
 

 

 
 
 
 
 

A Bayesian Total Factor Productivity Analysis of Tropical Agricultural 

Systems in Central-Western Africa 

And South-East Asia 

 

 

 
Axel Tonini

1
, Silvia Saravia Matus

2
 and Sergio Gomez y Paloma

2
 

 
1International Rice Research Institute, Social Sciences Division, Los Baños, Laguna, Philippines 

2European Commission, Joint Research Center, Institute for Prospective and Technological 
Studies, Agriculture and Life Sciences in the Economy Unit, Seville, Spain 

 

a.tonini@cgiar.org 

 

 

 

 
 

 

 

 
Paper prepared for presentation at the EAAE 2011 Congress 

Change and Uncertainty 
Challenges for Agriculture, 
Food and Natural Resources 

 
August 30 to September 2, 2011 
ETH Zurich, Zurich, Switzerland 

 

 

 

 

 

 

 

Copyright 2011 by Axel Tonini, Silvia Saravia Matus and Sergio Gomez y Paloma.  All 

rights reserved.  Readers may make verbatim copies of this document for non-

commercial purposes by any means, provided that this copyright notice appears on all 

such copies. The views expressed are purely those of the authors and may not in any 

circumstances be regarded as stating an official position of the European Commission.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by JRC Publications Repository

https://core.ac.uk/display/38622817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 1 

A Bayesian Total Factor Productivity Analysis of Tropical 
Agricultural Systems in Central-Western Africa and 

South-East Asia  

Abstract 
This paper computes and analyses total factor productivity (TFP) growth rates for tropical 
agricultural systems in Central-Western Africa and South-East Asia. Two regions that 
despite sharing common agro-ecological conditions, have pursued different adoption rates 
of green revolution technology and have reported dissimilar yields per hectare. A panel 
data set is constructed for the period 1987-2007 from the FAOSTAT database. A 
Bayesian stochastic frontier model with country specific temporal variation in technical 
efficiency is estimated. Technical efficiency estimates reveal that there is substantial room 
for improvement in both continental sub-sets and that TFP estimates show on average 
larger rates of growth for South-East Asian countries as compared to Central-Western 
African countries. Results indicate that TFP is mostly driven by technical change and 
countries such as Benin, and Gambia display catch-up. 
Keywords: Bayesian Inference, Stochastic Production Frontier, Time Varying Technical 
Inefficiency, Total Factor Productivity Growth, Tropical Agricultural Systems 
JEL Classification: C15, D24, O47  

Introduction  
According to the World Bank Development Report of 2008, in the last two decades, 
South Asian countries have on average experienced a 50% increase in cereal yield 
(roughly from 1.6 to 2.4 tons per hectare) and a 30% reduction in poverty (from 45% to 
30% poverty incidence), while in Sub-Saharan Africa both yields and poverty were 
unchanged (at approximately 1 ton per hectare and always close to a 50% poverty 
incidence) (Ravallion and Chen, 2004). In a world scenario of increasing competition for 
resources where demand for food is expected to increase by 70% in 2050 (due to the 
effect of population growth and per capita incomes) (FAO, 2004), greater growth in 
agricultural supply must be based on enhanced productivity growth.. 
However, recent academic findings suggest that the positive effects of the green 
revolution technology in maize, wheat and rice yields have started to stagnate or decline. 
For instance, Adlas and Alchot (2006) analyzed long-term yield growth of rice in various 
ecosystems and states of India between 1967 and 1999. Their findings indicate that yield 
growth (of areas where adoption of modern varieties and irrigation coverage were nearly 
complete) slowed down during the late green revolution period (i.e. after 1985). Pingali 
(2007) argues that the decline in the productivity growth rates of the three primary cereals 
may be attributed to: 1) Degradation of the land resource base due to intensive cultivation 
2) Declining infrastructure and research investment and 3) Increasing opportunity cost of 
labor (mainly arising from the off-farm sector).  
In the meantime, recent developments in genetically modified crops are promoted by 
large multinationals within the private sector1. Pingali (2007) has termed these new 

