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Wireless sensor networks (WSN) prove to be an enabling technology for Industry 4.0 for their ability to perform in 

autonomous manner even in regions of extreme conditions. Autonomy brings in independent decision making and exerting 

controls without manual intervention and frequent maintenance. This paper aims to inculcate intelligence to the WSN 

exploiting the merits of Artificial Intelligence (AI) algorithms in cheap and most preferred ESP8266 and ESP32 based 

nodes. Autonomy is brought in by means of optimal data transmission, compressive sensing fault detection and network 

reconfiguration and energy efficiency. Optimal data transmission is achieved using Q-learning based exploration 

exploitation algorithm. Compressive sensing performed using Autoencoders ensure reduction in transmission overhead. 

Fault detection is done using Binary SVM classifier and the network re-configures based on physical redundancy. 

This paper highlights the implementation of such autonomous WSN in real time along with their performance statistics. 
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Introduction 

Wireless Sensor Networks (WSNs) are found to be 

the robust technology in ensuring non internet 

enabled devices like sensors, actuators etc., to gain 

connectivity. The development of WSNs was inspired 

by military applications in 1980s in the form of DSNs. 

Though the idea of WSN was proposed, implementation 

took far more years due to technical setback during those 

decades. Advancements in information technology 

and MEMS have resulted in miniaturization of both 

sensors and reduction in their price making them 

economical. The data transmission is made as multi-hop 

communication to overcome the node’s limited range of 

communication. Multi-hop communication of networks 

is enabled by Ad-hoc network architecture in which the 

APs are continuously changing in order to meet the 

communication needs. However, intelligent firmware is 

necessary to coordinate and synchronize the network. 

Such coordination can be achieved with the help of 

robust and accurate Machine Learning Algorithms. 

Despite being economical and reliable the major factors 

hindering the adoption of sensor networks for industrial 

applications include - requirement of more energy, 

frequent maintenance, resource constraints and huge 

cost for advanced nodes.  

Hence, an approach to bring in autonomy on 

resource constraint economical nodes by enabling AI 

algorithms is discussed here. Further, the nodes are 

programmed to undergo self-configuration after initial 

setup. Communication is established following WiFi 

(IEEE 802.11). Algorithms to achieve optimal data 

transmission, self-reconfiguration and compressive 

sensing are discussed.  

Related Work 

The nodes of this architecture orchestrate forming 

a single network yet performing their specific 

functionalities. Accordingly, the memory requirement 

differs for every node based on their responsibility. 

Every AI algorithm has unique characteristics and are 

appropriate for specific applications. Strategies for 

implementing AI algorithms in a distributed manner 

at various levels of WSN would enhance the 

network’s autonomy.
1
 However, the paper provides a 

generalized overview and does not discuss the 

hardware implementation impacts of such algorithms. 

Apart from these AI techniques, complex algorithms 

of Computational Intelligence also contribute to bring 

in intelligence to the sensing network. Most of the 

CI techniques are nature inspired algorithms and 

more robust in terms of ensuring QoS, lossless data 

gathering applications. The WSN’s QoS can be 

ensured by adopting optimal queuing technique.
2
 The 

common CI algorithms including PSO, fuzzy and 
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neural networks suitable for implementation in WSN. 

But, implementation of these algorithms at hardware 

level would require highly resourceful nodes and may 

not be economical. 

WSN usually operates on battery source, energy 

consumption has to be reduced. The reinforcement 

learning algorithm can be used to achieve energy 

efficiency using Q-Learning technique.
3
 The main 

issue hindering large scale deployment of WSN  

is hardware maintenance and frequent inspection.  

To rule out such shortcomes, self-diagnosis and 

reconfiguration mechanisms are introduced ensuring 

autonomy in operation. A supervised learning 

algorithm is more effective to detect sensor faults 

using SVM classifier. 
4
 

Sensor fault detection techniques using time domain 

features are ideal for real time sensing environments.
5
 

Other techniques of fault detection like support vector 

regression brings in computational complexity.
6
 Data 

aggregation procedure is the key ability of a WSN in 

processing the data. Conventional data aggregation 

techniques do not inculcate intelligence to the network.
7 

Common compressive sensing using transform functions 

and PCA algorithms are too heavy for a micron device 

to handle.
8
 In this requirement an alternative approach 

using Autoencoders in big data compression would be 

an ideal choice.
9
 

 

Proposed Methodology 
WSNs are mostly preferred for their, portability 

and wireless communication support. They are 

deployed in enormous number covering a wide region 

to be monitored. 
 

