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Executive summary 

This document is the final delivery of the two-year joint project DG Joint Research 

Centre and DG Regional Policy on the measurement of the level of regional 

competitiveness, launched in November 2008. Within this project, the European 

Commission has recently published the first edition of the Regional Competitiveness 

Index (RCI) (Annoni and Kozovska, 2010). The index provides a tool to improve the 

understanding of competitiveness at the regional level by showing the strengths and 

weaknesses of each of the European regions at the NUTS2 level in a number of 

dimensions related to competitiveness. The analysis offered by the first edition of the RCI 

is a snapshot of regional competitiveness as it is in 2010 and is based upon data mostly 

spanning between 2007 and 2009. The present document takes a step further and offers a 

two-fold analysis based on the RCI indices: an exploratory spatial data analysis and an 

analysis of possible relationships between exogenous indicators and the RCI index and 

sub-indices.  

The exploratory spatial data analysis shows the existence of spatial dependence among 

EU regions, with different patterns for different areas within the EU. This can be taken as 

an indication for the existence of spatial externalities among regions and, when observed 

for high performing regions, as evidence, or better, as necessary condition for spillover 

effects. The Moran’s global index of spatial autocorrelation shows that there exists spatial 

autocorrelation for the RCI index as well as the three sub-indices – basic, efficiency and 

innovation. Local clusters of low RCI values, as evidenced by the analysis of Local 

Indicators of Spatial Association (LISA), are located in Bulgaria, Romania, Greece and 

Cyprus, South-Eastern regions of Hungary and Slovakia, Southern part of Italy, Portugal 

and Spain. These areas show significant results for low-low clusters, meaning that 

regions with low RCI scores are surrounded by low scoring regions. On the other hand, 

local clusters of high RCI values are found in regions in the Netherlands, parts of 

Germany, Belgium, Denmark, the southern part of United Kingdom, Finland and 

Sweden.  
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Overall, LISA analysis allowed us to distinguish between two sub-areas in the EU: group 

A which comprises regions with high RCI performance surrounded by regions with 

similar strong competitive performance (these regions are located in the following 

countries: AT-BE-DE-DK-FI-IE-LU-NL-SE-SI-UK) and group B, comprising low-

performing regions surrounded by low RCI performers (these regions are located in the 

following countries: BG-CZ-EE-GR-HU-LT-LV-PL-RO-SK).   

The analysis has been extended to better explore the structure of spatial autocorrelation 

within the two main sub-areas – A and B - of low-low and high-high clusters as detected 

by LISA. The analysis of sub-area B is meant to further investigate the possible presence 

of ‘negative’ spillover effects where low performing regions negatively affect their 

neighbors. 

Spatial autocorrelation structure is investigated by using variogram analysis, a tool 

typical of Kriging for describing spatial dependences (Cressie, 1984). Variogram analysis 

provides as additional information the ‘range of action’ of spatial dependence, which is 

the maximum distance beyond which the correlation can be considered null. Variogram 

analysis is carried out using three different distances between region centroids: Euclidean 

distance, distance along the road (ferry) network and the travel time distance. Results 

indicate the existence of a clear structure of correlation for the sub-area A of high-high 

clusters. In this area the range of auto-correlation is between 300-500 km for Euclidean 

and road distance, while in terms of travel-time distance the estimated range is about 150-

200 minutes. Variogram analysis cannot estimate a range for the sub-area of low-low 

clusters, sub-area B. This area seems to be characterized mostly by low performing 

regions with some rare and sparse picks of relatively higher performers (some capital 

regions).    

With regards to the analysis of possible relationships between exogenous indicators and 

RCI index and sub-indices, we have looked at bivariate correlations with five exogenous 

indicators (population change in the period 2001-2007; natural population change in the 

period 2001-2007; net migration in the period 2001-2007; share of population which live 

in Large Urban Zones, LUZ; GDP growth average 2000-2007) for all EU NUTS 2 

regions as well as for two sub-areas as identified by the ESDA analysis. We find that the 
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number of significant results from the correlation analysis increases when we distinguish 

between the sub-areas. 

The share of population living in LUZ is always positively associated to the three RCI 

indices (total, efficiency and innovation), with particularly high values for countries in 

sub-area B. In these regions living in high density areas (large cities) means having 

higher levels of competitiveness. Focusing on countries in sub-area A, where spatial auto-

correlation analysis highlighted clusters of highly performing regions, all the indicators 

but net migration and GDP growth average are positively correlated with RCI indices 

The analysis for regions in sub-area B shows a positive correlation for all the exogenous 

indicators and almost all the RCI indices (with the only exception of the efficiency sub-

index and natural population change). 

In general, our results show that population dynamics and demographic trends are highly 

relevant for territorial competitiveness while the relationship with GDP growth remains 

ambiguous. Two critical issues arise here: first, RCI 2010 covers a lag of time which 

comprises the 2008 economic and financial crisis; second, the relationship between 

competitiveness and growth is in general difficult to understand. A recent example is the 

Trade Performance Index, jointly developed by UNCTAD (United Nations Conference 

on Trade and Development) and WTO (World Trade Organization), where high 

performing countries are those where GDP growth was the lowest in the last ten years.  

For these reasons, an in-depth analysis of the relationship between territorial 

competitiveness and economic growth indicators would require a separate and extensive 

research which goes beyond the scope of this study.   



Introduction 

1/55 

Introduction 

 
The regional competitiveness index recently developed by the European Commission 

(Annoni and Kozovska, 2010) provides a tool to improve the understanding of 

competitiveness at the regional level. The index shows the strengths and weaknesses of 

each of the European regions at the NUTS2 level and covers a wide range of issues 

related to competitiveness. The analysis is a snapshot of regional competitiveness as it is 

in 2010 and is based upon data mostly spanning between 2007 and 2009.  

The present document provides a two-fold analysis based on the RCI indices: an 

explorative spatial data analysis and an analysis of possible relationships between 

exogenous indicators and the RCI score and sub-scores.  

The spatial data analysis explores the structure, if any, of spatial autocorrelation of the 

RCI scores with the final aim of detecting clusters of high or low performers among the 

European regions. This is the first step in the assessment of possible spill-over effects of 

competitiveness. The analysis of relationships with exogenous indicators, where 

‘exogenous’ is understood as indicators which have not been directly included in the RCI 

computation, may help in finding out possible drivers of competitiveness.  
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1 The analysis of spatial auto-correlation 
 
By its nature competitiveness is not bound by administrative borders, being a result of a 

number of factors which interact among each other as well as with the surrounding 

environment. Trade between regions, labor mobility, technology and knowledge diffusion 

and regional externalities in general are a source of geographical dependence among 

regions. Thus, it is quite natural to assume that competitiveness levels of different EU 

NUTS 2 regions influence and are influenced by the performance of their surrounding 

regions, giving rise to spill-over effects. Given the institutional and economic set up of 

the European Union, such interactions are not necessarily limited to regions within the 

same country but could very well exist among bordering regions from different countries. 

The concept of spillovers has been widely used in economic literature to describe 

externalities generated by a number of processes, including geographical proximity, and 

concerning productivity, knowledge, innovation among others. The measurement of 

spillovers is dependent upon the type of process examined. At the regional level, 

spillovers have been studied largely in the framework of regional convergence (see Islam, 

2003; Magrini, 2004 for surveys on the topic) of GDP levels. Evidence for the existence 

of regional spillovers has been analyzed through several types of convergence processes - 

catching-up in per capita income levels, usually estimated by regressing growth rates of 

GDP on initial levels (δ-convergence), decline in the cross-sectional dispersion, measured 

as the sample variance, of per capita incomes (σ-convergence) or changes in the rankings 

of relative per capita income (g-convergence) (see e.g. Baumont et al, 2003; Dall’Erba 

and Le Gallo, 2008). Reference is made to economies being similar in structural 

characteristics and converging within groups depending upon initial conditions or other 

spatial or a-spatial attributes (Ramajo et al., 2008). Many empirical studies do not include 

the spatial aspect of regional data in their estimation and numerous critiques have been 

made on the methodological aspects of studying spillovers through such convergence 

methodologies, especially at the regional level (e.g. Ramajo et al., 2008). Furthermore, 

when looking at the different types of possible spillovers (e.g. knowledge, technology, 
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innovation, productivity) and the level (e.g. sectoral and/or regional), the possible 

techniques for estimating the spillover effect change according to the set-up of interest. 

In the RCI case, the simple qualitative analysis of the maps of the total score and the 

three sub-indexes (Annoni and Kosovska, 2010), clearly shows that the spatial 

distribution of the competitiveness score is not homogeneous across EU regions (Figure 

1). Apart from the map of the basic sub-index which is by construction composed by a 

majority of pillars at the country level,  a concentration of highly performing regions 

(dark blue color) can be seen in the area including the following countries (clockwise 

from south-est): Slovenia (SI), Austria (AT), Germany (DE), Luxemburg (LU), Belgium 

(BE), United Kingdom (UK), Ireland (IE), The Netherlands (NL), Denmark (DK), 

Sweden (SE) and Finland (FI). This area may exhibit spillover effects which are here 

understood as strong regional economies positively influencing neighboring economies. 

