, 35]. Suppose x and

y are vectors of N real numbers and that x↓ and y↓ are x and y sorted in nonincreasing
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order. Then we say that x weakly majorizes y from below, denoted x �w y, if

k∑
i=1

x↓i ≥
k∑
i=1

y↓i , for k = 1, . . . , N . (3.10)

If the last inequality is an equality, we say x majorizes y, denoted x � y.

Another variant of majorization, called log majorization or multiplicative majoriza-

tion, is also studied [35]. We say that x weakly log majorizes y from below, denoted

x �w log y, if
k∏
i=1

x↓i ≥
k∏
i=1

y↓i , for k = 1, . . . , N . (3.11)

If the last inequality is an equality, we say x log majorizes y, denoted x �log y. Taking the

log of both sides of Eq. (3.11) demonstrates that log majorization is majorization between

the vectors after an element-wise application of the log map. Log majorization is strictly

stronger than regular majorization; x �w log y =⇒ x �w y, but the reverse implication is

not true. Majorization is a partial order on vectors of real numbers sorted in nonincreasing

order.

Throughout this paper we will make use of the standard inequalities between the arith-

metic, geometric, and harmonic means for vectors of n positive numbers xi:

1

n

n∑
i=1

xi ≥
(

n∏
i=1

xi

)1/n

≥
(

1

n

n∑
i=1

1

xi

)−1

. (3.12)

with equality in all cases if and only if xi = c for all i. We now turn to two lemmas.

Lemma 2. Let Φp denote the column-quasistochastic matrix associated with a MIC and a

proportional post-measurement set. Then det Φp ≥ det ΦSIC with equality iff the MIC is a

SIC.
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Proof. We may write Φ−1
p = GA−1 where Gij := trHiHj is the Gram matrix of the MIC

elements and Aij := hiδij . Note that Φ−1
p has real, positive eigenvalues because it has the

same spectrum as the positive definite matrix A−1/2GA−1/2. Also note that

∑
i

1

λi(Φp)
= tr Φ−1

p =
∑
i

hitr ρiσi ≤
∑
i

hi = d . (3.13)

One of the eigenvalues of Φp, which we denote λd2(Φp), must equal 1 because an equal-

entry row vector is always a left eigenvector with eigenvalue 1 of a matrix with columns

summing to unity. Therefore, we may write

∑
i<d2

1

λi(Φp)
≤ d− 1. (3.14)

The reciprocal of this expression is proportional to the harmonic mean of the first d2 − 1

eigenvalues of Φp. Thus, because the geometric mean is always greater than or equal to

the harmonic mean,

d2−1∏
i=1

λi(Φp)

 1
d2−1

≥

 1

d2 − 1

d2−1∑
i=1

1

λi(Φp)

−1

≥ d+ 1 , (3.15)

which, noting that λd2(Φp) = 1, implies

det Φp ≥ (d+ 1)d
2−1 = det ΦSIC . (3.16)

Equality is achieved in this iff all the λi(Φp) are equal, so Eq. (3.16) is saturated iff λ(Φp) =

λ(ΦSIC). We next show this implies that in fact the MIC is a SIC.

For any Φ−1
p , we may write Φ−1

p = P−1DP where the rows of P are the left-eigenvectors

of Φ−1
p and D is the diagonal matrix of eigenvalues of Φ−1

p . Since Φ−1
p is column-stochastic,
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the row vector (1/d, . . . , 1/d) is the (scaled) left-eigenvector of Φ−1
p with eigenvalue 1,

and so it is the first row of P when the eigenvalues are in descending order. Left-eigenvectors

of a matrix are right-eigenvectors of the transpose of the matrix, so we have

(Φ−1
p )T |v〉 = A−1G|v〉 = A−1GA−1A|v〉

= A−1Φ−1
p A|v〉 = λ|v〉 ,

=⇒ Φ−1
p A|v〉 = λA|v〉 ,

(3.17)

where 〈v| is an arbitrary left-eigenvector of Φ−1
p . Combined with our choice of scale for

the first row of P , we conclude that the first column of P−1 is (h1, h2, . . . , hd2)
T .

Now suppose Φp is such that λ(Φp) = λ(ΦSIC). Then G = P−1DPA where [D]ij =

1
d+1

(δij + dδi1δj1), and

[G]ij =
∑
klm

[P−1]ik[D]kl[P ]lm[A]mj

=
∑
klm

[P−1]ik

[
1

d+ 1
(δkl + dδk1δl1)

]
[P ]lmδmjhm

=
1

d+ 1

∑
kl

[P−1]ik(δkl + dδk1δl1)[P ]ljhj

=
1

d+ 1
(hjδij + dhj[P

−1]i1[P ]1j)

=
1

d+ 1
(hjδij + hihj) . (3.18)

In the last step we used that [P ]1j = 1/d and [P−1]i1 = hi. If this Gram matrix comes

from a MIC, one may use

[G]ii = h2
i tr ρ

2
i =

1

d+ 1
(hi + h2

i ) , (3.19)
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and the fact that tr ρi ≤ 1 to show that hi ≥ 1/d. As the average hi value must be 1/d,

this implies that hi = 1/d for all i and furthermore that each ρi is rank-1. Substituting this

into Eq. (3.18) gives

[G]ij =
dδij + 1

d2(d+ 1)
, (3.20)

that is, the MIC is a SIC and Φp = ΦSIC.

Let s(A) denote the vector of singular values of the matrix A in nonincreasing order.

The proof of the following lemma may be found in Appendix A.

Lemma 3. Let Φ be the column-quasistochastic matrix associated with an arbitrary ref-

erence process. Then

s(Φ) �w log s(ΦSIC) , (3.21)

with equality iff the MIC and post-measurement states are SICs.

We are now poised to prove:

Theorem 9. Let Φ be the column-quasistochastic matrix associated with an arbitrary

reference process. Then for any unitarily invariant norm ‖·‖,

‖I − Φ‖ ≥ ‖I − ΦSIC‖ , (3.22)

with equality iff the MIC and post-measurement states are SICs.

Proof. By Corollary 3.5.9 in [33], every unitarily invariant norm is monotone with respect

to the partial order on matrices induced by weak majorization of the vector of singular

values. I − Φ is singular with exactly one eigenvalue equal to zero, so one of its singular
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values is zero as well. Then

s(I − Φ) �
{∑

i si(I − Φ)

d2 − 1
, . . . ,

∑
i si(I − Φ)

d2 − 1

}

�w {d, . . . , d} = s(I − ΦSIC)

(3.23)

if ∑
i

si(I − Φ) ≥ d(d2 − 1) . (3.24)

We have

∑
i

si(I − Φ) ≥
∑
i

|λi(I − Φ)| =
∑
i

|λi(Φ)− 1|

≥
∑
i

(|λi(Φ)| − 1) ≥
∑
i

λi(ΦSIC)− d2

= d(d2 − 1) , (3.25)

where the first inequality follows Eq. 3.3.13a in [33], the second follows from the triangle

inequality, and the last follows from Lemma 3.

It is known that no quasiprobability representation of quantum theory can be entirely

nonnegative [36]. What does this mean in our formalism?

Let N be the normalized hyperplane of d2-element quasiprobability vectors. Within

this is the (d2 − 1)-simplex of probability vectors, ∆. For any MIC, d-dimensional quan-

tum state space Qd is mapped by the Born Rule to a convex subset of ∆, denoted P . Note

that Φ−1(∆) is equal to the convex hull of the d2 probability vectors trHjσi, that is, the

probabilities for the MIC measurement for each post-measurement state. Consequently,

Φ−1(∆) ⊂ P , which implies ∆ ⊂ Φ(P). These inclusions must be strict, i.e., Φ 6= I:

When the MIC and post-measurement states are rank-1, the vertices of the simplex will be

among the pure-state probability vectors, but P contains more pure states than there are
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Figure 3.2: N is the normalized hyperplane of d2-element quasiprobability vectors and
the outer, black triangle represents the (d2 − 1)-simplex ∆ of probabilities. For a given
MIC, the inner, green triangle is the simplex Φ−1(∆), the blue circle is the image of Qd
under the Born Rule, denoted P , and the red circle is Φ(P). P and Φ(P) are portrayed
with circles to capture convexity and inclusion relationships only; they need not bear any
resemblance to spheres.
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vertices of Φ−1(∆). Since the image of some probability vectors consistent with quantum

theory must leave the probability simplex under the application of Φ, we have demon-

strated that the appearance of negativity is unavoidable in our framework and is in fact

characterized by the fact that Φ cannot equal the identity. Figure 3.2 illustrates the situa-

tion.

The weak log majorization result of Lemma 3 has at least one more important impli-

cation for quantifying the quantum deviation from classicality. Instead of looking at the

functional form of Eq. (5.8) and considering how much of a deviation from the LTP it rep-

resents, one may approach the problem from a geometric perspective.

Classically one can always imagine assigning probability 1 to an outcome of a puta-

tive “maximally informative measurement”—for instance when one knows the system’s

exact phase space point. However, in an interpretation of quantum theory without hidden

variables, whatever one might mean by “maximally informative,” one cannot mean that

the reference measurement’s full probability simplex is available. Indeed, quantum me-

chanics does not allow probability 1 for the outcome of any MIC measurement [37]. Thus

deviation from classicality can also be captured by the fact that the region of probabilities

compatible with quantum states is strictly smaller than the full (d2 − 1)-simplex. In this

setting, the irreducible deviation from classicality is defined by the largest possible region

for a reference measurement’s probability simplex. The following theorem establishes

that a SIC measurement uniquely maximizes the Euclidean volume of this region, thereby

answering a question raised by one of us in 2002 [34, pp. 475, 571].

Theorem 10. For any MIC in dimension d, let P denote the image of Qd under the Born

Rule and let volE(P) denote its Euclidean volume. Then

volE(P) ≤ volE(PSIC) , (3.26)
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with equality iff the MIC is a SIC. Furthermore,

volE(PSIC) =

√√√√ (2π)d(d−1)

dd2−2(d+ 1)d2−1

Γ(1) · · ·Γ(d)

Γ(d2)
. (3.27)

The proof of Theorem 10 involves methods of differential geometry which would be dis-

tracting here. We direct the interested reader to Appendix B for details.

The (d2 − 1)-simplex ∆ has Euclidean volume [38]

volE(∆) =
d

Γ(d2)
, (3.28)

so we can calculate the ratio of the Euclidean volumes of PSIC and the simplex it lies

within,
volE(PSIC)

volE(∆)
=

√√√√ (2π)d(d−1)

dd2(d+ 1)d2−1
Γ(1) · · ·Γ(d) . (3.29)

When d = 2, quantum state space is the Bloch ball and PSIC is the largest ball which

can be inscribed in the regular tetrahedron ∆3,

volE(PSIC)

volE(∆3)
=

π

6
√

3
≈ 0.3023 . (3.30)

When d = 3,
volE(PSIC)

volE(∆8)
=

π3

1296
√

3
≈ 0.0138 . (3.31)

In general, the ratio is very rapidly decreasing, signifying a greater and greater deviation

from classicality with each Hilbert space dimension.

Theorems 9 and 10 show that the SICs provide a way of casting the Born Rule in

wholly probabilistic terms, which by two different standards make the difference between

classical and quantum as small as possible. Of all the representations deriving from our
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general procedure, the representation given by Eq. (3.8) is the essential one for specifying

how quantum is quantum.

3.1 Appendix A: Proof of Lemma 3

For a MIC {Ei} and a post-measurement set {σj},

[
Φ−1

]
ij

= trEiσj . (3.32)

The elements of the MIC may be expanded in the SIC basis

Ei =
∑
k

[α]ikHk , (3.33)

so we may write [
Φ−1

]
ij

=
∑
k

[α]ik trHkσj =
∑
k

[α]ik p(k|j) , (3.34)

where p(k|j) is the probabilistic representation of the state σj with respect to the SIC

{Hk}. The α matrix must be invertible because it is a transformation between two bases,

so the probability vectors can be written

p(i|j) =
∑
k

[
α−1

]
ik

[
Φ−1

]
kj
. (3.35)

We know that SIC probability vectors satisfy [12]

∑
i

p(i|j)2 ≤ 2

d(d+ 1)
∀j , (3.36)
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so we have ∑
i

(∑
k

[
α−1

]
ik

[
Φ−1

]
kj

)2

≤ 2

d(d+ 1)
∀j . (3.37)

Summing over j, we then have

∑
ij

(∑
k

[
α−1

]
ik

[
Φ−1

]
kj

)2

≤ 2d

d+ 1
. (3.38)

This expression is the sum of the absolute square entries of a matrix, which is equivalent

to the square of the Frobenius norm of the matrix:

‖α−1Φ−1‖2
2 =

∑
i

s2(α−1Φ−1) ≤ 2d

d+ 1
. (3.39)

From [33] 3.1.11, for any square matrix A,

∑
i

|λi(A)|2 ≤
∑
i

ς2(A) , (3.40)

so we have a general bound on the absolute squared spectrum:

∑
i

|λi(α−1Φ−1)|2 ≤ 2d

d+ 1
. (3.41)

Eq. (3.35) shows that α−1Φ−1 is column-stochastic and thus that one of its eigenvalues is

1, so we may write:

∑
i>1

|λi(α−1Φ−1)|2 ≤ 2d

d+ 1
− 1 =

d− 1

d+ 1
. (3.42)

73



Now, using the arithmetic-geometric mean inequality,

d− 1

d+ 1
≥
∑
i>1

|λi(α−1Φ−1)|2

≥ (d2 − 1)

(∏
i>1

|λi(α−1Φ−1)|2
) 1

d2−1

= (d2 − 1)| detα−1Φ−1|
2

d2−1 ,

(3.43)

which implies

| detα−1Φ−1| ≤
(

d− 1

(d+ 1)(d2 − 1)

) d2−1
2

=
(

1

d+ 1

)d2−1

= det Φ−1
SIC .

(3.44)

From Eq. (3.33), we can write

trEiEj =
∑
kl

αikαjltrHkHl ⇐⇒ G = αGSICα
T

⇐⇒ detG = (detα)2 detGSIC ,

(3.45)

where G is the MIC Gram matrix and GSIC is the SIC Gram matrix. Recall the definition

of the A matrix from the proof of Lemma 2. The arithmetic-geometric mean inequality

shows detA ≤ (1/d)d
2 with equality iff hi = 1/d. Then, since G = Φ−1

p A, Lemma 2

shows

detG = (det Φ−1
p )(detA) ≤ (det Φ−1

SIC)(1/d)d
2

= detGSIC , (3.46)
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with equality iff the MIC is a SIC. This implies (detα)2 ≤ 1, and so | detα| ≤ 1. Since

| detα−1Φ−1| = | detα−1|| det Φ−1|, we conclude that

| det Φ−1| ≤ det Φ−1
SIC . (3.47)

Equivalently, det ΦSIC ≤ | det Φ|. Theorem 3.3.2 in [33] shows s(A) �log |λ(A)| for an

arbitrary matrix A. To show the desired weak log majorization result, we wish to prove

|λ(Φ)| �w log λ(ΦSIC). For this we show weak majorization of the log of the entries.

log |λ(Φ)| �
(∑d2

i=1 log |λi(Φ)|
d2 − 1

, . . . ,

∑d2

i=1 log |λi(Φ)|
d2 − 1

, 0

)

=

(
log | det Φ|
d2 − 1

, . . . ,
log | det Φ|
d2 − 1

, 0

)

�w
(

log det ΦSIC

d2 − 1
, . . . ,

log det ΦSIC

d2 − 1
, 0

)

= (log(d+ 1), . . . , log(d+ 1), 0) = λ(log ΦSIC) .

(3.48)

Thus,

s(Φ) �log |λ(Φ)| �w log λ(ΦSIC) = s(ΦSIC) . (3.49)
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If {Hi} and {σj} are SICs, Φ−1
ij = 1

d
tr ΠiΠ

′
j , where {Πi} and {Π′j} are SIC projectors in

dimension d. Then

[
Φ−1Φ−1†

]
ij

=
1

d2

∑
k

(tr ΠiΠ
′
k)(tr ΠjΠ

′
k)

=
1

d2
tr

[
(Πi ⊗ Πj)

(∑
k

Π′k ⊗ Π′k

)]

=
1

d2
tr

[
(Πi ⊗ Πj)

(
2d

d+ 1
Psym

)]

=
1

d(d+ 1)
tr

[
(Πi ⊗ Πj)

(
I ⊗ I +

d∑
kl

|k〉〈l| ⊗ |l〉〈k|
)]

=
1 + tr ΠiΠj

d(d+ 1)
=
dδij + d+ 2

d(d+ 1)2
=
[
Φ−2

SIC

]
ij
,

(3.50)

where Psym is the projector onto the symmetric subspace ofH⊗2
d and in the third step we

employed the fact that the SICs form a minimal 2-design [16]. This shows that the modu-

lus of Φ is equal to ΦSIC and thus the singular values of Φ and ΦSIC coincide.

On the other hand, suppose s(Φ) = s(ΦSIC). The product of all the singular values is

the absolute value of the determinant [33], so | det Φ−1| = det Φ−1
SIC =⇒ | detα| =

1 =⇒ detG = detGSIC ⇐⇒ {Ei} is a SIC. Carrying through the consequences

of the MIC being a SIC allows us to see from Eq. (3.37) that σj is rank-1 because the up-

per bound is saturated for SIC probability vectors. We may expand the {σj} in the SIC

projector basis,

σj =
∑
k

[β]jk Πk . (3.51)

Acting on both sides by a SIC POVM element and computing the trace of both sides, we

see [
Φ−1

]
ij

= trEiσj =
∑
k

[β]jk trEiΠk = [Φ−1
SICβ

T ]ij , (3.52)
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so | det Φ−1| = | det Φ−1
SIC|| det βT | = det Φ−1

SIC implies | det β| = 1. Denoting the Gram

matrix of states by g, we have, in the same way as before,

det g = (det β)2 det gSIC = det gSIC . (3.53)

We now prove that det g = det gSIC implies that the basis of projectors forms a SIC. The

following lemma is due to Huangjun Zhu [39]. We only use part of Zhu’s conclusion, but

the lemma is of enough interest to present in full.

Lemma 4 (Zhu). Let λ be the spectrum of the Gram matrix g of a normalized basis of

positive semidefinite operators Πj sorted in nonincreasing order. Then λ � λSIC with

equality iff Πj forms a SIC.

Proof. By assumption trΠ2
j = 1 for all j. Since the eigenvalues of Πj are nonnegative,

1 = trΠ2
j =

∑
i

λ2
i (Πj) ≤

∑
i

λi(Πj) = trΠj. (3.54)

Define the frame superoperator

F =
∑
j

|Πj〉〉〈〈Πj| , (3.55)

where |A〉〉 :=
∑
ij[A]ij|i〉|j〉. F has the same spectrum as the Gram matrix [g]ij =

〈〈Πi|Πj〉〉 = tr ΠiΠj . To see this, form a projector out of the state
∑
i|Πi〉〉|i〉 where |i〉

is an orthonormal basis inHd2 and perform partial traces over each subsystem. The re-

sults are gT and F , and so, by the Schmidt theorem, the spectra of F and g are equal:

λ(g) = λ(F) = λ.

The expectation value of any operator with respect to an arbitrary normalized state is

less than or equal to its maximal eigenvalue. Thus, a lower bound on the maximal eigen-
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value λ1 of F is given by

λ1 ≥
1

d
〈〈I|F|I〉〉 =

1

d

∑
j

(tr Πj)
2 ≥ d. (3.56)

As our basis is normalized, tr g = d2, so
∑
i λi = d2. With this constraint and our bound

on the maximal eigenvalue, we have

λ �
(
λ1,

d2 − λ1

d2 − 1
, . . . ,

d2 − λ1

d2 − 1

)

�
(
d,

d

d+ 1
, . . . ,

d

d+ 1

)
= λSIC.

(3.57)

The second majorization becomes an equality when λ1 = d. From Eq. (3.56), we can see

that all Πj must be rank-1 for this condition to be satistfied. Furthermore, we see that in

this case 1√
d
|I〉〉 is an eigenvector of F which achieves the maximal eigenvalue d. When

both majorizations are equalities the spectrum λSIC tells us that F takes the form of a

weighted sum of a projector and the identity superoperator I, specifically

F =
d

d+ 1
(I + |I〉〉〈〈I|) . (3.58)

By Cor. 1 in [40], this implies the Πj form a SIC.

As in the Lemma, denote by λ the spectrum of g sorted in nonincreasing order. tr g =

d2, so ∑
i>1

λi = d2 − λ1 . (3.59)
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Then because the arithmetic mean is greater than or equal to the geometric mean with

equality iff the elements are all equal, we have

1

d2 − 1

∑
i>1

λi =
d2 − λ1

d2 − 1
≥
(∏
i>1

λi

) 1
d2−1

, (3.60)

which implies

det g ≤ λ1

(
d2 − λ1

d2 − 1

)d2−1

, (3.61)

with equality iff λ2 = · · · = λ2
d = d2−λ1

d2−1
. When λ1 = d, we then have

det g =
dd

2

(d+ 1)d2−1
= det gSIC , (3.62)

with equality iff λ = λSIC. By Lemma 18, we have equality iff the post-measurement

states form a SIC.

3.2 Appendix B: Proof of Theorem 10

Equation (3.4) expanded instead in the ρi basis allows us to relate the differential ele-

ments of operator space and probability space for any MIC basis:

dσ =
∑
i,j

[Φ]ijρidpj . (3.63)

The Hilbert–Schmidt line element is then

ds2
HS = tr (dσ)2 =

∑
ijkl

[Φ]ij[Φ]kl(tr ρiρk)dpjdpl . (3.64)
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As in the proof of Lemma 2, we write Φ = AG−1 where [G]ij = trHiHj is the Gram

matrix for the MIC and [A]ij = hiδij . Note further that tr ρiρj = [A−1GA−1]ij . Then

Eq. (3.64) simplifies to

ds2
HS =

∑
ij

[
G−1

]
ij

dpidpj . (3.65)

The Hilbert–Schmidt volume element on the space of Hermitian operators in L(Hd) may

now be related to the Euclidean volume element in Rd2 ,

dΩHS =
√
| detG−1|dVE , (3.66)

or, equivalently,

dVE =
√
| detG|dΩHS . (3.67)

The larger detG, the larger the corresponding Euclidean volume. Recall Eq. (3.46) which

says

detG ≤ detGSIC , (3.68)

with equality iff the MIC is a SIC. Thus, for any region in operator space, the Euclidean

volume is maximal with respect to the SIC basis. In particular, the SIC basis gives the

largest volume among positive semidefinite operators A satisfying 1 − ε ≤ trA ≤ 1 + ε

for any ε > 0. As ε → 0, we obtain quantum state space Qd and the corresponding region

in Rd2 will have the largest hyperarea within ∆ when computed with the SIC basis.

To calculate this hyperarea, we need to find the metric on ∆ induced by the Hilbert–

Schmidt metric in the SIC basis. We may parameterize ∆ by

X =

p1, . . . , pd
2−1, 1−

d2−1∑
i=1

pi

 , (3.69)
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which has partial derivatives ∂iXµ = δµi − δ
µ
d2 where the Latin index runs from 1 to d2 − 1

and the Greek index runs from 1 to d2. For any MIC, the induced metric g is given by

[g]ij =
d2∑

µ,ν=1

∂iX
µ∂jX

ν
[
G−1

]
µν

. (3.70)

It is easily seen that G−1
SIC = d(d + 1)I − J where J is the Hadamard identity. One may

then calculate gSIC = d(d+ 1)(I + J) and det gSIC = d2(d2 + d)d
2−1. The induced volume

element on ∆ is then

dωHS = d
√

(d2 + d)d2−1dp1 · · · dpd2−1 . (3.71)

In a similar way, it may be checked that the Euclidean metric in Rd2 induces a volume

element dAE on ∆ satisfying

1

d
dAE = dp1 · · · dpd2−1 , (3.72)

and so

dωHS =
√

(d2 + d)d2−1dAE . (3.73)

We may now integrate over quantum state space to obtain

volHS(Qd) =
√

(d2 + d)d2−1volE(PSIC) . (3.74)

Życzkowski and Sommers [41] calculate the Hilbert–Schmidt volume of finite-dimensional

quantum state space to be
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volHS(Qd) =
√
d(2π)d(d−1)/2 Γ(1) · · ·Γ(d)

Γ(d2)
, (3.75)

from which Eq. (3.27) follows.
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CHAPTER 4

LÜDERS MIC CHANNELS

4.1 Introduction

A minimal informationally complete (MIC) quantum measurement for a d dimen-

sional Hilbert spaceHd is a set of linearly independent positive semidefinite operators

{Ei}, i = 1, . . . , d2, which sum to the identity [1, 2]. If every element in a MIC is propor-

tional to a rank-n projector, we say the MIC itself is rank-n. If the Hilbert–Schmidt inner

products trEiEj equal one constant for all i 6= j and another constant when i = j, we

say the MIC is equiangular. A symmetric informationally complete (SIC) quantum mea-

surement is a rank-1 equiangular MIC [3–6]. When a SIC {Hi} exists, one can show that

Hi = 1
d
Πi where Πi are rank-1 projectors and that

trHiHj =
dδij + 1

d2(d+ 1)
. (4.1)

The theory of quantum channels provides a means to discuss the fully general way

in which quantum states may be transformed. A standard result [7] has it that a quantum

channel E may always be specified by a set of operators {Ai}, called Kraus operators,

such that for a quantum state ρ,

E(ρ) =
∑
i

AiρA
†
i . (4.2)
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Consider a physicist Alice who is preparing to send a quantum system through a chan-

nel that she models by E . Alice initially describes her quantum system by assigning to it a

density matrix ρ. The state E(ρ) encodes Alice’s expectations for measurements that can

potentially be performed after the system is sent through the channel. More specifically,

let Alice’s channel be a Lüders MIC channel (LMC) associated with the MIC {Ei}, which

may be understood in the following way. Alice plans to apply the MIC {Ei}, and upon

obtaining the result of that measurement, invoke the Lüders rule [8, 9] to obtain a new

state for her system,

ρ′i :=
1

tr ρEi

√
Eiρ

√
Ei , (4.3)

where we have introduced the principal Kraus operators {
√
Ei}, the unique positive

semidefinite square roots of the MIC elements. Before applying her MIC, Alice can write

the post-channel state

E(ρ) :=
∑
i

p(Ei)ρ
′
i =

∑
i

√
Eiρ

√
Ei , (4.4)

which is a weighted average of the states from which Alice plans to select the actual state

she will ascribe to the system after making the measurement. (For more on the broader

conceptual context of this operation, see [10, 11].)

LMCs are a proper subset of all quantum channels as many valid channels are unre-

lated to a MIC and do not admit a representation in terms of principal Kraus operators.

For example, a unitary channel is not an LMC.

Throughout this paper, we will frequently use the fact that any MIC element Ei is pro-

portional to a density matrix Ei := eiρi, where we call the proportionality constants {ei}

the weights of the MIC. Because the {Ei} sum to the identity, the weights {ei} sum to the

trace of the identity, which is just the dimension d.
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We refer to the LMC obtained from a SIC as the SIC channel ESIC. We may charac-

terize the SIC channel in any dimension in which a SIC exists using the convenient no-

tion of a dual basis. Given a basis for a vector space, any vector in that space is uniquely

identified by its inner products with the basis elements. These inner products are the co-

efficients in the expansion of the vector over the elements of the dual basis. Likewise, the

inner products with the elements of the dual basis are the coefficients in the expansion

over the original basis. A consequence of this is that, if {Hi} denotes the original basis

and {H̃j} denotes its dual basis, then

trHiH̃j = δij. (4.5)

It follows that if {Hi} is a SIC, then the dual basis is given by

H̃j = (d+ 1)Πj − I , (4.6)

so we may write an operator X ∈ L(Hd) in the SIC basis as

X =
∑
j

(trXH̃j)Hj

= (d+ 1)
∑
j

(trXΠj)Hj − (trX)I .

(4.7)

Noting that (trXΠj)Hj = 1
d
ΠjXΠj and that

√
Hj = 1√

d
Πj , we obtain

ESIC(X) =
1

d

∑
j

ΠjXΠj =
(trX)I +X

d+ 1
, (4.8)
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and so for any quantum state ρ,

ESIC(ρ) =
I + ρ

d+ 1
. (4.9)

Going forward, given an LMC E and input state ρ, let λ denote the eigenvalue spec-

trum of the post-channel state E(ρ) and λmax denote the maximum eigenvalue of this

state. We use the notation f(|ψ〉〈ψ|) to denote the average value of the function f(|ψ〉〈ψ|)

over all pure state inputs |ψ〉〈ψ| with respect to the Haar measure. We now prove a lemma

applicable to arbitrary LMCs upon which our later results rely.

Lemma 5. Let E be an LMC. Then

λmax ≥
2

d+ 1
. (4.10)

Proof. For an arbitrary pure state ρ = |ψ〉〈ψ|,

E(|ψ〉〈ψ|) =
∑
i

√
Ei|ψ〉〈ψ|

√
Ei . (4.11)

We may lower bound λmax given such an input as follows:

λmax ≥ 〈ψ|E(|ψ〉〈ψ|)|ψ〉 =
∑
i

|〈ψ|
√
Ei|ψ〉|2 . (4.12)

If we now average over all pure states with the Haar measure, we will produce a generic

lower bound on the average maximal eigenvalue of the post-channel state:

λmax ≥
∑
i

∫
H
|〈ψ|

√
Ei|ψ〉|2dΩψ . (4.13)
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We can evaluate this integral using a known property of the Haar measure [4]. Integrating

a tensor power over pure state projectors gives a result proportional to the projector Psym

onto the symmetric subspace ofHd ⊗Hd. Consequently,

λmax ≥
2

d(d+ 1)

∑
i

tr
[(√

Ei ⊗
√
Ei

)
Psym

]
. (4.14)

Using the fact that

Psym =
1

2

(
I ⊗ I +

∑
kl

|l〉〈k| ⊗ |k〉〈l|
)
, (4.15)

one may verify that

tr
[(√

Ei ⊗
√
Ei

)
Psym

]
=

1

2

(
tr
√
Ei

)2

+
ei
2
. (4.16)

Thus equation (4.14) becomes

λmax ≥
1

d(d+ 1)

(∑
i

(
tr
√
Ei

)2

+
∑
i

ei

)
. (4.17)

Now since tr
√
Ei =

√
eitr
√
ρi and tr

√
ρi ≥ 1,

λmax ≥
2

d(d+ 1)

∑
i

ei =
2

d+ 1
. (4.18)

The following theorem reveals that the SIC channel’s action is unique to SICs among

LMCs.

Theorem 11. A SIC exists in dimension d iff there is an LMC with action E(ρ) = I+ρ
d+1

for

all ρ.
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Proof. If a SIC exists, take E = ESIC. For the other direction, we will first demonstrate

that the MIC which gives rise to this LMC must be rank-1. Having established this, we

will be able to see that the unitaries relating different Kraus operators for this LMC are

directly related to the MIC weights. This will allow us to show that the principal Kraus

operators have the Gram matrix of a SIC and must form a SIC themselves.

For any pure state input,

λ =
(

2

d+ 1
,

1

d+ 1
, . . . ,

1

d+ 1

)
. (4.19)

Thus the lower bound in Lemma 5 is saturated. This can only occur when tr
√
ρi = 1 for

all i which implies that the MIC is rank-1.

In Appendix A we define and construct the quasi-SICs, that is, sets of Hermitian, but

not necessarily postive semidefinite, matrices {Qi} which have the same Hilbert–Schmidt

inner products as SIC projectors, and we demonstrate that they furnish a Hermitian basis

of constant-trace Kraus operators Ai which give the same action as E . Any other set of

Kraus operators with the same effect will be related to this set by a unitary remixing, and

since E is an LMC, we must have

√
Ei =

∑
j

[U ]ijAj . (4.20)

Since we know the MIC is rank-1, we can trace both sides of this expression to obtain the

identity
√
dei =

∑
j[U ]ij . Furthermore, since the Aj form a Hermitian basis, one may see
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that every element of U must be real, rendering U an orthogonal matrix. Then

tr
(√

Ei
√
Ej

)
=

1

d

∑
k,l

[U ]ik[U ]jltrQkQl

=
1

d

∑
k,l

[U ]ik[U ]jl
dδkl + 1

d+ 1

=
dδij + d

√
eiej

d(d+ 1)
.

(4.21)

When i = j, we have

ei =
1 + ei
d+ 1

=⇒ ei =
1

d
, (4.22)

and so

tr
(√

Ei
√
Ej

)
=
dδij + 1

d(d+ 1)
, (4.23)

and because Ei is rank-1,

tr (EiEj) =
dδij + 1

d2(d+ 1)
, (4.24)

that is, the MIC is a SIC.

4.2 Depolarizing Lüders MIC Channels

The SIC channel falls within a class of channels called depolarizing channels [12]. A

depolarizing channel is a channel

Eα(ρ) = αρ+
1− α
d

I ,
−1

d2 − 1
≤ α ≤ 1 . (4.25)

The SIC channel corresponds to α = 1
d+1

. One might wish to know when an LMC is a

depolarizing channel. From Theorem 11, we know the only LMC with α = 1
d+1

is the SIC

channel. What range of α are achievable by LMCs?

93



The answer to this question is any 1
d+1
≤ α < 1. To see this, note that the eigenvalue

spectrum for a depolarizing channel given a pure state input is

λ (Eα(|ψ〉〈ψ|)) =
(
α +

1− α
d

,
1− α
d

, . . . ,
1− α
d

)
. (4.26)

Recall the lower bound on the average maximal eigenvalue for any LMC given a pure

state input from Lemma 5 is 2
d+1

. As the spectrum for a depolarizing channel is constant

for pure state inputs, the lower bound on the average is the lower bound for any pure state

input. If λmax = 1−α
d

, then 1−α
d
≥ α+ 1−α

d
=⇒ α ≤ 0. The more negative α is, the larger

the maximal eigenvalue would be, so the largest it can get is when α = −1
d2−1

, in which

case λmax = d
d2−1

< 2
d+1

. So, λmax = α + 1−α
d
≥ 2

d+1
=⇒ α ≥ 1

d+1
. When α = 1,

the channel is the identity channel, in other words, not depolarizing at all. It is easy to

prove that were this to be implemented by an LMC, it would require
√
Ei = 1

d
I , but this

does not lead to a linearly independent set and is not a MIC. If a SIC exists, however, a

depolarizing LMC exists for any 1
d+1
≤ α < 1, as the next proposition shows.

Proposition 1. Suppose a SIC exists in dimension d. For a nonzero β ∈
[
−1
d−1

, 1
]

satisfy-

ing

α = 1−

(√
1− β + dβ −

√
1− β

)2

d+ 1
, (4.27)

or, equivalently,

β =
1

d2

(
(d− 2)(d+ 1)(1− α)

+ 2
√

(d+ 1)(1− α)(1− α + d2α)
)
,

(4.28)

the MIC

Ei =
β

d
Πi +

1− β
d2

I , (4.29)
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where Πi is a SIC projector, gives rise to the LMC

Eα(ρ) = αρ+
1− α
d

I ,
1

d+ 1
≤ α < 1 . (4.30)

One may check that the principal Kraus operators associated with the MIC elements (4.29)

are given by

Ai =

√
1− β + dβ −

√
1− β

d
Πi +

√
1− β
d

I , (4.31)

and then a routine calculation and the characterization of the SIC channel from Theorem

11 confirms the claim of the proposition.

