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Impact of Government Policies
on Sustainable Petroleum Supply Chain (SPSC):

A Case Study – Part I (Models)
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Abstract. Environmental concerns and energy security have led governments to establish
legislation to convert a Conventional Petroleum Supply Chain (CPSC) to a Sustainable
Petroleum Supply Chain (SPSC). The United States (US), one of the biggest oil consumers
in the world, has created regulations to manage ethanol production and consumption over
the last half century. Although these regulations have created new opportunities, they have
also added new burdens to the obligated parties. It is thus key for the government, the
obligated parties, and related businesses to study the impact of the policies on the SPSC. We
develop a two-stage stochastic programming model, General Model (GM), which incorporates
Renewable Fuel Standard 2 (RFS2), Tax Credits, Tariffs, and Blend Wall (BW) to study
the policy impact on the SPSC using cellulosic ethanol. The model, as with any other
general model available in the literature, makes it highly impractical to study the policy
impact due to the model’s computational complexity. We use the GM to derive a Lean
Model (LM) to study the impact by running computational experiments more efficiently and
consequently by arriving much faster at robust managerial insights. We present a case study
of the policy impact on the SPSC in the State of Nebraska using the LM in the accompanying
part II (Ghahremanlou and Kubiak, 2020).
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1. INTRODUCTION

1.1. Context and Motivation

Crude oil is the main global source of vehicle transportation fuel (Independent Statistics
& Analysis, 2015; Kessel, 2000). Global warming, the uneven distribution of worldwide
crude oil reservoirs, and political instability of the countries owning almost half of the
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known reservoirs, have all compelled many countries to move towards local renewable
energy sources (Sahebi et al., 2014; Agarwal, 2007; Yan, 2012). Ethanol produced
from biological materials is considered a replacement for gasoline (El-Naggar et al.,
2014; Humbird et al., 2011; Baeyens et al., 2015). However, due to market restrictions
and infrastructure compatibility, ethanol is currently used mainly as an additive to
gasoline in most countries (Agarwal, 2007; Yacobucci, 2010; HIS Markit, 2019). The
Ethanol Supply Chain (ESC) is often merged with CPSC in its downstream, where
ethanol is blended with gasoline.

The US was the biggest oil producer and consumer in 2016, and gasoline made
up to 60% of total transportation fuel demand in the US. Environmental concerns
and energy security led the US government to establish policies to stimulate ethanol
production and consumption as an additive to gasoline. The Volumetric Ethanol Excise
Tax Credit (VEETC) was created by the America Job Act in 2004, and its amount
was reduced in 2009. Based on this tax credit, blenders received 0.45 $

gal of ethanol
blended with gasoline; since imported ethanol was eligible for this credit it was subject
to a 0.54 $

gal tariff (McPhail et al., 2011). These rules expired in 2011.
The Energy Independence and Security Act (EISA) was established in 2007. It

determines the Renewable Fuel Standard 2 (RFS2). The RFS2 requires gasoline refiners
and gasoline importers in the US, called obligated parties (Legal Information Institute,
2010; McPhail et al., 2011), to blend at least a minimum amount of renewable fuels,
referred to as Renewable Volume Obligations (RVOs), or mandate, with their gasoline
annually (Duffield et al., 2008; Thompson et al., 2009). According to RFS2, the biofuels
are categorized based on their feedstock types and lifecycle Greenhouse Gas (GHG)
emissions reduction (Thompson et al., 2009). Ethanol can be produced from different
types of feedstocks such as corn, sugar (called first generation) with a 20% reduction
in GHG emission; corn stover, straw (called second generation or cellulosic) with
a 60% GHG emission reduction; and algae (called third generation) with a 50% GHG
emission reduction (Baeyens et al., 2015). Based on the nested structure of RFS2,
the fuels with higher emissions reduction can be used to meet the mandate for lower
reduction categories (Environmental Protection Agency, 2017). The first generation
biofuel production is limited in order to maintain the food security (Sharma et al.,
2013), and the third generation is still under research and development, and not yet
commercialized (Baeyens et al., 2015). Hence, the second generation has received
considerable attention from different entities like governments and investors (Gupta,
Verma, 2015). According to RFS2, the mandate to blend cellulosic ethanol began in
2016 which means the obligated parties must comply with it. Therefore, there clearly
has been a need for local cellulosic ethanol production or cellulosic ethanol import.
Also, since ethanol gets easily contaminated by water, investment in the infrastructure
is required for its storage and blending with gasoline.

Apart from the aforementioned incentives and obligations for blending more
ethanol with gasoline, there is another control factor limiting the amount of ethanol
blended. According to the US Clean Air Act 1963 (CAA), all gasoline engine vehicles
are permitted to use up to 10% ethanol blended with gasoline (the E10 blend); however,
Flex-Fuel Vehicles (FFVs) are allowed to use up to 85% blend (E85). The maximum
amount of ethanol (e.g., 10%) which can be blended with each gallon of gasoline to
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be used in all gasoline engine vehicles is called Blend Wall (BW) (Renewable Fuels
Association, 2015). Other intermediate blends, e.g., 15% blend (E15), can be produced
by waiving the CAA under certain conditions. For instance, consumption of the E15
fuel for vehicles model year 2001 and later was allowed by the US Environmental
Protection Agency in 2011. Nevertheless, almost all fuel distributed in the US is E10,
though ethanol producers are interested in increasing the BW to 15% (Yacobucci,
2010).

Philadelphia Energy Solutions, the largest U.S. East Coast oil refinery, went
bankrupt in 2018. The bankruptcy resulted in job loses, and calls for the amendment
of some laws (Renshaw, 2018; Willette, 2018). The company blamed the RFS2 for
the bankruptcy, see DiNapoli and Renshaw (2018), Simeone (2018), and Stein (2018).
This provides further motivation for us to address the following questions with clear
applications for production systems:

– What has been the impact of the following government policies: Renewable Fuel
Standard 2 (RFS2), Tax Credit for Local ethanol blended with gasoline (TCL),
Tax Credit for Imported ethanol blended with gasoline (TCI), Tariff for Local
ethanol blended with gasoline (TL), Tariff for Imported ethanol blended with
gasoline (TI), and Blend Wall (BW), on the SPSCs from the economic, social,
and environmental points of view?

– How to determine most robust, i.e. resilient to policy change, location and pro-
duction capacities for bio-refineries and blending sites in the SPSCs?

Addressing these questions will (1) shed light on how the US government may
change the policies to create the SPSCs that are expected to achieve highest profit,
most positive social impact, and most environmentally friendly fuel, with a minimum
expenditure from its budget; (2) provide managerial insights to the SPSC investors
on how to mitigate the bankruptcy chance due to policy change by creating the most
robust SPSCs. To our knowledge these questions have not been addressed directly
in the existing literature. However, there have been substantial literature published
already on various aspects of the SPSC. We review this literature in the following
subsection, and we then summarize the contributions of this paper, finally we outline
the paper’s content.

1.2. Literature Review and Gaps

The government policies were studied from the economic perspective, not the supply
chain perspective as in this paper, by Whistance et al. (2016), Qiu et al. (2014), Aguilar
et al. (2015), Thompson et al. (2009), and Babcock (2012). Whistance et al. (2016)
study the impact of RIN price information on petroleum, biofuel, and agricultural
commodity markets. Qiu et al. (2014) recommend directing the government policies
towards increasing the demand for E85. Aguilar et al. (2015) argue that the majority
of Americans are willing to purchase fuel with a higher amount of ethanol blend, e.g.,
E85. Thompson et al. (2009) employ a demand and supply curve to show under which
conditions the RFS2 mandate is binding. The study done by Babcock (2012) shows
that increasing RFS2, TCL, and TI increases the US corn price. Although all these



26 D. Ghahremanlou, W. Kubiak

studies are policy related, none of them addresses the impact of government policies
on the SPSC, and none uses optimization methods in contrast to this paper.

The CPSC and ESC supply chains have been the subjects of a number of recent
reviews. In particular, Sahebi et al. (2014) and Lima et al. (2016) review research
on the CPSCs. Both reviews emphasize the study of real-life CPSCs, new incentive
schemes, and development of efficient algorithms for solving real-life CPSC optimization
problems as the most promising research avenues to pursue. Mafakheri and Nasiri
(2014) and Ghaderi et al. (2016) review literature on Biofuel Supply Chains (BSCs),
which include the ESCs, they underline the importance of incorporating government
policies in the models of the BSCs. Ghaderi et al. (2016) argue that conducting case
studies of BSCs in regions with different climates, economic and political situations
is a new research direction. Ba et al. (2016) review biomass supply chains which are
parts of BSCs. Their findings show the need for optimization and efficient algorithms
for large biomass supply chains which clearly apply to the SPSCs. Chukwuma (2019)
advocates the integration of GIS data in mathematical programming models. This
research is aimed at filling in the gaps identified by these publications by addressing
the issue of developing an efficient optimization algorithm and a real-life case study
presented in the accompanying part II (Ghahremanlou and Kubiak 2020) for a US
state, which has not been studied from the SPSC point of view, using available real-life
data, and GIS data in particular.