                                                 
1 According to Byerlee and Fischer (2001) private sector investment in agriculture research has exceed the combined 
investment of all public sector research institutes worldwide. At the beginning of the 2000´s, the top ten multi-nationals 
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advances in modified crops as the "gene revolution" and stresses that developing countries 
will face high transaction costs in order to access and use these new technologies which 
unlike with the green revolution, its research outputs are in private hands. Clearly, this 
puts high pressure on the poor farmers' ability to produce at the level of the best 
production frontier possible and to adequately face global market competition. Lastly, 
Pingali and Traxler (2002) also highlight gaps in private research coverage which may be 
unfavorable for developing economies´ farmers. Firstly because private sector interest in 
tropical agricultural systems with small market potential will continue to be limited (as 
crop studies are selected according to potential market size). Secondly, attention is mainly 
given to relatively few crops (maize, soybean, cotton and vegetable), as a result, crops in 
marginal or stress prone environments would be excluded. 
Thus, this paper measures and compares total factor productivity (TFP) growth in 
agriculture for 20 countries belonging to the humid2 and sub-humid3 agro-ecologies of 
tropical Africa and Asia (i.e. mix of rainforest and woodland savannas) between 1987 and 
2007. The sample comprises countries under a common agro-ecological setting which is 
advantageous for the following reasons. First, the effects outside the control of farmers 
such as weather (usually captured in the random error term) can be partially mitigated. 
Second, these countries share similar soils and water constraints. Third, unlike other agro-
ecological zones (i.e. highland, arid or semi-arid) there is higher pressure on manual labor 
as cultivation involves clearing of woody vegetation and/or burning along with frequent 
fertilization practices and plague control. Fourth, in these zones there is a relatively low 
level of livestock (particularly in the humid areas of central-western Africa due to 
trypanosomiasis and other diseases), a situation which also contributes to the shortage of 
soil nutrients. Overall, as Bloom and Sachs (1998: 3) argue, tropical agriculture 
(particularly food production) is faced with chronic problems of low yields and fragility 
due to low photosynthetic potential, high evapotranspiration, variable rainfall, highly 
weathered soils, veterinary diseases and plant and animal pests. In other words, by 
focusing on countries which are dominated by these shared agro-climatic conditions it 
will be possible to better evaluate their agricultural production performance. Since TFP 
captures how efficiently inputs are utilized in the production process, it becomes an 
adequate performance measure for it allows explaining differences in productivity across 
countries based on differences in technology and efficiency (Comin, 2007: 260). 
The present paper addresses the following key questions: What countries are making the 
most and the least efficient use of their available inputs? What has driven TFP growth 
rates in the past two decades and what has been its general trend? Hence, a parametric 
stochastic frontier analysis is considered rather useful because it allows identifying the 
effects of changes in technical efficiency, technology and (economies of) scale for a set of 
countries which share similar agro-climatic constraints. Results will reveal if countries are 
converging towards the frontier thus experiencing a positive efficiency change (or vice 
versa) or if the frontier itself is shifting over time indicating advances in technology as 

                                                                                                                                                  
in the sector invested US$ 3 000 million of which 50% was devoted to biotechnological projects. On the other hand, the 
Consultative Group of International Agricultural Research (CGIAR-the largest international public sector supplier of 
agricultural technologies) spent US$ 300 million of which less than 10% was devoted to biotechnology.  
2 Humid zone: Annual rainfall > 1200 mm; Growing season > 270 days. Three different production systems can be 
identified: (1) Shifting cultivation or slash and burn system; (2) Permanent home gardens where natural forest is 
replaced and household waste is used as nutrients; 3) Lowland rice production (Powell and William, 1993).  
3 Sub-humid zone: Annual rainfall = 600 – 1200 mm; Growing season = 120 – 270 days.  
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well as if countries have improved the scale of operations towards the technologically 
optimum scale (i.e. scale change). Since the adoption of modern seed varieties has been 
faster and more widely in Asia than in other developing regions (with the exception of 
wheat in Latin America), it will also be possible to observe if there are any noticeable 
differences in terms of green revolution technology use and effect4. 
The posed research questions in the framework of tropical agricultural systems are highly 
relevant not only in terms of food supply and food security but also in terms of an 
effective access to inputs, efficient use of natural resources and poverty reduction. 
Econometric results will therefore serve to better understand the TFP trends and the 
particular challenges of stagnated agricultural areas characterized by unfavorable 
environmental contexts (such as that of the tropics) and/or where green revolution 
technology effects have declined (or where these have not been successfully adopted5). 
The article is divided into five sections. In section 2 the theoretical model used to measure 
factor productivity growth is presented. While in section 3, the Bayesian stochastic 
frontier estimation used is described. Section 4 outlines the characteristics of the dataset. 
Section 5 presents and discusses the results of the empirical model.  Section 6 concludes. 

