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EXECUTIVE SUMMARY 
In vitro neuronal networks are a simplified and accessible model of the central nervous system.  

Moreover, they exhibit morphological and physiological properties and activity-dependent path-

specific synaptic modification similar to the in vivo tissue. Cortical neurons grown on multi electrode 

array (MEA) chips have been shown to be a valuable tool to study fundamental properties of neuronal 

network activity, synaptic plasticity, learning in vitro, and functional pharmacological screening. The 

variation of spontaneous activity of in vitro neuronal networks coupled to MEAs has been studied 

using several binary mixtures (inhibitors with different mode of action: Verapamil and Muscimol, 

Fluoxetine and Muscimol; inhibitors with the same mode of action: Deltamethrin and Permethrin; and 

an excitatory and an inhibitory compound with different mode of action: Kainic acid and Muscimol) 

with the aim of characterize and assess their combined effects. Individual dose-response and binary 

mixtures curves have been generated. Concentration Addition (CA) and Independent Action (IA) 

frameworks have been used to compare calculated and experimental results. In addition, Nuclear 

Magnetic Resonance (NMR) spectroscopy has been employed to assess that no chemical reaction or 

complexation took place between mixtures components, as well as to monitor the presence of potential 

impurities and, in this case, to evaluate their relative amount in the tested samples. The results suggest 

that additivity: CA and IA are able to predict in most of the cases the total toxicity of the mixture. The 

variability of the results makes difficult to assess which of both approaches is the most accurate. The 

presence of both excitatory and inhibitory effects as in the case of Kainic acid may further complicate 

the analysis of the experimental datasets and biphasic concentration-dose response curves may be need 

to analyze the joint effect. 
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1. INTRODUCTION 

The number, diversity and complexity of synthetic chemicals produced and released to the 

environment is overwhelming. Organic chemicals are ubiquitous and affect every possible aspect of 

modern life. Unfortunately, organic pollution of air, water, soils, sediments and biota is common and, 

therefore, humans and all other organisms are exposed to multi-component complex chemical mixtures 

comprising all the aspects of our normal life, e.g. food, consumer products, indoor pollution, etc. The 

parameters that influence the partitioning of the organic chemicals in the environment include the 

physical and chemical characteristics of a compound, its behaviour with respect to chemical reactions 

or microbial degradation, and other physical conditions such as temperature, availability of water, light 

and oxygen (Walker et al., 1996). The major processes responsible for distributing synthetic organic 

chemicals throughout the biosphere are volatilization and atmospheric transport, transport to waters in 

soluble form or adsorbed to particles or movement through the food chain. 

As a consequence, we are rarely exposed to only one single contaminant, but typically to mixtures of 

numerous man-made-chemicals with varying constituents in varying concentrations and concentration 

ratios (Faust et al., 2003). However, in contrast to this exposure reality, the toxicological reality is that 

until recently about 95% of the resources in toxicology were devoted to studies on single chemicals 

(Groten, 2000). Nevertheless, toxicity data from laboratory tests with single pure chemicals provide 

essential input to scientific assessments of chemical risks to organisms. On the other hand, the 

behaviour of chemicals in a mixture may not correspond to that predicted from data on the pure 

compounds (Altenburger et al., 2004). However, the direct testing of all the potential combinations of 

contaminants is unfeasible, and thus we are confronted with the task of deriving valid predictions of 

multiple mixture toxicity from toxicity data on individual compounds (Faust et al., 2003). The 

experimental evidence on mixture effects leads to the issue of risk assessment of combined exposures 

even when each component is present below the individual threshold dose (concentration). Early 

pioneering studies have been conducted with bacteria (Bulich et al., 1990), daphnids (Barry et al., 

1995) and fish (Ankley et al., 2006), and were followed up by additional experiments with populations 

and communities of unicellular organisms (Schmitt-Jansen et al., 2007). More recently, studies with 

endpoints relevant to endocrine disruption have been documented for receptor-binding, and receptor-

activation assays (Blake et al., 2010), as well as tests with mammalian cell lines and higher organisms 

like rodends (Yangs and Dennison, 2007; Choi et al., 2010).  

Therefore, combined exposure is a reality that dictates the necessity to pay a great deal of attention to 

hazard identification, exposure assessment and risk characterization of mixtures. However, the present 

approach provides threshold doses or concentrations of regulatory concern (such as acceptable daily 

intakes or predicted no effect concentrations) for individual chemicals and exposures below these 
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levels are usually considered safe. In addition, with a few exceptions, chemical risk assessment 

considers the effects of single substances in isolation, an approach that is only justified if the exposure 

to mixtures does not bear the risk of an increased toxicity.  

In addition, the present situation is so that toxicity testing for hazard identification relies mostly on the 

use of animal models, but this approach is costly and time-consuming, and is not practical for hazard 

identification of the thousands of chemicals such as under the REACH directive or in the high 

production volume program. Thus, alternative approaches to risk assessment and hazard identification 

are needed that have higher throughput capability and are predictive of in vivo effects (Coecke et al., 

2007; Lilienblum et al., 2008) even in the context of mixture toxicity. 

In a recent review on the state of the art on mixture toxicity (Kortenkamp et al., 2009) it was 

concluded that there was a deficit on mixtures studies in, amongst others,  the area of neurotoxicity and 

that it was difficult assessing, based on experimentally published data, the type of combination effect. 

In a mixture, chemicals may basically behave in two ways from a toxicological point of view: they can 

have a joint action or they can interact. In the first case they may act through independent action (IA), 

also referred to as Loewe additivity and Bliss independence, when the toxicity of the individual 

chemical is independent of the other compounds in the mixture, or by concentration addition (CA) 

when the overall toxicity equal the sum of the toxicity of the mixture. CA and IA have been applied to 

describe the mixture of components having similar and dissimilar mode of action (MoA), respectively 

(Greco et al., 1995; McCarty and Bogert, 2006). In the second case, the effects of the interaction may 

be antagonistic or synergistic, decreasing or increasing the effects of the joint action, respectively. 

Furthermore in the last years theoretical models for the prediction of mixture toxicity have been 

developed and optimised by comparison with experimental data (Ra et al., 2006; Ferreira et al., 2008) 

providing encouraging results towards a fundamental role of predictive models  to be used as a 

complementary gold standard for mixture toxicity assessment. 