In order to convert a CPSC to an SPSC gasoline can be blended either with
ethanol or with drop-in biofuel (i.e. biofuel compatible with the existing infrastructure)
(Yue et al. 2014). Tong, You, and Rong (2014), Tong et al. (2013), and Tong, Gleeson,
Rong, and You (2014) study design and operation of the SPSC with drop-in biofuel;
Najmi et al. (2016) focus on the equilibrium models for the SPSC with drop-in biofuel.
However, currently the drop-in biofuel is not being used in the US, and it is still often
referred to as an energy for future (BETO 2013). Therefore, in this paper we focus on
the SPSC which is created by merging an ESC with a CPSC. Andersen et al. (2013)
and Kazemzadeh and Hu (2015) study such SPSC. Andersen et al. (2013) propose
a strategic model to investigate the regions of the US which require investment to
implement the SPSC. They also propose a detailed model to study distribution of fuel
within a state. Their models focus on cost minimization, do not include uncertainty
which is present in the ESCs (Awudu, Zhang, 2012; Meyer, 2007; Yue et al., 2014),
and do not consider ethanol imports. Kazemzadeh and Hu (2015) incorporate RFS2
and TCL in their stochastic programming model but this does not consider ethanol
imported into the US. They run their computational experiments for 9 instances,
however, they do not report whether they were able to find optimal solutions for those
instances in reasonable time. Their research again underlines the need for new models
that not only provide solutions for a large number of instances in reasonable time but
also provide key insights into the policy through those solutions. This paper aims to
fill the gaps by including uncertain factors, imported ethanol from other states and
abroad, and a broader range of policies in the proposed models.

The SPSC needs to establish bio-refineries in some locations to process a limited
supply of corn stover. The ethanol produced in those bio-refineries may be exported
or shipped out to blending sites which also need to be established in some locations
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for blending ethanol with gasoline and for storage. Finally, the fuel (blend) is shipped
from blending sites to distribution centers to meet the demand for fuel. From that
perspective, the creation of the SPSC requires solving a Multi-echelon Location-
-Allocation (LA) problem (Cooper, 1963; Wang, Lee, 2015; Shankar, et al. 2013). The
LA problem is also key to applications in many other operation research (OR) areas,
e.g., healthcare (Mestre et al., 2015), and energy (Chukwuma, 2019; Chen, Fan, 2012;
Gebreslassie et al., 2012; Liu et al., 2010; Serrano-Hernandez et al., 2017). Azarmand
and Neishabouri (2009) provide a classification of the LA problems.

The LA problem, even deterministic and single-echelon, is NP-hard. Due to the
computational complexity of the LA problem the instances with large numbers of
potential locations cannot be solved to optimality in reasonable time by standard
solvers like Gurobi. Moreover, though some customized algorithms like a branch and
bound algorithm of Kuenne and Soland (1972) have been proposed in the literature
it remains to be seen whether they can even compete with off-the-shelf optimization
solvers, e.g., Gurobi. Therefore, the optimal solutions for the instances with large
numbers of potential locations are out of reach in practice, and thus various heuristics
have been proposed in the literature (Murray, Church, 1996; Bischoff, Dächert 2009).
The computational complexity grows further if the uncertainty is introduced in LA
problems which is the case for this paper. To provide the reader with a perspective
it is worth pointing out that Chen and Fan (2012) employ the Progressive Hedging
(PH) algorithm for solving a stochastic programming model with 8 scenarios, but they
only reach a solution within 0.131% from the optimum after 2 hours, though without
proving that the solution is optimal. Clearly showing that the solution found may be
relatively close to the optimum (more precisely to either a lower or an upper bound
obtained by relaxations) in reasonable time does not mean that the optimum itself
can also be found in reasonable time since the proof of optimality is typically much
more time consuming due to the problem NP-hardness. Computational complexity
poses a formidable barrier in policy impact analysis based on optimization since the
analysis requires a large number of instances to be solved to optimality. This paper
proposes a lean model to overcome this barrier.

1.3. Paper Contributions and Outline

We identified a number of gaps in the existing literature in the previous subsection.
Those gaps will be filled in by our contributions that we briefly describe in this
subsection leaving their details for the remaining sections and to the accompanying
part II (Ghahremanlou and Kubiak 2020).

This paper studies the impact of US government policies concerning cellulosic
ethanol (RFS2, TCL, TCI, TL, TI, and BW) on the SPSC. We call a six-tuple (RFS2,
TCL, TCI, TL, TI, BW) of values for each RFS2, TCL, TCI, TL, TI, and BW a policy
combination or just a policy. This requires multiple instances, thousands in this study,
obtained by changing the values of mandate (RFS2), tax credits (TCL and TCI),
tariffs (TL and TI), and blend wall (BW), to be solved to optimality efficiently in
computational experiments. That task is impossible at the moment for the General
Model (GM) based on two-stage stochastic programming presented in this paper, and
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also for any other similar model presented in the literature. This becomes clear from
the literature review showing that solving multi-echelon location-allocation stochastic
programs to optimality is practically beyond reach even for a single real-life instance
with close to a hundred potential locations. Therefore, in this paper we propose
a Lean Model (LM) based on two-stage stochastic programming to study the impact.
The LM proposes a macro level view on the flows of corn stover, ethanol and fuel
which significantly reduces time required by computational experiments. We prove key
relationships between optimal solutions to the GM and the LM, which help in making
more robust decisions.

The rest of the paper is organized as follows: Section 2 informally describes
the problem; Section 3 gives mathematical programming formulation of two models
of the problem. Section 3.1 formulates the General Model (GM) as a two-stage
stochastic programming model. The notations, including variables and parameters,
for the formulation are defined in Appendix 5.1. Section 3.2 gives the formulation of
a Lean Model (LM) which aggregates the flow variables of the GM. The aggregated
variables are defined in Appendix 5.2.

2. PROBLEM STATEMENT

The problem consists in establishing an SPSC in a state of the US to meet the demand
for fuel (ethanol-gasoline blend) in that state in such a way that the annual expected
profit is maximized. The investment in the SPSC has been accelerated by the market
created by the RFS2 mandate. Here we assume the investors take the lead in creating
what is required to convert a CPSC to the SPSC according to the legislations. They
also manage the SPSC. The design and operation of the SPSC are subject to various
regulations: RFS2, TCL, TCI, TI, TL, and BW. The impact of these regulations on
the SPSC is the main focus of this paper.

The SPSC includes harvesting sites, bio-refineries, blending sites, ethanol ex-
porters, ethanol importers from other states and abroad, refineries, gasoline importers,
and distribution centers (Fig. 1). Each county of the state has its own harvesting
site and distribution center both located in the center of the county. The harvest-
ing sites and distribution centers have their own amounts of feedstock and fuel demand
respectively. Furthermore, the center of each county is a potential location for bio-
refineries and blending sites. These are established by a US government loan which
will be repaid during t years with an interest rate φ. Therefore, the problem resembles
a project management type of problem which requires network design within a limited
budget, where initially, the facilities locations (bio-refineries, and blending sites) are
decided, and then the flows (of feedstock, ethanol, and fuel) are determined. The
bio-refineries and blending sites have the same technology but different capacities and
accordingly different costs to establish.

The feedstock is purchased from farmers. To keep the land fertile, only a specific
portion of feedstock available can be considered for shipping to the bio-refineries; out
of this amount a portion is lost due to baling and loading. The transportation network
for feedstock depends on the location of bio-refineries. Bio-refineries convert a specific
portion of the feedstock to ethanol which can then be shipped to blending sites and /
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or sold to ethanol exporters. The transportation network for ethanol depends on the
location of bio-refineries and blending sites. Blending sites receive ethanol from bio-
refineries, other states, and abroad, and gasoline from refineries, and other countries,
and blend the two according to the BW. The imported ethanol (from other states,
and abroad) and gasoline (from refineries, and other countries) are purchased to be
delivered to blending sites locations. The fuel is shipped to distribution centers to
be sold to the customers. The transportation network for the fuel depends of the
location of blending sites. The transportation of materials (feedstock, ethanol, and
fuel) includes distance-fixed cost and distance-variable cost, and it is done by truck.
We incorporate all regulations: RFS2, TCL, TCI, TI, TL, and BW in the model.