Network Model 

The nodes deployed depend on batteries for their 

operation despite of which they must sustain in sensing 

environments for longer time. This requirement is met 

by adopting cluster based hierarchical routing approach. 

In cluster based hierarchical routing the energy 

consumption by each node is minimized and a 

resourceful node is made as cluster head (CH). In this 

work the proposed WSN is implemented in cluster tree 

architecture as shown in Fig. 1. 

Single hop communication between the sensing 

nodes and router is not suitable for following reasons 

— 1) The distant node may die out before data is 

successfully transmitted to the sink, 2) Energy 

consumption would increase drastically, 3) Data 

redundancy will be higher at the sink. Hence, 

multihop communication is implemented using cluster 

tree topology which offers following advantages 1) 

Scalability, 2) Predictable time delay due to hierarchical 

architecture, 3) Control on nodes become distributed 

to cluster heads and sink not overloading nodes. 
 

Node Architecture 

The nodes used are Nodemcu and Wemos D1 R1. 

Both have common elements except that Wemos D1 

R1 is designed follows Arduino layout. The ESP8266 

module can operates at 3.3 V and any high voltages 

may damage the IC. The version of ESP used is  

ESP–12E ESP8266. It operates in ISM 2.4 GHz  

band and supports IEEE 802.11b/g/n. The channel  

in which WiFi transmission and reception occurs can 

be configured through software while the default 

channel used before configuration is channel 1. 

The three main subsystems of the wireless nodes 

are power subsystem, processing unit and communication 

unit. The architecture of the node is depicted in Fig. 2. 

The power subsystem comprises of a Battery and 

LDO voltage regulator.  

Rechargeable batteries are preferred generally. The 

processing unit comprises of the microcontroller, 

memory and other supporting peripheral interfaces.  

The sensing unit consists of the sensor and an optional 

ADC connected to the processing unit via interface. 

Communication subsystem comprises of hardware 

necessary for wireless data transfer including antenna. 

Both processing and communication units are dependent 

on firmware for their operation. The Core module to 

define access methods of the memory, TCP/IP stack for 

IEEE 802.11 b/g/n standard and other link layer 

protocols are dumped in OTP memory. 

 
 

Fig. 1 — Cluster Tree Topology of the WSN with three levels 
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Optimal Data Transmission 

After the deployment of WSN, efficient data 

transfer is achieved ensuring the flow of non-

redundant data alone in the network. The redundancy 

in data can be estimated by observing the frequency 

of the redundant data appearance i.e., correlation. The 

correlation may be temporal or spatial in nature.  

The temporal correlation estimates the redundancy 

occurring in data considering a specific node while 

spatial correlation estimates the redundancy by taking 

into account the data gathered by a number of nodes 

scattered in same region of the sensing environment. 

However, the spatial correlation becomes irrelevant 

when deployed in industrial environments for the 

region of sensing and the range of variation of the 

parameters vary to a greater extent. Hence for the 

network to suit ubiquitous applications, the optimization 

is brought in exploiting only the temporal correlation. 
 

Temporal Association 

Redundant data denotes duplicate or repeated data 

without which the physical parameters sensed can be 

extracted without losing any information. Our aim is to 

estimate the redundant data by finding the frequency of 

recurrence of data and make our node learn to sense 

intelligently in turn reducing energy consumption. 

Jaccard coefficient is computed to estimate the 

magnitude of correlation among the available data.
7
 

Consider a scenario in which M sensor nodes are 

scattered across the region to be sensed. A sensor 

node, Si in the network senses the environment for a 

duration ’t’ and takes ’2n’ samples of data - S1, S2, 

S3, ..., S2n. These ‘2n’ samples can be grouped into 

two sets A = S1, S2, S3, ..., Sn and B = Sn+1, Sn+2, 

Sn+3, ..., S2n. Now, the Jaccard correlation co-

efficient can be computed as in Eq. 1. 

                     … (1) 

 

where, the value of J varies between (0,1). J value of 

0 indicates no redundant data while entire data would 

be redundant if J value is 1. Based on the extent of 

correlation among the collected data the data is 

classified as follows. 

Based on the extent of similarity, the Jaccard 

coefficient value varies between 0 and 1 with 0 

indicating no redundancy and 1 indicating complete 

redundancy. 
 

