

EUR 25031 EN - 2011

European Community project MONFISPOL
(grant agreement SSH-CT-2009-225149)

Deliverable 2.2.2:

Beta-version of parallel routines: user manual.

Marco Ratto, Ivano Azzini, Houtan Bastani, Sebastie n Villemot

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by JRC Publications Repository

https://core.ac.uk/display/38622182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The mission of the JRC-IPSC is to provide research results and to support EU policy-makers in
their effort towards global security and towards protection of European citizens from accidents,
deliberate attacks, fraud and illegal actions against EU policies.

European Commission
Joint Research Centre
Institute for the Protection and Security of the Citizen

Contact information
Address: TP361, via Fermi, Ispra (VA), 21027 Italy
E-mail: marco.ratto@jrc.ec.europa.eu
Tel.: +39 0332 785639
Fax: +39 0332 785733

http://ipsc.jrc.ec.europa.eu/
http://www.jrc.ec.europa.eu/

Legal Notice
Neither the European Commission nor any person acting on behalf of the Commission
is responsible for the use which might be made of this publication.

Europe Direct is a service to help you find answers
to your questions about the European Union

Freephone number (*):

00 800 6 7 8 9 10 11

(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet.
It can be accessed through the Europa server http://europa.eu/

JRC 67622

EUR 25031 EN
ISBN 978-92-79-22034-0
ISSN 1831-9424
doi:10.2788/97390

Luxembourg: Publications Office of the European Union

© European Union, 2011

Reproduction is authorised provided the source is acknowledged

Printed in Italy

European Community project MONFISPOL

(grant agreement SSH-CT-2009-225149)

Deliverable 2.2.2: Beta-version of parallel routines:

user manual.

Marco Ratto, European Commission, Joint Research Centre
Ivano Azzini, Houtan Bastani, Sebastien Villemot, DYNARE Team

July 8, 2011

Contents

1 The DYNARE environment 4

2 Requirements 6
2.1 For a Windows grid . 6
2.2 For a UNIX grid . 6
2.3 For hybrid UNIX/WINDOWS grids (UNIX master) 6
2.4 For hybrid WINDOWS/UNIX grids (WINDOWS master) 7

3 The user interface 8
3.1 Parallel Computation options . 8
3.2 The configuration file . 9

3.2.1 Preprocessing cluster settings . 12
3.3 Examples . 14

3.3.1 Syntax for Windows and Unix, for local parallel runs (assuming
quad-core) . 14

3.3.2 Syntax for Windows clusters . 14
3.3.3 Syntax for Unix clusters . 17
3.3.4 Syntax for hybrid Unix/Windows clusters (Unix master) 18
3.3.5 Syntax for hybrid Unix/Windows clusters (Windows master) 20

3.4 Testing the cluster . 22

4 The Developers guide 24
4.1 The function masterParallel.m . 29
4.2 The function fmessageStatus.m . 30
4.3 Write a parallel code: an example . 31
4.4 Synchronization . 35

5 Parallel DYNARE: test suite 37

6 Conclusions 37

1

Abstract

In this document we describe the parallel package within DYNARE

(called the “Parallel DYNARE” hereafter). The parallel methodology

has been developed taking into account two different perspectives: the

“User perspective” and the “Developers perspective”. The fundamen-

tal requirement of the “User perspective” is to allow DYNARE users

to use the parallel routines easily, quickly and appropriately. Under

the “Developers perspective”, on the other hand, we need to build a

core of parallelizing routines that are sufficiently abstract and modular

to allow DYNARE software developers to use them easily as a sort of

‘parallel paradigm’, for application to any DYNARE routine or por-

tion of code containing computational intensive loops suitable for par-

allelization. The Parallel DYNARE comes with the official DYNARE

installation package, so the preprocessor part required to interpret the

cluster definition is built-in the standard DYNARE installation.

2

1 The DYNARE environment

MATLAB does not allow concurrent programming: it does not support

multi-threads, without the use (and purchase) of MATLAB Distributed

Computing Toolbox. Then, the solution implemented for Parallel DYNARE

can be synthesized as follows:

When the execution of the code should start in parallel, instead

of running it inside the active MATLAB session, the following

steps are performed:

1. the control of the execution is passed to the operating system

(Windows/Linux) that allows for multi-threading;

2. concurrent threads (i.e. MATLAB instances) are launched

on different processors/cores/machines;

3. when the parallel computations are concluded the control is

given back to the original MATLAB session that collects

the result from all parallel ‘agents’ involved and coherently

continue along the sequential computation.

Three core functions have been developed implementing this behavior,

namely MasterParallel.m, slaveParallel.m and fParallel.m. The first

function (MasterParallel.m) operates at the level of the ‘master’ (origi-

nal) thread and acts as a wrapper of the portion of code to be distributed

in parallel, distributes the tasks and collects the results from the parallel

computation. The other functions (slaveParallel.m and fParallel.m)

operate at the level of each individual ‘slave’ thread and collect the jobs dis-

tributed by the ‘master’, execute them and make the final results available

to the master. The two different implementations of slave operation comes

from the fact that, in a single DYNARE session, there may be a number

parallelized sessions that are launched by the master thread. Therefore,

those two routines reflect two different versions of the parallel package:

Open-Close: the ‘slave’ MATLAB sessions are closed after completion of

each single job, and new instances are called for any subsequent par-

allelized task (fParallel.m);

Always-Open: once opened, the ‘slave’ MATLAB sessions are kept open

during the DYNARE session, waiting for new jobs to be executed,

3

and are only closed upon completion of the DYNARE session on the

‘master’ (slaveParallel.m).

We have seen in the previous report (Deliverable 2.2.1) that none of the

two options is superior to the other, depending on the model size. Namely,

if the model is large and the computations very heavy, the time required to

open new MATLAB instance for every new job is negligible, so the Always-

Open mode of execution does not provide a significant reduction in the total

time of the computation with respect to the Open-Close mode. On the other

hand, when the model is not too large, the Always-Open can increase the

speed of the parallel execution.