The uncertain factors in the model are: feedstock availability, feedstock price,
variable transportation cost, ethanol import prices, fuel price, gasoline price, ethanol
exporting price, fuel demand, number of jobs created due to different activities
(construction of bio-refineries and blending sites, feedstock to ethanol conversion and
ethanol-gasoline blending operations, and transportation of feedstock, ethanol and fuel).

We consider two objectives. The main objective is maximization of the annual
expected profit, and the secondary is maximization of the expected number of jobs
created in the state within the project lifetime of Q years. We assume the jobs
are created only for construction of bio-refineries and blending sites, their opera-
tions (feedstock to ethanol conversion, and ethanol-gasoline blending), and transporta-
tion (feedstock, ethanol, and fuel).

Fig. 1. Sustainable Petroleum Supply Chain Network

3. FORMULATION OF MODELS

In this section two types of mathematical programming models are explained. The
first one is the GM which includes the details. The second one is the LM which is
a conceptual model based on the GM.
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3.1. General Model (GM)

We develop a two-stage stochastic programming model for the problem in this section.
At the first stage the decisions regarding the locations and capacities of bio-refineries
and blending sites are made before the realization of uncertain factors. At the second
stage all the uncertain factors are realized and then the flow decisions are made.
Therefore, the flow decisions are optimal.

The design constrains are formulated in Subsection 3.1.1, the flow constraints
are given in Subsection 3.1.2, finally the objective functions are formulated in the
Subsections 3.1.3–3.1.5. To streamline the presentation we leave quite heavy notations
required by the variables and the parameters of the model to Appendix 5.1. The model
needs to handle three different types of facilities: bio-refineries, blending sites, and
distribution centers; and the flows of three different products: corn stover, ethanol, and
fuel. To facilitate the presentation of the model we adopt the convention represented
by the following upstream-downstream path (harvesting site j)→ (bio-refinery i)→
(blending site j)→ (distribution center i). That is, corn stover flows from j to i, thus
fjis in scenario s, ethanol flows from i to j, thus eijs in scenario s, and fuel flows from
j to i, thus xjis in scenario s. Consequently, for instance, we use the notation dji for
the distance between the harvesting side in county j and bio-refinery in county i, while
dij for the distance between bio-refinery in county i and blending site in county j.

3.1.1. Design Constraints

The design constraints are related to the locations and capacities of bio-refineries
and blending sites. The Constraint (1) guarantees that the total investment in the
construction of bio-refineries and blending sites in the state does not exceed B, the
available budget. The Constraints (2) and (3) guarantee that at most one bio-refinery
and at most one blending site, respectively, is established in each county of the state.∑

m

Cm ·
∑
i

rmi +
∑
n

Wn ·
∑
j

bnj ¬ B (1)

∑
m

rmi ¬ 1, ∀i ∈ N (2)

∑
n

bnj ¬ 1, ∀j ∈ N. (3)

3.1.2. Flow Constraints

Suppose the production of ethanol takes place in the state. This will generate three
types of flows between the counties of the state: the flow of feedstock, the flow of
ethanol, and the flow of fuel. In this section, constraints about the flows are introduced
and discussed.

The out-flow of feedstock from each county j must not exceed the amount
of feedstock available for shipping from that county. This amount depends on the
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sustainability factor (F ), and the feedstock loss factor (L). These two factors are
considered to be the same for all counties, as all the counties are located in one state,
and the collection, baling, and loading method is the same. Therefore, the left-hand
side of the Constraint (4) shows total feedstock available for shipping from county j in
scenario s, and the right-hand side shows the out-flow of feedstock from j in scenario s.

(1− L) · [(1− F ) ·Ajs] 
∑
i

fjis, ∀j ∈ N, ∀s ∈ S (4)

The in-flow of feedstock to county i must not exceed the capacity of bio-refinery
in county i in scenario s which is guaranteed by Constraint (5). In particular this
constraint guarantees that the feedstock does not flow from any other county j to i
without bio-refinery in any scenario s.∑

j

fjis ¬
∑
m

Um · rmi, ∀i ∈ N, ∀s ∈ S (5)

The percentage V of all feedstock available to the bio-refinery located in county i
is converted to ethanol, the left-hand side of Constraint (6). This amount of ethanol
either flows from i to the counties of the state (possibly including i) with blending
sites or it is sold to the exporters (ois), by county i in scenario s, the right-hand side.
Observe that this constraint along with Constraint (5) guarantees that ethanol flow
out of a county without a bio-refinery is forbidden.

V ·
∑
j

fjis =
∑
j

eijs + ois, ∀i ∈ N, ∀s ∈ S (6)

The in-flow of ethanol to county j must not exceed the capacity of the blending
site established in county j in scenario s which is guaranteed by Constraint (7). In
particular this constraint guarantees no ethanol, either from the bio-refinery located
in county i or purchased from other states or abroad, flows to j without a blending
site in any scenario s.[∑

i

eijs + hjs + kjs + gjs

]
¬
∑
n

Hn · bnj , ∀j ∈ N, ∀s ∈ S (7)

The total amount of ethanol that flows into a blending site in county j must not
exceed the fraction α, the BW, of the total in-flow, ethanol and gasoline, into the
blending site. This is guaranteed by Constraint (8).

[∑
i

eijs + hjs + kjs

]
¬ α ·

[∑
i

eijs + hjs + kjs + gjs

]
, ∀j ∈ N, ∀s ∈ S (8)

The following Constraint (9) guarantees that the total amount of ethanol pur-
chased annually from other states (

∑
j

hjs) will not exceed their total annual ethanol

production capacity (E) in any scenario s.
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∑
j

hjs ¬ E, ∀s ∈ S (9)

Finally consider the fuel flows. The left-hand side of the Constraint (10) equals
the total amount of fuel blended by the blending site located in county j in scenario s.
The right-hand side of the constraint equals the total out-flow of fuel from j to the
distribution centers of counties (including j) in scenario s.[∑

i

eijs + hjs + kjs + gjs

]
=
∑
i

xjis, ∀j ∈ N, ∀s ∈ S (10)

The in-flow of fuel to the distribution center in county i must meet demand for
fuel in i in scenario s. This is guaranteed by Constraint (11).∑

j

xjis = Dis, ∀i ∈ N, ∀s ∈ S (11)

It is worth observing that the constraints of the model, in particular the Constraints
(8), (10), and (11), do not guarantee that a feasible solution requires any positive
amount of ethanol to be produced. Thus some feasible solutions may not require any
production of ethanol. It would however be the mandate’s task to impose the penalty
on the obligated parties in order to provide the incentive for investors to produce
ethanol and to establish bio-refineries and blending sites in the state. Therefore the
mandate would make the solutions which do not require ethanol production to be
unlikely candidates for optimal solutions. The mandate is discussed next.

3.1.3. The Mandate

The mandate is calculated as a fraction of total gasoline consumption (
∑
j

gjs) in the

state. The fraction is determined by the current renewable standards R and R for the
first and the second generation ethanol respectively. The mandate has been waived or
changed by the government due to hitting the BW or to immaturity of the conversion
technologies by adjusting the standards R and R. Since the conversion technology
for the first generation ethanol has been completely developed and matured, which is
not the case for the second generation we use coefficient β for R. Due to the nested
structure of the RFS2 regulations the total coefficient R + β · R may apply to the
second generation ethanol only. Thus the mandate is defined as follows

Ms :=
[
R+ β ·R

]
·
∑
j

gjs, ∀s ∈ S (12)

The mandate is met by having enough Renewable Identification Numbers (RINs).
One gallon ethanol is counted as one RIN. The RINs are detached when ethanol is



Impact of Government Policies on Sustainable Petroleum. . . (Part I) 33

blended with gasoline. The number of detached RINs compared to the mandate will
have one of these three outcomes: (1) the number of RINs equals the mandate; (2) the
number of RINs is less than the mandate and the deficiency must be purchased from
other obliged parties; (3) the number of RINs is greater than the mandate and the
surplus is sold to other obliged parties. We define a variable RINs as the deviation of
the amount of ethanol blended with gasoline from the mandate.

RINs :=

∑
i

∑
j

eijs +
∑
j

hjs +
∑
j

kjs

−Ms, ∀s ∈ S (13)

This variable is part of the objective function we define in the next section, its
contribution to the value of the objective could be zero, negative or positive depending
of the Outcome (1), (2) or (3) respectively.