Remark. When β = 1, the MIC {Ei} is the original SIC, whereas when β equals its

minimum allowed value −1/(d− 1), it is the rank-(d− 1) equiangular MIC

Ei =
1

d(d− 1)
(−Πi + I) , (4.32)

indirectly noted in prior work [2, 13, 14] for extremizing a nonclassicality measure based

on negativity of quasi-probability.

Do any LMCs give rise to depolarizing channels in dimensions where one does not

have access to a SIC? If we replace the SIC projector in equation (4.31) with a quasi-SIC,

we may form Kraus operators effecting the same depolarizing channel,

Ki =

√
1− β + dβ −

√
1− β

d
Qi +

√
1− β
d

I . (4.33)

From (4.59), one can check that these will square to a valid MIC. For arbitrary β, how-

ever, Ki may fail to be positive semidefinite and would therefore not be a principal Kraus

operator. From the definition of a quasi-SIC, one sees that the eigenvalues of Qi are bounded
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below by −1. Even in this worst case, one can easily derive that Ki will be positive semidef-

inite for any nonzero β ≤ 3
d+3

. This range of β entitles any α ≥ d2−d−1
d2−1

. (The minimal α

is obtained from the most negative β.) When d = 2, this minimal α matches the lower

bound achieved by the SIC channel because every quasi-SIC is a SIC in this dimension,

but for all d > 2 the inequality is strict and monotonically increases with dimension. In

practice, the minimal eigenvalue among all of the quasi-SIC operators one constructs will

be significantly larger than −1, and so, depending on how close to a SIC one can make

their quasi-SIC, one should be able to get significantly closer to the SIC bound than the α

we have derived.

Fully classifying the MICs giving depolarizing LMCs for particular values of α > 1
d+1

appears to be a difficult problem; it is not clear what properties these MICs must satisfy.

For example, squaring the Ki operators from equation (4.33) results in MICs which are

dependent on one’s quasi-SIC implementation and need not be equiangular as the family

in equation (4.29) was. All principal Kraus operators which give rise to a depolarizing

channel with a given β (and corresponding α) will be related to the operators (4.33) by

way of a unitary remixing satisfying

√
Ei =

∑
j

[U ]ijKj (4.34)

for some unitary U . As in the proof of Theorem 11, all the elements of the unitary must

be real and so it is actually an orthogonal matrix. We have not been able to identify any

further necessary characteristics of the U in the completely general case, but the following

notable restriction yielded further structure. A MIC is unbiased if the traces of all the ele-

ments are equal, that is, if ei = 1
d

for all i. MICs in this class have the property that their

measurement outcome probabilities for the “garbage state” 1
d
I input is the flat probability
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distribution over d2 outcomes. From the standpoint of [1], this means they preserve the

intution that the state 1
d
I should correspond to a prior with complete outcome indifference

in a reference process scenario and accordingly warrant special attention. If we demand

that {Ei} be unbiased, then it is necessary, but not sufficient, that the orthogonal matrix

remixing (4.33) be doubly quasistochastic (see Appendix B).

4.3 Entropic Optimality

One way to evaluate the performance of a quantum channel is by using measures

based on von Neumann entropy,

S(ρ) = −tr ρ log ρ . (4.35)

In this section, we consider two such, proving in each case an optimality result for LMCs

constructed from SICs. To understand the conceptual significance of the bounds we will

derive, consider again Alice who is preparing to send a quantum system through an LMC.

Alice initially ascribes the quantum state ρ to her system, and before sending the system

through the channel, she computes E(ρ). After eliciting a measurement outcome, Alice

will update her quantum-state assignment, not to E(ρ) but rather to whichever ρ′i corre-

sponds to the outcome Ei that actually transpires. The state E(ρ) will generally be mixed,

while ρ′i will be a pure state in the case of a rank-1 MIC. This change from mixed to pure

represents a sharpening of Alice’s expectations about her quantum system. We can quan-

tify this in entropic terms, even for MICs that are not rank-1. In fact, for pure state inputs

we can calculate Alice’s typical sharpening of expectations by averaging the post-channel

von Neumann entropy over the possible input states using the Haar measure, denoted
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S(E(|ψ〉〈ψ|)). We will see that SIC channels give the largest possible typical sharpening

of expectations.

In the following we make use of a partial ordering on real vectors arranged in non-

increasing order called majorization [15]. A real vector x rearranged into nonincreasing

order is written as x↓. Then we say a vector x majorizes a vector y, denoted x � y, if all

of the leading partial sums of x↓ are greater than or equal to the leading partial sums of y↓

and if the sum of all the elements of each is equal. Explicitly, x � y if

k∑
i=1

x↓i ≥
k∑
i=1

y↓i , (4.36)

for k = 1 . . . N − 1 and
∑
i xi =

∑
i yi. Speaking heuristically, if x � y, then y is a

flatter vector than x. A Schur convex function is a function f satisfying the implication

x � y =⇒ f(x) ≥ f(y). A function is strictly Schur convex if the inequality is strict

when x↓ 6= y↓. When the inequality is reversed the function is called Schur concave.

Theorem 12. Let E be an LMC. S(E(|ψ〉〈ψ|)) ≤ log(d + 1) − 2
d+1

log 2 with equality

achievable if a SIC exists in dimension d.

Proof. From Lemma 5, we know that the average maximal eigenvalue for the output of an

arbitrary LMC given a pure state input is lower bounded by 2
d+1

. This implies

λ �
(
λmax,

1− λmax

d− 1
, . . . ,

1− λmax

d− 1

)

�
(

2

d+ 1
,

1

d+ 1
, . . . ,

1

d+ 1

)
.

(4.37)

The Shannon entropy H(P ) = −∑i Pi logPi is a concave and Schur concave function

of probability distributions. Furthermore, the von Neumann entropy of a density matrix is
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equal to the Shannon entropy of its eigenvalue spectrum. Using these facts we have

S(E(|ψ〉〈ψ|)) = H
(
λ(E(|ψ〉〈ψ|))

)
≤ H

(
λ(E(|ψ〉〈ψ|))

)
≤ log(d+ 1)− 2

d+ 1
log 2 .

(4.38)

If a SIC exists, taking E = ESIC achieves this upper bound.

Theorem 12 would have been more forceful if the upper bound were saturated “only

if” a SIC exists, but we were unable to demonstrate this property, and so we leave it as a

conjecture:

Conjecture 5. Equality is achievable in the statement of Theorem 12 only if a SIC exists

in dimension d.

We were, however, able to prove a strong SIC optimality result in the setting of bipartite

systems, applicable for example to Bell-test scenarios. The entropy exchange for a chan-

nel E upon input by state ρ is defined [7] to be the von Neumann entropy of the result of

sending one half of a purification of ρ, |Ψρ〉, through the channel:

S(ρ, E) := S
(
I ⊗ E(|Ψρ〉〈Ψρ|)

)
. (4.39)

Theorem 13. Let E be an LMC. Then S
(

1
d
I, E

)
≤ log d + d−1

d
log(d + 1) with equality

achievable iff a SIC exists in dimension d.

Proof. The purification of the state 1
d
I is the maximally entangled state |ME〉 := 1√

d

∑
i|ii〉.

Let λ be the eigenvalues of I ⊗ E(|ME〉〈ME|) arranged in nonincreasing order. We may
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lower bound the maximal eigenvalue as follows:

λmax ≥ 〈ME|I ⊗ E(|ME〉〈ME|)|ME〉

=
1

d2

∑
ijkl

〈ii|I ⊗ E(|jj〉〈kk|)|ll〉

=
1

d2

∑
ijkl

〈ii|(|j〉〈k| ⊗ E(|j〉〈k|))|ll〉

=
1

d2

∑
il

〈i|E(|i〉〈l|)|l〉

=
1

d2

∑
ijl

〈i|
√
Ej|i〉〈l|

√
Ej|l〉

=
1

d2

∑
j

(
tr
√
Ej
)2
≥ 1

d2

∑
j

ej =
1

d
.

(4.40)

Thus,

λ �
(
λmax,

1− λmax

d2 − 1
, . . . ,

1− λmax

d2 − 1

)

�
(

1

d
,

1

d(d+ 1)
, . . . ,

1

d(d+ 1)

)
.

(4.41)

The upper bound now follows from the Schur concavity of von Neumann entropy.

If a SIC exists, it is easy to verify that

I ⊗ ESIC(|ME〉〈ME|) =
1
d
I ⊗ I + |ME〉〈ME|

d+ 1
(4.42)

which saturates the upper bound. Von Neumann entropy is strictly Schur concave [16],

so the upper bound is saturated iff λ =
(

1
d
, 1
d(d+1)

, . . . , 1
d(d+1)

)
. Equation (4.40) shows

that |ME〉 is the maximal eigenstate and that {Ej} is a rank-1 MIC in the same way as in

100



Theorem 11. By the spectral decomposition, we may write

I ⊗ E(|ME〉〈ME|) =
1

d
|ME〉〈ME|+ 1

d(d+ 1)

d2∑
i=2

Pi (4.43)

where Pi are projectors into the other d2−1 eigenstates. As the full set of projectors forms

a resolution of the identity, we have

d2∑
i=2

Pi = I ⊗ I − |ME〉〈ME| , (4.44)

so

I ⊗ E(|ME〉〈ME|) =
1
d
I ⊗ I + |ME〉〈ME|

d+ 1
. (4.45)

It follows from (4.57) in Appendix A that

|ME〉〈ME| = d+ 1

d2

d2∑
i=1

QT
i ⊗Qi −

1

d
I ⊗ I , (4.46)

where the Qi are elements of a quasi-SIC. From the previous expression we now have

I ⊗ E(|ME〉〈ME|) =
1

d2

∑
i

QT
i ⊗Qi . (4.47)

Applying I ⊗ E directly to equation (4.46) gives us

I ⊗ E(|ME〉〈ME|) =
d+ 1

d2

∑
i

QT
i ⊗ E(Qi)−

1

d
I ⊗ I

=
1

d2

∑
i

QT
i ⊗ [(d+ 1)E(Qi)− I] ,

(4.48)
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where we used that every LMC is unital and that 1
d

∑
iQ

T
i = I . Comparing equations

(4.47) and (4.48), we may see that

Qi = (d+ 1)E(Qi)− I (4.49)

by multiplying both sides by Q̃T
j ⊗ I and tracing over the first subsystem. The quasi-SICs

form a basis for operator space, so it follows by linearity that

E(ρ) =
I + ρ

d+ 1
, (4.50)

and so by Theorem 11 we are done.

4.4 Conclusions

In prior works we have emphasized the importance of MICs as a special class of mea-

surements. The considerations of this paper developed from the idea that MICs may nat-

urally furnish important classes of quantum channels as well. We affirmed this intuition

with the introduction of LMCs which enabled us to discover several new ways in which

SICs occupy a position of optimality among all MICs, supposing they exist. The ap-

pearance of additional equivalences with SIC existence plays two important roles. First,

it should aid those trying to prove the SIC existence conjecture in all finite dimensions,

and second, to our minds, it suggests that LMCs are a more important family of quantum

channels than has been realized. We hope this work will inspire more study of LMCs and

other types of channels derived from MICs not investigated here.

One example of such an alternative is a procedure where, when the agent implement-

ing the channel applies the MIC, they reprepare the measured system in such a way that
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they ascribe a fixed quantum state to it, the choice of new state being made based on the

measurement outcome. The action of such a channel is

E(ρ) =
∑
i

(tr ρEi)σi, (4.51)

where the states {σi} are the new preparations applied in consequence to the measure-

ment outcomes. Channels defined by a POVM and a set of repreparations are known as

entanglement-breaking channels [17]. When the POVM is a MIC, we can speak of an

entanglement-breaking MIC channel (EBMC). EBMCs coincide with LMCs for rank-1

MICs and repreparations proportional to the MIC, but not in general. While earlier work

already gives some indication that SIC channels are significant among EBMCs [1], we

suspect that there is much more to be discovered about EBMCs as a class.

Postscript

Due to a breakdown of our university email system, it was not until after Physical Re-

view A published this article that we became aware of the preprint “Entanglement Break-

ing Rank” by Pandey et al. [18]. Their Corollary 3.3 is equivalent to our Theorem 1, al-

beit proved from a different starting point. They consider all channels having the same

action as ESIC and ask when those channels can be achieved using only d2 rank-1 Kraus

operators. We consider channels defined by d2 Kraus operators (of arbitrary rank) and

ask when they can have the action of the SIC channel. We regret this oversight, and we

commend their paper to the reader’s attention. The silver lining is that we can now say the

SIC problem has attracted sufficient interest that the literature is not easy to keep up with.

Moreover, our attention having been called back to this paper after an interlude thinking
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about other aspects of SICs, we now believe that Conjecture 1 can be proven for the spe-

cial case of unbiased LMCs in d = 2. We now sketch the argument here.

Consider a MIC whose elements are constructed by taking the orbit of an operator

under the action of a discrete group of unitaries. Such a MIC is known as group covariant

and is necessarily unbiased. If {|ψj〉} is a set covariant with respect to the same group

as the MIC, then the post-channel states {E(|ψj〉〈ψj|)} are unitarily equivalent and thus

isospectral. We have the eigenvalue bound

λmax(E(|ψ0〉〈ψ0|)) ≥ 〈ψ0|E(|ψ0〉〈ψ0|)|ψ0〉 . (4.52)

In the case that the states {|ψj〉} comprise a SIC and the LMC is unbiased and rank-1,

that is, the MIC elements take the form Ei = 1
d
|φi〉〈φi|, we can evaluate this bound by

transferring the unitary transformations from the LMC elements to the SIC states:

λmax(E(|ψ0〉〈ψ0|)) ≥
1

d

∑
i

|〈φ0|ψi〉|4 =
2

d+ 1
. (4.53)

Supposing the entropic bound in Theorem 2 is saturated, then the MIC must be rank-1,

and the average maximum eigenvalue is equal to 2/(d + 1). If a SIC exists, then the dis-

crete average of the maximum eigenvalue over the SIC-state inputs is equal to the contin-

uous average over all pure states, because a SIC is a 2-design. Therefore, if a SIC exists

and the entropic bound is saturated, then the maximum eigenvalue of each post-channel

state for any SIC-state input is exactly 2/(d + 1). In addition, the eigenvector of the post-

channel state corresponding to this eigenvalue is the SIC-state input itself.

Eigenvalue information is most helpful in d = 2. Knowing the maximum eigenvalue

fixes the only other eigenvalue, and from the above, we have the complete eigendecompo-
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sition of the post-channel state for any SIC-state input. From here, we can essentially do

quantum channel tomography, fixing by linearity the action of the channel.

A careful study of Bloch-sphere geometry shows that an unbiased rank-1 MIC in

d = 2 is necessarily group covariant, and in fact is unitarily equivalent to a MIC covariant

under the Pauli group. Therefore, knowing that an LMC in d = 2 is unbiased and that the

entropic bound is saturated, we know the MIC is group covariant, and the above argument

applies.

4.5 Appendix A

Here we define and construct the quasi-SICs which furnish the Kraus operators needed

in Theorem 11 and which were referenced in Theorem 13. Although SIC existence is not

assured, one may always form a quasi-SIC in any finite dimension d. A quasi-SIC is a set

of Hermitian operators obeying the same Hilbert–Schmidt inner product condition as the

SIC projectors. As positivity is not demanded, it is relatively easy to construct a quasi-

SIC as follows [19]. Start with an orthonormal basis for the Lie algebra su(d) of traceless

Hermitian operators. With the Hilbert–Schmidt inner product this space is a (d2 − 1)-

dimensional Euclidean space, so it is possible to construct a regular simplex {Bi} con-

sisting of d2 normalized traceless Hermitian operators. In this case trBiBj = −1
d2−1

when

i 6= j. Then the operators

Qi =

√
d− 1

d
Bi +

1

d
I (4.54)

form a quasi-SIC.

It turns out that Ai = 1√
d
Qi give a set of Kraus operators such that

E(ρ) =
∑
j

AjρA
†
j =

I + ρ

d+ 1
, (4.55)
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or, more generally, for an arbitrary operator X ,

E(X) =
(trX)I +X

d+ 1
, (4.56)

that is, equivalent to the action of ESIC. To see this, first observe from Corollary 1 in [20]

that

1

d

∑
i

Qi ⊗QT
i =

2

d+ 1
P TB

sym

=
1

d+ 1

(
I⊗2 +

∑
kl

|kk〉〈ll|
)
,

(4.57)

where TB indicates the partial transpose over the second subsystem. Then, with the help

of the vectorized notation for an operator |A〉〉 :=
∑
iA⊗I|i〉|i〉 and the identity |BAB〉〉 =

B ⊗BT |A〉〉, we have

|E(X)〉〉 =
1

d

∑
i

Qi ⊗QT
i |X〉〉

=
1

d+ 1

(
I⊗2 +

∑
kl

|kk〉〈ll|
)
|X〉〉

=
1

d+ 1

(
|X〉〉+

∑
klm

|k〉〈l|X|m〉 ⊗ |k〉〈l|I|m〉
)

=
1

d+ 1

(
|X〉〉+

∑
km

〈m|X|m〉|k〉|k〉
)

=
1

d+ 1
(|X〉〉+ |(trX)I〉〉)

=

∣∣∣∣∣(trX)I +X

d+ 1

〉〉
,

(4.58)

which is equivalent to (4.56). Sending X = I through equation (4.56) reveals the identity

1

d

∑
i

Q2
i = I , (4.59)
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which, since the quasi-SICs are Hermitian, is equivalent to the requirement that Kraus

operators satisfy
∑
iA
†
iAi = I .

4.6 Appendix B

A doubly quasistochastic matrix is a matrix of real numbers whose rows and columns

sum to 1. If we assume that {Ej} is an unbiased MIC, Ei = 1
d
ρi, we will now show that U

is furthermore doubly quasistochastic.

The Gram matrix for the Ki operators (4.33) is

trKiKj = (1/d− γ)δij + γ (4.60)

where

γ =
d− 1− (d− 2)β + 2

√
(1− β)(1− β + dβ)

d(d+ 1)
. (4.61)

Since ei = 1/d = trEi = tr
√
Ei
√
Ei, we have

1

d
=
∑
jk

[U ]ij[U ]iktrKjKk

=
∑
jk

[U ]ij[U ]ik
(
(1/d− γ)δjk + γ

)

= (1/d− γ)
∑
jk

[U ]ij[U ]ikδjk + γ

∑
j

[U ]ij

2

= (1/d− γ) + γ

∑
j

[U ]ij

2

,

(4.62)

from which we obtain ∑
j

[U ]ij = 1 . (4.63)
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Now note that

trKi =

√
1− β + dβ + (d− 1)

√
1− β

d
. (4.64)

Tracing both sides of (4.34) reveals that tr
√
Ei = trKi is a constant. Corollary 3 from

[20] then asserts that

∑
i

√
Ei =

∑
j

(∑
i

[U ]ij

)
Kj

=
√
d(1/d− γ) + d3γI .

(4.65)

Summing equation (4.33) gives

∑
i

Ki =
(√

1− β + dβ + (d− 1)
√

1− β
)
I . (4.66)

As the Kj form a linearly independent set, combining the previous two equations requires

∑
i

[U ]ij =

√
1− dγ + d3γ√

1− β + dβ + (d− 1)
√

1− β
= 1 . (4.67)

Thus U is doubly quasistochastic, as claimed.
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CHAPTER 5

THE PRINCIPAL WIGNER FUNCTION

5.1 Introduction

In the practical course of doing physics, managing coordinate systems is an impor-

tant skill. It is helpful to know how to choose a basis that makes a problem as simple as

possible, and it is beneficial to understand what can and cannot be eliminated by a clever

choice of reference frame. “One good coordinate system may be worth more than a hun-

dred blue-in-the-face arguments,” a colleague advises us [1]. To that end, this article will

explore two particular classes of normalized operator bases and the relations between

them.

We will work in the quantum theory of finite-dimensional systems familiar from the

study of quantum information and computation [2]. In this theory, each physical system

is associated with a Hilbert spaceHd ' Cd, where the dimension d can be taken as a

physical characteristic of the system. For example, in a quantum computer containing N

qubits, the dimension is d = 2N . A quantum state, the means of expressing the prepara-

tion of a system, is an operator on this Hilbert space that is positive semidefinite and has

a trace of unity. Measurements that one can perform upon a system are represented math-

ematically as positive-operator-valued measures (POVMs), which are resolutions of the
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identity into positive semidefinite operators:

n∑
i=1

Ei = I. (5.1)

Each effect Ei corresponds to a possible outcome of the measurement E = {Ei}, and the

probability of that outcome is calculated by the Born Rule:

p(Ei) = tr (ρEi). (5.2)

That is, probabilities are Hilbert–Schmidt inner products between the operators that stand

for outcomes and for preparations (or priors, in more probabilistic language). If the set

of effects {Ei} spans L(Hd), the space of linear operators onHd, then any operator in

this space can be expressed as a list of inner products. Such a POVM is informationally

complete, since any quantum-mechanical calculation about the system may be done in

terms of these inner products. In order to be informationally complete, a POVM must

span L(Hd), so it must contain at least d2 effects. An informationally complete POVM

with exactly d2 effects is a minimal informationally complete measurement, or MIC.

Because a MIC is informationally complete, it can serve as a reference measurement.

This means that any MIC has the property that if an agent has written a probability dis-

tribution over its d2 possible outcomes, she can then compute the probabilities that she

should assign to the outcomes of any other measurement; in other words, a MIC measure-

ment allows us to think of the Born Rule as furnishing a fully probabilistic representa-

tion of quantum theory. As we and collaborators have emphasized in the past, and will

revisit below, proofs of the impossibility of probabilistic representations of quantum the-

ory should actually be understood as proofs of the impossibility of probabilistic represen-

tations where the probabilities combine in a particular way inspired by classicality [3].
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When using a MIC E as a reference measurement, one must be mindful of its bias {ei},

composed of the weights ei := trEi ; if the weights are equal, then ei = 1/d and we call

the MIC unbiased. The bias of a MIC is an informational characteristic of the measure-

ment — it is equal to d times the Born Rule probabilities for the MIC measurement given

the quantum state of maximal indifference, the garbage state, ρ = 1
d
I .

Much of the community’s interest in MICs has focused upon the fascinating special

case of the symmetric informationally complete measurements, the SICs [4–7]. A SIC

is an unbiased MIC where each effect is proportional to a rank-1 projector — so, each

outcome of the measurement is specified by a ray in the Hilbert space — and the inner

products between any two effects are constant. This latter condition is captured by the

Gram matrix, that is, the matrix of inner products [G]ij := trEiEj , of a SIC taking the

particularly simple form

[GSIC]ij =
1

d2

dδij + 1

d+ 1
. (5.3)

SICs have proved in many ways optimal among MICs [3, 8–12]. SICs will once again

occupy a privileged position from the perspective taken in this paper.

Projective measurements (i.e., those corresponding to projections onto the eigenspaces

of quantum observables) are not informationally complete; probabilities corresponding

to the outcomes of such measurements only provide a partial picture of one’s expecta-

tions for all possible measurements. It seems the feeling that projective measurements are

nevertheless the most conceptually significant variety combined with the development

of quasiprobabilistic representations with powerful phase space analogies produced in

some the intuition that probability theory itself was insufficient or at least inconvenient

to handle the oddities of quantum mechanics. The quantum foundations, information and

computation communities have, accordingly, often looked for deviations from classical
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behavior in the peculiarities of quasiprobability distributions (e.g., the appearance of neg-

ativity) [13–16]. Discrete Wigner function approaches in particular have received sub-

stantial theoretical and applied interest. Our purpose in this paper is to connect reference

measurement based probabilistic representations with a suitably generalized notion of

discrete Wigner function representations. Our hope is that a deeper understanding of this

association will be valuable to both probabilistic and quasiprobabilistic points of view and

ultimately help us better understand what is possible in a quantum world.

Our plan for this paper is as follows. In §5.2, we will use the MIC concept to intro-

duce probabilistic and quasiprobabilistic representations of quantum theory and identify

the intuition that there should be a natural relation between them. In §5.3 we consider

a generalization of a MIC we call a measure basis and use it to define discrete minimal

Wigner bases, setting the scene for a formal discussion of the intuitive relation noted ear-

lier. §5.4 is a brief interlude providing background and motivation from frame theory; in

particular we introduce the frame operator and the canonical tight frame. With the back-

ground in place, in §5.5 we define the principal Wigner basis and derive some of its first

properties, such as an induced equivalence class on the set of MICs. In §5.6 we begin to

apply the perspective gained in the previous section to MICs and Wigner bases appearing

in the literature. Here, we will prove Theorem 16, which bounds the distance between an

unbiased MIC and an unbiased Wigner basis. Theorem 17 then captures the special role

that SICs play in these considerations. In the broader picture of our research program,

Theorem 17 is the key result of the paper, for it demonstrates a new way in which SICs

are extremal among MICs. Finally, in §5.7 we discuss what has been learned, record a

few open questions, and anticipate a few fruitful directions for further research.
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5.2 Probability and Quasiprobability

As we noted above, a MIC may serve as a reference measurement. We can illustrate

the meaning of this by comparing and contrasting it with classical particle mechanics.

There, a “reference measurement” would just be an experiment that reads off the system’s

phase-space coordinates, i.e., the positions and momenta of all the particles making up the

system. Any other experiment, such as observing the total kinetic energy, is in principle a

coarse-graining of the information that the reference measurement itself provides.

To develop the analogy, consider the following scenario [17]. An agent Alice has a

physical system of interest, and she plans to carry out either one of two different, mutu-

ally exclusive laboratory procedures upon it. In the first protocol, she will drop the sys-

tem directly into a measuring apparatus and thereby obtain an outcome. In the second

protocol, she will cascade her measurements, sending the system through a reference

measurement and then, in the next stage, feeding it into the device from the first proto-

col. Probability theory in the abstract provides no consistency conditions between Alice’s

expectations for these two protocols. Different circumstances, different probabilities! Let

P denote her probability assignments for the consequences of following the two-step pro-

cedure and Q those for the single-step protocol. Then, writing {Hi} for the possible out-

comes of the reference measurement and {Dj} for those of the other,

P (Dj) =
∑
i

P (Hi)P (Dj|Hi). (5.4)

This much is just logic, or more specifically speaking, a consequence of Dutch-book co-

herence [10, 18]. It is known as the Law of Total Probability (LTP). However, the claim
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that

Q(Dj) = P (Dj) (5.5)

is an assertion of physics, above and beyond probabilistic self-consistency. It codifies in

probabilistic language the idea that the classical ideal of a reference measurement simply

reads off the system’s pre-existing phase-space coordinates, or data equivalent thereto.

In quantum physics, life is very different. Instead of taking a weighted average of the

{P (Dj|Hi)} as in the LTP, Alice instead uses a mapping

Q(Dj) = µ ({P (Hi)}, {P (Dj|Hi)}) , (5.6)

where the exact form of the function µ depends upon her choice of MIC. Conveniently,

quantum theory is only so nonclassical that µ is a bilinear form, rather than a more convo-

luted function.

We can write our equations more compactly by introducing a vector notation, in which

omitted subscripts imply that an entire vector or matrix is being treated as an entity. Then

the LTP has the expression

P (D) = P (D|H)P (H) , (5.7)

while the quantum relation, the Born Rule, is1

Q(D) = P (D|H)ΦP (H) , with [Φ−1]ij :=
1

trHj

trHiHj . (5.8)

1To obtain (5.8), expand an arbitrary state ρ in the basis {ρi}, ρi = Hi/hi, of quantum states propor-
tional to the MIC basis: ρ =

∑
i αiρi. Then, computing the MIC probabilities for ρ with the Born Rule, it

follows that α = ΦP (H). Thus, since P (Dj |Hi) = trDjρi, (5.8) follows from another application of the
Born Rule with the D measurement.
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The Born matrix Φ depends upon the MIC2 , but it is always a column quasistochastic

matrix, meaning its columns sum to one but may contain negative elements [3]. In fact,

Φ must contain negative entries; this follows from basic structural properties of quantum

theory [13]. As a consequence, ΦP (H) is a quasiprobability. Considering the operation

of Φ on P (H) as a single term results in an equation algebraically equivalent to the LTP

aside from the appearance of negativity in the last term. The same thing happens if we

regard Φ as acting to the left on P (H|D), but now the negativity has been relegated to the

first term. For an unbiased MIC, Φ is a symmetric matrix and we can do the same thing

in yet another way by “splitting the map down the middle” and acting with one factor in

either direction:

Q(D) =
(
P (D|H)Φ1/2

) (
Φ1/2P (H)

)
, (5.9)

where the principal square root Φ1/2, which also turns out to be quasistochastic, provides

a similar quasiprobabilistic interpretation to Φ1/2P (H) and the rows of P (D|H)Φ1/2.

One might then say that, for a given MIC, there is a certain “gauge freedom” about where

the negativity can occur if we wish to massage (5.8) into a form which fits together in

exactly the same way as the LTP [19]. As we will see later on, the even-handed gauge

choice (5.9) amounts to a Wigner function representation naturally associated with the

reference measurement MIC.

5.3 Discrete Minimal Wigner Functions

We now begin a more formal discussion of quasiprobability representations of quan-

tum theory constructed on orthogonal operator bases [20, 21], which were motivated in

2And, in general, a set of post-measurement states; in this case the post-measurement states ρi are pro-
portional to the MIC itself and so do not constitute another dependency. We considered the more general
update procedure extensively in [3].
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the first place by the demand that we cast the Born Rule structurally analogous to the LTP.

We first define the following generalization of a MIC:

Definition 1. A measure basis is a Hermitian basis L for L(Hd) for which

∑
i

Li = I and trLi ≥ 0 . (5.10)

The sum condition ensures that its inner products with a quantum state give a quasiprob-

ability in the same way the Born Rule gives probabilities for a POVM. As with a MIC,

the bias {li} of a measure basis consists of the weights li := trLi. The condition that

the weights are nonnegative permits us to carry over the probabilistic significance of a

MIC’s bias to a measure basis in general. It will also sometimes be useful to define the

diagonal bias matrix [A]ij := liδij of a measure basis. We extend the Born matrix defini-

tion to any measure basis in the natural way: In terms of its Gram matrix and bias matrix,

Φ = AG−1. Unless otherwise specified, a measure basis has a bias with weights denoted

by the lowercase letter equivalent of the basis elements, e.g. the bias of B is {bi}. In this

language, a MIC is a measure basis consisting of positive semidefinite operators.

A MIC cannot be orthogonal [22], but a measure basis can — this is the distinguishing

property of the operator bases corresponding to discrete Wigner functions which presently

concerns us. Accordingly, we define

Definition 2. A discrete minimal Wigner basis is an orthogonal measure basis.

We will generally omit the additional qualifiers “discrete” and “minimal” since we are

only considering finite dimensions and we will not be discussing quasiprobability repre-

sentations of quantum theory that use overcomplete operator bases.3 Up to proportion-

ality, what we call a Wigner basis is the set of “phase point operators” for most Wigner
3For a generalization of Wigner functions which does use overcomplete bases, see [23].
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function approaches in the literature. We prefer to use phase space agnostic terminology

as we have intentionally avoided building any particular conception of a discrete phase

space into our generalization. This move will hopefully allow us to eventually understand

precisely when, and to what extent, such conceptions are most useful. For the remainder

of the paper, when we speak of a Wigner function, we mean the quasiprobability distri-

bution one may obtain from a Wigner basis and a density matrix. There is not much to

say about Wigner bases at this level of generality, so for now we note two basic properties

before proceeding.

Proposition 2. The Gram matrix of a Wigner basis is equal to its bias matrix, [G]ij =

fiδij .

Proof. Let {Fi} be a Wigner basis. As it is orthogonal, the Gram matrix is diagonal, that

is, trFiFj = ciδij for some constants {ci}. The dual basis is the unique basis {F̃i} such

that tr F̃iFj = δij , so we must have Fi = ciF̃i. Then the sum constraint enforces tr F̃i = 1

and ci = fi follows.

Definition 3. Let F be a Wigner basis. The shifted Wigner basis of F is the set F S,

F S
i := −Fi +

2fi
d
I . (5.11)

Proposition 3. The shifted Wigner basis is a Wigner basis with the same bias.

Proof. trF S
i = fi and

∑
i F

S
i = I are obvious from inspection. Then

tr

(
−Fi +

2fi
d
I

)(
−Fj +

2fj
d
I

)
= trFiFj −

2fj
d

trFi −
2fi
d

trFj +
4fifj
d2

tr I = fiδij

(5.12)

demonstrates orthogonality.
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5.4 The Frame Operator and the Canonical Tight Frame

In addition to the Gram matrix, another important operator for classifying sets of vec-

tors is the frame operator which appears in the theory of frames. For an introduction to

frame theory, we recommend the reference [24]. In the finite dimensional setting, a frame

for a Hilbert space is a spanning set of vectors; a basis is a frame with the minimal num-

ber of vectors to be a spanning set. Specializing to L(Hd), we define

Definition 4. The frame operator of a frame L is the superoperator S : L(Hd) → L(Hd)

defined by

X 7→
∑
i

(trXLi)Li , ∀X ∈ L(Hd) . (5.13)

The frame operator is self-adjoint with respect to the Hilbert–Schmidt inner product and

has the same nonzero spectrum as the Gram matrix; for a basis, such as a MIC, they are

isospectral. By inspection of the definition, one sees that the frame operator allows us to

construct and interconvert between the frame and the dual, L̃i := S−1(Li); for a basis,

the dual frame is exactly the dual basis. It is not hard to show that the inverse of the frame

operator is the frame operator of the dual. Likewise, for bases, the Gram matrix is also

invertible and its inverse is given by the Gram matrix of the dual basis

[G−1]ij = tr L̃iL̃j . (5.14)

We will also make use of the fact that the inner products of a vector with a frame give the

expansion coefficients for expressing the vector in the dual frame:

X =
∑
i

(trXL̃i)Li =
∑
i

(trXLi)L̃i , ∀X ∈ L(Hd) . (5.15)
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When the frame operator for a set of vectors is proportional to the identity, a frame

is called tight; and when the constant of proportionality is unity, a tight frame is called

normalized. For all frames there is a naturally associated normalized tight frame known as

the canonical tight frame which is “halfway” to the dual, obtained by applying the inverse

square root of the frame operator to each vector. Intuitively, halfway between a basis and

its dual is an orthonormal basis, that is, a self-dual basis. Indeed, for bases, the canonical

tight frame construction is an orthogonalization procedure corresponding to a symmetric

version of the Gram–Schmidt algorithm [24]. The canonical tight frame is distinguished

by being the closest tight frame to the original frame in the sense of minimizing the least

squares error (Theorem 3.2 in [24]).

A MIC cannot be a tight frame4 — if its frame operator were proportional to the iden-

tity, its Gram matrix would have to be as well and a MIC cannot be an orthogonal basis.

For the same reason, an unbiased Wigner basis is a tight frame. The canonical tight frame

for a MIC {Ei} is the orthonormal operator basis {S−1/2(Ei)}. This cannot be a mea-

sure basis because the sum condition fails for a normalized operator basis, but if the MIC

is unbiased, 1/
√
d times the canonical tight frame is an unbiased Wigner basis. In what

follows, we will extend this observation to MICs and Wigner bases of arbitrary bias and

begin to explore the consequences.