On the other side, a spatial cluster of low values (light blue color) is detected in the area 

including the countries: Greece (GR), Bulgaria (BG), Romania (RO), Hungary (HU), 

Slovak Republic (SK), Check Republic (CZ), Poland (PL), Lithuania (LT), Latvia (LV) 

and Estonia (EE). This area shows indication of spatial autocorrelation (low values are 

‘close’ to low values), as demonstrated by the ESDA analysis discussed in the following 

section. Such pattern does not identify potential presence of spillover effects but rather 

lack of such or a negative one (where low performer regions are surrounded by low 

performers). Other smaller areas seem to show a more heterogeneous situation with a mix 

of high, intermediate and low performing regions. This is the case of Spain (ES) and 

Portugal (PT), France (FR) and Italy (IT).       
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a) Map of the RCI-basic sub-index b) Map of the RCI-efficiency sub-index 

 

c) Map of the RCI-innovation sub-index d) Map of the RCI final index 

Figure 1: Maps of RCI index and sub-indexes 
 

This qualitative analysis supports further investigation of the structure of spatial auto-

correlation of the RCI index and the sub-indexes in search for a more quantitative 

assessment of spillover effects. 

To analyze the spatial correlation of RCI we have opted for applying exploratory spatial 

data analysis (ESDA) techniques and variogram analysis in order to answer the following 

questions deeply interrelated with each other:  

 Does spatial dependence exist for RCI? 

 How much does proximity matter in the distribution of the RCI scores?  

 Is there a tendency for regions with similar scores to be found close together and 

dissimilar ones apart? 

 If spatial dependence exists, how far is it spread? What is its “range of action”? 

In answering these questions our basic assumption is that the existence of spatial 

dependence can be taken as an indication for the existence of spatial externalities among 

regions and, when observed for high performing regions, as evidence, or better, as 

necessary condition for spillover effects. Hence, one can get an insight into spillover 

effects by characterizing the spatial autocorrelation structure of RCI.  
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1.1 Exploratory spatial data analysis - ESDA  
Spatial interaction among regions and the potential presence of regional spillovers in 

competitiveness can be evaluated using ESDA. ESDA is a subset of exploratory data 

analysis (EDA) focusing on characteristics of spatial data, specifically related to spatial 

autocorrelation and spatial heterogeneity (Anselin et al., 2007, Anselin, 1999, Cressie, 

1984, Haining, 2003). It comprises techniques for exploring spatial data such as 

visualizing spatial distributions, summarizing spatial properties of the data, detecting 

spatial patterns in data, identifying atypical locations or spatial outliers, patterns of spatial 

association, clusters or hot spots. ESDA compares the observed pattern in the data to one 

in which space is irrelevant and the spatial pattern, spatial structure, or form for the 

spatial dependence are derived from the data only.1 

1.1.1 Data Visualization 
The simplest and most institutive exploratory analysis is the visualization of the variable 

under examination on a so called ‘chloromap’.  Standard chloromaps are the percentile 

and standard deviation maps. In a Percentile Map, the data are sorted and grouped in 

categories in order to accentuate the extreme values. A Standard Deviation Map groups 

observations according to where their values fall on a standardized range, expressed as 

standard deviation units away from the mean.  

In the RCI case we analyse the final index RCI and the three sub-indices related to the 

three groups of pillars: RCI_basic, RCI_efficiency and RCI_innovation. For each of them 

percentile and standard deviation maps are provided.    

In a standard deviation map, the variable under analysis is transformed into standardized 

scores (Z scores). This transformation puts all the scores in each distribution into the 

same scale where the unit of measurement is the standard deviation. In our analysis 

regions are classified into six classes: (μ-3σ), (μ-2σ), (μ-σ), (μ +σ), (μ+2σ), (μ+3σ), 

where μ is the overall arithmetic mean across all the regions and σ  the sample standard 

deviation. Assuming a standard normal distribution for the RCI scores, which is almost 

                                                 
1 All spatial analysis has been carried out using the GeoDa software package (Anselin et al. 2006) and the 
Matlab function ‘variogram’. French overseas territories (FR91, FR92, FR93 and FR94) have been 
excluded from the analysis. 
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the case as they have been computed as weighted averages of transformed and 

standardized indicators (Annoni and Kozovska, 2010), 68% of the values are expected to 

fall in the interval [(μ-σ); (μ+σ)] and about 95% percent in the interval [(μ-2σ); (μ+2σ)]. 

This means that countries with scores outside the interval [(μ-2σ); (μ+2σ)] are very 

low/high performers as they count for less than 5% of the score distribution. Standard 

deviation maps can give a quick glance of extreme cases as well as ‘average’ cases. It is 

also possible to pinpoint whether extreme cases are clustered.  

As we can see from the RCI percentile map in Figure 2 regions in Bulgaria, Romania and 

Greece show high concentration of low values in the lowest percentiles while regions in 

the Netherlands and parts of Germany have concentration of high values in the highest 

percentiles. The situation in Spain, Italy and France is very heterogenous. United 

Kingdom regions also show different performances but mostly concentrated on the high 

percentiles while Central Eastern European regions are concentrated on the lower ones. 

Figure 3 shows that low and very low performing regions belong to a sector which goes 

from Portugal and Spain to Romania and Bulgaria, via southern Italy and Greece. 

Excellence areas are located in Germany and Benelux, United Kingdom and the southern 

part of Scandinavia.   
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Figure 2: RCI percentile map 

 

 

Figure 3: RCI standard deviation map 
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Percentile and standard deviation maps are also plotted for the three RCI sub-indices 

separately (Figure 4 and Figure 5 refer to the basic sub-index; Figure 6 and Figure 7 refer 

to the efficiency sub-index; Figure 8 and Figure 9 refer to the innovation sub-index). The 

larger areas of homogeneous color of the maps for the basic sub-index are due to the fact 

that three out of five dimensions included in the sub-index are measured at the country 

level.  

 

Figure 4: RCI-basic percentile map 
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Figure 5: RCI-basic standard deviation map 

 

Figure 6: RCI-efficiency percentile map 
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Figure 7: RCI-efficiency standard deviation map 

 

Figure 8: RCI-innovation percentile map 
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Figure 9: RCI-innovation standard deviation map 

From this simple visualization exercise, we can conclude that there is indication for the 

existence of clusters of regions with similar performance. Two main areas can be 

detected: one which includes central and northern countries, the other including Bulgaria, 

Romania and Greece as well Central Eastern European regions. Italy, France and Spain 

show heterogeneous patterns quite different from other areas.   

1.1.2 Assessment of spatial autocorrelation  
Another stage of ESDA aims at identifying the structure of the spatial correlation that 

better describes the data. Spatial autocorrelation is concerned with exploring the 

existence of a systematic pattern in the spatial distribution of a variable. Positive spatial 

autocorrelation corresponds to neighboring areas having significant positive correlation 

and being more alike, while negative autocorrelation suggests the opposite. In the case of 

RCI, a proof for positive spatial autocorrelation could be taken as evidence of the 

existence of a spillover effect among groups of EU NUTS 2 regions.  
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When measuring spatial dependency in a dataset the first step is the definition of spatial 

relationships which exist between any set of points or areas (Haining, 2003). Next, there 

are several ways of measuring spatial dependence. These measures can be either applied 

to the whole area under analysis or to subsets of areas, if the entire area is highly 

heterogeneous.   

Geometric/spatial criteria are used to define relationships between objects if physical 

proximity is expected to be the main driver of similarity. Spatial relationships can be 

simply represented in the form of a binary connectivity matrix C, which is a n x n 

symmetric matrix with n number of objects/areas. If two objects i and j are adjacent, they 

are in relation with each other and: 

( , ) ( , ) 1c i j c j i= =    

with c(i,j) denoting the cell (i,j) of matrix C. Otherwise c(i,j) = 0. Matrix C describes the 

so called first-order adjacencies as it indicates pairs of objects which are directly 

connected. Matrix C2 = C x C describes second-order adjacencies as it identifies all pairs 

of objects that can reach each other in two steps. Values in C2 can be integer numbers 

higher than 1; they are the number of different pathways from object i to object j and 

vice-versa. Higher-order adjacencies can be found similarly by matrices C3, C4, etc. More 

complex criteria than presence/absence of direct adjacencies may be used to define to 

define spatial dependency. They all make use of a weight matrix, W. Examples of weight 

matrix are2 (Anselin, 1988; Getis and Aldstadt, 2002; Haining, 2003): 

 Distance: 
,

1( , )
i j

w i j d δ= where ,i jd  is a certain distance between objects/areas i 

and j and 0δ ≥ ; 

 Common border: ,( , ) 0i j

i

lw i j l

τ

τ⎛ ⎞= ≥⎜ ⎟
⎝ ⎠

where ,i jl  is the length of the common 

border between i and j and li is the length of border i; 

 Combined border and distance weighting: ,
,( , ) i j

i j
i

lw i j dl

τ
δ−⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

                                                 
2 If objects are areas, distances are computed between area centroids.  
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The calculation of a spatial autocorrelation measure is highly dependent upon the 

definition of neighbors. The weights matrix ( , )w i j  could be a contiguity-based or 

distance-based spatial matrix. A contiguity-based spatial weight matrix implies a 

definition of a neighbor based on sharing a common boundary or being situated within a 

given distance band. Common contiguity types are a “rook” variety (only pure borders) 

or a “queen” variety (both borders and common vertices)3. Rook is a more stringent 

definition of polygon contiguity than queen—for rook the shared border must be of some 

length, whereas for queen the shared border can be as small as one vertex. A distance-

based spatial weight matrix implies the definition of a distance; the neighborhood is then 

inversely related to the distance between points or between polygon centroids 
,

1
i jd δ .  