We have considered the following DYNARE components suitable to be

parallelized using the above strategy:

1. the Random Walk- (and the analogous Independent-)-Metropolis-Hastings

algorithm with multiple chains: the different chains are completely in-

dependent and do not require any communication between them, so it

can be executed on different cores/CPUs/Computer Network easily;

2. a number of procedures performed after the completion of Metropolis,

that use the posterior MC sample:

(a) the diagnostic tests for the convergence of the Markov Chain

(McMCDiagnostics.m);

(b) the function that computes posterior IRF’s (posteriorIRF.m).

(c) the function that computes posterior statistics for filtered and

smoothed variables, forecasts, smoothed shocks, etc..

(prior_posterior_statistics.m).

(d) the utility function that loads matrices of results and produces

plots for posterior statistics (pm3.m).

4

2 Requirements

2.1 For a Windows grid

1. a standard Windows network (SMB) must be in place;

2. PsTools (Russinovich, 2009) must be installed in the path of the master

Windows machine;

3. the Windows user on the master machine has to be user of any other

slave machine in the cluster, and that user will be used for the remote

computations.

2.2 For a UNIX grid

1. SSH must be installed on the master and on the slave machines;

2. the UNIX user on the master machine has to be user of any other

slave machine in the cluster, and that user will be used for the remote

computations;

3. SSH keys must be installed so that the SSH connection from the master

to the slaves can be done without passwords, or using an SSH agent.

2.3 For hybrid UNIX/WINDOWS grids (UNIX master)

Here, the same configuration as for standard Unix grid must be in place,

i.e.:

1. SSH must be installed on the master and on the slave Win/Unix ma-

chines;

2. the UNIX user on the master machine has to be user of any other

slave machine in the cluster, and that user will be used for the remote

computations;

3. SSH keys must be installed so that the SSH connection from the master

to the Win/Unix slaves can be done without passwords, or using an

SSH agent.

5

2.4 For hybrid WINDOWS/UNIX grids (WINDOWS mas-

ter)

1. SSH must be installed on the master and on the slave Unix machines;

2. the user on the Windows master machine has to be user of any other

UNIX slave machine in the cluster, and that user will be used for the

remote computations;

3. SSH keys must be installed so that the SSH connection from the master

to the slaves can be done without passwords, or using an SSH agent;

4. for Windows slaves, the same applies as for standard Windows grids.

6

3 The user interface

We assume here that the reader has some familiarity with DYNARE and its

use. For the DYNARE users, the parallel routines are fully integrated and

hidden inside the DYNARE environment.

3.1 Parallel Computation options

Parallel computation will be triggered by the following options passed to the

DYNARE command:

Command line options:

• conffile=<path>: specify the location of the configuration file if it is

not standard ($HOME/.dynare under Unix/Mac, %APPDATA%

dynare.ini under Windows1);

• parallel: trigger parallel computation using the first cluster specified

in the configuration file;

• parallel=<clustername>: trigger parallel computation, using the

given cluster;

• parallel slave open mode: use the Always-Open mode in the clus-

ter, otherwise the default Open-Close mode is triggered;

• parallel test: just test the cluster, don’t actually run the MOD file;

• console: the console mode is also applicable to the parallel operation,

where all graphical waitbars are replaced by printed information on the

command window.

We show in Syntax 1 some examples of DYNARE calls triggering various

parallel options and configurations. We assume that the model file is called

ls2003.mod.

1c:\Documents and Setting\<username>\Application Data\dynare.ini on XP

7

Standard parallel call (Open-Close mode and configuration file in standard location):

dynare ls2003 parallel

Parallel call with configuration file not in standard location:

dynare ls2003 conffile=’c:\dynare_tests\parallel\JaguarCluster.txt’ parallel

Testing the cluster, using a configuration file named JaguarCluser not placed in the standard
location:

dynare ls2003 conffile=’c:\dynare_tests\parallel\JaguarCluster.txt’ parallel_test

Parallel call with Always-Open mode using the cluster named c2 in the configuration file:

dynare ls2003 parallel=c2 parallel_slave_open_mode

Parallel call with Always-Open mode, console mode and using the cluster named jaguar in
the configuration file:

dynare ls2003 parallel=jaguar parallel_slave_open_mode console

Syntax 1. Examples of various DYNARE parallel calls.

3.2 The configuration file

The general idea is to put all the configuration of the cluster in a config file

different from the MOD file, and to trigger the parallel computation with

option(s) on the dynare command line. The configuration file is designed

as follows:

• allow to specify several clusters, each one associated with a nickname;

• For each cluster, specify a list of slaves with a list of options for each

slave [if not explicitly specified by the configuration file, the prepro-

cessor sets the options to default];

The list of slave options includes:

Name : name of the node;

CPUnbr : this is the number of CPU’s to be used on that computer; if

CPUnbr is a vector of integers, the syntax is [s:d], with d>=s (d, s

are integer); the first core has number 1 so that, on a quad-core, use

4 to use all cores, but use [3:4]to specify just the last two cores (this

8

is particularly relevant for Windows where it is possible to assign jobs

to specific processors);

ComputerName : Computer name on the network or IP address; use the

NETBIOS name under Windows2, or the DNS name under Unix.;

UserName : required for remote login; in order to assure proper communi-

cations between the master and the slave threads, it must be the same

user name actually logged on the ‘master’ machine. On a Windows

network, this is in the form DOMAIN\username, like DEPT\JohnSmith,

i.e. user JohnSmith in windows group DEPT;

Password : required for remote login (only under Windows): it is the user

password on DOMAIN and ComputerName;

RemoteDrive : Drive to be used on remote computer (only for Windows,

for example the drive C or drive D);

RemoteDirectory : Directory to be used on remote computer, the parallel

toolbox will create a new empty temporary subfolder which will act

as remote working directory;

DynarePath : path to matlab directory within the Dynare installation

directory;

MatlabOctavePath : path to MATLAB or Octave executable: note that

hybrid executions using matlab or octave in different machines is al-

lowed (e.g. localhost uses matlab, remote slave uses octave);

SingleCompThread : disable MATLAB’s native multithreading;

OperatingSystem : the operating system of the machine in the cluster:

this is useful for hybrid clusters unix/win and viceversa;

Those options have the specifications shown in Syntax 2.