Q – Learning Based Data Redundancy Reduction 

From previous sections it is evident that the 

number of packets transmitted can be decreased by 

eliminating temporally correlated data which 

decreases packet overhead and increases energy 

optimization. Data mining techniques are widely 

adopted to implement in WSN for the lightweight 

algorithms and requirement of minimum data set for 

processing. One such approach is the reinforcement 

learning or reward based learning process where the 

agent learns to act based on the rewards it receives for 

its actions. Q- Learning stands for Quality learning 

where the agent learns about the trends of data being 

sensed and estimates the environmental changes 

based on this observation. This type of regret learning 

can occur with minimal dataset which makes this 

approach suitable for resource constrained WSN 

nodes. Exploration exploitation is a technique where 

the learner is allowed to act randomly to certain 

extent. This short-term randomness is introduced to 

discover all possible actions that could optimize the 

solution. Such short term sacrifices are included to 

achieve high accuracy in the long run.  

The elements of Q-Learning are available states, 

possible actions, reward for actions and an 

environment to be sensed. The three states considered 

here are 1) High correlation, 2) Medium correlation 

and 3) Low correlation as described in previous 

subsection. The actions to be implemented as the 

output of algorithm are 1) Transmit entire data, 2) 

Transmit non- redundant data only and 3) Do-not 

transmit. The node enters sleep state during action3 i.e., 

neither sensing nor communication occurs. This mode 

preserves maximum energy and is quintessential in 

extending the lifetime of networks built using micron 

nodes. The primary duty of the agent is to update the Q 

– matrix which is initialized as all zeros during training 

phase. It is based on this matrix; the agent decides the 

action to be implemented. 

 
 

Fig. 2 — Architecture of a wireless node and sub blocks 
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The exploration and exploitation is implemented 

using  –greedy algorithm.
10

 This algorithm explores 

forever finding all possible actions during 

implementation.
11

 

By following – greedy approach, the suitable action 

is predicted using Eq. 2.  
 

Current_action = Argmax (Q (S, A))  … (2) 
 

The above function chooses the action with 

maximum Q value, i.e., the action with maximum 

reward. The Q value after implementation of 

current_action is updated by the learner using 

Bellman’s equation in Eq. 3. 
 

                                       … (3) 
 

where, 
 

α – Learning rate s (0,1) 
 

γ – Discount factor s (0,1) 
 

R – Reward corresponding to the action. 

The deep sleep after every action extends the life of 

the micron devices by reducing the heat exposure.
7
 

The adaptive sleep cycles make the networks more 

suitable for dynamic environments.
12,13 

 
Algorithm: Q Learning based data redundancy reduction 

Inputs: Jaccard co-efficient (J), Reward matrix 

Outputs: Current action, Sleep duration 

Train the learner and obtain Q-Matrix 

1. Divide the sensed data into two arrays.  

2. Compute the Jaccard coefficient - J for the two 

arrays. 

3. Estimate current state based on J value. 

4. Initialize randomness factor  

5. If ( random(0,1) ≥ 1    ) 

Current action = Q(S,A) 

6. Else Current action = random (states) 

7. Update Q matrix 

8. Diff = Qnew Qold 

9. If (Reward ≥ 0) Θnew= Θold+ W×Diff 

10. Else Θnew= Θold W × Diff  

11. End If 
 

Sensor Fault Detection 

In general, WSN deployed in unapproachable 

regions are prone to failures. The sensor failure may 

occur due to software, hardware or communication 

faults. Communication failures occurrences are 

usually rare. Detecting hardware failure is proposed 

here using SVM classifier. Five types of faults are 

simulated for injection. SVM has inner product 

kernels with ability to classify linearly non-separable 

cases by mapping to higher dimensions. Further, 

SVM classifiers allow generalizations to overcome 

the issue of overfitting. 
 

Dataset Preparation 

SVM classifiers are supervised learning algorithms. 

Hence, labelled dataset has to be prepared to train  

the fault classifier as in Fig. 3. Fault readings are 

generated from normal dataset t, at any instant i, using 

following expressions: 

Drift Fault:Readings monotonously either increase 

or decrease with time deviating from actual reading. 

f(i) = t(i) ± K 

where K is monotonously increasing constant. 

Spike Fault: Spikes of high value shoot up at 

random time instants in sensed data. 

f(i) = M 

where, M is spike value and i is the position where 

spike occurs. 

Hardover Fault: The values sensed goes beyond 

bounds of actual values corresponding to the 

environment being sensed. 

f(i)=α 

where, α is a value out of bounds. 

Erratic Fault: Addition of Gaussian noise to actual 

data sensed from the environment. 

f(i) = awgn(t(i)) 

where, the function awgn adds Gaussian noise to t(i). 

