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ABSTRACT 

Vernal pools are important breeding grounds for forest amphibians and vital habitat for many 

populations of species. With the goal of better managing Glover’s Ledge (GL) for its amphibian 

communities, the objectives of this study were to assess the current hydrologic profile of the GL 

vernal pools over the duration of the breeding season, identify richness and distribution of 

amphibian species utilizing vernal pools, and provide baseline amphibian data for future 

monitoring and management at GL. Egg masses of Lithobates sylvaticus (wood frogs) and 

Ambystoma maculatum (Spotted salamanders) in three pools on the site (SWP, LL, and SW) 

were monitored weekly over 20 weeks from March through August of 2020. Hydrological data 

on the trends of pool depth, extent, temperature, and pH were also sampled. All pools contained 

egg masses for 7 weeks before larvae hatched (except for SW, which dried up prior to larval 

emergence). The LL pool supported the greatest number of A. maculatum egg masses with a 

maximum number of 63 egg masses counted. This study is only a single-year snapshot of the GL 

vernal pool system, so it is too early to draw conclusions about population health or trends from 

these data alone. However, these baseline data may prove important in beginning to understand 

the GL amphibian community and reveal areas where we can focus our efforts to improve future 

studies and management efforts. 
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INTRODUCTION 

 

Amphibians are a critical trophic connection in terrestrial and aquatic ecosystems and rely on 

specific habitats for breeding in the Northeast. Frogs and salamanders provide a conduit between 

invertebrate sources of energy and vertebrate consumers and consume a wide diversity of prey, 

from vegetation and detritus to invertebrates (Stebbins & Cohen, 1995; Semlitsch et al. 2014; 

Walker et al. 2018). Amphibian breeding in New England is a phenological event, occurring 

every spring in very specific conditions and locations. For example, many New England mole 

salamander species and frog species rely on unique, ephemeral systems to lay their eggs — 

vernal pools. Vernal pools are temporary bodies of water, forming wetlands in spring and drying 

up during summer or autumn. Most of their water comes from precipitation and snowmelt but 

groundwater, subsurface flow, and natural springs may also contribute to seasonal filling 

(Colburn, 2004; Calhoun et al. 2014). Several species of adult amphibians migrate to the pools 

during brief spring windows to mate and lay eggs before retreating back to the uplands. 

Amphibians have become a visible and much-adored sign of spring in the Northeastern 

United States. Many people are starting to recognize their importance in forest ecosystems and 

the need to document vernal pools to protect populations (Colburn, 2004; Colbert et al. 2011). 

Vernal pool surveys have become increasingly popular in New England states in the past 15 

years, with some states and nature centers even implementing very popular citizen science and 

school programs based around amphibians (Tappan & Marchand, 1997; Jansujwicz et al. 2013; 

B.A. Thelen, Science Director, Harris Center for Conservation Education, personal 

communication). While many new pools have been documented throughout the region, not all 

are studied, monitored, or understood to the same degree due to limitations in personnel, funding, 

or access. Despite the plethora of student work on other taxa and communities at the Glover’s 
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Ledge (GL) property in Langdon, NH (Littleton & Frauenhofer, 2014; Kinsella, 2016; Ferrario, 

2018), the GL vernal pool communities have not been the subject of any research since a 2014 

natural resources inventory (Littleton & Frauenhofer, 2014). The amphibian population at GL is 

understudied and the species’ population trends and habitat use are poorly understood.   

 

Study goals and objectives 

 

In an effort to better understand the amphibian community of the GL property and with the goal 

of better managing the property for its amphibian species, the objectives of this study are: 

1. Assess the current hydrologic profile (depth, temperature, pH, extent) of the GL 

vernal pools over the duration of the 2020 breeding season. 

2. Identify the distribution and richness of amphibian species using the vernal pools 

at GL.  

3. Monitor amphibian egg masses and juvenile development over the course of the 

2020 breeding season.  

4. Provide baseline amphibian data for future monitoring and management at GL. 
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LITERATURE REVIEW 

Amphibia under threat 

 

Class Amphibia encompasses over 4,500 defined species of salamanders, frogs, and caecilians 

(Stebbins & Cohen, 1995). Characterized by glandular skin, metamorphic maturation, and 

amphibious breathing abilities, frogs and salamanders are an integral part of New England forest 

ecosystems. Amphibians serve as the primary vertebrate predator of invertebrates in freshwater 

and moist upland ecosystems and exert predatory control over fungal and insect communities in 

the soil (Stebbins & Cohen, 1995; Semlitsch et al. 2014; Walker et al. 2018). For example, 

Walker et al. (2018) observed that Plethodon cinereus (red-backed salamander) predation on 

insects created a strong top-down control on the functional diversity of soil fungal communities 

—  and therefore an indirect impact on soil nutrient cycling and storage. Amphibians are also 

major food sources for birds, mammals, and fish, providing a direct trophic link between 

invertebrate soil communities and above-ground biomass (Stebbins & Cohen, 1995; Welsh & 

Droege, 2001). Because of this important linkage, amphibian populations are a key part of many 

aquatic and terrestrial ecosystems. 

Having permeable skin and a diverse set of habitat requirements subjects amphibian 

populations to a plethora of threats. Deforestation and development pose threats to upland habitat 

for salamanders and frogs. Where vernal pools are present, degradation of the forest is of 

particular concern, since estimates suggest a 500m buffer of healthy forest surrounding breeding 

pools is necessary for their conservation (Scott et al. 2013). Vernal pools may also be filled in or 

impacted by development activities, altering their hydrologic regime and changing their 

biological community (Colburn, 2004).  
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Connectivity between vernal pools and upland forest habitats is an important 

consideration for amphibian conservation. Since salamanders and frogs require a mosaic of 

wetlands and uplands for their life cycles, fragmentation of these habitats can cause local 

population declines. Clustered vernal pools are more diverse and have greater relative abundance 

of each species than isolated pools (Van Dyke et al. 2017). Roads also fragment and separate 

habitats, creating new obstacles for moving amphibians. Road crossing is a significant factor in 

localized amphibian mortality, with 17% of salamander species in California ranked at high risk 

of individual mortality when roads are near their habitat (Brehme et al. 2018). Where roads cross 

salamander paths to breeding pools, even moderate road mortality can be a significant mortality 

factor (Gibbs & Shriver, 2005). Gibbs & Shriver’s (2005) study on road mortality in 

Massachusetts found that annual road mortality risk of 10% or higher could lead to local 

amphibian population extirpation unless preventative measures such as culverts, tunnels, and 

road closures were strategically employed. Citizen science efforts such as Big Nights, Bucket 

Brigades, and Salamander Crossing Guards are another effective way to reduce local road 

mortality of migrating amphibians (Sterrett et al. 2019; B.A. Thelen, Science Director, Harris 

Center for Conservation Education, personal communication, unpublished data). 