3.1.4. Expected Profit Maximization Objective Function

The primary objective function maximizes annual expected profit. It includes expected
revenues and expected costs. The expected revenues are as follows:

– The revenue from selling extra RINs (if RINs > 0 ), or the cost of purchasing
the deficiency (if RINs < 0)

RR = PR ·
∑
s

RINs · ωs (14)

where PR is the RIN price, RINs is the number of RINs in scenario s defined in
(13), and ωs as the probability of scenario s. The mandate’s task is to impose the
penalty reflected in (12), (13), and (14) on the obligated parties in order to provide
the incentive for investors to produce ethanol and to establish bio-refineries and
blending sites in the state.

– The revenue from selling fuel

RS =
∑
s

Ps · ωs ·
∑
i

Dis (15)

where Ps is the fuel market price in scenario s. Observe that the revenue does not
depend on any variable of the model, however it does depend on fuel demand in
the state.

– The revenue generated by TCL (RTL) includes two parts: one represents the
ethanol produced in the state (

∑
i

∑
j eijs), while the other one is the ethanol

imported from other states (
∑
j hjs) in scenario s. The Tax Credit per gallon of

the US ethanol equals T , and η is a coefficient to take care of the government
decisions to change the TCL. When η < 0, RTL becomes the TL.

RTL = η · T ·

∑
s

ωs ·
∑
i

∑
j

eijs +
∑
s

ωs ·
∑
j

hjs

 (16)
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– The revenue generated by TCI (RTC) depends on the amount of ethanol imported
from other countries (

∑
j kjs) in scenario s. The government may decide to change

the Tax Credit per gallon of foreign ethanol T , and thus we consider coefficient θ
to take care of this change. When θ < 0, RTC becomes the TI.

RTC = θ · T ·
∑
s

ωs ·
∑
j

kjs (17)

– The revenue generated by selling the ethanol produced by bio-refineries to the
exporters is REE . The amount of the ethanol sold equals

∑
i ois, and the selling

price PEs per gallon in scenario s.

REE =
∑
s

PEs · ωs ·
∑
i

ois (18)

The expected costs are as follows:

– This annual loan payment with an interest rate φ will be continued for t years.

CA =
[
φ · (1 + φ)t

(1 + φ)t − 1

]
·

∑
m

Cm ·
∑
i

rmi +
∑
n

Wn ·
∑
j

bnj

 (19)

– The cost of purchasing feedstock

CFP =
∑
s

PFs · ωs ·
∑
j

∑
i

fjis (20)

where
∑
j

∑
i fjis – the total amount of feedstock shipped from harvesting sites

to bio-refineries// PFs – price per ton (MT ).
– The operating costs

CO = CFE ·
∑
s

ωs ·
∑
i

(ois +
∑
j

eijs) + CB ·
∑
s

ωs ·
∑
i

Dis (21)

include the costs of conversion of feedstock into ethanol at bio-refineries, and costs
of blending ethanol and gasoline at blending sites. The former depends on the
amount of ethanol produced in the state (

∑
i(
∑
j eijs + ois)), the latter on the

fuel demand (
∑
iDis) in the state in scenario s.

– The transportation cost of feedstock CTF , ethanol CTE , and fuel CTEG

CTF = CFTF ·
∑
s

ωs ·
∑
j

∑
i

fjis + τ ·
∑
s

CV TFs · ωs ·
∑
j

∑
i

fjis · dji (22)

CTE = CFTE ·
∑
s

ωs ·
∑
j

∑
i

eijs + τ ·
∑
s

CV TEs · ωs ·
∑
j

∑
i

eijs · dij (23)
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CTEG = CFTEG ·
∑
s

ωs ·
∑
j

∑
i

xjis + τ ·
∑
s

CV TEGs ·ωs ·
∑
j

∑
i

xjis · dji (24)

are calculated using fixed unit costs CFTF , CFTE , and CFTEG respectively, and
variable unit cost CV TFs , CV TEs , and CV TEGs respectively. To better approximate
distances dji between the counties of the state the tortuosity factor (τ) is included
in the calculations.

– The cost of importing ethanol

CI =
∑
s

PEIs · ωs ·
∑
j

hjs +
∑
s

PEEs · ωs ·
∑
j

kjs (25)

purchasing
∑
j hjs of ethanol from other states with unit cost of PEIs , and

importing
∑
j kjs of ethanol from other countries with unit cost of PEEs in

scenario s.
– The cost of purchasing petroleum gasoline to blend with ethanol

CG =
∑
s

PGs · ωs ·
∑
j

gjs (26)

at unit price PGs in scenario s.

Therefore, the primary objective function is as follows:

G1 = (RR+RS+RTL+RTC+REE)−(CA+CFP+CO+CTF+CTE+CTEG+CI+CG)
(27)

3.1.5. Expected Job Created Maximization Objective Function

The secondary objective is the maximization of the expected number of jobs created
in the state during the Q years lifetime of the project.

– The number of jobs created for the construction (JC) are calculated based on the
amount of the investment in the construction of bio-refineries and blending sites.

JC =
∑
s

JCos · ωs ·

∑
m

Cm ·
∑
i

rmi +
∑
n

Wn ·
∑
j

bnj

 (28)

– The number of jobs created by the transportation of feedstock

JTF = Q · τ ·

∑
s

ωs · Js ·
∑
j

∑
i

fjis · dji

 (29)
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– The number of jobs created by the transportation of ethanol

JTE = Q · τ ·

∑
s

ωs · JTEs ·
∑
i

∑
j

eijs · dij

 (30)

– The number of jobs created by the transportation of fuel

JTEG = Q · τ ·

∑
s

ωs · JTEGs ·
∑
j

∑
i

xjis · dji

 (31)

– The number of jobs created by the ethanol production and blending in the state

JO = Q ·

∑
s

JFEs · ωs ·
∑
m

∑
i

Cm · rmi +
∑
s

JBs · ωs ·
∑
n

∑
j

Wn · bnj

 (32)

The secondary objective is as follows

G2 = JC + JTF + JTE + JTEG + JO. (33)

Observe from Equation (33) that the secondary objective does not depend on the
RFS2 mandate, the Blend Wall, BW, the Tax Credit for the US produced ethanol,
TCL, the Tax Credit for the foreign produced ethanol, TCI, the Tariff for the US
produced ethanol, TL, or the Tariff for the foreign produced ethanol, TI. Thus the
changes in the government policies affecting these do not affect the maximization of
the secondary objective. Also, the objective is in conflict with the primary objective
since the increase in the flows weighted by the distances, which may be a result of
changes in bio-refineries or blending site locations, reduces the the expected profit
while at the same time it increases expected number of jobs created.

3.2. Lean Model (LM)

The GM belongs to the class of NP-hard problems and thus its optimization is very
unlikely to be done efficiently. Even the design problem itself, i.e. the decision where to
locate bio-refineries and blending sites in order to minimize the transportation costs of
feedstock, ethanol, and fuel is NP-hard and thus difficult to solve efficiently. Therefore,
it is unlikely that a single instance of the problem could be solved efficiently, even
more so when multiple instances are required to be solved to show the impact of policy
change by changing the values of α, β, η and θ. This motivates us to come up with
a model that captures the main features of the problem, and thus makes it relevant
for strategic decision making and policy analysis, though it does so at a cost of hiding
less relevant details for these purposes. We propose a LM in this section that does
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just that by aggregating variables over counties of the state thus hiding particular
flows between them. The aggregated variables are defined in Appendix 5.2. The flows
may be irrelevant at the project management level, although the total flow obtained
by the aggregation is and will be part of the LM. One could argue that replacing the
GM by the LM leads to the loss of precision in determining the value of the optimal
solution. However, we need to keep in mind that the parameters of the models are
often estimates, see for instance the discussion of the corn stover price and conversion
rate parameters in Humbird et al. (2011), or consider the fact the cellulosic ethanol
production is still in the process of commercialization which explains the lack of data
pertaining to its performance. The British economist John Maynard Keynes once
remarked: “it is much better to be roughly right than precisely wrong" (Dios Ortúzar,
Willumsen, 2011). . Therefore, a general rule acceptable in model building is the fewer
parameters the better. The LM is less parameter hungry than the GM since it does
not require the unit transportation costs CTF , CTE , and CTEG, and unit job rates
JTF , JTE , and JTEG. The LMs take much less time to solve by standard universal
solvers like Gurobi.

3.2.1. Constraints

To write the LM constraints, we employ the aggregated variables, see Appendix 5.2
for definition, and closely mirror the constraints of the GM.