Stuck-at Fault: The sensor output remains in same 

value throughout the duration. 

f(i) = t(n) 

where, n is the last reading at which the value is stuck. 

 
 

Fig. 3 — Dataset preparation procedure to train fault classifier 
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In above expressions, f(i) refers to fault signal and 

t(i) refers to original signal at time instant ‘i’.  
 

Feature Extraction 

The feature extraction is done to filter the behavioral 

patterns from the raw data. The time domain features 

computed are root mean square, peak-to-peak value, 

crest factor, root amplitude square, kurtosis, skewness, 

standard deviation, impulse factor, margin factor and 

shape factor. Feature selection is performed to identify 

the significant features and eliminate the rest. The 

significant features selected for training are root mean 

square, peak-to-peak value, crest factor impulse factor, 

margin factor and shape factor. 
 

SVM Classifier 

Support Vector Machine (SVM) is a supervised 

machine learning algorithm in which each point is 

represented in n-dimensional space with value of each 

feature being the value of particular coordinate 

appropriate for real time sensing techniques.
14

 In 

training phase, an appropriate hyperplane to differentiate 

the two classes very well is formed. The classifier 

then finds the minimum distance of the frontier from 

closest support vector. In generalized form, the 

equation of decision vector is given in Eq. 4. 
 

        … (4) 
 

where, 
 

W – weight vector determined during training phase 
 

b – bias and 
 

x – the input vector to be classified. 
 

In case of binary classification, the input vector 

belongs to positive class if W
T
x + b > 0 and negative 

class if W
T
x + b< 0. To solve problems that ae not 

linearly separable, the points are transformed to 

higher dimension to convert them into linearly 

separable problem. The SVM finds the optimal 

hyperplane satisfying Eq. 5. 
 

                     … (5) 
 

The decision boundary is formed using Eq. 6. 
 

               
     … (6) 

 

where, 
 

K – Kernel function 
 

αi – Label 
 

b – Bias 

The kernel function used in this work is quadratic 

function of degree 2, a non-linear transform function 

to minimize classification errors as in Eq. 7. 
 

                 … (7) 
 

SVM are suitable classifiers for their accuracy in 

high dimensional spaces, clear margin of separation 

and efficiency obtained from simple support vectors. 

Also, the classifier can be implemented with trained 

confusion matrix even in resource constrained nodes 

and effective for time series calculation. 
 

Compressive Sensing 

The Compressive sensing theory states that it is 

possible to reconstruct the original data from fewer 

samples than actual number of samples being 

transmitted thereby increasing energy efficiency and 

optimal resource utilization. Compressive sensing is 

usually achieved using either of two approaches – 1. 

Sending only the essential components containing 

maximum information relating to the data, 2. 

Reducing the count of data by using transform 

function. The widely implemented method for 

compressive sensing is PCA that follows former 

approach but, suffers from a serious disadvantage of 

poor performance on non-linear data and requirement 

for resourceful nodes. Whereas, the Autoencodesrs 

following latter approach overcomes these setbacks.  
 

Autoencoder 

Autoencoders are special types of neural networks 

following unsupervised learning technique. Unlike 

other Neural Networks Autoencoders map the input 

domain back to input domain. A typical Autoencoder 

comprises three layers, encoder, code and decoder 

(Fig. 4). The encoder block performs transform 

operation on input data and generates code which 

when operated using decoder block reconstructs 

original data. In most of the cases, the decoder is 

inverse transform of encoder transform function. In 

this work, the encoder block is implemented at sink 

node and code generated is transmitted to the cloud 

where reconstruction using decoder block occurs. 

Autoencoders are unsupervised and entirely data 

specific. Models trained on particular type of data can 

used for compression of similar data only. However, 

they are not completely error free and hence an error 

minimization function added inherently. 

A simple Autoencoder containing only one hidden 

layer would suit our requirement on a resource 

constrained node. The transform function used is 
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logistic sigmoid function mentioned in Eq. 8. The loss 

function used is mean squared error with  

sparse regularization given by Eq. 9. The encoder 

(recognizer) block is concerned with recognizing the 

pattern hidden in input sequence and the decoder 

(reconstructor) block reconstructs the original 

sequence based on learned parameters. 

The input and output blocks contain same number 

of neurons while the hidden layer neurons decrease to 

code layer on encoder block and increases to output 

layer at decoder block. The Autoencoder implemented 

is fully connected. 
 