Theoretical Model 
This section describes the model used to measure factor productivity growth. Consider a 
production frontier model where the agricultural production of country i (i=1,..,N) at time 

t (t=1,..,T), itY , is produced using the input array, itX  constituted by land ( )itX1 , 

machinery ( )itX 2 , labor ( )itX3 , fertilizer ( )itX 4  and livestock ( )itX5  respectively. 

Assuming a common best-practice technology, f, brings to a production frontier that leads 
to the maximum amount of output that can be produced from a given level of inputs as 
given by:  

( ) ,= itiitit fY ξτX  (1) 

where iτ  measures the deviation of actual from maximum feasible output, so-called 

technical inefficiency (i.e. 1<0 ≤itτ  where 1=itτ  means full technical efficiency) and 

itξ  is the random error part of the frontier (e.g. measurement error, specification error, 

effect of weather and disease).  
A transcendental logarithmic (i.e. translog) production frontier is selected for its 
flexibility in measuring TFP growth. The translog functional form allows for variation of 
production elasticities at each data point and for non-neutral Hicksian technical change. 
The empirical model is specified as follows:  
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4 According to Pingali (2007) by the 1970´s more than 50% of the wheat and 40% of the rice grown in Asia consisted of 
modern varieties. By the 1990´s more than 80% of wheat and 60% of rice, maize and other cereals in Asia were modern 
varieties. In contrast, wheat is the only crop in sub-Saharan African for which modern variety adoption exceeds 40%. 
5 Byerlee and Moya (1993) confirmed that improved seed-fertilizer technologies for wheat were less widely adopted in 
marginal environments worldwide and had less of an impact there than in favored environments. Likewise, it was found 
that almost full adoption of wheat and rice high yielding varieties (HYV) had been achieved in irrigated environments 
by the mid-1980´s, but very low adoption in environments with scarce rainfall, or poor water control (in the case of 
rice). In addition, while HYV´s of wheat provided yield gains of 40% in irrigated areas, with modest use of fertilizer, in 
dry areas gains were often no more than 10% - another importance for comparing similar agro-climatic zones.  
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where lower case letter ),( xy  indicate natural logs of upper case letters ),( XY , 

( )kββββ ,,, 10 K=  the unknown parameters to be estimated, t  a time trend in order to 

account for technological change, the inefficiency ( )ii lnz τ−=  is assigned a non-negative 

random variable, ( )itit ln ξε =  a symmetric distribution with mean zero. Note that iz−0β  

plays the role of an individual effect as usually encountered in a panel data framework.  
In this paper a generalization of Battese and Coelli's (1992) function proposed by Cuesta 
(2000) is used. The Cuesta's (2000) function is specified as  

( )[ ]Ttexpzz iiit −× η=  (3) 

where the temporal pattern of inefficiency effects (i.e. iη ) is now a country-specific 

parameters responsive to different patterns of temporal variations among countries. The 
technical efficiency of each country in each year can be obtained through the conditional 

expectation of )( itzexp − , given the value of iit z−ε .  

In order to measure the Malmquist Index (MI) (Caves et al. 1982:1394) of TFP growth 
the efficiency, technical change and scale components need to be calculated. The 
efficiency change component is given by:  

( ) itisisitis zzzzexpEC /== −
 (4) 

The technical change component requires to evaluate the partial derivatives of the 

production frontier with respect to time using the data for the i-th country in period s  and 

t . Then the technical change between the adjacent periods s  and t  can be derived through 
the geometric mean of the aforementioned partial derivatives. In the case of a translog 
specification, this is equivalent to the exponential of the arithmetic mean of the log 
derivatives as given by:  


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 (5) 

To detect potential scale change effects, scale change is introduced in computing TFP 
following Orea (2002), who uses Diewert’s quadratic identity to derive a MI. The scale 
change component is given by: 

[ ]( )
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where ( ) isisisSF εε 1−= , ∑
=

=
N

n

isnis

1

ζζ  and 
isn

is
isn

x

y

∂

∂
=ζ . Each single component is then 

summed up to recover the MI of TFP growth. 