2In Windows XP it is possible find this name in ’My Computer’ − > mouse right click
− > ’Property’ − > ’Computer Name’.

9

Node Options type example default Win Unix
Local Remote Local Remote

Name string n1 (stop) * * * *
CPUnbr integer 1 (stop) * * * *

or array [2:4]
ComputerName string localhost,

karaba.cepremap.org
(stop) * *

UserName string houtanb empty * *
Password string passwd empty *
RemoteDrive string C empty *
RemoteDirectory string /home/houtanb empty * *
DynarePath string /home/houtanb/

dynare/matlab
empty

MatlabOctavePath string matlab empty
SingleCompThread boolean true true
OperatingSystem string unix empty

Syntax 2. Configuration file: node options.

The cluster options are shown in Syntax 3.

Cluster Options type example default Meaning Required

Name string c1 empty name of the node *
Members string n n2 n3

n4

empty list of members in this
cluster

*

Members string n(3)

n2(2)

n3(1)

n4(2)

empty list of members in
this cluster, with their
weights. If no weights
are specified, node use is
distributed evenly.

*

Syntax 3. Configuration file: cluster options.

The syntax of the configuration file will take the following form (the

order in which the clusters and nodes are listed is not significant):

10

[cluster]

Name = c1

Members = n1(1) n2(2) n3(2)

[cluster]

Name = c2

Members = n2 n3

[node]

Name = n1

ComputerName = localhost

CPUnbr = 1

[node]

Name = n2

ComputerName = karaba.cepremap.org

CPUnbr = 5

UserName = houtanb

RemoteDirectory = /home/houtanb/Remote

DynarePath = /home/houtanb/dynare/matlab

MatlabOctavePath = matlab

[node]

Name = n3

ComputerName = hal.cepremap.ens.fr

CPUnbr = 3

UserName = houtanb

RemoteDirectory = /home/houtanb/Remote

DynarePath = /home/houtanb/dynare/matlab

MatlabOctavePath = matlab

Example 1. A configuration file.

3.2.1 Preprocessing cluster settings

The DYNARE pre-processor treats user-defined configurations by filling a

dedicated sub-structure in the options_ structure, named parallel. The

structure parallel is a vector, each element corresponding to each node of

the cluster, with the following fields:

11

options_.parallel=

struct(’Local’, Value,

’ComputerName’, Value,

’CPUnbr’, Value,

’UserName’, Value,

’Password’, Value,

’RemoteDrive’, Value,

’RemoteFolder’, Value,

’DynarePath’, Value,

’MatlabOctavePath’, Value,

’OperatingSystem’, Value,

’NodeWeight’, Value,

’SingleCompThread’, Value);

All these fields correspond to the node specifications listed in Syntax 2

except for Local, which is set by the pre-processor according to the value

of ComputerName:

Local: the variable Local is binary, so it can have only two values 0 and 1. If

ComputerName is set to localhost, the preprocessor sets Local = 1

and the parallel computation is executed on the local machine, i.e.

on the same computer (and working directory) where the DYNARE

project is placed. For any other value for ComputerName, we will have

Local = 0;

In addition to the parallel structure there is another options_ field,

called parallel_info, which stores all options that are common to all clus-

ter.

options_.parallel_info=

struct(’leaveSlaveOpen’, Value,

’RemoteTmpFolder’, Value);

In particular, according to the parallel_slave_open_mode in the com-

mand line, the parallel_info.leaveSlaveOpen field takes values:

leaveSlaveOpen=1 : with parallel_slave_open_mode, i.e. the slaves op-

erate ‘Always-Open’.

leaveSlaveOpen=0 : without parallel_slave_open_mode, i.e. the slaves

operate ‘Open-Close’;

12

Moreover, when the parallel computations are done on a remote machine, the

field parallel_info.RemoteTmpFolder stores the name of the temporary

subdirectory which acts as the working directory of the remote computa-

tions. In fact, to avoid possible erroneous overwriting or deletion of the

information stored on the disks of the remote machine, the remote working

directory is not directly the one specified in parallel.RemoteFolder, but

it is a new, empty, temporary subdirectory, whose name is generated ac-

cording to the date and time when the parallel computations are initialized.

For example, a typical temporary directory name is

parallel_info.RemoteTmpFolder=2011-7-7-12h43m7s

and, assuming parallel.RemoteFolder=’/home/houtan’, the full path to

the remote working directory will thus be /home/houtan/2011-7-7-12h43m7s.

3.3 Examples

3.3.1 Syntax for Windows and Unix, for local parallel runs (as-

suming quad-core)

In this case, the only slave options are ComputerName and CPUnbr.

[cluster]

Name = local

Members = n1

[node]

Name = n1

ComputerName = localhost

CPUnbr = 4

Example 2. Local parallel configuration.

3.3.2 Syntax for Windows clusters

• the Windows Password has to be typed explicitly;

• RemoteDrive has to be typed explicitly;

• for UserName, ALSO the group has to be specified, like DEPT\JohnSmith,

i.e. user JohnSmith in windows group DEPT;

• ComputerName is the name of the computer in the windows network,

i.e. the output of hostname, or the full IP address.

13

In Example 3, parallel codes are run on a remote computer named

vonNeumann with eight cores, using only the cores 4,5,6, working on the

drive ’C’ and folder ’dynare_calcs\Remote’. The computer vonNeumann is

in a net domain of the CompuTown university, with user John logged with

the password *****.

[cluster]

Name = vonNeumann

Members = n2

[node]

Name = n2

ComputerName = vonNeumann

CPUnbr = [4:6]

UserName = COMPUTOWN\John

Password = *****

RemoteDrive = C

RemoteDirectory = dynare_calcs\Remote

DynarePath = c:\dynare\matlab

MatlabOctavePath = matlab

Example 3. Remote parallel configuration.

