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Researchers are proficient in preprocessing skin images but fail in identifying efficient classifiers for classifying skin 
cancer due to the complex variety of lesion sizes, colors, and shapes. As such, no single classifier is sufficient for classifying 
skin cancer legions. Convolutional Neural Networks (CNNs) have played an important role in deep learning, as CNNs have 
proven successful in classification tasks across many fields. However, present day models available for skin cancer 
classification suffer from not taking important spatial relations between features into consideration. They classify effectively 
only if certain features are present in the test data, ignoring their relative spatial relation with each other, which results in 
false negatives. They also lack rotational invariance, meaning that the same legion viewed at different angles may be 
assigned to different classes, leading to false positives. The Capsule Network (CapsNet) is designed to overcome the above-
mentioned problems. Capsule Networks use modules or capsules other than pooling as an alternative to translational 
invariance. The Capsule Network uses layer-based squashing and dynamic routing. It uses vector-output capsules and max-
pooling with routing by agreement, unlike scale-output feature detectors of traditional CNNs. All of which assist in avoiding 
false positives and false negatives. The Capsule Network architecture is created with many convolution layers and one 
capsule layer as the final layer. Hence, in the proposed work, skin cancer classification is performed based on CapsNet 
architecture which can work well with high dimensional hyperspectral images of skin. 
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Introduction 
Skin cancer is one of the most common cancers all 

over the world. It is estimated that approximately 
9,500 people in the U.S. are diagnosed with skin 
cancer everyday.1 There are 5.4 million new cases of 
skin cancer in the United States every year2, and 
according to the current estimation, one in five 
Americans will develop skin cancer in their lifetime. 
Like the other types of cancers, most skin cancers can 
be cured if diagnosed early enough. Skin cancer is 
primarily diagnosed visually, beginning with an initial 
clinical screening, followed by dermoscopic analysis, 
and ultimately a biopsy and histopathological 
examination. The biopsy method is done by removing 
or scraping off a skin sample that will undergo a 
series of laboratory testing, which can be painful and 
time consuming. Dermoscopy is one of the golden 
techniques to exam skin lesions because it can capture 
high-resolution images of the skin regardless of 

interruption from surface reflections.2 Experienced 
clinicians use this high-resolution imaging to evaluate 
the possibility of melanoma at the early stage with 
considerable accuracy. Unfortunately, there are not 
enough experienced dermatologists all over the world. 
To solve the problems specified above, computer-
aided diagnosis is performed to classify different skin 
associated diseases using dermoscopy images. 
However, over the last decade, the conditions for 
developing computer-aided skin legion diagnosis 
systems were unfavorable. For instance, the numbers 
of cases in the database were inadequate for learning 
accuracy and for extracting useful features. Moreover, 
dermoscopic images are acquired via a specialized 
instrument, and histological images are acquired via 
invasive biopsy and microscopy. Although both 
modalities yield highly standardized images, 
hardware up until now was incapable of handling 
such data. The proposed approach combines image 
processing techniques and advanced deep learning 
techniques. The proposed approach achieves 
automated classification of skin lesions using images. 
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This is a challenging task because of the close-grained 
variability in skin lesions. The main contribution of 
this paper is stated as follows:  
• This research uses an advanced deep learning 

architecture to classify the skin cancer from the 
given images.  

• The capsule architecture used in this paper is 
modified in such that it overcomes the drawback 
of pooling layer. CapsNet has a drastic advantage 
in its capable to distinguish the spatial 
relationship between the features by making them 
translation-equivariant and viewpoint-equivariant. 
Hence, the CapsNet is capable of detecting the 
cancer spot anywhere in the image.  

• Experimental validation is carried out using 
BioGPS and HAM 10000 – Skin cancer dataset.  

 
Background 

Deep learning in medical image classification is 
nothing new. Researchers around the world are 
utilizing Convolutional Neural Networks to solve 
common problems in the field of image classification. 
CNNs were built at first to classify images; they do so 
by using successive layers of convolutions and pooling. 
When training a traditional CNN, we only care about 
whether the model predicts the right classification or 
not. The pooling layer in a convolutional block is used 
to reduce the data dimension and achieve spatial 
invariance, which means regardless of where the object 
is placed in the image, it identifies the object and 
classifies it. While this is a powerful concept, it has 
some drawbacks.  