The Bayesian Stochastic Frontier Model 
This section describes the Bayesian stochastic frontier estimation used. Van den Broeck et 
al. (1994) introduced Bayesian stochastic frontier models. Stochastic frontier models 
require numerical integration methods for their complexity, as such the Markov Chain 
Monte Carlo (MCMC) introduced by Koop et al. (1995) is the most appropriate method. 
In this paper, a MCMC Gibbs sampler following Griffin and Steel (2007) is used. The 

form of the likelihood function assumes that the inefficiency components z  and ε  are 
independent and that z  is a vector of unknown parameters. For simplicity equation (2) is 
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rewritten after stacking all variables into matrices so that we can avoid the t subscript as 
follows: 
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where 
Tι  is a T-vector of ones. 

The standard corresponding likelihood function is 
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The dependent variable is assumed to follow a normal distribution  
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(9) 

where ( )2,σµN  is a normal distribution with mean µ  and variance 2σ . The 

inefficiencies, iz , capturing the difference between best practice and actual output, are 

assumed to have a truncated normal distribution as given by 

( )1,~ −+ λςNz i  (10) 

where λ  has a gamma distribution 

( )0,~ λφλ Ga  (11) 

with ( )( )2*

0 logrφλ = . Appropriate prior values for φ  and *r  are documented in the 

literature6 (see for example Tsionas 2000; Griffin and Steel 2004). The temporal pattern 

of inefficiency effects (see equation (6)), iη , follows a zero mean normal distribution whit 

variance Γ   

( )Γ,~ ηη Ni . (12) 

Regularities conditions are imposed to ensure that input elasticities are nonnegative (i.e. 
monotonicity in input elasticities) at sample mean. Monotonicity is imposed through the 
value of the first order coefficients by imposing a truncated normal distribution as given 
by 

( ),,~ ∑+
ii N ββ where i= 1,…,5   (13) 

and a multivariate normal distribution for the second order remaining coefficients  

( ),,~ ∑ii N ββ where i= 6,…,27   (14) 

and gamma distribution for the white noise precision, ( )2−
vσ , as given by 

( )10

2 ,~ aaGav

−σ .  (15) 

Several priors on the precision and the specification of the parameters are specified 
following Griffin and Steel (2007). The parameter for Γ  is set to 0.25 reflecting prior 
indifference between increasing and decreasing efficiency, the parameters for the white 

                                                 
6 In this paper φ  and 

*r  are set to 5 and 0.8 respectively. The last assumes to reflect a prior median efficiency of 0.8.  
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noise precision gamma distribution are set to 10-3, and the variance of the multivariate 

normal distribution for the parameters β  are set to 10-7. The relevant conditional 

distribution of the stochastic frontier model are omitted to save space but are available 
upon request. 

Data Description 
The data was obtained from the FAOSTAT database7 (FAO, 2010). As mentioned, the 
sample includes 20 countries, twelve from Central-Western Africa: Benin, Cameroon, 
Congo, Democratic Republic of Congo, Gabon, Gambia, Ghana, Guinea, Ivory Coast, 
Nigeria, Senegal and Togo8 and eight from South-East Asia: Cambodia, Indonesia, Lao´s 
People Democratic Republic, Malaysia, Myanmar, Philippines, Thailand and Vietnam. 
Since the data was collected for a 21 year period (1987 to 2007), the panel consists of 420 
observations. The net agricultural production valued at 1999-2001 international dollar 
prices is used as output variable. Information was also collected for five key agricultural 
inputs: land, labor, machinery, fertilizers and livestock. Land comprises arable land, 
permanent crops land and the area for permanent meadows and pastures.  It is measured 
in 1000 hectares (Ha)9. Machinery is measured in terms of number (in 1000´s) of 
agricultural tractors in use (excluding garden tractors and there is no reference to 
horsepower tractors). Agricultural labor is estimated in terms of economically active 
population in agriculture including their non-working dependents (also measured in 
1000´s of individuals). The fertilizers variable consists of an aggregation of Nitrogen (N), 
Potassium (P2O2) and Phosphate (K20) consumed in agriculture and expressed in 
(1000´s) tones of nutrients. Lastly, livestock is constructed by aggregating five categories 
of animals (buffaloes, cattle, pigs, sheep and goats) into sheep equivalent values by using 
the same conversion factors as those used by Coelli et al (2005). Table 1 presents 
descriptive statistics for the complete dataset.  

Table 1 Descriptive Statistics 1987-2007. 

Variables (Unit) Avg Min Max Std 

Agr Output (1000 Int $) 5670768.84 59531.00 36777490.00 7057844.68 

Land (1000 Ha) 14546.07 611.00 78500.00 20832.45 

Machinery (1000 # tractors) 30.17 0.03 830.00 15662.99 

Labor (1000 person) 8555.66 192.00 47783.00 18113.04 

Fertilizers (1000 tones) 387.87 0.00 3699.06 16059.21 

Livestock (1000 Sheep Equiv) 43275.00 535.57 221432.54 49238.89 

Source: FAO (2010). 