We can build clusters, combining local and remote runs. In Example 4,

the configuration file includes the two previous configurations but also gives

the possibility (with cluster name c2) to build a grid with a total number

of 7 CPU’s and where the remote vonNeumann machine has a double weight

with respect to the local machine.

14

[cluster]

Name = local

Members = n1

[cluster]

Name = vonNeumann

Members = n2

[cluster]

Name = c2

Members = n1(1) n2(2)

[node]

Name = n1

ComputerName = localhost

CPUnbr = 4

[node]

Name = n2

ComputerName = vonNeumann

CPUnbr = [4:6]

UserName = COMPUTOWN\John

Password = *****

RemoteDrive = C

RemoteDirectory = dynare_calcs\Remote

DynarePath = c:\dynare\matlab

MatlabOctavePath = matlab

Three types of clusters can be called, using the same
configuration file, using the different DYNARE command
line options:

dynare ls2003 parallel=local

dynare ls2003 parallel=vonNeumann

dynare ls2003 parallel=c2

Example 4. Windows: configuration of a cluster (local
and remote executions).

We can build a cluster, combining many remote machines, as in Example

5 where we build a grid of four machines with a total number of 14 CPU’s.

15

[cluster]

Name = c4

Members = n1(1) n2(2) n3(3) n4(3)

[node]

Name = n1

ComputerName = vonNeumann1

CPUnbr = 4

UserName = COMPUTOWN\John

Password = *****

RemoteDrive = C

RemoteDirectory = dynare_calcs\Remote

DynarePath = c:\dynare\matlab

MatlabOctavePath = matlab

[node]

Name = n2

ComputerName = vonNeumann2

CPUnbr = 4

UserName = COMPUTOWN\John

Password = *****

RemoteDrive = C

RemoteDirectory = dynare_calcs\Remote

DynarePath = c:\dynare\matlab

MatlabOctavePath = matlab

[node]

Name = n3

ComputerName = vonNeumann3

CPUnbr = 2

UserName = COMPUTOWN\John

Password = *****

RemoteDrive = D

RemoteDirectory = dynare_calcs\Remote

DynarePath = c:\dynare\matlab

MatlabOctavePath = matlab

[node]

Name = n4

ComputerName = vonNeumann4

CPUnbr = 4

UserName = COMPUTOWN\John

Password = *****

RemoteDrive = C

RemoteDirectory = John\dynare_calcs\Remote

DynarePath = c:\dynare\matlab

MatlabOctavePath = matlab

Example 5. Windows: configuration of a cluster (remote exe-
cutions).

3.3.3 Syntax for Unix clusters

• no Password and RemoteDrive fields are needed;

• ComputerName is the full IP address or the DNS address.

16

In the case of one remote slave, Example 6 defines remote runs on the
machine name.domain.org.

[cluster]

Name = unix1

Members = n2

[node]

Name = n2

ComputerName = name.domain.org

CPUnbr = 4

UserName = JohnSmith

RemoteDirectory = /home/john/Remote

DynarePath = /home/john/dynare/matlab

MatlabOctavePath = matlab

Example 6. Unix: configuration for remote executions.

We can combine local and remote runs, as in Example 7.

[cluster]

Name = unix2

Members = n1 n2

[node]

Name = n1

ComputerName = localhost

CPUnbr = 4

[node]

Name = n2

ComputerName = name.domain.org

CPUnbr = 4

UserName = JohnSmith

RemoteDirectory = /home/john/Remote

DynarePath = /home/john/dynare/matlab

MatlabOctavePath = matlab

Example 7. Unix: configuration for local and remote
executions.

3.3.4 Syntax for hybrid Unix/Windows clusters (Unix master)

• unix machines in the cluster follow the same rules as for standard Unix

clusters;

17

• for windows machines the field ComputerName is the full IP address

or the DNS address (i.e. no longer the NETBIOS in the Windows

network);

• for windows machines the field UserName is the user name for the unix

machine, no longer the GROUP\username of the windows network;

• for windows machines the field OperatingSystem must be set equal to

’windows’;

• SSH must be installed on the remote windows machines, and SSH keys

have to be installed such that the unix master is allowed to connect to

the remote Windows without password or through an SSH agent (so

also for windows machines the field Password can be left empty).

In Example 8, the unix master uses a remote windows machine, while in

Example 9 it uses both unix and windows machines. Also note the hybrid

matlab/octave computations in the latter cluster.

[cluster]

Name = hybrid1

Members = n1 n2

[node]

Name = n1

ComputerName = localhost

CPUnbr = 4

[node]

Name = n4

ComputerName = vonNeumann4.computown.org

CPUnbr = 4

UserName = John

RemoteDrive = C

RemoteDirectory = John\dynare_calcs\Remote

DynarePath = c:\dynare\matlab

MatlabOctavePath = matlab

OperatingSystem = windows

Example 8. Unix master combined with remote windows
executions.

18

[cluster]

Name = hybrid2

Members = n1(2) n2(1) n4(2)

[node]

Name = n1

ComputerName = localhost

CPUnbr = 4

[node]

Name = n2

ComputerName = name.domain.org

CPUnbr = 4

UserName = JohnSmith

RemoteDirectory = /home/john/Remote

DynarePath = /home/john/dynare/matlab

MatlabOctavePath = octave

OperatingSystem = unix

[node]

Name = n4

ComputerName = vonNeumann4.computown.org

CPUnbr = 4

UserName = John

RemoteDrive = C

RemoteDirectory = John\dynare_calcs\Remote

DynarePath = c:\dynare\matlab

MatlabOctavePath = matlab

OperatingSystem = windows

Example 9. Windows master combined with remote
unix/windows executions.

3.3.5 Syntax for hybrid Unix/Windows clusters (Windows mas-

ter)

• unix machines in the cluster follow the same rules as for standard Unix

clusters;

• for unix machines the field OperatingSystem must be set equal to

’unix’;

• windows machines in the cluster follow the same rules as for standard

Windows clusters;

• SSH must be installed on the master windows machine, and SSH keys

19

have to be installed such that the windows master is allowed to connect

to the remote unix machines without password or through an SSH

agent.