4This is a good place to clear up a confusion that we have encountered a few times during conferences,
when people from different subfields try to communicate. A MIC is a basis for the d2-dimensional space
L(Hd). It is not overcomplete, but exactly complete, having just the right number of elements to span the
operator space while keeping itself a linearly-independent set. A rank-1 MIC, for which Ei = ei|ψi〉〈ψi|,
is specified by a set of weights {ei} and a set of vectors {|ψi〉}. These vectors are d2 in number and live
withinHd, so for that space, they would be overcomplete. The vectors {√ei|ψi〉} may be considered a
frame for the d-dimensional spaceHd, and, in fact, this is a normalized tight frame because the frame oper-
ator and POVM sum condition coincide: S =

∑
i ei|ψi〉〈ψi| = I . As an operator basis, however, a MIC is

never a tight frame.
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5.5 The Principal Wigner Basis

In this section we define the principal Wigner basis which is the most significant as-

sociation of a Wigner basis to a given MIC. We will see how the principal Wigner basis

induces an equivalence class among measure bases and MICs more specifically. We then

begin to study the structure of that class.

An arbitrary Wigner basis is not a tight frame; for bases this is because the tight frame

concept effectively demands orthogonality and that the vectors all have the same norm.

From Proposition 2, we see that the Hilbert–Schmidt norm of the Wigner basis elements

are the square roots of the weights. So for any Wigner basis, if we divide each element

by the square root of its weight, the result is a normalized tight frame. We would like to

think of Wigner bases playing the analogous role among measure bases that the canonical

tight frame plays among frames. This motivates the following modification of the frame

operator:

Definition 5. The rescaled frame operator SL of a measure basis L is the frame operator

of the rescaled basis
{

1√
li
Li
}

. For X ∈ L(Hd),

SL(X) =
∑
j

trX
Lj√
lj

 Lj√
lj

=
∑
j

(
trXLj
lj

)
Lj . (5.16)

For all measure bases, SL(I) = I and, consequently, trSL(X) = trSL(X)I = trXSL(I) =

trX . In accordance with the motivation above, SF is the identity superoperator for a

Wigner basis F , which follows from Fi = fiF̃i. For a MIC E, SE is a trace-preserving

quantum channel we called the entanglement breaking MIC channel (EBMC) in a previ-

ous paper; an EBMC for a rank-1 MIC is also the Lüders MIC channel for that MIC [25].

It also turns out that the rescaled frame operator for a MIC has independently arisen in
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a different context pertaining to quantum state tomography, suggesting a deeper signifi-

cance [26]. When acting on one of the MIC elements we have

SE(Ei) =
∑
j

(
trEiEj
ej

)
Ej =

∑
j

[Φ−1]ijEj , (5.17)

from which it follows that

S−1
E (Ei) =

∑
j

[Φ]ijEj . (5.18)

The action of the Born matrix on the reference probability vector is thus equivalent to the

inverse rescaled frame operator on the effects. It is easy to see that S−1
E (Ei) is the dual

basis element to the state ρi, so the expression (5.8) simply follows from inserting the

identity into the Born Rule:

Q(Dj) = trDjρ =
∑
i

(trDjρi)
(
trS−1

E (Ei)ρ
)
. (5.19)

This lets us understand the first type of quasiprobability grouping we discussed; trS−1
E (Ei)ρ

is the ith element of the quasiprobability vector ΦP (E). We are now in place to see that

the even-handed gauge choice discussed above corresponds to a Wigner function.

Definition 6. The principal Wigner basis of a measure basis L is the set PW (L) = {Fi},

Fi := S−1/2
L (Li) . (5.20)

Proposition 4. For a measure basis L, PW (L) is a Wigner basis with the same bias as L.

Proof. As the identity is an eigenvector with eigenvalue 1 of SL, this will also be true of

S−1/2
L , so ∑

i

Fi =
∑
i

S−1/2
L (Li) = S−1/2

L (I) = I . (5.21)
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The bias is preserved because S−1/2
L is trace-preserving. Orthogonality follows from the

self-adjointness of the rescaled frame operator and the relation between a basis and its

dual:

trFiFj = tr
(
S−1/2
L (Li)S−1/2

L (Lj)
)

= trLiS−1
L (Lj) =

√
liljtr

 Li√
li
S−1
L

 Lj√
lj

 = liδij .

(5.22)

Proposition 5. Let L be a measure basis with Gram matrix G and bias matrix A. The

square root of the Born matrix with all positive eigenvalues,

√
Φ := A1/2

(
A1/2G−1A1/2

)1/2
A−1/2 , (5.23)

gives the expansion coefficients of the principal Wigner basis in the measure basis:

Fi =
∑
j

[
√

Φ]ijLj . (5.24)

Proof. Let D be the rescaled basis of L. Since Fi = S−1/2
L (Li) =

∑
j(trS

−1/2
L (Li)L̃j)Lj ,

we must show [
√

Φ]ij = trS−1/2
L (Li)L̃j . Note that

[A1/2G−1A1/2]ij = tr D̃iD̃j = trS−1
L (Di)D̃j =⇒

[(
A1/2G−1A1/2

)1/2
]
ij

= trS−1/2
L (Di)D̃j .

(5.25)

Thus

[
√

Φ]ij =
[
A1/2

(
A1/2G−1A1/2

)1/2
A−1/2

]
ij

=

√√√√ li
lj

[(
A1/2G−1A1/2

)1/2
]
ij

=

√√√√ li
lj

trS−1/2
L (Di)D̃j = trS−1/2

L (Li)L̃j ,

(5.26)
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where we used the fact that D̃j =
√
ljL̃j .

Applied to MICs, Proposition 4 demonstrates that the principal Wigner basis is in fact

a Wigner basis and Proposition 5 connects it to the probabilistic representations discussed

in §5.2; given any MIC reference measurement, there is an associated Wigner function

formed by dividing the effect of the Born matrix equally among the probabilities and

quasiprobabilities in (5.8).

The principal Wigner basis map satisfies several of the properties one would desire for

a “principal” definition. Global unitary conjugation acts equally on a MIC and its prin-

cipal Wigner basis; for any unitary U , if {Fi} is the principal Wigner basis of the MIC

{Ei}, {UFiU †} is the principal Wigner basis of the MIC {UEiU †}. This follows from

the invariance of the Gram matrix under a global unitary conjugation of the MIC. As a

consequence, if a MIC is group covariant, i.e., if it can be produced by taking the orbit of

an initial element under the action of a group, thereby making d2 elements out of one, its

principal Wigner basis is group covariant with respect to the same group. The principal

Wigner basis also respects tensor products in the following way. Let D and E be MICs,

not necessarily for the same dimensional Hilbert space. The elementwise tensor products

of their elements, {Di ⊗ Ej}, forms a MIC D ⊗ E for the product dimension. The princi-

pal Wigner basis for this MIC is equal to the tensor product of the principal Wigner bases

for the constituent MICs, that is, PW (D ⊗ E) = PW (D) ⊗ PW (E). This follows from

the observation that the tensor product of the Born matrices for the constituent MICs is

equal to the Born matrix of the tensor product MIC.

Definition 6 furnishes a map from any MIC to a particular Wigner basis. But which

MICs are in the preimage of a particular Wigner basis? As one might expect from an or-

thogonalization procedure, there are infinitely many MICs which share a principal Wigner

basis. We group those that do into an equivalence class.
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Definition 7. If PW (L) = PW (M) for two distinct measure bases L and M , we say L

and M are Wigner equivalent, denoted L ∼W M .

What can we say about the Wigner equivalence classes? The first thing to realize is that

the effects of a MIC of a given bias can have different norms depending on the purity of

ρi while, by contrast, for a Wigner basis, the norm of the elements is fixed by the bias.

This inspires us to guess that MICs which are “in the same direction” will be Wigner

equivalent. The following few results will make this intuition precise.

Proposition 6. Given a measure basis L and a real parameter t 6= 0, the set Lt = {Lti},

Lti := tLi + (1− t) li
d
I (5.27)

is a measure basis with the same bias as L.

Proof.
∑
i L

t
i = I and trLti = li are obvious. What remains is to prove linear indepen-

dence. Suppose there is a set {βi} not all zero for which
∑
i βiL

t
i = 0. Then

∑
i

βiL
t
i = t

∑
i

βiLi +
(1− t)
d

(∑
i

βili

)
I = 0 =⇒

∑
i

βiLi =
∑
i

t− 1

td

∑
j

βjlj

Li ,
(5.28)

where we used the fact that
∑
i Li = I . Because {Li} is a basis, the expansion coefficients

are unique, so βi = t−1
td

∑
j βjlj for all i, that is, the βi are constant, say βi = β. Then∑

i βiL
t
i = β

∑
i L

t
i = βI = 0 =⇒ β = 0, but this is a contradiction, so Lt is a measure

basis.

Definition 8. Let L be a measure basis. Any measure basis Lt, defined by (5.27), is collinear

with L. If t > 0, it is parallel to L and if t < 0, it is antiparallel to L.
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Now we can prove that, in fact, all parallel measure bases are Wigner equivalent. Let

SPW (L) denote the shifted principal Wigner basis of a measure basis L.

Theorem 14. For any measure basis L,

PW (Lt) =


PW (L), if t > 0

SPW (L), if t < 0

. (5.29)

Proof. Because the relation between L and Lt is relatively simple, their Born matrices

Φ = AG−1 also end up simply related:

Φt =
1

t2
Φ +

(
1− 1

t2

)
1

d
AJ . (5.30)

In particular note that Φt for two t values with the same magnitude but opposite signs are

equal. Φ is column quasistochastic, so the left eigenvector with eigenvalue 1 is the all 1s

vector; it is easy to show that the corresponding right eigenvector is the vector of weights.
√

Φ shares these properties and because of them one may deduce that

√
ΦAJ = AJ

√
Φ = AJ . (5.31)

From this, it is easy to verify that

√
Φt =

1

|t|
√

Φ +

(
1− 1

|t|

)
1

d
AJ , (5.32)
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where |t| is the absolute value of t. Now we may use Proposition 5 to compute the princi-

pal Wigner basis for Lt:

F t
i =

∑
j

[
√

Φt]ijL
t
j =

∑
j

[
1

|t|
√

Φ +

(
1− 1

|t|

)
1

d
AJ

]
ij

(
tLj + (1− t) lj

d
I

)

=
t

|t|
∑
j

[
√

Φ]ijLj +
1− t
|t|d

∑
j

[
√

Φ]ijljI +
t

d

(
1− 1

|t|

)∑
j

[AJ ]ijLj +

(
1− 1

|t|

)
1− t
d2

∑
j

[AJ ]ijljI

=
t

|t|
Fi +

[
1− t
|t|

+ t

(
1− 1

|t|

)
+ (1− t)

(
1− 1

|t|

)]
li
d
I =

t

|t|
Fi +

(
1− t

|t|

)
li
d
I ,

(5.33)

from which the claim follows.

Since all parallel measure bases are Wigner equivalent, all parallel MICs are as well. Con-

veniently, we have also learned that the shifted principal Wigner basis is the principal

Wigner basis of the antiparallel MICs. As the next lemma shows, there is always an in-

terval of MICs collinear with any measure basis. This interval corresponds to the intersec-

tion of collinear measure bases with the cone of positive semidefinite operators.

Lemma 6. Let L be a measure basis. Define σi := Li/li. Let λmax
i and λmin

i be the maxi-

mum and minimum eigenvalues of σi. Then Lt is a MIC iff t 6= 0 and

max
i

{
1

1− dλmax
i

}
≤ t ≤ min

i

{
1

1− dλmin
i

}
. (5.34)

Proof. As Lt is a measure basis, for it to be a MIC the elements must all be positive semidef-

inite. Thus we need to show λmin(Lti) ≥ 0 for all t in the range (5.34). Since trLi = li,

the average eigenvalue of Li is li/d, and so λmin(Li) ≤ li/d. Suppose t > 0. Then

λj(L
t
i) = tλj(Li) + (1− t) li

d
, (5.35)
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so

λmin(Lti) = tλmin(Li) + (1− t) li
d
≥ 0 ⇐⇒ t ≤ 1

1− dλmin
i

. (5.36)

For this to be true for all i, t must be less than the minimum value of the right hand side.

The lower bound is similarly obtained by assuming t < 0 and making the appropriate

adjustments.

Starting with a particular MIC, we were able to see that all those parallel to it were

Wigner equivalent. But there are Wigner equivalent MICs which are not collinear; in

fact, the following theorem opens the way for the construction of arbitrarily many Wigner

equivalent MICs which are not collinear.

Theorem 15. Let F be a Wigner basis. For any measure basis L, S1/2
L (F ) is a measure

basis collinear with MICs in the Wigner equivance class of F .

Proof. Note trS1/2
L (Fi) = trS1/2

L (Fi)I = trFiS1/2
L (I) = trFi = fi. Now from Defini-

tion 5 and the proportionality of a Wigner basis to its dual it follows that

SS1/2L (F )
(X) =

∑
j

trS1/2
L (Fj)X

trS1/2
L (Fj)

S1/2
L (Fj) = S1/2

L

∑
j

trFjS1/2
L (X)

fj

Fj
 = SL(X) .

(5.37)

From this we see that PW (S1/2
L (F )) = F . Then from Lemma 6 we may construct MICs

collinear with S1/2
L (F ) in the Wigner equivalence class of F .

We have likely only just begun to scratch the surface of this topic, but we have seen

enough to begin applying what we’ve learned. Before doing so in the next section we re-

mark on the significance of our observations. Wigner equivalence is a very broad group-

ing. Every MIC furnishes a distinct probabilistic representation of the Born Rule, but the

probabilistic representations obtained from any two Wigner equivalent MICs are related
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to the same quasiprobabilistic representation in the way we have seen. In other words,

a Wigner function representation of quantum theory is insensitive to differences among

the informationally complete measurements consistent with it. This is at least in part an

artifact of our level of treatment. For our purposes here, any MIC sufficed to furnish a

probabilistic representation, but this is not to say that any MIC would be practically useful

in that capacity. Wigner equivalence alone preserves bias, but, it seems, little else. A good

reference measurement should unmask features of quantum state space that were other-

wise hard to detect. It seems likely that the reference measurements standing a chance of

being useful in this regard would possess mathematical properties beyond the basic def-

inition of a MIC, perhaps being rank-1 or symmetric with respect to a particular group.

Indeed, as the phase point operators of most Wigner function approaches are covariant

with respect to the Weyl–Heisenberg group, furnishing discrete analogs of position and

momentum operators, we speculate that Weyl–Heisenberg covariant MICs are a class of

reference measurements which provide something reminiscent of a phase space without

sacrificing operational significance. We hope the general association we’ve identified

will allow for a dramatic sharpening of the correspondence between probabilistic and

quasiprobabilistic representations once refinements of this variety and others are adopted.

5.6 Behind Every Great Wigner Basis is a Great MIC

The previous section introduced the principal Wigner basis and the induced relation of

Wigner equivalence. We can carry this study further by specializing to unbiased Wigner

bases, the case of most practical and theoretical interest as, to our knowledge, it encom-

passes all of the Wigner functions derived from operator bases to date in the literature.

Pursuing this line of inquiry will lead us to a new way in which SICs are extremal among

MICs. We begin by showing that the principal Wigner basis of an unbiased MIC inher-
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its the closeness property enjoyed by the canonical tight frame. Because of the sum nor-

malization condition, there is also a farthest Wigner basis from a given unbiased MIC,

namely the shifted principal Wigner basis.

Theorem 16. Let E be an unbiased MIC and F be an unbiased Wigner basis. Let λk be

the kth eigenvalue of the MIC’s frame operator S. Then

∑
k

(√
λk −

√
1/d

)2

≤
∑
i

||Ei − Fi||2 ≤
∑
k

(√
λk +

√
1/d

)2

− 4

d
, (5.38)

where the lower bound is saturated iff F = PW (E) and the upper bound is saturated iff

F = SPW (E).

Proof. The lower bound follows from Theorem 3.2 in [24]. The key step is the demon-

stration that for any MIC E and Wigner basis F ,

∑
j

trEjFj ≤
1√
d

∑
k

√
λk , (5.39)

with equality iff

Fj =
1√
d
S−1/2(Ej) , (5.40)
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that is, F = PW (E). For the upper bound,

∑
i

||Ei − Fi||2 =
∑
i

∣∣∣∣∣
∣∣∣∣∣Ei + F S

i −
2

d2
I

∣∣∣∣∣
∣∣∣∣∣
2

=
∑
i

tr
(
Ei + F S

i −
2

d2
I
)(
Ei + F S

i −
2

d2
I
)

=
∑
i

(
trE2

i + trF S
i

2
+ 2trEiF

S
i

2 − 4

d3

)

≤
∑
k

(
λk +

1

d
+

2√
d

√
λk

)
− 4

d

=
∑
k

(√
λk +

√
1/d

)2

− 4

d
,

(5.41)

with equality iff F S = PW (E), that is, iff F = SPW (E).

Theorem 16 does not seem to exactly generalize to the biased case; perhaps a different

condition is more appropriate for biased measure bases. However, this theorem inspires

us to ask the reverse question: What is the closest MIC to a given Wigner basis? This is

probably quite hard to answer in general, but it turns out we can answer it in an important

special case to which we now turn.

Let E be a SIC, that is,

Ei :=
1

d
Πi, with tr ΠiΠj =

dδij + 1

d+ 1
. (5.42)

One may calculate

[
√

ΦSIC]ij =
1√
d

[G
−1/2
SIC ]ij =

√
d+ 1δij +

1

d2
(1−

√
d+ 1) , (5.43)
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which gives the following principal and shifted principal Wigner basis:

Fj =
1

d

(√
d+ 1

)
Πj+

1

d2

(
1−
√
d+ 1

)
I and F S

j = −1

d

(√
d+ 1

)
Πj+

1

d2

(
1 +
√
d+ 1

)
I .

(5.44)

As the next theorem demonstrates, the smallest and largest that the bounds in Theorem 16

can be both occur when the unbiased MIC is a SIC. The minimal lower bound result com-

plements the prior discovery that SICs are the closest MICs can come to being orthogonal

bases [11]. Consequently, the next theorem supports the intuition that SICs are the natural

analogues of orthogonal operator bases contained within the cone of positive semidefinite

operators.

Theorem 17. Let {Ei} be an unbiased MIC and {Fj} be an unbiased Wigner basis. Then

d− 1

d

(
d+ 2− 2

√
d+ 1

)
≤
∑
i

||Ei − Fi||2 ≤
d− 1

d

(
d+ 2 + 2

√
d+ 1

)
, (5.45)

where the lower bound is saturated iff {Ei} is a SIC and {Fj} is its principal Wigner ba-

sis and the upper bound is saturated iff {Ei} is a SIC and {Fj} is its shifted principal

Wigner basis.

Proof. The matrix dG is doubly stochastic for an unbiased MIC, so the maximal eigen-

value of S is always 1/d. Furthermore, because the diagonal entries of an unbiased MIC’s

Gram matrix are bounded above by 1/d2, we also know that trS ≤ 1. It is then straight-

forward to perform a constrained optimization to see that the bounds in (5.38) achieve

their extreme values when

λ =

(
1

d
,

1

d(d+ 1)
, . . . ,

1

d(d+ 1)

)
. (5.46)
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Plugging this spectrum in to (5.38) gives the upper and lower bounds in (5.45). Such a

spectrum occurs iff the MIC is a SIC, a fact that is easy to derive from Lemma 1 in [3].

The Wigner bases (6.13) were identified by Zhu [20] for a different reason.5 Given a

Wigner basis, the ceiling negativity of a quantum state ρ is the magnitude of the most neg-

ative entry in the quasiprobability vector that represents ρ. Maximizing the ceiling nega-

tivity over all quantum states yields the ceiling negativity of the Wigner basis. Zhu proved

that the principal and shifted principal Wigner bases associated with a SIC provide, re-

spectively, the lower and upper bounds on the ceiling negativity over all unbiased Wigner

bases in dimension d. Our orthogonalization procedure sets Zhu’s result in a broader con-

ceptual context: Zhu’s Wigner bases are the output of applying to a SIC a procedure that

works for any MIC. Our quite general definition of a Wigner basis was partly inspired by

Zhu’s approach. His relaxation of the requirement of a discrete phase space interpretation

for his Wigner bases allowed him to propose quasiprobability representations extremizing

the computational resource of negativity beyond what would have been possible within

a narrower scope. We have similarly aimed to impose very few constraints at the outset

to see to what extent quantum theory, thus unrestrained, might offer replacements for our

presuppositions.

SICs are exceptional among MICs, so finding them in a Wigner equivalence class as

the closest member to the Wigner basis prompts us to postulate in general that the closest

MIC or MICs in an equivalence class to their principal Wigner basis may be a quantum

measurement of particular conceptual similarity to the Wigner basis. As we alluded ear-

lier, finding representationally significant refinements to the set of principal Wigner basis

5Zhu calls unbiased Wigner bases “NQPRs” and prefers to report the dual basis elements. In his nota-
tion, Q−

j = dFj and Q+
j = dF S

j .
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preimages stands a chance of enriching our understanding of both Wigner function rep-

resentations and informationally complete measurements. With this program in mind, we

present some initial observations about a few Wigner bases and some candidate MICs

“behind” them.

The discrete Wigner functions most familiar from the literature are those introduced

by Wootters [27]. He constructs Wigner bases for prime dimensions and uses tensor prod-

ucts of these to form a Wigner basis for any composite dimension. As we noted in the

previous section, the same can be done with Wigner equivalent MICs in the component

dimensions to form Wigner equivalent MICs in any composite dimension. For d = 2,

all unbiased Wigner bases are equivalent up to an overall unitary transformation and per-

mutation; in particular, we may view any of them as the principal Wigner basis for some

qubit SIC. Thus, as Zhu notes, reproducing the Wootters–Wigner basis is a matter of

choosing the proper SIC — that is, picking a regular tetrahedron with the correct orien-

tation in the Bloch sphere [20]. Similarly, Wootters’ qutrit Wigner basis is exactly the

shifted principal Wigner basis for a special SIC in dimension 3, the Hesse SIC [20, 28].

More generally, MICs parallel to the remaining necessary Wootters–Wigner bases, those

in odd prime dimensions, were first constructed by Appleby [29]. The Appleby MIC can

be constructed in any odd dimension d. The elements {Ek,l} of this MIC are labeled by

ordered pairs of integers k, l ∈ {0, . . . , d − 1}, and each element has rank (d + 1)/2. To-

gether, the elements of the Appleby MIC comprise an orbit under the action of the Weyl–

Heisenberg group. Like a SIC, the Appleby MIC is equiangular. In dimension 3, the Ap-

pleby MIC is apparently the MIC antiparallel to the Hesse SIC with the minimal t value

in (5.34). Nice properties like equiangularity, relatively low rank elements, and the group

covariance suggest these MICs may be the most significant MICs Wigner equivalent with

Wootters–Wigner bases.

135



Another example may be found in a discrete extension of the Cahill–Glauber formal-

ism [30]. The authors there define an orthogonal operator basis in odd dimensions which

takes operators to functions on a discrete phase space {µ, ν}. One can form an unbiased

Wigner basis from their notation via Fµ,ν = 1
d
T(0)(µ, ν), where the unitary operators U

and V in their definition are the Weyl–Heisenberg “shift” and “phase” operators, respec-

tively. The parallel, equiangular MIC with largest t value may again be a good choice of

associated reference measurement, but this choice is not as compelling as in the Appleby

case because the rank of its effects is d− 1. Equiangularity may not be worth such a large

rank tradeoff. We speculate that there is a better association among the Wigner equivalent

MICs to this family of Wigner bases.

A case of particular interest for quantum computation is N -qubit systems. The Wootters–

Wigner basis for such a system is the N -fold tensor product of the qubit Wootters–Wigner

basis. Probably the most significant Wigner equivalent MIC to this Wigner basis would be

the N -fold tensor product of the appropriately oriented qubit SIC. Let {Ei : i = 1, . . . , 4}

be a qubit SIC. Up to the weighting factor, each effect is a rank-1 projector, and the set

of four such projectors can be portrayed as a regular tetrahedron inscribed in the Bloch

sphere [5]. A tensorhedron MIC [22] is a POVM whose elements are tensor products of

operators chosen from the qubit SIC {Ei}:

Ei1,...,iN = Ei1 ⊗ · · · ⊗ EiN . (5.47)

Up to an overall unitary conjugation, every qubit SIC is covariant under the Pauli group,

and so every tensorhedron MIC has an N -qubit Pauli symmetry. Perhaps thinking about

tensorhedron measurements in N -qubit computation scenarios will inspire insights that

didn’t come from their quasiprobability counterparts.
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The study of MICs may also suggest directions of research on the Wigner function

side. One of the mysteries of the SICs is that, in all known cases, the SICs are group co-

variant. The definition of a SIC does not mention group covariance anywhere — the only

symmetry in it is the equality of the inner products — and so the fact that the known SICs

are all group covariant might be a subtle consequence we do not yet understand, or it

might be an accident of convenience. We do know, thanks to Zhu, that in prime dimen-

sions, if a SIC is group covariant then it must be covariant under the Weyl–Heisenberg

group specifically [31, 32]. This leaves open the cases of dimensions that are higher prime

powers or products of distinct primes. And in dimension d = 8, there exists in addition to

the Weyl–Heisenberg SICs the class of Hoggar-type SICs, which are related to the octo-

nions and are covariant under the three-qubit Pauli group [33–37]. All of these SICs can

be converted to unbiased Wigner bases in the manner described above, and the resulting

Wigner bases will inherit the group-covariance properties of the original SICs. Therefore,

for a three-qubit system, the construction of principal Wigner bases from unbiased MICs

furnishes three inequivalent Wigner bases of interest: Wootters, Weyl–Heisenberg, and

Hoggar. The Wootters version is distinguished by particularly nice permutation symmetry

properties [16].

We conclude this section by noting an example of a measure basis property which

may be studied for both MICs and Wigner bases in light of the principal Wigner basis

concept. In order to study time evolution, Wootters [27] explores the triple products of his

Wigner basis, which in our notation are

Γjkl = d2tr (FjFkFl). (5.48)
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These can of course be defined for any Wigner basis. Of particular note is the case where

the Wigner basis is the principal Wigner basis of a SIC, because the SIC triple products

tr ΠjΠkΠl are remarkable numbers [12, 38–41]. We have that

d3tr (FjFkFl) = ±(d+ 1)3/2 tr (ΠjΠkΠl)

+ (1−
√
d+ 1)(δjk + δkl + δjl)

− 1

d2
√
d+ 1

(
2
√
d+ 1 + (d+ 1)(d− 2)

)
.

(5.49)

For Wootters’ definition of the discrete Wigner basis, the triple products can be found us-

ing the geometry of the finite affine plane on d2 points. Essentially, one takes the triangle

formed by three points in that phase space, and the triple product depends upon the “area”

of it. Specifically, the triple product (for the case of odd prime dimension) is given by the

complex exponential

Γjkl =
1

d
exp

(
4πi

d
Ajkl

)
. (5.50)

This leads naturally to an interpretation of the triple products in terms of geometric phases.

The larger the enclosed area, the greater the geometric phase. The SIC triple products,

and thus by extension those of their associated Wigner bases, have rich number- and group-

theoretic properties [36–41]. What these properties imply for the Wigner bases derived

from SICs is largely an open question. For early results in this vein, see Theorems 6 and

13 of [12] and also [42].

5.7 Discussion

A MIC is a basis for the operator space L(Hd), or in other words, a coordinate sys-

tem for doing quantum mechanics. Because MIC elements are required to be positive

semidefinite, no MIC can ever be an orthogonal basis; the closest that a MIC can come to
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orthogonality is by being a SIC [11]. Prior work has shown that this expresses how much

of the oddity of quantum theory is an artifact of coordinates, versus what is the unavoid-

able residuum of nonclassicality [3]. Other reference measurements may be optimally

suited for other purposes, say, potentially, for algorithm design or to account for experi-

mental specifics. If one abandons direct operational meaning in terms of probabilities, one

can push basis elements outside of the positive semidefinite cone and achieve orthogonal-

ity. In this paper, we have shown well-defined procedures for doing so, and we have quan-

tified how far an orthogonalized basis — a Wigner basis — can deviate from the original

MIC in the unbiased case.

In exploring the consequences of the principal Wigner basis definition, we have found

ourselves with a number of thus far unresolved questions. Several pertain to what we be-

lieve will be a fruitful direction for further research, namely the disambiguation of Wigner

equivalent MICs: When is there a rank-1 MIC in an equivalence class? How is the rank of

the MIC related to its distance to the principal Wigner basis? Does the principal Wigner

basis suggest anything about the operational significance of a Weyl–Heisenberg covari-

ant reference measurement? While negative quasiprobabilities do not have direct oper-

ational meaning as probabilities do, they can be made meaningful in combination with

additional data. Of particular relevance is the discovery that negativity can be a resource

for quantum computation [14, 15]. With a suitable Wigner equivalent MIC, the analog of

negativity may be studied in reference probabilities. In the other direction, perhaps one

could explore how useful statistical properties which are easily displayed by probabilis-

tic representations are reflected in the principal Wigner function. In pursuing this inverse

problem, one potential place to turn is to resource theory, especially in light of a majoriza-

tion lemma concerning Born matrices we proved in a previous paper [3]. Grasping the

variety of Wigner functions, and how they relate to the most economical of probabilistic
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representations of quantum theory, may prove helpful in advancing our understanding of

this intriguing subject.
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CHAPTER 6

SUM NEGATIVITY

6.1 Introduction

The mathematical machinery of quantum theory has persisted without substantial

modification for nearly a century, but we are still waiting for a compelling set of physi-

cal principles upon which to hang the theory’s predictions. It is the hope of some quantum

foundations researchers that looking at standard quantum theory re-represented in an ap-

propriate fashion will help suggest these principles [1].

Probabilities are central objects in canonical quantum theory; at the end of a quan-

tum mechanical calculation, we are left with a probability distribution or a simple con-

sequence of one. It is tempting, therefore, to behave as though quantum theory gives us

a probability distribution—the probabilities for a set of outcomes. Careful considera-

tion reveals, however, that given a quantum state, quantum theory allows us to calculate

a probability distribution. But where does the quantum state come from in the first place?

The apparatus of quantum theory is unable to say. In practice, an experimenter eventually

settles on a quantum state for her preparation procedure after a suite of tests and calibra-

tions, and, ultimately, statistical methods go into the state determination itself. That is, we

have probabilities at the beginning and probabilities at the end with the formal apparatus

of quantum theory gluing it all together. It is possible that what goes on in between these

ends stands alone, but such a circumstance is far from guaranteed. The proper understand-
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ing of quantum theory may depend upon conceiving of probability theory in the proper

way.

In fact, revisiting and deciding on the proper understanding of probability theory is

the starting point of QBism [2–4]. QBists take a strict personalist Bayesian [5–7] stance

on probability theory. A probability is a valuation an agent places on his or her degree of

belief in a possible outcome, nothing more and nothing less. As a consequence, probabil-

ities are not empirically determinable quantities because they do not independently exist

outside of an agent’s mind.

As an example, consider repeated flips of a coin. A frequentist conception of proba-

bility asserts that the probability of heads for the coin is the long-run ratio of number of

heads to number of flips. The Bayesian first points out that to regard the coin flipped at

different times as an “equivalent” or “exchangeable” process amounts to a belief the ex-

perimenter has about the situation—perhaps nothing is wrong with this belief, but she

should be cognizant of its influence on the conclusions of the experiment. Secondly, the

Bayesian asks just how many times the experimenter plans to actually flip the coin be-

fore she decides that the relative frequency is the probability of heads for that coin. If she

flips it a finite number of times, by her own admission, any frequency is technically pos-

sible (although she believes some are unlikely). The usual answer to such a question is

that she plans to flip it until the deviations in the ratio with further experimentation are

small enough so as to be negligible. In other words, in order to define the likelihood of an

outcome, she asserts that the ratio obtained by a finite series of experiments is likely to be

close to the “true probability”. The circularity of such an argument should be evident and

worrying to anyone espousing the frequentist paradigm. Properly understood, then, proba-

bilities are single-case; no probability is meaningfully right or wrong by any external cri-

terion. The knee-jerk reaction to this statement is to exasperatedly throw up one’s hands
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and exclaim that Bayesianism is just the claim that probability theory is useless! Nothing

could be further from the truth: Although a probability is not subject to objective exter-

nal validation or invalidation, it commands the same sway over our lives that it would if

it were; if an agent wishes to avoid sure loss—to avoid being demonstrably stupid—she

must take steps to ensure that she never assigns probabilities which mutually contradict

each other. When a theory tells us what we “should” do or “strive for”, it is a normative

theory. In other words, the personalist Bayesian view is that probability theory is a norma-

tive theory. In this community, compatible probabilities are called coherent. Remarkably,

nearly all of the standard rules of probability theory are consequences of coherence [6].

One consequence that we will reference soon is the Law of Total Probability (LTP):

q(j) =
∑
i

p(i)r(j|i). (6.1)

The LTP describes a scenario where two actions are taken, one after another. p(i) rep-

resents the probability we ascribe to getting outcome i from the first action, r(j|i) is the

probability we ascribe to getting outcome j from the second action conditioned on out-

come i for the first action, and q(j) is the probability we ascribe to outcome j for the sec-

ond action, not conditioned on anything other than the operational procedure we have laid

out. The commitment to coherence alone (and independent from any possible nature of

reality) requires that our probabilities assigned at any given moment should hold together

in accordance with (6.1).

As we explain below, it is possible to represent any quantum state as a single proba-

bility distribution over the possible outcomes of an appropriately chosen measurement. If

we take this fact seriously, a quantum state is conceptually nothing more than a probabil-

ity distribution. In QBism, all of the personalist Bayesian properties of probability theory
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carry over to quantum states; that is, quantum states, like probabilities, are valuations of

belief for future experiences. However, application of the rules of quantum theory reveal

that not all of the probability distributions in the probability simplex correspond to a valid

quantum state. Just as in probability theory where an agent strives to be consistent with

herself in her probability assignments, an agent should not ascribe a probability distri-

bution she knows to be in conflict with the quantum mechanical formalism. In this way

we arrive at an understanding that quantum theory is an empirically-motivated normative

addition to probability theory.

If the functional form of the additions to probability calculus are cumbersome, then

there may be no reason to adopt it for everyday use—furthermore, it may not shed any

light on the “nature of reality.” What would constitute a nice looking addition to proba-

bility theory? One possibility would be if the normative rules of quantum theory could be

made to mirror those of probability theory in a suggestive way. It turns out that just this

sort of situation can be made to occur.

An informationally complete quantum measurement (IC-POVM) for a Hilbert space

Hd is a set of at least d2 positive semi-definite operators Ei which span L(Hd), the vector

space of linear operators onHd, and satisfy
∑
iEi = I. When such a measurement con-

sists of exactly d2 elements, density matrices ρ and the Born rule probabilities p(i) =

Tr(ρEi) are in bijective correspondence because the Ei form a basis for L(Hd). Such

minimal IC-POVMs are known to exist in all dimensions [8]. Which one we choose for

a representation, however, stands a chance of revealing or obscuring the properties which

probability distributions equivalent to quantum states must have. Very often in mathe-

matics and physics, a hard problem becomes easy when we choose the right basis. For

example, the Eddington–Finkelstein coordinates revealed that the event horizon of a non-
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rotating black hole is not a physical singularity. Is there a best or particularly nice IC-

POVM which will reveal hidden properties of quantum theory?

