
Journal of Scientific & Industrial Research

Vol. 80, February 2021, pp. 149-158

Realization of Autonomous Sensor Networks with AI based Self-reconfiguration

and Optimal Data Transmission Algorithms in Resource Constrained Nodes

Syed Ameer Abbas* and Abirami

Department of Electronics and Communication Engineering, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, India

Received 15 July 2020; revised 18 October 2020; accepted 01 December 2020

Wireless sensor networks (WSN) prove to be an enabling technology for Industry 4.0 for their ability to perform in

autonomous manner even in regions of extreme conditions. Autonomy brings in independent decision making and exerting

controls without manual intervention and frequent maintenance. This paper aims to inculcate intelligence to the WSN

exploiting the merits of Artificial Intelligence (AI) algorithms in cheap and most preferred ESP8266 and ESP32 based

nodes. Autonomy is brought in by means of optimal data transmission, compressive sensing fault detection and network

reconfiguration and energy efficiency. Optimal data transmission is achieved using Q-learning based exploration

exploitation algorithm. Compressive sensing performed using Autoencoders ensure reduction in transmission overhead.

Fault detection is done using Binary SVM classifier and the network re-configures based on physical redundancy.

This paper highlights the implementation of such autonomous WSN in real time along with their performance statistics.

Keywords: Autoencoders, Cloud visualization, Compressive sensing, Reinforcement learning, Sensor fault detection

Introduction

Wireless Sensor Networks (WSNs) are found to be

the robust technology in ensuring non internet

enabled devices like sensors, actuators etc., to gain

connectivity. The development of WSNs was inspired

by military applications in 1980s in the form of DSNs.

Though the idea of WSN was proposed, implementation

took far more years due to technical setback during those

decades. Advancements in information technology

and MEMS have resulted in miniaturization of both

sensors and reduction in their price making them

economical. The data transmission is made as multi-hop

communication to overcome the node’s limited range of

communication. Multi-hop communication of networks

is enabled by Ad-hoc network architecture in which the

APs are continuously changing in order to meet the

communication needs. However, intelligent firmware is

necessary to coordinate and synchronize the network.

Such coordination can be achieved with the help of

robust and accurate Machine Learning Algorithms.

Despite being economical and reliable the major factors

hindering the adoption of sensor networks for industrial

applications include - requirement of more energy,

frequent maintenance, resource constraints and huge

cost for advanced nodes.

Hence, an approach to bring in autonomy on

resource constraint economical nodes by enabling AI

algorithms is discussed here. Further, the nodes are

programmed to undergo self-configuration after initial

setup. Communication is established following WiFi

(IEEE 802.11). Algorithms to achieve optimal data

transmission, self-reconfiguration and compressive

sensing are discussed.

Related Work

The nodes of this architecture orchestrate forming

a single network yet performing their specific

functionalities. Accordingly, the memory requirement

differs for every node based on their responsibility.

Every AI algorithm has unique characteristics and are

appropriate for specific applications. Strategies for

implementing AI algorithms in a distributed manner

at various levels of WSN would enhance the

network’s autonomy.
1
 However, the paper provides a

generalized overview and does not discuss the

hardware implementation impacts of such algorithms.

Apart from these AI techniques, complex algorithms

of Computational Intelligence also contribute to bring

in intelligence to the sensing network. Most of the

CI techniques are nature inspired algorithms and

more robust in terms of ensuring QoS, lossless data

gathering applications. The WSN’s QoS can be

ensured by adopting optimal queuing technique.
2
 The

common CI algorithms including PSO, fuzzy and

——————

*Author for Correspondence

E-mail: ssyed@mepcoeng.ac.in

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publishing @ NISCAIR

https://core.ac.uk/display/386209409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:shilpadas.soajuly2013@gmail.com

J SCI IND RES VOL 80 FEBRUARY 2021

150

neural networks suitable for implementation in WSN.

But, implementation of these algorithms at hardware

level would require highly resourceful nodes and may

not be economical.

WSN usually operates on battery source, energy

consumption has to be reduced. The reinforcement

learning algorithm can be used to achieve energy

efficiency using Q-Learning technique.
3
 The main

issue hindering large scale deployment of WSN

is hardware maintenance and frequent inspection.

