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1. Introduction 
Chemicals in the environment arising from human emissions pose issues concerning 
human health and environmental risks (e.g. [1], [2]). Emission quantification is the 
natural starting point of the life-cycle analysis of chemicals and is key to any modeling 
effort aimed at predicting chemical concentration. Emissions are often related to 
production and use of chemicals and the complex nature of chemical emission patterns 
makes quantification of emissions very uncertain. In many cases the predominant 
uncertainties in a risk assessment are indeed related to the uncertainties of the emission 
inventories. 
There are many ways to perform an emission inventory. The emission inventory 
guidebook prepared by the UNECE/EMEP Task Force on Emissions Inventories and 
Projections [3] to support reporting under the UNECE Convention on Long-Range 
Transboundary Air Pollution [4] and the EU directive on national emission ceilings 
2001/81/EC provides a comprehensive state-of-the-art methodological guide for 
atmospheric emissions. 
A comprehensive emission estimate has been done, for single chemicals, in the context of 
risk assessments made for existing chemicals by the EU member states and coordinated 
by the European Chemicals Bureau (ECB) before entry into force of the EC Regulation 
N. 1907/2006 concerning the Registration, Evaluation, Authorisation and Restriction of 
Chemicals (REACH); this work is accessible in the form of publicly available risk 
assessment reports (RARs) ([5]). Existing chemicals are defined in the European Union 
(EU) as any chemical substance listed in the European INventory of Existing Commercial 
Substances (EINECS), an inventory containing more than 100,000 substances ([6]). Each 
of these chemicals may pose a risk to humans and the environment, and may therefore be 
potentially subjected to risk assessment. 
The ECB RARs provide information for individual chemicals and include data, modeling 
results and expert judgments, based on IUCLID ([7]), a tool for data collection and 
evaluation within the EU-Risk Assessment Programme ([5]). IUCLID includes all data 
sets submitted by industry following Council Regulation (EEC) 793/93 on the 'Evaluation 
and Control of the Risks of Existing Substances'. The Regulation obliges industry to 
submit all readily available data on 'High Production Volume Chemicals' (HPVCs). At 
present, IUCLID contains 30,000 dossiers for approximately 10,500 different chemicals, 
and comprises the largest set of uniformly reported data for Volatile Organic Compounds 
(VOCs)  and semi-VOCs that are directly applicable for the EU. 
In accordance with Directive 67/548/EEC and Regulation (EEC) 93/793, exposure related 
information was to be provided for notified new chemicals and for prioritary existing 
chemicals, and particularly information on proposed use. When neither measured nor 
estimated exposure data are provided by the responsible industry (i.e. the notifier of a 
new chemical, which can be the manufacturer or importer of a priority existing chemical, 
respectively), the information on proposed use will be useful to competent authorities for 
developing emission scenarios. They are in most cases based on more in-depth studies of 
the environmental emission of chemicals used in the different industrial categories, as 
defined in the European Commission Technical Guidance Document on risk assessment 
(TGD) [8]. The emission of a chemical at different stages of its life cycle should thus be 
estimated by order of preference from: 
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1) Specific information for the given chemical (e.g. from producers, product 
registers or open literature) 
2) Specific information from the emission scenarios document, available for several 
industrial categories  
3) Emission factors as included in emission tables in the TGD where the emission is 
given as a fraction of the produced or used amount 
Although information from industry is theoretically preferable, it is often the case that no 
such information is available. For this reason, the emission estimates in the existing 
RARs are obtained as a result of various possible combinations of expert judgement and 
empirical assumptions, based on generic scenarios defined in the TGD. 
For each chemical, environmental concentrations are then calculated from emissions 
using mathematical models such as EUSES [9], and compared with monitored values. 
Emission estimates are thus a key parameter for modeling, and at the same time their 
estimate is complex and involves a wide range of fundamentally different parameters 
with varying uncertainties. 
On the basis of the information submitted by manufacturers and importers, the European 
Commission, in consultation with Member Sates, in the past has drawn lists of priority 
chemicals or groups of chemicals requiring immediate attention because of their potential 
effects on man or the environment [e.g.10]. A risk assessment requires an extensive effort 
in data collection and evaluation. 

As data on emissions of chemicals to specific compartments are not estimated 
routinely out of the risk assessment reports, a challenge can be faced when predicting 
emissions of other chemicals using actually available information, in a cost-effective and 
parsimonious way. For each chemical there are a number of parameters, such as produced 
amount, use and physico/chemical properties, which determine the emissions to the 
environment. In general, there is no obvious functional relationship between these 
parameters and emissions that can be derived from the methodology described in the 
TGD. 
Data mining techniques ([11], [12]) have proven to be capable of unveiling data 
relationships where traditional methods, such as standard linear or nonlinear regression, 
perform poorly. For this reason, we attempted to estimate chemical emission volumes to 
environmental compartments using such techniques.   
In this work focus is on (semi)Volatile Organic Compounds (VOCs), which cover a large 
group of chemicals predominantly found in industrial processes and in many consumer 
products. Some emissions are from point sources and can give rise to high local 
concentrations (hot-spots) in adjacent surface water, soil and the surrounding air. Other 
emissions are from diffuse sources. 
We discuss how the extensive work that has already been done, and the data presented in 
the RARs, can be used to model spatial emission patterns of chemicals in a defendable 
way for screening level applications, by training an appropriate decision tree. Firstly, we 
discuss the information available in the RARs for existing chemicals and the data mining 
methodology used to estimate the emission of chemicals to a specific compartment from 
widely available information on chemical production quantities and physico-chemical 
properties. In the last part of the report we briefly illustrate how the method can be used 
in conjunction with geographic information system (GIS) processing of spatial data to 
build maps of emissions of chemicals at the continental scale. 
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2. Materials and Methods  
The method aimed that we use for producing emission maps for (semi)Volatile Organic 
Chemicals (VOCs) comprises two types of tools, namely the data mining technique of 
decision trees, and geographic information systems (GIS).  
Decision tree analysis ([13] , [11], [12]) is a method that analyzes (mines) a set of data 
and generates a decision tree that can be used to predict the value of a target variable 
based on the values of a set of predictor variables. Like a real tree, a decision tree has a 
root, branches and leaves. A prediction is made by entering the tree at the root and 
following the branches left or right based on values of the predictor variables until a leaf 
is reached. Each leaf shows the most likely value for the target variable given the set of 
predictor values that led to the leaf. Available software such as DTREG 
(www.dtreg.com) allows building decision trees automatically once having specified the 
predictor and target variables. This is accomplished by dichotomic search [e.g. 14] across 
the data set, and is a computationally intensive process.  However, its simplicity from the 
user’s perspective and the lack of need for any model assumption nor calibration make 
this type of methods very attractive. 
V-fold cross validation [13] is performed, which is a technique for performing 
independent tree size tests without requiring separate test datasets and without reducing 
the data used to build the tree. The optimal size determined by cross validation is the best 
tree to use for scoring future datasets. 
The basic information that is present in finalized and draft RARs includes: 
1) Produced and used amount of specific chemical in the EU  
2) Names (locations) of producers and importers. No link is available between 