The number of bio-refineries with capacity level m, denoted by rm, and the
number of blending sites with capacity level n, denoted by bn, to set up must not
exceed the budget B. This is guaranteed by the following constraint∑

m

Cm · rm +
∑
n

Wn · bn ¬ B (34)

Constraints (35) and (36) guarantee that the number of bio-refineries and the number
of blending sites do not exceed the number of counties, |N |, respectively.∑

m

rm ¬ |N | (35)

∑
n

bn ¬ |N | (36)

The total shipments of corn stover to bio-refineries, denoted by fs, in scenario s must
not exceed the limit set by the supply of the corn stover in the state in s after factoring
in the corn stover loss, L, and the sustainability, F , factors. This is guaranteed by the
following constraint

fs ¬ As · (1− L) · (1− F ), ∀s ∈ S (37)

and they must respect the limit imposed by the total bio-refineries capacity

fs ¬
∑
m

Um · rm, ∀s ∈ S (38)
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The total production of ethanol by bio-refineries, V · fs, in scenario s is either used in
the state, es, or exported, os, which is guaranteed by the following constraint

V · fs = es + os, ∀s ∈ S (39)

The ethanol available in the state in scenario s which is made up of the ethanol
purchased from other states, hs, or abroad, ks, or produced internally in the state, es,
must not exceed the fraction α, of the total demand for fuel in the state in s. This is
guaranteed by

es + hs + ks ¬ α ·Ds, ∀s ∈ S (40)

The amount of ethanol purchased from other states must not exceed the limit E

hs ¬ E, ∀s ∈ S (41)

and the state demand must not exceed the blending capacity of the state which is
guaranteed by

Ds ¬
∑
n

Hn · bn, ∀s ∈ S (42)

The next three constraints recognize that the shipments of corn stover can be
split between the shipments between the counties, fEs , and internal within the counties
f Is , Constraint (43), the latter occurs only in those counties with bio-refineries

fs = fEs + f Is , ∀s ∈ S (43)

the shipments of ethanol can be split between the shipments between the counties,
eEs , and internal within the counties eIs, (44), the latter occurs only in those counties
with both bio-refineries and blending sites

es = eEs + eIs, ∀s ∈ S (44)

the shipments of fuel can be split between the shipments between the counties,
xEs , and internal within the counties xIs, (45), the latter occurs only in those counties
with blending sites

Ds = xEs + xIs, ∀s ∈ S (45)

The new variables introduced in Constraints (43–45) are required to better
approximate the solution of the GM by the solution to the LM which can be solved
more efficiently than the GM. Finally, we add constraints that upper bound the internal
shipments of feedstock, ethanol, and fuel so that a disaggregation with the same flows,
internal in particular, would be possible. Section 3.3 gives more details on this.

Define Bmis = min{Ais · (1− F ) · (1− L), Um} for m = 1, 2, 3, i = 1, ..., |N |, and
s ∈ S. We add the following constraints∑

i

rmi = rm, ∀m = 1, 2, 3 (46)
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m

rmi ¬ 1, ∀i = 1, ..., |N | (47)

f Is ¬
∑
i

∑
m

Bmis · rmi, ∀s ∈ S (48)

Define Cnjs = min{Djs, Hn} for n = 1, ..., 6, j = 1, ..., |N |, and s ∈ S. We add the
following constraints ∑

j

bnj = bn, ∀n = 1, ..., 6 (49)

∑
n

bnj ¬ 1, ∀j = 1, ..., |N | (50)

xIs ¬
∑
j

∑
n

Cnjs · bnj , ∀s ∈ S (51)

It is worth observing that constraints (48) and (51) place upper bounds on the
internal flows of corn stover and blend respectively. These bounds may not allow
us to take the advantage of the economy of scale implied by the strict concavity of
bio-refineries and blending sites cost functions in general, cost-levelk = k0.6 · base cost
for k = 1, 2, 3 (Ghahremanlou, Kubiak, 2020). The following example explains why
this may happen for corn stover. Assume U1 = 100, U2 = 200, and the supply of corn
stover, Ai · (1− F ) · (1− L), from the top corn stover supply counties are 80, 70, and
50. Now consider the following two solutions:

– r1 = 2, r2 = 0, r3 = 0. By Constraint (46)∑
i

r1i = 2,
∑
i

r2i = 0,
∑
i

r3i = 0, (52)

and by Constraint (47)

r1i + r2i + r3i ¬ 1,∀i⇒ r1j ¬ 1,∀i. (53)

Thus by (48), and B1i = min{Ai · (1 − F ) · (1 − L), U1 = 100}, we have f Is ¬∑
j

∑
mB

m
is · rmi = 150, and clearly the internal flow of f Is = 150 is achievable by

locating the two bio-refineries of capacity U1 = 100 each in the two counties with
the highest corn stover supplies 80 and 70 respectively.

– r1 = 0, r2 = 1, r3 = 0. By Constraint (46)∑
i

r1i = 0,
∑
i

r2i = 1,
∑
i

r3i = 0, (54)

and by Constraint (47)

r1i + r2i + r3i ¬ 1,∀j ⇒ r2i ¬ 1,∀i. (55)

Thus by Constraint (48), and B2i = min{Ai · (1−F ) · (1−L), U2 = 200}, we have
f Is ¬

∑
i

∑
mB

m
is · rmi = 80, and clearly the internal flow of f Is = 80 is achievable

by locating a single bio-refinery of capacity U2 = 200 in the county with the
highest corn stover supply 80.
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The former solution increases the cost of establishing bi-refineries by ignoring the
economy of scale. However, the two bio-refineries established in two different counties
permit higher internal flows. The latter solution, on the other hand, takes advantage
of the economy of scale to reduce the cost of establishing bio-refineries, however, it
reduces the internal flow since such flow is now limited to a single county where the
bio-refinery is located. Therefore the reduction in transportation costs due to higher
internal flows may outweigh the increase in the costs of establishing bio-refineries, thus
the former solution may result in higher expected profit than the latter.

Define Emn = min{V ·Um, α ·Hn} for m = 1, 2, 3, and n = 1, ..., 6. The following
constraints limit the internal flow of ethanol

eIs ¬
∑
m

∑
n

∑
j

Emn · P jmn, ∀s ∈ S (56)

∑
n

P jmn ¬ rmj , ∀j = 1, ..., |N |,∀m = 1, 2, 3 (57)

and ∑
m

P jmn ¬ bnj , ∀j = 1, ..., |N |,∀n = 1, ..., 6 (58)

Observe that the two Constraints (57) and (58) imply that for P jmn = 1 it is
necessary, but not sufficient, that both a bio-refinery of size Um and blending site of
size Hn are established in j. However, in optimality, when rmj = 1 and bnj = 1 then
P jmn = 1, since eIs will be maximized and therefore P jmn has to reach its cap.

Finally, we define

Ms :=
[
R+ β ·R

]
· [Ds − (es + hs + ks)] , ∀s ∈ S (59)

RINs := [es + hs + ks]−Ms, ∀s ∈ S (60)

Observe that only one Constraint (40) includes α, a policy parameter out of α,
β, η or θ. This constraint represents the impact of BW, α, on the space of feasible
solutions. A change in α may cause change in at least one of the variables es, hs and
ks. Furthermore, es is tied with the design variable rm and bn. Therefore, a change in
the BW may impact the long term strategic design decisions in the SPSC.

3.2.2. LM Objective Functions

The following revenues, costs, and number of jobs components of the LM objec-
tive functions, defined in Equations (61)–(78), exactly mirror those of the GM objective
functions, defined in (14-26) and (28-32). The former are essentially obtained from
the latter by replacing the variables of the latter by their aggregations defined in
Appendix 5.2.