To rule out such shortcomes, self-diagnosis and

reconfiguration mechanisms are introduced ensuring

autonomy in operation. A supervised learning

algorithm is more effective to detect sensor faults

using SVM classifier.
4

Sensor fault detection techniques using time domain

features are ideal for real time sensing environments.
5

Other techniques of fault detection like support vector

regression brings in computational complexity.
6
 Data

aggregation procedure is the key ability of a WSN in

processing the data. Conventional data aggregation

techniques do not inculcate intelligence to the network.
7

Common compressive sensing using transform functions

and PCA algorithms are too heavy for a micron device

to handle.
8
 In this requirement an alternative approach

using Autoencoders in big data compression would be

an ideal choice.
9

Proposed Methodology
WSNs are mostly preferred for their, portability

and wireless communication support. They are

deployed in enormous number covering a wide region

to be monitored.

Network Model

The nodes deployed depend on batteries for their

operation despite of which they must sustain in sensing

environments for longer time. This requirement is met

by adopting cluster based hierarchical routing approach.

In cluster based hierarchical routing the energy

consumption by each node is minimized and a

resourceful node is made as cluster head (CH). In this

work the proposed WSN is implemented in cluster tree

architecture as shown in Fig. 1.

Single hop communication between the sensing

nodes and router is not suitable for following reasons

— 1) The distant node may die out before data is

successfully transmitted to the sink, 2) Energy

consumption would increase drastically, 3) Data

redundancy will be higher at the sink. Hence,

multihop communication is implemented using cluster

tree topology which offers following advantages 1)

Scalability, 2) Predictable time delay due to hierarchical

architecture, 3) Control on nodes become distributed

to cluster heads and sink not overloading nodes.

Node Architecture

The nodes used are Nodemcu and Wemos D1 R1.

Both have common elements except that Wemos D1

R1 is designed follows Arduino layout. The ESP8266

module can operates at 3.3 V and any high voltages

may damage the IC. The version of ESP used is

ESP–12E ESP8266. It operates in ISM 2.4 GHz

band and supports IEEE 802.11b/g/n. The channel

in which WiFi transmission and reception occurs can

be configured through software while the default

channel used before configuration is channel 1.

The three main subsystems of the wireless nodes

are power subsystem, processing unit and communication

unit. The architecture of the node is depicted in Fig. 2.

The power subsystem comprises of a Battery and

LDO voltage regulator.

Rechargeable batteries are preferred generally. The

processing unit comprises of the microcontroller,

memory and other supporting peripheral interfaces.

The sensing unit consists of the sensor and an optional

ADC connected to the processing unit via interface.

Communication subsystem comprises of hardware

necessary for wireless data transfer including antenna.

Both processing and communication units are dependent

on firmware for their operation. The Core module to

define access methods of the memory, TCP/IP stack for

IEEE 802.11 b/g/n standard and other link layer

protocols are dumped in OTP memory.

Fig. 1 — Cluster Tree Topology of the WSN with three levels

ABBAS & ABIRAMI: REALIZATION OF AUTONOMOUS SENSOR NETWORKS USING AI

151

Optimal Data Transmission

After the deployment of WSN, efficient data

transfer is achieved ensuring the flow of non-

redundant data alone in the network. The redundancy

in data can be estimated by observing the frequency

of the redundant data appearance i.e., correlation. The

correlation may be temporal or spatial in nature.

The temporal correlation estimates the redundancy

occurring in data considering a specific node while

spatial correlation estimates the redundancy by taking

into account the data gathered by a number of nodes

scattered in same region of the sensing environment.

However, the spatial correlation becomes irrelevant

when deployed in industrial environments for the

region of sensing and the range of variation of the

parameters vary to a greater extent. Hence for the

network to suit ubiquitous applications, the optimization

is brought in exploiting only the temporal correlation.

Temporal Association

Redundant data denotes duplicate or repeated data

without which the physical parameters sensed can be

extracted without losing any information. Our aim is to

estimate the redundant data by finding the frequency of

recurrence of data and make our node learn to sense

intelligently in turn reducing energy consumption.