The objective of this work is to provide an assessment of the type of combined effect exerted by binary 

mixtures by measuring the spontaneous electrical activity of in vitro neural networks grown on 

multielectrode array (MEA) chips. In vitro neuronal networks are a simplified and accessible model of 

the central nervous system, exhibiting morphological and physiological properties (Kriegstein and 

Dicher, 1983) and activity-dependent path-specific synaptic modification similar to the in vivo tissue 

(Jimbo et al., 1999, Bi and Poo, 1999). Cortical neurons grown on MEA chips have been shown to be a 

valuable tool to study fundamental properties of neuronal network activity (Maeda et al., 1995; Gross 

et al., 1999; Beggs et al., 2003; van Pelt et al., 2005; Pasquale et al., 2008), synaptic plasticity (Maeda 

et al., 1998; Jimbo et al., 1999), learning in vitro (Shahaf and Marom, 2001; Eytan et al., 2003; 

Novellino et al., 2007), functional pharmacological screening (Morefield et al., 2000; Keefer et al., 

2001; Gopal 20003; Chiappalone et al. 2003; Gramowski et al. 2006) and toxicological applications 
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(Streit, 1993; Gross et al., 1997; Gramowski et al., 2000; Shafer et al., 2008; Johnstone et al., 2010; 

Novelino et al., 2011; Defranchi et al., 2011; Hogberg et al., 2011). 

There are few studies concerning the application of MEAs to study mixtures toxicity. Losa et al. 

(2009) and Johnstone et al. (2009) have studied the concentration-response relationships of a mixture 

of 5 different pyrethroid insecticides (permethin, cypermethrin, cyfluthrin deltamethrin and 

esfenvalerate), observing a decreased spontaneous spike rate in a manner that was not effect additive. 

However, no detailed calculation was performed. 

In this work, the effects on spontaneous activity of in vitro neuronal networks coupled to MEAs has 

been studied using several binary mixtures (inhibitors with different mode of action: Verapamil and 

Muscimol, Fluoxetine and Muscimol; inhibitors with the same mode of action: Deltamethrin and 

Permethrin and and excitatory and an inhibitor with different mode of action: Kainic acid and 

Muscimol) with the aim of characterize and assess their combined effects. Individual dose-response 

and binary mixtures curves have been generated. Concentration Addition and Independent Action 

frameworks have been used to compare calculated and experimental results. In addition, Nuclear 

Magnetic Resonance (NMR) spectroscopy has been employed to assess that no chemical reaction or 

complexation took place between mixtures components, as well as to monitor the presence of potential 

impurities and, in this case, to evaluate their relative amount in the tested samples.  

2. METHODS AND APPROACH 

2.1. COMPOUNDS USED 

For this study a total of six compounds were selected according to their mode of action (MoA), to their 

presence on the consumer's daily life and to the amount of data available from the literature concerning 

their effects on the nervous system. Three of them are molecules used in several drug preparations and 

drug testing for medical purpose (Fluoxetine, Verapamil and Kainic acid) and two of them 

(Deltamethrin and Permethrin) are from the most commonly used and best described pesticides 

(pyrethroids respectively of type II and I). The compounds used were: 

1. R-(-)-Fluoxetine hydrochloride1 (F, Sigma Aldrich – F1678), CAS: 114247-09-5. F is a serotonin 

reuptake inhibitor. In both vertebrates and invertebrates, serotonin functions as a neuromodulator to 

either facilitate or inhibit synaptic activity mediated by neurotransmitters (Fink and Gothert, 2007).  

2. Muscimol hydrobromide2 (M, Sigma Aldrich – G019), CAS: 18174-72-6. M is a psychoactive 

alkaloid and it is a selective agonist of the GABAA receptor, thus enhancing the inhibitory 
                                                 
1 http://www.chemspider.com/Chemical-Structure.3269.html 
2 http:// www.chemspider.com/RecordView.aspx?rid=a969e9d6-172a-40ff-8a47-fca9acc581db 
3 http://www.chemspider.com/Chemical-Structure.59223.html 
4 http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=24868901 
5 http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=24869115 
6 http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=10255 
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neurotransmission and suppressing spontaneous activity. GABAergic agonists, like muscimol, are 

employed mainly as antiepileptic drugs or in conjunction with antipsychotics (Bartholini, 1985) 

3. (±)-Verapamil hydrochloride3 (V, Sigma Aldrich – V4629), CAS: 152-11-4. V is an L-type voltage-

dependent calcium channel antagonist. It blocks slow activating calcium channels modulating the 

neuronal excitability and reducing electrical activity (Rüschenschmidt et al., 2004).  

4. Deltamethrin4 (D, Sigma Aldrich – 45423), CAS: 52918-63-5. D is a widely used insecticide which 

belongs to the type II pyrethroids class of pesticides. D is a neurotoxin whose major target are sodium 

channels, the effect is the prolongation of sodium permeability during the recovery phase of the action 

potential in neurons. This causes a persistent depolarization of the membrane, which in turn lowers the 

action potential threshold and causes repetitive firing leading to paralysis (Bradberry et al., 2005) 

5. Permethrin5 (P, Sigma Aldrich - 45614) CAS: 52645-53-1. P is also a widely used insecticide 

belonging to the type I pyrethroids class. It acts on sodium channels as well as deltamethrin producing 

the same effects but with less potency (Shafer et al., 2008) 

6. Kainic acid6 (K, Sigma Aldrich – K0250) CAS: 58002-62-3. Is a glutamate analog originally 

isolated from a dried red alga (Digenia simplex), that binds selectively to a subset of glutamate 

receptors which serve as ligand-gated ion channels on neurons, and that is used as an anthelmintic and 

experimentally to induce seizures in laboratory animals (Swanson and Sakai, 2009). As a glutamate 

analog has an excitatory action inducing depolarisation of the neuronal cell membrane. 

Mention of trade names or commercial products does not constitute endorsement or recommendation 

for use. 

2.2. NEURAL NETWORK 

The experiments were performed on cryopreserved neurons from embryonic rat brain cortex (Lonza, 

R-CX-500). Once arrived vials containing 4 million cells were quickly thawed in a 37°C water bath 

with continuous gentle agitation. 

Viable cells (trypan blue assessment) were plated at a density of 35000 per chip in a culture medium 

composed of PNBM, L-Glutamine, Gentamycine, AmphotericinB, and NSF-1 (Cryocell Bullet kit, 

Lonza CC-4461). The chips were then incubated at 37°C in 5%CO2, 20%O2 in order to let the 

neuronal network to grow and reach its mature state (3-4 incubation weeks). Starting from day in vitro 

(DIV) 3, half of the culture medium was changed twice a week under the laminar hood until the 

beginning of the experiment. 

2.3. CHIP PREPARATION 

60-electrode MEA chips have been employed with 30μm diameter electrodes, 200 μm inter-electrode 

spacing with an integrated reference electrode (Multichannel Systems GmbH, Reutlingen, Germany). 
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Prior to plating the cells, the MEA chip was sterilized (2 hours in oven at 122oC) and afterwards, to 

promote cell adhesion and neurite outgrowth, it was coated with laminin (Sigma L2020) and poli-D-

Lysin (Sigma P6407). 

