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Executive Summary

The appropriate number and timing of unannounced interim inspections in nuclear facili-
ties in the framework of nuclear material safeguards has been discussed in the safeguards
community already for a long time and for good reasons. The matter is relevant both
for EURATOM and IAEA safeguards authorities.

For IAEA safeguards, the implementation is presently shifting from a system mostly
focused on traditional safeguards to the so called ”Integrated Safeguards”, where the
verification system is more holistic and and State level based approach. Consequently,
at least in some cases (i.e. for some facilities in some States), there will be a decrease in
the yearly number of fixed scheduled interim inspections by substituting some of them
with unannounced ones.

For EURATOM safeguards there is also an evolution of the way to implement inspections
in the European Union (EU) together with IAEA activities. Most of the IAEA inspections
in EU will continue to be carried out in presence of EURATOM inspectors. On an other
side, like the IAEA, EURATOM may also carry out unannounced inspection by its own.

Modelling

The analysis of this general problem is in some cases mathematically demanding, and
concrete solutions, i.e., advices on numbers and points of time for specific facilities as well
as effectiveness and efficiency considerations, depend crucially on special assumptions,
some of the most important ones are:

• Whether or not the inspections have to be planned at the beginning of the reference
time interval, e.g., one calendar year, and whether or not they can be observed by
the facility operators;

• If the safeguards authority uses a concept of the kind the earlier an illegal activity
is detected the better, or a critical time concept which means that any illegal
activity has to be detected within a specific time;

• If statistical errors of the first (false alarms) and second kind (failing to detect
illegal activities) have to be taken into account.
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Objectives

In this study unannounced interim inspections are analyzed in general, and specifically in
view of the recently defined IAEA/EURATOM Partnership Approach. In particular the
following aspects are addressed:

• A general discussion of the problem of unannounced interim inspections which
includes an identification and description of all the types of assumptions which are
necessary to be made for a quantitative treatment. Although the discussion will
be of general validity, the context of application will be that of nuclear safeguards.
Prototypical situations arising in safeguards applications are identified with link to
specific practical applications, e.g., On-Site Interim Storage Facilities and Fuel El-
ement Fabrication Facilities, by recognizing which set of assumptions characterizes
which facility.

• An annotated bibliography of applicable work on unannounced interim inspections
done so far and publicly available.

• An identification of a reduced number of prototypical examples and link with
specific safeguards inspections and applications.

• An outline of the general methods identified and proposed for the solution of
problems of that kind.

• The identification of two examples for a detailed analysis to be carried out with
the general method identified in the previous steps.

• Lessons learned and reflections aiming at identifying also practical recommenda-
tions on the matter of unannounced interim inspections.

Organization

This study is organized as follows: In order to be concrete and specific, in the second
chapter two nuclear facilities are described, and the safeguards measures applied by
EURATOM and IAEA in these two facilities are discussed.

The third and fourth chapter are central from the analytical point of view. In the
former, it is assumed, that both antagonists, operator and inspector, plan their activities
simultaneously, i.e., without knowing the strategy of the other one. In the latter, it
is assumed, that the operator uses the knowledge of the inspections performed in the
course of the game. In both chapters both discrete and continuous time versions are
considered.

In the fifth chapter the analyses of the two foregoing chapters are complemented: The
aspect of deterrence is discussed, a critical time game is presented in some detail, and
the global sampling problem, i.e., the number and distribution of unannounced interim
inspections of the IAEA in the States of the EU, is analyzed in some preliminary way.
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In the concluding sixth chapter an attempt is made to summarize the results and to
formulate, with all due care, some recommendations.

In the Annexes additional explanations and proofs are given which complement the main
text.

Selected Findings

In order to give an idea of the kind of results of this work, and without going into
mathematical details, three observations are presented subsequently.

First, a classification is developed of those assumptions which are necessary for uniquely
identifying a quantitative model for unannounced interim inspections in nuclear facilities.
This classification results in 36 different models, four of which are analyzed in detail.
They are applied to two concrete nuclear facilities, namely an On-Site Interim Storage
Facility and a Fuel Element Fabrication Facility.

Second, for a specific facility and a given number of inspections per reference time,
e.g., one year, optimal inspection strategies are determined. Whereas for the case that
inspection are perfect the results can be guessed, this does not hold anymore for imperfect
inspections, e.g., limited sample sizes of seals to be checked.

Third, together with the optimal inspection strategies, optimal expected detection times
are determined as functions of the parameters of the model, namely number k of in-
spections per reference time interval and probability β of not detecting an illegal activity
during an inspection. These results, in particular, permit two uses in practice: Either the
values of the parameters k and β are given and the resulting optimal expected detection
time is determined – which then turns out to be sufficient or not. Or a value of the
optimal expected detection time is postulated and the necessary values of k and β are
determined. This postulated optimal detection time then may be guaranteed by a small
number k of inspections and a small non-detection probability β or vice versa.
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Chapter 1

Introduction

International nuclear material safeguards as carried through by the International Atomic
Energy Agency (IAEA) in partial fulfillment of the Non-Proliferation Treaty (NPT) for
Nuclear Weapons, has undergone considerable changes since its first codification in the
Model Agreement in 1972, see [21]. Due to the experience in the years following this
codification, safeguards was modified and extended considerably, the new provisions were
laid down in the Additional Protocol in 1996, see [22].

In the course of these changes, the relations between safeguards procedures of the
IAEA and those of the European (regional) safeguards authority EURATOM, which
originally were laid down in the so-called Verification Agreement in 1976, see [15], were
reorganized, see [16]. In particular the problem of interim inspections to be carried
through by both safeguards organizations has been discussed for many years; it has been
settled only recently in the so-called IAEA/EURATOM Partnership Approach.

The subject of this study is the analysis of unannounced interim inspections in nuclear
facilities in quite a broad sense. Beyond that its subject is also to demonstrate in which
way advanced methods of applied mathematics, in particular game theory, have to be
used in order that these inspections are organized in an as efficient and effective way as
possible in the spirit of NPT safeguards.

1.1 Objectives

In the course of the discussions leading to this study, three kinds of objectives were
identified. They represent the guidelines and will be described in some more detail now.

First, unannounced interim inspections are just a special problem of the more general
problem of nuclear material safeguards, i.e., the verification of the provisions of the Non-
Proliferation Treaty (NPT) for Nuclear Weapons to be met by the (non nuclear weapons)
States parties to the treaty. Since by definition it cannot be excluded that States do not
meet these provisions – otherwise no safeguards measures would be required – and since,
more than that, it has to be assumed that a State may plan eventual illegal behavior
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CHAPTER 1. INTRODUCTION

strategically, standard methods of Statistics and Decision Theory are not sufficient.
Therefore, methods of Game Theory have to be applied, thus, a first objective of this
study is to demonstrate at the hand of our specific problem how this may be achieved.
Second, unannounced interim inspections pose some specific problems different from
other safeguards measures and tools like material accountancy and data verification.
While the latter ones provide very detailed information at the end of a reference time
interval, e.g., one calendar year, and while they are characterized by the use of advanced
statistical techniques for the evaluation and compilation of measurement data, the former
ones are aiming at the immediate detection of illegal activities or, positively formulated,
confirmation of legal behavior. Therefore, primarily simple techniques for the checking
of seals, or comparing installations in facilities with the design information provided by
the facility attachments, are used, and above all, time is important: Time available for
the inspector in the facility, and time elapsed between the start of an illegal activity and
its detection.

Third and finally, the concrete situation in the (non-nuclear weapons) States of the Eu-
ropean Union (EU) has to be considered. In all nuclear facilities of the EU, the European
Commission performs regular inspections, under Chapter VII of the EURATOM Treaty,
their frequency depending on the type of facility. Now, according to the IAEA/EURATOM
Partnership Approach, unannounced interim inspections are performed in addition to the
regular interim inspections planned by EURATOM.

Beyond the latter remark, it turns out that for a substantive analysis of unannounced
interim inspections many assumptions have to be made which may be disputed since they
are either not explicitly formulated in the documents of EURATOM and IAEA, or deal
with the behavior of States in case they might start an illegal activity. A classification
of the more important assumptions will be given now.

1.2 Classification of Assumptions

Quite in the sense of the general objective of this study it is an essential part of the work to
carefully formulate all assumptions necessary for a mathematical model of unannounced
interim inspections. Since, as already mentioned, the procedures for unannounced in-
terim inspections are not laid down in every detail and therefore, alternative assumptions
are possible, a whole tree of assumptions results, the more important ones of which are
represented graphically in Figure 1.1.

Let us list them here:

• Planning: Does the facility operator plan his illegal activity – if at all – at the
beginning of the reference time interval, or sequentially, during the reference time
interval? The same question holds for the inspections1.

1In this study we omit the case that the inspector plans sequentially, since the inspections authorities
would have considerable organizational problems to implement such procedures.
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1.2. CLASSIFICATION OF ASSUMPTIONS

Figure 1.1 Classifications of Assumptions. α and β are the error first and second kind
probabilities.
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CHAPTER 1. INTRODUCTION

• Time: Are interim inspections possible at any time point, or are they possible only
at discrete time points? The significance of these two alternatives will be discussed
in the forthcoming chapters.

• Inspection philosophy: Is the objective of the inspection authority to detect an
illegal activity within a critical time2 or alternatively, to detect it as soon as possible,
which we call playing for time?

• Sampling: Are there no errors, only errors of the second kind, typical for attribute
sampling, or errors of the first and second kind, typical for variable sampling, when
inspections are performed?3

If all combinations are possible, then we have

2× 2× 3× 3 = 36

different sets of assumptions, i.e., 36 different mathematical models, the analysis of
which require at least in part different analytical and numerical techniques.

Of course, it is neither possible with reasonable effort, nor interesting from a practical
point of view to consider all 36 models. Instead four of them are selected with arguments
given in the next three chapters, namely simultaneous and hybrid-sequential playing
for time games, both time discrete and continuous. In addition, and for the sake of
completeness, in the fifth chapter critical time games are considered with the help of
one example.

1.3 Analytical Methods

It is stated already in the IAEA Model agreement, see [21] § 28, that the objective of
safeguards is ”. . . the timely detection of diversion of significant quantities of nuclear
material . . . and deterrence of such diversion by the risk of early detection.”

Deterring the facility operator (or the State as partner to IAEA safeguards) from illegal
behavior means that detected illegal behavior must be worse for him than legal behavior.
Thus, illegal behavior must be considered in order that these two alternatives can be
compared. More than that, it has to be assumed, in the sense of worst case considera-
tions, that the operator - if at all - will plan and execute his illegal activity such that it is
best for him, i.e., that it is detected, depending on the concrete situation, after as long
a time as possible. This means that we have to formulate the problem of unannounced

2The critical time concept has its origin in the so-called conversion time introduced by the IAEA,
see [23]. It says that for each type of fissile material some time, namely the conversion time, is needed
to manufacture with its help a nuclear explosive device. Using this definition it appears to be quite
natural to assume that the inspection authority has ”won” the game if any illegal activity is detected
within some ”critical” time, otherwise it has lost it.

3For further details see section 1.4. Since in all three cases different analytical techniques are applied
the first two are not just special cases of the last one.
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interim inspections as a conflict situation between two antagonists both of which have
several strategies at their disposal, and both of which want to use their best strategy.
But what does this mean?

Quite generally is the appropriate tool for analyzing conflict situations the theory of non-
cooperative games, also called theory of rational behavior. It requires the description
of the full set of (pure) strategies of the players, and the payoffs to both players for all
strategy combinations. If more detailed information, e.g., the timing of moves or some
complicated information structure has to be taken into account, the resulting games are
presented best in extensive form. If this is not the case then games are given in normal
form. In particular, if the numbers of (pure) strategies are finite one arrives at so-called
matrix games. All these forms are used in this study.

In any case the best strategy combination in non-cooperative games is represented by the
Nash equilibrium, see [32], which is defined by the property that any unilateral deviation
from that equilibrium does not improve the deviator´s payoff. It should be mentioned in
passing that Nash equilibria need not be unique, however, non-uniqueness will not pose
a problem in this study.

Applying this definition to safeguards one may say that implementing the concept of
deterrence means to look for solutions of the safeguards problem which are Nash equilibria
with the property that the equilibrium strategy of the State is legal behavior.

This convincing but somewhat abstract concept requires the definition of payoff pa-
rameters of the operator which describe his gains and losses in case of undetected and
detected illegal activity. Since they have not yet been estimated by practitioners, a
second-best approach is to take the detection time – time elapsing between the start of
an illegal activity and its detection – as the payoff to the operator, and its negative value
as that of the inspector. In other words, we assume that the operator will maximize
his (expected) detection time, whereas the inspector wants to minimize it. This, by the
way, corresponds to the ”. . . risk of early detection”, see [21].