Jaccard coefficient is computed to estimate the

magnitude of correlation among the available data.
7

Consider a scenario in which M sensor nodes are

scattered across the region to be sensed. A sensor

node, Si in the network senses the environment for a

duration ’t’ and takes ’2n’ samples of data - S1, S2,

S3, ..., S2n. These ‘2n’ samples can be grouped into

two sets A = S1, S2, S3, ..., Sn and B = Sn+1, Sn+2,

Sn+3, ..., S2n. Now, the Jaccard correlation co-

efficient can be computed as in Eq. 1.

 … (1)

where, the value of J varies between (0,1). J value of

0 indicates no redundant data while entire data would

be redundant if J value is 1. Based on the extent of

correlation among the collected data the data is

classified as follows.

Based on the extent of similarity, the Jaccard

coefficient value varies between 0 and 1 with 0

indicating no redundancy and 1 indicating complete

redundancy.

Q – Learning Based Data Redundancy Reduction

From previous sections it is evident that the

number of packets transmitted can be decreased by

eliminating temporally correlated data which

decreases packet overhead and increases energy

optimization. Data mining techniques are widely

adopted to implement in WSN for the lightweight

algorithms and requirement of minimum data set for

processing. One such approach is the reinforcement

learning or reward based learning process where the

agent learns to act based on the rewards it receives for

its actions. Q- Learning stands for Quality learning

where the agent learns about the trends of data being

sensed and estimates the environmental changes

based on this observation. This type of regret learning

can occur with minimal dataset which makes this

approach suitable for resource constrained WSN

nodes. Exploration exploitation is a technique where

the learner is allowed to act randomly to certain

extent. This short-term randomness is introduced to

discover all possible actions that could optimize the

solution. Such short term sacrifices are included to

achieve high accuracy in the long run.

The elements of Q-Learning are available states,

possible actions, reward for actions and an

environment to be sensed. The three states considered

here are 1) High correlation, 2) Medium correlation

and 3) Low correlation as described in previous

subsection. The actions to be implemented as the

output of algorithm are 1) Transmit entire data, 2)

Transmit non- redundant data only and 3) Do-not

transmit. The node enters sleep state during action3 i.e.,

neither sensing nor communication occurs. This mode

preserves maximum energy and is quintessential in

extending the lifetime of networks built using micron

nodes. The primary duty of the agent is to update the Q

– matrix which is initialized as all zeros during training

phase. It is based on this matrix; the agent decides the

action to be implemented.

Fig. 2 — Architecture of a wireless node and sub blocks

J SCI IND RES VOL 80 FEBRUARY 2021

152

The exploration and exploitation is implemented

using –greedy algorithm.
10

 This algorithm explores

forever finding all possible actions during

implementation.
11

By following – greedy approach, the suitable action

is predicted using Eq. 2.

Current_action = Argmax (Q (S, A)) … (2)

The above function chooses the action with

maximum Q value, i.e., the action with maximum

reward. The Q value after implementation of

current_action is updated by the learner using

Bellman’s equation in Eq. 3.

 … (3)

where,

α – Learning rate s (0,1)

γ – Discount factor s (0,1)

R – Reward corresponding to the action.

The deep sleep after every action extends the life of

the micron devices by reducing the heat exposure.
7

The adaptive sleep cycles make the networks more

suitable for dynamic environments.
12,13

Algorithm: Q Learning based data redundancy reduction

Inputs: Jaccard co-efficient (J), Reward matrix

Outputs: Current action, Sleep duration

Train the learner and obtain Q-Matrix

1. Divide the sensed data into two arrays.

2. Compute the Jaccard coefficient - J for the two

arrays.

3. Estimate current state based on J value.

4. Initialize randomness factor

5. If (random(0,1) ≥ 1)

Current action = Q(S,A)

6. Else Current action = random (states)

7. Update Q matrix

8. Diff = Qnew Qold

9. If (Reward ≥ 0) Θnew= Θold+ W×Diff

10. Else Θnew= Θold W × Diff

11. End If

Sensor Fault Detection

In general, WSN deployed in unapproachable

regions are prone to failures. The sensor failure may

occur due to software, hardware or communication

faults. Communication failures occurrences are

usually rare. Detecting hardware failure is proposed

here using SVM classifier. Five types of faults are

simulated for injection. SVM has inner product

kernels with ability to classify linearly non-separable

cases by mapping to higher dimensions. Further,

SVM classifiers allow generalizations to overcome

the issue of overfitting.