company name and produced/processed amount of chemicals 
3) Products and uses that the chemicals are associated with. The use is categorized as 

“use in closed systems”, “use resulting in inclusion into or onto matrix”, “non-
dispersive use” and “dispersive use” 

4) Emissions to wastewater, air, soil, surface water, sea/estuaries and landfills on a 
local scale (non-dispersive and wide-dispersive), regional and continental scale 

5) Predicted Environmental Concentrations (PECs) for the same compartments and 
spatial scales as above 

6) Physico/chemical properties 
7) Ecotoxicological and human toxicological parameters 
Points 1) to 4) and 6) are relevant for predicting and mapping emissions. 
Data for 35 risk assessed chemicals are used as training set to build decision trees. 
Predictor parameters are production and use data, compiled in Table 1, and three 
physico/chemicals parameters in Table 3. The target parameters are emissions, compiled 
in Table 2. Only one target parameter can be chosen for each analysis (tree). As an 
example, a decision tree for the local emission to wastewater from non-dispersive 
emission (column 3 in Table 2) is shown in Figure 1.  
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Table 1 Used amounts, use in industry and consumer products of 35 selected training chemicals, ECB reports. The last row, formaldehyde, is a not-assessed test 
chemical where data is from EUROSTAT and SPIN. Units are in tonnes per year. 

A 
Chemical 

B 
CAS no 

D 
Total annual 
production 

E 
Use in closed 
industrial 
processes1) 

F 
Use as 
intermediate2) 

G 
solvent3) 

H 
solid products 
(fixed or dissolved 
in matrix) 

I 
detergents3) 

J 
clothing, 
textiles, 
leather 

K 
cosmetics 

L 
other 

M 
formed by 
natural/ 
industrial 
processes 

N 
Wide dispersive use
(sum column G to M) 

O 
fuel 
(traffic) 

1,4-dichlorobenzene 106-46-7 25500 100 7118 35,8 7240  0    7276  
2-(2-butoxyethoxy)ethanol 112-34-5 46600 0 2330 16800  27500     44300  
2-(2-methoxyethoxy)ethanol 111-77-3 20000 0 900 8100       8100  
2-ethylhexyl acrylate 103-11-7 70000 0 89982 16,2 1,80      18  
3,4-dichloroaniline 95-76-1 12000 0 10746        0  
4,4'-methylenedianiline 101-77-9 432000 0 432000 4000 0      4000  
4-chloro-o-cresol 1570-64-5 15000 0 14925      75  75  
acetonitrile 75-05-8 10000 9300  700      119392 120092  
acrylaldehyde 107-02-8 100000 0 100000    0  0 0 0  
acrylamide 79-06-1 100000 0   100      100  
acrylic acid 79-10-7 810000 41500 415000 1527 540  166    2233  
acrylonitrile 107-13-1 1250000 0 1249375 56,3 406  163    625  
aniline 62-53-3 530000 0 547739 760 1940    0  2811  
benzene 71-43-2 7247000 0 7247000        1410000 14100004) 

benzene, c10-13 alkyl derivs 67774-74-7 450000 0 278600   1400     1400  
bis(pentabromophenyl)ether 1163-19-5 0 0   6710  1500    8210  
but-2-yne-1,4-diol 110-65-6 185000 3330 183995 370       370  
buta-1,3-diene 106-99-0 1892000 0 1816308  12,0     3784 75692 71896 
chloro alkanes, c10-13 85535-84-8 15000 9430  1845 1310  573  50  3778  
cumene 98-82-8 4100000 0 3310750        205000 205000 
cyclohexane 110-82-7 880000 0 864000 36000 0      36000  
dibutyl phthalate 84-74-2 26000 0  3750 13500      17250  
dimethyldioctadecylammonium chloride 107-64-2 5651 468  4506   667    5173  
diphenyl ether, pentabromo deriv. 32534-81-9 0 0   1100      1100  
edetic acid (EDTA) 60-00-4 53900 6989   0 13304 3,20 756   14247  
ethyl acetoacetate 141-97-9 10000 0 9460 660       660  
methacrylic acid 79-41-4 40000 0 24276 121 30      151  
methyl acetate 79-20-9 30000 0 4800 11189  5594     16783  
naphthalene 91-20-3 200000 0 137000 2000 3352      25352 20000 
pentane 109-66-0 55000 0  7825 5848      13673  
phenol 108-95-2 1829100 0 1642500        0  
propan-1-ol 71-23-8 5000 0 13550 5793  828  3310 828  16550  
styrene 100-42-5 3743000 0 3740006  1994      1994  
tetrachloroethylene 127-18-4 164000 14000 30000 1600  62400     64000  
trichloroethylene 79-01-6 138000 63140 45000 29860       29860  
formaldehyde 50-00-0 4118000 0 1400120 1812253  905960     2718213  

1)Non-dispersive use 
2)Use in closed systems, or inclusion into/onto matrix 
3)Households, professional trade etc. 
4) Amount of benzene in petrol in Western Europe (2000) 



 6 

Table 2 Measured or estimated emissions for 35 selected training chemicals, ECB reports. The last row, formaldehyde, is a not-assessed test chemical where 
emissions are found from decision trees. Surface water, sea/estuaries and landfills are omitted for clarity reasons. 