This will be the basic approach of this study. We will have to consider these zero-sum
games both in normal and in extensive forms, and we will determine Nash equilibrium
strategies and payoffs, i.e., optimal expected detection times, which then can be used
for the planning and implementation of inspections.

1.4 Previous Work

The aspect of timely detection of illegal behavior, see again [21], has been considered
from the very beginning of safeguards analyses in the seventies. In the framework of the
material balance concept the number of intermediate physical inventory takings has been
discussed extensively. Whereas in the beginning, however, their number – and therefore
the detection time – was considered more a boundary condition than an objective, later
in the eighties, it became an important issue, an objective. The term Near Real Time
Accountancy, see [28], characterizes this development best. It was around that time that
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the conversion time concept was introduced, see [23]. Depending on the physical and
chemical form of the fissile material, detection times were postulated, ranging from 7 to
10 days for highly enriched uranium or plutonium to three months for spent fuel reactor
fuels.

With the new safeguards approach, see [22], the detection time became even more
important for several reasons. One of them was to create more flexibility in safeguards
procedures in order to be able to distribute the limited inspection resources in a more
effective and efficient way – even though it was never clearly defined what this meant
in quantitative terms. Thus, unannounced interim inspections were proposed for those
facilities in which a continuous presence of inspections was not considered necessary.

Since that time several major studies have been performed which cover some of the afore
mentioned sets of assumptions. Even though they will also be quoted in the subsequent
chapters, the more important ones will be listed here. Before, let us mention sampling
procedures, which are so important for safeguards.

If only items are counted on a random sampling basis, i.e., if attribute sampling proce-
dures are used, then falsified items may not be detected with the so-called error of the
second kind or non-detection probability β. If quantitative measurements are performed,
i.e., if variable sampling procedures are used, then in addition correct data or behav-
ior may be declared as wrong with the so-called error of the first kind or false alarm
probability α.

Taking the detection time as the payoff to the operator – in the following called Playing
for Time Game – several studies have been published which cover some of the sets of
assumptions given before.

Simultaneous discrete time models have been studied at various occasions without con-
sidering errors of the first and second kind, see, e.g., [1]. Only recently, Krieger, see
[26] and [27], has investigated the case of one unannounced interim inspection and any
number of possible time points; in particular he has shown the transition to the time con-
tinuous case studied by Diamond, see [13]. Attribute sampling procedures, i.e., β > 0,
have been taken into account in a systematic way only in this study, both for the discrete
and continuous time models.

Sequential discrete time models have to our best knowledge, not yet been studied.
Sequential continuous time models have been studied under very general assumptions,
inter alia taking into account errors of the first and second kind, i.e., α > 0, β > 0,
by Avenhaus and Canty, see [2]. Hybrid-sequential continuous time models with β > 0
are studied only in this study; interesting enough, the results coincide with those of the
sequential model for attribute sampling procedures, i.e., α = 0, and it remains to be
shown if this still holds for variable sampling procedures, i.e., α > 0.

Just for the sake of completeness let us mention some studies dealing with critical time
games, i.e., games in which the facility operator has ”won” the game if his illegal activity
is not detected within some critical time, whereas he has ”lost” it, if his illegal activity
is detected within that time, and vice versa for the inspector. The work by Dresher,
see [14], represents one the oldest and very influential inspection games; it analyses a
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sequential model and has because of its solution technique become one of the most
well-known textbook examples of so-called recursive games, see, e.g., [34].

Both simultaneous and sequential models with α > 0 and β > 0 have been studied by
Canty, Rothenstein and Avenhaus, see [11]. Whereas for the simultaneous model very
general solutions were obtained, for the sequential model for α > 0 and β > 0, i.e., the
generalization of Dresher’s work, solutions were obtained only for special cases.

Finally, let us mention some attempt to consider both the playing for time and the
critical time concept in one game. One first model has been published by Avenhaus and
Krieger, see [5], it will be presented in some detail in the fifth chapter of this study.

1.5 Applications

In section 1.1 of this chapter we presented the objectives of this study. We identified
three objectives, starting with the general modelling problem, and arriving at the concrete
situation in the EU. Turning to this last problem one may ask what the European
safeguards authority expects from quantitative analyses outlined above. Quite concretely
it wants to get answers to two questions, namely

• How many unannounced interim inspections shall be performed in one nuclear
facility in a State of the EU in a reference time interval, e.g., one calendar year?

• How shall these unannounced interim inspections in a nuclear facility be distributed
in the reference time interval?

In principle the first question has to be answered in the way which was outlined before,
taking the EU as a whole as antagonist of the IAEA. However, such an approach requires
the estimation of payoff parameters which was not possible so far. Instead a pragmatic
solution was found which is laid down in the documents of the IAEA/EURATOM Part-
nership Approach. Nevertheless, at the end of our study this problem will be considered
again.

The second question will be answered in great detail in the following chapters. Not only
the optimal distribution over time of a given number of unannounced interim inspections
in one nuclear facility is determined; it will also be demonstrated what it means for two
different types of nuclear facilities, namely on-site interim storage facilities, and fuel
element fabrication facilities.

1.6 Organization of the Study

Following the broad outline of this study given so far, it is organized as follows: In order
to be concrete and specific, in the second chapter two nuclear facilities are described,
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and the safeguards measures applied by EURATOM and IAEA in these two facilities are
discussed.

The third and fourth chapter are central from the analytical point of view. In the
former, it is assumed, that both antagonists, operator and inspector, plan their activities
simultaneously, i.e., without knowing the strategy of the other one. In the latter, it
is assumed, that the operator uses the knowledge of the inspections performed in the
course of the game. In both chapters both discrete and continuous time versions are
considered.

In all these four variants, i.e., throughout this study, errors of the second kind are taken
into account but not errors of the first kind, in formula α = 0 and β > 0. There are
several reasons for these assumptions: First, the modelling effort for taking into account
α > 0 would be too large, let us just mention that the zero-sum assumption would
no longer hold. Second, important results like optimal expected detection times and
inspection time points would depend only weakly on α, as previous studies demonstrate,
see, e.g., [2]. Third, in our applications primarily attribute sampling procedures were
considered, for which β > 0 and α = 0 holds. Also false alarms may happen which
can be clarified immediately and therefore need not be modelled formally. It should be
mentioned that the non-detection probability β can also be seen as a global parameter
and therefore as a function of safeguard measures. Then β is the probability of not
detecting some illegal activity and not only, e.g., the probability of not detecting at least
one broken seal of a cask. If β1 is the non-detection probability for checking of seals
and β2 the non-detection probability for other inspection activities and if these data are
independent, then the total non-detection probability β is given by β = β1 · β2.

In the fifth chapter the analyses of the two foregoing chapters are complemented: The
aspect of deterrence is discussed, the critical time objective is presented in some detail,
and the global sampling problem, i.e., the number and distribution of unannounced
interim inspections of the IAEA in the States of the EU, is analyzed in some preliminary
way.

In the concluding sixth chapter an attempt is made to summarize the results and to
formulate, with all due care, some recommendations.

In the Annexes additional explanations and proofs are given which complement the main
text.
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Chapter 2

Examples of facility types considered
in this Report

In order to emphasize this study´s orientation towards applications we present first, in
this chapter, the facilities and the safeguards measures in these facilities, to which the
results of our theoretical findings on unannounced interim inspections will be applied.

The first example is an on-site interim storage facility for spent fuel elements and the
second one a fabrication facility for fuel elements for light water power reactors. The
concrete facilities (Emsland Nuclear Power Plant and the Advanced Nuclear Fuels (ANF)
Company, both located at Lingen) were selected since published information was easily
available and furthermore, the operators were kindly enough to give personal interviews.

2.1 First example: On-Site Interim Storage Facility

As a first example, on-site interim storage facilities for spent nuclear fuel elements are
chosen. In the following these facilities as well as the safeguards measures applied in these
facilities are described in some detail. Based on this information, unannounced interim
inspections will be discussed in the next section with a discrete time non-sequential game
theoretical model.

The origin and function of on-site interim storage facilities have been described at various
occasions. We refer to the articles by Behrens et al. [7], Rudolf et al. [41] and Rezniczek
et al. [39] as a basis for the safeguards criteria and safeguards measures commonly used
in dry storage facilities until today. An outline of the Integrated Safeguards concept
and the IAEA/EUTATOM Partnership Approach papers intended as a guideline how to
implement this new regime in Germany and the role of Unannounced Interim Inspections
conclude this section.
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2.1.1 Facility Features

Germany initially planned to store spent nuclear fuel in the two away-from-reactor in-
terim storage facilities at Ahaus and Gorleben. The current approach for spent fuel
management is on-site interim storage in transport and storage casks as part of a polit-
ical agreement between the German government and the operators of nuclear facilities
on the future use of nuclear energy. A reason for this agreement was to avoid near term
transportation of spent fuel determined for direct disposal via public road or rail systems
to away-from-reactor storage facilities. Recent legislation has triggered the construction
of on-site dry storage facilities at twelve nuclear power plants. The first license was re-
ceived by the Emsland Nuclear Power Plant located at Lingen, Lower Saxony, Northern
Germany, see Figure 2.1. It was taken into operation in December 2002 and has the
following features.

Figure 2.1 Emsland Nuclear Power Plant with on-site interim storage facility [43].

 

The facility consists of two buildings, namely storage building with storage area and
reception area for spent fuel casks, and control building in which plant operations are
controlled. The permitted storage period is limited to 40 years beginning with the
emplacement of the first spent fuel cask in the storage building. There are 130 cask
positions, five of which being reserved for empty casks only. The Lingen interim storage
facility has a length of about 110 m, a width of about 30 m, and a height of about 20 m.
The wall thickness is about 1.2 m, while the monolithic roof is about 1.3 m thick. The
floor is made from armoured concrete.
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In the reactor containment, spent fuel elements will be loaded into shielding casks, e.g.,
of the CASTOR R©-type (cask for storage and transport of radioactive material), and then
transported from the reactor building into the associated on-site dry storage facility.

2.1.2 Safeguards Measures

All parties involved - German plant operators and State authorities, EURATOM and IAEA
- agree in keeping safeguards as simple as possible and furthermore, consistent with all
on-site interim storage facilities. Nevertheless, there are technical and organisational
differences between those individual facilities that have to be taken into account. From
the State authorities´ point of view, safeguards have to comply with requirements related
to operational safety, radiation protection, and physical protection. Furthermore, they
have to take into account the political and technical boundary conditions as well as
the time schedule for spent fuel transfers coordinated between all nuclear power plant
operators in Germany. Also, for reasons of keeping persons´ exposure to radiation as low
as reasonably achievable (ALARA principle) the storage area is not intended for frequent
access. This has to be taken into account when designing an adequate safeguards
concept for a dry storage facility usually licenced for a period of 40 years.

There is another aspect: Once the spent fuel has been loaded into casks the inventory
is no longer accessible and respectively cannot be verified directly. Therefore, the safe-
guards measures applied to the storage facilities should be capable of maintaining the
continuity of knowledge on the cask inventory. This requirement is met by using con-
tainment/surveillance (C/S) measures which is a combination of optical surveillance and
sealing as well as additional Non-Destructive Analysis (NDA) techniques. Seals attached
to individual casks and camera surveillance of the areas, where the casks are handled and
stored, play a major role in proving the non-diversion of nuclear material thus providing
the basis for a safeguarded dry storage facility.

The sealing of casks, which is on one hand an effective safeguards measure from the
inspector´s point of view, on the other hand raises difficulties for the operator in general
and in particular. Generally, according to the technical concept of a storage facility
a regular visit of the storage hall is not necessary and should be avoided for radiation
protection reasons. The operator will enter this area on a need-to-do-basis only. Seals on
casks violate the above mentioned ALARA principle. In particular, if metal cap-and-wire
seals have to be verified the inspector has to reach the top of the CASTOR R©-cask at a
height of about 6 m by means of a lifting platform and replace the seals to be verified
by new ones. The length of stay in close proximity of the casks, which increases with
the number of casks to be verified, may lead to unacceptably high radiation doses for
inspectors and staff. In view of maximum of 192 storage positions in the largest on-site
dry storage facility the metal seal makes sense rather as a backup seal that will be only
verified if other Safeguards measures fail than a regularly verified seal.

To reduce radiation exposure different types of seals should be used ensuring a short-
term presence of inspectors and staff in the storage hall for interrogation purposes.
The nowadays commonly used COBRA fibre optical seals offer the advantage that the
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sealing body is at the inspector´s eye level. Therefore COBRA seals can easily be verified
without the time-consuming climbing to the cask top. Due to a special screw cap the
unauthorized removal of the screw and the seal is excluded. The COBRA seals constitute
definitely a progress in comparison to metallic seals but still require a close contact to
the casks. In on-site facilities with compact cask storage the inspector even has to slip
into the narrow space between the casks where he is not only exposed to radiation but
to high temperatures as well. Here, a better solution would be the use of seals with
remote interrogation capability like the new generation of the electronic seal type EOSS.
This kind of seal is equipped with interfaces allowing seal interrogation remotely from
the outside of the storage hall. EOSS seals are planned to be used for the sealing of a
group of casks. Although the attachment of the group seals needs also a close contact
to the casks the advantage of this sealing mode is paramount.