The drawback of a CNN is that during pooling it 
tends to lose a lot of useful information while 
performing tasks such as image segmentation and 
object detection. The pooling layer loses the required 
spatial information due to the rotation, location, scale, 
and different positional attributes of the object. Hence, 
the process of object detection and segmentation 
becomes difficult and the outputs are sensitive to small 
changes in the inputs. This is a problem when detailed 
information must be preserved throughout the network. 
CNNs accumulate sets of features at each subsequent 
layer, starting with finding edges, shapes, and finally 
objects. However, little information about the spatial 
relationship between these features such as size and 
orientation, is retained. Therefore, the result is 
ambiguous conclusions due to samples of the same 
images with different orientations being considered as 
different images. One way to overcome the problem is 

with excessive training for all possible angles, which 
ultimately takes a lot more time and computational 
efficiency. This issue is addressed by building complex 
architectures around CNNs to recover some of the lost 
information. While modern CNN architecture has 
managed to reconstruct the positional information 
using a combination of advanced techniques, it still 
requires more enhancements to achieve 100% 
efficiency. Another notable shortcoming of the  
pooling layer is if the position of the object is  
slightly changed, the activation does not seem to 
change with its proportion. This leads to good accuracy 
in terms of image classification, but results in poor 
performance.  
 
Capsnet in Classification 

A CapsNet is a collection of capsules. A capsule is 
a group of neurons representing an entity present in an 
image. A capsule provides two values corresponding 
to an entity it represents. The first is the probability 
that the entity represented by a capsule exists in the 
image. The second is the initial parameters for that 
entity.  

The probability value of the capsule conveys the 
existence of the object in the image. These initial 
parameters represent certain characteristics of the 
entity represented by the capsule, which includes 
position, size, hue, position, saturation, etc. 
Additionally, the initial parameters of the capsule 
include its geometric properties and color statistics 
(color, length, breadth, and texture). As mentioned, a 
capsule is a collection of neurons. Each neuron can be 
considered a property of the entity and in this case the 
capsule encompasses 4 neurons for each property. 
This can be represented as a vector with parameters as 
x1, x2, x3, and x4. The probability of existence is the 
length of this vector. The probability of the presence 
of the entity can be derived from these parameters as: 
 

P =∑ x   … (1) 
 

But this probability value must lie within the range 
[0,1]. The capsule output must be transformed to fit 
into this range. This non-linear transformation of the 
output is called the squashing function. This function 
serves as an activation function for the Capsule 
Networks. The Capsule Network, like other neural 
networks, is structured with different layers. There are 
two basic layers in the Capsule Network known as 
Primary layer and Secondary layer. The capsules in 
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the primary layer or the lowest layer are termed as 
primary capsules. The capsules in the secondary layer 
or higher layers are called the routing capsules. The 
primary capsules represent small regions of an image, 
biologically known as a receptive field. These 
capsules try to locate the existence of an entity or an 
object with a probability based on different geometric 
parameters. The routing capsules in the higher layers 
recognize more complex objects which are composed 
of smaller entities. Routing by agreement is one of  
the important algorithms of CapsNet by which the 
lower layers and the higher layers work together to 
recognize the presence of an object in the image.  
This routing between the capsule leads to a coupling 
effect.  

When the capsules in the lower layer acknowledge 
the higher layer about the presence of a high-level 
entity, the capsules in the higher layer will send 
feedback to the lower layer capsules. The feedback 
helps improve the output manipulated by the lower 
layer capsules. The primary capsule layer in a 
CapsNet is usually a combination of regular 
convolutional layers which helps in extracting the 
primary features of the images through feature maps. 
The feature maps are reshaped accordingly and with 
the assistance of the squashing function, the output of 
the primary capsule layer will be a vector of length 
between 0 and 1.  
 
Related works 

Machine learning algorithms have been widely 
applied to the problem of skin cancer classification. 
Though insufficient for advanced classification, 
logistic regression methods are used to complete basic 
classification and test the efficacy of feature 
engineering.3 Support vector machines (SVM), 
Bayesian classifiers, and decision tree classifiers have 
all been explored.4,5,6 Artificial neural networks have 
been applied using many methods including multi-
layer perceptron and back propagation.5 

Convolution neural networks7,8 exemplify their 
flexibility and predictive power when applied to skin 
cancer classification. In recent years, many 
applications aiming for maximum diagnostic 
classification have utilized CNNs. CNNs9 require a 
large dataset in order to properly generalize its 
prediction. In order to overcome this, many are 
trained using transfer learning. Transfer learning uses 
pretrained features to expedite the recognition of 
legion properties like asymmetry and border hardness. 