                                                 
7 This common source allows for comparing data across countries as they are calculated on same standards. 
8 Equatorial Guinea, Guinea Bissau, Liberia and Sierra Leone were excluded from the sample selection due to large 
segments of missing data in the series of fertilizers and livestock. 
9 Arable land: land under temporary agricultural crops (multiple-cropped areas are counted only once), temporary 
meadows and for mowing or pasture, land under market and kitchen gardens and land temporarily fallow (less than five 
years). The abandoned land resulting from shifting cultivation is not included in this category. Permanent crops: land 
cultivated with long term crops which do not have to be replanted for several years, land under trees and shrubs 
producing flowers and nurseries. Permanent meadows and pastures land used permanently (five years or more) to grow 
herbaceous forage crops, either cultivated or growing wild (wild prairie or grazing land) (FAO, 2010). 
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Results and Discussion 
This subsection discusses the estimates obtained. For simplicity and ease of interpretation 
all variables, before estimation, are rescaled in order to have unit means. The estimated 
parameters10 of the stochastic production frontier are presented in Table 211. The input 
elasticities are at sample average 0.6778, 0.0074, 0.3829, 0.0350, and 0.4658 for land, 
machinery, labor, fertilizer and livestock respectively.  

Table 2 Bayesian estimated parameters of the stochastic production frontier 1987-2007. 

Parameter Avg Std MC error 2.5% Median 97.5% 

β0 1.3680 0.2307 0.0092 1.0430 1.3220 1.9470 

β1 0.6778 0.0823 0.0018 0.5179 0.6771 0.8389 

β2 0.0074 0.0070 0.0000 0.0002 0.0053 0.0260 

β3 0.3829 0.0844 0.0023 0.2188 0.3822 0.5492 

β4 0.0350 0.0088 0.0002 0.0179 0.0350 0.0523 

β5 0.0447 0.0316 0.0006 0.0020 0.0394 0.1180 

βt 0.0290 0.0055 0.0002 0.0189 0.0289 0.0401 

β11 -0.0452 0.1252 0.0033 -0.2866 -0.0456 0.1983 

β12 0.0003 0.0207 0.0002 -0.0412 0.0006 0.0400 

β13 -0.1650 0.0823 0.0017 -0.3260 -0.1655 -0.0019 

β14 -0.0392 0.0094 0.0001 -0.0577 -0.0392 -0.0209 

β15 0.3733 0.0796 0.0019 0.2201 0.3721 0.5319 

β1t 0.0042 0.0020 0.0000 0.0005 0.0042 0.0082 

β22 -0.0123 0.0100 0.0001 -0.0318 -0.0122 0.0073 

β23 0.0471 0.0261 0.0005 -0.0046 0.0473 0.0976 

β24 0.0158 0.0056 0.0001 0.0048 0.0158 0.0267 

β25 -0.0753 0.0235 0.0003 -0.1218 -0.0754 -0.0293 

β2t 0.0000 0.0006 0.0000 -0.0012 0.0000 0.0012 

β33 -0.3824 0.1043 0.0011 -0.5877 -0.3822 -0.1775 

β34 0.0127 0.0080 0.0000 -0.0026 0.0126 0.0289 

β35 0.2597 0.0788 0.0016 0.0940 0.2636 0.4045 

β3t -0.0053 0.0017 0.0000 -0.0085 -0.0053 -0.0019 

β44 0.0010 0.0033 0.0000 -0.0054 0.0009 0.0076 

β45 -0.0061 0.0069 0.0000 -0.0198 -0.0060 0.0071 

β4t 0.0002 0.0007 0.0000 -0.0010 0.0002 0.0015 

β55 -0.2944 0.0589 0.0009 -0.4047 -0.2964 -0.1726 

β5t 0.0052 0.0015 0.0000 0.0023 0.0052 0.0083 

βtt 0.0000 0.0002 0.0000 -0.0004 0.0000 0.0005 

λ 2.5590 0.9755 0.0168 1.0700 2.4170 4.8360 

σ−2 782.4000 148.5000 1.0690 533.8000 768.0000 1114.0000 

Note: Subscripts on coefficients indicate inputs: 1 = land; 2 = machinery; 3 = labor; 4 = fertilizer; 5 = 
livestock; t = trend. 
Source: Own estimates. 