In the previously mentioned publications by Behrens et al. and Rudolf et al. more
details were given regarding camera surveillance and remote data transmission. Since
these measures, however, are not relevant for the quantitative analysis to be performed
in the next section we do not include them here, but refer to the original papers [7] and
[41].

2.1.3 Inspections

The IAEA Safeguards Criteria [23], as currently defined, are the set of nuclear material
verification activities considered by the IAEA as necessary for fulfilling its responsibilities
under safeguards agreements. The Criteria are established for each facility type and
location outside facilities (LOF), and specify the scope, the normal frequency and the
extent of the verification activities required to meet the quantity and the timeliness
components of the inspection goal at facilities and LOFs.

Without going into the details of further definitions in that context, e.g. IAEA inspec-
tion goals, quantity and timeliness components of the IAEA inspection goal, it should be
mentioned here only that the basis of all quantity definitions is the so-called significant
quantity (SQ), i.e., the approximate amount of nuclear material for which the possibility
of manufacturing a nuclear explosive device cannot be excluded, and the so-called con-
version time, i.e, the time required to convert different forms of nuclear material to the
metallic components of a nuclear explosive device.

On the basis of these criteria and concepts it has been defined that in each of the on-site
interim storage facilities once a year a physical inventory is taken, and that every three
months a routine inspection is performed. The main purpose of the routine inspections
is to check the seals at the casks on a random sampling basis.

For the subsequent quantitative analysis we consider a representative situation where
there are N casks (80 to 190) with spent LWR fuel elements in the storage facility,
and where each cask contains 19 spent fuel elements, see [37]. Without going into the
details of the usability of the plutonium (Pu) for weapons in the fuel elements, see, e.g.,
[17] or [29], we assume that there are about 5 kg Pu in each fuel element thus, in order
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to illegally acquire one significant quantity, the seal of at most two casks need to be
broken1. Here it is assumed that the seal of at most one cask needs to be broken, which
represents the worst case for the inspector. In other words, during one routine inspection
one broken seal has to be detected with sufficient probability 1− β.

Also we mention that the inspector needs about five minutes net time in the storage to
check one seal. There is, however, overhead work to be done by the inspector, primarily
the evaluation of the findings outside the storage, and administrative work before and
after the whole seal checking procedure. Therefore, during a one day visit only two to
three hours may be available for checking seals in the storage.

Let us note in passing that we do not perform any diversion path analysis since this is
not necessary for the purposes of this investigation.

Quite generally, let the total number of seals beN , the number of checked seals be n, and
the number of broken seals be r. Then according to the hypergeometric distribution law
the probability to detect at least one broken seal in case of drawing without replacement
is, see, e.g., [1],

1− β(N, n, r) = P({ at least one broken seal in the sample })

= 1−P({ no broken seal in the sample })

= 1−

(
r

0

)
·
(
N − r

n− 0

)
(
N

n

) ,

where the binomial coefficient
(
n
m

)
for 0 ≤ m ≤ n, n = 1, 2, . . . , is defined by(

n

m

)
=

n!

m! · (n−m)!
=

n · (n− 1) · . . . · (n−m+ 1)

m · (m− 1) · . . . · 1
, 0! = 1 .

Thus, for r = 1 we get

1− β(N, n, 1) = 1−

(N − 1)!

n! · (N − n− 1)!
·

N !

n! · (N − n)!

=
n

N
, (2.1)

which means that the probability of detection is proportional to the number of checked
seals.

For small r, i.e. r � N , we get approximately

n(β) ≈ N ·
(
1− r

√
β
)
= 100 ·

(
1− r

√
β
)
.

Note that in practice n(β) has to be a natural number. Figure 2.2 shows for N = 100
that the sample size n decreases with increasing number r of broken seals and fixed β,
and it decreases with increasing β for fixed r, which is intuitive.

1For Pu the significant quantity is set to 8 kg.
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Figure 2.2 Approximate sample sizes n(β) as functions of the non-detection probability
β for different numbers r of broken seals (N = 100).

For the purposes of illustrating the use of the probability of detection we determine the
expected detection time, measured in numbers of quarters of years. We assume that
at the occasion of an inventory taking a broken seal is detected with certainty, that
the illegal activity starts immediately after the inventory verification - worst case for the
inspector - and that EURATOM and IAEA check the seals every three months together.
Then the expected detection time ET is given by

ET = 1 · (1− β) + 2 · β · (1− β) + 3 · β2 · (1− β) + 4 · β3 = 1 + β + β2 + β3 .

For example, we have for β = 0 resp. β = 0.5 the expected detection time ET = 1
resp. ET = 1.88 and ET = 4 for β = 1.

Finally, let us mention that there may be also errors of the first kind, e.g., when the
inspector is looking for items which have been moved from the right location and have
been put somewhere else. These errors, however, can be clarified immediately and
therefore need not be taken into account formally.

2.1.4 Integrated Safeguards and the IAEA/EURATOM Partner-
ship Approach

According to the IAEA Safeguards Glossary [23], Integrated Safeguards (IS) is the opti-
mum combination of all safeguards measures available to the IAEA under comprehensive
safeguards agreements and additional protocols to achieve maximum effectiveness and
efficiency in meeting the IAEA´s safeguards obligations within available resources. There
is also the IAEA/EURATOM Partnership Approach (PA), which is an approach for im-
plementing safeguards in the non-nuclear-weapon States of EURATOM. It updates to
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Integrated Safeguards (IS) the approach firstly agreed between the IAEA and EURATOM
in 1992. The IAEA/EURATOM partnership approach provides for common use of safe-
guards equipment, joint scheduling of inspections and special arrangements for inspection
work and data sharing by the two organizations. The PA enables the IAEA to economize
on safeguards equipment and inspection efforts deployed in the relevant States while
maintaining its ability to perform independent verification.

At present the traditional procedure is applied to on-site interim storages in Germany,
i.e. both EURATOM and IAEA inspectors are present when the inventory is verified
and when the three routine inspections per year are performed. In the framework of
the above described concepts, IS and NPA, it is discussed [35] that in the future only
EURATOM inspectors perform all routine inspections, and that IAEA inspectors perform
Unannounced Interim Inspections. At this point it should be mentioned that two types
of interim inspections are planned, namely inspections with short notification (SNRI),
e.g., from one to a few days, and unannounced interim inspections with no advance
notification. To model the difference between these two types it is necessary to make
assumptions about the operator´s possibilities to camouflage illegal activities within the
advanced notification time. Since this goes beyond the scope of our study, we will,
for the sake of simplicity, just use the term unannounced interim inspections. Since
definite decisions have not yet been made, we discuss two alternatives, namely that IAEA
inspectors join EURATOM inspectors while they perform routine inspections, or perform
there unannounced interim inspections at any time, independent of the EURATOM
inspections2.

In the next chapter we will develop the simultaneous model, first the discrete time
version and thereafter the continuous time one, and apply the results of both to the
on-site interim storage as well as to the fuel element fabrication facility which will be
described subsequently.

2The actual proposals (presented in May this year to the German government) of the IAEA for
inspections schemes under Integrated Safeguards foresee one annual PIV and one annual Random
Interim Inspection (RII) with 20% selection probability for Spent Fuel Storage Facilities (SFSF) in
Germany. The RII will be carried out with an advance notification time of 24h to the operator and to
EURATOM. This will allow EURATOM to join the inspection, but it is the IAEA who determines the
time and the facility to inspect. The IAEA applies such short notice inspection instead of unannounced
inspections in those cases where the time between notification of the inspection and arrival of the
inspector at the facility is covered by surveillance. The inspector will check on his arrival by review
of the surveillance records that no undeclared activities took place during that period. EURATOM
will also adapt its safeguards approaches in future. The new EURATOM safeguards scheme for SFSF
foresees also one annual PIV, planned and carried out jointly with the IAEA and one annual interim
inspection to be carried out as an unannounced or a short notice inspection. The implementation of
Integrated Safeguards in Germany will take time and be carried out stepwise. It is presently not yet to
foresee when it will be fully implemented. How the inspection schemes will look like in detail in the
transition period we do not know, [35].
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2.2 Second example: Fuel Element Fabrication
Facility

As a second example, a fabrication facility for fuel elements for light water power reactors
is chosen. As in the first example, the facility itself as well as the safeguards measures
applied in this facility are described in some detail, see [36]. Based on this information,
unannounced interim inspections will be discussed in the next section with the help of a
continuous-time non-sequential game theoretical model.

2.2.1 Facility Features

The fuel element fabrication facility Lingen in Emsland, Germany, see Figure 2.3, is run
by the Advanced Nuclear Fuels (ANF) Company (GmbH) which is a daughter of the
German Regional Company of AREVA Nuclear Power (NP). Together with facilities for
the fabrication of Uranium fuel elements in Romans (France), Dessel (Belgium) and
Richland and Lynchburg (USA) the fuel element fabrication facility Lingen is part of the
branch Fuel Element Fabrication of AREVA NP.

Figure 2.3 Fuel element fabrication facility Lingen in Emsland [20].

The fuel element fabrication facility Lingen of the ANF produces Uranium fuel elements
for pressurized and boiling water power reactors for the German and beyond, for the
European market and therefore, contributes to supply the nuclear power reactors with
nuclear fuel. The facility is permitted to process up to 650 tons of Uranium per year
with an enrichment of up to 5 % U-235.
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Nuclear fuel elements are produced in the Lingen facility in four steps: First, in the
conversion step gaseous uranium hexafluoride (UF6) is converted to uranium dioxide
(UO2) powder. In the second step, fuel pellets are produced by pressing and sintering
the (UO2) powder followed by a final grinding procedure. In the third step, the pellets are
filled into cladding tubes which thereafter are closed using a careful welding procedure.
In the fourth and final step, the fuel rods are assembled to fuel elements

The mechanical (non-nuclear) components of the elements like cladding tubes, end-
pieces and others are produced in the ANF facilities Karlstein and Duisburg (Germany).
Altogether about 800 persons are working in these three facilities.

2.2.2 Safeguards Measures

Basis of all safeguards measures of EURATOM and the IAEA in a bulk processing facility
is the verification of the balance of the fissile material processed in the facility which is
closed in regular intervals of time, e.g. once a year. For this purpose, an initial physical
inventory (PIV) has to be taken, receipts and shipments during the reference time interval
have to be determined, and the ending physical inventory has to be taken3. With these
data, the so-called material unaccounted for (MUF), i.e. the difference between the book
inventory (initial inventory plus receipts minus shipments) and the physical inventory at
the end of the reference time interval is determined the expected value of which is just the
missing material (loss or diversion). In principle, the two inspection authorities proceed
in such a way that the operator of the facility measures all inventory and flow data and
reports them to the safeguards authorities. The latter ones verify these data with the
help of independent measurements on a random sampling basis and, if there were no
significant differences, perform the MUF test at the end of the reference time interval
with the help of the operator´s data.

Depending on size and other characteristics a facility may consist of one or more material
balance areas, i.e. areas for which material balances are established. The Lingen facility
consists of just one material balance area, since the storages of receipts and products
are kept small, in particular when the PIV is taken. Also, it should be noted that in the
Lingen facility the receipts (UF6) are not measured independently, instead the shipment
data of those facilities are used which provide the Lingen facility with UF6.

Finally, let us mention - even though we will not use this information in our study -
that in the Lingen facility material balances both for uranium and for uranium-235 are
established.

In addition to these measures, design information of both the buildings and the produc-
tion processes is reported and there are C/S measures which are regularly verified by the
two inspection authorities.

3The acronym of the initial physical inventory taken by the operator is PIT to be distinguished from
PIV as physical inventory verification carried out by the inspectorate, see [38]. For the sake of simplicity
we use only the acronym PIV.
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2.2.3 Inspections, Integrated Safeguards and the
IAEA/EURATOM Partnership Approach

At present, in the Lingen facility once a year a physical inventory (PIV) is taken, and
both EURATOM and IAEA inspectors are present at this occasion. They take samples
of the fissile material at all process stages, measure them with their own instruments
and compare the data with the corresponding ones reported by the plant operator. In
addition, inspectors of both authorities visit the facility every six to eight weeks. Also
at these occasions they take samples, measure these samples, perform the comparisons
with the corresponding operator data, and verify design information and C/S measures.