2.4. RECORDING SYSTEM AND SIGNAL PROCESSING 

The activity was recorded by the MEA120-2-System from Multi Channel Systems (MCS GmbH, 

Ruetlingen, Germany, http://www.multichannelsystems.com ). In particular the MEA was fed into the 

MEA Amplifier (Gain 1000x) and data were recorded by MC_Rack software at a sampling rate of 10 

kHz. A band pass digital filter (60Hz-4000Hz) was also applied. The system also includes a 

temperature controller (TC02, MCS GmbH) that allows heating the MEA chips and thus the medium 

from the bottom. 

Spikes were detected when the amplitude of the neuronal electrical activity overcame a threshold set at 

-6.5 times the standard deviation of the mean square root noise. The recorded signals were then 

processed to extract parameters related to the spontaneous electrophysiology at both spike and burst 

level as previously described (Chiappalone et al., 2005). 

2.5. ELECTROPHYSIOLOGICAL RECORDING 

Neuronal cultures were recorded for spike activity from the third to the fifth week in vitro. The 

experiments were performed on different days using cultures from a minimum of two different 

isolations. At the beginning of the experimental session a medium change (50%) is performed to 

establish the “reference activity” and the spontaneous activity which was recorded for 40 minutes. The 

medium volume during the experiment is 1000μl. The experimental protocol is an “accumulative 

treatment”, and it consists of the administration of 5 to 8 serial concentrations of each compound or 

mixture (see Table 1).  

Binary mixtures were prepared with fluoxetine-muscimol (F-M), verapamil-muscimol (V-M), 

deltamethrin-permethrin (D-P) and kainic acid-muscimol (K-M) in three different concentration 

proportions: 2:8, 5:5, 8:2. For each binary mixture a 100 mM stock solution was prepared in water or 

DMSO depending on the solubility characteristics of the compounds. In the stock solution each 

compound was present at the concentration of: 80 mM, 20 mM or 50 mM depending on the 

proportions for the given mixture.  

Each administration was performed by gentle manual pipetting. A volume of 100μl of medium was 

taken out of the chip and mixed with a small volume (1 to 10 μl) of the compound (or mixture) 

solution and gradually returned to the chip in order to avoid any synapse disruption. The 

electrophysiological activity was monitored and recorded for at least 40 minutes at the beginning of 

each experiment before the compounds administration and used as reference activity. After each 
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administration a time period varying between 5 to 10 minutes was allowed to reach a stable level of 

activity and then a 20 minute time window of recording was considered for the processing purpose 

(see Novellino et al., 2011). 

 Acceptance criteria basing on the quality of the recording were established as previously described 

(Novellino et al., 2011). 

In a subset of experiments the treatment reversibility was also tested: at the end of the recordings the 

medium was washed out in two steps within 10 minutes: a) 50% medium change (i.e. 500μl), b) 100% 

medium change (1000μl). After the second medium change, the electrophysiological activity was 

recorded for further 40 minutes and recovery to the reference mean firing rate was assessed. 

 
Table 1: Summary on compound solutions and concentrations  

Compound Solvent Concentrations applied 
Fluoxetine water 10 nM, 100 nM, 1μM, 10μM, 100μM 

Muscimol  water 10 nM, 100 nM, 1μM, 10μM, 100μM 

Verapamil water 10 nM, 100 nM, 1μM, 10μM, 100μM 

Deltamethrin DMSO 10 nM, 100 nM, 1μM, 10μM, 100μM 

Permethrin DMSO 10 nM, 100 nM, 1μM, 10μM, 100μM, 300,  μM, 500 μM, 1mM* 

Kainic acid water 10nM, 50nM, 100 nM, 500 nM, 1 μM, 5 μM, 10 μM 

* only in a subset of experiments 
 

2.6. NMR ANALYSIS 

Samples preparation. Sample of pure compounds and related mixtures in H2O and DMSO at the 

concentration of 10mM and 100μM were added with 10% D2O and deuterated DMSO respectively in 

order to stabilize the ‘lock’ for the NMR analysis.    

 

Samples analysis. 1H NMR spectra were registered on a Bruker (Rheinstetten, Germany) DRX-500 

instrument operating at 500.13 MHz for 1H observations using a Broadband Inverse (BBI) microprobe 

maintained at 298 K.  

Suppression of the H2O signal was obtained using pre-saturation experiment (pulse program zgcppr). 

In this case, 1H NMR spectra were digitized into 16K data points over a spectral width of 20 ppm with 

an acquisition time of 1.8 s. An additional relaxation delay of 10 s was included, making a total 

recycling time of 11.8 s. A 90° pulse was used with 32 scans. Spectra were Fourier transformed 

applying a line broadening apodization function of 2.0 Hz.  

Double suppression of the DMSO and the residual H2O signals was obtained using pre-saturation 

experiment (pulse program wetdc). In this case, 1H NMR spectra were digitized into 32K data points 

over a spectral width of 15 ppm with an acquisition time of 1.1 s. An additional relaxation delay of 5 s 
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was included, making a total recycling time of 6.1 s. A 90° pulse was used with 8 scans. Spectra were 

Fourier transformed applying a line broadening apodization function of 1.0 Hz. 

All NMR spectra were processed in Bruker TopSpin 1.3. Chemical shifts are referenced to the internal 

standard TSP at 0.0 ppm present in each sample at the concentration of 0.58mM. All spectra were 

manually phased and baseline corrected. 

2.7. MODELLING MIXTURES TOXICITY 

Realistically, the testing of all chemical mixtures and possible concentrations is not viable. As a 

consequence, different models on mixture toxicity based on the toxicity of single compounds have 

been developed. The objective is to reduce the amount of experiments and to be able to predict 

mixtures toxicity. As we will show later on, the main drawback associated with this approach is the 

attribution of a correct mechanism/mode of action to the involved chemicals. 

2.7.1. Modelling the toxicity of single compounds 

One of the most important concepts used in toxicology is the dose-response relationship. In the past, 

the most used approach was to consider a linear function with or without threshold, i.e. at increasing 

concentrations there is an increase in the response and nonlinear with saturation at 100%, see Fig. 1. 