Dataset Preparation

SVM classifiers are supervised learning algorithms.

Hence, labelled dataset has to be prepared to train

the fault classifier as in Fig. 3. Fault readings are

generated from normal dataset t, at any instant i, using

following expressions:

Drift Fault:Readings monotonously either increase

or decrease with time deviating from actual reading.

f(i) = t(i) ± K

where K is monotonously increasing constant.

Spike Fault: Spikes of high value shoot up at

random time instants in sensed data.

f(i) = M

where, M is spike value and i is the position where

spike occurs.

Hardover Fault: The values sensed goes beyond

bounds of actual values corresponding to the

environment being sensed.

f(i)=α

where, α is a value out of bounds.

Erratic Fault: Addition of Gaussian noise to actual

data sensed from the environment.

f(i) = awgn(t(i))

where, the function awgn adds Gaussian noise to t(i).

Stuck-at Fault: The sensor output remains in same

value throughout the duration.

f(i) = t(n)

where, n is the last reading at which the value is stuck.

Fig. 3 — Dataset preparation procedure to train fault classifier

ABBAS & ABIRAMI: REALIZATION OF AUTONOMOUS SENSOR NETWORKS USING AI

153

In above expressions, f(i) refers to fault signal and

t(i) refers to original signal at time instant ‘i’.

Feature Extraction

The feature extraction is done to filter the behavioral

patterns from the raw data. The time domain features

computed are root mean square, peak-to-peak value,

crest factor, root amplitude square, kurtosis, skewness,

standard deviation, impulse factor, margin factor and

shape factor. Feature selection is performed to identify

the significant features and eliminate the rest. The

significant features selected for training are root mean

square, peak-to-peak value, crest factor impulse factor,

margin factor and shape factor.

SVM Classifier

Support Vector Machine (SVM) is a supervised

machine learning algorithm in which each point is

represented in n-dimensional space with value of each

feature being the value of particular coordinate

appropriate for real time sensing techniques.
14

 In

training phase, an appropriate hyperplane to differentiate

the two classes very well is formed. The classifier

then finds the minimum distance of the frontier from

closest support vector. In generalized form, the

equation of decision vector is given in Eq. 4.

 … (4)

where,

W – weight vector determined during training phase

b – bias and

x – the input vector to be classified.

In case of binary classification, the input vector

belongs to positive class if W
T
x + b > 0 and negative

class if W
T
x + b< 0. To solve problems that ae not

linearly separable, the points are transformed to

higher dimension to convert them into linearly

separable problem. The SVM finds the optimal

hyperplane satisfying Eq. 5.

 … (5)

The decision boundary is formed using Eq. 6.

 … (6)

where,

K – Kernel function

αi – Label

b – Bias

The kernel function used in this work is quadratic

function of degree 2, a non-linear transform function

to minimize classification errors as in Eq. 7.

 … (7)

SVM are suitable classifiers for their accuracy in

high dimensional spaces, clear margin of separation

and efficiency obtained from simple support vectors.

Also, the classifier can be implemented with trained

confusion matrix even in resource constrained nodes

and effective for time series calculation.

Compressive Sensing

The Compressive sensing theory states that it is

possible to reconstruct the original data from fewer

samples than actual number of samples being

transmitted thereby increasing energy efficiency and

optimal resource utilization. Compressive sensing is

usually achieved using either of two approaches – 1.

Sending only the essential components containing

maximum information relating to the data, 2.

Reducing the count of data by using transform

function. The widely implemented method for

compressive sensing is PCA that follows former

approach but, suffers from a serious disadvantage of

poor performance on non-linear data and requirement

for resourceful nodes. Whereas, the Autoencodesrs

following latter approach overcomes these setbacks.

Autoencoder

Autoencoders are special types of neural networks

following unsupervised learning technique. Unlike

other Neural Networks Autoencoders map the input

domain back to input domain. A typical Autoencoder

comprises three layers, encoder, code and decoder

(Fig. 4). The encoder block performs transform

operation on input data and generates code which

when operated using decoder block reconstructs

original data. In most of the cases, the decoder is

inverse transform of encoder transform function. In

this work, the encoder block is implemented at sink

node and code generated is transmitted to the cloud

where reconstruction using decoder block occurs.