Amphibians are also threatened by chemical changes to their environments. Because of 

their amphibious life cycle, absorptive skin, and metamorphic periods, frogs and salamanders are 

susceptible to dangerous impacts from pesticides and accumulated toxins from agricultural and 

road runoff (Stebbins & Cohen, 1995; Turtle, 2000). Acidic water conditions (low pH) resulting 

from increased pollution are also a risk factor for breeding amphibians. Embryonic development 

and larval growth are negatively impacted by low pH levels in breeding pools (Turtle, 2000; 

Barth & Wilson, 2010).  
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Fungal infection, particularly the chytrid Batrachochytrium dendrobatidis (Bd) fungus is 

another global threat to amphibians, credited as a driving force in the world-wide decline of 

amphibians (Wake & Vredenburg, 2008). While pool-breeding amphibians in the northeastern 

United States have been documented as being asymptomatic to Bd, high infection rates exist 

among New England frog populations, particularly in bull frogs (Lithobates catesbeianus) and 

green frogs (L. clamitans) (Longcore et al. 2007; Richards-Hrdlicka et al. 2013), both of which 

can coexist alongside vernal pool obligate species in the Northeast. While Bd has not been 

documented as a cause of widespread mortality in New England, the high infection rate and 

corresponding lack of knowledge may mean losses have gone undetected, or that northeastern 

populations have some advantage over the fungus (Longcore et al. 2007). Alongside all these 

risks, climate change is expected to exacerbate declines in local populations, mainly with regard 

to changes in winter conditions, exacerbation of Bd infections and altering the availability of 

water during the breeding season (Miller et al. 2018).  

In the Northeast, amphibians are particularly vulnerable during their breeding cycle 

(March-April), when they are traveling across multiple habitats and over roads to vernal pools to 

mate and lay eggs. These critical few weeks between egg laying and hatching are an 

advantageous time to assess the annual population size of amphibians in a given habitat and 

make predictions about juvenile recruitment to the local population (Egan & Paton, 2004; 

Baldwin et al. 2006).  

  

Vernal pool protection for amphibians 

 

Amphibians have historically been underrepresented in forest biomass surveys. Burton & 

Likens’ (1975) study of terrestrial amphibian biomass in the Hubbard Brook Experimental Forest 

revealed 2,950 red-backed salamanders (P. cinereus) per ha – representing more than double the 
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biomass of all resident birds at the height of migration. In a particularly telling study, P. cinereus 

occurred in average densities of 3m
-2

 in a forest survey in Virginia — accounting for more 

biomass than all the birds and mammals estimated to utilize the same habitat, combined (Mathis, 

1991). Even today, amphibians as a whole may be underestimated in forest surveys. In Missouri, 

Semlitsch et al. (2014) reported estimates of 7,300-12,900 P. cinereus ha
-1

, an estimate 2-4 times 

larger than they had initially expected. Semlitsch et al. (2014) speculated from their biomass 

survey results that the role of salamanders and other amphibians in terrestrial carbon retention, 

invertebrate control, and biomass concentration may be vastly underestimated. Vernal pool 

breeding species have not been studied as well in this regard but when they have been, isolated 

wetlands have generated a large magnitude of mobile biomass in the form of juvenile amphibians 

(Gibbons et al, 2006). Because of this, the study and understanding of vernal pool systems is a 

vital field of research for the health of forest ecosystems and as an estimate of amphibian species 

diversity, distribution, and abundance. 

Over the last 20 years, the role of vernal pools in forest ecosystems became an avenue of 

study and a new conservation concern to forest managers. Three states in New England 

(Massachusetts, New Hampshire, and Connecticut) have been  regulating the filling of isolated 

depressions that contain surface water for at least 2 continuous months in the spring or summer 

for over 20 years (Tappan & Marchand, 1997) and most New England states’ water quality 

policies have language regulating development and activities around vernal pools (Colburn, 

2004). When protecting wetlands for conservation, wetland size is typically considered the most 

important factor, the presumed theory being that a larger wetland area will act as an umbrella for 

protecting many species. Hydroperiod (annual period of water inundation) of the wetlands in 

question is considered far less often, even though many studies have shown hydroperiod to be 
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more important to amphibian species richness than wetland size (Snodgrass et al. 2000; Paton & 

Crouch, 2002; Babbitt, 2005; Baldwin et al. 2006; Tournier et al. 2017).   

Ephemeral pools with longer hydroperiods are correlated with both increased amphibian 

species richness (Snodgrass et al. 2000) and larger population sizes of obligate species (Paton & 

Crouch, 2002; Baldwin et al. 2006). For example, in both the Southeast (Pechmann et al. 1989; 

Snodgrass et al. 2000) and the Northeast (Baldwin et al. 2006), pools with hydroperiods greater 

than 130 days had significantly higher numbers of individuals and diversity of amphibian 

species. Having a longer hydroperiod also means larvae have a longer window of time to mature 

before migrating from vernal pools. In some cases, proper hydroperiod is essential to 

reproductive success. For instance, Semlitsch et al. (1996) monitored a pond in South Carolina 

over a 16-year period to observe the structure of the amphibian community. The observed pool 

was inundated an average of 170 days annually. Years with shorter than average hydroperiods (< 

100 days inundation) resulted in total reproductive failure for the local amphibians, whereas 

years with longer hydroperiods (> 200 days inundation) tended to have the greatest diversity and 

productivity. Hydroperiod timing can also affect the length of the larval period of some species, 

with larvae shortening their maturation time to migrate prior to drying (Semlitsch & Wilbur, 

1988).  

Breeding success is also tied to mean pool temperature and pH variation. Vernal pool 

temperatures can fluctuate dramatically over the course of the season and within the pool itself. 

Seasonal variation can range from 8-30℃ from April to late summer, and a 10℃ difference 

between surface and benthic temperatures is common (Colburn, 2004). Amphibian embryo and 

juvenile development is dependent on temperature, with faster growth and higher survival rates 

occurring at higher temperatures (Stebbins & Cohen, 1995; Davis et al. 2018). However, if 
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temperatures are consistently too high, amphibian growth is reduced. Mean water temperature 

and egg mass density follow a quadratic relationship, with the greatest densities occurring around 

15℃ (Davis et al. 2018). For Spotted salamanders (Ambystoma maculatum), average water 

temperature in vernal pools influences the duration of egg mass incubation, thereby affecting 

breeding success (Brodman, 1995). Levels of pH of New England vernal pools can vary across 

habitats depending on surrounding forests and soil type, but tend toward slightly acidic 

conditions (Colburn, 2004). Permanent and semi-permanent pools have more stable pH 

measurements across seasons (Freda & Dunson, 1985b). Very low pH levels (3-5) during the 

breeding season can stunt embryonic development and larval growth of amphibians (Barth & 

Wilson, 2010). While hydroperiod has been shown to have a significant impact on amphibian 

abundance and distribution (Pechmann et al. 1989, Snodgrass et al. 2000, Babbitt et al. 2003), 

pH and temperature could have compounding impacts on species abundance within a pond when 

considered alongside wetland hydrology. 