There are some important differences to the situation in the on-site interim storage:
First, in the storage a broken seal of a cask, detected at the occasion of an unannounced
interim inspection is a strong hint for an illegal activity which in principle can be confirmed
(or not) immediately by checking the content of the cask. In a bulk processing facility,
however, the inspectors can infer the diversion of material, when they have detected an
anomaly in form of a difference between reported and verified data, or some deviation
from the design information, only at the end of the reference time interval, when the
material balance is closed, i.e. the MUF test is performed.

Thus, the detection probability 1−β, referring to an interim inspection, and introduced
in section 2.1.3, has a different meaning here. It rather means the detection of an
anomaly, but not necessarily the detection of an illegal activity, i.e. the diversion of
fissile material. Thus, a detection probability may be determined with the help of the
size of the samples of items verified, like in section 2.1.3, or it may be determined, e.g.
in case of design verification, with the help of the fraction of parts of the facility which
have been inspected. A final statement about missing material can only be made with
the help of the material balance after a PIV has been taken.

Second, the verification of quantitative measurements poses new problems. Since here,
as opposed to the checking of seals, measurement errors never can be avoided, errors
of the first kind have to be taken into account. This is important if the MUF test is
performed; in our case however - analysis of unannounced interim inspections - they may
be neglected, at least in this study. There may be other sources for errors of the first kind,
e.g., there are both bulk material and items like UF6 drums for which misdeclarations of
location can happen. These errors, however, can be clarified immediately and therefore
need not be taken into account formally.

What has been said in general in section 2.1.4 on Integrated Safeguards and the IAEA/-
EURATOM partnership approach holds also here. In effect, IAEA inspectors will be
present when the PIV is taken, and they will visit the facility in addition once or twice
the year, together with EURATOM inspectors or, possibly in some cases independently.
Again, we will consider both cases which means that we apply again both the results of
the discrete time model and of the continuous time one to the fuel fabrication facility.
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Chapter 3

Simultaneous (non-sequential)
models

In this chapter we assume that the inspection authorities EURATOM and IAEA as well
as the plant operator (here representing the State in the context of NPT safeguards)
plan their activities - inspection and illegal activity, if at all - before the beginning of
the reference time interval under consideration (e.g., a year). Also we assume that the
objective of the inspection authorities is to minimize the time between the start and
detection of the illegal activity, whereas the plant operator wants to maximize this time.

We consider two possibilities concerning the time points at which the inspections and
the start of the illegal activity may take place, namely at discrete time points and at any
time points. The models are applied to prototypes of an on-site interim storage and a
fuel fabrication facility, which had been described in the forgoing chapter.

3.1 Discrete time models

For situations, where the inspector can only perform unannounced interim inspections
at a finite number of well-defined time points we develop discrete time models. The
analysis of these models differs considerably from that of continuous time models which
will be considered subsequently.

3.1.1 Mathematical analysis of unannounced interim inspections
in an on-site interim storage facility

After having described on-site interim storages for spent fuel and EURATOM and IAEA
inspection procedures we will now, based on the information given above, build a game
theoretical model, which can be used for the optimization of IAEA inspections.

According to our assumptions we have only two players, namely the plant operator
representing the State in the sense of the NPT and the IAEA inspector.
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As already mentioned in section 2.1.3 it was decided that in each of the on-site interim
storage facilities once a year a physical inventory verification (PIV), and that every three
months a routine inspection is performed. Therefore, the IAEA inspector has besides
the PIV three more possible time points for performing his inspection(s). This situation
is graphically represented in Figure 3.1.

Figure 3.1 General inspection situation.

At time point 0 the PIV is performed and there remain the three time points 1, 2 and
3. Let k be the number of the unannounced interim inspection(s). k can only have the
values 1, 2 or 3. If k = 3, the inspector will make his inspection every three month and
therefore the inspection are no more longer unannounced. For different values of k we
obtain the following sets of pure strategies of the inspector:

• k = 1: the set of pure strategies is ΦInsp,1 = {1, 2, 3}, i.e., the set of time points
at which he can perform his inspection,

• k = 2: the set of pure strategies is ΦInsp,2 = {(1, 2), (1, 3), (2, 3)}, i.e., the set of
pairs of time points at which he can perform his two inspections, and

• k = 3: the only pure strategy is ΦInsp,3 = {(1, 2, 3)}, i.e., performing his three
inspections at the time points 1,2 and 3.

Before considering detailed strategies of the operator we assume that he will break
seals in order to divert nuclear material: ”This diversion hypothesis should not been
understood - and in general is not understood - as an expression of distrust directed
against States in general or any State in particular. Any misunderstanding might be
dispelled by comparing diversion hypothesis with the philosophy of airport control. In
order to be effective, airport control has to assume a priori and without any suspicion
against a particular passenger that each handbag might contain prohibited goods”, see
[18]. Legal behavior will only be discussed in section 5.1.

The operator can start his illegal activity at any time point of the reference time interval.
However, he will start his illegal activity at the time points 0, 1, 2 and 3, since otherwise
the time elapsed between the start of the illegal activity and its detection would become
shorter. Therefore,

• The set of pure strategies of the operator is ΦOp = {0, 1, 2, 3}.

So far we have been defining the possible choices of each player but it is not yet clear in
which way these choices are made by the players. We assume here that the operator needs
time to prepare an illegal activity, since for the construction of a nuclear device more
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technical equipment is needed which for itself needs time for its preparation. Therefore,
we assume in this chapter that the operator decides at the beginning of the year (or the
reference time interval) at which time point he will start his illegal activity.

The IAEA on the other side has to plan the inspections over the Globe and also has
to think in advance at which time a certain facility has to be inspected, i.e., the IAEA
inspector has also to decide at the beginning of the year (or the reference time interval)
at which time point he will perform his inspection(s). He also has to fix the number of
unannounced interim inspections k (k = 1, 2, 3). The number k chosen by the inspector
is also known to the operator1.

Since neither the operator nor the inspector knows at the beginning of the year at which
time point(s) the adversary will perform his inspection(s) resp. will start his illegal
activity, we assume that they make their choices independently of each other (but of
course following certain rules, which we explain in the following). One might think of
situations in which the operator observes the behavior of the inspector and changes his
own strategy appropriately. Such a decision making during the reference time interval is
not possible in the models discussed in this chapter. It will be the subject of the next
chapter.

The question is now, what the actors gain in case they choose a pure strategy inde-
pendently of each other. For that purpose we have to consider the objectives of the
operator and the inspector when a pure strategy combination is played. There are sev-
eral possibilities to define such objectives. We will choose here the concept of playing
for time, that is, the objective of the operator is to maximize the time between start
and detection of the illegal activity, whereas the inspector wants to minimize this time.
This means that we consider a zero-sum game with the detection time as payoff to the
operator.

Let us mention that the playing for time concept is very intuitive, and that it meets one
of the IAEA safeguards criteria ”... by the risk of early detection”, see [21]. There are,
however, alternative important concepts; one of them will be discussed in chapter 5.

We assume that the inspector will commit an error of the second kind per inspection,
i.e., an illegal activity is not detected with probability β although there is one.

In case of the coincidence of the start of the illegal activity and the inspection, the illegal
activity is detected only at the occasion of the next inspection or the PIV.

Finally, the game ends either after the final PIV or after that interim inspection at which
the illegal activity is detected. What happens in reality in the latter case is not discussed
here.

Let us summarize the assumptions which we have made so far:

1This assumption deserves some justification: As long as the inspector knows the number k for one
specific facility and year, the operator of that facility will know it after the first year. If, however, the
number k is chosen randomly by the inspector, e.g., in the context of a larger number of facilities within
a State, see section 5.3, then this assumption does not hold anymore. In this case one has to consider
a larger game where the choice of the single facility and the number k of inspections in that facility
represent just a part of a pure strategy of the inspector. As a result k may be randomized.
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(i) There are two players: operator and inspector.

(ii) The inspector has three time points for inspections.

(iii) The operator behaves illegally, see page 20.

(iv) The operator has four time points for starting his illegal activity.

(v) The inspector commits an error of the second kind per inspection, i.e., an illegal
activity is not detected with probability β although there is one.

(vi) The number of interim inspections is also known to the operator. At most two
unannounced interim inspections are permitted in one facility and the reference
time interval, see section 5.3.12.

(vii) Both players decide at the beginning of the reference time interval when to start
the illegal activity and when to inspect.

(viii) Both players decide independently of each other.

(ix) The payoff to the operator is the time between start of the illegal activity and its
detection. The payoff to the inspector is the negative one (zero-sum game).

(x) In case of the coincidence of the start of the illegal activity and the inspection, the
illegal activity is detected only at the occasion of the next inspection or the PIV.

(xi) The game ends either after the final PIV or after that interim inspection at which
the illegal activity is detected.

This verbal description of our inspection problem leads us to so-called matrix games,
which are formally introduced in Appendix B.

The case of one unannounced interim inspection (n = 3 and k = 1)

In this section we consider the case k = 1, i.e., one unannounced interim inspection
is performed. This conflict situation is depicted in Figure 3.2. In the first column the
(pure) strategies of the operator are given, namely starting his illegal activity at time
point 0, 1, 2 or 3. In the first row the (pure) strategies of the inspector are shown, i.e.,
the time at which he will perform his inspection. An entry in this payoff matrix means
that if the operator starts his illegal activity at time point i and the inspector performs
his inspection at time point j then the entry in the matrix gives us the expected time
between start and detection of the illegal activity.

For two cases we explain the payoff and its computation. Let i = 0 and j = 1, i.e.,
the operators starts his illegal activity at time point 0 while the inspector performs his

2The arguments given in section 5.3.1 hold only for on-site-interim storage facilities. For fuel element
fabrication facilities the documents by IAEA and EURATOM do not provide corresponding data, but
we assume that similar arguments hold here as well.
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Figure 3.2 The matrix game in case of one unannounced interim inspection (n = 3 and
k = 1).

1 2 3

0 1 + 3 · β 2 + 2 · β 3 + β

1 3 1 + 2 · β 2 + β

2 2 2 1 + β

3 1 1 1

inspection at 1. Then this illegal activity is detected at 1 with probability 1− β and not
detected at 1 with β. If it is not detected at 1 then it will be detected at the end (PIV)
with certainty. Therefore, we get

1 · (1− β) + 4 · β = 1 + 3 · β .

If i = j = 1, then - according to our model assumption - the illegal activity will be
detected at the end and is therefore 3.

According to Appendix B a solution of this game is a so-called saddle point consisting
of an optimal strategy for both the inspector and the operator. Therefore, we have to
determine also the latter even though we are actually interested only in the former one.

Let qT = (q0, q1, q2, q3) be a mixed strategy of the operator and pT = (p1, p2, p3) a
mixed strategy of the inspector. Here, qi is the probability to start the illegal activity
at time point i and pj the probability to perform the inspection at time point j. Then,
depending on the value of the non-detection probability β, the optimal strategies (q∗,p∗)
as well as the optimal expected detection time Op∗3,1(β) = Op3,1(β;q

∗,p∗)3 are given
as follows:

• For 0 ≤ β <
1

6
we have the optimal strategies

p∗1 =
1

1− β
· 1
3
, p∗2 =

1

1− β
· 1
2
, p∗3 =

1

1− β
·
(
1

6
− β

)
(3.1)

and

q∗0 =
1

3
, q∗1 =

1

6
, q∗2 =

1

2
, q∗3 = 0 (3.2)

3Since for many different models and versions expected detection times will be determined, we use
an appropriate notation which is explained in Appendix A.
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with

Op∗3,1(β) =
11

6
+ β . (3.3)

• For β =
1

6
we have

p∗1 =
2

5
, p∗2 =

3

5
, p∗3 = 0 (3.4)

as optimal strategy for the inspector and the following optimal strategies for the
operator 

q∗0
q∗1
q∗2
q∗3

 = λ ·


1/3
1/6
1/2
0

+ (1− λ) ·


2/3
1/3
0
0

 , λ ∈ [0, 1] , (3.5)

with

Op∗3,1(β) = 2 . (3.6)

• For
1

6
< β <

2

3
we have the optimal strategies

p∗1 =
1

1− β
· 1
3
, p∗2 =

1

1− β
· 2− 3 · β

3
, p∗3 = 0 (3.7)

and

q∗0 =
2

3
, q∗1 =

1

3
, q∗2 = 0 , q∗3 = 0 (3.8)

with

Op∗3,1(β) =
5

3
+ 2 · β =

10

6
+ 2 · β . (3.9)

• For β =
2

3
we have

p∗1 = 1 , p∗2 = 0 , p∗3 = 0 (3.10)

as optimal strategy for the inspector and the following optimal strategies for the
operator 

q∗0
q∗1
q∗2
q∗3

 = λ ·


2/3
1/3
0
0

+ (1− λ) ·


1
0
0
0

 , λ ∈ [0, 1] , (3.11)

with

Op∗3,1(β) = 3 . (3.12)
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• For
2

3
< β ≤ 1 we have the optimal strategies

p∗1 = 1 , p∗2 = 0 , p∗3 = 0 (3.13)

and

q∗0 = 1 , q∗1 = 0 , q∗2 = 0 , q∗3 = 0 (3.14)

with

Op∗3,1(β) = 1 + 3 · β =
6

6
+ 3 · β . (3.15)

The proof of these results is given in section D.1.1 of Appendix D. Figure 3.3 presents
an overview of the optimal strategies of this game except those for the limiting cases of
β since they will not be realized in practice.