In Example 10 we show the case of a Windows master performing local

executions and remote executions on a unix machine, while in Example 11

remote machines are both unix and windows. Moreoever, the remote unix

machine does not have a MATLAB license, so octave is used instead, so we

assume that matlab executions have double weight with respect to octave

ones.

[cluster]

Name = hybrid3

Members = n1(2) n2(1)

[node]

Name = n1

ComputerName = localhost

CPUnbr = 4

[node]

Name = n2

ComputerName = name.domain.org

CPUnbr = 4

UserName = JohnSmith

RemoteDirectory = /home/john/Remote

DynarePath = /home/john/dynare/matlab

MatlabOctavePath = octave

OperatingSystem = unix

Example 10. Windows master combined with remote
unix executions.

20

[cluster]

Name = hybrid4

Members = n1(2) n2(1) n4(2)

[node]

Name = n1

ComputerName = localhost

CPUnbr = 4

[node]

Name = n2

ComputerName = name.domain.org

CPUnbr = 4

UserName = JohnSmith

RemoteDirectory = /home/john/Remote

DynarePath = /home/john/dynare/matlab

MatlabOctavePath = octave

OperatingSystem = unix

[node]

Name = n4

ComputerName = vonNeumann4

CPUnbr = 4

UserName = COMPUTOWN\John

Password = *****

RemoteDrive = C

RemoteDirectory = John\dynare_calcs\Remote

DynarePath = c:\dynare\matlab

MatlabOctavePath = matlab

Example 11. Windows master combined with remote
unix/windows executions.

3.4 Testing the cluster

In this section we describe the testing routine that checks if the cluster

defined in the configuration file works properly. In parallel DYNARE there

is a utility (AnalyseComputationalEnvironment.m) devoted to this task

(this is triggered by the command line option parallel_test).

For both local and remote machines, the following checks are performed:

CPUnbr: the value for this variable is in the form [s:d] or simply d:

the testing routine checks if d CPUs (or cores) are available on the

computer. Suppose that this check returns an integer nC. We can have

three possibilities:

21

1. nC= d; all the CPU’s available are used, no warning message are

generated by DYNARE;

2. nC> d; some CPU’s will not be used;

3. nC< d; DYNARE alerts the user that there are less CPU’s than

those declared. The parallel tasks would run in any case, but

some CPU’s will have multiple instances assigned, with no gain

in computational time.

For remote machines (i.e. only when Local=0), the following check are

performed:

ComputerName : we check if the computer ComputerName exists and if

it is possible communicate with it (ping). If this is not the case, an

error message is generated and the computation is stopped.

UserName & Password: For a Windows cluster, we check if the user

name and password are correct, otherwise execution is stopped with

an error; for a Unix/hybrid cluster, the user and the proper operation

of SSH is checked.

RemoteDrive & RemoteDirectory: we try to copy a file (Tracing.txt)

in this remote location. If this operation fails, the DYNARE execution

is stopped with an error. if Local = 1, these fields are not required

since the working directory of the ‘slaves’ will be the same of the

‘master’.

MatlabOctavePath & DynarePath: MATLAB/octave instances are tried

on slaves and the DYNARE path is also checked. If this operation fails,

the DYNARE execution is stopped with an error.

22

4 The Developers guide

In this section we describe with some accuracy the DYNARE parallel rou-

tines.

Windows: With Windows operating system, the parallel package requires

the installation of a free software package called PsTools (Russinovich,

2009). PsTools suite is a resource kit with a number of command line

tools that mimics administrative features available under the Unix

environment. PsTools can be downloaded from

http://technet.microsoft.com/en-us/sysinternals/bb896649.aspx

and extracted in a Windows directory on your computer: to make

PsTools working properly, it is mandatory to add this directory to

the Windows path. After this step it is possible to invoke and use

the PsTools commands from any location in the Windows file sys-

tem. PsTools, MATLAB and DYNARE have to be installed and work

properly on all the machines in the grid for parallel computation.

Unix: With Unix operating system, SSH must be installed on the master

and on the slave machines. Moreover, SSH keys must be installed so

that the SSH connections from the master to the slaves can be done

without passwords or using an SSH agent.

Hybrid Unix/Win grids: the parallel operation for hybrid grids, where

machines can have different operating systems, is done via the SSH

protocol. So, the latter also has to be installed on the Windows ma-

chines as for a standard Unix grid. The SSH protocol is available for

Windows either with cygwin or openSSH.

As soon as the computational environment is set-up for working on a

grid of CPU’s, the parallel package allows to parallelize any loop that is

computationally expensive, following the step by step procedure showed

in Table 1. This is done using five basic functions: masterParallel.m,

fParallel.m or slaveParallel.m, fMessageStatus.m, closeSlave.m.

masterParallel is the entry point to the parallelization system:

• It is called from the master computer, at the point where the par-

allelization system should be activated. Its main arguments are

23

the name of the function containing the task to be run on every

slave computer, inputs to that function stored in two structures

(one for local and the other for global variables), and the con-

figuration of the cluster; this function exits when the task has

finished on all computers of the cluster, and returns the output

in a structure vector (one entry per slave);

• all file exchange through the filesystem is concentrated in this

masterParallel routine: so it prepares and send the input in-

formation for slaves, it retrieves from slaves the info about the

status of remote computations stored on remote slaves by the

remote processes; finally it retrieves outputs stored on remote

machines by slave processes;

• there are two modes of parallel execution, triggered by option

parallel_slave_open_mode:

– when parallel_slave_open_mode=0, the slave processes are

closed after the completion of each task, and new instances

are initiated when a new job is required; this mode is man-

aged by fParallel.m [‘Open-Close’];