It is not possible for an IC-POVM to be an orthonormal basis [9–11], so perhaps our

first hope is ruled out. If the elements of an IC-POVM cannot be orthogonal, can they at

least be equiangular? It turns out that they can [12]. That is, we can find a set of Ei which

satisfy Tr(EiEj) = c for i 6= j. Can such a POVM consist of only rank-one matrices?

Remarkably for such a simply-stated question, it is not generally known. A set of d2 rank-

one matrices Πi such that

Tr (ΠiΠj) =
dδij + 1

d+ 1
(6.2)

defines an IC-POVM Ei = 1
d
Πi called a Symmetric IC-POVM (SIC) [13–15]. High-

precision numerical SICs have been found in all dimensions 2–151 [16, 17] and in a few

sporadic higher dimensions. In many cases, exact SICs have been constructed among

these dimensions as well [18]. All indications are that SICs exist in all dimensions, but

the proof continues to evade us.

If a SIC exists in dimension d, it is possible to rewrite the Born rule in a uniquely sim-

ple form analogous to the LTP, an equation called the urgleichung [3, 4], German for “pri-

mal equation” in reference [4]:

q(j) =
∑
i

[
(d+ 1)p(i)− 1

d

]
r(j|i), (6.3)

where q(j) is the probability for obtaining outcome j of a general quantum measurement,

p(i) is the probability an agent ascribes to obtaining outcome i in the imagined scenario

where a SIC measurement is performed on the system instead, and r(j|i) is the proba-

bility for obtaining the equivalent outcome j conditional on obtaining outcome i that the

agent ascribes in the imagined scenario (See [2] for a detailed exposition). It is essen-
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tial to recognize the operational difference between the urgleichung and the LTP: the ur-

gleichung describes a scenario where the first measurement is not actually made—just

imagined. If we actually planned to implement the first measurement, our probabilities

must hold together according to the familiar LTP. We take equation (6.3) very seriously.

In fact, it motivated the most recent development in QBism—a reconstruction of quantum

theory featuring a generalization of the urgleichung as the key assumption [19]. See refer-

ences [20] and [21] for critical review and discussion of the urgleichung in QBism as well

as comparison to other contexts.

Probability theory itself has no tether to physical reality—rather it is a tool that any-

one, anywhere, can use to manage their expectations for further experiences. Those ex-

pectations will certainly be influenced by deeply-held convictions that the agent has about

the nature of reality around them, but the way those probabilities must hang together if

the agent is to be coherent is unaffected. Quantum mechanics, on the other hand, although

evidently a normative theory like probability theory, is tethered to physical reality. A re-

formulation of quantum theory which brings to the forefront this normative structure al-

lows us to examine the threads of this tether without confusing the subjective and the ob-

jective. This way, we may hopefully more readily determine the aspects of reality which

forced quantum theory to be the way that it is. The LTP is a direct consequence of coher-

ence in one’s probability assignments. Is the urgleichung, which presents as an almost

trivial modification of the LTP, on the right track for expressing the conditions for a kind

of quantum coherence that an agent should strive for by virtue of being in our universe?

We would like to accumulate as much evidence as possible that it is. Often one can gather

more evidence for a sentiment simply by looking where it’s least expected. In this case,

Huangjun Zhu recently demonstrated additional evidence for this line of reasoning by in-

stead departing from probability theory [22].
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If we formally relax the positivity condition for minimal IC-POVMs (keeping the fact

that they sum to the identity), we are dealing with the larger space of Hermitian opera-

tor bases. Denoting such an operator Fi, if we also keep the form of the Born rule for a

quantum state ρ, we obtain a set of real numbers p(i) = Tr(ρFi), some of which may

be negative, such that
∑
i p(i) = 1. This set of numbers is referred to as a quasiproba-

bility vector (we will always denote quasiprobability vectors with fraktur script) and a

quasiprobability vector obtained in this way from a quantum state is called a quasiproba-

bility representation of the state.

Quantum opticians have benefited from the ease of plotting quasiprobability distribu-

tions over phase space [23], so there is some utility in their use, but what is a quasiproba-

bility? If a probability is a valuation of belief, what meaning can we attach to a quasiprob-

ability? There does not appear to be a simple meaning—some attempts at attaching op-

erational substance to quasiprobabilities have been made, for example, see references

[24–28], but if these solutions get us no closer to understanding why quantum theory is

the normative probability calculus an agent of our universe should use to productively

navigate, then they amount to duct tape over a structural weakness. However unsatisfy-

ing a quasiprobability may be on principled grounds, it turns out that permitting them for

the time being gets us something desirable in return: the Born rule obtains an even closer

functional analogy to the LTP.

Consider a Hermitian operator basis {Fi} such that
∑
i Fi = I and a dual basis1 {Qj}

constrained to satisfy Tr(Qj) = 1. From a state ρ and an arbitrary POVM {Gj} we form

the quasiprobabilities p(i) = Tr(ρFi) and the conditional quasiprobabilities r(j|i) =

1A dual basis is one for which the bases considered together are biorthogonal, TrFiQj = δij .
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Tr(QiGj). Using the identity

∑
j

Tr(BFj)Tr(QjC) = Tr(BC), (6.4)

we can rewrite the Born rule as

q(j) = Tr(ρGj) =
∑
i

p(i)r(j|i). (6.5)

Like the urgleichung, (6.5) looks very much like the LTP. In fact, (6.5) is functionally

identical to the LTP. The difference is that this equation is written in terms of quasiprob-

abilities instead of probabilities. Negativity must pop up somewhere, for it is known that

negativity must2 appear in quasiprobability representations of quantum theory [10, 29].

Another advantage when we are not burdened with positivity is that we may choose

the Fi to form an orthogonal basis for operator space. If a basis is orthogonal, it is pro-

portional to its dual basis and called self-dual. In this case, the sum constraint on the basis

automatically fixes Tr(Qj) = 1 and the constant of proportionality Fj = 1
d
Qj . Here

we depart from Zhu’s terminology and refer to a quasiprobability representation obtained

from this sort of self-dual basis as a Q-rep. Q-reps account for most of the quasiprobabil-

ity representations considered in the literature [30–33]. Importantly, however, Q-reps do

not account for all finite dimensional quasiprobability representations; any nonorthogonal

basis provides an example outside of this set. We can identify a Q-rep with the dual ba-

sis, {Qi}, which defines it. We will reserve q for quasiprobability representations of states

with respect to a Q-rep {Qj} (when there is no index, we are referring to the full vector).

2That is, it is impossible to represent quantum theory in a way which eliminates the appearance of neg-
ativity in both p and r in (6.5) for all quantum states and POVMs. It is possible, in general, to eliminate the
negativity appearing in one or the other.
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Mathematically speaking, a probability is a type of quasiprobability; that is, the kind

without any negative entries. If we believe that the urgleichung differing from the LTP

captures some aspect of the essential difference between quantum and classical, then

some of this essential difference is also contained in the difference between the LTP and

(6.5), that is, in the appearance of negativity in quasiprobability representations of quan-

tum theory. Indeed, Spekkens showed that the presence of negative elements in quasiprob-

ability representations of quantum theory and the impossibility of noncontextual hid-

den variable models are equivalent notions of nonclassicality [9]. Therefore, insofar as

we think contextuality is an important ingredient in the quantum–classical distinction,

we should be interested in negativity as well. Investigating the negativity in Q-reps also

seems to be a promising approach to identifying exactly what advantages quantum com-

putation affords us over classical computation, for example, Veitch et al. showed that neg-

ativity is a resource for quantum computation [34] and Howard et al. recently showed that

contextuality enables universal quantum computation via ‘magic state’ distillation [35].

Additionally, and, as we will see, of particular note for this paper, Pashayan et al. have

shown that a value related to the sum of the negative entries in a quasiprobability repre-

sentation may be thought of as a measure that bounds the efficiency of a classical estima-

tion of probabilities [36]. In light of these facts, Zhu’s recent result is especially exciting.

In his paper, Zhu developed a natural measure of negativity for Q-reps and established

strict upper and lower bounds for this measure in one-to-one correspondence with SICs

in each dimension. SICs are related to the bounds of this measure of negativity and the

appearance of negativity in quasiprobability representations of quantum theory seems

to contain some hints toward what “quantum” really means. Are there more hints to be

found? Motivated to answer this question, we investigate how robust Zhu’s result is to

modifications in the negativity measure.
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In Section 6.2 we motivate and define a general negativity measure for quasiprobabil-

ity representations which includes Zhu’s measure and the measure of principle interest in

this paper, called sum negativity, as special cases and state Zhu’s theorem that the bounds

on his measure of negativity are achieved by Q-reps in one-to-one correspondence with

SICs. In Section 6.3 we address the sum negativity for the SIC Q-reps in the first few di-

mensions. In Section 6.4 we argue that Weyl-Heisenberg covariant Q-reps are a natural

subset to consider while looking for counterexamples to Zhu’s theorem and establish the

explicit conditions for a Weyl-Heisenberg covariant Q-rep in dimension 3. Section 6.5

contains the main results: we explicitly demonstrate that Zhu’s theorem does not gener-

ally extend to sum negativity in either bound, we prove a general sufficiency theorem for

a Q-rep being a local maximum for sum negativity, use this theorem to prove the exact

upper bound for sum negativity among Q-reps in dimension 3, and state a conjecture re-

garding the lower bound among Weyl-Heisenberg Q-reps. In Section 6.6 we again apply

our theorem to prove that, although not generally the case, one of the SIC Q-reps achieves

the exact upper bound for sum negativity in dimension 4. We also briefly discuss the sum

negativity for one of the Hoggar SIC Q-reps in dimension 8. In Section 6.7 we discuss

further questions and directions.

6.2 Negativity and Sum Negativity

Setting aside Q-rep vectors for a moment, we start by proposing a family of negativity

measures for general quasiprobability vectors. Qualitatively speaking, we want a measure

of the “amount” of negativity that appears in a vector with entries which sum to 1. A few

candidates immediately stand out as especially natural measures: Perhaps a measure pro-

portional to the sum of the negative elements or to the most negative element appearing

in the quasiprobability vector—indeed, as we will see, the latter choice is taken by Zhu
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in [22]. We want a family of measures of negativity to meaningfully capture the deviation

or “distance” from quasiprobabilities which have no negative elements. So we are faced

with the task of measuring something we might understand as a distance for elements in

a finite dimensional vector space (constrained by the normalization condition, of course).

From this vantage point, the Lp-norms offer a very compelling family of generalized dis-

tance measures which we might utilize. Recall the definition of the Lp-norm of a vector

x,

||x||p :=

(
n∑
i=1

|x(i)|p
)1/p

, (6.6)

and the limiting expression for p→∞,

||x||∞ = max {|x1|, |x2|, . . . , |xn|}. (6.7)

We might hope that the Lp-norm of a quasiprobability vector will itself be a useful quan-

tity which is immediately related to the negativity present in the vector. If p = 1, for

example, we can see that if there are any negative elements in the quasiprobability vector

p then ||p||1 > 1, so perhaps we could associate the amount by which the Lp-norm is larger

than 1 with the negativity of p. However, ||p||p ≤ ||p||q when p > q and, in fact, ||p||p need

not be greater than 1 even when negativity is present. So what we really want is to mea-

sure the deviation of only the negative part of the quasiprobability vector from the zero

vector, disregarding all positive entries entirely. With this in mind, define the negative

part of a quasiprobability vector p to be the vector

p(−)(j) :=
|p(j)| − p(j)

2
(6.8)
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which replaces the positive elements of p with zero and the negative elements with their

absolute value. This definition makes it easy to isolate properties of the negative elements

of a quasiprobability vector. Now that we have done away with the positive entries in our

quasiprobability vector, we define the Np negativity of a quasiprobability vector p to be

the Lp-norm of the negative part of a quasiprobability vector:

Np(p) :=
∣∣∣∣∣∣p(−)

∣∣∣∣∣∣
p
. (6.9)

We will refer to the special cases N1 and N∞, which we see are equivalent to the two nat-

ural candidates proposed above, as the sum negativity3 and the ceiling negativity respec-

tively.

Zhu defines the negativity of a quantum state ρ with respect to a Q-rep {Qj} to be d

times the magnitude of most negative element appearing in the quasiprobability represen-

tation q(j) = Tr(ρFj). In our framework, this corresponds to d times N∞(q). He then

defines the negativity of a Q-rep itself to be the maximum of this value over all of quan-

tum state space. In our framework, this corresponds to d times maxρN
∞(q). Thus, in the

general case, we define the Np negativity4 of a quantum state ρ with respect to a Q-rep

{Qj} to be

Np(ρ, {Qj}) := Np(q), (6.10)

3Veitch et al. use the term sum negativity specifically for the sum of the negative elements of the dis-
crete Wigner function for a quantum state [37] whereas we will be considering the equivalent notion with
respect to any Q-rep.

4We have chosen to omit multiplication by d in our negativity definitions so that the negativity can
more immediately be associated with the negative values in a quasiprobability vector. As the dual basis
is calculationally easier to work with, a downside of our convention is that factors of 1/d crop up more
frequently.
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and the Np negativity of a Q-rep {Qj} to be

Np({Qj}) := max
ρ
Np(ρ, {Qj}). (6.11)

Since Lp-norms are convex and nondecreasing for p ≥ 1 on the positive reals [38] and

the negative part map (6.8) is a convex function, the composition (6.10) is also convex

[39]. This means the maximum occurs on the boundary of the domain so we may take the

maximum in (6.11) to be over pure states in these cases.

As it will be useful later, note that the L2 norm of a Q-rep vector corresponding to a

pure state always equals
√

1/d. To see this, let B = C = ρ and Tr(ρ2) = 1 in (6.4).

This is another reason why the Lp norms are not a good choice for a family of negativity

measures.

Zhu notes that the ceiling negativity of a Q-rep {Qj} takes the simple form

N∞({Qj}) =
1

d

∣∣∣∣min
j
λmin(Qj)

∣∣∣∣ , (6.12)

where λmin(Qj) is the minimal eigenvalue of Qj .

If a SIC, denoted {Πj}, exists in dimension d, we may construct two Q-reps {Q+
j }

and {Q−j } called the SIC Q-reps:

Q±j = ∓
(√

d+ 1
)

Πj +
1

d

(
1±
√
d+ 1

)
I (6.13)

which have ceiling negativities

N+ ≡ N∞({Q+
j }) =

(d− 1)
√
d+ 1− 1

d2
, N− ≡ N∞({Q−j }) =

√
d+ 1− 1

d2
. (6.14)
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We introduce these Q-reps because of the following theorem.

Theorem 18 (Zhu). Every Q-rep {Qj} in dimension d satisfies N− ≤ N∞({Qj}) ≤ N+.

The lower bound is saturated if and only if {Qj} has the form {Q−j } where Πj is a SIC.

If {Qj} is group covariant, then the upper bound is saturated if and only if {Qj} has the

form {Q+
j }.

Zhu’s theorem identifies SICs as centrally important to the study of Q-reps and more

broadly for quantum theory because the Q-reps which achieve both bounds on ceiling

negativity in any dimension are related to SICs by a simple affine transformation. Is the

ceiling negativity unique in this way? If so, it would be interesting to understand why. If

not, where does it fail?

We will address this question for the sum negativity. Like ceiling negativity, there is a

more manageable expression for the sum negativity of a Q-rep. The following argument is

due to Appleby and Zhu.

Lemma 7. An equivalent form of the sum negativity of a Q-rep {Qj} is

N1({Qj}) = −1

d
min

{
λ{1}, λ{2}, . . . , λ{2d2−1}

}
, (6.15)

where λ{i} is the minimal eigenvalue of the ith partial sum matrix of the {Qj} matrices.

Proof. For a quasiprobability representation q of a state ρ with respect to Q-rep {Qj}, if

S := {i|Tr(ρQi) < 0}, then

N1(q) =

∣∣∣∣∣1d∑i∈S Tr(ρQi)

∣∣∣∣∣ =

∣∣∣∣∣1dTr
(
ρ
∑
i∈S

Qi

)∣∣∣∣∣ . (6.16)

As in (6.12), the minimal value of the expression Tr(ρF ) over quantum state space is the

minimal eigenvalue of F and the state ρ which minimizes the expression is the corre-
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sponding eigenvector. Thus, for a fixed subset G of the {Qj} matrices, the state which

minimizes Tr(ρ
∑
i∈G Qi) is the minimal eigenvector of the matrix

∑
i∈G Qi. Via the def-

inition above, for each ρ there is a subset S; in particular, there is a subset S ′ for a state

whose quasiprobability representation has the sum negativity value N1({Qj}) and, fur-

thermore, the magnitude of the minimal eigenvalue of the matrix
∑
i∈S′ Qi is equal to d

times N1({Qj}). Thus determining the sum negativity is equivalent to looking for the

minimal eigenvalue over all partial sum matrices of {Qj}. There are 2d
2 − 1 entries to

minimize over because we ignore the partial sum corresponding to the empty subset.

Does Theorem 18 extend to sum negativity? In Section 6.5, we will demonstrate that

it generally does not with explicit counterexamples in the first nontrivial dimension, d =

3.

6.3 Sum Negativities of {Q+
j } and {Q−j }

Sum negativity is notably harder to work with than ceiling negativity, both analytically

and numerically. As such, using the method described in Lemma 7, analytic results for

the sum negativity of {Q+
j } and {Q−j } have only so far been obtained for dimensions 2, 3,

and 4. Numerically exact results have also been obtained for d = 5.

For d = 2, sum negativity and ceiling negativity are equivalent measures because a

d = 2 Q-rep vector cannot contain more than one negative element. This property can

be proven easily with equation (6.4) and the fact quasiprobabilities are normalized. In

addition, the ceiling negativities for {Q+} and {Q−} are equivalent. Thus,

N1({Q±j }) = N∞({Q±j }) =

√
3− 1

4
. (6.17)
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In fact, all Np negativities for the SIC Q-reps are equal in dimension 2. This is a reflec-

tion of the fact that all Q-reps are equivalent to the Wootters discrete Wigner function in

this dimension [22].

There is a continuous one-parameter family of SICs in dimension 3 [40]. For any of

them, we may construct the SIC Q-reps. In Zhu’s paper we easily see that ceiling nega-

tivity is insensitive to the SIC chosen—all that matters is that the defining property of a

SIC is satisfied. This turns out to also be true for sum negativity5. What’s more, the sum

negativities of {Q+
j } and {Q−j } are equal:

N1({Q±j }) =
1

3
. (6.18)

Recall that Theorem 18 establishes that the upper and lower bounds for ceiling negativity

over all Q-reps are achieved by the SIC Q-reps. We see now that in dimension 3, the sum

negativities of {Q+
j } and {Q−j } are equal. This tells us that if any d = 3 Q-rep has a sum

negativity other than 1/3, the analog of Theorem 18 does not hold for sum negativity in

dimension 3.

For d = 4,

N1({Q+
j }) =

1

2
, (6.19)

5We won’t explore it further here, but the situation is more interesting. Although the sum negativity is
insensitive to the value of the parameter t which defines the inequivalent SIC Q-reps, the quantum states
whose quasiprobability representations achieve these sum negativity values do depend on the parameter. It
turns out that the sum negativity for {Q−

j } constructed from the Hesse SIC (t = 0 in [40]) is achieved by a
complete set of mutually unbiased bases [41], that is, 12 (= d(d + 1)) vectors which form four orthogonal
bases such that any vector from one basis has an equal overlap with any vector from another basis. For all
the other SICs in dimension 3, the states which achieve the sum negativity of {Q−} form a single basis
instead. The complete set of mutually unbiased bases also turns out to be the set of states which minimize
the Shannon entropy in the Hesse SIC representation [42, 43].
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and

N1({Q−j }) = − 1

16

5 +
√

5− 2

√
2
(
1 +
√

5
)
− 2

√
23− 2

√
5 + 2

√
−22 + 10

√
5


≈ 0.420967.

(6.20)

Value (6.19) is surprisingly nice. We will comment briefly on this in Section 6.6. Value

(6.20) is shocking. However, in light of recent results relating the SIC problem to al-

gebraic number theory ( [44], see the contributions of Appleby et. al [45] and Bengts-

son [46] to this volume for a review), it is worth mentioning a few possibly relevant facts

about this number and how it arose.

The sum negativity for the d = 4 SIC Q-rep is (1/4 times) the minimal eigenvalue of

certain 7-element partial sums of the SIC Q-rep matrices. The characteristic polynomial

which has this eigenvalue as a root is:

x4 − 7x3 +
21

2
x2 +

(
129

8
− 35

√
5

8
+

√
2
(
31 + 17

√
5
))

x

− 1293

32
+

293
√

5

32
−
√

5
(
22 + 29

√
5
) (6.21)

The coefficients in equation (6.21) are members of the field Q
(√

5 +
√

362 + 313
√

5
)

.

The factor multiplying −1/16 in (6.20) is an algebraic integer, but not an algebraic unit.

Finally, the minimal polynomial for (6.20) is degree 8.

For d = 5, N1({Q+}) ≈ 0.584277 and N1({Q−}) ≈ 0.501957. These answers are

numerically correct, but do not lend themselves readily to conversion to exact values.
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6.4 Weyl-Heisenberg Q-reps in d = 3

We say that a set of vectors is group covariant if it is the orbit of some group action

on an initial vector, which we call the fiducial. All known SICs are group covariant and

all but one of those are covariant with respect to the Weyl-Heisenberg (WH) group. In di-

mension d, let ωd = e2πi/d be a dth root of unity, and define the shift and phase operators

X|j〉 = |j + 1〉, Z|j〉 = ωjd|j〉, (6.22)

where the shift is modulo d. Products of powers of X and Z and powers of ωd define

the WH group. The order of the WH group in dimension d is d3, but for the purposes of

constructing a measurement operator or Q-rep, we can neglect the phase factors. In other

words, for some fiducial matrix Q0, the other matrices in the orbit would take the form

Qij = X iZjQ0(X iZj)†. (6.23)

The only known exception to WH covariance for SICs is the Hoggar SIC in dimension 8,

but even this outlier is group covariant with respect to the tensor product of three d = 2

WH groups. What about Q-reps? By their construction, the non-Hoggar SIC Q-reps are

WH covariant and these Q-reps achieve the bounds for ceiling negativity in all dimensions

(provided a SIC exists in that dimension). Thus, if we were to consider any subset of the

full space of Q-reps for computational study, the set of WH covariant Q-reps (WH Q-

reps) is likely the best starting point. In any case, due to the ubiquity of the WH group in

quantum information theory, the bounds of sum negativity within WH Q-reps may be of

independent interest.
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A Q-rep is associated with an orthogonal basis of operators {Qj} with norm 3, that is,

Tr(QiQj) = 3δij. (6.24)

Therefore, the general conditions for a WH Q-rep may be obtained by requiring that the

elements of the WH orbit of a general unit-trace Hermitian matrix


z y x

y∗ w v

x∗ v∗ 1− z − w

 (6.25)

satisfy equation (6.24). Imposing this condition results in a number of equations which

can be algebraically simplified to the following three:

z2 + zw + w2 = z + w,

|y|2 + |x|2 + |v|2 = 1,

xy + y∗v + v∗x∗ = 0.

(6.26)

In terms of real variables, an arbitrary unit-trace Hermitian matrix


a b+ ic d+ ie

b− ic f g + ih

d− ie g − ih 1− a− f

 (6.27)
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is a WH Q-rep fiducial if

a2 + af + f 2 = a+ f,

b2 + c2 + d2 + e2 + g2 + h2 = 1,

dg + bd+ bg + ch = ec+ eh,

cd+ be+ bh = cg + dh+ eg.

(6.28)

From (6.26) or (6.28) we can see that d = 3 WH Q-rep fiducials define a 4 dimen-

sional subspace of the 8 dimensional space of 3 × 3 unit-trace Hermitian matrices. The

main diagonal elements are independent of the off-diagonal elements and satisfy the equa-

tion of an ellipse (the first equation in (6.26) or (6.28)). The magnitude of the off-diagonal

elements in (6.25) lie on the unit 2-sphere, but their exact values only lie at points where

the expression xy + y∗v + v∗x∗ vanishes.

The following two matrices are explicit examples of d = 3 Non-SIC WH Q-rep fidu-

cials:

Qmin =


0 −1

3
+ i

3
2
3
− i

3

−1
3
− i

3
1 −1

3
+ i

3

2
3

+ i
3
−1

3
− i

3
0

 , (6.29)

Qmax =


0

(
−1

3
+
√

7
12

)
+ i

4

(
2
3

+
√

7
12

)
− i

4(
−1

3
+
√

7
12

)
− i

4
1

(
−1

3
+
√

7
12

)
+ i

4(
2
3

+
√

7
12

)
+ i

4

(
−1

3
+
√

7
12

)
− i

4
0

 . (6.30)

In the following section we will see why they are presented with the designations “max”

and “min”.
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6.5 Sum Negativity Bounds in d = 3

The WH Q-reps generated by (6.29) and (6.30) will be denoted {Qmin
j } and {Qmax

j }

respectively. Their sum negativities are

N1({Qmin
j }) =

1

3

(
2 cos

π

9
− 1

)
≈ 0.293128, (6.31)

and

N1({Qmax
j }) =

2

9

(√
7− 1

)
≈ 0.365723. (6.32)

Recall from Section 6.3 that the sum negativities of both SIC Q-reps is 1/3, so {Qmin
j }

and {Qmax
j } are explicit counterexamples to Zhu’s theorem for sum negativity. It turns out

that (6.32) is a strict upper bound on the sum negativity, not only of WH Q-reps, but of all

Q-reps in dimension 3. We start with two lemmas.

Lemma 8. For quasiprobability vectors with d2 elements lying in the sphere of radius√
1/d, the stationary points for sum negativity are:

1. Those vectors whose entries consist only of two distinct values.

2. Those vectors whose entries consist only of three distinct values including zero.

Proof. Quasiprobability vectors in the sphere of radius
√

1/d satisfy the following con-

straints:
d2∑
j=1

p(j) = 1 and
d2∑
j=1

p(j)2 =
1

d
. (6.33)

The definition of the sum negativity of a quasiprobability vector (6.34) gives us

N1(p) = ||p(−)||1 =
d2∑
j=1

|p(j)| − p(j)

2
=

1

2

d2∑
j=1

|p(j)| − 1

2
. (6.34)
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From this it is clear that the stationary points of the sum negativity are exactly the station-

ary points of the sum of the absolute values. Absolute values are often difficult to deal

with in optimization problems, but it turns out that the function |x| may be approximated

efficiently by
√
x2 + c where c is taken to zero after any differentiation [47]. Thus, we

want to extremize the function
d2∑
j=1

√
p(j)2 + c (6.35)

subject to constraints (6.33) in the small c limit. To do this we construct a Lagrangian

L(p, λ, µ) =
d2∑
j=1

(√
p(j)2 + c

)
− λ

 d2∑
j=1

p(j)− 1

− µ
 d2∑
j=1

p(j)2 − 1

d

 (6.36)

where λ and µ are Lagrange multipliers. Varying this Lagrangian, we see that the station-

ary points must satisfy
p(j)√

p(j)2 + c
− λ− 2µp(j) = 0 (6.37)

for all j. This expression has 4 solutions, two of which become zero in the c = 0 limit:

p(j) =
±1− λ

2µ
or p(j) = 0. (6.38)

Consider the case where p(j) 6= 0 for all j. Now, in order for the constraints (6.33) to

hold, some number n of the entries are −1−λ
2µ

and the other d2 − n are 1−λ
2µ

. That is,

n

(
−1− λ

2µ

)
+ (d2 − n)

(
1− λ

2µ

)
= 1 and n

(
−1− λ

2µ

)2

+ (d2 − n)

(
1− λ

2µ

)2

=
1

d
.

(6.39)

It is easy to verify that 0 < n < d2. In this case the quasiprobability vector p consists of

two distinct values. If p(j) = 0 for m of the indices then d2−n−m of the entries are 1−λ
2µ
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and the appropriately modified form of (6.39) holds in which case the quasiprobability

vector p consists of three distinct values including zero.

A stationary point can be a local maximum, a local minimum, or a saddle point. Suffi-

cient conditions for maxima and minima in Lagrangian systems with equality constraints

are known. We will need the following tool (which can be found in chapter 2 of [48]):

Theorem 19 (Sufficient Conditions for Constrained Maxima). Consider a constrained

maximization problem for a twice-differentiable function of n variables y(x) with m

twice-differentiable equality constraints fi(x) = 0, i = 1, . . . ,m. The Lagrangian is

L(x,λ) = y(x)−
m∑
i=1

λifi(x), (6.40)

where λi are Lagrange multipliers. If there exist vectors x∗ and λ∗ such that ∂iL(x∗,λ∗) =

0, i = 1, . . . , n and fi(x∗) = 0, i = 1, . . . ,m and if

(−1)s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂11L · · · ∂1sL ∂1f1 · · · ∂1fm
...

...
...

...

∂1sL · · · ∂ssL ∂sf1 · · · ∂sfm

∂1f1 · · · ∂sf1 0 · · · 0

...
...

...
...

∂1fm · · · ∂sfm 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

> 0 (6.41)

for s = m + 1, . . . , n (∂ijL indicates a second partial derivative of L(x,λ) with re-

spect to xi and xj evaluated at x∗ and λ∗ and ∂ifj indicates the first partial derivative of

constraint function fj(x) with respect to xi evaluated at x∗), then y(x) has a strict local

maximum at x∗.
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A consequence of this is the following:

Lemma 9. The stationary points for sum negativity of quasiprobability vectors with d2

elements lying in the sphere of radius
√

1/d are all local maxima or global minima.

Proof. From Lemma 8 we know that the stationary points for sum negativity of quasiprob-

abilities lying on the sphere of radius
√

1/d are those consisting of exactly two distinct

elements or those consisting of three if one of them is zero. If there are two distinct el-

ements, they can either both be nonnegative or of opposite signs. If they are both non-

negative, the sum negativity is zero which is the global minimum sum negativity value.

If there are three distinct elements and they are all nonnegative, then it is also a global

minimum for sum negativity. We will now show that when the nonzero elements of a sta-

tionary point are of opposite signs, it is a local maximum.

Consider first the stationary points with two distinct elements. In terms of the La-

grange multipliers from the proof of Lemma 8, the stationary quasiprobability vectors

are comprised of opposite signed values when µ 6= 0 and −1 < λ < 1. Without loss of

generality we choose −1−λ
2µ

to be the negative value so that we may enumerate the number

of negative entries with index n as in (6.39). This amounts to the further restriction µ > 0.

Note that by substituting −1−λ
2µ

= a and 1−λ
2µ

= b in (6.39), we can solve for the positive

and negative entries in the quasiprobability vector in terms of the dimension d and num-

ber of negative entries 1 ≤ n < d(d− 1):

a =
1

d2
+

1

d2

√
n(d− 1)

d2 − n
−
√

d− 1

n(d2 − n)
< 0, (6.42)

b =
1

d2
+

1

d2

√
n(d− 1)

d2 − n
> 0. (6.43)
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Sum negativity is invariant to the ordering of the entries in a quasiprobability vector

so we need only prove that one ordering is a local maximum for each n. Without loss of

generality, we fix p(1) = a and demand that p(2) and p(3) are not both also equal to a.

Consider again the Lagrangian (6.40). Taking the relevant derivatives and c to zero, we

may construct the bordered Hessian matrix from (6.41) for our problem. Therefore, if ~p is

a stationary point and if

(−1)s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−2µ · · · 0 1 2p(1)

... . . . ...
...

...

0 · · · −2µ 1 2p(s)

1 · · · 1 0 0

2p(1) · · · 2p(s) 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

> 0 (6.44)

for s = 3, . . . , d2, then ~p is a local maximum in sum negativity.

Recall the following identity for matrix blocks A, B, C, and D which holds when A is

invertible: ∣∣∣∣∣∣∣∣
A B

C D

∣∣∣∣∣∣∣∣ = |A||D − CA−1B|. (6.45)

Using (6.45), the determinant of the bounded Hessian matrix in (6.44) is

(−1)s(2µ)s−1

4s
s∑
i=1

p(i)2 − 4
s∑

i,j=1

p(i)p(j)

 . (6.46)

With the additional (−1)s term in equation (6.44), we see that the inequality is satisfied if

s
s∑
i=1

p(i)2 −
s∑

i,j=1

p(i)p(j) > 0 (6.47)
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for all s. Let l denote the number of negative elements in the truncated quasiprobability

vectors appearing in (6.44). Note that 1 ≤ l < s by our earlier assumption about the first

three elements. Then

s
s∑
i=1

p(i)2−
s∑

i,j=1

p(i)p(j) = s(la2+(s−l)b2)−(la+(s−l)b)2 = (a−b)2(s−l)l > 0. (6.48)

Thus the stationary points consisting of two distinct values, one negative and one positive,

are local maxima.

The values of a and b in the case with three distinct values are more complicated, but

may still be obtained. Otherwise the proof in this case carries through in the same way

as above with a slight modification in the last step. Let m denote the number of elements

equal to zero in the truncated quasiprobability vectors appearing in (6.44). Note that l +

m ≤ s. Then it can be verified that

s
s∑
i=1

p(i)2 −
s∑

i,j=1

p(i)p(j) = s(la2 + (s− l −m)b2)− (la+ (s− l −m)b)2 > 0, (6.49)

which completes the proof.

We may now return to the question of extremality among Q-reps. We say that a pure

state ρ achieves the sum negativity if it is an eigenvector with eigenvalue magnitude equal

to d times N1({Qj}) of one of the partial sum matrices of the Q-rep {Qj}.

Theorem 20. If the quasiprobability representation of a state which achieves the sum

negativity of a Q-rep {Qj} consists of two distinct elements or three including zero, then

N1({Qj}) is a local maximum among all Q-reps.

Proof. Recall that the quasiprobability representation of a pure state with respect to a Q-

rep lies in the sphere of radius
√

1/d. Also recall that the convexity of the sum negativity
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function implies that any state which achieves the sum negativity for a Q-rep {Qj} is a

pure state. Therefore, if, as we vary {Qj} over the space of Q-reps, the quasiprobability

representation of a pure state which achieves the sum negativity of {Qj} consists of two

distinct values or three distinct values including zero for some Q-rep {Q′j}, then by Lem-

mas 8 and 9, there is a local maximum or global minimum of the sum negativity function

at {Q′j}. As we know the appearance of negativity is inevitable, the global minimum pos-

sibility is avoided.

Theorem 21. The exact upper bound for sum negativity among Q-reps in dimension 3 is

2
9
(
√

7− 1).

Proof. When d = 3, explicit calculation reveals that the sum negativity of a quasiproba-

bility vector lying in the sphere of radius
√

1/d constructed with n values equal to a < 0,

m values equal to 0, and 9 − n −m values equal to b > 0 is maximized when n = 2 and

m = 0. Those values are, from (6.42) and (6.43),

a =
1

9
(1−

√
7) and b =

1

63
(7 + 2

√
7). (6.50)

Lemmas 8 and 9 and the fact that our domain has no boundary (lying on the sphere of

radius
√

1/d and quasiprobability normalization together define a (d2 − 2)–sphere) imply

that the sum negativity of this quasiprobability vector is the global maximum value over

this domain. The quasiprobability representations of the states which achieve (6.32) with

respect to the Q-rep {Qmax
j } consist of these values, and so, by Theorem 20, 2

9
(
√

7 − 1) is

the maximum value for sum negativity over all Q-reps in dimension 3.