                                                 
10 The Gibbs sampler was run for one chain with burn-in of 5,000 iterations, with 195,001 retained draws and a thinning 

to every 50th draw in order to decrease the autocorrelation of the chain. The accuracy of the estimation was checked by 
comparing the Monte Carlo (MC) error with the corresponding posterior standard deviation. When the MC errors are 
relatively low as compared to the standard deviation, convergence can be assumed (Ntzoufras 2009:120). 
11 Density plots for all parameter estimates are omitted to save space but are available upon request. 
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On one hand, the relatively larger input elasticities for land as compared to the elasticity 
for livestock is likely to be attributed to the low level of livestock production particularly 
in the humid areas of Central-Western Africa as mentioned in the introductory section. On 
the other hand the considerable contribution of labor to agricultural production (labor 
input elasticity of 0.38) underlines the likely manual labor intensive cultivation practices 
of the tropical agricultural systems. All the first-order coefficients have an unambiguous 
positive association with the response variable, implying that the production frontier is 
increasing in inputs. The sum of these input elasticities is 1.15, indicating that the 
technology locally exhibits very mild increasing return to scale at sample mean. The 
annual percentage change in output due to technical change is estimated to be 2.9 percent. 
In order to depict non-monotonic technical change a time-squared variable is introduced 
in the model, plus time interacted with each input variable to allow for non-neutral 
technical change. The coefficient of time squared indicates that the rate of technical 
change is increasing at a constant rate through time. The coefficient of time interacted 
with the land, machinery, labor, fertilizer and livestock input variables are positive for 
land, fertilizer and livestock and negative for labor and very close to zero but positive for 
machinery. This suggests that technical change has been land-, machinery-, fertilizer- and 
livestock-saving but labor-using over the time considered. The parameters capturing the 
temporal variation of the technical inefficiency are presented in Table 3.  

Table 3 Bayesian estimated parameters of the temporal variation of inefficiency (ηηηη)))) 
Country Avg Std MC error 2.5% Median 97.5% 

Benin 0.0074 0.0041 0.0001 -0.0005 0.0074 0.0149 

Cameroon -0.0037 0.9983 0.0022 -1.9590 -0.0057 1.9560 

Congo -0.0029 0.9980 0.0024 -1.9560 -0.0019 1.9520 

DR Congo 0.0006 0.9982 0.0023 -1.9580 0.0024 1.9630 

Gabon -0.0021 1.0010 0.0024 -1.9610 -0.0033 1.9520 

Gambia 0.0042 0.9995 0.0023 -1.9470 0.0037 1.9670 

Ghana 0.0016 0.9978 0.0023 -1.9590 0.0015 1.9620 

Guinea -0.0045 1.0000 0.0024 -1.9630 -0.0044 1.9530 

Iv Coast -0.0009 1.0010 0.0023 -1.9670 -0.0007 1.9520 

Nigeria 0.0026 0.9974 0.0022 -1.9580 0.0013 1.9700 

Senegal  0.0026 0.9982 0.0022 -1.9600 0.0029 1.9510 

Togo -0.0009 1.0010 0.0023 -1.9590 -0.0034 1.9620 

Cambodia 0.0011 0.9993 0.0021 -1.9600 0.0044 1.9640 

Indonesia 0.0021 1.0020 0.0023 -1.9630 0.0038 1.9700 

Laos -0.0010 1.0000 0.0022 -1.9650 -0.0023 1.9540 

Malaysia 0.0040 1.0030 0.0023 -1.9650 0.0078 1.9620 

Myanmar -0.0041 1.0010 0.0023 -1.9730 -0.0027 1.9600 

Philippines 0.0011 0.9999 0.0022 -1.9630 0.0035 1.9530 

Thailand 0.0002 1.0010 0.0023 -1.9550 -0.0031 1.9630 

Vietnam -0.0006 1.0020 0.0023 -1.9700 -0.0001 1.9620 

Source: Own estimates. 