Given the consistent results seen, it is no surprise that wetland researchers are advocating 

for a change in how wetland regulation is conducted. Snodgrass et al. (2000) suggested that 

hydroperiod be included as a primary regulation criterion to help create a landscape approach to 

management that considers the small-scale details of each pool and how they impact local 

amphibians. Baldwin et al. (2006) agree, suggesting that particular emphasis be placed on pools 

at the longer end of the hydroperiod gradient. In some cases, conservation efforts and laws on the 

municipal level, where intimate knowledge of local conditions exists and landowner input can be 

considered, may prove more effective for vernal pool protection (Colbert et al. 2011). Colbert et 

al. (2011) provide an interesting case study of vernal pool conservation in Maine, bringing 

developers and private landowners together for a more inclusive attempt at vernal pool 
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conservation. They combined stakeholder interviews with biological surveys to determine 

incentives and a best course of action for amphibian conservation on the property in question. 

Within this case study, developer willingness to incorporate wildlife habitat on the property and 

landowner understanding of and desire for nature made them open to the idea of creating a 

conservation subdivision where the land was managed for amphibians using available biological 

data. Given the prevalence of sprawl in New England and the importance of minimizing 

divisions between amphibian habitats, Colbert et al.’s (2011) case study could prove to be a 

valuable tool for landowner-conscious conservation.  

 

Amphibian surveys in New England 

 

Studies conducted in different areas of New England have generally agreed with the larger 

herpetology community about the importance of hydroperiod to amphibian species richness, 

species diversity, and reproductive success in vernal pools (Babbitt, 2005; Skidds & Golet, 2005; 

Tarr et al. 2005; Brooks & Colburn, 2012). Typical hydroperiod of New England ephemeral 

ponds ranges from 2-44 weeks each year depending on canopy cover, basin depth, and specific 

conductance of surface water (Skidds & Golet, 2005). In Rhode Island, Paton & Crouch (2002) 

observed that four to nine months was the optimal hydroperiod for amphibian reproductive 

success, with the optimal length per pool depending on the species using the pool to breed. 

Similarly, the hydroperiod of 103 separate wetlands in southern New Hampshire had a 

significant effect on both species richness and occurrence patterns of individual species (Babbitt, 

2005). Richness was higher in wetlands with intermediate (greater than 4 months inundated) and 

long (permanently inundated) hydroperiods, so long as fish were absent from the wetlands. 

Babbitt (2005) also observed that wetland size had species-specific impacts on obligate species, 
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but the relationships were not strong in one general direction. For every species surveyed by 

Babbitt (2005), additional studies showed that hydroperiod consistently had a stronger influence 

on richness and occurrence than wetland size (Tarr et al. 2005; Brooks & Colburn, 2012).  

Babbitt’s (2005) study provides a good overview of pool dynamics in southern New 

Hampshire, encompassing a variety of pools across diverse habitat types. However, many pools 

remain yet undocumented and as a result, are under-studied for similar environmental and 

ecological factors. Different environmental and human factors in the immediate area around a 

pool can impact the trends encountered and the species present. Little can be done for 

conservation of upland forest vernal pools if unique pool conditions and species use patterns are 

unknown.  

 

The Glover’s Ledge Vernal Pool System 

 

The GL property in Langdon, NH, owned and managed by Antioch University New England, is 

the focus of many student class projects and theses (Hansen et al. 2015). Four vernal pools were 

confirmed present on the property during two separate studies. Obligate vernal pool species 

spotted salamanders (A. maculatum), Jefferson salamander complex (possible A. 

jeffersonianum/A. laterale hybrids) and wood frogs (Lithobates sylvaticus)  have been 

documented in and around the pools through egg mass/larvae presence surveys (Littleton & 

Frauenhofer, 2014) and with audio recordings (A. Boraski, MS student, AUNE, personal 

communication). Since Littleton & Frauenhofer’s (2014) work, four vernal pools and one 

possible vernal pool were confirmed on the property by an Antioch student during a wetland 

delineation and assessment conducted in 2016 (Kinsella, 2016).  

Much remains unknown about the vernal pool community at GL. Typical hydroperiod 

and seasonal variance in pH, temperature, depth, and extent of the pools are currently not known 
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(P. Palmiotto, Core Faculty, ES, AUNE, personal communication) and the pools have never been 

officially classified according to NH protocols (Tappen & Marchand, 1997). Species occupation 

and use of the pools has been documented in short snapshots, but not over the length of the 

breeding season, between seasons or over other extended periods of time. Littleton & 

Frauenhofer (2014) recommend that the pools present on the property be inventoried further to 

understand obligate amphibian species’ relative abundance and how it is impacted by changing 

environmental parameters (water depth, pool size, pH, dissolved oxygen, turbidity, and 

temperature) throughout a typical vernal pool phenological cycle. With a better understanding of 

the amphibian community on the property, managers could improve amphibian habitat, 

document abundance and richness trends over time, and better understand the connectivity of the 

different habitats present. 
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METHODS 

 

Species Profiles 

 

Mole salamanders (Ambystomatidae) and wood frogs (L. sylvaticus) are categorized as obligate 

vernal pool species since they require pools without predatory fish to maintain their populations 

(Hopey & Petranka, 1994). L. sylvaticus are often the first species to immigrate to pools in New 

England, arriving between late February and mid-April depending on the weather (Paton & 

Crouch, 2002; Colburn, 2004) and marking their arrival with a deafening duck-like chorus. They 

range from 3.7-7cm in length, with a tan to dark brown body and a distinct dark eye mask 

(Powell et al. 2016) (Figure 1a). Females deposit up to 3,000 eggs in a single thick, gelatinous 

mass close to the shallows of the pool. A single adult female typically deposits one egg mass per 

year (Crouch & Paton, 2000). Juveniles typically leave the pool in early summer depending on 

the hydroperiod of their natal pool (Baldwin et al. 2006; Tournier et al 2017).  

A. maculatum arrive slightly after L. sylvaticus, the two often jockeying for position 

within the same pools when their timing overlaps. These salamanders can reach lengths of up to 

20cm and are black or grey with up to 50 bright yellow spots arranged into unique patterns 

across their backs (Tappan & Marchand, 1997; Powell et al. 2016) (Figure 1b). After the females 

deposit their eggs (averaging around 100 per mass per female) on submerged twigs and 

vegetation, they return to the uplands. Each female deposits 2-4 egg masses every 1-3 years 

(Petranka, 1998). Juveniles are benthic feeders and remain in the pool until late summer or early 

fall, when they metamorphose and disperse from their pools back to the uplands (Colburn, 2004).  

The Jefferson complex of salamanders refers to a subset of salamander hybrids and 

mixed-genotype individuals that are able to reproduce with each other. In the Northeast, 

members of this group are typically unisexual individuals with some mixture of Jefferson 
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salamander (A. jeffersonianum) and Blue-spotted salamander (A. laterale) genetic information 

(Bogart et al. 2007). Most individuals are unisexual females who mate with a host of either 

species to stimulate egg fertilization and produce genetically identical offspring (Charney et al. 

2014). Members of this complex can be difficult to distinguish as offspring may look similar to 

either parent or display intermediate characteristics, and unisexuals may even contain some DNA 

from their host father species (Tappan & Marchand, 1997; Colburn, 2004; Bogart et al. 2007). 

Jefferson complex salamanders vary greatly but range between 10-18cm in length and are dark 

brown to gray with some displaying flecks of white or pale blue along their body (Powell et al. 