It is important to note that while Theorem 21 shows that (6.32) is the strict upper

bound for sum negativity among all Q-reps, it does not imply that {Qmax
j } is the unique
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Q-rep which achieves this bound. Numerical searching suggests that, for the fiducial main

diagonal {0, 1, 0}, the WH orbit of (6.30) is the unique Q-rep which achieves the sum

negativity (6.32), but that there is at least one other fiducial main diagonal which achieves

this bound, namely the main diagonal corresponding to the major axis vertices of the el-

lipse defined by the first equation in (6.26): {1
3
, 1

3
+ 1√

3
, 1

3
− 1√

3
}. Unfortunately, for this

fiducial, we were unable to convert the numerical result to exact values.

What can be said about the lower bound for sum negativity in dimension 3? So far,

less is known, but we present the following numerically motivated conjecture:

Conjecture 6. The exact lower bound for sum negativity among WH Q-reps in dimension

3 is 2
3
(cos π

9
− 1

2
).

This statement resisted our attempts to prove it in a fashion similar to Theorem 21 be-

cause for every Q-rep there exist states with zero negative elements in their quasiproba-

bility representation (for example, the maximally mixed state). The Q-rep vector corre-

sponding to the minimal eigenstate over all partial sums of {Qmin
j } consists of three dis-

tinct values which each appear three times:

1

9

(
1− 2 cos

π

9

)
,

1

9

(
1 + 2 cos

2π

9

)
, and

1

9

(
1 + 2 cos

π

9
− 2 cos

2π

9

)
. (6.51)

The values in (6.51) may not have significance as deep as those in the upper bound quasiprob-

ability vector, however, as numerical searching has revealed that (6.31) is achieved by a

WH Q-rep for every valid main diagonal. The off-diagonal elements in other cases were

too difficult to convert to exact values. The fact that there seems to be a WH Q-rep which

achieves (6.31) for any main diagonal satisfying the first equation in (6.26) suggests the

lower bound among Q-reps may not be saturated by WH Q-reps. Additionally, the ex-

tremal properties of general quasiprobability vectors lying on the sphere of radius
√

1/d
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do not come to our aid when we try to find the lower bound because there is no obvious

reason to hope that the process of maximizing over quantum state space (in the defini-

tion of a Q-rep sum negativity) followed by minimizing over all Q-reps (to find the lower

bound for sum negativity) should result in one of the local maxima for general quasiprob-

ability vectors on the sphere of radius
√

1/d (recall, of course, that it cannot result in the

global minimum of zero negativity on this sphere because we know that the appearance

of negativity is inevitable). Before, we were maximizing over both; in some sense we got

lucky that the global maximum sum negativity for a quasiprobability vector on this sphere

was achieved by a Q-rep vector.

6.6 Further Observations about SIC Q-reps

In Section 6.3, we noted the appearance of a rational value for the sum negativity of

{Q+
j } in dimension 4. The quasiprobability vectors which achieve the sum negativity of

{Q+
j } are of a special and familiar form; they consist of only the values −1/8 and 1/8.

We know from Theorem 20, therefore, that this Q-rep is a local maximum for sum neg-

ativity among Q-reps in dimension 4. In fact, following the exact same procedure as in

Theorem 21, we see that N1({Q+
j }) = 1/2 is the exact upper bound over all Q-reps!

In footnote 5, we mentioned that the states which achieve the sum negativity of {Q−j }

for the Hesse SIC in dimension 3 form a complete set of mutually unbiased bases. The

states which achieve the sum negativity for {Q−j } in dimension 4 also form a structure of

possible interest. They consist of a set of 16 vectors which have two nontrivial squared

overlaps. In the terminology of reference [13], these states form a quantum design of de-

gree 2.

Although dimension 5 was the last in which we were able to explicitly calculate the

sum negativity for the SIC Q-reps by exhaustive combinatorial searching, we suspect that
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we have found the correct sum negativity for {Q−j } constructed with the Hoggar SIC in

dimension 8. Rather than calculating the eigenvalues of every partial sum matrix (since

this is infeasible for 264, 8 × 8 matrices), we used a numerical local maximization pro-

cedure and around 106 random pure state seeds. The overall maximum value we found,

7/8, occurred frequently in our data and is significantly larger than all of the smaller lo-

cal maxima. Of course, we could still be falling short of the global maximum value if it

occurs at very hard to access positions. The states whose quasiprobability representations

achieve the sum negativity of 7/8 consist of 28 copies of value −1/32 and 36 copies of

value 5/96. Therefore, by Theorem 20, if these states achieve the actual sum negativity,

then {Q−j } constructed with the Hoggar SIC is a local maxima among all Q-reps in di-

mension 8. Surprisingly, these quantum states also minimize the Shannon entropy of their

Hoggar SIC representations and thus compose the “twin” Hoggar SIC [43, 49]. This re-

sult and the one for {Q−j } in dimension 4 in the previous paragraph parallel the one men-

tioned in footnote 5.

6.7 Discussion

In QBism, quantum states are probability distributions over a set of possible outcomes

for an appropriately chosen measurement. With the understanding that quantum theory

is an addition to coherence which rational agents should use to help inform their expec-

tations for future experiences in terms of their past ones, QBists hope that the structure

of quantum theory, and in particular its boundaries, can be made to suggest nature’s mo-

tives. A century of quantum foundational debate should by now have convinced us that

these motives will not conform to our prejudices about reality. Although the weirdness of

quantum theory has convinced some that we can no longer pretend physics is more than
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an exercise in instrumentalism, QBists are optimistic that there are ubiquitous and recog-

nizably physical statements about nature yet to be made.

Prior to Zhu’s paper, we had focused on characterizing the bounds of quantum theory

only from within probability theory. His results reveal this approach was nearsighted. In

the initial stages of this project, we had hoped to find further evidence for the centrality of

SICs in quantum theory by showing that Zhu’s theorem extends to another natural mea-

sure of negativity for quasiprobability representations. Indeed, it is interesting to find that

the SICs do not generally play the same role in this alternate context. Why do they not?

Do they still always play some role which is not immediately apparent? Maybe there are

other families of Q-reps constructed from SICs or another structure which naturally play

the same role for sum negativity. {Q+
j } in dimension 4 did achieve the upper bound for

sum negativity. Does this happen again? Although we cannot calculate it exactly, we have

some numerical evidence that the sum negativities for the Hoggar SIC Q-reps differ from

the non-Hoggar SIC Q-reps in dimension 8. This suggests that there might be an essential

relation between sum negativity and group covariance. Furthermore, the appearance of

the complete set of mutually unbiased bases in dimension 3 (mentioned in footnote 5) and

the “twin” Hoggar SIC in dimension 8 suggest a deep connection between sum negativity

and minimizing Shannon entropy which warrants further exploration.

Due to the connection to contextuality, the bounds on sum negativity and Np negativ-

ity in general are likely to be of interest to the quantum computation community. A natu-

ral further direction for this research is the consideration of negativities other than ceiling

and sum negativity. Perhaps the next to consider is the only non-convex integral negativ-

ity, N0, which tells us the maximum number of negative elements which can appear in a

Q-rep vector. On the other hand, N2 negativity makes use of the most familiar distance

function, and, as such, may warrant special attention. In Section 6.4 we established the
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general conditions for a d = 3 WH Q-rep. This result and any analogous results in higher

dimensions6 may be of independent interest. Likewise, in order to pursue the exact lower

bound for sum negativity in dimension 3, we need strategies to construct non-WH Q-reps.

Towards this, the general structure and symmetries inherent in Q-reps warrants explo-

ration. It may further be interesting to consider what can be said about quasiprobability

representations obtained from non-orthogonal bases or even redundant operator frames in

the negativity context.

6And in dimension 8, it may be interesting to look at general WH⊗WH⊗WH covariant Q-reps.
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CHAPTER 7

WIGNER’S FRIENDS

7.1 Introduction

Wigner’s famous thought experiment [1] is a tale of two agents. One agent, Wigner’s

friend, performs a quantum measurement in a lab and obtains an outcome. The other

agent, Wigner, treats the lab containing his friend and the friend’s experimental setup as

one large quantum system and writes down a joint quantum state which evolves continu-

ously in time. Thus for Wigner there is no measurement outcome. Who is right, Wigner

or his friend? There is a difficulty here if one thinks of a measurement outcome as some-

thing objective in the sense that it can be verified in principle by anybody.

The lesson QBism [2–4] draws from Wigner’s thought experiment is that, for con-

sistency’s sake, measurement outcomes must be regarded as personal to the agent who

makes the measurement. This idea first appeared in 2006 in Ref. [5], where the phrase

“facts for the agent” was coined. Its connection with Wigner’s friend was eventually

spelled out fully in 2010 with Ref. [2], and the personal nature of an agent’s measure-

ment outcomes was further emphasized in Ref. [4], where outcomes were identified with

the “experiences” of the agent doing the measurement. As emphasized, e.g., by Pusey [6],

Wigner’s friend thought experiments thus pose no problem for QBism. In fact, Wigner’s

friend was central to the development of QBist thinking [7].
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Recently, variations of Wigner’s original thought experiment were introduced by

Brukner [8, 9], Frauchiger and Renner (FR) [10], and Baumann and Brukner (BB) [11].1

In Brukner’s thought experiment, first described in 2015 [8] and thoroughly analyzed in

Ref. [9], the assumption that measurement outcomes are objective leads to a Bell inequal-

ity and thus to a conflict with the predictions of quantum mechanics. Brukner concludes

from this that measurement outcomes should be regarded as “facts relative to the ob-

server,” the same conclusion QBism reached by considering the original Wigner’s friend

thought experiment.

The main innovation in the very interesting FR scenario is that both Wigner and a

friend make predictions about the outcome of one and the same measurement, which is

performed by Wigner. A seemingly straightforward application of the quantum formalism

then appears to show that the predictions of Wigner and friend are mutually contradictory.

Frauchiger and Renner turn this into a formal contradiction by postulating a small number

of what they believe to be intuitive assumptions. They conclude that any interpretation of

quantum mechanics has to abandon at least one of these assumptions.

From a QBist perspective, however, there is a fundamental problem with Frauchiger

and Renner’s analysis. In their thought experiment, both Wigner and the friend are agents

applying the quantum formalism, but Frauchiger and Renner treat them in an asymmetric

way. Because Wigner is outside the lab that contains the friend, this asymmetry seems to

be inherent in the very setup of the experiment. We will show that this is not so. QBism

both requires and makes possible a fully symmetric treatment of Wigner and his friend.

Wigner’s action on his friend then becomes, from the friend’s perspective, an action the

1There are too many responses to these papers to cite here, but a sampling of those which attempt to
analyse QBism’s relation to the thought experiments can be found in Refs. [12–20]. Though Refs. [19, 20]
are both very relevant to QBist interests, neither of these get at the heart of the argument made here.
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Figure 7.1: (a) In usual descriptions of various Wigner’s-friend thought experiments,
there is an urge to portray everything from a God’s eye view. Here, we depict the BB
thought experiment, where Wigner, his friend, and a spin-1/2 particle interact, and we
symbolize QBism’s disapproval of such portrayals with a big red X. In QBism, the quan-
tum formalism is only used by agents who stand within the world; there is no God’s-eye
view. (b) Instead, in QBism, to make predictions, Wigner treats his friend, the particle,
and the laboratory surrounding her (all shaded in green) as a physical system external to
himself. While (c) to make her own predictions, the friend must reciprocally treat Wigner,
the particle, and her surrounding laboratory (all shaded in green) as a physical system ex-
ternal to herself. It matters not that the laboratory spatially surrounds the friend; it, like
the rest of the universe, is external to her agency, and that is what counts.

friend takes on Wigner. Once this is taken into account, the paradoxical features of the FR

thought experiment disappear.

The more recent BB scenario is similar to the FR thought experiment in that, again,

both Wigner and friend make predictions about the outcome of Wigner’s measurement.

Baumann and Brukner appear to show that applying the standard quantum formalism

leads the friend to make a bad prediction. As in the FR case, the problem with Baumann

and Brukner’s analysis is that they fail to treat the friend as an agent on the same foot-

ing as Wigner. If, instead, Wigner and his friend are treated symmetrically, the BB sce-

nario loses its seemingly paradoxical character. Because the BB scenario is much simpler

than the FR scenario, we will discuss it first. Indeed it was through thinking about the BB

thought experiment that we finally arrived at our present understanding of the more intri-

cate FR thought experiment.
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Our paper is organized as follows. In Section 7.2 we summarize the main QBist prin-

ciples. We spell out what we mean by a user of the quantum formalism, and how quantum

states and quantum measurements are thought of as personal judgments in our framework.

We further explain how Asher Peres’s dictum that unperformed experiments have no re-

sults remains true even when an agent is certain of what he will find. In Section 7.3 we

review Wigner’s original thought experiment and explain what it means for one agent to

be a physical system for another agent, distinguishing our notion from Wigner’s original

where he argued that the friend must be described as in a “suspended animation” unless

the laws of physics are changed. Section 7.4 contains the main argument of the paper. It

shows that the BB thought experiment can be understood fully within the standard quan-

tum formalism if Wigner and his friend are treated in a fully symmetric fashion. We turn

to the FR thought experiment in Section 7.5. We show that, exactly as in the BB case, the

apparent contradiction derived by Frauchiger and Renner is due to a failure to treat one

of the participants in the thought experiment as an agent in the full sense of the word. Fi-

nally we clarify the circumstances in which one agent may adopt another agent’s quantum

state assignments and thereby address a challenge posed by Frauchiger and Renner [10] in

their subsection titled “Analysis within QBism.”

7.2 Agents and QBism

As there exist several authoritative accounts of QBism [21–23], this section focuses

on those aspects of QBism that are important for our argument about agents and Wigner’s

friend. We start by defining the terms “agent” and “user of quantum mechanics” and dis-

cuss some key tenets of QBism. We then give an account of the elementary double-slit

experiment in QBist terms, in order to set the scene for the discussion of Wigner’s friend

in the next section.
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7.2.1 Agents and users of quantum mechanics

According to QBism, the quantum formalism is a tool decision-making agents can

adopt to better guide their decisions when faced with the inevitable uncertainties of the

quantum world. Particularly, the theory guides its users in how to gamble on the personal

consequences of their measurement actions. Thus for QBism, the quantum formalism

plays a normative role for its users, not a descriptive role for exactly how the world is: It

suggests how a user should gamble.

Users of the theory are thus at the center of the QBist approach. It is therefore impor-

tant to spell out what we mean by the term. In the following, we will make a distinction

between agents and users of quantum mechanics:

• Agents are entities that can take actions freely on parts of the world external to

themselves, so that the consequences of their actions matter for them.

• A user of quantum mechanics is an agent that is capable of applying the quantum

formalism normatively.

While our definition of a user is narrow, our definition of an agent is broad: It does not

rule out attributing agency to dogs, euglenas, or artificial life. However, it does exclude

a computer program that deterministically “chooses” an action from a look-up table. On

the other hand, as Khrennikov emphasizes in Ref. [24], “The idea is that QM is something

used only by a privileged class of people. Those educated in the methods of QM are able

to make better decisions (because of certain basic features of nature) than those not ed-

ucated in the methods of QM.” This notion of a user of the theory is sufficiently open to

allow for additional details in the future, but it is also precise enough for the purposes of

this paper.
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There exists a range of definitions of agency in the philosophical literature that over-

lap with our definition to different degrees [25, 26]. According to the above definitions,

a team of scientists sharing notebooks, calculations, observations, etc., can act as a single

agent and even a user of quantum mechanics [27].

7.2.2 Some tenets of QBism

The previous subsection started with a one-paragraph summary of QBism. The fol-

lowing five tenets provide more detail. Taken together they ensure QBism’s consistency.

What is a measurement?

A measurement is an action of an agent on its external world, where the consequences

of the action, or its outcomes, matter to the agent.

Like our definition of agent before, this definition of measurement is very broad. Ba-

sically anything an agent can do to its external world—from opening a box of cookies,

to crossing a street, to performing a sophisticated quantum optics experiment—counts as

a measurement in our sense. The only thing that sets quantum measurement as normally

construed apart from the more mundane examples given above is whether it is fruitful or

worth one’s while to apply the quantum formalism to guide one’s actions. But, in princi-

ple a user of quantum mechanics could use the formalism to make decisions in any mea-

surement situation, including measurements on living systems as in the Wigner’s friend

thought experiment that are of concern here.

By applying the term measurement only to actions on the agent’s external world, we

exclude the case where an agent, directly or indirectly, acts on him or herself. We thus re-

quire a strict separation between the agent performing the measurement and the measured

system.
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Measurement outcomes are personal

When an agent performs a measurement—that is, takes an action on its external world—

the “outcome” of the measurement is the consequence of this action for the agent. A mea-

surement outcome is personal to the agent doing the measurement. Thus two agents can-

not experience the same outcome. Different agents may inform each other of their out-

comes and thus agree upon the consequences of a measurement, but a measurement out-

come should not be viewed as an agent-independent fact which is available for anyone to

see [5].

This tenet has led some commentators to claim mistakenly that QBism is a form of

solipsism. This claim has been thoroughly refuted (see, e.g., Ref. [2, 28–31]). That QBism

is not solipsism follows immediately from the premise that a measurement is an action on

the world external to the agent. A QBist assumes the existence of an external world from

the outset. Furthermore, the consequences of measurement actions are beyond the agent’s

control—the world can surprise the agent. The world is thus capable of genuine novelty

complementary to the agent’s actions—the world and the agent cannot be identified with

each other. (See Refs. [30, pp. 6–10] and [22, pp. 19–20], arXiv versions.)

A quantum state is an agent’s personal judgment

In QBism, the only purpose of the quantum formalism is to help an agent make bet-

ter decisions. Rigorous use of the formalism enables an agent to make more successful

gambles. The term “gamble” evokes games of luck, but here it is meant to encompass any

action by an agent where the consequences matter to the agent. Any physics experiment is

thus a gamble in this sense.
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As we will explain in more detail in the next subsection, the quantum formalism can

be viewed as an addition to classical decision theory [3, 22]. Following the approach to

decision theory pioneered by Savage [32, 33], QBism takes all probabilities, including

those equal to zero and one, to be an agent’s personal degrees of belief concerning future

measurement outcomes. Personalist probabilities [34, 35] acquire an operational meaning

by their use in decision making. A key consequence of this theory is that, to avoid sure

loss, an agent’s gambles must be constrained by the rules of probability theory.

In QBism, a quantum state is also an agent’s personal judgment, reflecting the agent’s

degrees of belief in the outcomes of all possible measurements he or she might perform.

A quantum state, rather than being a property of a quantum system, thus encodes an agent’s

expectations regarding the outcomes of future measurements.

The quantum formalism is normative rather than descriptive

We will see below that the quantum-mechanical Born rule can be viewed as placing

additional constraints on an agent’s probability assignments to the outcomes of different

measurements [5] in situations where pure probability theory is simply silent. In line with

the central place that QBism gives to measurement, QBism treats the Born rule as funda-

mental: To understand the quantum formalism, one has to understand the Born rule first.

For a measurement with outcomes labeled j = 1, . . . , n, the Born rule is usually given

in the form pj = tr(ρEj), where Ej is a measurement operator or effect corresponding

to outcome j (for a von Neumann measurement this will be a projection operator), ρ is

the density operator for the measured system, and pj is the probability for outcome j. In

QBism, ρ represents the agent’s belief about the system, and the list of effects (or POVM)

{E1, . . . , En} represents the agent’s belief about the measurement.
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In contrast to the usual reading of the Born rule as a formula for computing pj given ρ

and Ej , in QBism the Born rule functions as a consistency requirement [2, 3]. If an agent

has beliefs pj , ρ and Ej that do not satisfy the Born rule, he or she should modify at least

one of these beliefs. The formalism does not prescribe which one to modify or how to

modify it.2

In QBism the Born rule is thus a consistency criterion that an agent should strive to

satisfy in its probability and quantum state assignments. It is a single-agent criterion; it

says nothing about consistency between the probability and quantum state assignments

of different agents. It is entirely about internal consistency of an agent’s expectations.

This is what is meant by saying that the Born rule, and thus the quantum formalism, is

normative rather than descriptive.

This tenet has led some commentators to claim mistakenly that QBism is a form of

instrumentalism. This, as with the claim of solipsism, is also easily refuted; see, e.g.,

Refs. [30, 37]. Indeed from its earliest days, the very goal of QBist research has been

to distill a statement about the character of the world from the fact that gambling agents

should use the quantum formalism [38]. Even though this remains an ongoing project, it

has already led to a number of strong ontological claims on the part of QBism—from the

world being capable of genuine novelty and being in constant creation, to the Born rule

expressing a novel form of structural realism [22, 30].

2It is easier to see how pj , ρ, and Ej are on an equal footing if ρ and Ej are expressed as probabilities.
That this can be done is well known: with respect to an appropriately chosen informationally complete mea-
surement, any density operator is equivalent to a vector of probabilities [36], and any POVM {E1, . . . , En}
is characterized by a stochastic matrix of conditional probabilities [3].
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Probability-1 assignments are judgments

QBism regards even probability-1 (and probability-0) assignments as an agent’s per-

sonal judgments. Assigning probability-1 to an outcome expresses the agent’s supreme

confidence that the outcome will occur, but does not imply that anything in nature guaran-

tees that the outcome will occur.

Similarly, QBism regards both pure and mixed quantum states as an agent’s personal

judgments. This implies in particular that even a statement such as “this outcome is cer-

tain to occur” reflects an agent’s judgment rather than a fact of nature. In other words,

nothing in nature guarantees that an outcome to which an agent has assigned proobability-

1 will in fact occur.

7.2.3 Unperformed measurements have no outcomes, even when an agent is certain what

the outcome will be

In his 1964 Lectures on Physics, Richard Feynman famously stated that the double-slit

experiment exhibits “the basic peculiarities of all quantum mechanics”. “In reality, it con-

tains the only mystery,” he said. This idea seems to overlook the importance of quantum-

foundational results such as Bell inequalities, Kochen-Specker style noncolorability theo-

rems, or contextuality inequalities. Yet, in the end QBism believes Feynman was on the

right track. Not only does the double-slit experiment exhibit the basic peculiarities of

quantum mechanics, it points to the solution of the Wigner’s friend conundrum as well.

The double-slit experiment consists of a particle source, a screen with two slits, and

a second screen farther away from the source where the particle position is recorded. As-

sume an agent has made assignments P (H0) and P (H1) for the probability that the parti-

cle passes through the left or right slit, respectively, and P (Dj|H0) and P (Dj|H1) that the
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particle is detected at position Dj given that it passes through the left or right slit, respec-

tively. We assume P (H0) + P (H1) = 1 and
∑
j P (Dj|H0) =

∑
j P (Dj|H1) = 1, as must

be the case for probabilities and conditional probabilities. As explained above, for these

probabilities to have operational, decision-theoretic, meaning they have to refer to actual

outcomes for the agent. Spelled out, this means P (H0) is the probability that the agent

sees the particle pass through the left slit, allowing the agent to gamble on this outcome,

and P (Dj|H0) is the probability that the agent detects the particle at Dj given that he or

she has seen it pass through the left slit, allowing the agent to make the corresponding

conditional gamble. (The same applies, of course, to the right slit.)

In the uncontroversial case where the agent actually intends to check which slit the

particle passes through before it hits the second screen, the agent’s probability P (Dj) for

finding the particle at Dj is given by

P (Dj) = P (H0)P (Dj|H0) + P (H1)P (Dj|H1) . (7.1)

This follows from probability theory alone.

But what if the agent does not intend to check which slit the particle passes through?

In this case we are dealing with a different experiment for which probability theory alone

does not constrain the agent’s probabilities. The classical intuition in this situation is to

continue to use Eq. (7.1) for the probability of detecting the particle at Dj , which amounts

to the physical postulate that as far as this probability is concerned, it does not matter

whether the agent does or does not check which slit the particle goes through.

This classical intuition has to be abandoned in quantum mechanics. Whether a mea-

surement is performed or not matters profoundly. Asher Peres expressed this in his fa-

mous slogan “Unperformed experiments have no results.” [39]
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Crucially, in a quantum analysis of the double-slit experiment, there is no change

in either the values or the meaning of the probabilities P (H0), P (H1), P (Dj|H0), and

P (Dj|H1). For instance, P (Dj|H0) is still the agent’s probability to detect the particle

at Dj given that the agent saw it pass through the left slit. In his paper “The Concept of

Probability in Quantum Mechanics” [40], Feynman makes a similar point and then goes

on to write that “[w]hat is changed, and changed radically, is the method of calculating

probabilities.”

Here QBism departs from Feynman’s view in one significant way. In the uncontro-

versial case that the agent intends to do an intermediate measurement to check which

slit the particle goes through, the quantum rules do not lead to a change of the probabil-

ities P (Dj) as given in Eq. (7.1). If the agent does not intend to do the intermediate mea-

surement, however, Eq. (7.1) no longer applies because the probabilities P (H0), P (H1),

P (Dj|H0), and P (Dj|H1) now refer to a hypothetical intermediate measurement. Thus

probability theory alone no longer gives a formula for the probability of finding the par-

ticle at Dj . The “radically” new quantum method of calculating probabilities in this case

should therefore not be viewed as a change of, but as an addition to, existing methods.

Probability theory remains fully valid in the quantum realm.

As we stated in Section 7.2.2, QBism takes the stand that even when an agent assigns

probability-1 to one of the possible outcomes of a measurement, there is nothing in the

agent’s external world that metaphysically ensures it will necessarily come about. For

“unperformed measurements have no outcomes” is a statement about the assumed char-

acter of the world, whereas a probability-1 assignment is only a belief (supremely strong,

but nonetheless a belief) that someone happens to have in the moment. That unperformed

measurements have no results is, for QBism, the great lesson of all the Bell-inequality and

Kochen-Specker-theorem results of the last half century, more recently reinforced by the
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“no-go theorems” of Pusey, Barrett, and Rudolph [41] and Colbeck and Renner [42]. It

plays a central role in the QBist approach to Wigner’s friend.

7.3 Wigner’s Friend

Wigner described his thought experiment in a 1961 paper entitled “Remarks on the

Mind-Body Question” [1]. Below we use a slightly modernized version of Wigner’s no-

tation. The friend (who prefers the pronouns “she” and “her”) performs a two-outcome

measurement on a quantum system, where the outcomes correspond to the states |ψ1〉 and

|ψ2〉, respectively. In order to be consistent with the BB scenario discussed in Section 7.4

below, we assume that |ψ1〉 and |ψ2〉 are states of a spin-1/2 particle corresponding to

“spin up” and “spin down”, respectively. After the friend’s measurement, Wigner con-

templates a simple measurement on her, consisting of the question: what was the result of

your spin measurement?

The assumption is now that Wigner assigns a quantum state to the joint system con-

sisting of particle and his friend, and treats it as a closed quantum system. After the friend

has measured the spin, Wigner’s joint state becomes

|Φ〉 = α|ψ1〉|χ1〉+ β|ψ2〉|χ2〉 , (7.2)

where |χ1〉 and |χ2〉 are Wigner’s states for his friend and correspond to her responding

to the question “what was the result of your spin measurement” with “up” and “down”,

respectively.

In his 1961 paper, Wigner argued that the question of whether the friend saw “up” or

“down” was already decided in her mind, before Wigner asked her. Here is what Wigner

concludes from this, in his own words (excepting our modernized notation):
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If we accept this, we are driven to the conclusion that the proper wave

function immediately after the interaction of friend and object was already ei-

ther |ψ1〉|χ1〉 or |ψ2〉|χ2〉 and not the linear combination α|ψ1〉|χ1〉+β|ψ2〉|χ2〉.

This is a contradiction, because the state described by the wave function

α|ψ1〉|χ1〉 + β|ψ2〉|χ2〉 describes a state that has properties which neither

|ψ1〉|χ1〉 nor |ψ2〉|χ2〉 has. If we substitute for “friend” some simple phys-

ical apparatus, such as an atom [. . . ], this difference has observable effects

and there is no doubt that α|ψ1〉|χ1〉 + β|ψ2〉|χ2〉 describes the properties

of the joint system correctly, the assumption that the wave function is either

|ψ1〉|χ1〉 or |ψ2〉|χ2〉 does not [Wigner’s italics]. If the atom is replaced by a

conscious being, the wave function α|ψ1〉|χ1〉 + β|ψ2〉|χ2〉 (which also fol-

lows from the linearity of the equations) appears absurd because it implies

that my friend was in a state of suspended animation before [she] answered

my question.

It follows that the being with a consciousness must have a different role

in quantum mechanics than the inanimate measuring device: the atom con-

sidered above. In particular, the quantum mechanical equations of motion

cannot be linear if the preceding argument is accepted. This argument implies

that “my friend” has the same types of impressions and sensations as I—in

particular, that, after interacting with the object, [she] is not in that state of

suspended animation which corresponds to the wave function α|ψ1〉|χ1〉 +

β|ψ2〉|χ2〉.

QBism, along with most other current interpretations of quantum mechanics, does

not restrict the applicability of quantum mechanics to inanimate devices. An agent can

apply the normative quantum calculus to any part of the world external to him or herself,

194



including conscious beings and other agents. So how does QBism escape the conclusions

that Wigner draws from his thought experiment?

Part of the answer is straightforward and follows directly from the QBist tenets. Wigner’s

quantum state |Φ〉 is not descriptive: it does not describe properties of the joint system to

which it refers. The exclusive role of |Φ〉 is to help Wigner quantify his expectations re-

garding the consequences of his future actions on friend and particle. In the same way,

the friend’s state assignments refer to her expectations regarding the consequences of her

future actions. There is simply no conflict between these two perspectives. In particular,

Wigner’s state assignment has no bearing on whether the friend is or is not in a “state of

suspended animation”.

This straightforward resolution of Wigner’s paradox has profound implications for the

QBist worldview. A few lines below the quoted passage, Wigner points out that insisting

on the superposition state |Φ〉 for particle and friend, though not necessarily a contradic-

tion, amounts to denying “the existence of the consciousness of a friend” to an intolerable

extent. In QBism, a quantum state assignment has no bearing on the existence of the con-

sciousness of a friend. It follows that a QBist can simultaneously assign the state |Φ〉 and

grant his friend a conscious experience of having seen either “up” or “down”.

This claim requires some elaboration. The scenario of Wigner’s friend can be under-

stood as a version of the double-slit experiment, in line with Feynman’s dictum that the

latter contains the basic peculiarities of all quantum mechanics. As in our analysis of the

double-slit experiment, none of the probabilities considered in Wigner’s paper change

their value or their meaning when Wigner writes down his quantum state |Φ〉. The only

implications of Wigner assigning a quantum state to the friend are that, (i) as far his prob-

abilities for the outcomes of some future quantum measurement on the friend are con-

cerned, it matters whether or not he first asks her whether she saw up or down, and (ii)
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that he should use the Born rule to compute these probabilities. There is no reason why

Wigner cannot assign a quantum state that respects all of his beliefs about the friend’s in-

ner life, conscious experiences, or agenthood.

The parallel with the double-slit experiment is somewhat hidden in Wigner’s origi-

nal argument, because he only considers measurements on the friend that, in the double-

slit experiment, correspond to determining which slit the particle went through. But, as

Wigner makes clear when he writes that “there is no doubt that [|Φ〉] describes the prop-

erties of the joint system correctly”, assigning the state |Φ〉 amounts to committing to pre-

dictions for the outcomes of a wide range of quantum measurements on the friend, includ-

ing those for which the predictions depend on whether or not the friend is first asked what

she saw. In the context of the Wigner’s friend scenario, such measurements were first con-

sidered by David Deutsch [43]. They are crucial for the BB thought experiment, to which

we will now turn.

7.4 The Friend’s Perspective: Response to Baumann & Brukner

Baumann and Brukner’s thought experiment [11] is a simple modification of Wigner’s

original scenario. After the friend has made her measurement, Wigner’s joint state of par-

ticle and friend is again given by Eq. (7.2), where it is now assumed that α = β = 1/
√

2,

so that we have

|Φ〉 =
1√
2

(
|ψ1〉|χ1〉+ |ψ2〉|χ2〉

)
. (7.3)

Whereas in Wigner’s paper, Wigner contemplates a simple measurement on the friend

consisting of asking her about the result of her spin measurement, Baumann and Brukner
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let Wigner do the measurement

MW : {|Φ〉〈Φ|, 1− |Φ〉〈Φ|} . (7.4)

Such a measurement is far beyond any current and probably future experimental possi-

bilities, but if we allow Wigner to write down the state |Φ〉, we must also allow him to

contemplate the measurement MW . Clearly, Wigner has a probability p = 1 of obtaining

the outcome corresponding to |Φ〉〈Φ|, which is labeled “+” in Ref. [11].

Baumann and Brukner’s main claim concerns the friend’s prediction for the “+” out-

come. They argue that, if in her spin measurement the friend obtains “up”, her probabil-

ity of “+” is given by applying MW to the state |ψ1〉|χ1〉, and if she obtains “down”, she

should apply MW to the state |ψ2〉|χ2〉. In both cases, her probability for “+” is 1/2. Since

this probability is the same for “up” and “down”, she can communicate her prediction to

Wigner without affecting the rest of the experiment. Baumann and Brukner’s claim thus

leads to the troubling conclusion that two different ways of applying the rules of quantum

mechanics give contradictory numbers for the probability of “+”. 3

In the above account it might appear problematic that, in QBism, the outcome of the

measurement MW is personal to Wigner. But Baumann and Brukner show a valid way

around this problem by stipulating that Wigner record the outcome of his measurement on

a piece of paper. The friend’s probability assignment can then be regarded as referring to

her finding “+” upon checking the piece of paper.

The real problem with the BB analysis is that for the friend to base her prediction on

the state |ψ1〉|χ1〉 (or |ψ2〉|χ2〉) amounts to assigning a quantum state to herself, which vi-

3Baumann and Brukner assume the experiment is repeated many times, so that the alleged contradiction
can be phrased in frequentist terms. From a QBist perspective, the full force of the contradiction arises
already in the single-case analysis given here.
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olates the QBist tenet that there must be a clear separation between agent and measured

system. It is easy to see why this leads to a serious difficulty. Assume for the moment

that the friend writes down |ψ1〉|χ1〉 for the joint system of particle and herself and uses it

to compute her probability for what she will see on the piece of paper. This state assign-

ment would not just commit her to a probability for outcome “+”. It would commit her

to probabilities for any measurement that she could perform on the particle and herself.

For instance, according to our discussion in Section 7.3, the state |χ1〉 corresponds to her

responding with “up” to the question “what was the result of your spin measurement”.

But since she is a free agent, she has control over the answer to this question. It is up to

her whether she replies “up”, “down”, or by sticking her tongue out. Since she has at least

partial control over these measurement outcomes, the above quantum-state assignment

cannot form a reliable basis for guiding her actions.