RR = PR ·
∑
s

RINs · ωs (61)
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RS =
∑
s

Ps · ωs ·Ds (62)

RTL = η · T ·

[∑
s

ωs · es +
∑
s

ωs · hs

]
(63)

RTC = θ · T ·
∑
s

ωs · ks (64)

REE =
∑
s

PEs · ωs · os (65)

CA =
[
φ · (1 + φ)t

(1 + φ)t − 1

]
·

[∑
m

Cm · rm +
∑
n

Wn · bn

]
(66)

CFP =
∑
s

PFs · ωs · fs (67)

CO = CFE ·
∑
s

ωs · (es + os) + CB ·
∑
s

ωs ·Ds (68)

CTF = CFTF ·
∑
s

ωs · fs + τ · d ·
∑
s

CV TFs · ωs · fEs (69)

CTE = CFTE ·
∑
s

ωs · es + τ · d ·
∑
s

CV TEs · ωs · eEs (70)

CTEG = CFTEG ·
∑
s

ωs ·Ds + τ · d ·
∑
s

CV TEGs · ωs · xEs (71)

CI =
∑
s

PEIs · ωs · hs +
∑
s

PEEs · ωs · ks (72)

CG =
∑
s

PGs · ωs · [Ds − (es + hs + ks)] (73)

JC =
∑
s

JCos · ωs ·

[∑
m

Cm · rm +
∑
n

Wn · bn

]
(74)

JTF = Q · τ · d ·

[∑
s

Js · ωs · fEs

]
(75)

JTE = Q · τ · d ·

[∑
s

JTEs · ωs · eEs

]
(76)

JTEG = Q · τ · d ·

[∑
s

JTEGs · ωs · xEs

]
(77)

JO = Q ·
∑
s

JFEs · ωs ·

[∑
m

Cm · rm

]
+Q ·

∑
s

JBs · ωs ·

[∑
n

Wn · bn

]
(78)
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where the distance approximation d̄ equals either δ = mini 6=j dij > 0 or ∆ =
maxi6=j dij > 0 will be used in the next section. The Constraints (46)–(58) ensure
that only external flows of corn stover, fEs , ethanol, eEs , and fuel, xEs , incur positive
transportation costs, whereas the internal flows f Is , eIs, and xIs of corn stover, ethanol,
and fuel respectively incur no such costs.

Therefore, the expected profit objective function and expected jobs created
objective function are as follows:

L1 =(RR +RS +RTL +RTC +REE)− (79)

(CA + CFP + CO + CTF + CTE + CTEG + CI + CG)

L2 = JC + JTF + JTE + JTEG + JO (80)

respectively.
Observe that by Equation (80) the objective L2 does not depend on the RFS2

mandate, the Blend Wall, BW, the Tax Credit for the US produced ethanol, TCL,
the Tax Credit for the foreign produced ethanol, TCI, the Tariff for the US produced
ethanol, TL, or the Tariff for the foreign produced ethanol, TI. Thus the changes in
the government policies affecting these do not affect the maximization of L2. Also, the
L2 is in conflict with the L1 since the increase in the flows weighted by the distances,
which may be a result of changes in bio-refineries or blending site locations, reduces
L1, the expected profit, while at the same time it increases L2, the expected number
of jobs created.

3.3. Relationship Between GM and LM

We have approximated the distance from one county to other county, dij , with d to
make the GM completed converted to the aggregated model which is independent to
counties, since without that CTF , CTE , and CTEG in G1, and JTF , JTE , and JTEG
in G2 of the GM prevent full aggregation. Furthermore, to have a better bound we
have used fEs , eEs , and xEs in these equations. To find the best value for d, we used the
following relations which exist between the GM and the LM in each scenario s ∈ S.
Their proofs are given in Appendix 5.3:

Observation 1 (Aggregation). Each feasible solution Y =
(rmi, bnj , fjis, eijs, ois, hjs, kjs, gjs, xjis) for the GM, can be converted into a feasible
solution X = (rm, bn, fs, f Is , f

E
s , es, e

I
s, e

E
s , os, hs, ks, gs, xs, x

I
s, x

E
s ) for the LM using

the equations in Appendix 5.2.

Observation 2 (Disaggregation). Each optimal solution X =
(rm, bn, fs, f Is , f

E
s , es, e

I
s, e

E
s , os, hs, ks, xs, x

I
s, x

E
s ) for the LM, can be converted

into a feasible solution Y = (rmi, bnj , fjis, eijs, ois, hjs, kjs, gjs, xjis) for the GM. The
conversion is not unique.
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Observation 3 For any α, β, η and θ. Let Xmin and Xmax be optimal solutions to
the LM with d = δ and d = ∆ respectively, then L1(Xmin)  G1(Y )  L1(Xmax) for
an optimal solution Y to G1 of the GM.

Observation 4 For any α, β, η and θ. Let Zmin and Zmax be optimal solutions to
the LM with d = δ and d = ∆ respectively, then L2(Zmin) ¬ G2(V ) ¬ L2(Zmax) for
an optimal solution V to G2 of the GM.

Finally, let us define Lδ1 and L∆1 to be the LM model with the objective L1 where
d̄ is set to δ and ∆ respectively. Similarly, let us define Lδ2 and L∆2 to be the LM model
with the objective L2 where d̄ is set to δ and ∆ respectively. We have the following
observation.

Observation 5 For any α, β, η and θ. Let Ymin and Ymax be optimal solutions to the
LM with the objective L∆1 +Lδ2 and Lδ1+L∆2 respectively, then L∆1 (Ymin) +Lδ2(Ymin) ¬
G1(Y ) ¬ Lδ1(Ymax) + L∆2 (Ymax) for an optimal solution Y to G1 +G2 of the GM.

4. CONCLUSIONS AND FURTHER RESEARCH

We studied the impact of Renewable Fuel Standard 2 (RFS2), Tax Credit (TCL and
TCI), Tariff (TL and TI), and the Blend Wall (BW) on the SPSC. We proposed the
General Model (GM) for the creation of the SPSC, which falls in the category of
Multi-echelon Location-Allocation (LA) problems with uncertainty. The LA problem,
even deterministic and a single-echelon, is NP-hard in the strong sense, thus com-
putationally intractable. Therefore, the GM along with all other models of general
nature proposed in the literature is NP-hard in the strong sense. Hence it may be
very time consuming to find an optimum for the GM for a single problem instance.
This computational complexity makes those general models impractical as models to
study policy impacts where thousands of instances need to be solved to optimality in
computational experiments in reasonable time. Thus, we proposed a Lean Model (LM)
to study the impact. The leanness comes at the cost of loosing some details about flows
in the SPSC which, however, may not be that important at the stage when the SPSC
is created. The concept of aggregation behind the LM as well as the model itself stand
on their own and seem worthy of further research in the context of other optimization
problems where general models are too time consuming to solve to optimality. We
did a case study for the State of Nebraska, one of the main corn stover producers in
the US, using the LM, please see the accompanying part II (Ghahremanlou, Kubiak,
2020), to provide insights for decision makers and investors who are willing to invest
in the SPSC in order to make profit, to fulfill the US government regulations, and at
the same time, meet the demand for fuel in the State. These insights help in arriving
at robust decisions.

We would like to emphasize the need for optimization algorithms for the multi-
echelon location-allocation problems, both deterministic and stochastic, capable of
competing with the standard solvers like Gurobi at solving real-life instances with
close to a hundred potential locations in reasonable time. The challenge has not yet
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been met which creates ample opportunities for research that could impact the SPSC
research. The optimal solutions to the LM can be efficiently obtained by Gurobi which
is shown by our computational experiments. They provide lower and upper bounds
for optimal solutions of the GM which can be viewed as a stochastic multi-echelon
location – allocation problem. The bounds and their corresponding solutions may then
be used to speed up optimization algorithms for the GM which is another promising
path for further research. So are heuristics and metaheuristics for the GM; to our
knowledge neither of them has been proposed for the GM or other general models in
the literature.

The paper considers two-objectives yet it focuses on the expected annual profit
as the primary objective and uses optimal solutions for that objective to evaluate
the secondary objective which is the expected number of jobs created during the
life-time of the project. Other approaches to dealing with multiple objectives include
an objective which is a convex combination of the two or the construction and analysis
of the Pareto frontier. Either creates an interesting avenue for research aimed at
providing further insights into the expected profit – expected number of jobs created
trade-off. However, one needs to keep in mind that those approaches are typically
used for a single instance, rather than the thousands of them required to study policy
impact and this may further increase complexity. All these provide many opportunities
for further research on the SPSC.
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5. APPENDIX

5.1. Notations

Sets
N set of counties
S set of scenarios

Indices
i county index, i ∈ N
j county index, j ∈ N
m capacity level of bio-refineries m ∈ {1, 2, 3}
n capacity level of blending sites n ∈ {1, 2, 3, 4, 5, 6}
s scenario index, s ∈ S

Decision variables
Continuous non-negative variables for scenario s ∈ S

ois amount of ethanol sold to exporter from bio-refinery in county j
(gal)

eijs amount of ethanol shipped from bio-refinery in county i to blending
site in county j (gal)

fjis amount of feedstock (corn stover) shipped from harvesting site in
county j to bio-refinery in county i (MT )

gjs amount of petroleum gasoline purchased for blending with ethanol
in blending site in county j (gal)

hjs amount of ethanol purchased from other states for blending with
gasoline in blending site in county j (gal)

kjs amount of ethanol purchased from other countries for blending
with gasoline in blending site in county j (gal)

xjis amount of fuel (ethanol-gasoline blend) shipped from blending site
in county j to distribution center in county i (gal)