Another possibility is the so called ‘nearest neighbors’ method where each point (region) 

is linked to its k (k = 1, 2, 3, …) nearest neighbors. The k-nearest neighbors weight matrix 

W is computed by defining weights *
kw  which depend on the number of neighbors k 

(Ertur and Koch, 2006): 

*

*

*

( , ) 0 if

( , ) 1 if ( )

( , ) 0 if ( )

k

k ij i

k ij i

w i j i j

w i j d d k

w i j d d k

⎧ = =
⎪⎪ = ≤⎨
⎪

= >⎪⎩

 

where di(k) is a cut-off distance which depends on each point i and is the shortest distance 

between point i and its neighbors such as point i has exactly k neighbors in a circle 

centered in point i itself with radius di(k). The k-nearest neighbor criterion ensures that 

each point has exactly the same number (k) of neighbors, but note that if point i is one of 

the k nearest neighbours of j, this does not imply that j is the k nearest neighbors of i 

(Haining, 2003). This method is also based on the choice of a particular type of distance. 

The distance adopted for the RCI case in the ESDA analysis is the Euclidean distance 

between population weighted centroids of the regions.      

                                                 
3 These terms are derived from an analogy to a chess board, where the rook neighbors would be the four 
locations to the North, South, East and West, and the queen neighbors would also include the corner 
elements (for a total of eight neighbors). 
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In practice, it is nearly impossible to choose a “best” spatial proximity matrix and 

typically one assesses the sensitivity of the results to the selection of weights.  

A number of statistics for overall clustering exists, where a null hypothesis is spatial 

randomness in the distribution of data values, such as the global Moran index or the 

Geary index (Haining, 2003). 

1.1.3 Global measures 
Moran’s global index (Moran’s I) is one of the oldest and most familiar indicators of 

spatial autocorrelation (Moran, 1950). It compares the value of the variable (in our case 

the RCI scores) at any one location with the value at all other locations. If neighboring 

units over the entire study area have similar values, then the statistics should indicate a 

strong positive spatial autocorrelation. If neighboring units over the entire study area 

have dissimilar values, then the statistics should indicate a strong negative spatial 

autocorrelation. This statistic is essentially a cross-product correlation measure that 

incorporates “space” by means of a spatial weights matrix.  

Moran's I is defined as: 

( )( )

( )
,

2

,

( , )

( , ) 1

i j
i j

i
i

i j

w i j X X X X
I n

X X

w i j

− −
=

−

=

∑

∑

∑

 (1) 

where n is the number of spatial units (NUTS2 regions in our case) indexed by i and j, X 

is the variable of interest, X is the average value of X across all the points in the area and 

( , )w i j  is the cell (i,j) of the matrix W of spatial weights.   

Similar to correlation coefficients, Moran’s index varies between -1 (perfect dispersion) 

and +1 (perfect spatial correlation). Perfect dispersion means that high values are always 

surrounded by low values and vice-versa. Perfect correlation means that there’s always a 

concentration of high-high or low-low. Note indeed that the numerator of (1) is positive 

when Xi and Xj are both greater that or less than the mean value of X. This means that the 

index I does not distinguish between the concentration of high values and the 
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concentration of low values. When the analyst is interested in this distinction the Getis-

Ord statistic is preferable (Haining, 2003). 

Under the null hypothesis of no spatial correlation, the expected value of the Moran’s I 

depends only on the number of objects n, 1E[ ]= - 1I n − . In the RCI case, the number of 

NUTS2 regions is n=267 (the 4 French overseas regions have been excluded from the 

analysis) so E[ ]= 0.0038I − . Values of I larger than the expected value indicate positive 

spatial autocorrelation, while values smaller than the expected indicate negative spatial 

autocorrelation. 

Inference on I is based on the permutation approach, assuming that, under the null 

hypothesis, each observed value could have occurred at all locations with equal 

likelihood. A reference distribution is empirically generated for I, from which the mean 

and standard deviation are computed. In practice this is carried out by permuting the 

observed values over all locations and by re-computing I for each new sample (Anselin, 

1995). Statistically significant values of the spatial autocorrelation indexes are evidence 

of spatial dependency and the potential existence of spillover effects. 

Moran’s I statistics are shown in Table 1 for the RCI and its three sub-indexes. Moran’s I 

statistics have been obtained using different spatial matrices in order to test for the 

influence of different weight matrices on results: the queen and rook contiguity matrices, 

the matrix of Euclidean distance between centroids and the k nearest neighbors method.  

The queen and rook contiguity matrices have been used up to the third-order adjacency 

and the k nearest neighbors method was carried out with k = 5, 10, 15, 20. Table 1 shows 

results only for the first-order adjacency for the contiguity matrices and for k=5 for the 

nearest neighbors method. As evidenced by Le Gallo and Ertur (2003) European regions 

have on average about 5 contiguous neighbors so that the choice of k=5 yields a ring 

around each region of approximately the first order contiguous regions. 

It appears that the RCI is positively spatially autocorrelated as all statistics are significant 

with p=0.0001. A total number of 9999 permutations have been used for all cases. 
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Similar results, all associated to significant p-values, have been obtained with higher 

order contiguities and for different number of nearest neighbors4.  

Table 1: Moran’s I statistic for RCI and RCI sub-indexes. 
Different spatial weights matrices are used for comparison. 

   Type of spatial weight 
matrix  Moran's I  mean  standard deviation p‐values 

queen contiguity matrix   0.663  ‐0.0044  0.0427  0.0001 

rook contiguity matrix   0.6629  ‐0.0037  0.0431  0.0001 RC
I 

k‐nearest neighbors (5)  0.7451  ‐0.0044  0.0361  0.0001 

queen contiguity matrix  
0.82  ‐0.0043  0.0428 

0.0001 

rook contiguity matrix  
0.824  ‐0.0034  0.0429 

0.0001 

RC
I b
as
ic
 

 s
ub

‐in
de

x 

k‐nearest neighbors (5) 
0.8595  ‐0.0039  0.0358 

0.0001 

queen contiguity matrix  
0.5272  ‐0.0041  0.043 

0.0001 

rook contiguity matrix  
0.5278  ‐0.0037  0.043 

0.0001 

RC
I e
ff
ic
ie
nc
y 

 s
ub

‐in
de

x 

k‐nearest neighbors (5) 
0.6332  ‐0.0045  0.0362 
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Global indicators of spatial autocorrelation as the Moran’s index give a unique measure 

of spatial association for the whole dataset, useful for the characterization of the study 

area as a whole. They do not give information as to where the clusters or outliers are 

located or the type of spatial correlation that is most important (e.g. correlation between 

high or between low values) (Anselin et al., 2007). One can wonder which regions 

contribute more to the global spatial autocorrelation, if there are local spatial clusters of 

high or low values, and to what point the global evaluation of spatial autocorrelation 

hides atypical localizations, i.e. regions or groups of contiguous regions deviating from 

the global pattern of positive spatial autocorrelation. Further, if a high number of regions 

                                                 
4 Complete results are available from the authors.  
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is examined, as in the RCI case, there exists a higher probability for the existence of 

different sorts of spatial autocorrelation in different sub-regions. In this case, local 

indicators of spatial autocorrelation and the Moran scatter plot can be used. 

1.1.4 Moran’s scatterplots  
Moran’s I provides a global measure of spatial correlation without any associated 

inference and is intrinsically based on the assumption of stationarity or structural stability 

of the process over the space. The dependence structure is said to be stationary if the 

nature of similarity between nearby values of the variable of interest is independent on 

where values are measured (Haining, 2003).  

Being global, the Moran’s I can be correctly interpreted only if the assumption of 

stationarity is realistic and Moran’s measure cannot be used to assess the local structure 

of spatial autocorrelation. Instead, it may be interesting to detect local spatial clusters of 

high or low value, which areas contribute more to the global spatial autocorrelation and 

to what extent the global measure masks atypical groups of regions or, as recently nicely 

defined by Ertur and Koch (2006), ‘pockets of local nonstationarity’. 