Autoencoders are unsupervised and entirely data

specific. Models trained on particular type of data can

used for compression of similar data only. However,

they are not completely error free and hence an error

minimization function added inherently.

A simple Autoencoder containing only one hidden

layer would suit our requirement on a resource

constrained node. The transform function used is

J SCI IND RES VOL 80 FEBRUARY 2021

154

logistic sigmoid function mentioned in Eq. 8. The loss

function used is mean squared error with

sparse regularization given by Eq. 9. The encoder

(recognizer) block is concerned with recognizing the

pattern hidden in input sequence and the decoder

(reconstructor) block reconstructs the original

sequence based on learned parameters.

The input and output blocks contain same number

of neurons while the hidden layer neurons decrease to

code layer on encoder block and increases to output

layer at decoder block. The Autoencoder implemented

is fully connected.

 … (8)

Where,

x – code value

z – input values

 …(9)

Sparse regularization is done to lay constraint on

output values so that the outputs do not deviate too

much from the input values. Sparsity is the inherent

characteristic of Autoencoders and is adjusted to

required extent using sparsity function and L2

regularization function to fine-tune sparsity regulator

ate represented as Ωs and Ωw respectively in Eq. 9.

Results and Discussion

The experiment is carried out by distributing 8

sensing nodes across laboratory environment along

with two cluster heads and one sink node. AI learners

are trained using MATLAB Machine Learning

toolbox, algorithms are dumped into nodes using

Arduino IDE and ThingSpeak cloud is used for final

visualization.

Network Configuration

The communication among the nodes is established

using IEEE 802.11 standard and TCP/IP protocol

which is connection based.
15

 Initialization at Sensing

node, Cluster head and Sink node are shown in Fig. 5.

The sensing nodes always function as Station

Points (STA) i.e., connect to Access Points (AP) and

relay on them to transmit and receive data. The cluster

heads function as both Station and Access points

during data transmission and switch between the

modes based on requirement. Cluster Heads are AP

for sensing nodes and STA for sink node whereas; the

sink node is an AP for cluster head and STA for local

router while transmitting data to the cloud. The sink

and cluster heads are assigned fixed IP and the cluster

heads allocate IP for the sensing nodes using DHCP

protocol.

Optimal Data Transmission

MATLAB simulation result for optimal data

transmission algorithm is shown in Fig. 6. The term

optimal data transmission in this scenario implies

ensuring non redundant data transmission in the

network. The redundancy in data is eliminated at the

initial stage itself i.e., at sensing nodes. Apart from

eliminating redundant data, the algorithm also

Fig. 4 — Architecture of fully connected Autoencoder network

Fig. 5 — Initialization at (a) Sensing node, (b) Cluster head and

(c) Sink node

ABBAS & ABIRAMI: REALIZATION OF AUTONOMOUS SENSOR NETWORKS USING AI

155

chooses the next state for the node to operate and the

duration for node sleep. The reward matrix is

initialized with weights corresponding to the state and

action based on desired operation. Q-matrix initially

declared as null is updated during the number of

iterations in training phase. In testing phase, real time

data are considered and actions are implemented

based on the Bellman’s equation.

The values of alpha, gamma and epsilon are set as

0.3, 0. 9 and 0.6, respectively. The data transmissions

on various actions and the sleep duration estimated

using Eq. 10.

 … (10)

where, Diff – Change in Q value

W – Constant

Θ – Sleep Duration

For action = 1, the entire sensed data is transmitted

to the cluster head and for action = 2, only the non-

redundant data is transmitted while no transmission

occurs for action = 3. Initially 20 data gathered are

grouped into two arrays of 10 elements each. Then

redundant data are eliminated by computing their

union. Q-Learner then predicts an appropriate state

and action. The sleep duration estimated is also

displayed in the serial monitor.

The dataset used for training is Intel Labdata

available at http://db.csail.mit.edu/labdata/labdata.

html. It contains nearly 1100000 readings collected

using 54 sensor nodes deployed in the Intel Berkeley

Research lab between February 28
th
 and April 5

th
,

2004 validated by taking multiple readings for

particular region from different nodes. Of these nearly

1000 data taken from a single node monitoring a

specific region is used to train the Q-Learner

implemented in the sensing nodes. Training is done

using MATLAB and the final trained Q-matrix is

used to implement the algorithm at node level. Then,

300 data of same node are used to test the algorithm

output. The behavior of the proposed algorithm in

realtime is displayed in Fig. 7.