Binary variables
bnj equals 1 if a blending site with capacity level n is set up in county j
rmi equals 1 if a bio-refinery with capacity level m is set up in county i

Parameters
Harvesting sites

Ajs amount of feedstock (corn stover) at county j in scenario s (MT )
F sustainability factor for harvesting site in each county
L feedstock loss factor due to baling and loading in each county
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Bio-refineries and blending sites - design
B amount of loan to set up bio-refineries and blending sites in the

state under study ($)
t loan payback period (y)
φ interest rate of the loan received for establishing bio-refineries and

blending sites
Cm cost to set up a bio-refinery with capacity level m
Wn cost to set up a blending site with capacity level n ($)
Um capacity of a bio-refinery with capacity level m (MT )
Hn capacity of a blending site with capacity level n (gal)
Q lifetime of the bio-refineries and blending sites (y)

Bio-refineries and blending sites – operation
CFE conversion cost per unit of ethanol produced ($/gal)
V conversion factor for bio-refineries (corn stover to ethanol)

(gal/MT )
CB blending cost per unit of ethanol-gasoline blend produced ($/gal)
E maximum amount of ethanol can be imported from other states

(gal)
JCos number of jobs created per dollar of expenditures on construction

of bio-refineries and blending sites in scenario s (job/$ · y)
JFEs number of jobs created annually per dollar of expenditures on

conversion operation in scenario s (job/$ · y)
JBs number of jobs created annually per dollar of expenditures on

blending operation in scenario s (job/$ · y)
Unit prices

PFs price of feedstock purchased in scenario s ($/MT )
PEs price of ethanol sold to the exporter in scenario s ($/gal)
PEIs price of ethanol purchased from other states in scenario s ($/gal)
PEEs price of ethanol purchased from other countries in scenario s ($/gal)
PGs price of gasoline (from crude oil) purchased in scenario s ($/gal)
Ps price of fuel (ethanol-gasoline blend) sold to the distribution centers

in scenario s ($/gal)
PR price of RIN ($/RIN)

Distribution centers
Dis fuel (ethanol-gasoline blend) demand at county i in scenario s (gal)

Transportation
CFTF feedstock fixed transportation cost ($/MT )
CV TFs feedstock variable transportation cost in scenario s ($/MT ·mi)
CFTEG fuel (ethanol-gasoline blend) fixed transportation cost ($/gal)
CV TEGs fuel (ethanol-gasoline blend) variable transportation cost in sce-

nario s ($/gal ·mi)
CFTE ethanol fixed transportation cost ($/gal)
CV TEs ethanol variable transportation cost in scenario s ($/gal ·mi)
dij direct distance from county i to county j (mi)
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Js number of jobs created for feedstock transported in scenario s
(job/MT ·mi · y)

JTEGs number of jobs created for fuel transported in scenario s (job/gal ·
mi · y)

JTEs number of jobs created for ethanol transported in scenario s
(job/gal ·mi · y)

τ tortuosity factor (for converting direct distance to real distance)
Policies

Ms amount of ethanol mandate for the state under study in scenario s
(gal)

R renewable fuel standard for first generation of ethanol
R renewable fuel standard for second generation of ethanol
T tax credit per unit of ethanol (locally produced and/or imported

from other states) blended with petroleum gasoline ($/gal)
T tax credit per unit of ethanol (imported from other countries)

blended with gasoline (coming from crude oil) ($/gal)
α blend wall
β coefficient of current ethanol mandate
η coefficient of current tax credit for blended ethanol (that locally

produced and/or imported from other states)
θ coefficient of current tax credit for blended ethanol (that imported

from other countries)
RINs amount of RINs for scenario s

General
ωs probability of scenario s

Objective function components
Revenues ($)

RR total revenue resulting from RINs sold
RS total revenue resulting from fuel (ethanol-gasoline blend) sold
RTL total revenue resulting from tax credit for blended ethanol (locally

produced)
RTC total revenue resulting from tax credit for blended ethanol (im-

ported from other countries)
REE total revenue resulting from ethanol sold to the exporter

Costs ($)
CA total cost resulting from the annual loan payback
CFP total cost resulting from feedstock purchased
CO total cost resulting from bio-refineries and blending sites operation

(conversion and blending)
CTF total cost resulting from transportation of feedstock (corn stover)
CTE total cost resulting from transportation of ethanol from bio-

refineries to blending sites
CTEG total cost resulting from transportation of fuel (ethanol-gasoline

blend) from blending sites to distribution centers
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CI total cost resulting from ethanol imported from other states and
other countries

CG total cost resulting from gasoline (from crude oil) purchased
Jobs ( job)

JC total jobs resulting from construction of bio-refineries and blending
sites

JTF total jobs resulting from transportation of feedstock (corn stover)
JTE total jobs resulting from transportation of ethanol from bio-

refineries to blending sites
JTEG total jobs resulting from transportation of fuel (ethanol-gasoline

blend) from blending sites to distribution centers
JO total jobs resulting from bio-refineries and blending sites operation

(conversion and blending)

5.2. Aggregated Variables

The variables of the Lean Model (LM) and the General Model (GM) are related by
Equations (81)–(95) listed below. The equations informally state that the value of a
variable in the LM is obtained by an aggregation of the values of variables in the GM
over all counties, or conversely the values of variables in the GM are obtained by a
disaggregation of the value of the variable in the LM. The disaggregation is not unique.∑

i

rmi = rm, ∀m (81)

∑
n

bnj = bn, ∀n (82)

∑
j

∑
i

xjis = xs, ∀s ∈ S (83)

∑
j

∑
i=j

xjis = xIs, ∀s ∈ S (84)

∑
j

∑
i 6=j

xjis = xEs , ∀s ∈ S (85)

∑
j

hjs = hs, ∀s ∈ S (86)

∑
j

kjs = ks, ∀s ∈ S (87)

∑
i

∑
j

eijs = es, ∀s ∈ S (88)
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i

∑
j=i

eijs = eIs, ∀s ∈ S (89)

∑
i

∑
j 6=i

eijs = eEs , ∀s ∈ S (90)

∑
j

gjs = gs, ∀s ∈ S (91)

∑
j

∑
i

fjis = fs, ∀s ∈ S (92)

∑
j

∑
i=j

fjis = f Is , ∀s ∈ S (93)

∑
j

∑
i6=j

fjis = fEs , ∀s ∈ S (94)

∑
i

ois = os, ∀s ∈ S (95)

The total demand in the state in scenario s.∑
i

Dis = Ds, ∀s ∈ S (96)

The total supply of corn stover in the state in scenario s.∑
j

Ajs = As, ∀s ∈ S (97)

5.3. Proofs of Relationship Between GM and LM

Proof. Observation 1 – We set P imn = 1 if and only if rmi = 1 and bin = 1 for all m,
n, and i ∈ N . Thus P imn = 1 if and only if a bio-refinery of size Um and a blending
site of size Hn are both set up in county i. By Equations (1), (2), and (3) which
are satisfied by Y , and using Definitions (81) and (82) (see Appendix 5.2) we have
Constraints (34), (35), (36), (46), (47), (49), (50), (57), and (58) satisfied by X. By
Definitions (88), (92), (95), and (97), the Flow Constraints (4), (5), and (6) met by Y
imply that X meets (37), (38), and (39). Definitions (92), (93), and (94) imply (43)
for the corn stover flow in X, (88), (89), and (90) imply (44) for the ethanol flow in
X, and Definitions (83), (84), and (85) along with Constraints (46) and (47) met for
Y imply (45) for the fuel flow in X. Constraints (7), (8), (9), (10), and (11) satisfied
by X by Definitions (88), (86), (91), (87), (95), and (96) imply that Constraints (40),
(41), and (42) are satisfied by X.

The maximum amount of feedstock shipped internally within county i with a
bio-refinery of size Um equals Bmjs = min{Ajs · (1− F ) · (1− L), Um} for m = 1, 2, 3,
j = 1, ..., |N |, and s ∈ S, thus the actual amount, f Is , shipped in Y meets the constraint
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(48) in X by definition (93). The maximum amount of fuel shipped internally within
county i with a blending site of size Hn equals Cnjs = min{Djs, Hn} for n = 1, ..., 6,
j = 1, ..., |N |, and s ∈ S. Therefore, the actual amount, xIs, shipped in Y meets
Constraint (51) in X by Definition (84). Finally, the maximum amount of ethanol
shipped internally within county i with a bio-refinery of size Um and a blending site
of size Hn equals Emn = min{V · Um, α ·Hn} for m = 1, 2, 3, and n = 1, ..., 6, thus
the actual amount, eIs, shipped in Y meets Constraint (56) in X by Definition (89).