A simple way to study local spatial instability is by means of the Moran scatter plot 

(Anselin 1995, Ertur and Koch, 2006) which visualizes the slope in a scatter plot of the 

spatially lagged variable on the original one. The rationale is to compare (normalized) 

values of the variable in an area (region) with the average of its neighbors, constructing a 

bidimensional plot of z (normalized values) by W_z (average of neighbors), divided into 

four quadrants. The four different quadrants correspond to four types of local spatial 

association between one region and its neighbors (defined by a certain weight matrix): 

high-high, low-low, low-high or high-low5. Atypical localizations are those which fall in 

the high-low or low-high quadrants.  

In this kind of plots the spatial lag of the variable (W_z) is shown on the vertical axis and 

the original variable (z) on the horizontal axis. The ‘spatial lag’ refers to the values of a 

location's neighbors. If constructed based on normalized values, it allows for an analysis 

of the behavior of the spatial variability.  

                                                 
5 High and low mean respectively above and below the average value.  
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Figure 10: RCI - Moran’s  scatter plot 
(Results are based on 5-nearest neighbors) 

 

The interpretation of the quadrants is as follows: 

 - Q1 (positive values, positive neighbors’ mean) and Q3 (negative values, 

negative neighbors’ means) – indicate points of positive spatial association, i.e. neighbors 

have similar values, either high-high (Q1) or low-low (Q3); 

 - Q2 (positive values, negative neighbors’ means) and Q4 (negative values, 

positive neighbors’ means) – indicate points of negative spatial association, i.e. a region 

has neighbors with distinct, different values, either low-high (Q2) or high-low (Q4). 

In the Moran’s scatterplot the level of global spatial autocorrelation is visualized as well. 

As can be seen from eq. (1), Moran’s I is indeed formally equivalent to the slope 

coefficient of the linear regression of the spatial lag of the variable (W_z) and z so that 

the higher the slope, the stronger the global spatial autocorrelation (Ertur and Koch, 

2006).   

Figure 10 shows the Moran scatterplot for the total RCI computed using the 5 nearest 

neighbor matrix as weight matrix. Most regions are located in quadrants Q1 and Q3, 

confirming the evidence of positive spatial autocorrelation. Atypical regions, i.e. regions 
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that deviate from the global spatial association pattern and belong to the quadrant low-

high or high-low, are about 16% of all regions (17 regions in the high-low quadrant and 

27 regions in the low-high).  

The group of high-low regions includes, among others, 4 Italian regions (ITC4, ITD3, 

ITD5, ITE4), 4 French regions (FR61, FR62, FR71, FR82), 3 Spanish regions (ES21, 

ES30, ES51) and some capital regions - the Czech Republic (CZ01), Portugal (PT17) and 

Hungary (HU10). Regions in the low-high quadrant are 8 French regions (FR21, FR25, 

FR26, FR43, FR61, FR63, FR72, FR81), 1 Spanish region (ES24), 4 Italian regions 

(ITC1, ITC2, ITD1, ITD2), 4 UK regions (UKD1, UKF3, UKK3, UKM6), 4 Czech 

regions (CZ02, CZ03, CZ04, CZ06) at the border with Germany, 3 Polish regions (PL42, 

PL43, PL63), 1 Belgium region (BE34) at the southern border with Luxembourg and 

France, Estonia (EE00) and one region in Hungary (HU22) at the western border with 

Austria.  

These findings confirm the remarks made in Section 1.1.1 based on the visualization of 

the maps: Italy, France and Spain show heterogeneous performances and lack of 

indication for the presence of regional spillovers. Not surprisingly capital regions, 

especially in new Member States such as the Czech Republic and Hungary are 

surrounded by lower performing regions. The concentration of economic activity in those 

regions is very strong and spillover effects to the neighboring regions are not yet evident. 

In any case, positive spatial associations – either high-high or low-low - are prevailing 

across the major part of EU NUTS2 regions. 

Moran scatterplots for the three separate sub-indices of RCI are shown in Figure 11. The 

picture with highest positive spatial autocorrelation is the one referring to the basic sub-

index (top quadrant of Figure 11). As aforementioned, this is due to the nature itself of 

the first group of pillars which is mostly measured at the country level resulting in an 

index which is, by construction, the most spatially autocorrelated. For the other two sub-

indices the scatterplots indicate a slightly higher spillover effect for the innovation sub-

index than for the efficiency sub-index: a higher number of regions fall in the quadrants 

Q1 and Q3 for the innovation sub-index (87% of all regions) than for the efficiency one 

(73% of all regions).  
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Figure 11: Moran scatterplots for the three RCI sub-indices 
(Results are based on 5-nearest neighbors) 

1.1.5 LISA measures  
The Moran’s I scatter plot is the first step in examining different types of spatial 

association. Despite the information it provides, it does not give any indication about 

statistical significance of spatial autocorrelation. Moran’s I scatter plots are simply 

descriptive, if one region is surrounded by lower or higher values it is assigned to the 2nd 

or 4th quadrant whatever the difference between the values.  

Local Indicators of Spatial Association – LISA, proposed by Anselin in 1995, are local 

measures providing statistical inference. LISA are indicators of spatial dependence 

associated to different localizations of the spatially distributed variables. They allow for 

the decomposition of global indicators, such as Moran's I, into the contribution of each 

individual observation and assess the significance of the local clusters (high-high or low-

low) or local spatial outliers (high-low or low-high) as identified also in the Moran’s 

scatter plot in a descriptive way. Significance is based on a conditional permutation 

approach. In practice LISA decompose global indicators into a sum of local patterns. If 

the process is stationary, the local spatial patterns will be in line with the global index. 

The presence of areas which strongly deviate from the average patterns are detected as 

outliers as they indicate locations that contribute to the global index more than their 
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expected share. While the global tests suggest if there is spatial correlation, the local tests 

can show where this is occurring (Perry et al., 2006). For each point a local indicator is 

computed and their sum, across all points, is proportional to a global indicator of spatial 

association. This means that the individual components of LISA are related to the global 

statistic of spatial association. It is exactly for this reason that LISA outliers can be 

associated with those regions which mostly influence the global measure, such as the 

Moran’s I.  

Moran’s local index can be expressed for each point i (region in our case) as: 

( ) ( )

( )
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2
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( , )
n

i j
j
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∑
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where the summation over j is such that only neighboring values of point i are included 

(the definition of neighbors depends on the definition of contiguity as for the global 

Moran’s I). Similarly to the previous analysis, 5 nearest neighbors matrix is used as 

weight matrix. 

Under the null hypothesis of no spatial association the expected value and the variance of 

Ii can be analytically derived. The expected value at each point i is: 

( , )
E[ ] ( 1)

j
i

w i j
I n

−
= −

∑
   

A test of significance of local spatial association is based on the conditional permutation 

approach (Ertur and Koch, 2006). The value Xi at a certain point i is held fixed and the 

remaining values are randomly permuted over all locations. In the RCI case 9999 

permutations are used to compute the empirical distribution function and, from that, to 

compute p-values.  

LISA cluster maps show regions with significant local Moran statistics, classified in the 

four groups of spatial correlation (high-high, low-low, high-low and low-high). Figure 12 

shows the LISA Cluster map for the RCI. We can find in color the local clusters or 

outliers which are ‘significant’ (at the level α = 0.05), based on the Local Moran statistic. 



The analysis of spatial auto-correlation 

23/55 

Local clusters of low values are located in Bulgaria, Romania, Greece and Cyprus, south-

eastern regions of Hungary and Slovakia, southern part of Italy, Portugal and Spain. 

These areas show significant low-low clusters, meaning that regions with low RCI scores 

are surrounded by low scoring regions. On the other hand, local clusters of high RCI 

values are found in regions in the Netherlands, parts of Germany, Belgium, Denmark, the 

southern part of United Kingdom, Finland and Sweden.  

 

Figure 12: LISA Cluster Map for RCI total 
(Results are based on 5-nearest neighbors) 
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Three separate LISA analyses for the RCI sub-indices are provided in Figure 13. The 

large regions of high-high and low-low autocorrelations of the basic RCI sub-index 

(larger than the ones in the other two sub-indexes) are intrinsically due to the nature of 

the sub-index, where three out of five dimensions are measured at the country level, as 

aforementioned. It is interesting to note that in the efficiency and innovation LISA maps 

some region capitals show up as high-low areas: this happens for Spain (Madrid region 

ES30), Italy (Rome region ITE4), Greece (Athens region GR30), Bulgaria (Sophia region 

BG41), Romania (Bucharest region RO32), Hungary (Budapest region HU10) and 

Poland (Warsaw region PL12).     

RCI basic 
 

RCI efficiency 
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RCI innovation 
 

Figure 13: LISA Cluster maps for the three RCI sub-indices 
(Results are based on 5-nearest neighbors) 

 
Table in Appendix A shows LISA statistics for RCI total for all the European regions 

with their associated significance level.  