Figure 3.3 Optimal strategies and corresponding payoffs in case of one unannounced
interim inspection (n = 3 and k = 1). The limiting cases are omitted.

Following our description of the inspections in the on-site interim storage, during a one
day visit the inspector has two hours for checking seals. Since he needs 5 minutes to
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check one seal, we arrive for N = 100 using (2.1) at β = 0.24. Thus we deal with the
optimal strategies of case 1/6 < β < 2/3.

We continue with a few remarks on the solution of the game: First we look at this
inspection problem from the common sense point of view. In that case the inspector
should perform his inspection at time point 2, i.e., in the middle of the reference time
interval. This way we would get the detection times as given in Figure 3.2. It turns out,
that the game theoretical solution leads to slightly shorter detection times for all values
of β. For β = 0, e.g., the game theoretical solution is 11/6 which is smaller than 2.

Second, the cases β = 2/3 and β = 1/6 are not so important for practical reasons,
since as already mentioned it is rather implausible to get for real applications exactly
these two values. Third, solutions of most games seldom are intuitive. So it is also
in our game. It is not trivial nor explainable that the inspector performs his inspection
at time point 1 with the probability given here. It is rather a result. But what can
be done in this game is to explain the structure of the optimal strategies. From the
common sense of view it is clear that when the non-detection probability β is high
(β > 2/3), the operator will start as early as possible and so the inspector will also
perform his inspection as early as possible. Fourth, it is very interesting and surprising,
that the operator´s optimal strategies are constant in given intervals of β, contrary to
the inspector’s optimal strategies.

The case of two unannounced interim inspections (n = 3 and k = 2)

In this game the inspector’s set of pure strategy is given by ΦInsp,2 = {(1, 2), (1, 3), (2, 3)}
and therefore we obtain

QInsp,2 = { (p(1,2), p(1,3), p(2,3))T ∈ R3 : p(1,2) ≥ 0, p(1,3) ≥ 0, p(2,3) ≥ 0 and

p(1,2) + p(1,3) + p(2,3) = 1 }

as the set of mixed strategies. The operator starts again his illegal activity at 0, 1, 2 or
3, i.e., ΦOp = { 0, 1, 2, 3 } and his mixed strategy qT is defined as before.

The simultaneous inspection game is depicted in Figure 3.4.

For the pure strategy combination (0, (1, 2)), i.e., the operators starts at 0 with his illegal
activity and the inspector performs his inspection at 1 and 2. Then the illegal activity is
detected at 1 with probability 1 − β and not-detected with probability β. In the latter
case at time point 2 the illegal activity is detected again with probability 1− β and not
detected with probability β4. In the latter case the inspector detects the illegal activity
at the end of the year (because of the PIV). Using a kind of decision tree this situation
can be illustrated graphically, see Figure 3.5.

Therefore we get for the operator´s payoff in case of the pure strategy combination

4There are situations where inspectors tend to seal items together. In those cases they can be
treated as a ”static part” reducing the number of items to be checked. Therefore, the probability of
detection for the second inspection may be different from that for the first one.
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Figure 3.4 The matrix game in case of two unannounced interim inspections (n = 3
and k = 2).

(1, 2) (1, 3) (2, 3)

0 1 + β + 2 · β2 1 + 2 · β + β2 2 + β + β2

1 1 + 2 · β 2 + β 1 + β + β2

2 2 1 + β 1 + β

3 1 1 1

Figure 3.5 Illustration of the computation of entry (0, (1, 2)) of the payoff matrix in
Figure 3.4.

(0, (1, 2))

Op3,2(β; 0, (1, 2)) = 1 · (1− β) + (2 · (1− β) + 4 · β) · β = 1 + β + 2 · β2 .

The remaining entries can be derived in a similar way. Let qT = (q0, q1, q2, q3) be a
mixed strategy of the operator and pT = (p(1,2), p(1,3), p(2,3)) a mixed strategy of the
inspector. Here, qi is again the probability to start the illegal activity at time point
i and p(j1,j2) the probability to perform the first inspection at time point j1 and the
second inspection at time point j2. Then, depending on the value of the non-detection
probability β, the optimal strategies (q∗,p∗) as well as the optimal expected detection
time Op∗3,2(β) = Op3,2(β;q

∗,p∗) are given as follows:
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• For 0 ≤ β <
1

2
we have the optimal strategies

p∗(1,2) =
1

1− β
· 1 + β + 2 · β2 + β3

3 + 2 · β + β2
, (3.16)

p∗(1,3) =
1

1− β
· (1− 2 · β) · (1 + β + β2)

3 + 2 · β + β2
, (3.17)

p∗(2,3) =
1

1− β
· (1− 2 · β) · (1 + β)

3 + 2 · β + β2
(3.18)

and

q∗0 =
1 + β

3 + 2 · β + β2
, q∗1 =

1

3 + 2 · β + β2
and (3.19)

q∗2 =
1 + β + β2

3 + 2 · β + β2
, q∗3 = 0 (3.20)

with

Op∗3,2(β) =
4 + 6 · β + 5 · β2 + 2 · β3

3 + 2 · β + β2
. (3.21)

• For β =
1

2
we have

p∗(1,2) = 1 , p∗(1,3) = 0 , p∗(2,3) = 0 (3.22)

as optimal strategy for the inspector and the following optimal strategies for the
operator 

q∗0
q∗1
q∗2
q∗3

 = λ ·


6/17
4/17
7/17
0

+ (1− λ) ·


1
0
0
0

 , λ ∈ [0, 1] , (3.23)

with

Op∗3,2(β) = 2 . (3.24)

• For
1

2
< β ≤ 1 we have the optimal strategies

p∗(1,2) = 1 , p∗(1,3) = 0 , p∗(2,3) = 0 (3.25)

and

q∗0 = 1 , q∗1 = 0 , q∗2 = 0 , q∗3 = 0 (3.26)

with

Op∗3,2(β) = 1 + β + 2 · β2 . (3.27)

The proof of these results is given in section D.1.2 of Appendix D. Figure 3.6 presents
an overview of the optimal strategies of this game except those for the limiting cases of
β since the will not be realized in practice. It is surprising, that the operator´s and the
inspector’s optimal strategy is constant for all 1/2 < β < 1.
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Figure 3.6 Optimal strategies and corresponding payoffs in case of two unannounced
interim inspections (n = 3 and k = 2). The limiting case is omitted.

The case of three (unannounced) interim inspections (n = 3 and k = 3)

For the sake of completeness we consider three (unannounced) interim inspections al-
though they are not taken into account in our applications. The treatment of this case
is simple, since the inspector has no real choice because he has only the pure strategy
(1, 2, 3), i.e., he has to perform his inspections at any possible time point. The game is
depicted in Figure 3.7.

The entries in the payoff matrix can again be determined with help of a kind of decision
tree like in Figure 3.5. If β > 0 then the operator will always choose time point i = 0
for the start of his illegal activity, since the expected detection time is there as large as
possible. In case of β = 0 the operator may start at any time point he wish and the
expected detection time is always 1. Formally we get:

• For β = 0 we have the optimal strategy

p∗(1,2,3) = 1
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Figure 3.7 The matrix game in case of three (unannounced) interim inspections (n = 3
and k = 3).

(1, 2, 3)

0 1 + β + β2 + β3

1 1 + β + β2

2 1 + β

3 1

for the inspector and each element q ∈ QOp is an optimal strategy for the operator.
The optimal expected detection time is 1, i.e., Op∗3,3(β) = 1.

• For β > 0 we have the optimal strategy

p∗(1,2,3) = 1 and q∗0 = 1 , q∗1 = 0 , q∗2 = 0 , q∗3 = 0

with

Op∗3,3(β) = 1 + β + β2 + β3 .

Discussion of results

We have introduced simultaneous models for inspections in on-site interim storage fa-
cilities with different numbers of unannounced interim inspections. Now we discuss the
results of their analysis and link them to the practice of inspections in those kind of
facilities.

In Figure 3.8 we have drawn in the upper diagram the optimal expected detection times,
i.e., those times which elapse between start and detection of the illegal activity, when
the optimal strategies are played, for the three cases k = 1, 2 and 3. In the diagram
below we draw relation (2.1) for the typical value N = 100 for an on-site interim storage
facility, see section 2.1.3.

It can be seen that Op∗3,3(β) < Op∗3,2(β) < Op∗3,1(β) for β ∈ [0, 1) and Op∗3,3(1) =
Op∗3,2(1) = Op∗3,1(1). This result is clear due to the fact, that more possible unannounced
interim inspection(s) lead(s) to the a shorter optimal expected detection time. In case
of β = 1. i.e., the detection probability 1−β is zero, any illegal activity is detected only
at the end of the reference time interval and therefore the detection time is 4.

If the desired optimal expected detection time is about 1.5 quarters of a year we see that
this expected detection time cannot be reached with k = 1, i.e., one unannounced interim
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inspection, since Op∗3,1(0) = 11/6 ≈ 1.833. An important question from the practical
point of view is, if the number of unannounced interim inspections can be reduced
assuring a desired optimal expected detection time. This question can be answered with
the help of Figure 3.8.

Suppose the desired optimal expected detection time is about 2 quarters of a year. Then
we see that

• In case of one unannounced interim inspection the non-detection probability has
to be about 0.16 and therefore the sample size has to be about 84. The arrows
with the solid lines illustrate this argumentation.

• In case of two unannounced interim inspections the non-detection probability has
to be about 0.5 and therefore the sample size has to be about 50 per inspection.
The arrows with the dotted-dashed lines illustrate this argumentation.

• In case of three (unannounced) interim inspections the non-detection probabil-
ity has to be about 0.54 and therefore the sample size has to be about 46 per
inspection. The arrows with the dotted lines illustrate this argumentation.

Thus, in the first case 7 hours net time are needed to check 84 seals. In the second case
in total 2 · 50 = 100 seals have to be checked which needs about 8 hours and in the
third case in total 3 · 46 = 108 seals have to be checked which needs about 9 hours net
time. It depends on the overhead times which case is more economic for the inspection
authority.

We can formalize this consideration with the help of a cost model: Let a be the overhead
cost per inspection (travel and accommodation), and b the cost of checking one seal
(inspector manhour cost). Then, for a postulated optimal expected detection time 2 the
total cost of inspections are

a+ b · 84 for k = 1

2 · a+ b · 2 · 50 for k = 2

3 · a+ b · 3 · 46 for k = 3 .

We see immediately, that from this cost model point of view k = 1 inspection is the best
choice, and this holds independently of the chosen optimal expected detection time (as
long as the postulated expected detection time is larger than Op∗3,1(0), see Figure 3.8).

Of course, more complicated cost models could lead to different results. If, for example,
the checking of 84 seals can not be achieved in one day, contrary to the checking of 46
seals, overhead costs may favor more than one inspection. Thus, a decision based on a
cost model can only be made with the help of truly realistic cost data.

During the discussions in the course of this work JRC representatives forwarded the idea
that the IAEA might accept models and solutions the easier the shorter the optimal
expected detection time would be, ideally shorter than the conversion time. In our
model we always have Op∗3,k(β) > 1 for all β, i.e., Op∗3,k(β) is always greater than the
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conversion time. In order to meet the requirement that Op∗3,k(β) < 1 for a k and β we
have to consider continuous time models, which are the subject of section 3.2.

Figure 3.8 Upper graph: Optimal expected detection times as functions of β. Lower
graph: inspection sample size n as a function of β. Further explanations are given in
the text.
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3.1.2 Mathematical analysis of unannounced interim inspections
in a fuel element fabrication facility

In the same way as for the on-site interim storage facility we analyze unannounced interim
inspections in the fuel element fabrication facility. The basic assumptions (i),(iii) and
(v) - (xi) for the on-site interim storage formulated in section 3.1.1 hold here as well.
Instead of (ii) and (iv) we have

(ii’) The inspector has five time points for inspections.

(iv’) The operator has six time points for starting his illegal activity.

The case of one unannounced interim inspection (n = 5 and k = 1)

In this case the operator has the time points 0, 1, . . . , 5 for starting his illegal activity
and the inspector can perform his inspection at the time points 1, . . . , 5. The matrix of
the matrix game is given in Figure 3.9.