– when parallel_slave_open_mode=1, the slave processes are

kept running after the completion of each task, and wait

for new jobs to be performed; this mode is managed by

slaveParallel.m [‘Always-Open’];

slaveParallel.m/fParallel.m: are the top-level functions to be run on

every slave; their main arguments are the name of the function to be

run (containing the computing task), and some information identifying

the slave; the functions use the input information that has been pre-

viously prepared and sent by masterParallel through the filesystem,

call the computing task, finally the routines store locally on remote

machines the outputs such that masterParallel retrieves back the

outputs to the master computer;

fMessageStatus.m: provides the core for simple message passing during

slave execution: using this routine, slave processes can store locally on

remote machine basic info on the progress of computations; such in-

formation is retrieved by the master process (i.e. masterParallel.m)

24

allowing to echo progress of remote computations on the master; the

routine fMessageStatus.m is also the entry-point where a signal of

interruption sent by the master can be checked and executed; this

routine typically replaces calls to waitbar.m;

closeSlave.m is the utility that sends a signal to remote slaves to close

themselves. In the standard operation, this is only needed with the

‘Always-Open’ mode and it is called when DYNARE computations

are completed. At that point, slaveParallel.m will get a signal to

terminate and no longer wait for new jobs. However, this utility is

also useful in any parallel mode if, for any reason, the master needs to

interrupt the remote computations which are running;

The parallel toolbox also includes a number of utilities:

• AnalyseComputationalEnviroment.m: this a testing utility that checks

that the cluster works properly and echoes error messages when prob-

lems are detected;

• InitializeComputationalEnviroment.m : initializes some internal

variables and remote directories;

• distributeJobs.m: uses a simple algorithm to distribute evenly jobs

across the available CPU’s;

• a number of generalized routines that properly perform delete, copy,

mkdir, rmdir commands through the network file-system (i.e. used

from the master to operate on slave machines); the routines are adap-

tive to the actual environment (Windows or Unix);

dynareParallelDelete.m : generalized delete;

dynareParallelDir.m : generalized dir;

dynareParallelGetFiles.m : generalized copy FROM slaves TO

master machine;

dynareParallelMkDir.m : generalized mkdir on remote machines;

dynareParallelRmDir.m : generalized rmdir on remote machined;

dynareParallelSendFiles.m : generalized copy TO slaves FROM

master machine;

25

• a number of utilities that allow the master to retrieve files generated by

remote machines on-the-fly, i.e. as soon as they are available without

waiting that the entire remote thread is finished:

dynareParallelFindNewFiles.m : on-the-fly list new files saved by

remote machines;

dynareParallelGetNewFiles.m : on-the-fly copy new files FROM

remote TO master machine;

dynareParallelSnapshot.m : snapshot of all files present in the re-

mote working directory;

In Table 1 we have synthesized the main steps for parallelizing MATLAB

codes.

So far, we have parallelized the following functions, by selecting the most

computationally intensive loops:

1. the cycle looping for multiple chain random walk Metropolis:

random_walk_metropolis_hastings,

random_walk_metropolis_hastings_core;

2. the cycle looping for multiple chain independent Metropolis:

independent_metropolis_hastings.m,

independent_metropolis_hastings_core.m;

3. the cycle looping over estimated parameters computing univariate di-

agnostics:

McMCDiagnostics.m,

McMCDiagnostics_core.m;

4. the Monte Carlo cycle looping over posterior parameter subdraws per-

forming the IRF simulations (<*>_core1) and the cycle looping over

exogenous shocks plotting IRF’s charts (<*>_core2):

posteriorIRF.m,

posteriorIRF_core1.m, posteriorIRF_core2.m;

5. the Monte Carlo cycle looping over posterior parameter subdraws, that

computes filtered, smoothed, forecasted variables and shocks:

prior_posterior_statistics.m,

prior_posterior_statistics_core.m;

26

1. locate within DYNARE the portion of code suitable to be parallelized,
i.e. an expensive cycle for;

2. suppose that the function tuna.m contains a cycle for that is suitable
for parallelization: this cycle has to be extracted from tuna.m and put
it in a new MATLAB function named tuna_core.m;

3. at the point where the expensive cycle should start, the function
tuna.m invokes the utility masterParallel.m, passing to it the
options_.parallel structure, the name of the of the function to be
run in parallel (tuna_core.m), the local and global variables needed
and all the information about the files (MATLAB functions *.m; data
files *.mat) that will be handled by tuna_core.m;

4. the function masterParallel.m reads the input arguments provided
by tuna.m and:

• decides how to distribute the task evenly across the avail-
able CPU’s (using the utility routine distributeJobs.m); pre-
pares and initializes the computational environment (i.e. copy
files/data) for each slave machine;

• uses the PsTools and the Operating System commands to launch
new MATLAB instances, synchronize the computations, monitor
the progress of slave tasks through a simple message passing sys-
tem (see later) and collect results upon completion of the slave
threads;

5. the slave threads are executed using the MATLAB functions
fParallel.m/slaveParallel.m as wrappers for implementing the
tasks sent by the master (i.e. to run the tuna_core.m routine);

6. the utility fMessageStatus.m can be used within the core routine
tuna_core.m to send information to the master regarding the progress
of the slave thread;

7. when all DYNARE computations are completed, closeSlave.m closes
all open remote MATLAB/OCTAVE instances waiting for new jobs
to be run.

Table 1: Procedure for parallelizing portions of codes.

27

6. the cycle looping over endogenous variables making posterior plots of

filter, smoother, forecasts: pm3.m, pm3_core.m.

Essentially, developers need to interface with only two of the above men-

tioned functions: masterParallel.m and fmessageStatus.m. All other

functions act as internal functions and knowing their usage is not necessary

for the developer.

function masterParallel.m is used to break the serial computation and

initiate parallel implementation;

function fmessageStatus.m is used in parallel threads to send information

about the status of computations.