So what should the friend do instead? The answer has already been given in the In-

troduction and Figure 1. Rather than adopting Wigner’s viewpoint, she needs to analyze

the experiment as an action that she takes on the particle, the lab, Wigner, and the piece

of paper on which Wigner records his outcome. In particular, this requires her reversing

roles and treating Wigner as a physical system. That this would be an enormously com-

plex and practically infeasible task is hardly a valid objection given the assumption that

Wigner is able to write down a quantum state for her. Indeed, an even-handed analysis of

the thought experiment clearly requires the assumption that the friend is as skillful a user

of quantum mechanics as Wigner himself.

What probability should the friend assign to her finding “+” on the piece of paper?

This depends on her prior states, unitaries, and POVMs regarding the lab and Wigner.

The only constraint on her probability for “+” is that it should be consistent with her prior

quantum assignments in the sense given in Section 7.2.2, i.e., it should be consistent with
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the Born rule. This implies that the friend’s probability for “+” cannot be derived from the

details provided in the BB thought experiment. Furthermore, if the experiment is repeated

many times as envisaged by Baumann and Brukner, the formalism will typically lead her

to update her assignments after each repetition. Her probabilities will thus reflect what

she learned in previous runs of the experiment.

Here is a summary of our argument. In the same way that Wigner does not take the

friend’s viewpoint into account when he computes his probability of “+”, the friend need

not take Wigner’s viewpoint into account when she computes her probability of “+”.

This puts Wigner and the friend on an equal footing. In particular, the friend’s quantum

state assignments is not a function of Wigner’s quantum states |χ1〉 and |χ2〉. We thus ex-

plicitly reject Baumann and Brukner’s claim that standard quantum theory requires the

friend to base her probability assignments on |χ1〉 and |χ2〉. In contrast to Baumann and

Brukner, who propose that the friend uses a modified Born rule incorporating Wigner’s

perspective, our symmetric QBist treatment of Wigner and his friend requires no such

modification.

7.5 Reasoning about Other Agents: Response to Frauchiger & Renner

Frauchiger and Renner’s thought experiment, which considers four agents, is some-

what intricate, but here only the following broad outline is needed. Two agents, F (the

friend) and F̄, are located in separate labs. The other two agents, W (Wigner) and W̄, are

on the outside and perform measurements on the labs. At time t = 0, agent F̄ prepares a

qubit in a given state, measures it, prepares a spin-1/2 particle in a state that depends on

the measurement outcome, and sends the particle to agent F’s (the friend’s) lab. At t = 1,

the friend measures the particle. At t = 2, agent W̄ measures F̄’s lab in a given basis.

Finally, at t = 3, Wigner measures the friend’s lab in a given basis.
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Wigner now uses two different methods to make predictions for the outcome of his

measurement. He is interested in the probability of one of the outcomes, labeled w=fail.

His first prediction uses the quantum formalism. For his second prediction, he reasons

about what predictions the other agents would have made at earlier stages of the experi-

ment, assuming all agents start from the same initial quantum state assignment. Frauchiger

and Renner argue that the two methods lead to mutually contradictory predictions.

When reasoning about other agents, Wigner, agent W̄, and the friend apply FR’s

Assumption (C): Suppose that agent A has established that “I am certain

that agent A′, upon reasoning within the same theory as the one I am using,

is certain that x = ξ at time t.” Then agent A can conclude that “I am certain

that x = ξ at time t.”

The FR argument starts with agent F̄ making, immediately after time t = 0, a predic-

tion about Wigner’s measurement outcome. Since the measured system is the friend’s lab,

agent F̄’s prediction is about a part of her external world. The next step is that the friend

applies Assumption (C) to make F̄’s prediction her own. Then W̄ applies Assumption (C)

to make the friend’s and thus F̄’s prediction his own. Finally Wigner applies Assumption

(C) to make W̄’s and thus also the friend’s and F̄’s prediction his own. These steps are

cleverly arranged in time so that they don’t clash with the different measurements.

Notice that all four agents’ predictions concern the same outcome, namely w=fail in

Wigner’s measurement of the lab containing the friend. This means in particular that the

FR argument depends on the friend making a prediction about Wigner’s measurement on

herself. In their table 3, Frauchiger and Renner make this explicit by stating the friend’s

conclusion as “I am certain that [Wigner] will observe w=fail at time [t = 3].”

But this means we are now in the same situation as in the previous section when we

analyzed the BB thought experiment. The friend can use the quantum formalism to make
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a prediction for Wigner’s outcome (more precisely, for what she will find when she checks

a record of Wigner’s outcome). But she is not required to base her prediction on agent

F̄’s or Wigner’s state assignments. She will have to analyze the experiment as an action

that she takes on the other lab and the other agents. Similar to the discussion of the BB

thought experiment, the contradiction derived by FR is resolved if the symmetry between

Wigner and his friend is recognized.

Frauchiger and Renner state correctly that Assumption (C) is rejected by QBism. This

does not mean that there is a prohibition in QBism for one agent to adopt another agent’s

probability or state assignments. A QBist agent will have to decide on a case by case ba-

sis whether or not to do so. A straightforward way of making use of other agents’ proba-

bilities in one’s decision making is simply to ask them what their probabilities are and to

treat the answers as data which they may or may not take into account in their own proba-

bilities.

The most common scenario in which scientists adopt each others’ probability and

state assignments is that of a team working jointly on a quantum experiment and acting

as a single agent and user of quantum mechanics. It follows from the definitions given in

Section 7.2.1 that scientists in such a team must have common probability and state as-

signments. The requirement of a strict separation between agent and measured system

now translates into a strict separation of team and measured system. For the FR thought

experiment this means that its four players cannot be thought of as acting as a single

agent, because they perform measurements on each other.

In a subsection of their paper, titled “Analysis within QBism”, Frauchiger and Ren-

ner write that “Nevertheless, there should be ways for agents to consistently reason about

each other.” In this paper we have provided such a way. For two users of quantum me-
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chanics who interact, it requires each of them to treat their interaction as an action he or

she takes freely on the other.

7.6 Conclusion

We have seen that the thought experiments described by Frauchiger and Renner and

by Baumann and Brukner have a key aspect in common. In each of them, an agent (the

friend) is using quantum mechanics to predict the consequences of an action performed

on her by another agent (Wigner). We have shown that the paradoxa found by these au-

thors disappear if the friend analyses the experiment as an action she performs on the

world outside herself, which includes Wigner. These thought experiments thus illustrate

what we have called a quantum Copernican principle: when two agents take actions on

each other, each agent has a dual role as a physical system for the other agent.
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CHAPTER 8

FAQBISM

As proponents of an interpretation of quantum mechanics, we are accustomed to en-

countering puzzlement. We know that this is an unusual, perhaps even disreputable ac-

tivity for professional physicists to engage in. One of the authors came to QBism from

quantum chemistry, and the other from nonequilibrium statistical physics. We are here

largely because we sought to apply the same habits to quantum foundations that we would

find virtuous in any other field of physics: separating principles from convenient conven-

tions, reformulating old mathematics in new ways to make a different set of questions

easy, maintaining a healthy disregard for philosophers’ judgments about what is impossi-

ble. Yet even a mostly ordinary upbringing can lead to a surprising place.

What follows is our attempt to take the questions we have encountered, select those

that have been posed in good faith, and provide responses that summarize QBist thinking

on those topics. We have tried to be serious without being dour. Finding quantum founda-

tions important at all may be controversial among physicists, potentially more so than any

specific choice of interpretation. More shocking still is the suggestion that the material be

approached with a sense of fun and adventure.

8.1 Why did you change from Quantum Bayesianism to QBism?

Originally, the Q stood for Quantum and the B for Bayesian. The former is still true.

207



Back in the 1990s and early 2000s, the term “Quantum Bayesianism” was serviceable.

However, it had its issues. For one thing, nobody was consistent on whether to capitalize

the Q: Those who called themselves Quantum Bayesians preferred it uppercase, so that

neither half of the term had undue emphasis over the other, but try to convince a copy ed-

itor of that simple point! More importantly, there are many varieties of Bayesianism, and

plenty of self-declared Bayesians disagreed in fundamental ways with the particular vari-

ety that our school found necessary for quantum physics. For a while, N. David Mermin

joked that the B should stand for Bruno de Finetti [1], and Fuchs suggested that the QB

was like KFC, which once stood for “Kentucky Fried Chicken” but is now a stand-alone

trademark [2].

More recently, we found a way to expand the B that we had never anticipated — a

rolling, Lewis-Carroll-esque word: bettabilitarianism [3]. This word comes, of all places,

from the jurist Oliver Wendell Holmes, Jr. To quote Louis Menand’s history of American

pragmatism, The Metaphysical Club: A Story of Ideas in America:

‘The loss of certainty’ is a phrase many intellectual historians have used to

characterize the period in which Holmes lived. But the phrase has it back-

ward. It was not the loss of certainty that stimulated the late-nineteenth-century

thinkers with whom Holmes associated; it was the discovery of uncertainty.

Holmes was, in many respects, a materialist. He believed, as he put it, that

“the law of the grub . . . is also the law for man.” But he was not entirely a de-

terminist, because he did not think that the course of human events was fixed

. . . . Complete certainty was an illusion; of that he was certain. There were

only greater and lesser degrees of certainty, and that was enough. It was, in

fact, better than enough; for although we always want to reduce the degree

of uncertainty in our lives, we never want it to disappear entirely, since un-
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certainty is what puts the play in the joints. Imprecision, the sportiveness, as

it were, of the quantum, is what makes life interesting and change possible.

Holmes liked to call himself a “bettabilitarian”: we cannot know what conse-

quences the universe will attach to our choices, but we can bet on them, and

we do it every day.

A QBist declares, “I strive to be the very model of a Quantum Bettabilitarian!”

We have occasionally seen manglings like “QBian” and even “Qubian”. These spoil

the pun of QBism and are thus strongly deprecated.

8.2 Why do you call QBism “local”?

A journey of a thousand perspective shifts begins with a single step. In this case, the

first step is to realize why the scenarios trotted out to imply “quantum nonlocality” actu-

ally don’t [4]. The standard argument for “nonlocality” rests upon entanglement. Conjure

up a pair of qubits, for example, assign to them a maximally entangled state and ship one

of the pair off to Mars. Upon measuring the qubit left on Earth, “the state of the qubit on

Mars changes instantaneously”. But this is not a physical change of any property of a ma-

terial object! Compare this with classical electromagnetism: In that subject, if we could

toggle a quantity at a distance but only in ways that could not effect a transmission of in-

formation, we’d have no hesitation in calling that quantity unphysical — an artifact, we’d

say, of choosing a gauge that does not respect relativistic causality. QBism says that the

right way to interpret quantum theory is to take this helpful and uncontroversial move se-

riously. When Alice measures her Earth-bound qubit, what changes for its partner on the

red planet? Only Alice’s expectations for what might happen to Alice herself, if she were

to make the journey and intervene upon that qubit.
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The fact that nature violates Bell inequalities is reason to reject the hypothesis used to

derive those inequalities, “local realism”. But when we decide to adopt non-(local real-

ism), we have a choice of how to clear those parentheses. We can put the non- on either

half, and when we consider the highly specialized character of what is actually meant

by realism in this context, keeping the local turns out to be the natural move. Another

way of saying this is that adopting quantum theory does not force us to revise the no-

tions of “causal structure” developed in classical physics, such as the conceptual tool of

Minkowski spacetime.

8.3 What does it feel like to be in a quantum superposition?

A QBist affirms, “My quantum states are mine, your quantum states are yours. If

someone else considers a quantum system containing me and ascribes to that system a

quantum superposition state, so be it. That is their quantum state assignment. It doesn’t

make sense for me to assign myself a quantum state if a quantum state is an encoding

of my own beliefs for the outcomes of my freely chosen actions.” If something feels off

about this answer, consider whether you are assuming that there is a “correct” — i.e.,

purely physically mandated — quantum state in this scenario. For a QBist, there is never

such a quantum state just as in personalist probability theory there is never an ontologi-

cally “correct” probability distribution. The answer to the question “What does it feel like

to be in a quantum superposition?” is the same as the answer to the question “What does

it feel like to be in someone else’s probability distribution about me?”.

Incidentally, this is one problem with the no-go argument made by Frauchiger and

Renner, originally intended to rule out what they called “single-world interpretations” of

quantum theory [5]. This argument, as well as others closely related to it [6], all at some

point make an assumption that amounts to an agent putting herself into a quantum super-
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position. Ultimately, this makes no more sense than trying to crawl inside a probability

distribution and live there.

8.4 Isn’t it just solipsism?

On the issue of solipsism, QBism stands with Martin Gardner [7]:

The hypothesis that there is an external world, not dependent on human minds,

made of something, is so obviously useful and so strongly confirmed by expe-

rience down through the ages that we can say without exaggerating that it is

better confirmed than any other empirical hypothesis. So useful is the posit

that it is almost impossible for anyone except a madman or a professional

metaphysician to comprehend a reason for doubting it.

For a QBist, the basic subject matter of quantum theory is an agent’s interactions with the

outside world; the formalism of quantum theory makes no sense otherwise. Were there no

systems outside the QBist’s mind, there would be no interface between agent and world,

and quantum theory would have no subject matter. QBism is a full-throated rejection of

metaphysical solipsism.

Someone once asked us, “Where is the real world in such a view?” The real world is

exactly where it always has been. It is the world in which our species evolved. It is the

world in which we grow and strive and protest, where we learn by individual experience

— including our encounters with the words of others — the pain of heartbreak and the

utility of the Lorentz transform. It has conditioned our calculus of expectations, even as

those expectations themselves remain intensely personal.

To a QBist, “measurement” is that variety of interaction which physics understands

best, precisely because experiments are actions whose potential outcomes we can cata-
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logue. Measurements are to quantum physics what “model organisms” are to biology.

Why do developmental biologists know so much about zebrafish? Because their embryos

are transparent! But life flourishes on, unanalysed, beyond our microscopes. Far from be-

ing solipsistic, QBism recognises just how little of nature we have managed to touch.

It is true that QBists refuse to make an upfront definite claim about what the stuff of

the world is. How then, can they have a consistent doxastic interpretation?1 This is ac-

complished by being clear on what quantum information is actually information about: A

quantum state encodes a user’s beliefs about the experience they will have as a result of

taking an action on an external part of the world. Among several reasons that such a posi-

tion is defensible is the fact that any quantum state, pure or mixed, is equivalent to a prob-

ability distribution over the outcomes of an informationally complete measurement [8].

Accordingly, QBists say that a quantum state is conceptually no more than a probability

distribution. Okay, fine, but what is the stuff of the world? QBism is so far mostly silent

on this issue, but not because there is no stuff of the world. The character of the stuff is

simply not yet understood well enough. Answering this question is the goal, rather than

the premise.

Is this an unacceptable weakness of the interpretation? Well, that’s a matter of opin-

ion, but ours is that it is not. Must we demand that a complete ontology be laid out before

one’s ramblings graduate to the status of an “interpretation”? If taken to the extreme, this

is clearly unfair: One might claim that no one has a qualifying interpretation because we

don’t have a successful theory for quantum gravity and so every proposed ontology nec-

essarily fails. More practically, feeling pressured to commit to an ontology prematurely

may leave physicists unable to imagine one which departs sufficiently from classical intu-

1A brief note on useful terminology: epistemic refers to knowledge and information, doxastic to belief,
and ontic to brute elements of physical reality.
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itions. Why not see if the right ontology can be teased out from the formalism itself and

a principled stance on the meaning of its more familiar components (such as probability

distributions)?

In fact, QBism has had ontological aspirations ever since the beginning. (It’s hard

to have ontological aspirations for a theory if you think you’d have to be a solipsist to

hold it.) There are structural realist and neutral pluralist elements in QBism, and there

seems to be a process or event ontology underlying it all, somewhere in a spectrum of

things suggested by William James, Henri Bergson, Alfred North Whitehead, and John

Archibald Wheeler [9]. The stuff of the world is the becomings of the world. However, we

really don’t believe we’ll be able to say anything in proper detail until we get the quan-

tum formalism into a better shape. (That’s what all the SIC research described in §8.10 is

about.) So, from this perspective, QBism is a project.

Mermin [10] argues,

QBists are often charged with solipsism: a belief that the world exists only

in the mind of a single agent. This is wrong. Although I cannot enter your

mind to experience your own private perceptions, you can affect my percep-

tions through language. When I converse with you or read your books and

articles in Nature, I plausibly conclude that you are a perceiving being rather

like myself, and infer features of your experience. This is how we can arrive

at a common understanding of our external worlds, in spite of the privacy of

our individual experiences.

This leads us to an important topic: communication between agents. What does the

idea of agents comparing notes mean when we interpret quantum mechanics as a single-

user theory? Consider an agent Alice. She can use quantum mechanics as a “manual for
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good living”, a way to organize her expectations while navigating an irreducibly unpre-

dictable world. Alice encounters a system which she designates as “Bob”. Alice can ask

Bob about his experiences and use quantum mechanics to predict his answer. If Alice so

chooses, she can incorporate Bob’s responses into her expectations. Nothing in the for-

malism of quantum theory forces her to do so, however.

8.5 Isn’t it just the Copenhagen intepretation?

This has been said a lot through the years, and we continue to hear it today. Some-

times, it’s said that QBism is trying to be more Copenhagen than the Copenhagen inter-

pretation itself. As if QBism had a fever, and the only prescription were more Copen-

hagen! But the idea that there ever was a unified “Copenhagen interpretation” — i.e., that

the definite article is remotely applicable — was a myth of the 1950s. Trying to exceed

“the” Copenhagen interpretation in any respect is to race against a phantom.

QBism does not have, for example, Bohr’s emphasis on “ordinary language” [11],

whatever that might mean. Nor does it have the quantum-classical cut of Heisenberg,

the classical laboratory equipment of Landau and Lifshitz [12], the public experimental

records of Pauli [13], the essentially ontic state vectors of early Bohm [14], or the fre-

quentism of early von Neumann [15]. Unlike van Kampen, QBism does not presume that

the vanishing of interference terms will solve all riddles [16]. Unlike Wheeler, QBism

does not posit that all observers should ideally have the same information about a system

and thus the same quantum state for it [13, footnote 9]. There simply is not a way to sum-

marize this overflow of differences by claiming that QBism is “more Copenhagen”.

At one point, the Wikipedia article on QBism claimed that it “is very similar to the

Copenhagen interpretation that is commonly taught in textbooks”. What does this even

mean? First, as we noted, there’s no such thing as “the” Copenhagen interpretation. In ad-
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dition, claiming that “the Copenhagen interpretation” is “commonly taught in textbooks”

conflates the early developers of quantum theory and the varied modern expositions of it

into a vague mishmash. Asher Peres’ textbook is more instrumentalist than the undergrad-

uate standards; the Feynman Lectures handle probability in a less frequentist way than

Peres. Are all common textbooks Copenhagen, or is Copenhagen that which is commonly

taught in all textbooks? Better to strike the term “Copenhagen interpretation” from our

lexicon going forward and instead be precise about what views we mean!

8.6 Why does the interpretation of probability theory matter?

E. T. Jaynes put the basic point rather well [17]:

[O]ur present QM formalism is not purely epistemological; it is a peculiar

mixture describing in part realities of Nature, in part incomplete human in-

formation about Nature — all scrambled up by Heisenberg and Bohr into an

omelette that nobody has seen how to unscramble. Yet we think that the un-

scrambling is a prerequisite for any further advance in basic physical theory.

For, if we cannot separate the subjective and objective aspects of the formal-

ism, we cannot know what we are talking about; it is just that simple.

According to Jaynes, the way to unscramble that Heisenberg–Bohr omelette will be “to

find a different formalism, isomorphic in some sense but based on different variables” [18].

The results of quantum-mechanical calculations are generally probabilities, or stand-

ins for them like rates and effective cross-sections, and so the question “what means prob-

ability?” must be addressed sooner or later. This question gains urgency when we realize

that the inputs to those calculations are just as probabilistic as the outputs. We can see this

concretely by focusing on the simplest possible quantum system, a single qubit. A quan-
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tum state for a qubit can be written as a linear combination of the Pauli matrices, where

the coefficients are expectation values for the outcomes of the three Pauli measurements:

ρ =
1

2
(I + 〈x〉σx + 〈y〉σy + 〈z〉σz) . (8.1)

Because each Pauli measurement has only two possible outcomes, + and −, we can write

the expectation value 〈x〉 as

〈x〉 = p(+|x)− p(−|x) = 2p(+|x)− 1, (8.2)

and similarly for 〈y〉 and 〈z〉. Mathematically, any qubit state ρ, whether pure or mixed, is

nothing more than a convenient packaging of the three probabilities p(+|x), p(+|y) and

p(+|z). Thus, whatever status one grants to quantum states, one must grant that same sta-

tus to at least some probabilities. Conversely, if a particular interpretation of probability

theory turns out to be logically untenable, then that rules out a possible way of interpret-

ing quantum states, too.

Note that the fact that specifying a qubit quantum state requires three probability val-

ues is more fundamental than any choice of those values. To put it another way, when we

take our empirically successful theory of physics and find the simplest case where it ap-

plies, we see that the theory has three knobs, not one or two or five. This is a more primi-

tive, more basal statement about our theory than a choice of ρ is!

Modern quantum information theory provides an even deeper take: Any quantum

state can in fact be specified, not just as a compendium of probabilities for different ex-

periments, but as a probability distribution over the outcomes of a single experiment. For

more on the concept of a reference measurement, see §8.10.
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8.7 What is the meaning of the double-slit experiment in QBism?

For a QBist, the double-slit experiment is about the peculiarities that happen when an

agent tries to relate their expectations for one hypothetical scenario to their expectations

for another. Per tradition, we can call this agent Alice. She might compute her probabil-

ity for a detector click given that she will place the detector at position x and open slit #1

— call it P1(x). Likewise, she can compute the corresponding quantities for the config-

uration with only slit #2 open, P2(x); and for when both slits are open, P12(x). All of

these quantities are, by themselves, rather ordinary probabilities: None of them end up be-

ing negative, let alone complex. Nor is it surprising that P1(x) might be discrepant from

P2(x) or from P12(x). Different conditions, different probabilities! The puzzle is that

P12(x) 6= P1(x) + P2(x). (8.3)

The strangeness lies not in the curve for any particular scenario, but in how the scenarios

fit together.

Rob Spekkens likes to point out that the mere fact of interference is not a very deep

probe of quantum theory, because interference can arise in models based on local hid-

den variables [19, 20]. You just have to be careful and consistent when constructing your

model. In his toy theory, where states are probability distributions over discrete local hid-

den variables, we can build a test for double-slit-type oddities (a toy Mach–Zehnder inter-

ferometer), and indeed, interference occurs.

In order to test quantum theory more stringently, we have to find probes of nonclas-

sical expectation-meshing that resist easy emulation. This, from the QBist perspective,

is what Bell inequality violations are all about: Given any particular choice of detector
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settings, the outcome probabilities are just probabilities. The power and the mystery of

quantum theory reside in the relation between probabilities for different choices of detec-

tor settings.

Our research on SICs is also in this vein (see §8.10). Using a SIC as a reference mea-

surement is like considering a generalized interference experiment, where the outcomes

for the “which-way” measurement correspond to nonorthogonal quantum states. This

generalization takes us out of the realm of easy classical emulation, letting us investigate

the quantum formalism more deeply.

8.8 Doesn’t the PBR theorem prove QBism wrong?

The Pusey–Barrett–Rudolph (PBR) no-go theorem demonstrates, as the authors put

it, “that any model in which a quantum state represents mere information about an un-

derlying physical state of the system, and in which systems that are prepared indepen-

dently have independent physical states, must make predictions which contradict those

of quantum theory” [21]. In the years since its appearance, many have claimed that the

PBR theorem proves quantum states are ontic — that it rules out all epistemic and dox-

astic interpretations. One often hears that QBism, having itself a doxastic conception of

quantum states, should therefore be ruled out by the lack of any experimental violations

of quantum theory.

But one should not believe these rumors. The PBR theorem does no damage to QBism.

PBR say so themselves at the end of their paper. This is because what they demonstrate

is the inconsistency of the idea of holding epistemic quantum states at the same time as

holding that they are epistemic about ontic states. In QBism, quantum states represent

one’s beliefs, not about some ontic variable, but about one’s future personal experiences

which come in consequence of taking an action on the external world. I.e., they are epis-
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temic (or better, doxastic) about personal experiences. Technically, this means there are

no compelling reasons in QBism to adopt the very starting point of PBR — namely, try-

ing to use an integral over ontic states λ to get probabilities. The PBR theorem is a no-go

result for a direction in which we never wanted to go.

The foundational assumption of the PBR theorem is a rule for computing some quan-

tities p(k|Ψ(x1, . . . , xn)), probabilities for a measurement outcome k given preparation of

a product state Ψ(x1, . . . , xn). This rule is a statement about conditional probabilities:

p(k|Ψ(x1, . . . , xn)) =
∫

Λ
· · ·

∫
Λ
p(k|λ1, . . . , λn)µx1(λ1) · · ·µxn(λn)dλ1 · · · dλn . (8.4)

Here, λi in a measure space Λ is a possible physical state that a system can be in, µxi(λi)

is a probability distribution over Λ for the ith system, and p(k|λ1, . . . , λn) is a probability

for obtaining outcome k given a set of physical states for each system. In other words, the

whole approach of PBR is trying to identify the Born Rule with an application of the Law

of Total Probability (LTP). It can’t be done, and they have rediscovered that in their own

way.2

The LTP is familiar and what one would use if there were underlying hidden variables.

One avenue of QBist technical research currently ongoing is to explore an alternative to

the LTP which expresses the fact that such hidden variables do not exist. The crucial idea

is a reference measurement, a procedure with the property that a probability distribution

over its outcomes can be used to compute the probabilities for all the outcomes of any

other measurement. Let P (Hi) be Alice’s probability for obtaining outcome Hi in an op-

timal reference measurement (many criteria for optimality turn out to be equivalent for

2We note that one philosopher of physics has declared, speaking of an assumption equivalent to
Eq. (8.4), “If you don’t believe that, you don’t believe in physics at all.” As best as we can tell, there is no
reason to accept such a claim, other than an underdeveloped imagination.
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this problem). Classical intuition suggests that the best possible reference measurement

would just be to read off the ontic state, and so by the LTP,

P (Dj) =
∑
i

P (Hi)P (Dj|Hi) , (8.5)

for any other measurement {Dj}. But in the quantum world, this does not apply, and the

closest we can get to it, by cannily choosing our reference measurement, is

Q(Dj) =
d2∑
i=1

[
(d+ 1)P (Hi)−

1

d

]
P (Dj|Hi) . (8.6)

Q(Dj) now represents an agent’s probability for obtaining the experience Dj from a mea-

surement she represents with the POVM {Dj}, P (Hi) is her probability for obtaining

outcome Hi in a hypothetical reference measurement, and P (Dj|Hi) is her probability,

asserted now, for obtaining the experience Dj supposing she had previously made the ref-

erence measurement and obtained experience Hi. Note that the only difference from the

LTP is a constant shift and rescaling of P (Hi) for each i. In fact, this is the closest [8] the

two expressions can come, suggesting that this expression may provide insight into what

it is about the universe that makes it “quantum”.

So, in all, QBists say this about the PBR theorem (and similarly about Bell’s theo-

rem): Rather than denigrate the QBist conception of quantum theory, they actually help

compel it. There are so many arguments of analogy for epistemic quantum states (Rob

Spekkens’ toy model nails about 25 of them [19]), but what the PBR and Bell theorems

compel and the toy theories can’t is that, if quantum states are epistemic, they cannot

be epistemic about some ontic variables. The most the PBR theorem can do is rule out

a middle ground that we are not sure anyone actually occupied in the first place.
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8.9 Is QBism about the Bayes rule?

Adopting a personalist Bayesian interpretation of probability does not mean treating

all changes of belief as applications of the Bayes rule. This is shocking to some people!

And distancing ourselves from the dogmatists who claim to follow that creed is one rea-

son why we prefer QBism over “Quantum Bayesianism”.

In the tradition of Ramsey, Savage and de Finetti, there are consistency conditions

that an agent’s probability assignments should meet at any given time, and then there

are guidelines for updating probability assignments in response to new experiences. Go-

ing from the former to the latter requires making extra assumptions — the two are not as

strongly coupled as many people think. The Bayes rule is not a condition on how an agent

must change her probabilities, but rather a condition for how she should expect that she

will modify her beliefs in the light of possible new experiences. For this observation, we

credit Hacking, Jeffrey and van Fraassen.

Fuchs and Schack go into more detail on this point in an article [22], and BCS wrote a

pedagogical treatment in a book [23, §5.1].

There is a common misconception afoot that being “Bayesian” fundamentally means

using the Bayes rule to update probabilities. For example, the Wikipedia page that lists

things named after Thomas Bayes says that “Bayesian” refers to “concepts and approaches

that are ultimately based on Bayes’ theorem”. This may be historically correct, but it is

not logically correct. In the personalist Bayesian school, we first start with the idea of

quantifying beliefs and expectations as gambling commitments. Then, we impose a con-

sistency condition, from which the familiar rules of probability theory follow. The idea of

updating probabilities over time in accord with the Bayes rule arrives rather late in this

development. One must first establish the standards for probabilities being consistent
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with each other at a particular time, before invoking further considerations to establish

a scheme for changing probabilities in response to new experiences. Bayes’ theorem is a

theorem, not an axiom.

The “collapse of the wavefunction” is analogous to, and an algebraic variant of, Bayesian

conditionalization [24]. Having recognized this, we can appreciate that it clears up a mys-

tery (or, perhaps better put, allows us to identify a pseudo-mystery for what it is). But the

recognition of the “quantum Bayes rule” was an early step on the path to QBism, and its

relevance in more recent years has if anything been rather peripheral.

8.10 What technical questions have been motivated by QBism?

The development of Quantum Bayesianism, and its progressive evolution into QBism,

is a story of feedback loops between technical and philosophical questions.

The quantum de Finetti theorem was sought and proved in order to show there could

be a meaning to the phrase “unknown quantum state” even from a subjectivist perspec-

tive [25]. The Quantum Bayesians thought that without such a theorem, a subjectivist

reading of probability in quantum theory wouldn’t be possible after all. This theorem

then outgrew its foundational origins, becoming a powerful tool for the practical prob-

lem of analyzing the security of quantum key distribution. A quantum de Finetti theo-

rem for “unknown processes” followed from the same motivation as that for “unknown

states” [26].

Asher Peres pointed out that quantum states are more analogous to probability dis-

tributions over phase space — that is, to Liouville density functions — than to points in

phase space. In 1995, Fuchs followed this lead and searched for examples within Liou-

ville mechanics that echoed quantum theory, including the aspects of quantum theory that

had been declared uniquely nonclassical. He found that the quantum no-cloning theo-
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rem was just one such feature: A no-cloning theorem holds in Liouville mechanics, ex-

actly as in the quantum case. Trying to further refine the enquiry led to the quantum no-

broadcasting theorem [27].

In 2002, Caves, Fuchs and Schack took on the question of whether or not quantum

theory implied any kinds of compatibility conditions for disparate agents’ quantum state

assignments [28]. This is a natural question to ask, if quantum states are to be interpreted

doxastically. The work resulted in solid theorems — and, in a twist whose irony has gone

underappreciated, Pusey, Barrett, and Rudolph [21] used one of these notions to prove the

PBR theorem. (For QBism’s response to the PBR theorem, see §8.8.)

Another example came from trying to understand what it could mean for quantum

states to be “disturbed by measurement” if they are not ontic. Answering this led to [29]

and [30], which Fuchs later turned to the purpose of defining a threshold for successful

quantum teleportation in Jeff Kimble’s lab [31]. Discussion of this point can be found in

Fuchs and Jacobs [32].

More recently, at the creative interface between conceptual and technical matters,

Fuchs and Schack have made the case that the right way to think about decoherence is

with van Fraassen’s reflection principle [22]. We suspect that there are new theorems to

be proved in this area, in addition to the conceptual implications (such as putting a sharper

point on an old argument of Asher Peres about when black-hole evaporation should not be

modeled with a unitary evolution [33]).

The most active technical topic in contemporary QBism research is the project of re-

constructing quantum theory from physical principles. Central to this is our ongoing re-

search into symmetric informationally complete quantum measurements (SICs). A SIC

for a d dimensional Hilbert space is a set of d2 pure quantum states with equal pairwise
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overlaps:

|〈ψi|ψj〉|2 =
dδij + 1

d+ 1
. (8.7)

A uniform rescaling of these states defines a POVM which is uniquely suited to be a

“standard quantum measurement”.

Not everyone who works on SICs is devoted to QBism. Indeed, we gather from con-

versations in hotel bars that one of the prime movers in SIC-hunting doesn’t particu-

larly care about quantum mechanics; their appeal as geometrical objects is enough. (His-

torically speaking, one of the most closely studied SIC constructions originally flowed

from the pen of Coxeter, who just really liked polytopes [34]. But in a surprise twist,

this SIC arises in the study of quantum-state compatibility that Caves, Fuchs and Schack

initiated [35]!) Another SIC researcher is not a QBist, but came to the problem through

Fuchs’s advocacy and over the years has displayed many sympathies.

Going in the other direction, being a QBist doesn’t mean you have to live and breathe

SICs. Fuchs and BCS put it the following way [3]:

If all that you desire is a story that you can tell about the current quantum for-

malism, then all this business about SICs and probabilistic representations

might be of little moment. Of our fellow QBists, we know of one who likely

doesn’t care one way or the other about whether SICs exist. Another would

like to see a general proof come to pass, but is willing to believe that QBism

can just as well be developed without them — i.e., they are not part of the es-

sential philosophical ideas — and is always quick to make this point. On the

other hand, we two are inclined to believe that QBism will become stagnant

in the way of all other quantum foundations programs without a deliberate

effort to rebuild the formalism.
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We find that SICs cut to the heart of quantum theory in a way that other ideas for re-

building the formalism do not. This is a point we discuss elsewhere in this collection

(§8.7), and in earlier papers [3, 11, 36]. The representation of quantum theory that SICs

furnish has natural connections with the study of Wigner-function negativity, which is im-

portant for quantum computation [37]. In addition, the discovery of a connection between

SICs and algebraic number theory reshapes the boundary between physics and pure math-

ematics in a remarkable way [38, 39].

8.11 Isn’t quantum probability just classical probability but noncommutative?

There’s a Far Side cartoon that shows a man waking up in bed and staring at a giant

note he wrote for himself on the wall: “First pants, then shoes!” The lesson is that order

of operations matters in daily life, long before it matters in quantum physics. So, we have

to be careful what we mean by “noncommuting”, if we want it to have any meaningful

content. And when we do get appropriately mathematical about it, we find that it is not

the signature of the quantum. The Spekkens toy model, which has a simple statement in

terms of underlying local hidden variables, has observables that do not commute [19].

There is a common sentiment about that quantum mechanics is “a noncommutative

generalization of probability theory”: Instead of using vectors that sum to 1, one has ma-

trices whose trace is 1, and so forth. This is a fine approach for many applications, but

in physics, there is never a guarantee that a method which works for one set of problems

will do equally well with another. Taking one representation of the theory as defining its

essence can cloud your physical insight. In this case, the “we must generalize probability

to make it noncommutative” impulse obscures the fact that given a specific experimental

scenario, the probabilities of quantum physics are just probabilities — numbers that play

together in accord with Kolmogorov’s rules. As we noted in §8.7, it is the meshing of ex-
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pectations for one scenario with those of another which reveals the fundamental enigma

of quantum theory. Noncommutativity is a secondary property, and as the Spekkens toy

model teaches us, not a quintessentially quantum one at that.