Chemical CAS no. wastewater air soil

local non-
disp 
emission1) 

(kg/d) 

local wide-
disp 
 emission2) 
(kg/d) 

regional3)

(kg/y) 
EU 
(kg/y) 

local non-disp 
emission1) 

(kg/d) 

local 
wide-disp 
emission2) 
(kg/d) 

regional3)

(kg/y) 
EU 
(kg/y) 

local non-
disp 
emission1) 

(kg/d) 

local wide-
disp 
emission2) 
(kg/d) 

regional3)

(kg/y) 
EU 
(kg/y) 
 
 

1,4-dichlorobenzene 106-46-7 5,94  45450 423450 255  782500 7258200 0,05    
2-(2-butoxyethoxy)ethanol 112-34-5 134 32,7 1941800 17483500 5,63 166 711750 6424000     
2-(2-methoxyethoxy)ethanol 111-77-3 3682  690000 25800 220  88200 12300     
2-ethylhexyl acrylate 103-11-7 701  38170 13710 33,3  10600 51780     
3,4-dichloroaniline 95-76-1 2,83  22,7 204 0,0617  0,0123 0,111 0  0 0 
4,4'-methylenedianiline 101-77-9 0,78  283 2550         
4-chloro-o-cresol 1570-64-5 7,97  39750  0,658  4650  0,006  1275  
acetonitrile 75-05-8 2777 0 31201 4496800 1528  10060400 99954290     
acrylaldehyde 107-02-8 20,4  6205 62050 0,287  657000 15768000     
acrylamide 79-06-1 0,502  9120 84000 0,200  66 103     
acrylic acid 79-10-7 323 0,335 218000 973000 21,9 0,205 54000 277000     
acrylonitrile 107-13-1 22,2    330  330000 3310000     
aniline 62-53-3 6,19  260 2300 10,3  16000 146000     
benzene 71-43-2 903  2585000 23262000 1413  18291000 165000000 362  65500 590000 
benzene, c10-13 alkyl derivs 67774-74-7  0,15 108040 2000200         
bis(pentabromophenyl)ether 1163-19-5 4,84 0,2 121740 334860 0,17  2909 26150   14800 106200 
but-2-yne-1,4-diol 110-65-6 20,7 11 58040 580400 0,167 0,29 8,7 87 0  0 0 
buta-1,3-diene 106-99-0 476  120240 1074490 3750  1435300 12496400     
chloro alkanes, c10-13 85535-84-8 52,3  174102 1738799 0,512  39,4 394     
cumene 98-82-8 2500  615000 6150000 2183  1242300 12423600 33,3  8190 81900 
cyclohexane 110-82-7 333 12 736400 6625600 6625600 6625600 6895000 56893000 0    
dibutyl phthalate 84-74-2 30,4  94590 610860 18,1  110865 403599     
dimethyldioctadecylammonium chloride 107-64-2 26,2 0,507 9600 86000 0  0 0   11000 99000 
diphenyl ether, pentabromo deriv. 32534-81-9 0,15  44,6 136 0,124  4339 38831   1590 14270 
edetic acid (EDTA) 60-00-4 561 2 2895000 26059000 0,0242      582000 5239000 
ethyl acetoacetate 141-97-9 71,1 25,6 1000 10200 2,33 161 5000 49400     
methacrylic acid 79-41-4 1086  80000 325000 3333  4000 37000   0 0 
methyl acetate 79-20-9 313 3,55 45000 402000 14618 17876 1328000 11958000     
naphthalene 91-20-3 21,4  12077 46008 16,1  3608906 32119658 0  9138 40368 
pentane 109-66-0 1 0,0371 6810  9101 14,2 3744977      
phenol 108-95-2 82,5 0,96 513000 4618000 48,5  9683000 87146500 0  600 5100 
propan-1-ol 71-23-8 105  1516858 3008142 2050  2104827 4176873     
styrene 100-42-5 839  252000 1038030 1836  2010000 16944000 0  0 0 
tetrachloroethylene 127-18-4 1,29  13281 119298 791  9936000 44834400     
trichloroethylene 79-01-6 13,0 0,096 522467 4660587 3451 19,9 6373080 48196910 2,44  7300 60400 
formaldehyde 50-00-0 2500 32,7 284022 2574994 4142 148 877832 8215811 3,58  9184 83103 
1) For local emissions all the non-dispersive emission amounts are added. This corresponds with the approach of applying local emission amounts to arbitrary sites, in order to find potential risk sites/scenarios. When adding all 
emissions the worst-case scenario is defined, i.e. a site where all local emissions are arbitrarily situated at the same site, and thus releasing to the same recipient (wasterwaterplant, river, air, soil etc.) 
2) Often the local emissions stated in the RAs only comprise non-dispersive sources, i.e. industries etc. The wide-dispersive household uses are often not included in the local emission, but only in the regional and continental 
emissions 
3) All emissions from both non-dispersive and wide-dispersive sources are considered in the determination of a regional background emissions 
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Table 3 Physico/chemical parameters for 35 training chemicals. The last row, formaldehyde, is a not-
assessed test chemical. Vapour pressure (vp), Octanol-water partitioning coefficient (logKow), Water 