4.1 The function masterParallel.m

The function masterParallel.m has the following input arguments:

Parallel (struct vector): copy of options_.parallel, i.e. the vector

of structures describing each machine in the cluster;

fBlock (int): index number of the first thread (between 1 and nBlock);

nBlock (int): index number of the last thread: the loop [fBLock:nBLock]

will be broken and distributed across all available CPU’s in the cluster;

NamFileInput (cell array): contains the list of input files to be copied

in the working directory of remote slaves. It is made of 2 columns,

with as many lines as there are files (i) first column contains directory

paths relative to the remote working directory (i.e. if the files have to

be moved to the remote working directory, the entry in the first column

will be an empty string!) (ii) second column contains filenames (e.g.

<model>_static.m, <model>_dynamic.m, <model>_steadystate.m),

for exmple:

NamFileInput(1,:) = {’’,[ModelName ’_static.m’]};

NamFileInput(2,:) = {’’,[ModelName ’_dynamic.m’]};

if options_.steadystate_flag,

NamFileInput(3,:)={’’,[ModelName ’_steadystate.m’]};

end

28

fname (string): name of the function to be run on the slaves, e.g.

posterior_IRF_core.m;

fInputVar (struct): structure containing local variables to be used by

fName on the slaves;

fGlobalVar (struct): structure containing global variables needed to run

fName on the slaves;

Parallel info: copy of options_.parallel_info;

initialize: initializes the remote temporary working directory and cleans

up remnants of previous local parallel sessions.

The function masterParallel.m has the following output arguments:

fOutVar (struct vector): result of the parallel computation, one struc-

ture per thread;

nBlockPerCPU (int vector): for each CPU used, indicates the number of

threads run on that CPU;

totCPU (int): total number of CPU used (can be lower than the number

of CPU declared in ”Parallel”, if the number of required threads is

lower, e.g. when one does two parallel Metropolis chains having four

available CPU’s).

4.2 The function fmessageStatus.m

The utility function fMessageStatus.m can be seen as a generalized form

of the MATLAB utility waitbar.m. The function fMessageStatus.m has

the following input arguments:

prtfrc: this indicates the fraction of the work done by the parallel thread;

whoiam: index number of this CPU among all CPUs in the cluster;

waitbarString: a running string that updates some info during the com-

putation (e.g. the acceptance rate in Metropolis);

waitbarTitle: a title string;

Parallel: the configuration options for this machine, i.e. a copy of

options .parallel(ThisMatlab).

29

4.3 Write a parallel code: an example

Using a MATLAB pseudo (but very realistic) code, we now describe in de-

tail how to use the above step by step procedure to parallelize the random

walk Metropolis Hastings algorithm. Any other function can be parallelized

in the same way. It is obvious that most of the computational time spent

by the

random_walk_metropolis_hastings.m function is given by the cycle loop-

ing over the parallel chains performing the Metropolis:

function random_walk_metropolis_hastings

(TargetFun, ProposalFun, ..., varargin)

[...]

for b = fblck:nblck,

...

end

[...]

Since those chains are totally independent, the obvious way to reduce the

computational time is to parallelize this loop, executing the (nblck-fblck)

chains on different computers/CPUs/cores.

To do so, we remove the for cycle and put it in a new function named

<*>_core.m:

30

function myoutput =

random_walk_metropolis_hastings_core(myinputs,fblck,nblck, ...)

[...]

just list global variables needed (they are set-up properly by fParallel or slaveParallel)

global bayestopt_ estim_params_ options_ M_ oo_

here we collect all local variables stored in myinputs

TargetFun=myinputs.TargetFun;

ProposalFun=myinputs.ProposalFun;

xparam1=myinputs.xparam1;

[...]

here we run the loop

for b = fblck:nblck,

...

end

[...]

here we wrap all output arguments needed by the ‘master’ routine

myoutput.record = record;

[...]

The split of the for cycle has to be performed in such a way that the new

<*>_core function can work in both serial and parallel mode. In the latter

case, such a function will be invoked by the slave threads and executed for

the number of iterations assigned by masterParallel.m.

The modified random_walk_metropolis_hastings.m is therefore:

31

function random_walk_metropolis_hastings(TargetFun,ProposalFun,,varargin)

[...]

% here we wrap all local variables needed by the <*>_core function

localVars = struct(’TargetFun’, TargetFun, ...

[...]

’d’, d);

[...]

% here we put the switch between serial and parallel computation:

if isnumeric(options_.parallel) || (nblck-fblck)==0,

% serial computation

fout = random_walk_metropolis_hastings_core(localVars, fblck,nblck, 0);

record = fout.record;

else

% parallel computation

% global variables for parallel routines

globalVars = struct(’M_’,M_, ...

[...]

’oo_’, oo_);

% which files have to be copied to run remotely

NamFileInput(1,:) = {’’,[ModelName ’_static.m’]};

NamFileInput(2,:) = {’’,[ModelName ’_dynamic.m’]};

[...]

% call the master parallelizing utility

[fout, nBlockPerCPU, totCPU] = masterParallel(options_.parallel, ...

fblck, nblck, NamFileInput, ’random_walk_metropolis_hastings_core’,

localVars, globalVars, options_.parallel_info);

% collect output info from parallel tasks provided in fout

[...]

end

% collect output info from either serial or parallel tasks

irun = fout(1).irun;

NewFile = fout(1).NewFile;

[...]

Finally, in order to allow the master thread to monitor the progress of

the slave threads, some message passing elements have to be introduced in

the <*>_core.m file, using the utility fMessageStatus.m. In the following

example, we show a typical use of this utility, again from the random walk

Metropolis routine:

32

[...]

% define a title message waitbarTitle, common for the

% entire execution (typically which machine is doing the job)

if whoiam

if options_.parallel(ThisMatlab).Local,

waitbarTitle=[’Local ’];

else

waitbarTitle=[options_.parallel(ThisMatlab).ComputerName];

end

end

[...]

for j = 1:nruns

[...]

% define the progress of the loop:

prtfrc = j/nruns;

% define a running message:

% first indicate which chain is running on the current CPU [b]

% out of the chains [mh_nblock] requested by the DYNARE user

waitbarString = [’(’ int2str(b) ’/’ int2str(mh_nblck) ’) ...