1.2 The variogram  

The variogram is a function which describes spatial dependencies of a set of 

georeferenced values (Cressie, 1984; Thompson, 1992). It has been developed within the 

geological sciences where spatial variation has traditionally been summarized using the 

‘variogram’ in place of the covariance function. The variogram and its estimation is an 

essential ingredient of the spatial prediction model known as ‘Kriging’ as it is the 

necessary step towards the prediction of values over space (or time). In our case we are 

interested in the variogram itself rather than in the prediction of values in unobserved 

locations. The variogram provides in fact a global description of spatial dependency and 

adds information to other global measures of spatial correlation. 

The variogram is defined as the variance of the difference of the value of the variable of 

interest y at separate points in the area of interest: 

2 ( ) Var[ ]i h ih y yγ += −  (3) 
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where yi is the value of y at point i and yi+h is the value of y in a point which is separated 

from i by a distance h 6. The function ( )hγ is called semi-variogram and describes the 

spatial dependency structure. The structure is said to be ‘second-order stationary’ if the 

expected value of y is constant over the area under analysis  - E[yi] = μ for all the points i 

- and the covariance of the y-values at any two points which are separated by h depends 

only on the distance h,. With this assumption the semi-variogram is considered to be 

valid over the entire set of data and the relationship between the semi-variogram and the 

covariance of y is: 

2 2Cov[ , ] E[ ] E [ ] E[ ] ( )
( ) Var( ) ( )

i h i i h i i i h iy y y y y y y C h
h y C h

μ
γ

+ + += ⋅ − = ⋅ − ≡
= −

 (4) 

A simple method to estimate the (semi-)variogram is: 

21ˆ2 ( ) ( )
( ) i h i

i
h y y

n h
γ += −∑  (5) 

where the summation is over all distinct pairs of points that are h distance apart and n(h) 

is the number of pairs that distance apart. Variogram values will be small the more alike 

values separated by distance h are (Haining, 2003). The variogram increases as the values 

get more and more dissimilar so that  ˆ( )hγ  tends to increase as h increases in the 

presence of a certain level of spatial autocorrelation of the variable under analysis. ˆ( )hγ  

is then a (estimated) value of dissimilarity as can also be seen from the opposite relation 

between the variogram and the covariance function C(h) in (4). 

The semi-variogram function is generally estimated by fitting the best curve for the 

points{ }ˆ, ( )h hγ with a function which has to be positive definite. The plot of  ˆ( )hγ  as a 

function of h provides a graphical description of the dependence structure in the data for 

different distances.  Figure 14 shows an example of a semi-variogram (solid line) 

estimated from a set of points { }ˆ, ( )h hγ (black diamonds in the Figure). In this case the 

spatial dependence is strong at short distances and rapidly decreases as h increases up to a 

certain distance – the range -   beyond which the covariance levels off to nearly zero and 

                                                 
6 In the present study we are assuming isotropy in the spatial variation.  
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the semi-variogram reaches its asymptotic value which is the variance of y over the area - 

Var(y). This value is called the ‘sill’ of the variogram. 

In general, the shape of the (semi-)variogram is informative on: i) the speed at which 

autocorrelation decreases as the distance increases, from the slope of the semi-variogram, 

and ii) the maximum distance beyond which correlation can be considered null, from the 

value of the range. These are two important pieces of information that complement 

classical ESDA measures such as Moran’s or LISA statistics.   

Various analytical forms of variograms are generally used. Below is a list of the most 

common ones (de Marsily, 1986): 

a) Power function:     0 2;b bh < <  

b) Spherical: 

33 1Var( ) -    0
2 2

Var( ) ;

h hy h r
r r

y h r

⎧ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ≤ ≤⎪ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎨ ⎢ ⎥⎣ ⎦

⎪
>⎩

 

 

c) Exponential: Var( )[1- exp(- / )];y h r  

d) Gaussian: 2Var( ){1- exp[-( / ]};)y h r  

where r is the range and Var(y) is the sill of the semi-variogram. 
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Figure 14: Model for a semi-variogram γ(h) 

 
In the following different variogram analyses are provided for RCI. The structure of 

spatial dependence is explored separately for two sub-areas, as detected by the ESDA 

analysis, and three different types of distances between region centroids: the classical 

Euclidean distance, the distance along the real road or ferry network and the travel time 

distance. In all the analyses spatial correlation is assumed isotropic7. 

In the following analyses estimated variograms derive form a simple qualitative analysis; 

accordingly the estimated ranges have to be interpreted as a rough indication of 

maximum extent of spatial autocorrelation. 

1.2.1 Euclidean distances 
For the computation of the semi-variogram in the RCI case, we have selected two main 

sub-areas, mainly driven by considerations from the ESDA outcomes (Section 1.1.5). 

Within  these sub-areas we assume that the second-order stationarity condition holds. The 

first sub-area – group A- comprises regions which have been classified as high-high by 

LISA analysis and includes eleven countries: AT-BE-DE-DK-FI-IE-LU-NL-SE-SI-UK. 

                                                 
7 For the variogram analysis the following matlab scripts have been used: 1. ‘variogram.m’ (Copyright 
2009, Wolfgang Schwanghart; Copyright  2006, The MathWorks) for calculating the isotropic and 
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The second sub-area – group B- comprises regions classified as low-low and includes ten 

countries: BG-CZ-EE-GR-HU-LT-LV-PL-RO-SK. The analysis of sub-area B is meant 

to further investigate the possible presence of ‘negative’ spillover effects where low 

performing regions negatively affect their neighbors.  

In this step of the analysis distances between regions are computed as Euclidean 

distances between regions centroids.  

Table 2 shows the basic settings for the estimation of the semi-variogram for the two 

groups of countries. The maximum distance at which the variogram is computed is set to 

1/4 the maximum distance between regions centroids. The semi-variogram is estimated 

for four variables of interest: the RCI total score and the three sub-indices. The variance 

of the RCI scores is also shown in Table 2: in case of a structured spatial autocorrelation, 

they are the asymptotic values of the semi-variogram.    

 

 
 
 
 
 
 
 
 
 
 
 
 
  

                                                                                                                                                 
anisotropic experimental (semi-) variogram and 2. ‘ipdm.m’ (Copyright 2009, John D'Errico) for the 
computation of Inter-Point Distance Matrix.   
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Table 2: Basic settings for the semi-variogram analysis and estimated ranges with Euclidean 
distances between centroids 

  
MAXIMUM 
DISTANCE BETWEEN 
CENTROIDS* 

MAXIMUM 
DISTANCE  FOR 
VARIOGRAM 
ESTIMATION 

variable  of  interest 
(min‐max  normalized 
values) 

variance 
(asymptothic  value 
for  the  semi‐
variogram) 

estimated  range 
(km) 

RCI_total  109.6  400 
RCI_basic  96.7  > 750 
RCI_efficiency  91.5  350 

G
RO

U
P 
A
 

3000 km 
 

3000/4 =750 km 

RCI_innovation  190.5  300 
RCI_total  251.7  na 
RCI_basic  223.3  700 
RCI_efficiency  178.7  na 

G
RO

U
P 
B 

2900 km  2900/4 = 725 km 

RCI_innovation  228.9  na 
* Maximum distance computed as the Euclidean distance between two points in the area under investigation with 
minimum and maximum X‐Y coordinates 
 
 
Results for regions in group A are shown in Figure 15 where estimated variograms are 

shown as solid black lines.  

Figure 15 indicates the presence of a structure of spatial autocorrelation with an estimated 

range, that is the maximum distance beyond which the correlation is zero, always higher 

than 300 km. The highest range – > 750 km - is the one for the basic RCI sub-index, but 

this is due to the nature itself of the index that is mostly composed by indicators at the 

country level, as already remarked. The comparison between the efficiency semi-

variogram and the innovation-one is very interesting. Both graphs (Figure 15 c and d) 

show a correlation which decreases as distances increase, which may be evidence of spill-

over, but for the innovation sub-index the curve is steeper and the range slightly lower. 

This means that spatial correlation for the innovation sub-index decreases more rapidly 

than that for the efficiency sub-index. The shape of the semi-variogram for the total RCI 

score is very similar to that of the efficiency sub-index, with the same range and almost 

the same sill (asymptotic value).    
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c) RCI_efficiency 
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Figure 15: Semi-variogram estimation for regions in group A – Euclidean distances 
 

Results for regions in group B are shown in Figure 16. In this case no particular pattern 

can be picked out apart from the basic semi-variogram (Figure 16-b), but this is again 

related to the ‘less regional’ scale of measurement of the basic sub-index.  
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Figure 16: Semi-variogram estimation for regions in group B – Euclidean distances 
 
  
Similar analysis is carried out separately for France (Figure 17), Italy (Figure 18) and 

Spain together with Portugal (Figure 19) with non informative results as in the case of 

regions in group B.  
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Figure 17: Semi-variogram estimation for regions in France – Euclidean distances (distances h in 
meters) 
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Figure 18: Semi-variogram estimation for regions in Italy – Euclidean distances 
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Figure 19: Semi-variogram estimation for regions in Spain and Portugal – Euclidean distances 
 

1.2.2 Distances along the road network 
To make the analysis closer to real life, a second scenario is computed using as distances 

the length of the road (or ferry) which connects the regions along the actual network. 