solubility (watsol) are from IUCLID. 
Chemical CAS no. vp 

(kPa) 
logKow watsol 

(mg/l) 
1,4-dichlorobenzene 106-46-7 160 3,38 65 
2-(2-butoxyethoxy)ethanol 112-34-5 0,0027 0,56 1000000 
2-(2-methoxyethoxy)ethanol 111-77-3 0,03 -0,682 1000000 
2-ethylhexyl acrylate 103-11-7 0,0155 3,89 9,6 
3,4-dichloroaniline 95-76-1 0,000184 2,7 580 
4,4'-methylenedianiline 101-77-9 2,87E-09 1,59 1,25 
4-chloro-o-cresol 1570-64-5 0,02666 3,09 2300 
acetonitrile 75-05-8 9,864 -0,34 139000 
acrylaldehyde 107-02-8 29,3 -0,89 240000 
acrylamide 79-06-1 0,0009 -1 2155 
acrylic acid 79-10-7 0,38 0,46 1000000 
acrylonitrile 107-13-1 11,5 0,25 0,735 
aniline 62-53-3 0,04 0,9 35000 
benzene 71-43-2 9,97 2,13 1800 
benzene, c10-13 alkyl derivs 67774-74-7 0,0013 8,31 0,041 
bis(pentabromophenyl)ether 1163-19-5 4,63E-09 6,27 0,0001 
but-2-yne-1,4-diol 110-65-6 0,00017 0,73 0,75 
buta-1,3-diene 106-99-0 240 1,99 735 
chloro alkanes, c10-13 85535-84-8 2,13E-05 6 0,47 
cumene 98-82-8 0,496 3,55 50 
cyclohexane 110-82-7 10,3 3,44 58 
dibutyl phthalate 84-74-2 0,97 4,57 10 
dimethyldioctadecylammonium chloride 107-64-2 0 3,8 2,7 
diphenyl ether, pentabromo deriv. 32534-81-9 4,69E-08 6,57 0,0024 
edetic acid (EDTA) 60-00-4  -5,01 400 
ethyl acetoacetate 141-97-9 0,1 0,25 125000 
methacrylic acid 79-41-4 0,09 0,93 89000 
methyl acetate 79-20-9 21,7 0,18 272000 
naphthalene 91-20-3 0,0072 3,55 30 
pentane 109-66-0 56,58 3,45 38,5 
phenol 108-95-2 0,02 1,47 84000 
propan-1-ol 71-23-8 1,94 0,34 1000000 
styrene 100-42-5 0,667 3,02 300 
tetrachloroethylene 127-18-4 1,9 2,53 149 
trichloroethylene 79-01-6 8,6 2,29 1100 
formaldehyde 50-00-0 0,75 -0,78 550000 

 
Decision trees can be built for all forms of emissions to environmental compartments. The 
training set is used for cross-validating the emissions for each chemical by removing it from the 
training set and building a decision tree with the remaining chemicals. Figure 2 shows the cross-
validation in a scatter diagram between reported emissions and predicted emissions. As it is 
shown, the decision tree allows conservative estimates where 69% of the predictions are 
overestimating the emissions relative to reported values and that 51% of the predictions are 
within one order of magnitude (±) of the reported values. Conservative estimates are typically 
occurring for low reported emissions. 
The method we propose for predicting emissions for not assessed chemicals consists of the 
following steps:  

1) Retrieve gross production and consumption data and physico-chemical properties for a 
VOC of interest 

2) Apportion the total consumption volume of the chemical to different use modes 
3) Identify a mode of emission of the chemical to the environment, e.g. in treated 

wastewater, direct to air 
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4) Using the data on consumption volume, use modes and physico-chemical properties of 
the substance as predictor parameters, enter a decision tree built from the training set to 
estimate the selected mode of emission (target parameter); this provides an emission total 
with reference to the area of origin  

5) Apportion the emission total to point sources (emissions from individual high production 
volume plants) and to diffuse emissions (dispersive use in industrial areas, and in 
households);  

6) Construction of emission maps by summing the point emissions to a map of distributed 
diffuse emissions, which can be evaluated from total diffuse emission using an emission 
pattern such as land use or population density as explained in the following. 

 
Figure 1 Decision-tree where production, product, use (cf. Table 1) and physico/chemical parameters (cf. 
Table 3) for 35 different VOCs and semiVOCs are used as predictor parameters. The target parameter is 
local emissions to wastewater from non-dispersive sources (column 3, Table 2). In each node the needed 
split parameter value is shown, number of attributed chemicals, emission to wastewater from local non-

dispersive use (target parameter) in kg per day, and the emission standard deviation. 

 
In order to accomplish the above stated steps, one should use the best data available in the 
specific situation to which the estimate is referred. Here we focus on data available for estimates 
at the level of continental Europe. 
The total annual use can be computed from the mass balance: 

Quantity used = quantity produced + quantity imported – quantity exported 
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Production, import and export data are found in Eurostat, either on a national basis or on EU 
scale.  

Figure 2 Cross-validation of predicted local non-dispersive emission to wastewater (Rlocalwwtpnondisp) 
for 35 training chemicals (no local emission is estimated for benzene, c10-13, alkyl derivatives). A 

decision tree is built for each chemical by omitting the chemical in the building of the tree. 

Cross validation of local non-disperse releases to
wastewater treatment plants
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Use mode information can be found from the database of Substances in Preparations in Nordic 
Countries (SPIN) [15], which provides data on the use of chemical substances in Norway, 
Sweden, Denmark and Finland. Conditions in the Nordic countries are thus extrapolated to the 
entire EU, although some differences in chemicals composition of products, use patterns of 
products and emission factors of chemical consuming industrial processes may prevail. The 
SPIN database has a degree of detail that can not be found in other databases in the EU, so this 
assumption can be considered to be realistic and appropriate as a first approach. 

Finally, physico-chemical parameters can be found from a variety of databases. In this analysis, 
the IUCLID database is used. In this way, a compilation of approximate information can be 
retrieved for a large number of existing VOCs. 