Figure 3.9 The matrix game in case of one unannounced interim inspection (n = 5 and
k = 1).

1 2 3 4 5

0 1 + 5 · β 2 + 4 · β 3 + 3 · β 4 + 2 · β 5 + β

1 5 1 + 4 · β 2 + 3 · β 3 + 2 · β 4 + β

2 4 4 1 + 3 · β 2 + 2 · β 3 + β

3 3 3 3 1 + 2 · β 2 + β

4 2 2 2 2 1 + β

5 1 1 1 1 1

4

The solution of the game is given as follows5. For practical reasons the limiting cases
are not represented completely.

5For the notation of the expected detection times see again Appendix A.
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• For 0 ≤ β <
13

60
we have the optimal strategies

p∗1 =
1

5
· 1

1− β
, p∗2 =

1

4
· 1

1− β
, p∗3 =

1

3
· 1

1− β
, (3.28)

p∗4 =
13− 60 · β

60
· 1

1− β
, p∗5 = 0 (3.29)

and

q∗0 =
2

5
, q∗1 =

1

10
, q∗2 =

1

6
, q∗3 =

1

3
, q∗4 = q∗5 = 0 (3.30)

with

Op∗5,1(β) =
77

30
+ 2 · β . (3.31)

• For
13

60
≤ β <

11

20
we have the optimal strategies

p∗1 =
1

5
· 1

1− β
, p∗2 =

1

4
· 1

1− β
, p∗3 =

11− 20 · β
20

· 1

1− β
(3.32)

p∗4 = p∗5 = 0 (3.33)

and

q∗0 =
3

5
, q∗1 =

3

20
, q∗2 =

1

4
, q∗3 = q∗4 = q∗5 = 0 (3.34)

with

Op∗5,1(β) =
47

20
+ 3 · β . (3.35)

• For
11

20
≤ β <

4

5
we have the optimal strategies

p∗1 =
1

5
· 1

1− β
, p∗2 =

4− 5 · β
5

· 1

1− β
, p∗3 = p∗4 = p∗5 = 0 (3.36)

and

q∗0 =
4

5
, q∗1 =

1

5
, q∗2 = q∗3 = q∗4 = q∗5 = 0 (3.37)

with

Op∗5,1(β) =
9

5
+ 4 · β . (3.38)
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• For
4

5
≤ β ≤ 1 we have the optimal strategies

p∗1 = 1 , p∗2 = p∗3 = p∗4 = p∗5 = 0 (3.39)

and

q∗0 = 1 , q∗1 = q∗2 = q∗3 = q∗4 = q∗5 = 0 (3.40)

with

Op∗5,1(β) = 1 + 5 · β . (3.41)

The proof of these results is given in Appendix D.1 section D.1.3. Since we will not
discuss the structure of the optimal strategies in the following we do not present them
here in tabular form. Let us just mention that for all values of β the operators optimal
strategy is piecewise constant and that for β > 4/5 the inspector’s optimal strategy is
also constant.

The case of two unannounced interim inspections (n = 5 and k = 2)

The operator can start his illegal activity again at the time points 0, 1, . . . , 5 and the
inspector performs his two inspections at the time points

(1, 2) , (1, 3) , (1, 4) , (1, 5) , (2, 3) , (2, 4) , (2, 5) , (3, 4) , (3, 5) , (4, 5) .

The payoff matrix of this situation is given in Figure 3.10.

The optimal strategies of this game do not give helpful insight, since they are too
complicated. Therefore, in the following only the optimal expected detection times are
given. The results are obtained with the help of a Mathematica R© program by M. J.
Canty [10]:

Op∗5,2(β) =



59 + 133 · β + 128 · β2 + 62 · β3 + 12 · β4

34 + 48 · β + 30 · β2 + 8 · β3
for 0 ≤ β < 0.172965

26 + 48 · β + 23 · β2 + 2 · β3 − 14 · β4 − 12 · β5

16 + 10 · β − 5 · β2 − 4 · β3 − 2 · β4
for 0.179265 ≤ β < 0.249989

23 + 77 · β + 102 · β2 + 72 · β3

15 + 27 · β + 18 · β2
for 0.249989 ≤ β < 0.529234

10 + 28 · β + 33 · β2 + 36 · β3

7 + 10 · β + 2 · β2
for 0.529234 ≤ β < 0.75

1 + β + 4 · β2 for 0.75 ≤ β ≤ 1

. (3.42)

Let us note that we do not prove these results. Having checked so many times the
results of this program with smaller games, we are confident that this program works
here as well. A graphical representation of these results is given in section 3.3. This
Figure shows by the way that the results are plausible.
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Figure 3.10 The matrix game in case of two unannounced interim inspections (n = 5
and k = 2).
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Should this model (n = 5 and k = 2) be implemented in practice, it would be possible,
of course, to present also the optimal strategies.

The discussion of the results of this section goes along the same lines as those in the
case n = 3 (see pages 30 - 32). Therefore we do not repeat it here.

3.2 Continuous time models

In this section we introduce another class of games which in the literature is called games
over the unit square and which is adapted to our applications. For the reasons explained
at the end of section 2.1.4 we will apply these models both to an on-site interim storage
and a fuel element fabrication facility under the assumption that the IAEA inspectors
can perform their unannounced interim inspections at any point of time of the reference
time interval.

In the concluding section 3.3 we will discuss the application of both the discrete and con-
tinuous time models to both types of facilities, on-site interim storage and fuel element
fabrication facility.

Most of the model assumptions made in section 3.1.1 are valid in this model as well.
The main difference between these two models is that the operator resp. the inspector
can start the illegal activity resp. perform his inspection(s) at any time point between 0
and t0. t0 is determined by the absolute length and scaling of the reference time interval.
If this interval is one year, and time is measured in quarters of years, e.g., then we get
t0 = 4.

Let k be the number of the unannounced interim inspection(s), chosen by the inspector
and also known to the operator. In section 5.3.1 we will show that it is sufficient to
consider the cases of k = 1 and k = 2. Depending on k we have again different sets of
pure strategies for the inspector:

• If k = 1: the set of pure strategies consists of all time points at which he can
perform his inspection. If t is the time point for inspection we therefore get
ΦInsp,1 = { t ∈ R : 0 ≤ t ≤ t0 }, and

• If k = 2: let t1 and t2 be the time points for the first resp. the second inspection.
Then we have ΦInsp,2 = {(t1, t2) ∈ R× R : 0 ≤ t1 < t2 ≤ t0}.

The operator may start his illegal activity at any time point between 0 and 4, therefore:

• The set of pure strategies of the operator is ΦOp = { s ∈ R : 0 ≤ s ≤ t0 }.

Following the argumentation in section 3.1.1 we assume again that the operator decides
at the beginning of the year (or the reference time interval) at which time point he will
start his illegal activity and the IAEA (or inspector) decides at the beginning of the year
(or the reference time interval) at which time point he will perform his inspection(s).
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The time points at which the operator will start his illegal activity resp the inspector
performs his inspection (s) are chosen independently of each other (at the beginning of
the year).

We assume that the inspector will commit an error of the second kind per inspection,
i.e., an illegal activity is not detected with probability β although there is one.

Let us summarize the assumptions which we have made so far:

(a) There are two players: operator and inspector.

(b) The inspector can perform his inspections at any time point between 0 and t0.

(c) The operator behaves illegally.

(d) The operator can start his illegal activity at any time point between 0 and t0.

(e) The inspector commits an error of the second kind per inspection, i.e., an illegal
activity is not detected with probability β although there is one.

(f) The number of interim inspections is also known to the operator6. At most two
unannounced interim inspections are permitted in one facility and the reference
time interval, see section 5.3.17.

(g) Both players decide at the beginning of the reference time interval when to start
the illegal activity and when to inspect.

(h) Both players decide independently of each other.

(i) The payoff to the operator is the time between the start of the illegal activity and
its detection. The payoff to the inspector is the negative one (zero-sum game).

(j) In case of the coincidence of the start of the illegal activity and the inspection, the
illegal activity is detected only at the occasion of the next inspection or the PIV.

(k) The game ends either after the final PIV or after that interim inspection at which
the illegal activity is detected.

This verbal description of our inspection problem leads us to zero-sum games with
infinite sets of pure strategies which requires a mathematical treatment different from
the foregoing one.

6See footnote page 21.
7The arguments given in section 5.3.1 hold only for on-site-interim storage facilities. For fuel element

fabrication facilities the documents by IAEA and EURATOM do not provide corresponding data, but
we assume that similar arguments hold here as well.
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The case of one unannounced interim inspection (k = 1)

Let s be the time at which the operator starts his illegal activity. At time point t the
inspector will perform his inspection (k = 1). Then the payoff to the operator is given
by8

Op1(β; s, t) =

{
(t− s) · (1− β) + (t0 − s) · β for 0 ≤ s < t
t0 − s for t ≤ s ≤ t0

, (3.43)

which can be seen as a generalization of the payoff matrix in Figure 3.2. Op1(β; s, t) is
called payoff kernel. It is important to remember that if the start of the illegal activity
and the inspection time coincide, the illegal activity is detected at the end (PIV).

The saddle point conditions in terms of Op1(β; s, t) can now be written as

Op1(β; s, t
∗) ≤ Op1(β; s

∗, t∗) ≤ Op1(β; s
∗, t) for all s, t ∈ [0, t0] .

It can be seen that these conditions cannot be satisfied, that is, there is no saddle
point in pure strategies (like in the corresponding discrete time game in section 3.1.1).
Therefore we must look for mixed strategies, which raises the question: What are mixed
strategies for players with infinitely many pure strategies? The answer is that they can
be represented, just as in matrix games, as probability distributions over the set of pure
strategies. It is convenient to work with the cumulative distribution functions

Q(s) = Prob(S ≤ s) and P (t) = Prob(T ≤ t)

which are the probabilities that random variables S and T representing the violation and
inspection times have values not exceeding s resp. t. The operator´s expected payoff
for some mixed strategy combination (Q,P ) is then given by

Op1(β;Q,P ) =

∫ t0

0

∫ t0

0

Op1(β; s, t) dQ(s) dP (t) ,

where we are using Lebesque-Stieltjes integrales, see, e.g., [12]. We can assume here
that the double integral exist.

For mixed strategies the saddle point conditions for our zero-sum game is

Op1(β;Q,P ∗) ≤ Op1(β;Q
∗, P ∗) ≤ Op1(β;Q

∗, P ) for all Q,P ,

so we have to look for distribution functions Q∗ and P ∗ which satisfies them. Success is
by no means guaranteed, since the payoff kernel Op1(β; s, t) is discontinuous on s = t
and optimal strategies for those kind of games cannot be guaranteed without further
assumptions. Fortunately, this game and the game discussed in the next paragraph
possesses optimal strategies in mixed strategies. Finding these optimal strategies is
in general a difficult task. The complete game theoretical solution of our continuous
inspection game is given as follows:

8For the notation of the detection times and expected detection times see again Appendix A.
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Let us define the parameter κ by

κ = t0 ·
(
1− e−(1−β)

)
.

The zero-sum game with payoff kernel in (3.43) has the following solution: The operator
chooses his start of the illegal activity s according to the distribution function Q∗(s) with

Q∗(s) =


t0

e(1−β)
· 1

t0 − s
for s ∈ [0, κ)

1 for s ∈ [κ, t0]
,

while the inspector chooses the inspection time t according to the distribution function
P ∗(t) given by

P ∗(t) =

 − 1

1− β
· ln

[
1− t

t0

]
for t ∈ [0, κ)

1 for t ∈ [κ, t0]

.

The optimal expected detection time is

Op∗1(β) = t0 − κ = t0 · e−(1−β) . (3.44)

The proof of this result can be found in [3] and – for β = 0 – in [6]. The surprising
result is, that after time point κ neither an illegal activity is started nor an inspection is
performed. This result makes sense since detection is guaranteed to occur at the end
of the interval and the operator will not wish to wait too long before violating. We also
see that even in the case of β = 0 and t0 = 4 we have Op∗1(0) = 4 · e−1 ≈ 1.47 (3.4
months) is still greater than the conversion time 1 (3 months) in our model, i.e., the
conversion time of 3 month.

The optimal strategies of both players can also be formulated in another way - due to
a brilliant idea of H. Diamond, see [13]. For the inspector’s optimal strategy this looks
like: The inspector realizes a uniformly distributed random variable U = u on [0, 1], i.e.,
the distribution function FU(u) of U is given by

FU(u) =


0 for u < 0
u for u ∈ [0, 1]
1 for u > 1

,

and determines therewith his optimal inspection time point

t∗ = t0 ·
(
1− h(1− u)

h(1)

)
with h(x) = e−(1−β)·x .

Therefore, (3.44) can also be written as Op∗1(β) = t0 · h(1).