The estimated parameters of the temporal variation by country show that for nine 
countries technical efficiency is declining over time whereas for the remaining eleven 
countries it is increasing. Positive trends in the temporal variation of technical 
inefficiency are predominant in the South East Asian countries. The smallest and largest 
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temporal variations of technical inefficiency are found for Guinea and Benin respectively; 
indicating that over time the latter is moving further away and the former closer to the 
frontier. This information is relevant to understand whether countries are catching-
up/converging to the best practice frontier.  
Average technical efficiency scores by country are in Table 4. Technical efficiency scores 
range from 0.093 for Guinea to a maximum of 0.822 for Malaysia with an unweighted 
average over all countries of 0.332. The average technical efficiency scores imply that the 
countries were on average producing about 33.2 percent of the outputs that could be 
produced using the observed input quantities. The unweighted average technical 
efficiency scores were 0.217, and 0.505 for the African and Asian countries respectively. 

Table 4 Average technical efficiency scores by country 1987-2007. 

Country Avg Std MC error 2.5% Median 97.5% 

Benin 0.5184 0.1328 0.0048 0.2557 0.5211 0.7792 

Cameroon 0.2359 0.0626 0.0023 0.1150 0.2364 0.3575 

Congo 0.1036 0.0397 0.0012 0.0412 0.0986 0.1964 

DR Congo 0.2530 0.0690 0.0024 0.1233 0.2521 0.3937 

Gabon 0.1894 0.0851 0.0025 0.0669 0.1748 0.3960 

Gambia 0.1750 0.0885 0.0029 0.0570 0.1564 0.3991 

Ghana 0.2632 0.0656 0.0025 0.1327 0.2650 0.3882 

Guinea 0.0926 0.0254 0.0010 0.0449 0.0922 0.1436 

Iv Coast 0.2981 0.0822 0.0030 0.1435 0.2968 0.4646 

Nigeria 0.1661 0.0963 0.0033 0.0408 0.1454 0.3991 

Senegal  0.1110 0.0308 0.0012 0.0537 0.1102 0.1737 

Togo 0.1949 0.0537 0.0019 0.0941 0.1941 0.3055 

Cambodia 0.2427 0.0606 0.0023 0.1225 0.2441 0.3577 

Indonesia 0.3981 0.1268 0.0040 0.1769 0.3883 0.6761 

Laos 0.4784 0.1344 0.0048 0.2298 0.4747 0.7549 

Malaysia 0.8219 0.1521 0.0055 0.4415 0.8643 0.9950 

Myanmar 0.4605 0.1172 0.0042 0.2256 0.4645 0.6750 

Philippines 0.5361 0.1256 0.0046 0.2723 0.5449 0.7559 

Thailand 0.4314 0.1155 0.0041 0.2067 0.4326 0.6549 

Vietnam 0.6666 0.1817 0.0060 0.3076 0.6679 0.9766 

Source: Own estimates. 

These results imply that for a given set of inputs, the African countries in the sample 
obtain suboptimal output level as compared to Asian countries: in other words for a given 
output level they are using a suboptimal input level. However, the relatively low level of 
technical efficiency for both Central-Western African and South-East Asian countries, 
suggest that these countries have the potential to make large improvements in productivity 
through a more efficient use of inputs. Considering the temporal variation of technical 
inefficiency in Table 3 and the level of technical efficiency in Table 4, it appears that 
Guinea, Congo and Gabon are making the worst use of inputs among the countries 
considered and at the same time their suboptimal input use is worsening over time moving 
further away from the best practice frontier. While Gambia endowed with an initially low 
level of technical inefficiency is positively moving closer to the frontier over time. 
Table 5 presents the decomposition of TFP growth for each country for the 1987-2007 
period into efficiency, technical and scale change. TFP growth ranges from 4.83 for 
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Nigeria to 2.07 for Gabon, with an unweighted overall average of 2.95. While the 
estimated unweighted average annual TFP growth is 2.9 and 3.1 percent for the African 
countries and South East Asian countries respectively, the weighted TFP growth rates for 
the total (Central-Western Africa plus South-East Asia) net value of agricultural 
production shows that the productivity contribution of South-East Asia is almost two 
times the one of Central-Western Africa. This is partly based on the fact that despite 
having all countries portraying productivity growth, highest variability in terms of TFP 
change is found within the Central-Western African sub-set.  

Table 5 Decomposition of TFP growth by country. Average annual changes in % 1987-2007. 