% then add possible further information, like the acceptation rate

’ sprintf(’%f done, acceptation rate %f’,prtfrc,isux/j)]

if mod(j, 3)==0 & ~whoiam

% serial computation

waitbar(prtfrc,hh,waitbarString);

elseif mod(j,50)==0 & whoiam,

% parallel computation

fMessageStatus(prtfrc, ...

whoiam, ...

waitbarString, ...

waitbarTitle, ...

options_.parallel(ThisMatlab))

end

[...]

end

In the previous example, a number of arguments are used to identify

which CPU and which computer in the cluster is sending the message,

namely:

33

% whoiam [int] index number of this CPU among all CPUs in the

% cluster

% ThisMatlab [int] index number of this slave machine in the cluster

% (entry in options_.parallel)

The message is stored as a MATLAB data file

[’comp_status_’,fname,’*.mat’]

saved on the working directory of remote slave computer. The master will

will check periodically for those messages and retrieve the files from remote

computers and produce an advanced monitoring plot.

So, assuming to run two Metropolis chains, under the standard serial

implementation there will be a first waitbar popping up on matlab, corre-

sponding to the first chain:

followed by a second waitbar, when the first chain is completed.

On the other hand, under the parallel implementation, a parallel moni-

toring plot will be produced by masterParallel.m:

4.4 Synchronization

Synchronization is a critical element for proper parallel computations. The

function masterParallel needs to wait for all threads to be completed

before wrapping up all results and continuing the serial execution. Synchro-

nization is assure creating/deleting files: namely files named

[’P_’,fname,’_*End.txt’]

are created by masterParallel in the working directories of all paral-

lel threads, one for each thread. Those files are deleted by the remote

34

threads as their last instruction after completion of all required tasks. Then

masterParallel waits until all files [’P_’,fname,’_*End.txt’] are deleted

before proceeding further. In practice, masterParallel does two operations

while parallel threads are running:

1. checks every second the status of remote computations, i.e. looks for

files named

[’comp_status_’,fname,’*.mat’]

saved by fmessageStatus.m;

2. checks that all threads are completed, i.e. deletion of all files

[’P_’,fname,’_*End.txt’].

In the case of the ”Always-Open” mode, further synchronization is needed

for the function slaveParallel.m having to wait for new jobs arriving. New

jobs are sent by masterParallel.m by means of a file

[’slaveJob’,int2str(whoiam),’.mat’]

which stores all info about the thread to be run. So, slaveParallel.m waits

and checks the existence of such files every second. When this file is on the

working directory, new threads are started. In order to avoid that remote

MATLAB instances stay open forever (e.g. in the case master crashes for

some reason), the remote MATLAB closes after 1200 seconds without any

new request. The master can reset the counter of 1200 seconds by sending

a file named

[’stayalive’,int2str(whoiam),’.txt’]

to the remote working directory: slaves check for the existence of such a file,

if it exist the counter is reset to zero and the file deleted. The master can

impose the remote MATLAB to close at any time by deleting files named

[’slaveParallel_input’,int2str(whoiam),’.mat’]

(the closeSlave.m utility does this operation). Remote slaves check period-

ically the existence of such files and if they are deleted they exit MATLAB.

The existence of such files is also checked by fmessageStatus whenever it

is invoked by the _core routine: in this way, a signal of breaking remote

execution can be sent also inside computational threads.

35

5 Parallel DYNARE: test suite

We provide in the official DYNARE distribution tests for parallel execution

(tests/parallel subfolder).

6 Conclusions

The parallel DYNARE is built around a few ‘core’ routines, that act as a

sort of ‘parallel paradigm’. Based on those routines, parallelization of expen-

sive loops is made quite simple for DYNARE developers. A basic message

passing system is also provided, that allows the master thread to monitor

the progress of slave threads. The test model ls2003.mod is available in the

folder \tests\parallel of the DYNARE distribution, that allows running

parallel examples.

References

M. Russinovich. PsTools v2.44, 2009. available at Microsoft TechNet,

http://technet.microsoft.com/en-us/sysinternals/bb896649.aspx.

36

European Commission

EUR 25031 EN – Joint Research Centre – Institute fo r the Protection and Security of the Citizen
Title: European Community project MONFISPOL (grant agreement SSH-CT-2009-225149) Deliverable 2.2.2:
Beta-version of parallel routines: user manual.
Author(s): M. Ratto, I. Azzini, H. Bastani, S. Villemot
Luxembourg: Publications Office of the European Union
2011 – 36 pp. – 21 x 29.7 cm
EUR – Scientific and Technical Research series – ISSN 1831-9424
ISBN 978-92-79-22034-0
doi:10.2788/97390

Abstract
In this document we describe the parallel package within DYNARE (called the “Parallel DYNARE" hereafter).
The parallel methodology has been developed taking into account two different perspectives: the “User
perspective" and the “Developers perspective". The fundamental requirement of the “User perspective" is to
allow DYNARE users to use the parallel routines easily, quickly and appropriately. Under the “Developers
perspective", on the other hand, we need to build a core of parallelizing routines that are sufficiently abstract
and modular to allow DYNARE software developers to use them easily as a sort of `parallel paradigm', for
application to any DYNARE routine or portion of code containing computational intensive loops suitable for
parallelization. The Parallel DYNARE comes with the official DYNARE installation package, so the preprocessor
part required to interpret the cluster definition is built-in the standard DYNARE installation.

How to obtain EU publications

Our priced publications are available from EU Bookshop (http://bookshop.europa.eu), where you can place
an order with the sales agent of your choice.

The Publications Office has a worldwide network of sales agents. You can obtain their contact details by
sending a fax to (352) 29 29-42758.

The mission of the JRC is to provide customer-driven scientific and technical support
for the conception, development, implementation and monitoring of EU policies. As a
service of the European Commission, the JRC functions as a reference centre of
science and technology for the Union. Close to the policy-making process, it serves
the common interest of the Member States, while being independent of special
interests, whether private or national.

LB
-N

A
-25031-E

N
-N