For application to skin cancer diagnosis, deep 
learning image classification networks like Inception, 
ResNet, AlexNet, VGG are some predominant 
networks used in transfer learning.10–14 One of the 
most widely used, pretrained models is InceptionV3 
presented by Wojna et al.15 The CNN was trained 
using the ImageNet Large Visual Recognition 
Challenge dataset, where it placed second.16–19 
AlexNet was the first-place contestant in the same 
competition in 2012 and has since seen transfer 
learning applied to many image analysis domains.20 

It is difficult to compare deep learning 
architectures addressing the problem of skin cancer 
classification, because studies often use unavailable or 
partially unavailable datasets for training and 
testing.21 The classes within the dataset are rarely 
proportional and often are starkly disproportional. 
Beyond this, model formulation varies greatly, and 
evaluation techniques may not align.  

Ensemble learning22 is a supervised learning 
algorithm that makes a single prediction based on the 
hypotheses of two or more existing predictive models. 
These models may differ in architecture or differ in 
training set.14,22,23 Ensembles combine the hypotheses 
of each model and produce a final prediction that 
potentially could differ from all its component 
models. This shows that an ensemble architecture can 
create a more complex hypothesis function than can 
be achieved through a singular model. Ensemble 
methods often place among the top in online machine 
learning competitions. 

Estava et al.24 presented a deep learning model 
trained on 129,450 images. This method uses a 
GoogLeNet Inception v3 pretrained with the 
ImageNet database. This landmark study can claim 
diagnostic rates on par or better than dermatologist 
evaluation.  

An ensemble classifier proposed by Bi et al. 12 used 
the technique of training the same model on slightly 
varying datasets. One ResNet was trained to classify 
between melanomas, seborrheic keratosis, and nevi. 
One ResNet was a binary classifier trained to classify 
melanoma versus any other class. The last ResNet 
was a similar one-vs-all binary classifier aiming to 
diagnose seborrheic keratosis. Pretraining using the 
ImageNet dataset was applied to each model. With 
only 150 dermoscopic images the method achieved an 
overall ROC AUC of 0.915 over all classes.  

Milton14 experimented with modern deep learning 
models using the ISIC 2018 Melanoma Detection 
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Challenge dataset. The study used the PNASNet-5-
Large, Inception ResNetV2, SENet154, InceptionV4, 
along with an ensemble classifier. Each classifier was 
pretrained on the ImageNet using a tactic of first 
training on a largely frozen network, and then 
allowing the final few layers to be precisely tuned by 
the limited dataset. Results show PNASNet-5-Large 
had the highest validation score of 0.76, and the 
ensemble performed comparably with a validation 
score of 0.73. 

Afshar et al.25 presented a comparison of CapsNet 
architectures for classification of MRI images 
containing brain tumors into three classes. The best 
performing architecture had one convolution layer 
and 64 feature maps, and it achieved an accuracy of 
86.56%. A standard CNN trained on the same 3,064 
MRI images only produced an accuracy of 72.13%. 
This is due to the CapsNet architecture’s ability to 
train with a small number of images. The CapsNet 
rather had the issue of over fitting and required an 
early-stopping approach. Both networks performed 
better using segmented tumor data as input rather than 
whole brain images.  

Iesmantas, Alzbutas et al.21 proposed a 
convolutional Capsule Network, for classification of 
four types of images of breast tissue biopsy using 400 
hematoxylin and eosin stained breast histology 
microscopy images. No transfer leaning was used, and 
the Adam optimizer was utilized with a learning 
parameter of 0.0001. 75 percent of the images are 
used for training and the other 25 percent underwent 
5-fold cross-validation. Cross-validation resulted in 
an average accuracy of 87 across the four classes.  

Zhang et al.13 proposed a modern CNN classifier 
that leverages an algorithm that was designed using 
observations from the hunting pattern of whales. A 
concern with many optimization techniques it that the 
model will train to a local optimum rather than a 
global one. Mirjalili zhan.16 designed the Whale 
Optimization Algorithm (WOA) in order to better 
determine the global optimum for model tuning. The 
proposed model was tested on two benchmark 
datasets (Dermquest, DermIS) and comparatively 
evaluated among 10 other diagnosis techniques. The 
proposed classifier outperformed all other classifiers 
in both sensitivity and specificity. 