2016) (Figure 1c). They typically breed a few days or weeks prior to A. maculatum and 

concentrate their breeding to a length of only a few days depending on weather. Females deposit 

highly variable amounts of egg masses — depending on the hybridization — typically ranging 

from 6-30 eggs per mass (Tappan & Marchand, 1997). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1b: Spotted 

salamander (Ambystoma 

maculatum), a common 

obligate vernal pool 

amphibian in New 

England. Tom Tyning, 

Public domain, Wikimedia 

Commons. 

Figure 1c: Jefferson salamander 

(Ambystoma jeffersonianum), a common 

obligate vernal pool amphibian in New 

England. Albert Herring, Creative 

Commons 2.0, Wikimedia commons. 

Figure 1a: Wood frog 

(Lithobates 

sylvaticus), a common 

obligate vernal pool 

amphibian in New 

England. Peter 

Paplanus, Creative 

Commons 2.0, 

Wikimedia commons. 

https://creativecommons.org/licenses/by/2.0/deed.en
https://creativecommons.org/licenses/by/2.0/deed.en
https://creativecommons.org/licenses/by/2.0/deed.en
https://creativecommons.org/licenses/by/2.0/deed.en
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Site Description 

 

GL is a 0.4km
2
 parcel situated northwest of NH Route 123 and southwest of NH Route 12A in 

the town of Langdon, NH (Figure 2). Average annual temperatures range from 1 – 15
o
C and 

average annual rainfall is 118cm (US Climate Data, 2020). Since 2014, the property has been 

owned and managed by Antioch University New England as an outdoor classroom and living 

laboratory for conservation. The main forest type of the area is hemlock, beech, oak, and pine 

(Sperduto and Kimball, 2011) ranging in age-class from early to late successional (AUNE, 

2019). The property also contains outcroppings of bedrock, streams, a pond, a hemlock-

cinnamon fern swamp, three defined vernal pools, and two probable vernal pools (Figure 2). 

Through multiple studies, students and professionals have documented over 400 different species 

within the borders of GL including breeding evidence of three obligate amphibian vernal pool 

species (Littleton & Frauenhofer, 2014). Exact hydroperiod of the local pools is not currently 

known but other studies in New England have found pools in similar habitats to range 2-44 

weeks each year (Skidds & Golet, 2005; Tarr et al. 2005) depending on canopy cover, basin 

depth, and specific conductance of surface water (Skidds & Golet, 2005). 

This study encompasses three vernal pools: two (Lookout Lane and Swamp) are located 

near the center of the property in a swampy depression and the third (Stone Wall) abuts the 

northern boundary of the property.  Lookout Lane (LL) and Swamp (SWP) occupy the same 

wetland basin and are separated only by a marshy swamp area. There is a seasonal stream that 

can provide a hydrologic connection between the two during wet years. Both are surrounded by 

hemlock (Tsuga canadensis), cinnamon fern (Osmundastrum cinnamomeum) and beech (Fagus 

grandifolia) forest. SWP is suspected to be a permanent pool as it feeds a small stream and has 

been previously seen filled late into the summer months (personal observation). LL may be 



15 
 

permanent or semi-permanent, as it occupies the same wetland but sits uphill of SWP. LL 

contains much downed and submerged woody debris, an important component for obligate 

species as they rely on such material as attachment sites for their eggs. Stone Wall (SW) is much 

smaller than the other pools and has been reported to be a temporary pool (P. Palmiotto, Core 

Faculty, ES, AUNE, personal communication). An old stone wall forms the northern edge of this 

pool and the pool feeds a small seasonal stream. The 2014 NRI of the property confirmed that 

each of these pools contained one or more of the three obligate amphibian species on site: L. 

sylvaticus, A. maculatum, and Jefferson complex salamanders (Littleton & Frauenhofer, 2014). 

 

Experimental Design 

 

I sampled amphibian breeding activity and pool conditions once weekly for 20 weeks in 

the 2020 breeding season (March 15-July 27, 2020). On March 15
th

, 2020 I inserted hydrologic 

depth stations in each of the three pools to monitor water depth (cm) throughout the season. 

These stations provided consistent locations for depth readings (cm) each week and served as 

relative markers for collection of pH and temperature data throughout the season.  

I collected water and air temperature (degrees C) and water pH readings weekly from the 

shore and 1m off-shore of each pool to limit foot traffic inside the pool. I measured the weekly 

perimeter of each pool using GPS tracks around the edges of each pool to track changes in pool 

shape and extent throughout the growing season. Pool edges were defined as areas connected to 

open water without barriers of vegetation or large stretches of exposed mud that would prevent 

amphibian larvae movement (i.e., swampy areas that lacked open water were not counted as part 

of the ‘pool’). Weekly rainfall amounts (cm) and air temperature (degrees C) data for the site 
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were gathered using a Rainwise unit (RainLog, RainWise Inc, Bar Harbor, ME) and a Kestrel 

unit (Drop2, NK, Boothwyn, PA) placed on an open-canopy tract near the pools.  

 

 

Figure 2: Map of Glover’s Ledge property with main features marked, Landon, NH. “Unkn” 

pools are locations where vernal pools are probable but have not been confirmed. Map created by 

Kim Snyder. 

 

Spatial analysis of pool extent was calculated using ArcGIS 10.8 software 

(Environmental Systems Research Institute, Redland, CA). GPS waypoints from each pool were 

connected and turned into shapefiles that provide an aerial extent of each pool each week. Each 

perimeter polygon was overlayed to create a time-lapse visual of pool perimeter changes across 

the season. 



17 
 

I characterized amphibian breeding data through weekly auditory surveys and weekly 

visual egg mass surveys during the breeding season (March 15-May 3, 2020). When used in 

conjunction with density studies such as egg mass counts, auditory surveys can provide frog 

density estimates of the immediate habitat around target areas (Heyer, 1994). AudioMoth 1.0 

recorder units (Open Acoustic Devices, Southampton, UK) were placed near the pools to record 

at 2-minute intervals every 15 minutes from 8:30pm to midnight EST as recommended by A. 

Boraski (personal communication, 2020). One unit was placed at SW 5m from the north end of 

the pool. Another unit was placed in the swamp between SWP and LL roughly 20m from the 

edge of each pool. This second placement was due to the lack of a third unit available for use. 

Intensity of calling activity was categorized from the recordings using the 0-3 scale from 

FrogWatch protocols (AZA, 2020), where 0 is no calling and 3 is a continuous chorus of 

overlapping calls. The scores from each weeks’ recordings were averaged to determine an 

average weekly metric of calling intensity and create a timeline of frog activity at each pool.  

Each week from mid-April to June, I recorded the number of egg masses of each species 

visible in the pools and marked the location of each individual mass within each pool on a pool 

sketch. The previous week’s sketch was consulted after the next week’s count to verify if any 

egg masses were missed or new ones spotted. Visual sighting and identification from land was 

necessary to ensure minimal disturbance to the substrate, developing eggs, and any hatched 

larvae (Heyer, 1994; Tappan & Marchand, 1997). Surveys of egg masses continued from the first 

visual encounter of breeding adults or egg masses (April 12) until two consecutive weeks of no 

visual encounters of egg masses (June 14). No egg masses were encountered prior to April 12
th 

or after June 14
th

, 2020. When possible, any egg mass that was close enough to reach from the 
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shore was handled once while submerged to aid identification while limiting disturbance to the 

eggs (See Appendix B – Egg Mass Handling Guide).  