3. Results and Discussion 

3.1 Estimate emissions to environmental compartments for non-
assessed chemicals 

One way to use decision tree analysis, as shown above, is to predict emissions of chemicals for 
which a risk assessment report, or generally speaking comprehensive information on emissions, 
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is not available. As a test chemical that is used in large amounts and in a variety of activities and 
products formaldehyde, CAS no. 50-00-0, is chosen. 
From Eurostat the formaldehyde production, import and export figures for EU25 for 2004 are 
extracted, yielding a used quantity of 4118 ktonnes per year 
From the Nordic SPIN database information on categories “Industrial use” and “Use category” 
are extracted. This is used to assign the 4118 ktonnes per year relatively in categories defined in 
the Common Reporting Format (CRF) categories for “solvent and other product use”, as defined 
in the IPCC Guidelines for National Greenhouse Gas Inventories [17]; “paint application”: 
8.08e-05, “degreasing and dry cleaning”: 0.22, “chemical products manufacturing and 
processing”: 0.34, “other”: 0.44. “Solvent and other product use” does not cover every aspect of 
a (semi)VOC emission since, for instance, energy and transport may be significant sectors for 
some chemicals such as benzene. However, for most (semi)VOCs the main uses are within this 
category. 
For formaldehyde predictor parameters analogous to training chemicals are found. Last row in 
Table 1 is found by distributing the total annual use in the EU in the following way: “Paint 
application” is assigned to column G (solvent), “degreasing and dry cleaning” to column I 
(detergents), “chemical products” to column F (use as intermediate) and “other” to column G 
(solvent) since the main part of “other” is as conserving agent. Last row in Table 3 is made from 
IUCLID data. Emissions (target parameters) are estimated from decision trees built from the 
training set, and shown in last row in Table 2. 

3.2 Emission mapping with GIS 
In the previous section it is shown how local and wide-dispersive emissions of chemicals, from 
use in industries and consumer products, are estimated. The local emissions are generated at 
industrial sites where chemicals are produced or products are processed, and wide dispersive 
(regional and EU) emissions occur in industrial, urban or agricultural areas where the chemicals 
are used. 
Confidentiality in RARs prevents direct allocation of industrial emissions. These can be 
assigned, as a proxy, to locations representing large chemical industrial plants, which are covered 
by the European Pollutant Emission Register (EPER) [16]. EPER covers 21 very general classes 
of industrial activities. Emissions to air, direct and indirect to water are reported from 
approximately 10,000 large and medium-sized industrial facilities in the 15 EU Member States, 
Hungary and Norway. EPER has information on 50 single chemicals or groups of which six 
single chemicals are included in the ECB priority chemicals. Some ECB priority chemicals are 
included in EPER as chemical groups, e.g. phenols, cyanides and non-methane VOCs. 
The share of emissions from all sources covered by EPER inevitably varies for each Member 
State, industrial activity and pollutant. For some air pollutants the EPER share can be assessed, 
whereas for direct and indirect emissions to water this is more difficult due to a lack of pan-
European data sets. As an example, a comparison with the EU15 total emissions of some 
important greenhouse gases and air pollutants (as reported under the UN Framework Convention 
on Climate Change and the UNECE Convention on Long-Range Transboundary Air Pollution) 
shows that EPER covers around 6% of EU15 total Non-Methane VOC emissions. This 
underestimation for more than a factor of 10 can be due to the fact that the RAR emissions also 
cover households and wide-spread product use, whereas EPER only covers industrial activities. 
It excludes for example emissions from the transport sector and from most agricultural sources, 
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whereas the underlying totals include these emissions. For these reasons, it seems advisable to 
take from the EPER inventory only relevant information on the potential location of industrial 
plants.  
The main industrial activities contributing to chemical emissions, according to the RARs, are 
production, processing and formulation. These activities usually can be attributed to the EPER 
activity “Basic organic chemicals”. The locations of the EPER-reported “Basic Organic 
Chemicals” facilities are displayed in Figure 3. 
The names of the facilities associated with this activity in EPER for a given chemical do not 
completely correspond to the facilities stated in the RARs. This can be due the fact that the 
RARs are typically elaborated in the mid 1990s, whereas EPER is up to date. However, the 
number of production and importing facilities in RARs are in reasonable agreement with the 
number of “basic organic chemicals” facilities in EPER. This applies both to the number of 
facilities per country and the total number of facilities in the EU. The reason for a slightly higher 
number in RARs could be the inclusion of smaller downstream processing plants. 
In order to use the updated facility information in EPER together with the in-depth RAR 
emission estimates, the following assumptions are made with respect to mapping non-dispersive 
emissions from industrial point sources: 
a. EPER category “Basic organic chemicals” facility sites are used for EPER as well as non-

EPER chemicals (EPER comprises only a sub-set of the chemicals forming a subject of 
RARs) 

b. RAR categories “Use in closed systems”, “Use resulting in inclusion into or onto matrix” 
and “Non-dispersive use” are related to EPER “Basic organic chemicals” facilities 

c. RAR emissions are attributed to randomly selected EPER “Basic organic chemistry” 
facilities. This is done for the number of sites stated in the RARs for each chemical 

d. Non-dispersive emissions associated with other industries than “Basic organic chemicals” 
should be located as such, if information is available from EPER. 

Wide-dispersive uses are related to public/household use and to other use delivering uncontrolled 
exposure, such as disperse industrial activities and traffic. Public use can be either outdoor or 
indoor, and for some chemicals this distinction can be made based on use patterns of specific 
products groups, such as detergents, cosmetics, disinfectants, household paints. Emissions 
attribution to maps is summarized in Table 4. 
For urban and industrial areas, the following algorithm has been adopted in order to represent the 
emissions E at location (x,y) (in units of [M] [L]-2[T]-1) from knowledge of the fraction of area 
occupied by urban or industrial land uses, LU,  at the same location:  

∫
=

A

dxdyyxLU
yxLUEyxE

),(
),(*),(

 
E* being the emission over area A (in units of [M][T]-1). Area A can be the entire continent, or a 
sub area depending on the resolution on aggregated emissions available (for instance, at the 
national or province level). This is equivalent to assign emissions to a grid cell in a map as 
proportional to the share of the land use considered as a source of emission.  
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Figure 3 – “Basic organic chemicals” facilities from EPER  

 
 