CNNs have become the field leader in skin legion 
classification due to their high precision.13–15 Yet they 
often cannot be properly trained and tested due to the 
lack of a unified skin legion dataset.21 As such, many 

studies leverage systems that can be trained with 
fewer images, such as ensemble models.22 
Comparison of models is difficult and no one model 
has shown to effectively classify all skin legions.24–26 
Beyond this, traditional CNNs have the information 
loss in the pooling layer.27–30 This means that they 
grant translational invariance but not rotational 
invariance.31 To achieve this CapsNet models use 
vector-output capsules and max-pooling with routing 
by agreement, unlike scale-output feature detectors of 
CNNs. 
 
Proposed method 

The proposed convolution layer uses a traditional 
convolution network with the ReLUactivation 
function to extract the basic features of the image. 
The input image provided to the input layer is resized 
to 28×28 after applying initial preprocessing step. 
Each pixel is considered as xi. The input layer is of 
size 28*28*1. 

The subsequent layers of the CapsNet are the 
convolutional layer and the capsule layer which are 
mainly needed for the detection of the entities needed 
for classification. The CapsNet architecture, as shown 
in Fig. 1, is similar to a general neural network 
architecture except for the introduction of the capsule 
layer block consisting of a sequence of capsule layers. 
This layer is used to divide features into capsules. 
This part contains a convolution layer with a kernel 
size of 9 and a stride size of 1 with filter 256. This 
layer performs the dot product between the filter and 
the blocks of input images. The next capsule layer is 
of size 32. The output size is 20×20×256 
(20×20×32×8), and the dimensionality of each 
capsule is 8.  

The final layer in the proposed method is a fully 
connected layer, usually using the SoftMax activation 

 

Fig. 1 — A Basic CapsNet Architecture 
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function for classification. Here, the probabilities 
returned by the SoftMax activation function for each 
input are assigned to one of the mutually exclusive 
classes. Automatic classification of skin cancer based 
on the object skin lesion images helps to improve 
dermoscopic analysis and examination since there can 
be a fine-grained difference in the appearance of skin 
lesions. The SoftMax activation function is given in 
Eq. 2. 

 
𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑥 𝑒 /∑ 𝑒   … (2) 
 

The loss of the proposed model is predicted with 
the cross entropy as in Eq. 3. 

 
Loss(p,q) = -∑p(xi)log(q(xi))  ... (3) 
 
where p is the probability distribution of each pixel. 
The proposed method is graphically represented in 
Fig. 2. 
 
Results and Discussion 

The proposed approach is validated using BioGPS 
and HAM 10000 – Skin cancer dataset. The sample 
dataset is shown in Fig. 3. Transfer learning is used to 
train the Capsule Network used in this research to 
identify the skin cancer cell from the dermatological 
photo. Transfer learning is an efficient method used 
for training the CNN. The datasets used for 
experimental validation are small and training from 
them is not effective. To address this, the first few 
layers of the network are used to train a linear 
classifier on the output from these initial layers. The 
method works by reusing the already learned features 
of a benchmarked neural network. Here we used DNN 
which has more than 1000 categories with a thousand 
images in each category. The experimentation is 
carried out in a Windows 10 machine with NVIDIA 
Titan Xp GPU and Intel Xeon - Octo- core processor, 
128 GB RAM. The accuracy rate for both training and 
testing are shown in Fig. 4. The loss rate for both 
training and testing are shown in Fig. 5. Datasets of 
BioGPS and HAM 10000 contains 7 different classes 
of images namely:akiec, bcc, bkl, df, mel, nv, vasc. 

The network is tuned by considering the number of 
epochs, rate of learning and the size of batches. 
Though empirical experimentation the number of 
epochs is determined to be 50. The learning rate was 
estimated to be between 0.01 and 0.001 and found to 
produce better performance on CapsNet using 0.001. 
The batch size considered is 10. The experimentation 

 
 

Fig. 2 — Architecture of Proposed Method Sample 

 

Fig. 3 — BioGPS and HAM 10000 - Skin Cancer Dataset 
 

 

Fig. 4 — Accuracy vs. Epoch 
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is performed by considering 7010 training images and 
3005 testing images. 