As egg masses began to hatch, I used weekly dip net surveys of larvae in place of egg 

mass surveys (June 14 ˗ July 27). Every week, each pool was sampled from the shore along 3 

new randomly-placed 1m line transects to limit substrate disturbance (Heyer, 1994). Transects 

were parallel to shore and the 1mm mesh net was dragged once along the pool bottom. All 

substrate and other materials collected were transferred to a small bucket for processing. Any 

individuals caught were observed in a vial of vernal pool water briefly to confirm 

taxaidentification and count and then gently released. I compared the frequency of each species 

encountered across the pools to estimate abundance (individuals m
-2

) of each species per pool. 

Dip net surveys continued until the pools dried up in late July.  

 

Data Analysis 

 

I used general linear models to assess the effects of vernal pool dimensions and water depth, pH, 

and temperature on weekly egg mass counts per each pool separately. A forward selection 

approach was used to compare models and determine which variables or combination of 

variables has the most influence on the response variables of interest. I also used a Poisson 

regression to determine when and how many A. maculatum egg masses were likely to be 

encountered in each pool. All statistical analyses were conducted with R software (R Core 

Development Team, 2017), and statistical significance was determined at alpha = 0.05 unless 

otherwise noted. 
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RESULTS 

 

Weather 

 

New Hampshire had a dry year in 2020, with total rainfall from Jan-Sept totaling only 152.5cm 

(US Climate Data, 2020). May and September were particularly dry months with only 12.6cm 

and 2.52cm of rainfall, respectively, as recorded by the nearby North Walpole, NH weather 

station. July saw the maximum temperature of 36
 o

C and February recorded the minimum 

temperature of -25
 o
C. Average temperature from Jan-Sept was 13.5

 o
C, within the range of a 

typical year in this region (12-15
o
C).  

 

Audio analysis 

 

Audio recordings from the pools revealed no L. sylvaticus activity. In-person dusk surveys 

conducted on May 2
nd

 to supplement recordings revealed a high number of spring peepers 

(Pseudacris crucifer) utilizing the pools and only one or two individual L. sylvaticus utilizing the 

LL pool. This limited use by L. sylvaticus was further evidenced by the low number of egg 

masses encountered overall. The May survey also noted a multitude of L. sylvaticus calling from 

the pond on the southwest end of the property (magnitude of 3 via AZA protocols from 6pm to 

midnight). Several L. sylvaticus adults were individually heard or encountered in and around the 

LL pool (n = 7) in April and May.  

 

Pool Profiles 

 

Pool monitoring occurred over 20 weeks from March through August of 2020. Of the three 

pools, only Swamp (SWP) was sampled all twenty weeks, as it was the only pool that did not dry 

up before then. Stone Wall (SW) dried up after 12 weeks of sampling (early June) and Lookout 

Lane (LL) after 19 weeks (late July). The SWP pool still contained water during the last week of 

monitoring and into August, although the perimeter had retreated considerably.  
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Figure 3 A-D: Profiles of each pool sampled. A) Mean and range of area per pool: 

SWP mean = 480.5m; LL mean = 256.2m; SW mean = 59.7m.  

B) Max depth mean and range per pool:  SWP mean = 62.25cm; LL mean = 

26.36cm; SW mean = 23.73cm. C) pH mean and range per pool: SWP mean = 6.8; 

LL mean = 6.6; SW mean = 6.5. D) Temperature mean and range per pool: SWP 

mean = 10.8 C; LL mean = 11.4 C; SW mean = 7.6 C 

 

 

 

 

 

 

 

Area varied per pool with a sizable range for the larger pools (SWP and LL) and a 

smaller range for the smaller pool (SW). SWP varied in area from 795.9m
2
 – 261m

2
 (mean = 

480.5m
2
). LL was slightly smaller with area ranging over the course of the monitoring from 

533m
2
 – 79m

2
 (mean = 256.2m

2
) before drying up. SW was the smallest and had the smallest 

range from 81.9m
2 

– 6.6m
2
 (mean = 59.7m

2
) before drying up (Figure 3A, Figure 5). Maximum 

depth for pools ranged from 65.5cm (SWP) to 27.8cm (SW) with mean depths ranging from 

62.25cm (SWP) to 23.73cm (SW) (Figure 3B). SWP was markedly deeper than the other pools 

and was the only one to not dry up by the time monitoring ceased. SWP showed the least 

variation in depth change (65cm – 57cm). Levels of pH varied least of all the parameters 

sampled, with all pools ranging between 7.5 and 6.1 (Figure 3C). SWP was the most consistent 

overall (mean = 6.8). Temperature profiles per pool were very consistent (Figure 3D), with all 
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pools having similar temperatures week to week (Figure 5). SWP was consistently the coldest 

pool but only by a few tenths of a degree.  

Area of all pools fluctuated weekly (Figure 4 and Figure 5) with only SW remaining 

fairly consistent. Each pool hit a point in the season where area dropped precipitously; both SW 

and LL dried up 3-4 weeks after this drop. SWP was the only pool not to dry up after this decline 

but it had a similar precipitous drop in the penultimate week of sampling (Figure 4). In all but the 

SW pool, this drop followed the appearance of flower buds on trees in the surrounding forest. 

The August 29
th

 check on the SWP pool revealed enough water for obligate species to occupy it 

but the pool edges had shrunk considerably.  

Figure 4: Area (m
2
) of pools sampled over the duration of 

monitoring. Date represents day of the year from January 1
st
. 
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Figure 5: Map of changing pool areas (m

2
) over the duration of monitoring. The shifting 

appearance of the SW pool is due to inaccurate GPS readings in the first few weeks of data 

collection. The area was too small for the GPS to accurately capture so we switched to stick and 

tape methods of measurement. Map created by Emmy Whistler using Kim Snyder’s data. 
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Temperature and pH over the duration of monitoring followed similar season-long 

upward trends with a few weekly dips (Figure 6 and Figure 7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Temperature (C) of pools sampled over the duration of monitoring.  

Date represents day of the year from January 1
st
. 

 

Species abundance and distribution 

 

L. sylvaticus eggs were observed only in one pool (LL) and counts were minimal (max = 9). 

They were excluded from the analysis due to this low sampling return. LL was also the only pool 

with Jefferson complex (A. jeffersonianum/A. laterale hybrids) salamander eggs visible. A 

maximum of 4 egg masses were seen on April 19
th

. They were also excluded from this analysis 

due to low sampling. Figures 8A and 8B illustrate the range of A. maculatum egg mass counts 

per pool and when egg masses were encountered. 
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Figure 7: pH of pools sampled over the duration of monitoring. Date represents day of  

the year from January 1
st
. 