Data are from the TRANSTOOLS road network tool 

(http://.energy.jrc.ec.europa.eu/transtools). The spatial correlation analysis with road 

distances should be more representative of the real connections across regions. As before, 

the analysis is carried out for countries in group A and B.  

Table 3 shows the settings of the analysis in this case and main results.  
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Table 3: Basic settings for the semi-variogram analysis and estimated ranges with road/ferry 
distances between regions 

  

MAXIMUM 
ROAD  DISTANCE 
BETWEEN 
CENTROIDS§ 

MAXIMUM  ROAD 
DISTANCE  FOR 
VARIOGRAM 
ESTIMATION 

variable of interest 
 (min‐max normalized 
values) 

variance  
(asymptothic 
value for the semi‐
variogram) 

estimated 
range (km) 

RCI_total  109.6  500 

RCI_basic  96.7  > 750 

RCI_efficiency  91.5  350 

G
RO

U
P 
A
  3721 km  750 km 

RCI_innovation  190.5  350 

RCI_total  251.7  na 

RCI_basic  223.3  >750 

RCI_efficiency  178.7  na 

G
RO

U
P 
B 

4040 km  750 km 

RCI_innovation  228.9  na 

§ Maximum distance between region centroids on road or ferry networks  

 

Estimated ranges are very similar to the ones estimated using Euclidean distances (Table 

2). Figure 20 and Figure 21 show the sample points and the approximate estimated 

variograms (solid black line) for the two groups of countries. Results for efficiency and 

innovation sub-indices for group A indicate a rather short ‘spill-over’ effect with ranges, 

along the road networks, of about 350 km. Also in this case the analysis shows a clear 

covariance structure for the countries in group A, while countries in group B are not 

showing any spatial autocorrelation.  
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d) RCI_innovation 

Figure 20: Semi-variogram estimation for regions in group A – road distances 
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Figure 21: Semi-variogram estimation for regions in group B – road distances 
 

1.2.3 Travel-time distances 
The previous analyses suggest a deeper look into the first group of countries, which are 

the only ones showing a clear covariance structure. As a third scenario we estimated the 

variograms for countries in group A using travel-time distances, which are a better proxy 

of the actual connectivity between regions. Travel-time distances are estimated between 

population-weighted centroids of NUTS2 regions, using the TRANSTOOLS road 

network as in the previous case (http://energy.jrc.ec.europa.eu/transtools/).  
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Table 4: Basic settings for the semi-variogram analysis and estimated ranges with travel-time 
distances between centroids 

  

MAXIMUM  TIME 
DISTANCE 
BETWEEN 
CENTROIDS 

MAXIMUM  TIME 
DISTANCE  FOR 
VARIOGRAM 
ESTIMATION 

variable of interest 
 (min‐max 
normalized values) 

variance  
(asymptothic  value 
for  the  semi‐
variogram) 

estimated  range 
(minutes) 

RCI_total  109.6  200’ 

RCI_basic  96.7  > 300’ 

RCI_efficiency  91.5  150’ 

G
RO

U
P 
A
  40 hours 

5 hours  
(300’) 

RCI_innovation  190.5  150’ 

 
Basic settings for the variogram estimation with travel-time distances are shown in Table 

4. The maximum travel-time distance is set to 300 minutes (5 hours). Asymptotic values 

of the variograms are the same as the previous case, since they are the sample variances 

of the four indices over the two sub-areas.  

Figure 22 shows the estimated variograms with time-ranges which go from a minimum of 

150 minutes, for the Innovation sub-index (Figure 22-d), to a maximum of 200 minutes, 

for the RCI total index(Figure 22-a). The time-range for the RCI-basic (Figure 22-b) is 

higher than 300 minutes, the maximum travel time distance set for the computations, and 

it is not of no relevance for the analysis as this index is mostly at the country level. As for 

the previous case, efficiency and innovation sub-indices show a clear correlation structure 

with a maximum correlation (time) distance of about 2.5 hours.     

Anomalous points can be detected in the upper-left corner of Figure 20 a-d and Figure 22 

a-c-d. A deeper look at the data highlighted that this particular estimation of [h,γ(h)] is 

associated to pairs of regions which scored quite different values of RCI indices even if 

they are very close to each other - about 40 km along the road network or 20-25 minutes 

of travel time. These pairs are for example AT12-AT13 (Niederösterreich-Wien); BE31-

BE35 (Brabant Wallon-Namur) and UKD2-UKD5 (Cheshire-Merseyside). 
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d) RCI_innovation 

Figure 22: Semi-variogram estimation with travel-time distances for regions in group A 
 
 
In conclusion, outcomes of the variogram analysis indicate the existence of a clear 

structure of correlation for the sub-area A of high-high clusters. In this area the range of 

auto-correlation is between 300-500 km for Euclidean and road distance, while in terms 

of travel-time distance the estimated range is about 150 and 200 minutes. Variogram 

analysis cannot estimate a range for the sub-area of low-low clusters, sub-area B. This 

area seems to be characterized mostly by low performing regions with some rare and 

sparse picks of relatively higher performers (some capital regions).    
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2 Association with exogenous indicators 
 
 
The Regional Competitiveness Index comprises many different factors, spanning from 

the quality of Institutions to the level of Innovation of the regional economy. 

Nevertheless two types of aspects are not directly included in the Index. They are: a. 

factors related to demographic change and b. factors related to economic growth. 

The aim of this part is to explore possible significant associations between these aspects 

and RCI indices by means of a bivariate correlation analysis.  Three separate analyses are 

carried out: one considering all the European regions and the other two separately 

considering the two sub-areas – A and B –detected by the spatial autocorrelation analysis 

discussed in Section 1. 

Information related to the population is indirectly included in the Index as almost all the 

indicators are normalized to the number of inhabitants. The only exceptions are the 

indicators which describe the market size. Plus, all the indicators are standardized by 

using weighted mean and standard deviation, with weights being the share of population. 

Other demographic factors, especially related to population trends, have not been taken 

directly into account in the Index. Economic indicators are instead the backbone of the 

RCI, but they are all measured at one point in time (the latest available year) and not as 

rates or trends. With all the limitations imposed by the fact that RCI covers a period 

which includes the 2008 economic and financial crisis, some interesting relationships 

may arise between RCI scores and a proxy for regional economic growth. 

To this twofold aim, a simple correlation analysis is carried out between RCI scores and 

the following indicators:  

1. population change in the period 2001-2007; 

2. natural population change in the period 2001-2007; 

3. net migration in the period 2001-2007; 

4. share of population which live in Large Urban Zones, LUZ; 

5. GDP growth average 2000-2007; 
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The first three indicators describe main population trends in terms of growth rates due to 

natural changes or migration flows. Population change is based on the difference between 

the population on 1st January of year t-1 and of 1st of January of year t. Natural 

population change is computed as the number of births minus the number of deaths in a 

calendar year; while net-migration is the residual, i.e. the difference between the two 

population changes. The fourth indicator is a proxy of the spatial distribution of the 

population while the fifth indicator is included as a proxy of economic growth.  

The analysis of correlation is carried out between these five exogenous indicators and 

RCI total score, RCI_eff and RCI_inn, sub-indices for efficiency and innovation.  
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Table 5: Correlation coefficients between RCI scores and exogenous indicators. 
Values in bold are statistically significant at the level α = 0.05. 

RCI_total RCI_eff RCI_inn

population change 01-07 0.11 0.05 0.17

natural population change 01-07 0.11 0.01 0.25

net migration 01-07 0.07 0.06 0.06

share of population in LUZ 0.41 0.44 0.42

GDP growth average 00-07 -0.31 -0.17 -0.36

RCI_total RCI_eff RCI_inn

population change 01-07 0.24 0.29 0.16

natural population change 01-07 0.52 0.50 0.40

net migration 01-07 -0.04 0.04 -0.07

share of population in LUZ 0.21 0.22 0.29

GDP growth average 00-07 -0.21 -0.15 -0.30

RCI_total RCI_eff RCI_inn

population change 01-07 0.33 0.23 0.39

natural population change 01-07 0.27 0.13 0.26

net migration 01-07 0.26 0.22 0.34

share of population in LUZ 0.76 0.79 0.73

GDP growth average 00-07 0.25 0.46 0.36

all countries    sample size N =268                  
critical value for N> 100 at level 0.05 = 0.195

group B    sample size N = 65                       
critical value for N = 60 at level 0.05 = 0.25

group A    sample size N =128                      
critical value for N> 100 at level 0.05 = 0.195

 

 

Correlation coefficients are shown in Table 5 where values in bold indicate coefficients 

statistically significant at the level α = 0.05.  
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It is interesting to note that the number of significant relationships increases by separately 

considering the two sub-areas A and B. When considering all the European regions 

(Table 5 – top box) significant associations are found only for 6 cases out of 15, while 10 

and 14 cases out of 15 are significant respectively for sub-area A and B. For each pair, 

Figure 23-Figure 27 show the scatter plot with the corresponding linear regression and its 

coefficient of determination R2.  