Actually, dose-response curves of single chemicals are fitted to sigmoidal shape curves with values 

between 0-1 (0-100%). Several models have been proposed in literature (Backhaus et al., 2004), 

between them: 

- Weibull (W): 

1 2 10f ( x ) exp[ exp( log x )]θ θ= − +  (1) 

- Box-Cox transformed Weibull (BCW): 

3

1 2
3

1xf ( x ) exp exp
θ

θ θ
θ

⎡ ⎤⎛ ⎞−= − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (2) 

- Logit (L): 

1 2 10

11
1

f ( x )
[ exp( log x )]θ θ

= −
+ − −

 (3) 

- Generalized Logit (GL): 

3
1 2 10

11
1

f ( x )
[ exp( log x )]θθ θ

= −
+ − −

 (4) 

- Morgan-Mercier Flodin (MMF): 

2
1

1
1

f ( x )
xθθ

=
+ ⋅

 (5) 

where θ1,θ2,and θ3 are parameters of the equations. As said before, normally the functions have a 

lower (L) and upper (U) asymptotes with values of 0 and 1 or the opposite in our case in which we 
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measure the decrease of neuronal electrical activity. However, in some cases, at low concentrations 

chemicals shown stimulating effects (hormesis effect) having a U-type shape in the lower part of the 

concentration-response relationship (Calabrese and Baldwin, 2003). In this case, it is possible to move 

along the y-axis the function using the following expression: 

)()()( xfLULxF −+=  (6) 

However, the U-type shape form cannot be reproduced with this approach (Backhaus et al., 2004). 

Recently, a biphasic set of equations has been proposed by Beckon et al. (2008), which has the 

following form: 

1 1
1 ( / )1 ( / ) up dn

dnup

y
xx β βεε

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟ ++ ⎝ ⎠⎝ ⎠

 (7) 

with  βup>0 and  βdn<0. Following Beckon et al. (2008) the β-values represent the steepness, whereas 

ε–values represent the dose at the mid-point of the rising and of the falling respectively.  This approach 

was introduced to consider biphasic relationships in dose-response curves and it can be extended to 

consider more than one positive and negative effect and therefore it is able to model hormesis. 

 

Exposure+

-

0

100
Nonlinear
response

Linear
responses
(without and 
with threshold)

50

LC50

Hormetic response  
Figure 1. General dose-response functions: a/ linear with and without thresholds and nonlinear with 
hormesis. 
  
 
2.7.2. Joint Action: Non-interactive and interaction models 

Even though early toxicological studies were devoted to the characterization on single chemicals, Bliss 

defined in 1939 several categories of chemical action, which are still relevant (Dybing et al., 2002). 

These are: Concentration Addition (CA), Independent Action (IA) and interactions. 
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a/ Concentration Addition (CA): Assumes that the components in the mixture have a similar action but 

differ only with respect to their individual potency. Introduced by Loewe and Muischnek (1926), it is 

also known as Loewe additivity, simple joint action or dose addition. This may be expressed in terms 

of toxic units (TUs) which are the ratio of the concentration i–th substance in the mixture to the 

concentration needed to provoke a certain effect (Backhaus et al., 2004): 

i

i
i ECx

C
TU =  (8) 

whereas Ci is the concentration of toxicant i in the mixture producing x% effect (e.g. EC50). Therefore 

the overall toxic unit, for a mixture with n components, is equal to: 

1
1 1

====∑ ∑
= = mix

mix
n

i

n

i i

i
imix ECx

C
ECx
C

TUTU  (9) 

Individual concentrations can be expressed as constant proportions pi of the total concentration Cmix, 

with pi=Ci/Cmix. In order to calculate the ECxmix, this equation can be re-written as: 

∑
=

= n

i i

i
mix

ECx
p

ECx

1

1  (10) 

The concentration addition is the most common approach to risk assessment of mixtures and it is 

applicable over the whole range of exposure levels from low non-toxic levels when all chemicals in the 

mixture act in a similar way (Feron and Groten, 2002).  

Some well analysed examples of this approach are the study on algal toxicity by s-triazine mixtures 

reported by Faust et al. (2001) and (2003) or for the application of toxic equivalency factors (TEF) 

used to describe the combined toxicity of isomers or structural analogues such as dioxins or PCBs 

(Birnbaum and DeVito, 1995; Dybing et al., 2002) where the total potency of the combined occurrence 

is calculated as the sum of the concentration of each individual congener multiplied by its specific 

potency. Also toxicity of PAHs and phototoxic PAHs (Calamari and Vighi, 1992; Ankley et al., 1996; 

Swartz et al. 1997; Erickson et al., 1999; Fent and Batscher, 2000).  

However, it is important to considerer that the mode of action of a certain group of chemicals may 

only be the same for a particular species and therefore it may be not possible to generalize to other 

organisms. 

b/ Independent Action (IA): IA, also known as Bliss independence (Bliss, 1939) and response addition 

(Greco et al., 1995), is based on a the concept of statistically independent distribution of the 

sensitivities of the individuals towards the toxicants. In this case, it is assumed that the joint 

probability, s
mixp , that an individual survives a concentration, ∑

=

=
n

i
imix CC

1

 , is given by: 
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)](1[1
1

i

n

i

ds
mix Cpp ∏

=

−−=  (11) 

whereas the probability of dying pd is the complementary of the survival probability, i.e. sd pp −= 1 . 

Although, originally it was formulated for mortality/survival analysis, it can be applied in dose-

response analysis as: 

)1(1
1

i

n

i
mix CxEECx ∏

=

−−=  (12) 

IA predicts that a mixture of chemicals will not exert an adverse effect when individual chemicals in 

that mixture are present below their individual No Observable Adverse Effect Level (NOAEL). 

According to US EPA (2000), IA should be used for mixtures of chemicals that produce the same toxic 

effect in the same target organ, but which do so by dissimilar mechanisms of action (Borgert et al., 

2004). 

Both approaches have shown their validity (Faust et al., 2001; Faust et al., 2003;Vighi et al., 2003, 

a.o.), CA when used for chemical mixtures with similar action and IA when used for chemical 

mixtures with dissimilar action. Combination of both approaches has been also attempted (Altenburger 

et al., 2004). Although both models (CA, IA) involve summing, either the component doses or their 

toxic effects, differences between models may produce large differences in the risks estimated for a 

particular mixture. However, with a regulatory perspective, i.e. worst case scenario, CA may be 

defendable as a pragmatic assumption by default since normally high mixture toxicity is predicted. 

Alternatively, the use of QSAR criteria was proposed by Vighi et al. (2003) to classify the substances 

as supposedly similarly or dissimilarly acting when no information is available. 

c/ Interactions: In any case, both proposed approaches (CA, IA) to evaluate joint toxicity are “non-

interaction” approaches, that is, they assume that chemicals are simply additive, and neither synergistic 

nor antagonistic, when combined in mixtures (Borgert et al., 2004). Several approaches have been 

proposed to take into account the interactions between chemicals to describe their combined effect that 

may result in a stronger effect (synergism, potentiation) or weaker effect (antagonism, inhibition) than 

expected on the basis of either CA or IA. 