 

In addition to being the only pool to host L. sylvaticus eggs, the LL pool supported the 

greatest number of A. maculatum egg masses with a maximum number of 63 egg masses counted 

on May 10
th

, 2020. SWP had a maximum of 46 A. maculatum eggs counted on April 25
th

 and 

SW contained a maximum of 23 A. maculatum egg masses on May 16
th

. All pools contained egg 

masses for 7 weeks before larvae hatched (except for SW, which dried up prior to larval 

emergence). Results of the poisson regression model predicted counts of A. maculatum egg 

masses using date for each pool can be seen in Figure 9. Forward selection revealed that the 

strongest model included pool, date, and area as predictor variables, and abundance decreases 

significantly with both date and area (z = 2.897, df = 33, P = 0.007). The model showed a range 

of expected egg masses per day per pool with the median upper limit being 12.4 egg masses and 

the median lower limit 8.8. A goodness of fit test showed no evidence for lack of fit and the 

poisson model was significant (z = 21.491, P = 2e-16).  
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Figure 8 A-B: A) Range of A. maculatum egg mass counts per pool across all weeks of 

sampling. B) Number of A. maculatum egg masses encountered in each pool over the course of 

the survey. Date represents day of the year from January 1
st
. 

 

 

  

Figure 9: Poisson regression of when A. maculatum egg masses are most likely to 

be encountered for each pool and expected range of how many will be present on 

that date. 
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Juvenile density of A. maculatum peaked at July 13

th
 for LL and July 20

th
 for SWP 

(Figure 10). The SW pool also contained fairy shrimp (Anostraca) for several weeks in March 

and April — the first documented sighting of these obligate vernal pool invertebrates at Glover’s 

Ledge. 

 

 

 

 

 

 

 

 

 

 

Figure 10: A. maculatum juvenile density encountered in each pool by date. SW 

is excluded because no A. maculatum egg masses were able to hatch from that 

pool before it dried up. Date represents day of the year from January 1
st
. 
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DISCUSSION 

 

This study is only a single-year snapshot of the GL vernal pool system, so it is too early to draw 

any conclusions about population health or trends from these data alone. However, these baseline 

data may prove important in beginning to understand the GL amphibian community and reveal 

areas where we can focus our efforts to improve future studies and management efforts.   

 

Pool Profiles and Implications for Obligate Species 

 

The GL pools displayed typical profiles to other New England vernal pools. The range of pH 

levels (6.1 - 7.5) were slightly higher than expected for pools located in the Connecticut River 

Valley (4.75 – 6.82) (Colburn, 2004). The hydroperiod of GL pools was 12-20+ weeks, while 

typical hydroperiod of New England ponds ranges from 2-44 weeks each year depending on 

canopy cover, basin depth, and specific conductance of surface water (Skidds & Golet, 2005). 

Longer hydroperiods are correlated with both increased amphibian species richness (Snodgrass 

et al. 2000) and larger population sizes of obligate species (Paton & Crouch, 2002; Baldwin et al. 

2006).   

Across all three pools, the GL ponds could support amphibian larval growth for a period 

from 12-20+ weeks each year. Every vernal pool on the property, even the one fed by a natural 

seepage (SWP), reached a point in the year where it was completely dry. For the smallest pool 

(SW), this occurred in mid-June, before any egg masses could hatch. For the larger pools, drying 

occurred in late July (LL) and late August (SWP). This was most likely a reflection of the very 

dry year that New Hampshire experienced in 2020, as well as high summer temperatures.   

Pond drying time and speed are important factors in larval amphibian survival. Semlitsch 

& Wilbur (1988) tested the effect of drying speed on larval survival of the mole salamander 

(Ambystoma talpoideum) and discovered a positive correlation between drying speed and the 

number of larvae to metamorphose. Pond drying was an important influence on larval survival, 
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as larvae that were able to match their growth process to rising pool temperatures and complete 

their metamorphosis before drying had better chances of survival in variable ponds. In a later 

study, Semlitsch et al. (2015) determined that intermediate pond sizes of 100-1000m
2
 were most 

likely to produce larvae, recruit juveniles to adulthood and generally be more diverse than 

smaller or larger pools. For the GL pools, average pool area of LL (256.2m
2
) and SWP 

(480.5m
2
) fell within Semlitsch et al.’s (2015) criteria. Of the two, the smaller pool on average 

(LL) had higher diversity (3 species) and higher egg mass counts. SW (average area 59.7m
2
) was 

below Semlitsch et al.’s (2015) intermediate size threshold.   

Based on their late-May hatching — characterized by the sharp drop in egg mass counts 

and corresponding increase in larvae density — larvae from the LL and SWP pools would have 

been ready to leave the pools around late July, if they’d reached their minimum metamorphosis 

sizes (Colburn, 2004). In New England, most vernal pool obligates require 4-9 continuous 

months of pool inundation (typically March – August) to allow 95% of metamorphs to 

successfully leave pools (Paton & Crouch, 2002).  Since LL and SWP retained their water until 

late July, I suspect that some of the faster-growing larvae would have been able to escape the 

pools before they dried. Larvae density peaked 4-5 weeks after the egg mass counts declined, 

with larvae displaying limb metamorphosis and gill reduction as weeks progressed. There is no 

scale for what a ‘typical year’ looks like for the GL pools but if we take the assumption that this 

study represented a dry year, LL and SWP probably retain water into August in ‘normal’ years 

and perhaps even into September in wet years. Given how early SW dried up, I suspect that 

juveniles emerge from that pool only in very wet years when it is able to retain water into 

summer.  
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Obligate Species Use of Pools 

 

In the Northeast, March and April are the months when vernal pool obligate egg masses are 

expected to be encountered, but they may be encountered in New Hampshire as late as July or 

August depending on pool characteristics and seasonal climate variation (Tappan & Marchand, 

1997). Larvae of all three target amphibian species are typically encountered anytime between 

May and September, with metamorphosis occurring between late July and early December 

(Tappan & Marchand, 1997). In the GL pools, eggs were first encountered in mid-April and 

larvae last found in late July with some signs of metamorphosis occurring.  

The only species that the GL pools supported in significant numbers was A. maculatum. 

While L. sylvaticus was observed in large numbers in the large pond on the southwest edge of the 

property, only 9 egg masses were encountered within the study pools. I deemed these data 

insufficient for richness and abundance comparisons as only one pool (LL) contained multiple 

amphibian species. 

 Baldwin et al. (2006) used reproductive effort as a relative indicator of breeding 

population size and consequently pool and terrestrial habitat quality. Based on the egg masses I 

encountered and using the Crouch & Paton (2000) guideline that 1 egg mass represents 1 L. 

sylvaticus female, it appears that the upland population of L. sylvaticus  at GL is only about 20-

30 individuals (assuming there are 1-2 males for every breeding female (Colburn, 2004)). This is 

consistent with my audio and night surveys, which revealed little auditory evidence of breeding 

L. sylvaticus around the pools. In-person audio surveys in May along with a low sample size of 

egg masses across pools indicated that the local L. sylvaticus population might mainly breed in 

the pond in the southwestern section of the property rather than in the vernal pools. The frogs 

had a much louder presence at the pond on the property, so the pond will need to be studied in 

the future for an accurate assessment of the L. sylvaticus population at GL. Why the frogs would 

prefer to breed in the pond rather than the upland pools is a question for further study. Multiple 
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years of data are necessary to estimate L. sylvaticus populations reliably and they must account 

for all breeding pools, as the frogs may shift pool use year to year (Raithel et al. 2011). 