This solution of our game theoretical problem renders its application very easy: The
inspector uses a random number generator, realizes U = u and inspects at time point
h(u).
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The case of two unannounced interim inspection (k = 2)

Let s be again the time point for starting the illegal activity and let t1 and t2 with t1 < t2
be the time points for the interim inspections. Then the payoff kernel of this game is
given by (see also footnote on page 26)

Op2(β; s, (t2, t1)) =


(1− β) · (t1 − s)+

+ β · (1− β) · (t2 − s)
+ β2 · (t0 − s) 0 ≤ s < t1 < t2 ≤ t0

(1− β) · (t2 − s) + β · (t0 − s) 0 ≤ t1 ≤ s < t2 ≤ t0
(t0 − s) t2 ≤ s ≤ t0

.

In this game a mixed strategy of the inspector is a two-dimensional distribution function
for the random vector (T1, T2), i.e., the random times T1 and T2 at which the inspector
performs his inspection, see, e.g., [40], while a mixed strategy Q(s) of the operator is
defined as for the game k = 1. It turns out that the explicit formulae of the operator’s
resp. the inspector’s optimal distribution function are complicated and are of less prac-
tical usage, see [1] in case of β = 0. Therefore, we again use Diamond’s representation
and describe the inspector’s optimal strategy via a uniformly distributed random variable
and - because of k = 2 - with two functions h1(x) and h2(x) fulfilling the following
differential equation system

h′
1(x) = (1− β) · h1(x)

h′
2(x) = (1− β) · h2(x)− (1− β)2 · h1(x)

with

h1(0) = 1 and h2(0) = h1(1) .

This system has the unique solution

h1(x) = e(1−β)·x (3.45)

h2(x) = e(1−β)·x ·
(
e1−β − x · (1− β)2

)
, (3.46)

see, e.g., [9]. Therewith the inspector has the following optimal strategy: The optimal
time points for inspection (t∗1, t

∗
2) are

t∗1 = t0 ·
(
1− h2(1− u)

h2(1)

)
and t∗2 = t0 ·

(
1− h1(1− u)

h2(1)

)
,

where u is the realization of a uniformly distributed random variable U on [0, 1].

The optimal expected detection time is

Op∗2(β) =
t0

h2(1)
=

t0 · e−2·(1−β)

1− (1− β)2 · e−(1−β)
.
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For β = 0 and t0 = 4 we get

Op∗2(0) =
4

e2
· 1

1− e−1
=

4

e
· 1

e− 1
≈ 0.8563 .

The proof of this result can be found in section D.2 Appendix D.

As mentioned before the optimal strategy of the operator has a much more complicated
structure and is omitted here. As before, the operator resp. the inspector starts his
illegal activity resp. performs his inspections not later than t0 · (1− 1/h2(1)).

We can now answer the question why we are only considering in this model the cases
k = 1 and k = 2. Firstly, we see that in the case k = 2 the optimal strategy of the
inspector is very complicated. For general k the optimal solution can only be represented
recursively with the help of differential equations.

Secondly, the optimal strategy for the case k = 2 assures an optimal expected detection
time which is smaller than the conversion time one which satisfies primary IAEA safe-
guards goals. It should be noted that this was not possible in the corresponding discrete
time games, see section 3.1.1. Of course with increasing k this expected detection time
is still decreasing.

Finally, it should be mentioned that in practice it may be difficult to plan and perform
inspections with the continuous time model, since this may create too many problems
for the joint performance between IAEA and EURATOM. A practical solution could be
to take the nearest possible time point to the optimal time point(s) of inspection(s).

3.3 Presentation and evaluation of results

As already announced at the end of section 2.1.4 we can apply both the discrete and
the continuous time models to both types of facilities considered in this study. For the
purpose of illustration we demonstrate this first for the on-site interim storage.

3.3.1 On-site Interim Storage Facility

For one unannounced interim inspection we obtained with the help of the discrete time
model the following optimal expected detection times:

Op∗3,1(β) =



11

6
+ β for 0 ≤ β < 1/6

10

6
+ 2 · β for 1/6 ≤ β < 2/3

6

6
+ 3 · β for 2/3 ≤ β ≤ 1

,

whereas we got for the continuous time model

Op∗1(β) = 4 · e−(1−β) .
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It can be shown that the continuous time model gives a shorter optimal expected de-
tection time for all values of β, starting with β = 0 (1.47 resp. 1.83). Of course, this
does not mean that we recommend the use of the continuous time model because an
additional burden is posed on the plant operators if IAEA inspectors visit the plant at
different points of time than EURATOM inspectors.

The same relation holds for the case of two interim inspections. With the help of the
discrete time model we obtained the following optimal expected detection times (again
deleting the limiting cases)

Op∗3,2(β) =


4 + 6 · β + 5 · β2 + 2 · β3

3 + 2 · β + β2
for 0 ≤ β < 1/2

1 + β + 2 · β2 for 1/2 ≤ β ≤ 1

,

whereas we got for the continuous time model

Op∗2(β) =
4 · e−2·(1−β)

1− (1− β)2 · e−(1−β)
.

Here it has to be emphasized that for k = 2 unannounced interim inspections the
continuous time model results in an optimal expected detection time that is shorter than
the conversion time (see section 3.1.1). This was not possible in the discrete time model.

In Figure 3.11 all four cases are represented graphically. For the discrete time model
the optimal expected detection times have already been presented in Figure 3.8. The
discussion given there holds, of course, also for the continuous time model.

3.3.2 Fuel Element Fabrication Facility

Let us now turn to the fuel element fabrication facility example.

In our description of the facility and of the safeguards measures in section 2.2 we men-
tioned that every six to eight weeks EURATOM inspectors visit the facility. Here we
assume intervals of two month. Then, according to our basic assumption for the discrete
time model, there are five intermediate time points at which the IAEA inspectors may
visit the facility. Thus, for one interim inspection (k = 1) there are five pure strate-
gies, whereas for two interim inspections (k = 2) there are

(
5
2

)
= 10 pure inspection

strategies. The operator has in both cases six pure strategies, namely to start his illegal
activity at time point 0, 1, . . . , 5.
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Figure 3.11 Graphical representation of the optimal expected detection times as func-
tions of the probability of no detection β for the on-site interim storage facility.

For k = 1 the optimal expected detection time is

Op∗5,1(β) =



77

30
+ 2 · β for 0 ≤ β <

13

60

47

20
+ 3 · β for

13

60
≤ β <

11

20

9

5
+ 4 · β for

11

20
≤ β <

4

5

1 + 5 · β for
4

5
≤ β ≤ 1

whereas we got for the continuous time model

Op∗1(β) = 6 · e−(1−β) .

In case of k = 2 we obtained

Op∗5,2(β) =



59 + 133 · β + 128 · β2 + 62 · β3 + 12 · β4

34 + 48 · β + 30 · β2 + 8 · β3
for 0 ≤ β ≤ 0.172965

26 + 48 · β + 23 · β2 + 2 · β3 − 14 · β4 − 12 · β5

16 + 10 · β − 5 · β2 − 4 · β3 − 2 · β4
for 0.179265 ≤ β ≤ 0.249989

23 + 77 · β + 102 · β2 + 72 · β3

15 + 27 · β + 18 · β2
for 0.249989 ≤ β ≤ 0.529234

10 + 28 · β + 33 · β2 + 36 · β3

7 + 10 · β + 2 · β2
for 0.529234 ≤ β ≤ 0.75

1 + β + 4 · β2 for 0.75 ≤ β ≤ 1
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whereas for the continuous time model

Op∗2(β) =
6 · e−2·(1−β)

1− (1− β)2 · e−(1−β)
.

In Figure 3.12 all four cases are represented graphically.

Figure 3.12 Graphical representation of the optimal expected detection times as func-
tions of the probability of no detection β for the fuel element fabrication facility.
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Chapter 4

Hybrid-sequential models

There is just one assumption which differs from those in the previous chapter, but it leads
to totally different game theoretical models: We assume here that the plant operator
decides at the beginning of the reference time interval only whether to start an illegal
activity immediately or not. In the latter case he decides after the first inspection whether
to start an illegal activity immediately or not, and so on. Since we consider only illegal
behavior during the reference time interval, we assume in addition that the operator has
to start an illegal activity after the last inspection if he did not do so before.

Let us mention that we also could assume that the inspector acts in a similar way, namely
deciding at the beginning of the reference time interval only when to perform the first
inspection, after the first inspection deciding when to perform the second one, and so on.
Since, however, the inspectorate has to plan the use of his resources for all plants and
States, and furthermore, since he does not gain any information about the operator’s
behavior in the course of the game – except that he detects illegal behavior which finishes
the game – we do not consider this possibility here. It should be mentioned that this
variant has been analyzed in detail by Avenhaus and Canty, see [2].

Of course, for just one interim inspection during the reference time interval both variants
are the same.

Contrary to the forgoing models, the ones to be analyzed now require quite different
analytical tools: Instead of considering only games in normal form, we now have to deal
primarily with so-called games in extensive form. A short introduction into extensive
form games is given in Appendix C.

Again, the models are applied to prototypes of an on-site interim storage and a fuel
fabrication facility, which had been described in chapter 2.

4.1 Discrete time models

We start again with the analysis of situations, where the inspector can only perform
unannounced interim inspections at finite numbers of well-defined time points. The
corresponding continuous time models are discussed subsequently.
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4.1.1 Mathematical analysis of unannounced interim inspections
in an on-site interim storage facility

Like in the previous chapter we assume that EURATOM inspectors visit the facility under
consideration in regular intervals of time, and that IAEA inspectors join them once or
twice during the reference time interval without announcing their visits in general. In
case of the on-site interim storage facility there are three regular interim inspections
performed by EURATOM, and in the case of the fuel element fabrication facility five
ones.

For the subsequent models in this section we assume that the basic assumptions (i) - (vi)
and (ix) - (xi) formulated for the on-site interim storage in section 3.1.1 hold. Assumption
(viii) is deleted, since the operators moves depend on those of the inspector. Instead of
(vii) we require

(vii”) The inspector decides at the beginning of the reference time interval when to
perform his inspection(s). The operator has to decide at the beginning of the
reference time interval whether to start his illegal activity immediately or only
after the inspection(s).

The meaning of this assumption, i.e., the strategic behavior of the operator, will become
clearer when we discuss the case n = 3 and k = 2.

The case of one unannounced interim inspection (n arbitrary and k = 1)

Since the case of general number n of inspection points of time can be analyzed as
easily as any special number n, we do this here. According to our assumptions (vii”) the
operator has to decide at the beginning of the reference time interval whether to start
his illegal activity immediately or only after the inspection (by the IAEA). If the inspector
performs his unannounced interim inspection at the j-th EURATOM inspection, then
the expected detection time is in the first case given by

(1− β) · j + β · (n+ 1) ,

where n is the number of EURATOM interim inspections per reference time interval,
and where β is again the non-detection probability for first IAEA inspection inspection
after the beginning of the illegal activity. In the second case it is given by

n+ 1− j .

Even though this game can – and will – be represented subsequently in normal form,
we present it now in so-called extensive form, since this representation gives a more
illustrative idea of the information structure of the game and furthermore, since we have
to do this anyhow for two IAEA interim inspections per reference time interval.

Thus, we introduce here a very simple form of an extensive form game, see Figure 4.1.
The operator decides at the beginning of the reference time interval if to start the illegal
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activity immediately (l0) or not (l0). In the latter case he has to start his illegal activity
immediately after the inspection. The (IAEA) inspector decides at the beginning at
which time point of the reference time interval he performs his inspection.

Figure 4.1 Extensive form of the discrete time hybrid-sequential inspection game with
one interim inspection at one of the possible time points 1, . . . , n. l0 and l0 denote
illegal and legal behavior of the operator at the beginning of the game. The encircled
area is the so-called information set of the inspector.

The important feature in Figure 4.1 is the information set of the inspector: He does not
know, at which node in the game he stays, when the game arrives there and he has to
make his decision.

The normal form of this extensive form game is given in Figure 4.2.

Figure 4.2 The matrix game of the hybrid-sequential inspection game represented graph-
ically in Figure 4.1.

1 . . . j . . . n

l0 (1− β) · 1 + β · (n+ 1) . . . (1− β) · j + β · (n+ 1) . . . (1− β) · n+ β · (n+ 1)

l0 n . . . n+ 1− j . . . 1

Let qT = (q1, q2) with qi ≥ 0 for i = 1, 2 and q1 + q2 = 1 be a mixed strategy of
the operator, i.e., q1 and q2 denote the probabilities to choose l0 and l0. Let pT =
(p1, . . . , pn) with pj ≥ 0 for all j = 1, . . . , n and

∑n
j=1 pj = 1 be a mixed strategy

of the inspector, i.e., pj denotes the probability to choose the time point j for the
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inspection. Then the expected detection time1 is given by (see Appendix B):

Opn,1(β;q,p) = q1 ·
n∑

j=1

((1− β) · j + β · (n+ 1)) · pj + q2 ·
n∑

j=1

(n+ 1− j) · pj .