Population density is mapped by many organizations across the world; recently, a particularly 
upgraded product seems to be the Gridded Population of the World (GPW: 
http://www.ciesin.org/datasets/gpw/globldem.doc.html). Many algorithms can be used in order 
to obtain an emission map. In our case, we propose the above where LU(x,y) is replaced by the 
population density map D(x,y). From the above equation, it is clear that emissions related to 
population density are all similar to each other, apart from a scaling constant given by the total 
emission E*. 
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Table 4 Summary map-key to where the emissions are attributed 
 Local non-dispersive emission (kg/d) Local wide-dispersive emission 

(kg/d) 
Regional emission1) 
(kg/y) 

Chemical industries EPER 
“Basic organic chemicals”  

Population density or 
CORINE land cover  
(urban categories) 

Other industrial activities 
EPER site or 
CORINE land cover 
(industrial/commercial land uses) 

included in regional emission 

Population density or 
CORINE land cover  
(industrial/commercial 
land uses) 

Households  included in regional emission Population density 
Urban areas and professional 
workers  included in regional emission CORINE land cover  

(urban categories) 
Transportation  included in regional emission Traffic density 
Blank spaces: not relevant 
1) The regional emissions calculated in the RARs are thus defined for standard densely populated and highly industrialised areas 
 
To illustrate the differences in use amounts, product types, use patterns, spatial scales and 
emission patterns for industrial chemicals, three risk assessed chemicals and formaldehyde are 
selected for mapping the releases to wastewater. Non-dispersive emissions from industrial sites 
are attributed with randomly selected EPER sites in consistence with the national total number of 
sites from the RARs. 
(1) Benzene is used in much larger amounts and is predominantly used as intermediate in 
chemical processing of a variety of other chemicals. The emission is related to the chemical 
processing and is thus non-dispersive primarily to air and wastewater, but significant emissions 
to soil also occur at a local scale in the vicinity to the industrial sites. The most important 
emission source for benzene is, however, through the use of fossil fuel where benzene is a 
natural component of crude oil, and therefore an intrinsic constituent of certain refinery fractions. 
The most significant amount of benzene is found in motor fuel, with concentrations of 1-5%. 
This emission is wide-dispersive and can be correlated with traffic intensity but since traffic 
density maps are not available urban land use pattern is used. 
 (2) C10-13 alkyl derivatives of benzene are only used as intermediates in the production of 
linear alkylbenzene sulphonate (LAS), which is used as a household detergent, and is emitted to 
wastewater. The use is wide-dispersive only and the emission pattern is given by the population 
density pattern. 
(3) Styrene is a monomer exclusively used in the production of various polymer products, such 
as polystyrene. Contrary to the previous two chemicals styrene is incorporated in a solid matrix 
in products used for packaging, building, transport and even clothing. The content of styrene 
residuals in polymers and copolymers is approximately 0,04% of the used monomer amount. 
Emissions are predominantly associated with the local scale in the vicinity of the processing 
industries, where high emissions to air and wastewater can be found. The wide-dispersive 
emission pattern for styrene is given by the superposition of industrial land use, with urban land 
use pattern. The two patterns have the same weight, as we assumed the regional emissions were 
half to each category. 
 (4) Formaldehyde is considered as an example of non-risk assessed chemical. The wide-
dispersive emission pattern for formaldehyde is given by the superposition of industrial land use, 
with urban land use pattern. The two patterns have the same weight, as we assumed the regional 
emissions were half to each category. 
Non-dispersive point emissions are superimposed with wide-dispersive background emissions. 
Local wide-dispersive emissions are included in the regional and EU emissions. Figure 4 shows 
the maps of emissions. 
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Figure 4 Emission pattern to wastewater for a) benzene, E*= 7082 kg/d; E_max= 4.79E-02 kg/d/km2, b) 
benzene derivatives, E*= 296 kg/d; E_max= 1.63E-02 kg/d/km2, c) styrene, E*=690 kg/d; E_max= 

3.80E-02 kg/d/km2, d) formaldehyde, E*=778 kg/d; E_max= 4.29E-02 kg/d/km2. 
 

 

 

  
In summary, we used emission data available for 35 risk-assessed chemicals as a training set for 
predicting and mapping emissions of chemicals that have not been assessed, but may pose a risk 
to humans and the environment. Emission predictions have been done to air, wastewater, soil, 
and can be extended to inland surface water and the sea. The method of decision trees, a data 
mining technique for predicting a target value based on a set of predictor variables, generates 
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emission estimates which have been cross validated and shown to bear acceptable error. In 
particular, emissions modeled according to this approach are within one order of magnitude with 
respect to RAR data. 
The emission model that has been developed requires data on use amounts in industry and in 
downstream products (that can be retrieved e.g. from Eurostat and the Nordic SPIN products 
database) and vapor pressure, logKow and water solubility (that can be retireved e.g. from the 
IUCLID database), of the test chemicals. This information is readily available for many 
chemicals in a transparent and uniformly comparable form. For this reason, the method can be 
used at a screening level to map emissions for chemicals not subjected to Risk Assessment 
Reports, for the goal of chemical fate and transport modeling and spatially distributed evaluation. 
The procedure can be also seen as supportive to the development of a RAR, as it allows 
simplification and acceleration of the process of emission estimates, which can be a very time 
consuming task.  
As a screening level procedure, it provides only a first approximation estimate, although it is 
observed that often emission inventories themselves have intrinsically high uncertainties ([18]); 
therefore, the proposed procedure appears promising when only limited data are available and a 
quick response is required. Also, it should be noticed that when pursuing assessments at local 
scale, the spatial distribution of point emissions, which are selected at random from the EPER 
inventory, may have a very strong impact on predictions. In general, however, the procedure is 
expected to provide more and more reasonable estimates as one moves to scales such as a region 
or the continent. 
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Annex – regression analysis 
A decision-tree based method for estimating emissions and producing emission maps for VOCs 
and semi-VOCs has been discussed in this report.  
This method is alternative to other techniques, such as correlation or pattern recognition followed 
by linear regression models, including Principal Component Regression (PCR), Partial Least 
Square Regression (PLS-R) and Multiple Linear Regression (MLR). 
RAR data for 35 risk-assessed chemicals are used here as training set for calibration and cross-
validation of regression models based on PCR, PLS-R and MLR. Predictor parameters (PP), i.e. 
parameters that are entered in the models, are produced amount, non-dispersive use, use as 
intermediate (sum of “use in closed systems” and “use resulting in inclusion into or onto 
matrix”) and wide dispersive use, assigned by the letters D, E, F and N and compiled in Table 1 
of the report, together with the physico-chemical parameters logH and logKow given in Table 3. 
The target emissions (TE) that are used to calibrate, the models, describe worst-case local and 
regional conditions, represented by local non-dispersive emissions and wide-dispersive 
emissions, respectively. Data on emissions to wastewater, air and soil at local and regional 
conditioned scenarios are compiled in Table 2. 
 