Antagonistic effects were explained by Escher et al. (1996), at the molecular level, by competition for 

sites in the membrane that may decrease toxicity. Synergistic effects can be explained by damage in 

the cell membrane. Organic solvents, in particular, will affect the membrane permeability and cause 

proton leak leading to uncoupling (Lewis et al., 1994; Escher et al., 1999). To study these effects 

mechanistic studies have shown (Andersen and Jennison, 2004) that interactions should be described at 

the level of target tissue dose and are best categorized as either pharmacokinetic (PK) or 

pharmacodynamic (PD). PK interactions occur when the presence of other chemical alters the 

relationship between the applied dose and the target tissue dose of a compound, whereas PD 
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interactions occur when the presence of a second chemical alters the relationship between target tissue 

dose and tissue response. 

Joint or interactive effects of a mixture observed at a clearly toxic-effect-levels of the individual 

chemicals in the mixture do not predict the joint or interactive effects of the mixture that might occur 

at exposure levels of the mixture similar to or lower than the highest no-toxic-effect-levels of the 

individual chemicals. This conclusion is highly relevant for designing further toxicity studies of 

mixtures as well as for low dose extrapolation of mixture toxicity data (Feron and Groten, 2002). 

All three basic principles of joint action and interaction are theoretical. In reality, however, it is likely 

to have to deal with these concepts at the same time, especially when mixtures consist of more than 

two compounds and when the targets (individuals rather than cells) are more complex (Groten, 2000). 

A frequent goal in mixture toxicology is primarily to determine situations where the effects of 

combinations of chemicals differ from the additive effects of the chemicals given individually. A great 

deal of effort has focused on creating various statistical methods for assessing when differences from 

additivity become significant and on identifying potentially important interactions that would change 

perceptions of the risks of mixtures of chemicals (Andersen and Dennison, 2004).  

Effects of mixtures at low concentrations are a controversial issue (Faust et al., 2003). Under the 

assumption of Concentration Addition any concentration of any mixture component is expected to 

contribute to the overall toxicity of a mixture; there would be no threshold concentration other than 

zero. Under the Independent Action the situation is different. Only those concentrations of individual 

toxicants that cause individual effects greater than zero are expected to contribute the overall toxicity. 

2.7.3. Calculating mixture’s toxicity from individual components 

Concentration response curves for single substances describe the intensity of a defined effect as a 

function of the toxicant concentration.  

For the case when the assumed action mechanism is CA and we are interested in calculating the total 

effect caused by a mixture there is an iterative procedure where the function: 
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has to be minimised. The procedure consists on defining an effect (E) and a mixture concentration 

Cmix, then calculate the individual concentrations that will produce this effect using the inverse of Eqs. 

(1-5). For example for the Box-Cox-Weibull (BCW), we will have: 
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Then the Eq. (13) is calculated and the procedure repeated by changing the mixture concentration until 

the error is minimized.  

The procedure in the case of IA also requires iteration. In this case the error to minimize is: 
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whereas the total effect is x%. In this case one defines a total effect and a mixture concentration, then 

calculates the individual effects of each component in the mixture at their specific concentration and 

evaluates Eq. (15). The procedure is repeated until the appropriate mixture concentration is obtained.  

Ii is generally accepted that for dissimilarly acting toxicants, IA will produce a better fit of the mixture 

toxicity (Backhaus et al; 2000; Faust et al., 2003; a.o.), whereas in the case of similarly acting 

chemicals CA will adjust more accurately the experimental results (Calamari and Vighi, 1992; 

Altenburger et al. 2000; Faust et al., 2001; a.o.). However, with a regulatory perspective, i.e. worst 

case, CA by predicting higher toxicity seems a more pragmatic option (Vighi et al., 2003). In any case, 

no-interactions have been assumed to occur in these two approaches. Thus although the additivity 

models are mathematically simple, they require assumptions about the mechanisms of action (only 

similar or dissimilar) and the high to low dose extrapolation. Therefore theoretical considerations in 

risk assessment of chemical mixtures should be verified by simple case studies (Groten, 2000).  

 
3. RESULTS AND DISCUSSION 

Several experiments were carried out on the MEA chip using two pyrethroids: Permethrin (P), and 

deltametrhin (D); Muscimol (M) and Verapamil (V); Muscimol and Fluoxetine (F); and Muscimol and 

Kainic Acid (K). First the pure compounds were examined and concentration-Normalized firing rate 

(NFR) curves obtained. Afterwards three mixtures of molar percentage: 20-80, 50-50 and 80-20 were 

examined. The concentrations have been indicated in Table 1 and they depend on the inhibitory 

potency of the compound of the mixture. 

3.1. NMR ANALYSIS 

1H NMR analyses were performed in order to obtain several information on the status of the samples 

including confirmation of the expected chemical structure in the sample, quantitative data of the real 

concentration, stability in solution during a period of time, possible presence of impurities and related 

proportion, and possible formation of new products or abducts in the case of mixtures. 

All expected chemical structures were confirmed by 1H NMR experiments and comparison with 

literature data. Examples on Muscimol, Fluoxetin, and Verapamil are shown in Figure 2. 

The absolute concentration of the samples was calculated by comparison of the internal standard NMR 

signal with a known signal of each compound. In general, [TSP] x 9 x A2/N2 = [compound], were 

[TSP] = concentration of TSP (mM) in the NMR tube; 9 = number of protons of TSP; A2 = integral of 

a know signal from each compound; N2 = number of protons giving rise to the known signal; 

[compound] = concentration of the compound (mM) in the NMR tube. The majority of the cases 
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showed the real concentration of the samples within the expected ranges. However, this was not the 

case of few samples due to possible manual preparation mistakes. In these cases, the possibility to 

monitor the actual concentration of the samples by NMR analysis was extremely useful in order to 

prevent possible misinterpretation of the pharmacological results. 

 

 
Figure 2. 1H NMR spectra and chemical structure of Muscimol, Fluoxetin, and Verapamil 10mM in H2O 
with 10% D2O and TSP as internal standard (0.58mM). 
 

The stability of the samples was monitored along a period of three weeks by repeating the 1H NMR 

experiment every three days for each sample. No degradation was observed; this result guaranteed the 

possibility to perform the pharmacological analysis during this period of time without the need to 

prepare every time a new batch sample.  

9 8 7 6 5 4 3 2 1 ppm

Muscimol 

Fluoxetin

Verapamil 

H2O

TSP
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Impurities were observed in most of the cases. Their relative concentration were higher in more diluted 

samples, indicating that such impurities derived from the sample preparation process rather than from 

the sample dried materials itself. The example of Muscimol is shown in Figure 3.  