For the upland A. maculatum population, the best I can determine is a probable range of 

33-66 females based on the maximum number of egg masses spotted (n = 132 from combining 

all pools) and the Petranka (1998) guideline that each A. maculatum female lays 2-4 egg masses 

every 1-3 years. While these estimates can serve as a baseline, they should not be considered 

accurate population estimates without further study.  

 Littleton & Frauenhofer (2014) reported egg masses from Jefferson’s complex 

salamanders in their initial survey, but did not indicate which pool they encountered them in or 

when they surveyed for them. I recorded some Jefferson’s egg masses in the LL pool but saw no 

evidence of juveniles emerging from that pool.   

 Anostraca were only encountered in the SW pool in late March and again in late April. 

These obligate invertebrates had never been previously recorded in Glover’s Ledge pools and 

their presence indicates seasonal wetlands (Colburn, 2004). Anostraca typically inhabit and rely 

on pools with shorter hydroperiods (< 4 months inundation) to support their breeding. These 

short-hydroperiod pools can also support unique community assemblages, compared to 

permanent wetlands or pools with longer hydroperiods (Gibbs, 1993). 

 

Management implications 

 

If drought conditions continue at GL and in the Northeast, we may need to assess how to 

increase pool hydroperiods to support local amphibian populations. The major threats to vernal 

pool health include physical destruction or filling, loss of their surrounding habitat, hydrologic 

alterations from changes to the watershed or surrounding landscape, pollution, and isolation of 

pools from other nearby pools (Stebbins & Cohen, 1995; Tappan & Marchand, 1997; Colburn, 

2004; Scott et al, 2013). Thankfully, due to the conservation easement goals of GL, destruction, 
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pollution and isolation are very unlikely to occur. In order to protect proper hydrology for the 

pools, GL staff should take steps to determine the water sources for each pool and, if necessary, 

work alongside neighboring landowners to ensure the health of the pools.  

Managers at GL often create wildlife openings to maintain a diversity of habitat types and 

to control for invasive species. There are two such cuts uphill just west and southeast of the SWP 

and LL pools (Figure 2). For future cuts or maintenance of these openings, staff should monitor 

the pools to determine if nearby forest management practices impact pool hydrology or species 

presence in pools.  

A. maculatum egg mass counts in Rhode Island were positively associated with the 

presence of upland forest area within 1 km of the pool (Skidds et al. 2007). A similar study in 

Massachusetts determined thresholds for obligate species persistence in forested habitat 

surrounding their breeding pools that may provide a helpful baseline for future cuts (Homan et 

al. 2004). Such thresholds for A. maculatum were ~30% forest cover at a buffer of 100m or less 

from the pond edge, 41% cover at 500m, and 51% habitat cover at 1000m. Thresholds for the 

presence of L. sylvaticus were 88% habitat cover at 30m from the pond edge, declining to 44% 

habitat cover within a 1000m buffer (Homan et al. 2004). 

In addition, climate change promises to exacerbate current threats to amphibians and alter 

regional climate patterns (Miller et al. 2018), which could make years like this one with hot, dry 

summers typical. GL staff should determine how important precipitation is to pool volume and 

hydroperiod and what, if anything, can be done to sustain pool hydrology. 

 

 

Recommendations for Future Work 

 

Because this is only a single year of data, it is hard to draw any definite conclusions about the 

health of the amphibian population at GL or whether this year was representative of a typical 

year or not. These data could serve as a baseline for future work and be included in longer-term 
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studies of the property. With a better understanding of the amphibian community, managers of 

GL could improve amphibian habitat, document abundance and richness trends in the pools over 

time, and better understand the connectivity of the different habitats present. Future studies of the 

GL vernal pool system should also consider factors such as pool distance from roads, canopy 

cover, and microtopography for the impact they may have on juvenile or egg mass density. 

More research must be conducted on GL amphibians before management plans are 

created. But this study provides some baselines for where to start. A population estimate should 

be conducted, utilizing egg mass data over multiple years and live-trapping of adults and 

migrating juveniles. The hydroperiods of each vernal pool on the property should be monitored 

over several years and averaged to better understand the habitat and breeding quality of each 

pool.  

Maintenance of a diversity of wetland hydroperiods in a landscape is a good way to 

protect amphibian biodiversity (Semlitsch, 2000), since amphibian species richness is influenced 

by wetland hydroperiod more then by wetland size (Snodgrass et al, 2000; Babbitt, 2005). While 

the pools at GL are at little risk of being filled in or removed, steps should be planned to ensure 

their continued health and presence. Forestry best management practices from New Hampshire 

recommend these guidelines for protecting vernal pools from sedimentation and premature 

drying: limit tree removal and maintain existing understory vegetation within 200ft (61m) of a 

pool, avoid depositing slash in pool basins, and avoid creating skid trails or surface disturbances 

such as roads or paths that may impede water flow or amphibian movement in and out of pools.  

Beyond the 200ft buffer, limit the area logged to what is necessary for wildlife objectives and 

retain as much existing understory and dead and down woody material as possible (Bennett et al. 

2010). 
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Appendix A 

Data Form for Weekly Pool Surveys 
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Observation Datasheet 
 

Weekday, Date, Year        Pool Observed 
 

Duration of observations 
 

 

 

 

 

 

 

 

 

Phenological phase of understory (circle all that apply) 

 

Leaf Buds    Furled Leaves     Full-size Leaves    Flower 

Buds   

 

Ripe Fruits      Colored Leaves    Falling Leaves 

 

Phenological phase of canopy (circle all that apply) 

 

Leaf Buds    Furled Leaves     Full-size Leaves    Flower 

Buds   

 

Ripe Fruits      Colored Leaves    Falling Leaves 

 

 

Rain Gauge Reading: ___ cm 

Observer:  

Pool Depth   N  E  S  

W 

Hydro station:  

 

1m from edge:  

 

Pool pH   N  E  S  

W 

Edge:  

 

1m from edge: 

 

Pool Temperature  N  E  S  

W 

 Edge:  

 

1m from edge: 

 

 

Enter egg mass data on reverse side! 
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Pool sketch (mark hydro station and include locations of any encountered egg 

masses/individuals) 

N 

 
 

Full pool perimeter: _________ m 

 
 Wood Frog Spotted Salamander Jeff. Complex Unknown 

# of egg masses     

# of adults sighted     

# of juveniles sighted     

Visit comments: 
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Appendix B 

Text for Interpretive Signage at the Glover’s Ledge Vernal Pools 
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In front of you is a vernal pool. 

Look carefully. Please don’t step in the pools! Depending on when you are visiting, this may not 

look very much like a pool. Vernal pools are temporary bodies of water that fill up in the spring 

from snowmelt and rain and dry up in summer or autumn. If you are reading this in late summer 

or autumn, you may be looking at a puddle or a patch of mud. But if you are here in the spring, 

you are probably seeing a small pond. 