Country Efficiency Change Technical Change Scale Change TFP Change 

Benin 0.7009 2.5674 0.2499 3.5182 

Cameroon -0.3490 3.2897 0.1376 3.0784 

Congo -0.2742 2.3582 -0.0090 2.0750 

DR Congo 0.0538 2.3579 0.0125 2.4242 

Gabon -0.2009 2.3108 -0.0394 2.0705 

Gambia 0.4007 1.8596 0.0093 2.2696 

Ghana 0.1479 2.7180 0.2213 3.0873 

Guinea -0.4299 2.9611 0.4838 3.0150 

Iv Coast -0.0810 3.0045 0.1552 3.0787 

Nigeria 0.2457 4.1476 0.4337 4.8271 

Senegal  0.2505 3.1012 0.2254 3.5771 

Togo -0.0822 2.2019 0.0724 2.1921 

Cambodia 0.1059 2.6827 0.4788 3.2674 

Indonesia 0.2014 3.2246 0.0962 3.5222 

Laos -0.0912 2.4421 0.4941 2.8451 

Malaysia 0.3826 2.8102 -0.0236 3.1692 

Myanmar -0.3901 2.9269 0.3806 2.9174 

Philippines 0.1052 2.8642 0.0326 3.0021 

Thailand 0.0199 3.0240 -0.0002 3.0437 

Vietnam -0.0593 2.5135 -0.2801 2.1742 

Source: Own estimates. 

Efficiency change ranges from -0.43 for Guinea to 0.70 for Benin, with an unweighted 
average of 0.04 with nine countries (three Asian and six African) showing negative 
efficiency changes. Technical change ranges from 1.86 for Gambia to 4.15 for Nigeria, 
with an unweighted average of 2.77 with none of the countries showing productivity 
regress. The estimates suggest that productivity growth was mostly driven by technical 
change, thus signaling the importance of access to improved technology in the sector. 
Scale change ranges from -0.28 for Vietnam to 0.49 for Laos, with an unweighted average 
of 0.16 with Thailand displaying very little negative scale changes. 

Conclusions 
In this paper, we have analyzed the differences in agricultural production performance of 
selected countries of tropical Africa and Asia by focusing on TFP growth between 1987 
and 2007. Our results show that for a given best practice technology South-East Asian 
countries are making a more efficient use of their agricultural inputs when compared to 
Central-Western African countries. Although South-East Asian countries during the green 
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revolution adopted High Yielding Varieties (HYV's) at a faster rate than Central-Western 
African countries, efficiency scores for both sub-sets imply that a suboptimal use of 
agricultural inputs is present. Malaysia and Benin are the most technical efficient 
countries, whereas Cambodia and Guinea fare the least technical efficient countries for 
South-East Asia and Central-Western Africa respectively. 
Regarding TFP in both regions, positive growth rates are observed over the period 
considered with Indonesia and Nigeria being the best performing countries, whereas Laos 
and Gabon being the least performing countries. TFP appears to be mostly driven by 
upward movements of technology over time. The latter coincides with Pingali and Heisey 
(2001) who emphasize that the necessary future increases in food productivity growth will 
depend on positive shifts of the crop yield frontier. For a number of countries, particularly 
in Central-Western Africa, efficiency change is declining with a negative impact on 
productivity. This is something that deserves particular attention in countries like Gabon, 
Congo and Guinea already characterized by very low level of technical efficiency. Most 
of the countries display mild positive scale changes whereas Malaysia, Congo and Gabon 
show negative scale change being Vietnam almost at its optimal scale. Two countries 
display catch up with the best practice technology (i.e. Malaysia): Benin and Gambia.  
The results of this study suggest that the tropical agricultural systems of Central-Western 
Africa and South-East Asia must reassess their input usage practices mainly to reduce 
inefficiency by implementing and adopting best management practices in order to achieve 
the highest yields possible. This also reinforces the importance of timely and sufficient 
access to technological developments; an issue which is crucial for the improvement of 
tropical agricultural systems in the coming years. Moreover, given that most of the 
projected population growth (i.e. nine billion by 2050) is expected to occur in poor 
countries and that world food demand is expected to double within the next three and four 
decades (Ruttan, 2002), food security will remain a sensible issue, particularly in areas 
(such as that of the humid and sub-humid tropics) where increases in scientific and 
technical efforts to improve productivity are not adequately pursued or sustained.  
Care should be taken when interpreting results since these are always conditional on the 
data and a number of assumptions used for estimation (e.g. functional form, error 
generating process, etc.). While we may not believe the literal interpretation of the 
magnitude of some results, we believe that our results have drawn attention to the relative 
performance challenges of the agricultural sector in Central-Western Africa and South-
East Asia. Finally, further research is needed to understand the major institutional, 
political and socio-economic constraints at work in the countries considered. 
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