 
Figure 3. 1H NMR spectra of Muscimol at 10mM and 0.1mM. Impurities are more abundant in less 
concentrated Muscimol.  
 

In the case of mixtures, the relative amount of both components for each mixture analyzed was in the 

expected range. Moreover, no formation of new products or abducts was observed as shown in the 

example of Muscimol/Fluoxetin 1/1 mixture in Figure 4.  

 

7 6 5 4 3 2 1 ppm

Impurities  

Muscimol 10 mM 

Muscimol 0.1 mM 
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Figure 4. 1H NMR spectra Muscimol, Fluoxetin, and their 1:1 mixture. No complexes or new derivatives 
are observed. 
 

3.2. FITTING CONCENTRATION-RESPONSE CURVES FOR PURE COMPOUNDS AND 

MIXTURES 

Experimental concentration-response (Normalized firing rate) curves were fitted for the pure 

compounds as well as for the studied mixtures using Eqs. (1)-(5). The fitting parameters obtained are 

summarized in Table 2, whereas Figure 5 shows the shape of the different obtained curves for the 

single compounds. 

 

 

 

 

9 8 7 6 5 4 3 2 1 ppm

Muscimol 

Fluoxetine 

Mixture  
Muscimol + Fluoxetine 1:1 
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Table 2. Parameters of the Concentration-response (Normalized firing rate) fitted curves using Eqs. (1)-(5). 

W BCW L GL MMF  

 θ1 θ2 r2 θ1 θ2 θ3 r2 θ1 θ2 r2 θ1 θ2 θ3 r2 θ1 θ2 r2 

Permethrin (P) -1.007 0.6088 0.973 -1.056 0.2296 0.06134 0.977 -0.7538 0.8587 0.958 -148.7 48.3 0.008003 0.989 0.4706 0.3729 0.958 

Deltamethrin (D) -0.6067 1.683 0.982 -0.6429 3.029 1.888 0.996 -0.2739 2.724 0.976 -4.26 5.826 0.2107 0.983 0.7604 1.183 0.976 

Muscimol (M) 1.079 1.031 0.9868 1.408 0.7759 0.1982 0.9998 2.345 1.598 0.9766 0.3656 26.94 0.01903 0.9954 10.43 0.6942 0.9766 

Verapamil (V) -18.49 19.5 0.9231 -2.388 0.0002882 14.14 0.9476 -18.29 20.96 0.9231 -2.456 7.205 7.799 0.9231 - - - 

Fluoxetine (F) -1.063 2.07 0.9867 -1.15 0.6626 0.3229 0.9978 -0.977 3.724 0.9813 -98.87 89.57 0.01207 0.9909 0.3763 1.618 0.9813 

Kainic Acid (K) -0.4914 3.177 0.9685 -0.4168 1.113 -0.4609 0.9742 -0.1216 3.805 0.9716 1.779 2.65 4.534 0.9736 0.8855 1.653 0.9716 

20P-80D -0.1109 0.7384 0.9975 -0.06916 0.3146 -0.04984 0.9983 0.5431 1.155 0.9955 -0.6245 1.523 0.4729 0.9969 1.721 0.5017 0.9955 

50P-50D -0.6221 0.9318 0.9922 -0.7729 0.405 0.1941 0.9969 -0.2577 1.389 0.9865 -3.791 2.994 0.2402 0.9942 0.7726 0.6032 0.9865 

80P-20D -0.6974 0.6264 0.9851 -0.76 0.2458 0.06369 0.9892 -0.3329 0.9317 0.9678 -7.958 3.313 0.1229 0.9913 0.7168 0.4048 0.9678 

20M-80V 0.9665 3.28 0.9988 0.9632 7.1 -14.37 0.9933 2.547 4.786 0.999 4.435 3.602 6.454 0.999 12.77 2.079 0.999 

50M-50V 0.554 2.597 0.9982 0.5523 10.28 -12.59 0.9883 1.541 3.496 0.9984 3.597 2.508 7.176 0.9985 4.668 1.518 0.9984 

80M-20V 1.299 2.066 0.9993 1.488 0.2655 -0.9711 0.995 3.272 3.803 0.996 2.701 8.227 0.1833 1 26.54 1.655 0.996 

20M-80F 0.4612 1.901 0.9885 0.4905 8.537 -12.25 0.9598 1.32 2.686 0.9867 -8.821 37.64 0.03119 0.9896 3.744 1.166 0.9867 

50M-50F 0.1363 1.09 0.9963 0.1256 0.57 0.13 0.9991 0.8612 1.602 0.9864 -2.759 5.644 0.1384 0.9987 2.366 0.6958 0.9864 

80M-20F 0.6141 1.584 0.9977 0.6472 0.9334 0.2101 1 1.622 2.378 0.9943 -8.173 46.34 0.02189 0.9991 5.066 1.033 0.9943 

20M-80K 0.1757 1.429 0.992 0.1933 0.7465 0.1312 0.9937 0.8883 2.015 0.9805 -9.399 29.24 0.03643 0.9953 2.431 0.875 0.9805 

50M-50K 0.5121 2.383 0.9812 0.7373 1.932 0.4841 0.9929 1.244 3.01 0.9693 -12.6 69.4 0.02004 0.9853 3.469 1.308 0.9693 

80M-20K 1 2.457 0.9933 1.299 1.827 0.3747 0.9986 2.151 3.463 0.9858 2.043 26.74 0.06219 0.998 8.596 1.504 0.9858 
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Figure 5. Experimental normalized firing rate (average ± standard deviation) and fitted concentration-
response curves, Eqs. (1)-(5), for the six pure compounds: Permethrin, Deltamethrin, Muscimol, 
Verapamil, Fluoxetine and Kainic acid.  
 

As mentioned in the previous section, the problem with this type of functions, i.e.  Eqs. (1)-(5), is that 

they only consider one type of effect. However, as it can be seen for the case of Kainic acid there are 

two consecutive effects: at the beginning, at low concentrations, there is an excitatory effect and after, 

when concentrations start to increase, there is an inhibitory effect. In this case, it is possible to use the 
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functions developed by Beckon et al. (2008), Eq. (7). Figure 6 shows the fit obtained with this type of 

function that is able to capture both effects. 

 
Figure 6. Curve fitted with the biphasic dose-response, Eq. (7), relationship. 
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Figure 7. Experimental normalized firing rate (average ± standard deviation) and fitted concentration-
response curves, Eqs. (1)-(5),  for the twelve  mixtures: 20P-80D, 50P-50D, 80P-20D, 20M-80V, 50M-50V, 
80M-20V, 20M-80F, 50M-50F, 80M-20F, 80M-20V, 20M-80K, 50M-50K, 80M-20K.  
 