Sensor Fault Detection

Sensor fault detection is done using SVM

classifier. The first step in the process is preparation

of dataset. The source dataset used is Intel Labdata

same as used for previous algorithm. The original

dataset contains nearly 10 lakh data of which 42000

data bound to the range 19–25ºC is considered. These

data are grouped into 42 samples with 1000 data per

sample. Faults are generated using 5 such samples.

Five types of faults are generated as discussed in

previous section. The pattern of fault occurrence is

varied as in 25%, 50 %, 75% and 100% of source

data. One such pattern generated is displayed in

Fig. 8. The dataset containing 42 normal and 25 faulty

samples is used for training.

Fig. 6 — MATLAB simulation result for optimal data

transmission algorithm

Fig. 7 — Implementation of optimal data transmission algorithm

at sensing node

J SCI IND RES VOL 80 FEBRUARY 2021

156

Multiclass SVM is used for classifying the sensor

state adopting one-vs-all approach. Accuracy is the main

parameter determining the performance of the classifier.

Mathematically, accuracy is the ratio of correct

predictions to total predictions given by Eq. 11

 … (11)

Further, the learner after implementation in node

predicts the state of the sensor. The results predicted

by the learner on processing real time sensor data

relayed is displayed in Fig. 9. This algorithm is

implemented at level 2 in Cluster Heads. The data is

checked for fault only when entire data is being

transmitted. Features are extracted for the received

data and then using decision function of the learner

prediction is done based on the sign of the output.

When the data is classified as faulty, message is sent

to corresponding node and the node switches to the

alternate sensor connected the node i.e., network

reconfiguration achieved at the cost of physical

redundancy.

Compressive Sensing

Once the Sink receive entire data sensed, it

compresses the data to 5 values and sends to the cloud

where decoder part of Autoencoder is present and the

data is retrieved back however with some error. The

Autoencoder is trained in MATLAB using Neural

Network toolbox. The training data is generated using

MATLAB random function by generating data within

the bounds within which the physical parameter

sensed would vary in the environment being sensed in

the order as that of data received from the cluster

head. The Autoencoder training parameter using

MATLAB is displayed in Fig. 10 and its properties in

Fig. 11.

The model trained using MATLAB is implemented

at sink node which is responsible for relaying the

received data directly to the cloud. The encoder

weights and bias values are copied from MATLAB

and using the encoder function i.e., Logistic sigmoid

function, the data are encoded. The results of such

compression are displayed in Fig. 12.

Fig. 8 — Faults generation using MATLAB

Fig. 9 — Implementation of sensor fault detection algorithm at

cluster head

Fig. 10 —Autoencoder training parameters

Fig. 11 — Autoencoders properties

ABBAS & ABIRAMI: REALIZATION OF AUTONOMOUS SENSOR NETWORKS USING AI

157

Visualization at Cloud

The compressed data is sent to the cloud i.e.,

ThingSpeak platform where the decoder block of

Autoencoders are present. The Autoencoder is trained

using same data as in offline MATLAB and data is

recovered using inbuilt decode function.

Then, the data is plotted using MATLAB visualizer

app in ThingSpeak cloud. Sensors considered for this

implementation are DHT11 (Temperature), BMP280

(Pressure) and MQ-2 (Methane gas). The data plotted

at the cloud is displayed in Fig. 13.

The decoded JSON at the cloud and the

temperature received as code is shown in Fig. 14.

Data is reconstructed at cloud using Autoencoder’s

decoder block and displayed.

In summary, the proposed work brings in autonomy

to the sensor networks in optimal data transmission, self-

reconfiguration and compressive sensing with the aid of

multiple AI algorithms implemented at various levels of

hierarchical architecture even in resource constrained

micron nodes.

Conclusions
In this work, a robust autonomous WSN is

implemented using inexpensive ESP8266 and

ESP32 based nodes with light weight algorithms is

implemented in cluster tree architecture having three

hierarchical levels to improve scalability and energy

efficiency. Optimal data transmission achieved by

the Q-Learning algorithm implemented in level 1,

fault detection by SVM classifier at level 2 and

compressive sensing at level 3 ensures transmission

overhead reduction apart from bringing in innate

intelligence to the WSN and autonomy in functioning.