BCS, who came to QBism from statistical physics, likes to point out that the Doi–

Peliti formalism for nonequilibrium stochastic dynamics has noncommuting operators,

and also complex numbers, Feynman diagrams, renormalization, Glauber states, the Heisen-

berg equation of motion, and even the Schwinger representation of su(N). Yet it is all a

fully classical theory [23, 40]. It borrows calculational devices from quantum mechanics,

but the stochasticity it considers is, at root, ignorance about pedestrian hidden variables.

8.12 Doesn’t decoherence solve quantum foundations?

The theory of decoherence is a set of calculations which enable one to write a den-

sity matrix that is nearly diagonal in some basis of interest. This does not tell you what a

density matrix means.

Max Schlosshauer, who wrote the canonical textbook on decoherence, recently sum-

marized the situation as follows [41]:

Decoherence, at its heart, is a technical result concerning the dynamics and

measurement statistics of open quantum systems. From this view, decoher-

ence merely addresses a consistency problem, by explaining how and when

the quantum probability distributions approach the classically expected distri-

butions. Since decoherence follows directly from an application of the quan-

tum formalism to interacting quantum systems, it is not tied to any particular

interpretation of quantum mechanics, nor does it supply such an interpreta-
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tion, nor does it amount to a theory that could make predictions beyond those

of standard quantum mechanics.

The predictively relevant part of decoherence theory relies on reduced

density matrices, whose formalism and interpretation presume the collapse

posultate and Born’s rule. If we understand the “quantum measurement prob-

lem” as the question of how to reconcile the linear, deterministic evolution

described by the Schrödinger equation with the occurrence of random mea-

surement outcomes, then decoherence has not solved this problem.

For a deeper dive into the QBist take on decoherence, see [22].

8.13 Is QBism like Rovelli’s “Relational Quantum Mechanics”?

Several people have made the comparison between QBism and Rovelli’s “Relational

Quantum Mechanics” [42], and it is not unjust. Some slogans of RQM can be carried over

to QBism with only a little modification, and the motivation for the research program that

Rovelli suggested in his original paper has certain affinities with our own. However, there

are important differences between QBism and RQM, and moreover, we find the state-

ments of RQM imprecise on key points.

Both QBism and Rovellian RQM reject the notion of a single quantum state for the

entire universe. In QBism, measurement outcomes are personal experiences for the agent

who elicits them, while in RQM, physical properties exist “relationally” between systems.

As the Stanford Encyclopedia of Philosophy says, in RQM, “Quantum events only hap-

pen in interactions between systems, and the fact that a quantum event has happened is

only true with respect to the systems involved in the interaction” [43]. This motto is not

unlike what we have written about QBism. For example,
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Certainly QBism has creation going on all the time and everywhere; quan-

tum measurement is just about an agent hitching a ride and partaking in that

ubiquitous process.

But we can already start to see a divergence. Rovellian RQM downplays the idea of

agency: In RQM, a grain of sand can be an “observer” of another quantum system. Given

any two systems S1 and S2, there is a quantum state of S2 relative to S1, just as in Newto-

nian physics, S2 always has a velocity relative to S1.

Likewise, QBism and RQM differ on how to interpret probability. While we find the

foundational papers of RQM somewhat vague on this point, our overall impression is that

RQM leans more to a Jaynesian kind of Bayesianism, more objective and less personalist

than the Ramseyian/de Finettian school to which QBism adheres. This is tied to a point

emphasized in the technical side of QBism (§8.10). Mathematically speaking, a quantum

state is a probability distribution. Pick any informationally complete POVM, and you can

replace density operators with probability distributions over the outcomes of that POVM

(even when the density operators are rank-1 projectors, i.e., pure states). As best we can

tell from reading Rovelli et al., whenever an “observer” S1 coexists with another system

S2, there exists a unique, physically correct quantum state for S2 relative to the observer

S1. Therefore, there exists a unique, physically mandated set of probabilities concerning

S2, which happen to be relative to S1. We find this philosophy of probability ultimately

untenable [44, 45].

We must also admit, we’re not great fans of the word relational. This adjective nat-

urally carries the connotation of “just like in relativity theory”. But in relativity, we can

readily transform between reference frames. A statement like “the clocks C1 and C2 are

synchronized” is relational: Its truth or falsity depends on whether it is evaluated by Alice
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or by Bob. Yet if Alice knows Bob’s trajectory relative to herself, she can take what she

sees and Lorentz-transform her figures to compute what Bob must see.

In quantum theory, there is no analogue of this. (Emphasizing this point of dis-analogy

is another way QBism distinguishes itself from Bohr [11].) RQM tries to invent one, but

the attempt flounders. We can see exactly how this happens if we examine Smerlak and

Rovelli’s paper “Relational EPR” [46]. The authors take a certain notion of consistency

among multiple observers over from Rovelli’s original paper:

It is one of the most remarkable features of quantum mechanics that indeed it

automatically guarantees precisely the kind of consistency that we see in na-

ture [Rovelli 1996]. Let us illustrate this assuming that both A and B measure

the spin in the same direction, say z, that is n = n′ = z.

But on the very next page, they describe the following scenario:

A observes the spin in a given direction to be ↑ and B observes the spin in the

same direction to be also ↑.

And they say that this is an ill-posed statement, because

it does not happen either with respect to A or with respect to B. The two se-

quences of events (the one with respect to A and the one with respect to B)

are distinct accounts of the same reality that cannot and should not be juxta-

posed.

But if the second statement is an invalid proposition, then the first must be as well. The

description “both A and B measure the spin in the same direction” cannot apply “either

with respect to A or with respect to B”; it presumes a view from nowhere. (One could

try to evade this by interpreting the story of what both A and B measure as told relative
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to a third party, the superobserver C. This might look like it could ameliorate the prob-

lem, at least if the difficulties we saw above could be resolved. But presuming that a su-

perobserver is always available, and that the expectations of the superobserver override

those of any other participant, just de-relationalizes the theory all over again. And why

should physics guarantee on a fundamental level that a superobserver is always available?

When children or politicians quarrel, life does not always provide a responsible adult who

can restore the peace.) In short, the description of the gedankenexperiment that Smerlak

and Rovelli use to put forth their notion of “consistency” is exactly the kind of language

which they elsewhere insist is meaningless.

One philosophy paper that compared QBism and RQM [47] must be mentioned in

particular.3 We reproduce the relevant passage with its absence of citations preserved in-

tact:

QBism is the view that quantum mechanics is not a theory about the world,

but about our degrees of credence concerning predictions. The theory pro-

vides universal, objective rules for updating these degrees from the informa-

tion one gets on the world through events. All this is shared by RQM. One

difference is that QBism is human-centered, while RQM is not: any physical

object qualifies as a potential observer. But what remains of it if all talk of ex-

ternal observers boils down to talk of events relative to us? If anything, RQM

is more radically instrumentalist than QBism: after all, the latter assumes that

events are objective and publicly accessible. . .

Most of this is at least a little wrong, so we will go through it in detail.

3We have the sense that, like Bohmian mechanics, RQM has been of interest to philosophers more than
it has been to physicists. The question of what biases the philosophy community perpetuates by always
turning to its familiar authorities for opinions is an interesting one.
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QBism is the view that quantum mechanics is not a theory about the world,

but about our degrees of credence concerning predictions.

In QBism, quantum mechanics is not a theory directly about the world, but rather, a the-

ory that any of us can use to manage our “degrees of credence” in light of the fact that the

world has a specific character.

The theory provides universal, objective rules for updating these degrees from

the information one gets on the world through events.

Yes, the rules that quantum theory provides are “universal” (anyone can pick up the hero’s

handbook [3]) and “objective” (or as objective as anyone could want of a physical the-

ory). The emphasis on “updating” echoes a misconception we have seen elsewhere, that

Bayesian probability is fundamentally about the Bayes update rule (see §8.9). And in the

QBist understanding of personalist probability, the rules allow more loose play in updat-

ing expectations than this formulation grants.

All this is shared by RQM.

To us, it seems a better fit for RQM than for QBism. As we wrote above, a preference for

objective probability runs through RQM, holding it back.

One difference is that QBism is human-centered, while RQM is not: any

physical object qualifies as a potential observer.

Human-centered, no, but agent-centered, yes. An agent does not have to be human (see

sections §8.17 and §8.19).

If anything, RQM is more radically instrumentalist than QBism: after all, the

latter assumes that events are objective and publicly accessible. . .
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No, it doesn’t. Fuchs put it this way in 2010 [48]:

Whose information? “Mine!” Information about what? “The consequences

(for me) of my actions upon the physical system!” It’s all “I-I-me-me mine,”

as the Beatles sang.

That article goes on to draw an explicit contrast between QBism and Pauli’s claim that

measurement outcomes “are objectively available for anyone’s inspection”.

The introductory paper by Fuchs, Mermin and Schack [4] expresses the point as fol-

lows:

The personal internal awareness of agents other than Alice of their own pri-

vate experience is, by its very nature, inaccessible to Alice, and therefore not

something she can apply quantum mechanics to. But verbal or written reports

to Alice by other agents that attempt to represent their private experiences are

indeed part of Alice’s external world, and therefore suitable for her applica-

tions of quantum mechanics. Having always stressed the crucial importance

of stating the results of experiments in ordinary language, Bohr would prob-

ably have been comfortable with Alice’s indirect access to Bob’s experience,

through language.

But Bohr would not have approved of Alice superposing reports from Bob

about his own experience, as QBism requires her to do if she wants to subject

those reports to analysis before they enter her own experience. We believe

that Bohr would have viewed Bob’s reports — formulations in ordinary lan-

guage — as beyond the scope of quantum mechanics. But because Alice can

treat Bob as an external physical system, according to QBism she can assign

him a quantum state that encodes her probabilities for the possible answers to
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any question she puts to him. When Alice elicits an answer from Bob, she

treats this as she treats any other quantum measurement. Bob’s answer is

created for Alice only when it enters her experience. A QBist does not treat

Alice’s interaction with Bob any differently from, say, her interaction with a

Stern–Gerlach apparatus, or with an atom entering that apparatus.

Or, later and more compactly:

What the usual story [of Wigner’s Friend] overlooks is that the coming into

existence of a particular measurement outcome is valid only for the agent

experiencing that outcome.

8.14 Why do QBists prefer de Finetti over Cox?

The Cox approach is too psychologically loaded in the direction of hidden variables

and inferences about them. This sentiment dates back to the 1990s, when Fuchs and col-

leagues were hashing out the basics of being Bayesian in a quantum world. During 1993

and 1994, Fuchs and Schack became disenchanted with Cox’s development of probability

theory and attracted instead more to the development of de Finetti and Savage and oth-

ers. The essence of the latter school is the Dutch-book notion and/or the simultaneous

development of probabilities with utilities (i.e., decision theory). Looking back on it, the

attraction to the one over the other cuts to a rather fundamental point:

QBism regards physics, and science in general, in Darwinian terms. The mathemat-

ics we develop is practical because, at root, it helps agents to survive. From this point of

view, the idea of a probability as a gambling commitment, a belief made quantitative and

ready to be acted upon, is an attractive notion. On the other hand, the idea of probability
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being used for a “theory of inference” in the usual sense — i.e., a measure of plausibility

for something that is “out there” but unknown — is a bit off-putting.

(This also seems to be a fundamental distinction between our program and that of Rob

Spekkens. The general tenor of the Spekkensian program has been to interpret quantum

states as states of information about some type of hidden variable as yet unspecified, per-

haps degrees of freedom that are “relational” in some way. The Coxian attitude is a natu-

ral fit for this view, but it is not so for QBism.)

All the way back in July 1996, Fuchs wrote the following, in a note to Sam Braun-

stein:

While in Torino, you really got me interested in the old [Cox derivation]

question again. I noticed in this version of the book that Jaynes makes some

points about how there are still quite a few questions about how to set priors

when you don’t even know how many outcomes there are to a given experi-

ment, i.e., you don’t even know the cardinality of your sample space. That,

it seems to me, has something of the flavor of quantum mechanics . . . where

you have an extra freedom not even imagined in classical probability. The

states of knowledge are now quantum states instead of probability distri-

butions; and one reason for this is that the sample space is not fixed — any

POVM corresponds to a valid question of the system. The number of out-

comes of the experiment can be as small as two or, instead, as large as you

want.

However I don’t think there’s anything interesting to be gained from sim-

ply trying to redo the Coxian “plausibility” argument but with complex num-

bers. It seems to me that it’ll more necessarily be something along the lines

of: “When you ask me, “Where do all the quantum mechanical outcomes
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come from?” I must reply, “There is no where there.” [. . . ] That is to say,

my favorite “happy” thought is that when we know how to properly take into

account the piece of prior information that “there is no where there” concern-

ing the origin of quantum mechanical measurement outcomes, then we will

be left with “plausibility spaces” that are so restricted as to be isomorphic to

Hilbert spaces. But that’s just thinking my fantasies out loud.

More recently, we have made steps in this direction, as documented in our earlier pa-

pers [3, 4, 36] and outlined in §8.10.

8.15 Why so much emphasis on finite-dimensional Hilbert spaces?

Quantum theory can be formulated for finite- and infinite-dimensional systems. By

any standard, genuinely nonclassical effects are present in finite-dimensional systems,

suggesting that these may be all that is strictly necessary for capturing the conceptual core

of the theory. Indeed, it might even be distracting to let infinite dimensions complicate

foundational considerations. In some ways the infinite-dimensional situation is the limit

of large dimensions, but in other ways it isn’t.

Infinite dimensions are subtle and complicated, but it seems they are not so for “quan-

tum” reasons.

The goal of our research is to bring clarity to the quantum mysteries. When one looks

up what the “quantum mysteries” are, one finds that either they are expressed in finite-

dimensional terms from the get-go [49], or, if the presentation includes continuous de-

grees of freedom, all the interesting stuff happens in the finite-dimensional part. For ex-

ample, Asher Peres’ book explains a Bell–EPR scenario using both position and spin de-

grees of freedom, but the essence of the problem lies in the spins, while the position coor-
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dinates just provide conceptual scaffolding. To “go for the jugular” of the quantum enig-

mas, we have chosen to focus on finite dimensions — and the results have been so pretty

that we can’t help but wonder if they offer a guide for where physics should go next, as it

pushes beyond the continuum theories we all know so well.

The authors of this FAQ spend our weekdays reformulating finite-dimensional quan-

tum theory (see §8.10). However, we would have nothing personal against anyone who

tried to find a new representation for, say, algebraic quantum field theory. We do offer a

cautionary note: Even the most successful and most “fundamental” physical theories are

provisional, their applicability contingent on physicists’ limited abilities as agents to in-

tervene into the affairs of other natural systems. Indeed, the way we extract any empirical

utility from a QFT is, in practice, to remind ourselves that it cannot be valid to arbitrarily

high energies, and then deal with that limitation in a mature way (a process technically

known as regularization and renormalization). When one cannot trust any physical the-

ory to provide ultimate, metaphysical bedrock; when all the theories one might wish to

reformulate and reconstruct are inextricably provisional — then, unavoidably, picking the

theory to focus upon becomes a judgment call.

It is intriguing that the possibility that physically accessible Hilbert-space dimension

is always finite — possibly quite large, but still finite — is a recurring theme in quantum-

gravity research. For various flavors of this idea, see, e.g., [50–53]. Fuchs and BCS gave a

QBist spin on this speculation in 2016 [3], following a lead that Fuchs set out in 2010 [48]

and 2004 [54].4

4And, in correspondence with Bill Unruh and others, even before that [55, pp. 659–52].

236



8.16 Aren’t the probabilities in quantum physics objective?

The intuition that the probabilities in quantum physics are objective properties of a

system is deeply ingrained. For many, the suggestion that it might be otherwise is so out-

landish as to obviate the need for rebuttal. Thus the starting point of QBism, adopting a

strict, de Finettian/Ramseyan interpretation of all probabilities, turns out to be a big pill

to swallow once the full seriousness of its consequences are realized. However, QBists

do not deny the objective probability intution. What we claim is that the advantages that

subjectivity brings (which may be found in any exposition of QBism) outweigh the draw

of untutored impulses. In fact, the appeal of this intuition may be understood from and

thereby absorbed into a purely personalist point of view.

There is nothing about the intuition which demands the invocation of quantum the-

ory. For instance, we might just as well consider a coin or a die. One often hears that the

symmetries of the matter distribution making up a “fair” coin or a die determine the prob-

ability of a flip landing “heads” or of rolling a “3”. But what does it mean for a coin to be

“fair”? It means that one assigns equal probability to the heads and tails outcomes. How

does one certify that a coin is fair? If the answer involves checking that the coin’s mass

distribution closely matches that of a thin cylinder, claiming that the probability distri-

bution comes from the mass distribution is circular. We bring many expectations and a

lifetime of experience to the table when asserting a probability. Among these is experi-

ence with the effects of gravity on differently shaped objects. The reason that it feels our

probabilities are properties of objects is just that we feel the force of our priors so strongly

that we feel they were given to us by nature.

More generally, if we wanted the probability to be physically determined, a little re-

flection reveals it couldn’t be a property only of the coin itself. It must also depend on the
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flipping process. A coin can have a very even mass distribution while it sits forgotten on

the bedside table. For that matter, it is quite possible to engineer a machine which pre-

cisely flips a coin to land heads up every time [56]. Furthermore, couldn’t a high-speed

camera and a sufficiently advanced computer program predict the result of any particular

coin toss with amazingly few errors given the first few fractions of a second of the flip?

With such a setup, what should we say is the probability of heads after the machine an-

nounces its prediction?

Supposing the force of these arguments is felt and the conclusion that probability is

about personal expectations is accepted, there remains one refuge for the objective proba-

bilists — essentially, that quantum theory legitimizes them. Classically, one might argue,

complete information is in principle possible, but quantum mechanically, maximal infor-

mation is incomplete. What’s left over is the objective chance. If one knew the objective

chance, they would be best served by setting their personal expectation equal to it.

First, we note that maximal information being incomplete doesn’t require the nature

of probability to change. Supposing there is a correct probability in a given circumstance

remains a big leap. But there is a more critical issue, namely, if there were a correct prob-

ability, there’s no way to be sure you’ve got it. Here’s how Fuchs and BCS put it in a pre-

vious paper [3].

Previous to Bayesianism, probability was often thought to be a physical property—

something objective and having nothing to do with decision-making or agents

at all. But when thought so, it could be thought only inconsistently so. And

hell hath no fury like an inconsistency scorned. The trouble is always the

same in all its varied and complicated forms: If probability is to be a physi-

cal property, it had better be a rather ghostly one—one that can be told of in
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campfire stories, but never quite prodded out of the shadows. Here’s a sample

dialogue:

Pre-Bayesian: Ridiculous, probabilities are without doubt objec-

tive. They can be seen in the relative frequencies they cause.

Bayesian: So if p = 0.75 for some event, after 1000 trials we’ll

see exactly 750 such events?

Pre-Bayesian: You might, but most likely you won’t see that ex-

actly. You’re just likely to see something close to it.

Bayesian: “Likely”? “Close”? How do you define or quantify

these things without making reference to your degrees of be-

lief for what will happen?

Pre-Bayesian: Well, in any case, in the infinite limit the correct

frequency will definitely occur.

Bayesian: How would I know? Are you saying that in one billion

trials I could not possibly see an “incorrect” frequency? In one

trillion?

Pre-Bayesian: OK, you can in principle see an incorrect fre-

quency, but it’d be ever less likely!

Bayesian: Tell me once again, what does “likely” mean?

This is a cartoon of course, but it captures the essence and the futility of ev-

ery such debate. It is better to admit at the outset that probability is a degree

of belief, and deal with the world on its own terms as it coughs up its objects

and events. What do we gain for our theoretical conceptions by saying that

along with each actual event there is a ghostly spirit (its “objective probabil-
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ity,” its “propensity,” its “objective chance”) gently nudging it to happen just

as it did? Objects and events are enough by themselves.

To see how quantum physics does not make probabilities somehow more objective,

consider the following [4]. Take a two-qubit system for which an agents could make ei-

ther of the two quantum state assignments ρ+ and ρ−, defined by

ρ± =
1

2

(
|0〉〈0|⊗2 + |±〉〈±|⊗2

)
(8.8)

where we have used the common notation

|±〉 =

√
1

2
(|0〉 ± |1〉) . (8.9)

These state assignments are “compatible” in that they have overlapping supports on the

two-qubit state space. Yet suppose the first qubit is measured in the “computational basis”

{|0〉, |1〉} and outcome 1 is found. The agent updates her state accordingly, using the stan-

dard Lüders rule, and her postmeasurement state for the second qubit is then |+〉. How-

ever, if she had begun with the joint state ρ−, then experiencing outcome 1 would have led

her to update her state for the second qubit to |−〉 instead. The two possibilities for the

initial state were compatible, but the two possible final states, updated in response to ex-

actly the same data, are orthogonal! This is an illustrative extreme case of a phenomenon

that is much more general: Priors do not inevitably wash out, even in the limit of infinite

data [57].

8.17 Don’t you have to define “agent”?

Fuchs and BCS wrote the following in an earlier paper:
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Thinking of probability theory in the personalist Bayesian way, as an exten-

sion of formal logic, would one ever imagine that the notion of an agent, the

user of the theory, could be derived out of its conceptual apparatus? Clearly

not. How could you possibly get flesh and bones out of a calculus for making

wise decisions? [. . .] Look as one might in a probability textbook for the in-

gredients to reconstruct the reader herself, one will never find them. So too,

the QBist says of quantum theory.

This perspective is essentially that of L. J. Savage, who developed rational decision the-

ory in terms of “consequences”, “acts” and “decisions” [58], though where Savage says

“person” we say agent instead.

An analogy may be helpful. In the Peano axioms for arithmetic [59], the terms num-

ber, zero and successor are undefined primitives. They gain meaning by how they play

together. Seeking a more elementary meaning of those terms within the same theory is

not helpful. Instead of trying an analysis — in the literal sense, a “breaking down” —

one develops an understanding by synthesis, by a bringing-together. The same can be

said of Hilbert’s axiomitazation of geometry, in which point and line are undefined primi-

tives [60].

The situation in personalist Bayesian probability is somewhat similar. There is no way

of carving up the terms gambler or expectation into smaller conceptual atoms, at least not

within probability theory itself. Personalist Bayesianism is a synthetic theory of quanti-

fied expectations, and there is nothing troublesome about this. QBism simply inherits this

situation, applying that synthetic understanding to quantum phenomena.

Just like point and line, or zero and number and successor, the terms agent and expe-

rience gain meaning through their interplay. Using them in physics brings some baggage

from their use in everyday speech, though their meaning is altered — refined, honed —
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by deployment in the more quantified setting. This is nothing remarkable: Think of force,

potential, field and so forth.

8.18 Does QBism lose the “explanatory power” of other interpretations?

In the philosophy of science, explanations can be causal, unificationist, deductive-

nomological, statistical relevantist, inducto-statistical, asymptotic and probably other

types besides [61]. Sometimes, epochal progress is made by declaring that an entire genre

of attempted explanations is unnecessary, misguided and counterproductive. We’ve been

doing that ever since some clever ancient Greek decided that they could contemplate

thunder without drawing the family tree of the Thunderer. While Descartes pictured the

planets as being dragged about in a material whirlpool, Newton declared, “I feign no hy-

potheses” and gave us classical mechanics. The manifold complexities of living beings

did not require central planning — only, as Darwin taught us, heredity and luck. Ein-

stein postulated the constancy of the speed of light, without worrying about how moving

through the ether might elastically deform the electron, and that is why we learn Lorentz’s

equations but with Einstein’s motivation.

In a sense, Newton explained less than Kepler did, because Kepler had a reason why

there were six and only six planets: After six planets, we run out of Platonic solids. We

can rightly reject Kepler’s explanation, even in the absence of a complete story about how

the solar system happened — and even though Newton’s explanation was, by the stan-

dards of his time, frankly un-“physical”.5 Quantum physics leads us to go further than

5Kepler’s image of nested spheres and regular solids seems absurdly numerological today, though any-
one who has wanted E8 or the Monster group to appear in fundamental physics, just for the æsthetics of it,
should feel the tug of the Platonic solids! (We strongly doubt that there is any “theory of everything” inside
E8 [62], although the corresponding lattice does turn out to involve a peculiarly nice quantum measure-
ment [63, 64].) Kepler’s geometrical model was wrong, but it was specific, quantitative, directly inspira-
tional and, unlike many bits of our scientific heritage [65], not breathtakingly racist, which maybe counts
for something.
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Newton. Instead of merely saying “I feign no hypothesis”, we can declare that the charac-

ter of the natural world is such that “feigning a hypothesis” — erasing agency and telling

a story from a God’s-eye perspective — is a bad idea. This is an affirmative statement

about ontology, and the furthest thing possible from asserting that the world vanishes

when I close my eyes (see §8.4).

To ask quantum theory for a story about what happens at the slits of a double-slit ex-

periment “when nobody is looking” is like taking thermodynamics and saying, “OK, but

where is the phlogiston?”, or seeing the inverse-square law of gravity and demanding to

be shown the dodecahedron that makes it go.

One motivation for the technical side of QBism (see §8.10), particularly the project

of reconstructing quantum theory from physical principles, is to elevate the quality of ex-

planations of which quantum physics is capable. The quantum formalism can be applied

to any physical system, minuscule or vast, and so any lesson gleaned from the formalism

itself must be a very general one — a why that pertains, in some measure, anywhere. We

physicists tend to like explanations that cut to the fundamental principles of a subject, par-

ticularly with a dramatic twist that makes the argument more obvious in retrospect. The

opaque nature of the textbook quantum formalism doesn’t just make teaching the subject

difficult. (“Master these fifty pages of differential equations and operator theory. Just trust

us. Yours not to question why.”) It also buries the enigmatic features of the theory, like the

violation of Bell inequalities, and limits physicists’ abilities to devise good explanations.

We aim to fix this — but that is a whole project (§8.10).

When critics have challenged us on the issue of QBism’s “explanatory power”, the

type of explanation they’ve often had in mind is something like what solid-state physics

has to say about matter being solid. Pauli exclusion keeps you from falling through the

floor; checkmate, QBists! And in fairness, this does sound rather removed from the sce-
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narios that the QBist literature has mostly dwelled upon — an example of QBism show-

ing its ancestry in quantum information science. Where are agents and interventions in

the topics preferred in solid-state society?

In physics, an explanation is not a statement made in isolation. We do not just say,

“That rock will sit there without collapsing in on itself.” We naturally go a step further:

“That rock will resist being squeezed.” Squeezing a rock in one’s hands is a quantum

measurement — merely a very imprecise one, for which the textbooks don’t say much

about representing by a POVM. When we invest meaning in words like solid and rigid

and incompressible, we are, at least tacitly, making claims about how a physical system

will react against interventions. And thus, even in solid-state mechanics, agenthood was

there all along. The fact that we do not make single predictions in isolation is ultimately

baked into the formalism, because asserting a quantum state assignment ρ for a system

implies quantitative expectations about the outcomes of any experiment that one can rep-

resent in the theory. No expectation value stands alone.6

8.19 Where does the agent end?

At a conference in 2016, Wayne Myrvold asked this:

Okay, help me understand this restriction of [the] scope of quantum mechan-

ics you’re proposing, because you’re telling me I should only use quantum

mechanics to calculate probabilities for outcomes of my future experiences,

and that, compared to what most people think is the scope of the theory, is a

6When our measurements are sloppy, we can typically get by without the full apparatus of quantum
theory to guide our actions. We can use dodges like average densities of energy levels. We can cheat and
model a phenomenon as a classical stochastic process with mundane parameters like average reaction rates.
The more closely we interrogate the world, the more we need quantum theory in order to prosper in it. Free-
dom to intervene, and precision of intervention, are resources. When an agent is limited in these regards, the
full vitality of quantum phenomena is denied them.
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really serious restriction of scope. So imagine that yesterday someone came

to me and said, “Wayne I want your advice on how to construct a nuclear

waste storage facility.” To do this I need to know about calculating proba-

bilities of decays. So should I not care about any decays that might happen

after I’m gone? Would it be a mistake to use quantum mechanics to calculate

probabilities of radioactive decays hundreds of years after I’m dead?

The quantum formalism, understood as a normative criterion for an agent’s behavior,

is rather agnostic about the character of the agent. It says nothing about the agent’s mem-

ory capacity, their rate of energy consumption, how long they maintain conscious thought

at a stretch, or how quickly the molecules of their body are replaced by food. Looking for

this kind of information in the quantum formalism confuses the roles of agent and object.

If one is dully reductionist and tries to specify the properties of an agent in more and more

physical detail, one will eventually be writing a many-body wavefunction. But any wave-

function is only meaningful as a mental tool an agent carries to manage their expectations

about something else.

Likewise, the quantum formalism itself does not tell Alice how to attach POVM el-

ements to her experiences. Instead, it is a handbook that she can use to help herself be

consistent, howsoever she sets about mathematizing her life. The formalism does not care

whether she believes that she will die tomorrow, whether she thinks she can cryogenically

freeze herself and wake up on Mars a thousand years from now still essentially Alice,

whether she regards potential genetic descendants of herself as sharing in her good or ill

fortune — nothing of the sort. Instead, the formalism helps her gamble consistently, using

whatever beliefs she currently has about such matters.

In the case of a gamble with consequences beyond an individual’s expectations for

their own longevity, the “agent” making the bet may be a community, rather than a sin-
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gle human being. Perhaps it is a collaboration of a number of scientists which grows or

shrinks as years go by. The situation is similar to that of an individual buying life insur-

ance. Why would anyone ever do this? Life insurance pays out only if the individual mak-

ing the purchase dies — it’s impossible for anyone to reap the benefits of their own life

insurance policy. The answer is quite intuitive: Because they consider their family to be

an extension of themselves. Even though they, personally, will be gone, a conceptual part

of themselves remains which can cash the check. It is like the couple who shares a bank

account and makes purchasing decisions on the basis of “us” rather than either of them

alone. The concept of an agent is extremely flexible.

Quantum theory tells us that an agent can express her expectations in terms of prob-

abilities for a hypothetical “Bureau of Standards” experiment (see §8.8 and §8.10). The

BoS experiment might be exceedingly difficult to carry out: Perhaps it costs a hundred

million dollars in optical equipment. But, even though Alice does not physically perform

it, it is mentally useful for her in her cogitations.

What about an experiment that requires a forbiddingly large investment of another

resource — not money, but time? The same binding of expectations between different

hypothetical scenarios should still apply. Mathematically, all the prolongation implies is

an orthogonal transformation of her probability vector.

To push it a step further: What if Alice contemplates the hypothetical experiment

of extending her own life radically? She sees no ready path to doing so, but she lets her

imagination wander. Could she replace her neurons one by one with nanomachines? Does

her overall mesh of beliefs about her own agenthood permit the idea that any meaningful

aspect of her could persist? Even if Alice finds the whole notion exceedingly implausible,

can she treat it simply as another experiment that would require a large resource invest-

ment to realize?
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The QBist answer is “Yes” — or, more carefully, that nothing in the quantum formal-

ism itself forbids it.

We are reminded of a lesson from a colleague.

This is a good example of the primary point of Dirac notation: it has many

built in ambiguities, but it is designed so that any way you chose to resolve

those ambiguities is correct. In this way elementary little theorems become

consequences of the notation. Mathematicians tend to loathe Dirac notation,

because it prevents them from making distinctions they consider important.

Physicists love Dirac notation, because they are always forgetting that such

distinctions exist and the notation liberates them from having to remember.

— N. David Mermin, “Lecture Notes on Quantum Computation” (2003)

The philosophy of personal identity is brimming with ambiguities, but living in accord

with the normative principles of the quantum formalism means that any way I choose to

resolve them is correct.

8.20 Aren’t probabilities an insufficient representation of beliefs?

We don’t claim that personalist Bayesian probability theory is the end of the story. We

only hold that it is adequate where it is needed: It is a tool applicable when experiments

can be defined quantitatively and the sample spaces of their potential outcomes tabulated

in advance. BCS notes, “This is one reason why I say expectation instead of belief some-

times. It carries a bit of a connotation of belief quantified and rigorized, rather than left

raw. Plus, the X makes it sound cool.”

A great amount of confusion has been stirred up by the misconception that personal-

ist Bayesianism presumes that living human beings actually do act as perfectly rational
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expectation-balancing agents. In this regard, we share a wry observation of Diaconis and

Skyrms [56]:

In a large and growing experimental literature in psychology and behavioral

economics, it appears that almost all theories are systematically violated by

some significant proportion of the population. It also appears that there are

different types in the population. Some violate one principle; some violate

another. And there are even some expected utility maximizers.

In other words, the theory of personalist Bayesian probability is normative, not descrip-

tive.

8.21 What does unitary time evolution mean in QBism?

This is a point that we addressed a bit tersely in earlier publications [3, 4, 15, 24], and

which we approached from multiple directions amid a large samizdat of miscellany [55].

In this section, we will attempt a balance between these two levels of verbosity.

Fuchs pointed out some time ago that the arguments for the subjectivity of quantum

states also apply to unitary time evolutions [24]. Unitaries can be toggled from a distance;

they can be teleported. More recent work on the probabilistic representation of quantum

theory makes the point even more directly: Quantum states are probability distributions

(§8.8), and unitaries are conditional probabilities, used in a way that respects the nonexis-

tence of hidden variables.

Consider an agent Alice, who uses quantum theory to help herself navigate the world.

Accordingly, she carries a probability distribution for an informationally complete mea-

surement, which she uses to summarize her expectations. Alice can calculate other prob-

ability distributions from it, including distributions for other informationally complete
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measurements which she might carry out in the distant future. The textbook way of writ-

ing a unitary evolution is to say

ρ′ = U(t)ρU(t)†, (8.10)

where the operator U(t) models the passage of an amount of time t. Both density oper-

ators ρ and ρ′ express beliefs that Alice holds now. The former encodes her present be-

liefs about a reference measurement performed immediately, while the latter encodes her

beliefs about what she might experience were she to instead perform that reference mea-

surement at a later time. All of these beliefs, which she expresses quantitatively as gam-

bling commitments, are commitments she makes at the present time. If time 0 is Monday

at noon, and time t is noon on Tuesday, then ρ is Alice’s gambling commitment about

a measurement on Monday, and ρ′ is the commitment she holds simultaneously about a

measurement to potentially be done on Tuesday. The unitary operator U(t) is, likewise, a

belief that she holds as part of the same mesh of expectations that includes ρ and ρ′. It is,

in this sense, a statement synchronic with ρ and ρ′. It does not express how Alice’s beliefs

must necessarily change as time passes, though if Tuesday rolls around and Alice has not

yet performed a measurement, she can adopt her old numbers ρ′ as her new expectations

for a reference measurement.