The calculated values of EC50 using the different correlations, Eqs. (1)-(5), and the parameters 

summarized in Table 2 are shown in Table 3. In principle, one should expect that the values would be 

between those of the single compounds and change accordingly with the proportion of those in the 

mixtures. This is the case only for Muscimol-Fluoxetine in all the mixtures and using all the 

correlations (see Table 3). For Permethrin-Deltamethrin, the order is correct, i.e. the IC50 increases as 

the percentage of Permethrin increases in the mixture. However, IC50s for 20P-80D are lower than 

pure Deltamethrin which would suggest some synergism in this mixture. For the mixture Muscimol-

Verapamil the IC50 values are between those of the pure compounds, but the order is not respected in 

the case of the 50-50 mixture and the same occurs in the case of Muscimol-Kainic acid. However, it is 

not clear if these differences are due to the high standard deviations found in the experimental data sets 

or are a property of the toxicity of the mixtures. Probably the ordering concerning the 50-50 mixture is 

due to the high dispersion of the experimental data sets. One should notice that the results are the 

average of several experiments and that each experiment use a different MEA chip in which a neuronal 

network has growth establishing different connections. 
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Table 3. IC50 values obtained with the different fitted equations. 

IC50 (µM)  
 W BCW L GL MMF 
Permethrin (P) 11.2732 15.7412 7.5481 19.2969 7.5482    

Deltamethrin (D) 1.3890 1.0878 1.2605 1.4896 1.2605 

Muscimol (M) 0.0396    0.0475 0.0341   0.0431    0.0341 

Verapamil (V) 8.4998 2.2561    7.4579   4.6839    - 

Fluoxetine (F) 2.1700 2.7225 1.8296   2.9019 1.8295 

Kainic Acid (K)* 1.0947    1.0467 1.0764   1.0190 1.0763 

20P-80D 0.4506    0.3971 0.3387   0.4169    0.3389    
50P-50D 1.8806 2.5013 1.5330 2.0968 1.5337   
80P-20D 3.3747 4.5923    2.2767 5.0207    2.2762 
20M-80V 0.3923    0.9131    0.2936 0.2361    0.2937 

50M-50V 0.4421    0.9419 0.3624 0.3008    0.3624    
80M-20V 0.1563    0.1209    0.1379  0.1640    0.1379    
20M-80F 0.3669    0.9366 0.3225 0.4405    0.3223    
50M-50F 0.3457    0.4002 0.2900 0.4006    0.2900    
80M-20F 0.2404    0.2915    0.2079 0.3112 0.2079    
20M-80K 0.4174 0.4541 0.3624 0.4685 0.3623 

50M-50K 0.4279    0.5123 0.3861 0.4821     0.3864 
80M-20K 0.2779 0.3278 0.2393 0.3212 0.2392 

*For Kainic acid the biphasic curve produced an IC50 =1.0214 µM.           

3.3. PERMETHRIN AND DELTAMETHRIN MIXTURES 

Pyrethroids are synthetic chemicals whose structures mimic the natural insecticide pyrethrin. They are 

widely used in and around households, including on pets, in pests control, and in agriculture. They 

constitute a major proportion of the insecticide market and are common in commercial products such 

as household insecticides. The primary target site of this class of neurotoxic pesticides is the voltage-

dependent sodium channel in excitable membranes. The interaction of pyrethroids with the sensitive 

fraction of the sodium channels results in a prolongation of the inward sodium current during 

excitation, as pyrethroid-modified sodium channels stay open much longer than normal (Shafer and 

Meyer, 2004). The prolonged sodium current induced by the pyrethroids results in pronounced 

repetitive activity, notably in sense organs, but — depending on pyrethroid structure — also in sensory 

nerve fibers, motor nerve terminals, and skeletal muscle fibers. Besides repetitive firing, membrane 

depolarization results in enhanced neurotransmitter release and eventually block of excitation 

(Vijverberg and Bercken, 1990) leading to paralysis and death. 

Using the fitted curves from the pure compounds we have compared the predicted CA and IA mixture 

toxicity with the experimental values. Figure 8 shows the results obtained for the three curves using 

fitted Weibull curves for the pure compounds. The IC50 obtained with CA and IA are: 1.6960 µM  and 

0.9795 µM for 20P-80D; 2.4283 µM and 1.1919 µM for 50P-50D; and 4.3401 µM and 1.9901 µM 

80P-20D, respectively. The results for 50P-50D and 80P-20D are in agreement with the values 
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obtained by the experimental fit of the data whereas for the case of 20P-80D the predicted values are 

slightly higher. As it can be observed in this case, contrarily with most frequent results, the values 

obtained by CA are always higher than those obtained with IA. 

 

 
Figure 8. Experimental and calculated -based on pure compounds data- concentration-response curves 
using concentration addition (black) and independent action (red) for Permethrin and Deltametrin 
mixtures. 
 

3.4. MUSCIMOL AND VERAPAMIL MIXTURES   
Verapamil is an L-type calcium channel blocker of the phenylalkylamine class. It is a common drug 

used in the treatment of hypertension, angina pectoris, cardiac arrhythmia (Harder et al., 1993) and 

most recently, cluster headaches (Leone et al., 2000). Verapamil's mechanism in all cases is to block 

voltage-dependent calcium channels reducing neuronal and muscular excitability.  

Muscimol is a GABAA receptor agonist thus mimicking the effect of the most widely distributed 

inhibitory neurotransmitter in the central nervous system: GABA. The effects of Muscimol on 

neuronal activity both in vitro and in vivo have been well characterized (Zivkovic et al., 1983; Avoli et 

al., 1994; Bosman et al., 2005). GABAA agonists reduce neuronal excitability by generating and influx 

of Cl- ions which hyperpolarizes the cell membrane. As a consequence neuronal activity is quenched 

and they are said to have an inhibitory effect. 
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 Very recently our group has led an interlaboratory study where the reproducibility of MEA data 

obtained on neuronal activity of Muscimol and Verapamil has been demonstrated (Novellino et al., 

2011). Furthermore both Muscimol and Verapamil have been characterized on in vitro neuronal 

cultures for their effects on electrical activity (Keith et al., 1994; Novellino et al., 2011) thus providing 

a good set of chemicals for studying the effect of mixed inhibitory compounds with different mode of 

action. 