     
 

       … (8) 
 

Where, 
 

x – code value 
 

z – input values 
 

     
 

 
            

         
 
   

 
    …(9) 

 

Sparse regularization is done to lay constraint on 

output values so that the outputs do not deviate too 

much from the input values. Sparsity is the inherent 

characteristic of Autoencoders and is adjusted to 

required extent using sparsity function and L2 

regularization function to fine-tune sparsity regulator 

ate represented as Ωs and Ωw respectively in Eq. 9. 
 

Results and Discussion 

The experiment is carried out by distributing 8 

sensing nodes across laboratory environment along 

with two cluster heads and one sink node. AI learners 

are trained using MATLAB Machine Learning 

toolbox, algorithms are dumped into nodes using 

Arduino IDE and ThingSpeak cloud is used for final 

visualization. 
 

Network Configuration 

The communication among the nodes is established 

using IEEE 802.11 standard and TCP/IP protocol 

which is connection based.
15

 Initialization at Sensing 

node, Cluster head and Sink node are shown in Fig. 5. 

The sensing nodes always function as Station 

Points (STA) i.e., connect to Access Points (AP) and 

relay on them to transmit and receive data. The cluster 

heads function as both Station and Access points 

during data transmission and switch between the 

modes based on requirement. Cluster Heads are AP 

for sensing nodes and STA for sink node whereas; the 

sink node is an AP for cluster head and STA for local 

router while transmitting data to the cloud. The sink 

and cluster heads are assigned fixed IP and the cluster 

heads allocate IP for the sensing nodes using DHCP 

protocol. 
 

Optimal Data Transmission  

MATLAB simulation result for optimal data 

transmission algorithm is shown in Fig. 6. The term 

optimal data transmission in this scenario implies 

ensuring non redundant data transmission in the 

network. The redundancy in data is eliminated at the 

initial stage itself i.e., at sensing nodes. Apart from 

eliminating redundant data, the algorithm also 

 
 

Fig. 4 — Architecture of fully connected Autoencoder network 
  

 

Fig. 5 — Initialization at (a) Sensing node, (b) Cluster head and 

(c) Sink node 
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chooses the next state for the node to operate and the 

duration for node sleep. The reward matrix is 

initialized with weights corresponding to the state and 

action based on desired operation. Q-matrix initially 

declared as null is updated during the number of 

iterations in training phase. In testing phase, real time 

data are considered and actions are implemented 

based on the Bellman’s equation.  

The values of alpha, gamma and epsilon are set as 

0.3, 0. 9 and 0.6, respectively. The data transmissions  

on various actions and the sleep duration estimated 

using Eq. 10. 
 

                  … (10) 
 

where, Diff – Change in Q value  
 

W – Constant 
 

Θ – Sleep Duration  
 

For action = 1, the entire sensed data is transmitted 

to the cluster head and for action = 2, only the non-

redundant data is transmitted while no transmission 

occurs for action = 3. Initially 20 data gathered are 

grouped into two arrays of 10 elements each. Then 

redundant data are eliminated by computing their 

union. Q-Learner then predicts an appropriate state 

and action. The sleep duration estimated is also 

displayed in the serial monitor. 

The dataset used for training is Intel Labdata 

available at http://db.csail.mit.edu/labdata/labdata. 

html. It contains nearly 1100000 readings collected 

using 54 sensor nodes deployed in the Intel Berkeley 

Research lab between February 28
th
 and April 5

th
, 

2004 validated by taking multiple readings for 

particular region from different nodes. Of these nearly 

1000 data taken from a single node monitoring a 

specific region is used to train the Q-Learner 

implemented in the sensing nodes. Training is done 

using MATLAB and the final trained Q-matrix is 

used to implement the algorithm at node level. Then, 

300 data of same node are used to test the algorithm 

output. The behavior of the proposed algorithm in 

realtime is displayed in Fig. 7. 
 

Sensor Fault Detection 

Sensor fault detection is done using SVM 

classifier. The first step in the process is preparation 

of dataset. The source dataset used is Intel Labdata 

same as used for previous algorithm. The original 

dataset contains nearly 10 lakh data of which 42000 

data bound to the range 19–25ºC is considered. These 

data are grouped into 42 samples with 1000 data per 

sample. Faults are generated using 5 such samples. 

Five types of faults are generated as discussed in 

previous section. The pattern of fault occurrence is 

varied as in 25%, 50 %, 75% and 100% of source 

data. One such pattern generated is displayed in  

Fig. 8. The dataset containing 42 normal and 25 faulty 

samples is used for training.  