The share of population in LUZ is always positively associated to the three RCI indices 

(total, efficiency and innovation), with particularly high values for countries in sub-area 

B. In these regions living in high density areas (large cities) means having higher levels 

of competitiveness. On the contrary, GDP growth average shows an anomalous negative 

association with RCI_total and RCI_inn for the analysis including all regions and for the 

one in sub-area A. These results are not true for regions in sub-area B where the 

association between GDP growth average and RCI_indices is always significant and 

positive.  This may be due to the fact that the two indicators cover different time periods - 

GDP growth average is computed for the period 2000-2007, while the RCI data span the 

period 2007-2009, including also the 2008 economic and financial crisis. In fact, for 

some dimensions of competitiveness RCI already reflects the negative effects of the crisis 

and it offers a much more complex picture of competitiveness including a number of 

indicators not strictly related to economic performance. We can have more reliable 

results for the association between GDP growth and the RCI once we can analyze the 

GDP growth for the same time period as covered by the data included in the RCI. 

Besides, it is worth noting that the relationship between competitiveness and growth is in 

general difficult to understand. A recent example is the Trade Performance Index, jointly 

developed by UNCTAD (United Nations Conference on Trade and Development) and 

WTO (World Trade Organization), which measures level of competitiveness and 

diversification of the export sectors of about 180 countries. The most competitive 

countries in terms of Trade Performance Index scores are those where GDP growth was 

the lowest in the last ten years, while low performing countries are those where the GDP 

growth has been the highest in the last decade (Fortis, 2010).   

Focusing on countries in sub-area A, where spatial auto-correlation analysis highlighted 

clusters of highly performing regions, all the indicators but net migration and GDP 
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growth average are positivity correlated with RCI indices (the only irrelevant correlation 

is between population change and RCI_inn). The “net migration” gives always irrelevant 

correlation while the anomalous behavior of GDP growth average for these regions has 

just been discussed. Other significant and direct associations in sub-area A are observed 

for population change and natural population change. This is in line with the assumption 

that population dynamics do matter for territorial competitiveness.  

The analysis for regions in sub-area B shows a positive correlation for all the exogenous 

indicators and almost all the RCI indices (with the only exception of RCI_eff and natural 

population change). In this area, where the spatial analysis highlighted clusters of low 

performing regions, demographic trends are highly relevant for territorial 

competitiveness. It is worth noting that the analysis of correlation is not a causal-effect 

analysis. So, in this particular case, it is not possible to distinguish whether countries with 

stronger population dynamics in terms of population change, inflows and outflows 

stimulate competitiveness or competitive environments help demographic vivacity. The 

point is that there exists a positive strong association between the two factors which is 

stronger for regions in sub-area B, with clusters of low performers and some isolated 

picks of high performers, than for those in sub-area A, with more homogeneous clusters 

of high performers.   

 



Association with exogenous indicators 

46/55 

ALL COUNTRIES ANALYSIS

COUNTRIES IN GROUP A: AT, BE, DE, DK, FI, IE, LU, NL, SE, SI, UK  

COUNTRIES IN GROUP B: BG, CZ, EE, GR, HU, LT, LV, PL, RO, SK

all countries - population change

R2 = 0.0113
IRRELEVANT

-2.000

-1.500

-1.000

-0.500

0.000

0.500

1.000

1.500

-15.00 -5.00 5.00 15.00 25.00 35.00 45.00

pop. change 01-07

R
C

I_
to

ta
l

all countries - population change

R2 = 0.0029
IRRELEVANT

-3.000

-2.500

-2.000

-1.500

-1.000

-0.500

0.000

0.500

1.000

1.500

2.000

-15.00 -5.00 5.00 15.00 25.00 35.00 45.00

pop. change 01-07

R
C

I_
ef

f

all countries - population change

R2 = 0.0289
IRRELEVANT

-3.000

-2.500

-2.000

-1.500

-1.000

-0.500

0.000

0.500

1.000

1.500

2.000

-15.00 -5.00 5.00 15.00 25.00 35.00 45.00

pop. change 01-07

R
C

I_
in

n

group A - population change

R2 = 0.0594
SIGNIFICANT

-0.400

-0.200

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

-15.00 -10.00 -5.00 0.00 5.00 10.00 15.00 20.00 25.00

pop. change 01-07

R
C

I_
to

ta
l

group A - population change

R2 = 0.0837
SIGNIFICANT

-1.000

-0.500

0.000

0.500

1.000

1.500

-15.00 -10.00 -5.00 0.00 5.00 10.00 15.00 20.00 25.00

pop. change 01-07

R
C

I_
ef

f

group A - population change

R2 = 0.0255
IRRELEVANT

-1.000

-0.500

0.000

0.500

1.000

1.500

2.000

-15.00 -10.00 -5.00 0.00 5.00 10.00 15.00 20.00 25.00

pop. change 01-07

R
C

I_
in

n

group B - population change

R2 = 0.1083
SIGNIFICANT

-2.000

-1.500

-1.000

-0.500

0.000

0.500

1.000

-15.00 -10.00 -5.00 0.00 5.00 10.00 15.00

pop. change 01-07

R
C

I_
to

ta
l

group B - population change

R2 = 0.055
IRRELEVANT

-2.000

-1.500

-1.000

-0.500

0.000

0.500

1.000

-15.00 -10.00 -5.00 0.00 5.00 10.00 15.00

pop. change 01-07

R
C

I_
ef

f

group B - population change

R2 = 0.1493
SIGNIFICANT

-2.000

-1.500

-1.000

-0.500

0.000

0.500

1.000

-15.00 -10.00 -5.00 0.00 5.00 10.00 15.00
pop. change 01-07

R
C

I_
in

n

 

Figure 23: Association between RCI indices and population change 01-07 
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Figure 24: Association between RCI indices and natural population change 01-07 
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Figure 25: Association between RCI indices and net migration 01-07 
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Figure 26: Association between RCI indices and share of population in Large Urban Zones 
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Figure 27: Association between RCI indices and GDP growth average 00-07 
 



Conclusions 

51/55 

Conclusions  

 
Outcomes from the ESDA analysis of the RCI suggest the existence of regional spillovers 

among EU NUTS 2 regions proxied by global spatial autocorrelation. Specifically, there 

is evidence of significant spatial correlation and potential spillover effect among regions 

in Bulgaria, Romania and Greece, all with low RCI performance. On the other hand, 

regional spillovers from strong competitiveness performance are observed in the 

Southern part of the UK, parts of Belgium, the Netherlands, Germany, Denmark and a 

few Scandinavian regions. We can clearly observe that the regions with strong 

competitiveness which show evidence of spillover effects constitute the upper part of the 

blue banana or the European regions which traditionally score very high on a number of 

economic indicators such as productivity, innovative capacity, use of new technology.   

Our variogram analysis is separately carried out for ‘homogenous’ sub-areas as detected 

by the ESDA analysis. Outcomes show the existence of a clear structure of spatial auto-

correlations in the sub-area with clusters of high-high regions. In this sub-area the 

maximum range of action of the spillover effects ranges from 300-500 km when taking 

into account two different distances between regions (Euclidean and distance along the 

real road network) and between 150 and 200 minutes in terms of travel-time distance. 

Variogram analysis cannot estimate a range for the sub-area of low-low clusters and in 

some other areas comprising Italy, France, Spain and Portugal. These areas do not show 

clear structures of spatial auto-correlation save for clusters of low-low regions or very 

heterogeneous pictures.    

Anselin et al. (2007) point out that spatial analysis can serve as a useful tool for countries 

to monitor social indicators but it is important to keep in mind that these exploratory 

techniques are only suggestive of possible hypotheses and relations. The main 

contribution of spatial autocorrelation analysis is to highlight potentially interesting 

features in the data, and to facilitate the discovery process (Anselin et al. 2007). It is, 

however, important to look at the spatial distribution and presence of clusters and outliers 

for relevant indicators at the EU level as interesting patterns can be revealed and more 

informed policy decisions could be undertaken, especially at the regional level. In the 
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future, when the new edition of the RCI is prepared, temporal analysis can be added to 

the spatial one. 

With regards to the analysis of analysis of possible relationships between exogenous 

indicators and the RCI score and sub-scores, we find that the number of significant 

results from the correlation analysis increase significantly when we distinguish among 

different sub-areas within the EU territory, which show less heterogeneity in RCI indices. 