No matter the season, these pools are incredible places for many of Glover’s Ledge’s creatures. 

Try using your senses to explore these vernal pools and their inhabitants! 

 

Touch – Sphagnum moss is often found around vernal pools. Feel the soft moss growing at the 

pool edges. Stick your fingers in the water and feel how cold it is.  

 

Smell – Take a deep breath. The pools may not smell so nice! This is because all of the dead 

leaves at the pool bottom are decaying very slowly and releasing some smelly methane gasses. In 

spring, see if you can smell the evergreen hemlocks nearby. In autumn, see if you can smell the 

dying leaves. 

 

Hear – In the springtime, frogs gather in the pools to mate and lay eggs. Listen for a chorus of 

spring peepers as dusk falls and the occasional quack of a wood frog. In all seasons, listen for 

several different species of birds that live around the pools – ovenbirds, winter wrens, black-

throated green warblers and many more in spring and summer, and chickadees and nuthatches 

into the winter! 

 

See – There is always something to see at a vernal pool! In the spring, look for egg masses of 

salamanders and frogs. In summer, see if you can spot the salamander larvae and tadpoles 

swimming around. In the fall, if you are lucky, you may see a juvenile salamander crawl out of 

the water! Watch for frogs and birds year-round (except in the dead of winter).  

 

Inhabitants of the vernal pool 

A vernal pool is a special habitat. Since it is temporary, predators like fish are less likely to be 

present. Fewer predators make this the perfect place for salamander and frog larvae to grow 

without fear of being eaten.  

 

Spotted salamanders – These mole salamanders spend most of their lives underground eating 

invertebrates, but in the spring they leave their underground homes to travel to vernal pools to 

breed. Larvae have to grow fast, as they need to be ready for life on land before their pools dry 

up. Larval salamanders eat any kind of insect or worm they can get in their mouths and rely on 

aquatic insects to feed themselves as they grow. 

 

Wood frogs – Wood frogs primarily breed in small, fish-free pools. On warm spring afternoons 

and nights, their mating calls can sound like a flock of ducks has landed in the pool. The tadpoles 

eat algae, insects, and vegetation to grow as fast as they can. They leave the pools in late summer 

once they grow limbs and lose their tails. 

 

Spring peepers – Peepers are best known by their loud and constant springtime calls. Males fill 

the spring nights with their chorus, calling to try to find mates. Peepers will breed in any type of 

pond but take advantage of vernal pools when they can due to the lack of predators.  
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Caddisflies – These little invertebrates build themselves tiny homes of leaves, sticks, and grit to 

carry around with them! They feed on the dead leaves in vernal pools. In summer, they will 

transform into winged adults and leave the pools to mate.  

 

Mayflies – These are good sources of food for growing salamanders and frogs. Like caddisflies, 

mayflies feed on dead leaves and leave the pools in summer once they complete their 

transformation into flying adults. 

 

Painted turtles – These common turtles can be seen in the larger vernal pools whenever they 

have water. They feed on vegetation, invertebrates, crustaceans, and tadpoles.  

 

Bull frogs – These large frogs are common across ponds in the Northeast, where they feed on 

anything they can get in their mouth, including rodents, small turtles, and tadpoles. They 

frequent the pools in spring and summer.   
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Appendix C 

Egg Mass Handling Guide 
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All photos taken by Kim Snyder 

 

 

 

Amphibians are sensitive to diseases that can be spread from pool to pool on 

contaminated boots and field gear. If you are visiting multiple pools, clean your 
boots and gear of any mud or vegetation before traveling between pools. At the 

end of the day, disinfect all gear with a 4% bleach solution to kill viruses and 

bacteria. 
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Appendix D 

High School NGSS curriculum: Activity for Visiting Students 
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How might climate change affect Glover’s Ledge’s vernal pools?  A one hour, 

two-part data exploration lesson.  This is an inquiry-based, interactive lesson used to encourage 

10-12
th

 graders to collect observations, examine data and answer questions with that data. 

(Lesson may be repeated more than once if desired) 
 

Climate change is expected to change our seasons in New England. Summers will become hotter 

and longer while winters become warmer and shorter. Because of this, forests are expected to get 

drier over time as less snowfall accumulates and less rain falls. Vernal pools are temporary 

wetlands in forests that rely on snowmelt and rainfall to keep them filled from the spring to the 

fall. These pools are used by salamanders and frogs to lay their eggs and are important feeding 

grounds for the amphibian larvae throughout summer. 

 

What do we want students to understand and be able to do at the end of this lesson? 
1. Students will understand the relationship between vernal pool hydroperiod and climate.  

2. Students will understand how to create a data set and make factual statements about the data 

set.  

3. Students will be able to consider how their data set can be used to answer questions. 

4. Students will be able to generate their own questions that could be explored with the data they 

collect. 

Keywords: climate, weather, amphibian, hydroperiod, average, trend, metamorphosis, 

ecosystem, habitat 

 

What will students do to develop and demonstrate this understanding?  

Students will collect depth or temperature measurements from several points at the edges of the 

vernal pool and create a data set of their measurements. This might include date of visit, depth 

from each point, current weather conditions and anything else they observe. Students will create 

bar graphs of depth at each point they sampled and save their data for future observations. 

Students will record rainfall between visits (if any) or gather rainfall data from 

WeatherUnderground. 

Students will hypothesize about how the pools will change upon their follow-up visit. 

Students will repeat data collection at a second visit (2-4 weeks after first visit) and use it to 

create a similar data set. This may be repeated multiple times if desired. 

Students will examine their 2+ datasets and generate true statements from their data. 

Students will create a graph of depth/temperature at each of their sampling points and compare 

the weeks they sampled. Using this graph, students will determine if their hypothesis was 

correct. They will also generate new questions from the data they have or observations they have 

made. 

Students will share their observations, predictions, graphs, and questions with classmates. 

 

Lesson Overview: 
1. Goal: Help students understand link between climate and the vernal pool ecosystem. 

2. What is a vernal pool? Have students read defining information from books or use the websites 

below:  

a. Vernal Pools | UNH Extension 

b. What Is A Vernal Pool? - WorldAtlas 

3. Visit Glover’s Ledge vernal pool and complete the data collection process described above. 

Repeat this process as many times as desired. 

https://extension.unh.edu/resource/vernal-pools
https://www.worldatlas.com/articles/what-is-a-vernal-pool.html
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4. Have students generate a list of true statements they can make from these data. Focus on 

trends they can see, and other observations they made. 

5. Come back together and share out their true statements from the data in two columns, one for 

each parameter: temperature and depth. 

6. Using their true statements, have the students think of questions that these true statements 

could answer.  

a. Statement: The vernal pool temperature rose 5 degrees between visits. 

b. Question: How much did vernal pool temperature rise over 3 weeks? 

7. Now examine the weather data from each location and generate true statements. 

8. Have students create graphs of their data and graphs of weather data. Compare the graphs and 

share their thoughts with the class. 

 
Supplies: Graph paper, rulers, thermometer, pen/pencil, WeatherUnderground website or 

printout.  
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Appendix E 

Pool Profile Infographics* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
*All photos taken by Kim Snyder 
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