For simplicity, let’s assume that the system Alice is contemplating experiments upon

is one for which she knows a SIC. She represents her quantum state ρ using the Born Rule

as

P (Hi) =
1

d
tr (ρΠi) , (8.11)

where the projectors {Πi} satisfy

tr (ΠiΠj) =
dδij + 1

d+ 1
. (8.12)
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Then, she can write the Born Rule for any other POVM {Dj} as a simple modification of

the Law of Total Probability:

Q(Dj) =
d2∑
i=1

[
(d+ 1)P (Hi)−

1

d

]
P (Dj|Hi) . (8.13)

If Alice uses something other than a SIC as her reference measurement {Hi}, the formula

will be more complicated, but the concepts are the same. A unitary transformation of ρ

can be shifted onto the elements of the reference measurement, since

P ′(Hj) = tr (ρ′Hj) = tr [U(t)ρU †(t)Hj] = tr [ρ(U †(t)HjU(t))] . (8.14)

Expressing ρ in terms of P (Hi), this becomes

P ′(Hj) =
d2∑
i=1

[
(d+ 1)P (Hi)−

1

d

]
R(Hj|Hi, t) , (8.15)

where

R(Hj|Hi, t) =
1

d
tr (U(t)ΠiU

†Πj) (8.16)

is a doubly stochastic matrix. Note that classically, we would express the relation between

Alice’s current probabilities for a measurement now and her current probabilities for a

measurement later as

P ′(Hj) =
d2∑
i=1

P (Hi)R(Hj|Hi, t) . (8.17)

In quantum mechanics, we cannot think of time evolution as shifts in the values taken by

hidden variables, so we do not use this expression, but rather its quantum replacement,
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which simplifies to

P ′(Hj) = (d+ 1)
d2∑
i=1

P (Hi)R(Hj|Hi, t)−
1

d
. (8.18)

All of the quantities P (Hi), P ′(Hj) and R(Hj|Hi, t) are beliefs that Alice holds simulta-

neously. They all have the same status, in that they are personalist Bayesian probabilities,

every one of them.

Over the years, we have noticed that some people who are on board with quantum

states being subjective still balk at the prospect of regarding quantum operations that way.

Imbuing unitaries with subjectivity, they fear, risks the whole Standard Model going up

in a puff of arthouse smoke. This concern is understandable, but misplaced. We find that

a personalist Bayesian take on unitaries, and the “all QFTs are effective QFTs” ethos of

weekday field theory [66], meet quite nicely if we only let them. What follows is specula-

tion for the future development of physics, guided by the lessons of practical applications.

Let’s suppose that Alice is a physicist who is preparing to do an experiment, say on

a spin system. Following ordinary procedure, she writes down a unitary time-evolution

operator generated by a Hamiltonian. What does this Hamiltonian encode? Well, it ex-

presses what Alice is doing with her laboratory equipment: the ~E and ~B fields established

by charged capacitor plates and current-carrying wires, for example. An old book might

have called this information “a complete description of the apparatus in everyday lan-

guage, suitably augmented with the concepts of classical physics”. But Alice knows that

she can treat any item of her laboratory apparatus as a quantum system in its own right.

For instance, she can use the quantum theory of solids to explain why she can force a cur-

rent through her coiled wire. So, that which she expresses as a unitary operator, she also

recognizes from a broader perspective as a mathematical consequence, in principle, of a
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quantum state assignment. The “effective unitary” she implements naturally has, there-

fore, the same physical status as her quantum-state ascriptions: They are all, at root, per-

sonalist Bayesian expectations.

What, then, of the most “fundamental” time evolutions of all? Let us go all the way, or

at least as far as modern physics can take us. What is the status of the Standard Model La-

grangian in QBism? Apart from the last two words, this is a question already generations

old; the project of grand unification, seen as quite respectable, has with game persistence

tried to understand the Standard Model as the low-energy limit of a new theory, not too

dissimilar to it in basic conceptions.

We do not want to prejudge the matter and ennoble some part of a theory too rashly.

After all, human mathematicians have yet to express a nontrivial QFT in a way that meets

even their own standards of rigor, let alone a way that would be suitable for the “eyes

of God”. Among the manifold interesting complications is the fact that not all QFTs are

written in terms of a Lagrangian, and it is conceivable that not all of them can be [67].

In order to wring practical numbers out of a QFT, one admits that the theory only ap-

plies up to some high-energy or short-distance cutoff, and then one deals with this lim-

itation in an emotionally mature manner. This discipline is known as regularization and

renormalization [68]. A scattering amplitude is computed as a function, not just of parti-

cle momenta and coupling strengths, but also of the ultraviolet cutoff. Changes in some of

these parameters can be absorbed by changes in others, leaving the scattering amplitude

numerically unchanged. The theory is not just a single choice of terms and coefficients,

but the entire renormalization-group flow.

Seen in this light, the core of a QFT begins to take on a role akin to the Born Rule: a

normative constraint relating expectations for different experiments. The story of integrat-
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ing over UV degrees of freedom, beta functions, the running of coupling “constants” — it

brings the message that gambles at one energy ought to be tied with gambles at another.7

It is conceivable that when the foundational unscrambling (§8.6) is complete, unitary

operators will join quantum states on the doxastic side of the line, while the fundamental

core of a “grand unified” theory will, like the Born Rule, reveal itself as an empirically

motivated, normative addition to probability theory.

8.22 What do the recent Extended Wigner’s Friend thought-experiments imply for QBism?

The past few years have seen the birth of a mini-field, where the thought-experiment

called Wigner’s Friend is wrapped around a no-hidden-variables argument [5, 6, 71, 72].

We’ve read the papers, we’ve been to a workshop [73], and we’re still not convinced

that the introduction of additional friends, robots or Wigners goes beyond the original

Wigner’s Friend “paradox” that QBism already answered on its own terms [3]. In order

to deserve attention, a “paradox” should reveal an actual inconsistency following from

the premises of some interpretation. From our perspective, every new variant just does

other things that we know are fallacious: treating unitaries as ontic, acting like systems

have a quantum state when there is no agent to assign one, pretending that probabilities

follow from frequencies, etc. The extra complexity introduces additional opportunities

for confusion, without making the argument more forceful. We would like this situation

to change; for example, it would be interesting to derive a new quantitative criterion of

classicality from these considerations. But the mini-field that studies Wigner’s friends,

cousins and former roommates is not quite there yet. So far, the conditions deduced from

7A related hint comes from lattice gauge theory, where the gauge group is specified at a quite primi-
tive level of setting up the problem [69, §VII.1], much like the selection of Hilbert-space dimensionality in
quantum computation, and what follows is rather like a complexified MaxEnt [70].
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these thought experiments have been Bell-type inequalities given slightly rephrased justi-

fications, and thus they have not pointed to fundamentally novel issues.

8.23 Is QBism compatible with the Many Worlds Interpretation?

Sometimes, when ideas are presented as going off in two opposite directions, the rea-

son is that they really are, and there isn’t any secret centrist wisdom in trying to yoke

them back together.

There is no one single Everettian faith, any more than there is truly a unified “Copen-

hagen Interpretation” (see §8.5). Instead, the genus has many species, frequently incom-

patible with one another [74]. On rare occasions, an apostle of one of these creeds might

make a statement that, in isolation, has a vague affinity to a QBist position. That much

is to be expected, since we are all talking about quantum physics, and we are not try-

ing to hang a bag of hidden variables on the side of it (as, say, the Bohmians are wont to

do). But we QBists have no physical state vector for the entire universe, no All-Function

evolving unitarily in the eye of God.

Imagine, if you can, a physical state vector for the entire cosmos |Ψ〉, and a factoriza-

tion of the cosmic Hilbert space into distinguished subsystems. (An Everettian creed will

either presume this or attempt to derive it, generally by way of an argument that turns out

to be circular.) Now, pick one of those subsystems and take the trace of |Ψ〉 over all the

others. The marginal state of the focal subsystem is then the unique, physically mandated

density operator for that subsystem, fixed by ontology. But in QBism, there is no such

thing.

The same holds true if one tries to decompose the All-Function into “relative states”

of observers and observed. When the carving is all done, the pieces are each physically
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mandated, ontologically fixed — and that’s simply not the role that any quantum state

plays in QBism.

A typical move for modern Everettians is to take the quantum-mechanical formalism,

chop off the Born rule and then claim to re-derive it. Generally, the algebra can be made

to cough up a set of numerical weights, but the identification of those weights as probabil-

ities in any meaningful sense turns out rather unwarranted.

Take another look at the infrastructure underlying the Everettian story: complex Hilbert

space, time evolution as unitary operator, etc. To us, all of those cry out for explanation.

Indeed, the Born Rule, the very part of the theory that Everettians wish to excise — the

part to be re-derived as a technicality, delegated to the afterthoughts — may be the most

important part of all. Properly formulated, it might well bring the essential enigma of the

quantum into the spotlight with a clarity never before achieved [36].

By contrast, we see nothing in the Everettian picture that is uniquely compelled by

quantum theory specifically. For instance, you could invent a Many-Worlds Interpretation

of Spekkens’ toy model (as John Smolin once admitted [55, p. 1407]). The result would

be baroque and contrived, revealing nothing about the model itself.

We suspect that the appeal of multiverse imagery has more to do with psychology than

with physics. Quoting a letter Fuchs wrote in 2002 [55, p. 347]:

What I find egocentric about the Everett point of view is the way it purports

to be a means for us little finite beings to get outside the universe and imag-

ine what it is doing as a whole. And what is it doing as a whole? Something

fantastic? Something almost undreamable?! Something inexpressible in the

words of man?!?! Nope. It’s conforming to a scheme some guy dreamed up

in the 1950s.
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This whole fantastic universe can be boiled down to something repre-

sentable within one of its most insignificant components — the brain of man.

Even toying with that idea, strikes me as an egocentrism beyond belief. The

universe makes use of no principle that cannot already be stuffed into the

head of an average PhD in physics? The chain of logic that leads to the truth

of the four-color theorem (apparently) can’t be stuffed into our heads, but the

ultimate operating principle for all that “is” and “can be” can?

Other varieties of multiversitarianism also leave us unmoved. To adapt a line of Mar-

tin Gardner, observable universes are not even as common as two blackberries. Procla-

mations about “the multiverse” appear to us like failures of imagination, wrapped up in

extravagances that provide a certain unsubtle, bulk-rate imitation of it. Our cynical view

of these proclamations may be due to our preference for the philosophy of pragmatism.8

Most likely, we are doing ourselves few favors in the pop-science media by taking this

position, but we are willing to be cast as the stodgy ones.

As for the high-flying speculations of the “all mathematical structures are physically

real” variety, we find that an observation by the philosopher William James rather encap-

sulates our sentiments. The quote that follows is from a 1906 lecture. While a modern

multiversitarian would use newer terminology, it boils down to nothing essentially differ-

8It also seems to us that arguments in this area tend to disconnect from actual scientific progress. For
example, it is a genre convention to quote Weinberg’s “prediction” of a small, nonzero cosmological con-
stant from anthropic reasoning [75]. Varying one parameter in isolation — a parameter that we have no
good reason to consider fundamental [76], at that — while holding all others fixed strikes us as having du-
bious physical relevance. Moreover, Weinberg’s calculation requires as input the maximal observed redshift
of a galaxy [77]. His formula coughed up a decent answer when this was z = 4.4, but it fares dramatically
worse now that we have seen a galaxy at z = 11.1 [78]. Weinberg’s argument now gives a bound on the
vacuum energy density of about 5800 times the present cosmic mass density. This is three orders of magni-
tude larger than the observed value, a ratio well into the regime where Weinberg himself says the cosmolog-
ical constant would be “so small that even the anthropic principle could not explain its smallness” [79].
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ent from the “Absolute” and the “mind of God” that had taken hold of the “rationalists” at

the time.

The more absolutistic philosophers dwell on so high a level of abstraction that

they never even try to come down. The absolute mind which they offer us,

the mind that makes our universe by thinking it, might, for aught they show

us to the contrary, have made any one of a million other universes just as well

as this. You can deduce no single actual particular from the notion of it. It

is compatible with any state of things whatever being true here below. [. . .]

Absolutism has a certain sweep and dash about it, while the usual theism is

more insipid, but both are equally remote and vacuous.

8.24 What are good things to read about QBism?

While we’re quoting William James, it’s a good time to share a remark from his Prag-

matism (1907), which by itself is enough to elevate him to the first rank of intellectuals:

Whatever universe a professor believes in must at any rate be a universe that

lends itself to lengthy discourse.

Accordingly, there is no shortage of primary sources about QBism. The essay by Fuchs,

Mermin and Schack in the American Journal of Physics introduces the interpretation with

an emphasis on how it gives meaning to the standard mathematical formulation of quan-

tum theory [4]. Mermin [12, 80] and Fuchs [13, 81] have both written pieces that go more

in depth on the historical setting of QBism. Of these essays, Fuchs’s explains more of the

technical side of current research. Additional details of that technical work are presented

in [3, 4]. Fuchs also discusses the genesis of QBism in the introduction to the samizdat

compilation [55].
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As for secondary sources, the Stanford Encyclopedia of Philosophy has a pretty good

article on QBism and related interpretations:

https://plato.stanford.edu/entries/quantum-bayesian/

This was written by Richard Healey, who is not a QBist but has an interpretational at-

titude that is in many ways QBism-adjacent. Being written for an SEoP audience, it is

heavier on the philosophical matters and gives less time to the technical research that

those matters have motivated.

If you want a whole book that you can carry around, Hans von Baeyer’s QBism: The

Future of Quantum Physics (Harvard University Press, 2016) is an accurate portrayal,

pitched to the interested-layperson audience.

(And incidentally, on the topic of books, Persi Diaconis and Brian Skyrms recently re-

leased Ten Great Ideas about Chance, which lays out a school of thought about probabil-

ity that is pretty much aligned with the one QBism adopts. Diaconis and Skyrms confine

the quantum stuff to a single chapter, but they do recommend a David Mermin essay on

QBism as good reading [56].)

QBism has been written up both in New Scientist [82] and in Scientific American [83],

though not terribly accurately in either case, thanks to the editorial process [80, 84, 85]. A

better treatment, albeit in German, appeared in the Frankfurter Allgemeine Sonntagszeitung [86].

Nature addressed it briefly in the context of information-oriented reconstructions of quan-

tum theory [87].

In June 2015, the pop-science website Quanta Magazine ran an interview with Fuchs [2].

The accompanying profile is largely accurate, except for a figure caption that implies

QBism is a hidden-variable theory:
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A quantum particle can be in a range of possible states. When an observer

makes a measurement, she instantaneously “collapses” the wave function into

one possible state. QBism argues that this collapse isn’t mysterious. It just

reflects the updated knowledge of the observer. She didn’t know where the

particle was before the measurement. Now she does.

A better caption would go more like the following:

In the textbook way of doing quantum physics, a quantum particle has a

“wave function” that changes smoothly when no one is looking, but which

makes a sharp jump or “collapse” when the particle is observed. QBism ar-

gues that this collapse isn’t mysterious. It just reflects the altered expectations

of the observer. Before the measurement, she didn’t know what would happen

to her when she interacted with the particle. After the measurement, she can

update her expectations for her future experiences accordingly.

Originally, the subhead was also misleading; soon after the interview appeared, Quanta

fixed the subhead, but not the figure caption. So it goes.

Later, Fuchs was interviewed for the Australian Broadcasting Company’s program,

The Philosopher’s Zone [88].
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[6] Č. Brukner, “On the Quantum Measurement Problem,” in Quantum [Un]Speakables
II (R. Bertlmann and A. Zeilinger, eds.), pp. 95–117, Cham: Springer International
Publishing, 2017.

[7] M. Gardner, “Why I Am Not a Solipsist,” in The Whys of a Philosophical Scrivener,
Quill, 1983.

[8] J. B. DeBrota, C. A. Fuchs, and B. C. Stacey, “Symmetric informationally complete
measurements identify the irreducible difference between classical and quantum
systems,” Physical Review Research, vol. 2, p. 013074, 2020.

[9] H. Atmanspacher, “20th century variants of dual-aspect thinking,” Mind and Matter,
vol. 12, 2014.

[10] N. D. Mermin, “Physics: QBism puts the scientist back into science,” Nature,
vol. 507, no. 7493, pp. 421–423, 2014.

[11] B. C. Stacey, “Is the SIC Outcome There When Nobody Looks?,”
arXiv:1807.07194, 2018.

[12] N. D. Mermin, “Making better sense of quantum mechanics,” Reports on Progress
in Physics, vol. 82, no. 1, p. 012002, 2019.

[13] C. A. Fuchs, “Notwithstanding Bohr, the Reasons for QBism,” Mind and Matter,
vol. 15, no. 2, 2017.

260



[14] D. Bohm, Quantum theory. New York: Dover Publications, 1989.

[15] B. C. Stacey, “Von Neumann was not a Quantum Bayesian,” Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
vol. 374, no. 2068, p. 20150235, 2016.

[16] N. Van Kampen, “Ten theorems about quantum mechanical measurements,” Physica
A: Statistical Mechanics and its Applications, vol. 153, no. 1, pp. 97–113, 1988.

[17] E. T. Jaynes, “Probability in quantum theory,” in Complexity, Entropy and the
Physics of Information (W. H. Zurek, ed.), Addison–Wesley, 1990.

[18] E. T. Jaynes, “Cleaning up the mysteries – the original goal,” in Maximum-Entropy
and Bayesian Methods (J. Skilling, ed.), Springer, 1989.

[19] R. W. Spekkens, “Evidence for the epistemic view of quantum states: A toy theory,”
Physical Review A, vol. 75, no. 3, p. 032110, 2007.

[20] R. W. Spekkens, “Reassessing claims of nonclassicality for quantum interfer-
ence phenomena.” Presentation at Perimeter Institute: http://pirsa.org/
16060102/, 2016.

[21] M. F. Pusey, J. Barrett, and T. Rudolph, “On the reality of the quantum state,” Nature
Physics, vol. 8, no. 6, pp. 475–478, 2012.

[22] C. A. Fuchs and R. Schack, “Bayesian Conditioning, the Reflection Principle,
and Quantum Decoherence,” in Probability in Physics (Y. Ben-Menahem and
M. Hemmo, eds.), pp. 233–247, Berlin, Heidelberg: Springer Berlin Heidelberg,
2012.

[23] B. C. Stacey, Multiscale Structure in Eco-Evolutionary Dynamics. PhD thesis, Bran-
deis University, 2015.

[24] C. A. Fuchs, “Quantum Mechanics as Quantum Information (and only a little
more),” arXiv:quant-ph/0205039, 2002.

[25] C. M. Caves, C. A. Fuchs, and R. Schack, “Unknown quantum states: The quan-
tum de Finetti representation,” Journal of Mathematical Physics, vol. 43, no. 9,
pp. 4537–4559, 2002.

[26] C. A. Fuchs, R. Schack, and P. F. Scudo, “De Finetti representation theorem for
quantum-process tomography,” Physical Review A, vol. 69, no. 6, p. 062305, 2004.

[27] H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa, and B. Schumacher, “Noncommut-
ing Mixed States Cannot Be Broadcast,” Physical Review Letters, vol. 76, no. 15,
pp. 2818–2821, 1996.

261



[28] C. M. Caves, C. A. Fuchs, and R. Schack, “Conditions for compatibility of quantum
state assignments,” Physical Review A, vol. 66, no. 6, 20002.

[29] C. A. Fuchs and A. Peres, “Quantum-state disturbance versus information gain:
Uncertainty relations for quantum information,” Physical Review A, vol. 53, no. 4,
pp. 2038–2045, 1996.

[30] C. A. Fuchs, N. Gisin, R. B. Griffiths, C.-S. Niu, and A. Peres, “Optimal Eavesdrop-
ping in Quantum Cryptography. I,” arXiv:quant-ph/9701039, 1997.

[31] A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and
E. S. Polzik, “Unconditional Quantum Teleportation,” Science, vol. 282, no. 5389,
pp. 706–709, 1998.

[32] C. A. Fuchs and K. Jacobs, “Information-tradeoff relations for finite-strength quan-
tum measurements,” Physical Review A, vol. 63, no. 6, p. 062305, 2001.

[33] A. Peres and D. R. Terno, “Quantum information and relativity theory,” Reviews of
Modern Physics, vol. 76, no. 1, pp. 93–123, 2004.

[34] C. A. Fuchs, M. C. Hoang, and B. C. Stacey, “The SIC question: History and state
of play,” Axioms, vol. 6, p. 21, 2017.

[35] B. Stacey, “SIC-POVMs and Compatibility among Quantum States,” Mathematics,
vol. 4, no. 2, p. 36, 2016.

[36] M. Appleby, C. A. Fuchs, B. C. Stacey, and H. Zhu, “Introducing the Qplex: a novel
arena for quantum theory,” The European Physical Journal D, vol. 71, no. 7, p. 197,
2017.

[37] J. B. DeBrota and C. A. Fuchs, “Negativity bounds for Weyl–Heisenberg quasiprob-
ability representations,” Foundations of Physics, vol. 47, pp. 1009–30, 2017.

[38] M. Appleby, T.-Y. Chien, S. Flammia, and S. Waldron, “Constructing exact symmet-
ric informationally complete measurements from numerical solutions,” Journal of
Physics A: Mathematical and Theoretical, vol. 51, no. 16, p. 165302, 2018.

[39] G. S. Kopp, “SIC-POVMs and the Stark conjectures,” International Mathematics
Research Notices, p. rnz153, 2019.

[40] J. C. Baez and J. Biamonte, “Quantum Techniques for Stochastic Mechanics,”
arXiv:1209.3632, 2019.

[41] M. Schlosshauer, “The quantum-to-classical transition and decoherence,”
arXiv:1404.2635, 2019.

262



[42] C. Rovelli, “Relational quantum mechanics,” International Journal of Theoretical
Physics, vol. 35, no. 8, pp. 1637–1678, 1996.

[43] F. Laudisa and C. Rovelli, “Relational Quantum Mechanics,” in The Stanford En-
cyclopedia of Philosophy (E. N. Zalta, ed.), Metaphysics Research Lab, Stanford
University, winter 2019 ed., 2019.

[44] D. M. Appleby, “Facts, Values and Quanta,” Foundations of Physics, vol. 35, no. 4,
pp. 627–668, 2005.

[45] D. M. Appleby, “Probabilities Are Single-Case or Nothing,” Optics and Spec-
troscopy, vol. 99, no. 3, p. 447, 2005.

[46] M. Smerlak and C. Rovelli, “Relational EPR,” Foundations of Physics, vol. 37,
no. 3, pp. 427–445, 2007.

[47] Q. Ruyant, “Can We Make Sense of Relational Quantum Mechanics?,” Foundations
of Physics, vol. 48, no. 4, pp. 440–455, 2018.

[48] C. A. Fuchs, “QBism, The Perimeter of Quantum Bayesianism,” arXiv:1003.5209,
2010.

[49] N. D. Mermin, “Quantum Mysteries for Anyone,” The Journal of Philosophy,
vol. 78, no. 7, pp. 397–408, 1981.

[50] G. ’t Hooft, “Dimensional reduction in quantum gravity,” Conf. Proc. C,
vol. 930308, pp. 284–296, 1993.

[51] E. Witten, “Quantum gravity in de Sitter space,” in Strings 2001: International Con-
ference, 2001.

[52] M. Parikh and E. Verlinde, “De Sitter Holography with a Finite Number of States,”
Journal of High Energy Physics, vol. 2005, no. 01, pp. 054–054, 2005.

[53] T. Banks and W. Fischler, “The holographic spacetime model of cosmology,” Inter-
national Journal of Modern Physics D, vol. 27, no. 14, p. 1846005, 2018.

[54] C. A. Fuchs, “On the Quantumness of a Hilbert Space,” Quantum Information &
Computation, pp. 467–78, 2004.

[55] C. A. Fuchs, M. Schlosshauer, and B. C. Stacey, “My Struggles with the Block Uni-
verse,” arXiv:1405.2390, 2014.

[56] P. Diaconis and B. Skyrms, Ten great ideas about chance. Princeton: Princeton
University Press, 2018.

263



[57] C. A. Fuchs, R. Schack, L. Accardi, G. Adenier, C. Fuchs, G. Jaeger, A. Y. Khren-
nikov, J. Å. Larsson, and S. Stenholm, “Priors in Quantum Bayesian Inference,” in
AIP Conference Proceedings, (Växjö, Sweden), pp. 255–259, 2009.

[58] L. J. Savage, The foundations of statistics. New York: Dover Publications, 2d rev.
ed ed., 1972.

[59] J. C. Baez, “Surprises in Logic.” http://math.ucr.edu/home/baez/
surprises.html, 2016.

[60] M. Shulman, “Homotopy type theory: A synthetic approach to higher equalities,” in
Categories for the Working Philosopher (E. Landry, ed.), Oxford University Press,
2017.

[61] J. O. Weatherall, “On (Some) Explanations in Physics,” Philosophy of Science,
vol. 78, no. 3, pp. 421–447, 2011.

[62] J. Distler and S. Garibaldi, “There is No “Theory of Everything” Inside E8,” Com-
munications in Mathematical Physics, vol. 298, no. 2, pp. 419–436, 2010.

[63] B. C. Stacey, “Geometric and Information-Theoretic Properties of the Hoggar
Lines,” arXiv:1609.03075, 2016.

[64] B. C. Stacey, “Sporadic SICs and the normed division algebras,” Foundations of
Physics, vol. 47, pp. 1060–64, 2017.

[65] J. Bouie, “How the Enlightenment Created Modern Race Thinking and Why We
Should Confront It,” Slate Magazine, 2018.

[66] J. Zinn-Justin, Phase transitions and renormalization group. Oxford graduate texts,
Oxford, United Kingdom: Oxford University Press, 2013.

[67] “Lagrangian quantum field theory in nLab.” https://ncatlab.org/nlab/
show/Lagrangian+quantum+field+theory, 2017.

[68] J. C. Baez, “Struggles with the Continuum,” arXiv:1609.01421, 2020.

[69] A. Zee, Quantum field theory in a nutshell. Princeton, N.J: Princeton University
Press, 2nd ed., 2010.

[70] J. Baez and B. Pollard, “Quantropy,” Entropy, vol. 17, no. 2, pp. 772–789, 2015.

[71] M. F. Pusey, “An inconsistent friend,” Nature Physics, vol. 14, no. 10, pp. 977–978,
2018.

264



[72] J. Bub, “In defense of a “single-world” interpretation of quantum mechanics,” Stud-
ies in History and Philosophy of Science Part B: Studies in History and Philosophy
of Modern Physics, p. S1355219817301788, 2018.

[73] “Encapsulated Agents in Quantum Theory: Re-examining Wigner’s Friend,”
(Boston, MA), 2019.

[74] A. Kent, “Does it Make Sense to Speak of Self-Locating Uncertainty in the Uni-
versal Wave Function? Remarks on Sebens and Carroll,” Foundations of Physics,
vol. 45, no. 2, pp. 211–217, 2015.

[75] G. F. R. Ellis, “Physics on Edge,” Inference, vol. 3, no. 2, 2017.

[76] Q. Wang, Z. Zhu, and W. G. Unruh, “How the huge energy of quantum vacuum
gravitates to drive the slow accelerating expansion of the Universe,” Physical Review
D, vol. 95, no. 10, p. 103504, 2017.

[77] S. Nadathur, “Blank On The Map: Does the multiverse explain the cosmologi-
cal constant?.” https://blankonthemap.blogspot.com/2014/02/
does-multiverse-explain-cosmological.html, 2014.

[78] P. A. Oesch, G. Brammer, P. G. v. Dokkum, G. D. Illingworth, R. J. Bouwens,
I. Labbé, M. Franx, I. Momcheva, M. L. N. Ashby, G. G. Fazio, V. Gonzalez,
B. Holden, D. Magee, R. E. Skelton, R. Smit, L. R. Spitler, M. Trenti, and S. P.
Willner, “A Remarkably Luminous Galaxy at z=11.1 Measured with Hubble Space
Telescope Grism Spectroscopy,” The Astrophysical Journal, vol. 819, no. 2, p. 129,
2016.

[79] S. Weinberg, “Anthropic Bound on the Cosmological Constant,” Physical Review
Letters, vol. 59, no. 22, pp. 2607–2610, 1987.

[80] N. D. Mermin, “Why QBism Is Not the Copenhagen Interpretation and What John
Bell Might Have Thought of It,” in Quantum [Un]Speakables II (R. Bertlmann and
A. Zeilinger, eds.), pp. 83–93, Cham: Springer International Publishing, 2017.

[81] C. A. Fuchs, “Interview with a Quantum Bayesian,” arXiv:1207.2141, 2012.

[82] M. Chalmers, “QBism: Is quantum uncertainty all in the mind?,” New Scientist,
no. 2968, pp. 32–25, 2014.

[83] H. C. von Baeyer, “Can Quantum Bayesianism Fix the Paradoxes of Quantum Me-
chanics?,” Scientific American, vol. 308, pp. 46–51, 2013.

[84] N. D. Mermin, “QBism in the New Scientist,” arXiv:1406.1573, 2014.

265



[85] N. D. Mermin, “Putting the Scientist into the Science.” Presentation at Quantum
[Un]Speakables II: 50 Years of Bell’s Theorem, University of Vienna, 2014.

[86] U. von Rauchhaupt, “Philosophische Quantenphysik : Ganz im Auge des Be-
trachters [Philosophical Quantum Physics: Only in the Eye of the Beholder],”
FAZ.NET, 2014.

[87] P. Ball, “Physics: Quantum Quest,” Nature, vol. 501, no. 7466, pp. 154–156, 2013.

[88] J. Gelonasi, “Why the multiverse is all about you,” ABC Radio National Program:
The Philosopher’s Zone, 2015.

266



CHAPTER 9

CONCLUSION

It is time for some concluding remarks. In the introduction, we noted that our techni-

cal investigations were motivated by the QBist foundational perspective. Walking just a

few steps along that path revealed unknowns we needed to tackle. Each one we dealt with

produced at least a few more. And so it goes and grows. Now, at the end of the adventure

that is graduate school, the author finds himself more excited by this general direction of

research than ever before. Perhaps most exciting of all, we are beginning to see possibil-

ities for inroads and bridges to other subfields. The next step is to clearly articulate these

connections. The payoffs could be remarkable; some of the most important advances hap-

pen when diverse backgrounds meet.

Further study of minimal informationally complete measurements and their associa-

tions to other structures is likely to produce considerable advances in our understanding

of quantum theory. It is a widely unappreciated fact that a quantum state may be thought

of as a single probability distribution. The vast majority of work on quantum theory re-

stricts attention almost exclusively to orthogonal projective measurements. Obviously

these have their place, uses, and practicalities, but if one only ever thinks of measure-

ments derived from “observables,” one will never notice when a different kind of mea-

surement is better suited for their purposes. And for the purpose of understanding what

a quantum state actually is, a MIC is clearly superior because it allows us to see that a
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quantum state is conceptually no more than a probability distribution; as a von Neumann

measurement is not informationally complete, its outcome probabilities are only a partial

picture. The MIC probabilistic approach we have described in several of the chapters of

this dissertation similarly clarifies the meaning of a general measurement — with respect

to a fixed reference process, any POVM takes the form of a conditional probability ma-

trix.

But this way of thinking stands a chance of doing much more than clarifying. We have

every reason to believe this approach could turn out to be as productive as more mature

reformulations of quantum theory. Phase space quantum mechanics and the path integral

formulation are useful because they preserve key concepts from pre-quantum physics.

Our reference measurement approach does the same thing. This time the most basic con-

cept preserved is that of informational completeness. Classically, an informationally com-

plete measurement is one which reads off the “physical condition” of the system. In me-

chanics, this would be the (potentially only hypothetical) measurement which reads off

the system’s precise phase space coordinates. If one has a probability distribution for the

outcomes of such a measurement, i.e. a Liouville distribution, then one may compute the

probability distribution for any other measurement, say, of the system’s total energy, by

coarse graining appropriately. Bell and Kochen–Specker type results tell us something

about the Liouville picture cannot be made to work. If one insists on leaving the phase

space intact, one has to abandon probabilities, in effect abandoning the intuition of infor-

mationally complete measurements — because of its negativity, a quasiprobability distri-

bution loses the operational significance that probabilities have. However, if one is ready

to learn a different lesson about quantum theory, one can forgo directly imposing a phase

space and keep informational completeness instead. In the absence of an obvious notion

of an ontic state, hidden variable, physical condition, phase space point, element of real-
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ity, or otherwise, it is surprising to classical intuitions that we can nonetheless keep the

concept of informational completeness. If not the probability for something that is “out

there”, what does it mean that such probability distributions contain all of the information

about a system necessary to consistently assign probabilities to any other measurement?

Our approach provides a framework to attack these types of questions head on.

In Chapter 2, we explored some immediate consequences of the definition of a MIC,

primarily through the Gram matrix. Even this close to the ground, it is clear that the na-

tive quantum replacements for phase space are extremely diverse and fundamentally

different in each Hilbert space dimension. In Chapter 3, we provided for the first time

(chronologically) a mathematical justification for the intuition that SICs occupy a privi-

leged position from which to assess the differences between the quantum and the classi-

cal. In addition to seeking significant bases for the understanding of quantum theory it-

self, we extended our knowledge of MICs through their connections to other areas. In the

other three technical chapters, this is done in two ways: connection to channels and con-

nection to quasiprobability representations. In Chapter 4, we defined a new class channels

called Lüders MIC channels and found that their properties allow for another characteri-

zation of SIC existence. We also saw that our definition suggests new information-related

questions, some of which we solved with entropic bounds. In Chapter 5, we took MICs

in another direction when we noticed that the MIC-specific way of expressing the Born

rule naturally suggested an associated Wigner basis as kind of orthogonalization. This

observation suggests a strategy for further development and classification of MIC proper-

ties and has the potential to reciprocally influence the study of discrete Wigner functions.

Although we didn’t know it at the time, through this association our study of Wigner

bases in the manuscript which became Chapter 6 should have downstream effects for un-

derstanding what sum negativity of a Wigner function means in the language of MICs.
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There, in current terminology, we revealed that while the principal and shifted principal

Wigner bases of a SIC extremize ceiling negativity among all unbiased Wigner bases, this

fact does not extend in complete generality to the sum negativity setting, which is also of

conceptual and practical interest.

On the conceptual side, we believe that evidence continues to mount that the QBists

are on the right track. We hope that Chapter 7, QBism’s response to recent extensions of

the Wigner’s friend paradox, will make this intuition more widespread. For many other

interpretations, the original Wigner’s friend thought experiment was mildly alarming,

although perhaps not catastrophic. The appearance of two recent, more elaborate, varia-

tions of the experiment, however, have raised concerns as to the foundational strength of

many of the same interpretations. The QBists have always thought the Wigner’s friend

experiment exemplified a powerful and beautiful fact of reality — it was a feature, not

a bug. Although slow to digest, the extensions of the thought experiment have actually

strengthened our convictions. The resolution is simply a matter of truly treating all agents

on equal footing, an attitude long present in descriptions of QBism, but never quite so

forcefully brought to the fore.

Speaking of convictions, we QBists have long said that the best judge of an interpre-

tation of quantum mechanics is in what it spurs. A good interpretation would inspire so-

lutions to outstanding problems, suggest particular questions, and provide intuitions for

technologies. A bad one tries to close off the story as quickly as possible, leaving ev-

eryone wondering whether it was worth the bother to think more about the meaning of

quantum theory at all. Of course, this criterion applies more broadly. Good things respond

and grow. It feels like we have started a good thing, that we are on the cusp of important

breakthroughs. Well, that will only be true if we make it so. It’s time to get to work!
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