Using the fitted curves from the pure compounds we have compared the predicted CA and IA mixture 

toxicity with the experimental values. Figure 10 shows the results obtained for the three curves using 

fitted Weibull curves for the pure compounds. The IC50 obtained with CA and IA are: 0.1955 µM  and 

0.1987µM for 20M-80V; 0.0790µM and 0.1987µM for 50M-50V; and 0.0495µM and 0.0427µM 

80M-20V, respectively. In all cases the predicted results are lower that the fitted experimental data, 

implying that the real toxicity is lower than the calculated using additivity. In this case CA and IA 

produce nearly identical results, with the exception of the 50M-50V where CA predicts higher toxicity 

than IA.   

 

 
Figure 9. Experimental and calculated -based on pure compounds data- concentration-response curves 
using concentration addition (black) and independent action (red) for Muscimol and Verapamil mixtures. 
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3.5. MUSCIMOL AND FLUOXETINE MIXTURES 

Fluoxetine acts on the serotonergic system by inhibiting the serotonin (5-HT) reuptake thus enhancing 

its the effect on the central nervous system. It is one of the most diffused drugs for the treatment of 

major depression and some psychiatric disorders like panic and bipolar disorders and bulimia (Mayer 

and Walsh, 1998; Shelton, 2003). Its effect on neuronal activity in vitro has been already characterised 

with the MEA (Xia et al., 2003, Novellino et al., 2011) thus, together with muscimol it provides 

another good set of data to test the effect of compounds having the same effect (inhibitory), but with 

different mode of action.  

Using the fitted curves from the pure compounds we have compared the predicted CA and IA mixture 

toxicity with the experimental values. Figure 10 shows the results obtained for the three curves using 

fitted Logit curves for the pure compounds. The IC50 obtained with CA and IA are: 0.1588 µM  and 

0.1661 µM for 20M-80F; 0.0669µM and 0.0688 µM for 50M-50F; and 0.0424 µM and 0.0428 µM 

80M-20F, respectively. In all cases the predicted results are lower that the fitted experimental data, 

implying that the real toxicity is lower than the calculated using additivity. In this case CA and IA 

produce nearly identical results.   

 

 

 
Figure 10. Experimental and calculated -based on pure compounds data- concentration-response curves 
using concentration addition (black) and independent action (red) for Muscimol and Fluoxetine mixtures. 
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3.6. MUSCIMOL AND KAINIC ACID MIXTURES 

Kainic acid is a natural molecule present in some seaweed. It is a specific agonist for the ionotropic 

glutamate receptor which mimics the effect of glutamate, the major excitatory neurotransmitter on the 

central nervous system (Moloney, 2002). Kainic acid is a potent central nervous system stimulant, has 

neuroexcitotoxic and epileptogenic effects and has been developed as the gold standard 

neuroexcitatory amino acid for the induction of seizures and the study of neurodegenerative diseases in 

experimental animals (Moloney, 2002; see Vincent and Mulle, 2009, for a review). Its effect on 

neuronal activity and mechanism of action has been well described both in vivo and in vitro (Vincent 

and Mulle, 2009). Therefore, together with Muscimol it provides a good set of compounds to study 

binary mixtures where the two compounds have opposite effects (excitatory for Kainic acid and 

inhibitory for Muscimol) and different mode of action. 

 

 
Figure 11. Experimental and calculated -based on pure compounds data- concentration-response curves 
using concentration addition (black) and independent action (red) for Muscimol and Kainic acid 
mixtures. 
 
Using the fitted curves from the pure compounds we have compared the predicted CA and IA mixture 

toxicity with the experimental values. Figure 11 shows the results obtained for the three curves using 

fitted Logit curves for the pure compounds. The IC50 obtained with CA and IA are: 0.1732 µM  and 
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0.1608 µM for 20M-80K; 0.0766 µM and 0.0688 µM for 50M-50K; and 0.0492 µM and 0.0429 µM 

80M-20K, respectively. In all cases the predicted results are lower that the fitted experimental data, 

implying that the real toxicity is lower than the calculated using additivity. Also in this case, CA and 

IA produce nearly identical results.   

4. CONCLUSIONS 

Neurotoxicity assessment represents a major challenge within the mixtures context, because regulatory 

testing guidelines rely exclusively upon in vivo observations (see U.S. EPA Guidelines for 

Neurotoxicity Risk Assessment: FRL 6011-3 and OECD TG481, TG419, TG424 and TG426), and so 

far no in vitro methods for evaluating the neurotoxic hazard of a chemical have yet been validated. 

Novellino et al., (2011) have recently published the results of an interlaboratory study where the 

reproducibility of neurotoxicity data based on the measurement of neuronal activity was demonstrated 

with in vitro neuronal cultures on MEAs. This is an important step towards the validation process of 

the technique as standard tool for neurotoxicity assessment. Still neurotoxicity prediction with in silico 

methods remains an open issue of critical urgency. 

In this study we have obtained concentration-response curves of the mean firing rate of neuronal cells 

cultured on MEA chips at different concentrations of single compounds and their binary mixtures and 

we have compared the predicted CA and IA mixture toxicity with the experimental data considering 

the IC50 values obtained with the two approaches.  

The mixtures studied here include inhibitory compounds on electrical activity with similar mode of 

action (pyrethroids) and with different mode of action (Muscimol, Verapamil and Fluoxetine) as well 

as compounds with opposite effects on neuronal activity (excitatory effect: Kainic acid and inhibitory 

effect: Muscimol). 

The obtained results show that for the mixtures where the compounds had different molecular target 

sites (i.e. different modes of action) the IA and the CA predictive models led to similar results 

indicating that the two models describe the behaviour of the mixture with comparable efficacy. 

Concerning the mixtures with the two pyrethroids (same mode of action) the results show that the IC50 

obtained with the CA and IA models are quite similar when compared with the experimental 

variability and, hence, it is not possible to conclude that CA produces better results as one could 

expect. The same is also true for the other binary mixtures where one would expect better predictions 

using IA. 

A recent published work (Qin et al., 2011) proposes an alternative approach where CA and IA are 

integrated through multiple linear regression (ICIM). By using two training sets of chemicals, it 

demonstrates that the ICIM approach has a strong predictive power than CA and IA where the two 
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models deviate from the concentration–response data of the mixtures. It would be worth exploring the 

ICIM approach with the binary mixtures used in this work. 

In conclusion this work has demonstrated that neurotoxicity of mixtures, when electrical activity is 

considered as an end point, can be predicted using additivity, i.e., with the IA and CA approaches, at 

least for the binary mixtures analyzed. Therefore our results seem to confirm that the prediction of the 

neurotoxicity of a mixture from that of their single components is also feasible in this case. However, 

further experiments and an increasing number of components in the mixtures are necessary to address 

the issue if contrasting effects may be better predicted using other approaches. 
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