The configuration details of the capsule network 
are given in Table 1. The first convolution layer is 
applied with 256 filters with kernel size 9 resulting in 
an output of 20×20×256 (this is obtained by 28−9+1). 
The parameters generated at this layer are 20992. 
These learning parameters are obtained by 
9×9×1×256 which is same in every layer. 

The accuracy of the proposed network in regard to 
epochs is shown in Fig. 4. The loss vs. epochs 
comparison, it is depicted in Fig. 5 that the loss is 
decreased at every epoch. 

The performance of the proposed network is 
evaluated using the measures precision, recall, f1-score 
and the support. From Table 2, the network showed 
approximately 92% of precision, 91% of recall and f1-
score and a support of 938 which is outperforming all 
the existing techniques for classification of skin 
cancers. It is clearly seen from Fig. 6 that the CapsNet 
is capable to detect malignant accurately. The 
performance analysis of the CapsNet model and the 
state-of-the-art models are shown in Fig 7. From Fig. 
7a it is clear that the proposed model achieves nearly 
an accuracy of 92% which is greater than the state-of-
the-art model.24,25,20 From Fig. 7b it is clear that the 

false positive rate for the CapsNet model is much lesser 
than the state-of-the-art models.24,25,20 

The confusion matrix of the proposed network is 
depicted in the Table 3. 

 

Fig. 7 — Performance analysis – CapsNet vs state of the art 
model 
 

Table 1 — Network configuration for skin cancer classification 

Layer (type) Output Shape Param # Connected to
input_1 (InputLayer) (None, 28, 28, 1) 0  
conv1 (Conv2D) (None, 20, 20, 256) 20992 input_3[0][0]
conv2d_2 (Conv2D) (None, 6, 6, 256) 5308672 conv1[0][0] 
reshape_2 (Reshape) (None, 1152, 8) 0 conv2d_2[0][0]
lambda_2 (Lambda) (None, 1152, 8) 0 reshape_2[0][0]
digitcaps  
(CapsuleLayer) 

(None, 7, 16) 1040256 lambda_2[0][0]

input_4 (InputLayer) (None, 7) 0 digitcaps[0][0]
mask_2 (Mask) (None, 16) 0 input_4[0][0]
dense_4 (Dense) (None, 512) 8704 mask_2[0][0]
dense_5 (Dense) (None, 1024) 525312 dense_4[0][0]
dense_6 (Dense) (None, 784) 803600 dense_5[0][0]
out_caps (Length) (None, 7) 0 digitcaps[0][0]
out_recon (Reshape) (None, 28, 28, 1) 0 dense_6[0][0]
 

Table 2 — Performance measures of Capsule Network 

classes precision recall f1-score support 
akiec 0.50 0.42 0.46 26 
bcc 0.41 0.87 0.55 30 
bkl 0.77 0.13 0.23 75 
df 0.10 0.50 0.17 6 
mel 0.28 0.49 0.35 39 
nv 0.94 0.91 0.92 751 
vasc 0.67 0.73 0.70 11 
avg / total 0.94 0.91 0.91 938 

 

Fig. 5 — Loss vs. Epoch 
 

 

Fig. 6 — Results: Skin cancer classification 



J SCI IND RES VOL 79 NOVEMBER 2020 
 
 

1000

The proposed method has shown good 
classification of skin cancer images when compared 
to existing methods in the literature. The CapsNet 
architecture overcomes one of the important 
drawbacks of the Convolutional Neural Network. A 
CNN’s architecture is composed of a sequence of 
convolutional, pooling, and fully connected layers. 
The Max Pooling layer is a type of routing 
mechanism. Only the active feature from that layer is 
passed to the further layers, but the higher layers do 
not provide any feedback to the routing from the 
pooling layer. This is introduced in the CapsNet with 
a dynamic routing mechanism. Additionally, the 
CapsNet has the capability to recognize tumors with 
few iterations, whereas the existing networks like 
CNN, need training on huge image sets. This 
indicates the significance of the CapsNet in the image 
recognition field. CapsNet can be utilized to achieve a 
performance comparable to the dermatologists.  
 