Proof. Observation 2 – Let X = (rm, bn, fs, f Is , f
E
s , es, e

I
s, e

E
s , os, hs, ks, xs, x

I
s, x

E
s ) be

an optimal solution to the LM. We obtain a feasible solution to the GM as follows.
First, locate a bio-refinery of size Um in county j if and only if rmj = 1 in X, and
locate a blending site of size Hn in county j if and only if bnj = 1 in X. Constraints
(46), (47), (49), and (50) of the LM guarantee that these locations satisfy Constraints
(2) and (3) of the GM. Since X satisfies Budged Constraint (34) so does Y satisfies
(1) in the GM. Let Bio and Bl be the sets of counties with bio-refineries and blending
sites respectively in Y . Consider the flow of corn stover. By (48) we get∑

i∈Bio
min{Ais · (1− F ) · (1− L), U i}  f Is , (98)

which guarantees that the locations in Bio ensure the internal flow f Is required by X,
here U i is the capacity of bio-refinery located in i. Thus, we can obtain an internal flow
fiis for each county i so that the total internal flow equals f Is =

∑
i fiis in scenario s.

Once the internal flows of corn stover have been fixed we can calculate the external
flow fijs of corn stover from county i to county j, i 6= j, to meet the total external
flow fEs required by X. The flows fijs can be calculated by solving a minimum cost
network flow problem Nf with a given flow fEs to minimize the corn stover variable
transportation costs. The network node capacities (supply of feedstock in county i and
capacity of bio-refinery in county i) are determined by Constraints (4) and (5) and
further adjusted by the internal flows fiis which are fixed before the external flows
fijs for different i and j are calculated. Constraints (37), (38), and (43) guarantee
that the flows fijs are feasible for Y . The feedstock flows also determine the amount
of ethanol V · fjs produced in county j which will subsequently serve as the upper
limit on the amount of ethanol ejs (produced in county j and used in the state) in
the network flow problem Ne used to calculate ethanol flows consistent with the corn
stover flows fijs in order to satisfy (6) in Y by (39) in X.

Now consider the flow of fuel. By (51) we get∑
i∈Bl

min{Dis, H
i}  xIs, (99)

which guarantees that the locations in Bl ensure the internal flow xIs required by X,
here Hi is the capacity of blending site located in i. Thus, we can obtain an internal
flow xiis for each county i so that the total internal flow equals xIs =

∑
i xiis in scenario

s. Once the internal flows have been fixed we can calculated the external flow xijs of
fuel from county i to county j, i 6= j, to meet the total external flow xEs required by X.
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The flows xijs can be calculated by solving a minimum cost network flow problem Nx
with a given flow xEs to minimize the fuel variable transportation costs. The network
node capacities (fuel demand in county i) are determined by Constraint (11) and
further adjusted by the internal flows xiis which are fixed before the external flows
xijs for different i and j are calculated. Constraint (45) guarantees that the flows xijs
are feasible for Y . The fuel flows also determine the amount of fuel xjs produced in
county j which will subsequently serve as the upper limit on the amount of ethanol
eis in the network flow problem Ne used to calculate ethanol flows consistent with the
fuel flows xijs in order to satisfy (10) in Y by (45) in X.

Finally, consider the flow of ethanol. Since X is optimal we have P jmn = 1 if
and only if a bio-refinery of size Um and a blending site of size Hn are both set up
in county j. Thus, the internal flow of ethanol occurs only in counties having both
a bio-refinery and a blending site set up, and (56) guarantees that those counties
in Bio ∩ Bl ensure the amount eIs required by X. The remaining ethanol, eEs , is
shipped from the counties i ∈ Bio \ Bl to the counties j ∈ Bl \ Bio. The flow eijs
can be calculated, once the internal flows eiis have been fixed, by solving a minimum
cost network flow problem Ne with a given flow eEs to minimize the ethanol variable
transportation costs. The network node capacities are determined by the constraint
(7), and the flows fjs and xjs that have already been calculated. They are further
adjusted by the internal flows eiis, which are fixed before the external flows eijs are
calculated. The constraint (45) guarantees that the flows eijs are feasible for Y .

At this point we have shown how to obtain feasible corn stover flows fijs, ethanol
flows eijs, and fuel flows xijs for the GM. Now, we can use equations V ·fis = ei,s+oi,s
(see the constraint (6) in the GM), where V · fis ¬ V · U i and

∑
i eis = es and∑

i ois = os to calculate the amount of ethanol ois exported from county i in scenario
s. Thus, we get (6) satisfied by Y since X satisfies (38) and (39). Moreover, we
can use equations eis + his + kis + gis = Dis (see Constraint (10) in the GM), and
inequalities eis + his + kis + gis ¬

∑
nHn · bni (see Constraint (7) in the GM),

eis + his + kis ¬ α · (eis + his + kis + gis) (see Constraint (8) in the GM), and∑
i his ¬ E (see Constraint (9) in the GM),

∑
i his = hs,

∑
i eis = es and

∑
i kis = ks

to calculate the amount of ethanol his purchased from other states, or abroad, kis,
by county i, and the amount of gasoline, gis, purchased by county i. Clearly, these
amounts can be calculated, for instance, to minimize the cost of the purchases. Thus
we get (7), (8), and (9) satisfied by Y since X satisfies (40), (41) and (42). Therefore,
we get solution Y that is feasible for the GM. Clearly, the solution is not unique since
the flows, for instance, can be calculated differently.

Proof. Observation 3 – By Observation 1, Y can be converted into a feasible solution
X to the LM. The only difference between L1(X) and G1(Y ) consists in replacing
the distances dij with a single distance δ, please check (69)–(71), (22)–(24), (75)–(77),
and (29)–(31).
However we have

δ · fEs ¬
∑
j

∑
i 6=j

fjis · dji, ∀s ∈ S,
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δ · eEs ¬
∑
j

∑
i 6=j

eijs · dij , ∀s ∈ S,

δ · xEs ¬
∑
j

∑
i 6=j

xjis · dji, ∀s ∈ S.

Therefore, L1(X)  G1(Y ). For an optimal solution Xmin to the LM we have
L1(Xmin)  L1(X), thus L1(Xmin)  G1(Y ).

By Observation 2, Xmax can be converted into a feasible solution Y ′ to the GM.
The only difference between L1(Xmin) and G1(Y ′) consists in replacing the distances
dij with a single distance ∆, please check (69)–(71), (22)–(24), (75)–(77), and (29)–(31).
However, we have

∆ · fEs 
∑
j

∑
i

fjis · dji, ∀s ∈ S,

∆ · eEs 
∑
j

∑
i

eijs · dij , ∀s ∈ S,

∆ · xEs 
∑
j

∑
i

xjis · dji, ∀s ∈ S.

Therefore, G1(Y ′)  L1(Xmax). For an optimal solution Y to the GM we have G1(Y ) 
G1(Y ′), thus G1(Y )  L1(Xmax). We proved that L1(Xmin)  G1(Y )  L1(Xmax)
as required.

Proof. Observation 4 – The proof is similar to the proof of Observation 3 thus it will
be omitted.

Proof. Observation 5 – By Observation 1, Y can be converted into a feasible solution
X to the LM. The only difference between Lδ1(X)+L∆2 (X) and G1(Y )+G2(Y ) consists
in replacing the distances dij with a single distance δ in the objective L1 and a single
distance ∆ in the objective L2, please check (69–71), (22–24), (75–77), and (29–31).
Therefore, Lδ1(X) + L∆2 (X)  G1(Y ) +G2(Y ). For an optimal solution Ymin we have
Lδ1(Ymax) + L∆2 (Ymax)  Lδ1(X) + L∆2 (X)  G1(Y ) +G2(Y ).

By Observation 2, Ymin can be converted into a feasible solution Y ′ to the GM.
The only difference between L∆1 (X)+Lδ2(X) and G1(Y ′)+G2(Y ′) consists in replacing
the distances dij with a single distance ∆ in the objective L1 and a single distance
δ in the objective L2, please again check (69–71), (22–24), (75–77), and (29–31).
Therefore, L∆1 (X) + Lδ2(X) ¬ G1(Y ′) +G2(Y ′). For an optimal solution Y we have
L∆1 (Ymin) + Lδ2(Ymin) ¬ G1(Y ′) +G2(Y ′) ¬ G1(Y ) +G2(Y ).