The WSN implemented in this work is homogeneous

in nature. The incorporation of AI algorithms to

control the operation of WSN ensures self-reliant

operation of the network to a greater extent. These

networks are suitable for implementation at industries,

forest monitoring, pollution monitoring etc., The

WSNs can be enhanced by introducing OTA

communication which would empower in increasing

the capacity of hardware without increasing the

physical hardware complexity.

Future Work

OTA is an emerging technique which would

empower in increasing the capacity of hardware

without increasing the physical hardware complexity.

The micron nodes like ESP8266 and ESP32 also

support OTA communication which can be exploited

to enable firmware update provision thus supporting

periodic evolution of the network.

References
1 Alsheikh M A, Lin S, Niyato D & Tan H-P, Machine learning in

wireless sensor networks: algorithms, strategies, and

Applications, IEEE Commun Surv Tutor, (2) (2015) 1996–2018.

2 Byun H & Yu J, Adaptive duty cycle control with queue

management in wireless sensor networks, IEEE Trans

Mobile Comput, 12(6) (2013) 1214–1225.

Fig. 12 — Implementation of compressive sensing at sink node

Fig. 13 — Visualization of sensed data at cloud

Fig. 14 — Data reconstruction from code at cloud

J SCI IND RES VOL 80 FEBRUARY 2021

158

3 Das S N, Misra S, Wolfinger B E & Obaidat M S, Temporal-

correlation-aware dynamic self-management of wireless

sensor networks, IEEE Trans Industr Inform, 12(6) (2016)

2127–2138.

4 Zidi S, Moulahi T & Alaya B, Fault detection in wireless

sensor networks through svm classifier, IEEE Sens J, 18(1)

(2018) 340–347.

5 Jan S U, Lee Y-D, Shin J & Koo I, Sensor fault classification

based on support vector machine and statistical time-domain

features, IEEE Access, (5) (2017) 8682–8690.

6 Cheng Y, Liu Q, Wang J, Wan S & Umer T, Distributed fault

detection for wireless sensor networks based on support

vector regression, Wirel Commun Mob Comput, (2018) 1–8.

7 Harb H, Makhoul A, Tawbi S & Couturier R, Comparison of

different data aggregation techniques in distributed sensor

networks, IEEE Access – Special Section on heterogeneous

crowdsourced data analytics, (5) (2017) 4250–4263.

8 Kong L, Zhang D, He Z, Xiang Q, Wan J & Tao M,

Embracing big data with compressive sensing: a green

approach in industrial wireless networks, IEEE Commun

Mag, 54(10) (2016) 53–59.

9 Sirshar M, Saleem S, Ilyas M U, Khan M M, Alkatheiri M

S & Alowibdi J S, Big data dimensionality reduction

for wireless sensor networks using stacked autoencoders, in

Research & Innovation Forum 2019 edited by A Visvizi, M

Lytras, RIIFORUM 2019, Springer Proceedings in

Complexity, Springer, Cham, 391–400, https://doi.org/

10.1007/978-3-030-30809-4_35

10 Sutton R S & Barto A G, in Reinforcement Learning: An

Introduction (MIT Press, USA) 143 – 166.

11 Silver D, UCL course on reinforcement learning, UCL

London Global University, Available: http://www.cs.ucl.ac.uk/

staff/d.silver/web/Teaching.html.

12 Abdel Salam H S & Olariu S, Toward adaptive sleep

schedules for balancing energy consumption in wireless

sensor networks, IEEE Trans Comput, 61(10) (2012) 1443–

1458.

13 Savaglio C,Pace P, Aloi G, Liotta A & Forting G,

Lightweight reinforcement learning for energy efficient

communications in wireless sensor networks, IEEE Access,

(7) (2019) 29355–29364.

14 Ahmed M B & Ambhaikar A, Wireless sensor networks:

techniques for detecting faults using artificial intelligence,

IJRASET, 7(4) (2019) 1343–1349.

15 Al Aghbari Z, Khedr A M, Osamy W, Arif I &

Agrawal D P, Routing in wireless sensor networks using

optimization techniques: a survey, Wirel Pers Commun, 3

(2020) 2407–2434.