Prior to selecting PPs for optimal modeling of TEs, the PPs and TEs were log-transformed to 
approximate normal distribution of data. Normal distribution can be assumed when skewness < ± 
2*standard error of skewness and kurtosis < � 2*standard error kurtosis [19]. The normal 
distribution criteria are met for all selected parameters in Table 1, all local non-dispersive 
emissions, regional emissions to wastewater and soil, and logKow. Parameters logH and regional 
emission to air showed slightly skewed distributions by having longer right tail and left tail, 
respectively, than those of a normal distribution [20]. The latter are nonetheless included in the 
analysis. Furthermore, parameters have been auto scaled, i.e. mean subtracted and divided by 
standard deviation, to obtain equal variances and mean zero, and approximate homoscedastic 
noise between variables [20, 21]. 
 
Regression models can be made for all forms of emissions to environmental compartments. In 
this report we find the coefficients αj to the multiple regression models, as defined in Equation 1, 
using a maximum of six PPs to explain the six TEs. 
 

TE = α0 + α1*(production, D) + α2*(non-dispersive use, E) + α3*(use as intermediate, F) + 
α4*(wide dispersive use, N) + α5*(logKow) + α6*(logH) 

 
where TE represents the target emission, TE1 to TE6. 
 
 
PCR and PLS were compared to reveal the inherent amount of correlation and co-linearity 
between PP and TE. Whereas PCR represents the inherent correlation, i.e. without fitting 
patterns in X, including all the PPs, to correlate optimal with TE data, PLS is an iterative process 
where the maximum amount of variation in X fitting optimal to the pattern in TE is found. PCR 
consists of two steps, where the first step is a PCA carried out on X after which the principal 
components (PCs) are used as predictors in an MLR. PLS-R is a bilinear modeling approach, 
where the PPs are projected onto a small number of underlying latent variables in an iterative 
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process. In PLS-R, the TE data are used actively in determining the latent variables ensuring 
highest possible relevance for prediction of TE in first PC. The number of PCs increases until no 
further increase in the explained TE-variance is achievable; i.e. maximum explained variance is 
obtained and further inclusion of PCs increases the noise in the model. 

An important assumption for the MLR method is that the PPs are linearly independent. 
Optimal PPs with highest explanatory capacity were selected based on the results for PCR and 
PLS in parallel to stepwise linear regression [19, 22]. The best simple MLR results are presented 
together with a visualization of latent variables in loading plots from the PLS-R models. 
Multiple linear regression models for the six TEs have been derived and the coefficients, α to 
Equation 1, are shown in Table A1. The PPs were selected by a stepwise regression procedure in 
SYSTAT. In parallel, PCR and PLS models were used for selection of PPs based on the 
weighted criteria: 1) maximum orthogonality and 2) highest explanatory capacity as discussed 
below in relation to Figure A1. 

The usual limit used in the interpretation of a p-value is 0.05 (or 5% significance level). 
As observed from Table A1, the p-value is below 0.05 in all six models except for TE1, which 
represents local non-dispersive emissions to wastewater. 
Use in closed industrial processes, E, which can be considered to be a point source, was tested as 
PP for local emissions, but as the number of observations was low, i.e. n = 2, 9 and 8 out of a 
total of n = 35, E was excluded from the regression analysis. A pair wise Pearson correlation 
matrix showed similar correlations coefficients of E to F and D, respectively, of 0.6. 
Furthermore, the pearson correlation to wastewater emissions TE1 and TE4 are highest when 
compared to the other TEs. Correlation coefficients for LR of E versus TE3 and TE4 were 0.01 
and 0.06, respectively. 

PCR and PLS were used for supporting the selection of PPs in the optimized MLR 
models shown in Table 1. The explanatory capacity and correlation patterns between PPs and 
TEs for the first two principal components of the PLS-R models is visualized in Figure A1 The 
loadings of PPs with respect to TE1 to TE6 (from the upper left towards the lower right plot) 
shows the importance of each PP in the principal components, i.e. PC1 and PC2, with respect to 
the X-variance in each PC used for explaining Y, i.e. the individual TEs. The used X-variance in 
PC1 and PC2 for explaining the TE-variance by the first two principal components are given in 
percent below each correlation loading plot in Figure A1. The loading plots show the 
associations within PP and TE. However, non-dispersive use (E) shows high correlation to target 
emissions for non-dispersive and wide-dispersive wastewater emissions (cf. Table XX). 
Therefore, E has been used. 