Conclusions 

In this paper, an approach to detect skin cancer that 
is robust enough to segment the cancer region was 
proposed. The training images are equally weighted 
so that the distribution among the samples are best 
approximated and further used for classification in the 
CapsNet model. From the experimental results, it is 
concluded that the proposed approach is better in 
terms of segmentation and classification than the 
state-of-the-art classifiers available for skin cancer 
detection. In the experiments, various features were 
compared, and it was determined that the proposed 
approach is more sensitive than the state-of-the-art 
classifiers.  

The proposed model was trained using Ham10000 
dataset which consists of 10015 dermatoscopic 
images. For future work, we have a plan to use 
different data augmentation techniques to increase the 
data set size. In addition to that to improve the 
classification efficacy further, we will work towards 
adding more clinical data covering all diverse aspects 

like skin type, race, age, etc. Further research will also 
focus on adding features to incorporate the patient’s 
medical record in addition to dermatoscopic images to 
facilitate enterprise-level computer-aided diagnosis 
tool development. 
 
Acknowledgment 

NH-INBRE New Hampshire INBRE, (IDeA 
Network of Biomedical Research Excellence) which  
is a program funded by the National Institutes of 
Health. 
 
References 
1 Bray F, Ferlay J, Soerjomataram I, Siegel R L, Torre L. A & 

Jemal A, Globalcancer statistics 2018: GLOBOCAN 
estimates of incidence and mortality worldwide for 
36cancers in 185 countries, Ca Cancer J Clin, 68(6) (2018) 
394–424. 

2 Rogers H W, Weinstock M A, Feldman S R, & Coldiron B M, 
Incidence estimate of nonmelanoma skin cancer 
(keratinocyte carcinomas) in the US population 2012, JAMA 
Dermatol, 151(10) (2015) 1081–1086. 

3 Mishra N K, Kaur R, Kasmi R, Kefel S, Guvenc P, Cole J G, 
Hagerty J R, Aradhyula H Y, LeAnder R, Stanley R J, Moss 
R H, Stoecker W V, Automatic separation of basal cell 
carcinoma from benign lesions in dermoscop[y images with 
border thresholding techniques, Proc. 12th Int Conf Comput 
Vis Imag Comput Graph Theory Appl, 2017, 115–123. 

4 Ramezani M, Karimian A, Moallem P, Automatic detection 
of malignant melanoma using macroscopic images, J Med 
Signals Sens, 4(4) (2014) 281–290  

5 Ruiz D, Berenguer V, Soriano A & Sánchez B, A decision 
support system for the diagnosis of melanoma: a comparative 
approach, Expert Syst Appl, 38(12) (2011) 15217–15223. 

6 Kharazmi P, Lui H, Wang Z J & Lee T K, Automatic 
detection of basal cell carcinoma using vascular-extracted 
features from dermoscopy images, IEEE Canadian Conf on 
Elec and Comp Eng (CCECE), Vancouver, BC, 2016, 1–4. 

7 Dorj U, Lee K, Choi J & Lee M, The skin cancer 
classification using deep convolutional neural network, 
Multimed Tools Appl, 77 (2018) 9909–9924. 

8 Menegola A, Fornaciali M, Pires R, Vasques Bittencourt F, 
Avila S & Valle E, Knowledge transfer for melanoma 
screening with deep learning, Proc 14th IEEE Int Symp on 
Biomed Imag, (2017) 297–300. 

9 Pomponiu V, Nejati H & Cheung N M, Deepmole: Deep 
neural networks for skin mole lesion classification, Proc 
ICIP, IEEE, 2016, 25–28. 

10 Kawahara J, BenTaieb A & Hamarneh G, Deep features to 
classify skin lesions, Proc ISBI, IEEE, Prague, 13–16 April 
(2016). 

11 Esteva A, Kuprel B, Novoa R A, Ko J, Swetter S M,  
Blau H M & Thrun S, Dermatologist-level classification of 
skin cancer with deep neural networks, Nature, 542 (2017) 
115–118.  

12 Bi L, Kim J, Ahn E & Feng D, Automatic skin lesion 
analysis using large-scale dermoscopy images and deep 
residual networks, arXiv, (2017).  