The share of population living in LUZ is always positively associated to the three RCI 

indices (total, efficiency and innovation), with particularly high values for countries in 

sub-area B. In these regions living in high density areas (large cities) means having 

higher levels of competitiveness. Focusing on countries in sub-area A, where spatial auto-

correlation analysis highlighted clusters of highly performing regions, all the indicators 

but net migration and GDP growth average are positively correlated with RCI indices 

The analysis for regions in sub-area B shows a positive correlation for all the exogenous 

indicators and almost all the RCI indices (with the only exception of the efficiency sub-

index and natural population change). In general, our results show that population 

dynamics and demographic trends are highly relevant for territorial competitiveness. On 

the contrary the relationship between RCI indices and GDP growth is unclear. This is 

indeed in line with some recent discussions about the difficulty of interpretation of the 

relation between competitiveness/productivity and economic growth. A popular example 

is the ambiguous link between the last release of the Trade Performance Index by 

UNCTAD/WTO and GDP growth in the last decade, where most competitive countries 

are those which show the lowest GDP growth and least competitive have experienced the 

highest growth (Fortis, 2010).     
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Appendix A 
LISA statistics for RCI_total and associated signicance levels 

code code code code code
BE10 HH *** DEA1 HH *** FR24 HH NL21 HH *** SK04 LL **
BE21 HH *** DEA2 HH ** FR25 LH NL22 HH *** FI13 HH
BE22 HH *** DEA3 HH *** FR26 LH NL23 HH *** FI18 HH **
BE23 HH *** DEA4 HH FR30 HH NL31 HH *** FI19 HH
BE24 HH *** DEA5 HH ** FR41 HH NL32 HH *** FI1A HH **
BE25 HH DEB1 HH ** FR42 HH NL33 HH *** FI20 HH ***
BE31 HH ** DEB2 HH FR43 LH NL34 HH *** SE11 HH
BE32 HH *** DEB3 HH ** FR51 HH NL41 HH *** SE12 HH **
BE33 HH DEC0 HH FR52 HH NL42 HH *** SE21 HH ***
BE34 LH DED1 HH FR53 LL AT11 HH SE22 HH **
BE35 HH ** DED2 HH FR61 LH *** AT12 HH SE23 HH ***
BG31 LL *** DED3 HH FR62 HL AT13 HH SE31 HH **
BG32 LL *** DEE0 HH FR63 LH AT21 HH SE32 HH
BG33 LL *** DEF0 HH FR71 HL AT22 HL SE33 HH **
BG34 LL *** DEG0 HH FR72 LH AT31 HH UKC1 HH
BG41 LL *** EE00 LH FR81 LH AT32 HH UKC2 HH
BG42 LL *** IE01 HH FR82 HL AT33 HH UKD1 LH ***
CZ01 HL IE02 HH FR83 LL AT34 HH UKD2 HH
CZ02 LH GR11 LL *** ITC1 LH *** PL11 LL UKD3 HH
CZ03 LH GR12 LL *** ITC2 LH PL12 HL *** UKD4 HH
CZ04 LH GR13 LL *** ITC3 LL PL21 LL ** UKD5 HH **
CZ05 LL GR14 LL *** ITC4 HL PL22 LL UKE1 HH
CZ06 LH GR21 LL *** ITD1 LH PL31 LL UKE2 HH
CZ07 LL GR22 LL *** ITD2 LH PL32 LL UKE3 HH
CZ08 LL GR23 LL *** ITD3 HL PL33 LL UKE4 HH
DK01 HH ** GR24 LL *** ITD4 LL PL34 LL UKF1 HH
DK02 HH *** GR25 LL *** ITD5 HL PL41 LL ** UKF2 HH
DK03 HH *** GR30 LL *** ITE1 LL PL42 LH UKF3 LH
DK04 HH *** GR41 LL *** ITE2 LL PL43 LH UKG1 HH **
DK05 HH *** GR42 LL *** ITE3 LL PL51 LL UKG2 HH **
DE11 HH ** GR43 LL *** ITE4 HL PL52 LL UKG3 HH **
DE12 HH ** ES11 LL ITF1 LL PL61 LL UKH1 HH **
DE13 HH ** ES12 LL ITF2 LL PL62 LL UKH2 HH ***
DE14 HH ** ES13 LL ITF3 LL ** PL63 LH ** UKH3 HH ***
DE21 HH ES21 HL ITF4 LL ** PT11 LL UKI1 HH ***
DE22 HH ES22 LL ITF5 LL ** PT15 LL ** UKI2 HH ***
DE23 HH ES23 LL ITF6 LL ** PT16 LL UKJ1 HH ***
DE24 HH ES24 LH ITG1 LL ** PT17 HL ** UKJ2 HH ***
DE25 HH ES30 HL ** ITG2 LL PT18 LL UKJ3 HH ***
DE26 HH ** ES41 LL CY00 LL *** PT20 LL ** UKJ4 HH ***
DE27 HH ** ES42 LL LV00 LL PT30 LL ** UKK1 HH ***
DE30 HH ES43 LL LT00 LL ** RO11 LL *** UKK2 HH ***
DE41 HL ES51 HL LU00 HH RO12 LL *** UKK3 LH
DE42 HH ES52 LL HU10 HL ** RO21 LL *** UKK4 HH
DE50 HH ES53 LL HU21 LL RO22 LL *** UKL1 HH **
DE60 HH ES61 LL *** HU22 LH RO31 LL *** UKL2 HH **
DE71 HH ** ES62 LL HU23 LL RO32 LL *** UKM2 HH
DE72 HH ES63 LL *** HU31 LL ** RO41 LL *** UKM3 HH
DE73 HH ES64 LL ** HU32 LL *** RO42 LL *** UKM5 HH
DE80 HH ES70 LL *** HU33 LL *** SI01 HH UKM6 LH ***
DE91 HH FR10 HH MT00 LL ** SI02 HH UKN0 HH
DE92 HH FR21 LH NL11 HH ** SK01 HH
DE93 HH FR22 HH NL12 HH *** SK02 LL
DE94 HH FR23 HH NL13 HH ** SK03 LL

*** p<0.01, ** p<0.05

LISALISA LISA LISA LISA
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Abstract 
This document is the final delivery of the two-year joint project DG Joint Research Centre and DG Regional 
Policy on the measurement of the level of regional competitiveness, launched in November 2008. Within this 
project, the European Commission has recently published the first edition of the Regional Competitiveness 
Index (RCI). The index provides a tool to improve the understanding of competitiveness at the regional level by 
showing the strengths and weaknesses of each of the European regions at the NUTS2 level in a number of 
dimensions related to competitiveness. The analysis offered by the first edition of the RCI is a snapshot of 
regional competitiveness as it is in 2010 and is based upon data mostly spanning between 2007 and 2009. The 
present document takes a step further and offers a two-fold analysis based on the RCI indices: an exploratory 
spatial data analysis and an analysis of possible relationships between exogenous indicators and the RCI index 
and sub-indices.  
The exploratory spatial data analysis shows the existence of spatial dependence among EU regions, with 
different patterns for different areas within the EU. This can be taken as an indication for the existence of spatial 
externalities among regions and, when observed for high performing regions, as evidence, or better, as 
necessary condition for spillover effects. LISA analysis allowed us to distinguish between two sub-areas in the 
EU: group A which comprises regions with high RCI performance surrounded by regions with similar strong 
competitive performance and group B, comprising low-performing regions surrounded by low RCI performers.   
The analysis has been extended to better explore the structure of spatial autocorrelation within the two main 
sub-areas – A and B - of low-low and high-high clusters as detected by LISA. The analysis of sub-area B is 
meant to further investigate the possible presence of ‘negative’ spillover effects where low performing regions 
negatively affect their neighbours. 
Spatial autocorrelation structure is investigated by using variogram analysis, a tool typical of Kriging for 
describing spatial dependences. Variogram analysis provides as additional information the ‘range of action’ of 
spatial dependence, which is the maximum distance beyond which the correlation can be considered null. 
Variogram analysis is carried out using three different distances between region centroids: Euclidean distance, 
distance along the road (ferry) network and the travel time distance. Results indicate the existence of a clear 
structure of correlation for the sub-area A of high-high clusters. On the contrary, sub-area B seems to be 
characterized mostly by low performing regions with some rare and sparse picks of relatively higher performers 
(some capital regions).    
With regards to the analysis of possible relationships between exogenous indicators and RCI index and sub-
indices, we have looked at bivariate correlations with five exogenous indicators (population change in the period 
2001-2007; natural population change in the period 2001-2007; net migration in the period 2001-2007; share of 
population which live in Large Urban Zones, LUZ; GDP growth average 2000-2007) for all EU NUTS 2 regions 
as well as for two sub-areas as identified by the ESDA analysis. We find that the number of significant results 
from the correlation analysis increases when we distinguish between the sub-areas. Results show that 
population dynamics and demographic trends are highly relevant for territorial competitiveness while the 
relationship with GDP growth remains ambiguous. 
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