Wastewater emissions 
In general, non-dispersive and wide-dispersive wastewater emissions, TE1 and TE4 respectively, 
are poorly described by the models; only 19% TE-variance is described by 34% and 42% PP-
variance for TE1 and TE4, respectively. Both models are one component PLS models, and TE1 
and TE4 are being positioned within the inner ellipse representing less than 50% explained 
variance by the models. When running PCR, which is a two-step method performing a PCA on 
the PPs and secondary using the PCs as predictors in a MLR, the models predict 0% TE1 and 
TE4-variance in the first PC. The PCR reveals that the PPs included in the analysis are poor 
descriptors for wastewater releases. From the PLS loadings weight above, the best possible fit of 
TE1 and PP is suggested to be logH and N, which are close to orthogonal to each other and 
accordingly the best MLR model is based on these two PPs. Likewise, the PLS loading plot of 
TE4 and PPs shows that logKow has close to zero explanatory capacity in PC1 and N little 
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explanatory capacity in PC2. This means that logKow and N are close to orthogonal. Inclusion of 
LogKow in the MLR model for estimating TE4 results in the best MLR model. The original 
parameters are not successful PPs for wastewater releases as is be seen from Table A1; the wide-
dispersive model diagnostics shows the best performance compared to local non-dispersive 
wastewater release.In spite of on the relatively high pearson correlations coefficients, simple 
correlations of E versus TE1 and TE4, respectively, showed poor model performance; i.e. high p-
values, low F-values and lower R2 compared to Q2 reflecting low robustness of the model. 
 

Table A1 MLR models of target emissions, TE, where α0 to α6 are regression coefficients, n is number 
of cases, R2 and Q2 are correlation coefficients based on calibration and leave-one-out cross-validation, 

respectively. The F-ratio is regression sum of squares divided by unexplained residual variance, p-value is 
the significance level for the modeled variation to be real, RMSEC is the root mean square of calibration, 

and RMSEP the root mean square error of predictions, expressed in the same units as TE. Bold figures 
indicate good combination of high n, high F-ratio and low p-value. 
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Figure A1  PP and TE loading plots for Partial Least Square (PLS) models using the original PPs; 

Production (D), non-dispersive use (F), wide dispersive use (N), logKow and LogH, as PPs for predicting 
the target emissions TE1 to TE6, as described in Table A1. TE1 to TE3 are local scale emissions to 

wastewater, air and soil, while TE4 to TE6 represent wide-dispersive emissions to wastewater, air and 
soil, respectively. The outer ellipse indicates 100% and the inner ellipse indicates 50% of explained 

variance. 
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Air emissions 
The models for predicting non-dispersive (TE2) and wide-dispersive (TE5) air emissions are 
shown in the upper right and lower left loading plots in Figure A1. The PPs show a high degree 
of inter-correlation when fitted to TE2 and TE5, respectively. Furthermore, all PPs have high 
explanatory capacity compared to the remaining models as all PPs lie outside the 50% explained 
variance ellipse. When performing PCR and comparing to the PLS, the within PP and PP-TE 
correlation patterns do not change significantly, which reveals the PPs fit TEs well without an 
iterative fitting process of co-occurring variations in PP and TE; i.e. there is less noise in the air 
emission models compared to the wastewater release models. Due to the high degree of co-
variation between PPs, the optimal LR modelling of TE2 and TE5 are univariate simple 
regression models. The best fit and F-statistics was obtained by using LogH as predictor for local 
non-dispersive emissions to air (TE2) and wide-dispersive use (N) as predictor of wide-
dispersive emissions to air (TE5). 
 

Emission to soil 
The models for predicting soil emission include only 5 data points, i.e. chemicals. Still, the 
models have high squared correlation coefficients by calibration, but also high differences to the 
squared correlation coefficient by validation; the latter indicates lowered robustness. The F-ratio 
is high but influenced by the low number of observations. Best linear fit for local non-dispersive 
emissions (TE3) is by using production (D) as predictor parameter, while wide dispersive use 
(N) gives the best fit to the wide-dispersive soil emission (TE6). 
 
The training set is used for cross-validating the emissions for each chemical by removing it from 
the training set and making a regression model with the remaining chemicals. Figure A2 shows 
the cross-validation in a scatter diagram between reported emissions and predicted emissions. 
Approximately half of the model predictions are overestimated relative to RA emissions and for 
TE1, TE2 and TE4 the overestimates are predominantly occurring for low emissions. For TE1 to 
TE5 the model predictions are within one order of magnitude (±) of the RA emissions for more 
than 75% of the chemicals. For TE6 63% of the chemicals are within one order of magnitude of 
the RA emissions. Conservative estimates are typically occurring for low reported emissions. 
The most reliable model in terms of number of cases (n) and Q2 is wide-dispersive emissions to 
air, i.e. TE5. 
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Figure A2 Scatter plots of reported emissions and leave-one-out cross-validated emissions for each of the six 
target emissions, TE1 to TE6. Model performance parameters are found in Table A1. 
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Abstract 
Risk assessment of semi Volatile Organic Compounds (semi-VOCs) is a fundamental part in the regulation of 
production and use in industries and households. Emission inventories are a natural starting point in risk 
assessments and, given the complex use and emission patterns of the many thousands VOCs, emission 
estimates are often one of the most uncertain and problematic parts in risk assessments. Some critical issues 
are quantifying production and use amounts of chemicals and chemical containing products, assigning amounts 
to industrial activities and household products, identifying use and emission patterns, identifying receiving 
environmental compartment and quantifying the emission to these, which depend on production volumes, 
chemical properties, and their mode of use, in a non-trivial way. 
 
To ensure reliable risk assessments, emission estimates are sought which need to be realistic and, at the same 
time, do not require excessive effort in the modelling of emission inventories.  
The report proposes a method to capitalize on the information in the European Chemicals Bureau risk 
assessment reports (RARs), available for a limited number of chemicals, to train decision trees that allow 
estimating emissions of chemicals to different environmental compartments. The report also illustrates how 
these estimates can be used in conjunction with geographic information system (GIS) processing of spatial data 
to map emissions. Examples are drawn with reference to the case of the European Union. It is shown how 
quick, spatially distributed estimates of emissions to specific environmental compartments can be obtained to be 
used in screening level assessment.  
The method outlined in the report allows a quick and reliable estimation of the fraction of total chemical 
production that results in emission to a specific environmental medium, using data mining techniques and GIS. 
This can result helpful within the new procedures for risk assessments guided by REACH, as a way to exploit 
data from existing risk assessments for predicting and mapping emissions of chemicals that have not yet been 
assessed. 
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