 

Table 3 — Confusion matrix for classes of skin 

  akiec bcc bkl df mel nv vasc 
akiec 11 3 2 3 5 2 0 
bcc 1 26 0 1 2 0 0 
bkl  6 5 10 2 24 28 0 
Df 0 0 0 3 0 3 0 
mel 3 3 0 2 19 11 1 
Nv 1 27 1 19 19 681 3 
vasc 0 0 0 0 0 3 8 
 
 



CRUZ et al.: SKIN CANCER CLASSIFICATION USING CONVOLUTIONAL CAPSNET 
 
 

1001

13 Zhang N, Cai Y, Wang Y, Tian Y, Wang X & Badami B, 
Skin cancer diagnosis based on optimized convolutional 
neural network, Artifi Intell Med, 102 (2020). 

14 Milton A, Automated skin lesion classification using 
ensemble of deep neural networks in ISIC 2018: Skin Lesion 
Analysis Towards Melanoma Detection Challenge, arXiv 
(2019) arXiv:1901.10802. 

15 Wojna Z, Rethinking the inception architecture for computer 
vision, arXiv, (2015). 

16 Iyatomi H, Norton K, Celebi M E, Schaefer G, Tanaka M & 
Ogawa K, Classification of melanocytic skin lesions from 
non-melanocytic lesions, Proc Engineering in Medicine and 
Biology Society (EMBC), Ann Int Conf of the IEEE, 2010, 
5407–5410. 

17 Mirjalili S & Lewis A, The whale optimization algorithm, 
Adv Eng Software, 95 (2016) 51–67. 

18 Argenziano G & Soyer H P, Dermoscopy of pigmented skin 
lesions: A valuable tool for early diagnosis of melanoma, 
Lancet Oncol, 2(7) (2001) 443–449 

19 Hekler A, Superior skin cancer classification by the 
combination of human and artificial intelligence, Euro J of 
Caner, 120 (2019) 114–121. 

20 Brinker T J, Hekler A, Utikal J S, Grabe N, Schadendorf D, 
Klode J, Berking C, Steeb T, Enk A H & von Kalle C, Skin 
Cancer Classification Using Convolutional Neural Networks: 
Systematic Review, J Med Internet Res, 20(10) (2018). 

21 Kreutz M, Anschütz M, Grünendick T, Rick A, Gehlen S & 
Hoffmann K, Automated diagnosis of skin cancer using 
digital image processing and mixture-of-experts, Biomed Eng 
[Biomedizinische Technik], 46 (2001) 376–377. 

22 Iesmantas T & Albzutas R, Convolutional capsule network 
for classification of breast cancer histology images, arXiv, 
(2018) arXiv:1804.08376 
 

23 Harangi B, Skin lesion classification with ensembles of deep 
convolutional neural networks, J Biomed Infomatics, 86(Oct) 
(2018), 25–32, doi: 10.1016/j.jbi.2018.08.006.  

24 Kawaharaan J & Hamarneh G, Multi-resolution-tract CNN 
with hybrid pretrained and skin-lesion trained layers,  
Proc Int Conf on Machine Learning in Medical Imaging 
(MLMI), 2016. 

25 Esteva A, Kuprel B, Novoa R A, Ko J, Swetter S M,  
Blau H M & Thrun S, Dermatologist-level classification of 
skin cancer with deep neural networks, Nature, 542 (2017) 
115–118.  

26 Afshar P, Mohammadi A & Plataniotis K N, Brain tumor 
type classification via capsule networks, arXiv (2018).  

27 Marka A, Carter J B & Toto E, Automated detection of 
nonmelanoma skin cancer using digital images: a systematic 
review, BMC Med Imaging, 19(21) (2019).  

28 Fabbrocini G, Triassi M, Mauriello M C, Torre G, 
Annunziata M C, De Vita V, Pastore F, D’Arco V & 
Monfrecola G, Epidemiology of skin cancer: role of some 
environmental factors, Cancers, 2(4) (2010).  

29 Oliveira R B, Marranghello N, Pereira A S & Tavares J M R 
S, A computational approach for detecting pigmented skin 
lesions in macroscopic images, Expert Sys Appl, 61 (2016) 
53–63. 

30 Oliveira R, Papa J, Pereira A & Tavares J, Computational 
methods for pigmented skin lesion classification in images: 
review and future trends, Neural Computing and Appl, 29(3) 
(2016) 613–636. 

31 Rahman M, Bhattacharya P & Desai B C, A multiple expert-
based melanoma recognition system for dermoscopic images 
of pigmented skin lesions, Int Conf on BioInfomatics and 
BioEngneering, Athens, (2008), 1–6. 

 
 