 
 

Fig. 6 — MATLAB simulation result for optimal data 

transmission algorithm 
 

 
 
Fig. 7 — Implementation of optimal data transmission algorithm 

at sensing node 
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Multiclass SVM is used for classifying the sensor 

state adopting one-vs-all approach. Accuracy is the main 

parameter determining the performance of the classifier. 

Mathematically, accuracy is the ratio of correct 

predictions to total predictions given by Eq. 11 
 

  
     

           
  … (11) 

 

Further, the learner after implementation in node 

predicts the state of the sensor. The results predicted 

by the learner on processing real time sensor data 

relayed is displayed in Fig. 9. This algorithm is 

implemented at level 2 in Cluster Heads. The data is 

checked for fault only when entire data is being 

transmitted. Features are extracted for the received 

data and then using decision function of the learner 

prediction is done based on the sign of the output.  

When the data is classified as faulty, message is sent 

to corresponding node and the node switches to the 

alternate sensor connected the node i.e., network 

reconfiguration achieved at the cost of physical 

redundancy. 
 

Compressive Sensing 

Once the Sink receive entire data sensed, it 

compresses the data to 5 values and sends to the cloud 

where decoder part of Autoencoder is present and the 

data is retrieved back however with some error. The 

Autoencoder is trained in MATLAB using Neural 

Network toolbox. The training data is generated using 

MATLAB random function by generating data within 

the bounds within which the physical parameter 

sensed would vary in the environment being sensed in 

the order as that of data received from the cluster 

head. The Autoencoder training parameter using 

MATLAB is displayed in Fig. 10 and its properties in 

Fig. 11. 

The model trained using MATLAB is implemented 

at sink node which is responsible for relaying the 

received data directly to the cloud. The encoder 

weights and bias values are copied from MATLAB 

and using the encoder function i.e., Logistic sigmoid 

function, the data are encoded. The results of such 

compression are displayed in Fig. 12. 

 
 

Fig. 8 — Faults generation using MATLAB 
 

 
 

Fig. 9 — Implementation of sensor fault detection algorithm at 

cluster head 
 

 
 

Fig. 10 —Autoencoder training parameters 
 

 
 

Fig. 11 — Autoencoders properties 
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Visualization at Cloud 

The compressed data is sent to the cloud i.e., 

ThingSpeak platform where the decoder block of 

Autoencoders are present. The Autoencoder is trained 

using same data as in offline MATLAB and data is 

recovered using inbuilt decode function.  

Then, the data is plotted using MATLAB visualizer 

app in ThingSpeak cloud. Sensors considered for this 

implementation are DHT11 (Temperature), BMP280 

(Pressure) and MQ-2 (Methane gas). The data plotted 

at the cloud is displayed in Fig. 13. 

The decoded JSON at the cloud and the 

temperature received as code is shown in Fig. 14. 

Data is reconstructed at cloud using Autoencoder’s 

decoder block and displayed. 

In summary, the proposed work brings in autonomy 

to the sensor networks in optimal data transmission, self-

reconfiguration and compressive sensing with the aid of 

multiple AI algorithms implemented at various levels of 

hierarchical architecture even in resource constrained 

micron nodes. 

Conclusions 
In this work, a robust autonomous WSN is 

implemented using inexpensive ESP8266 and  

ESP32 based nodes with light weight algorithms is 

implemented in cluster tree architecture having three 

hierarchical levels to improve scalability and energy 

efficiency. Optimal data transmission achieved by  

the Q-Learning algorithm implemented in level 1, 

fault detection by SVM classifier at level 2 and 

compressive sensing at level 3 ensures transmission 

overhead reduction apart from bringing in innate 

intelligence to the WSN and autonomy in functioning. 

The WSN implemented in this work is homogeneous 

in nature. The incorporation of AI algorithms to 

control the operation of WSN ensures self-reliant 

operation of the network to a greater extent. These 

networks are suitable for implementation at industries, 

forest monitoring, pollution monitoring etc., The 

WSNs can be enhanced by introducing OTA 

communication which would empower in increasing 

the capacity of hardware without increasing the 

physical hardware complexity. 
 

Future Work 

OTA is an emerging technique which would 

empower in increasing the capacity of hardware 

without increasing the physical hardware complexity. 

The micron nodes like ESP8266 and ESP32 also 

support OTA communication which can be exploited 

to enable firmware update provision thus supporting 

periodic evolution of the network.  
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