The solution of this game is given as follows: The (mixed) optimal strategy of the
operator is given by

q∗1 =
1

2− β
and q∗2 =

1− β

2− β
. (4.1)

The (not unique) optimal strategy p∗ = (p∗1, . . . , p
∗
n)

T of the inspector is given by

n∑
j=1

j · p∗j =
1− β

2− β
· (n+ 1) and

n∑
j=1

p∗j = 1 (4.2)

with the optimal expected detection time

Op∗n,1(β) = Opn,1(β;q
∗,p∗) =

n+ 1

2− β
. (4.3)

This result in proven in section D.3.1 of Appendix D.3 .

From a theoretical point of view it is interesting to note that in case the pure strategy
j∗ of the inspector fulfills the condition

(1− β) · j∗ + β · (n+ 1) = n+ 1− j∗ ,

which is equivalent to

j∗ =
1− β

2− β
· (n+ 1) , (4.4)

is an integer, then the inspector can use this pure strategy, i.e., he can announce this
time point j∗ in advance. The larger the error of the second kind probability β is, the
smaller is this time point j∗.

For the on-site interim storage facility we have n = 3, that is with (4.4)

j∗ = 4 · 1− β

2− β
,

which gives j∗ = 1 for β = 2/3 and j∗ = 2 for β = 0.

For the fuel element fabrication facility we have n = 5, that is with (4.4)

j∗ = 6 · 1− β

2− β
,

which gives j∗ = 1 for β = 5/6, j∗ = 2 for β = 3/5 and j∗ = 3 for β = 1/4.

For practical applications these results are not so interesting, since these special β-values
will be hardly realized.

1For the notation of the expected detection times see again Appendix A.
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The case of two unannounced interim inspections (n = 3 and k = 2)

Since it is no longer possible to present the extensive form of the game describing two
unannounced interim inspections for any number n inspections in a reasonable way, we
have to specialize our analyses to the cases of our practical interest.

For n = 3 and k = 2 the inspector has the three possibilities (1, 2), (1, 3) and (2, 3),
whereas the operator decides at the beginning of the reference time interval and after the
first inspection. The extensive form of this game is represented graphically in Figure 4.3.
The operator decides at the beginning of the reference time interval whether to start an
illegal activity immediately or not. The inspector in turn decides at the beginning where
to place his two inspections. In case the operator did not start his illegal activity at the
beginning, he decides after the first inspection whether to start his illegal activity now
or to do this after the second inspection, see assumption (iii).

We see that here the information structure is much more complicated than in the previous
case: Whereas the inspector has again just one information set the operator now has
two information sets since after the first inspection at time point one he does not know
when the second inspection will be performed. After the first inspection at time point
two, however, he does know that the second one will be performed at time point three
(see also footnote on page 26).

Figure 4.3 Extensive form of the discrete time hybrid-sequential inspection game with
two interim inspections at two of the three time points 1, 2 and 3. l0 and l0 denote
illegal and legal behavior of the operator at the beginning of the game. l1 and l1 denote
illegal and legal behavior of the operator if he behaved legally before, and if the first
inspection takes place at time point 1. l2 and l2 equivalently, if the first inspection takes
place at time point 2. The encircled areas denote information sets.

51



CHAPTER 4. HYBRID-SEQUENTIAL MODELS

We see that we can simplify this game before trying to determine its solution. First,
we can perform the expectation with respect to (β, 1 − β) at the end nodes. Second,
comparing the alternatives l2 and l2 we see immediately that l2 is better for the operator
than l2 thus, we can delete the latter alternative.

As a result, we arrive at the so-called reduced extensive form of our hybrid-sequential
inspection game, the graphical representation of which is given in Figure 4.4.

Figure 4.4 Reduced form of the game represented graphically in Figure 4.3. Notation
and information sets are the same as before.

There are different ways to determine the solution of such an extensive form game.
One way is to use so-called behavioral strategies, see also Appendix C: They are mixed
strategies which assign probabilities to the choices of the players at all of their information
sets. We will use them for the solution of the continuous time model in section 4.2, but
demonstrate its use already now.

Let g0 resp. g1 be the operators probability to start his illegal activity at the beginning
of the reference time interval resp. after the first inspection. Let p(i,j) denote the
inspectors probability to inspect at time points (i, j), (i < j ≤ 3, i = 1, 2), and
p(1,2) + p(1,3) + p(2,3) = 1.

The expected detection time as function of the players strategies is

Op3,2(β;g,p) = g0 · [A · p(1,2) +B · p(1,3) + C · p(2,3) ] (4.5)

+ (1− g0) · [ g1 · (d · p(1,2) + e · p(1,3))
+ (1− g1) · (2 · p(1,2) + p(1,3)) + f · p(2,3) ] ,
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and the saddle point criterion, accordingly, is given by

Op3,2(β;g,p
∗) ≤ Op3,2(β;g

∗,p∗) ≤ Op3,2(β;g
∗,p) for all g ,p .

Following the analysis as given in Appendix D.3, the optimal strategies (g∗0, 1− g∗0) and
(g∗1, 1− g∗1), and p∗ = (p∗(1,2), p

∗
(1,3), p

∗
(2,3))

T are given as follows:

• 0 ≤ β < 0.5: Then

g∗0 =
1

N
· (1− β + β2) and g∗1 =

1 + β2

2 + β2
, (4.6)

where N = 3− 3 · β + 2 · β2 − β3 and

p∗(1,2) =
1

N
· (1 + β + β2 + β3) ,

p∗(1,3) =
1

N
· (1− 2 · β + β2 − 2 · β3) , (4.7)

p∗(2,3) =
1

N
· (1− 2 · β + β2 + β3) .

The optimal expected detection time is

Op∗3,2(β) = Op3,2(β;g
∗,p∗) =

4− β + β2

N
. (4.8)

• 0.5 ≤ β ≤ 1: Then

g∗0 = 1 and g∗1 ∈ [0, 1] , (4.9)

and

p∗(1,2) = 1 , p∗(1,3) = 0 , p∗(2,3) = 0 . (4.10)

The optimal expected detection time is

Op∗3,2(β) = 1 + β + 2 · β2 . (4.11)

This result is proven in section D.3.2 of Appendix D.3.

Let us mention that for β < 0.5 the optimal strategy of the inspector is always mixed,
contrary to the situation for just one interim inspection.

The case of three (unannounced) interim inspections (n = 3 and k = 3)

This case will not be analyzed here in detail, first, because only a maximum of two
IAEA interim inspections is considered here and second, because its result, easily to be
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obtained, is again that the operator starts his illegal activity right at the beginning of
the reference time interval. The optimal expected detection time is

Op∗3,3(β) = 1 + β + β2 + β3 .

The discussion of the results of the section goes along the same lines as those in si-
multaneous case (see pages 30 - 32). Therefore we do not repeat it here. A graphical
representation of the optimal expected detection times obtained so far is given in section
4.3.1.

4.1.2 Mathematical analysis of unannounced interim inspections
in a fuel element fabrication facility

Like in the previous chapter we assume that EURATOM inspectors visit the facility under
consideration in regular intervals of time, and that IAEA inspectors join them once or
twice during the reference time interval without announcing their visits in general. In
case of the on-site interim storage there are three regular interim inspections performed
by EURATOM, and in the case of the fuel element fabrication facility five ones.

In the following models we maintain the basic assumptions (i),(iii), (v) and (ix)-(xi) from
section 3.1.1, the assumptions (ii’) and (iv’) from section 3.1.2 and assumption (vi”)
from section 4.1.1.

The case of one unannounced interim inspection (n = 5 and k = 1)

This case was already treated in section 4.1.1, from (4.3) we get for the optimal expected
detection time2

Op∗5,1(β) =
6

2− β
.

The case of two unannounced interim inspections (n = 5 and k = 2)

In this case the ten pure strategies of the inspector are

(1, 2) , (1, 3) , (1, 4) , (1, 5) , (2, 3) , (2, 4) , (2, 5) , (3, 4) , (3, 5) , (4, 5) .

The pure strategies of the operator cannot be determined so easily beforehand, thus, we
consider first the extensive form of this game as given in Figure 4.5.

2For the notation of the expected detection times see again Appendix A.
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Figure 4.5 Extensive form of the discrete time hybrid-sequential game with two unan-
nounced interim inspections at two of the five possible time points 1, 2, . . . , 5. The
encircled areas denote the information sets of the operator.
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Of course, one can try to determine the equilibria of this game with the help of the
behavioral strategies in the same way as before. It turns out, however, that it is much
more convenient to transform this extensive form game into a normal form one, see also
Appendix B. For this purpose we have to determine the set of pure strategies of the
operator. According to the four non-trivial information sets of the operator, the pure
strategies of the operator are given in Figure 4.6.

Figure 4.6 Set of pure strategies of the operator.

l0 l1 l2 l3 l0 l1 l2 l3

l1 l2 l3 l1 l2 l3

l1 l2 l3 l1 l2 l3

l1 l2 l3 l1 l2 l3

l0 l1 l2 l3 l0 l1 l2 l3

l1 l2 l3 l1 l2 l3

l1 l2 l3 l1 l2 l3

l1 l2 l3 l1 l2 l3

Therefore, the normal form of this game is a 16× 10 matrix game. Since, however, the
first eight rows of the matrix are identical, we keep just the first of the eight rows. Thus
we arrive at a 9× 10 matrix game which is represented in Figure 4.7.

Of course it is no longer practically feasible to determine analytically the solution of this
game for all values of β. Since, in addition, the optimal strategies of both players turn
out to be numerous and complicated, we do not present them here, but just give the
optimal expected detection as obtained by the Mathematica R© program by M. J. Canty
[10]

Op∗5,2(β) =



6

3− 2 · β
for 0 ≤ β < 2/3

8− 5 · β + 3 · β2

5− 9 · β + 8 · β2 − 3 · β3
for 2/3 ≤ β < 3/4

1 + β + 4 · β2 for 3/4 ≤ β ≤ 1

. (4.12)

Again, we do not prove these results. Having checked so many times the results of this
program with smaller games, we are confident that this program works here as well. A
graphical representation of these results is given in section 4.3.2. This Figure shows by
the way that the results are plausible.

Should this model (n = 5 and k = 2) be implemented in practice, it would be possible,
of course, to present also the optimal strategies.
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Figure 4.7 Matrix game of the extensive form game in Figure 4.5.
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For answering questions which arise from the practical application of these results, e.g.,
those concerning the conversion time, this information is sufficient.

The discussion of the results of the section goes again along the same lines as those in
simultaneous case (see pages 30-32). Therefore we do not repeat it here.

4.2 Continuous time models

Like in the case of the simultaneous models we consider now the time continuous variant
of the hybrid-sequential model. This means that we assume, like in the forgoing section,
that the (IAEA) inspector decides at the beginning of the reference time interval at
which time point(s) he performs his inspection(s), whereas the operator decides at the
beginning whether or not to start the illegal activity immediately or not, furthermore in
the latter case, whether to start the illegal activity immediately after the first inspection
and so on. Again, we assume that the operator will behave illegally during the reference
time interval.

The following analysis holds both for application to the on-site interim storage and
the fuel element fabrication facility. Quite generally, let us assume that in a facility k
unannounced interim inspections will be performed in a reference time interval [tk+1, t0],
see Figure 4.8, at the beginning and end of which a physical inventory verification
(PIV) is performed. The backward counting simplifies the mathematical analysis and
the presentation of the solutions, also the use of tk+1 instead of zero. t0 is determined
by the absolute length and scaling of the reference time interval. If this interval is one
year, and time is measured in quarters of years, e.g., then we get t0 = 4.

Figure 4.8 Time line of k interim inspections.

In this section we require the basic assumptions (a) - (f) and (i) - (k) from section 3.2.
Instead of (g) we assume

(g’) The inspector decides at the beginning of the reference time interval when to
perform his inspections. The operator has to decide at the beginning of the
reference time interval whether to start his illegal activity immediately or only
after the inspection(s).

The case of one unannounced interim inspection (k = 1)

As already mentioned, the operator decides at the beginning t2 of the reference time
interval [t2, t0] whether to start his illegal activity immediately or only after the inspection.
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If not, he has to do this at time point t1. The graphical representation of this two-person
zero-sum game in extensive form is given in Figure 4.9.

Figure 4.9 Extensive form of the continuous time hybrid-sequential inspection game
with one interim inspection at any time point during the reference time interval. l(t2)
and l(t2) denote illegal and legal behavior of the operator at the beginning of the game.
The encircled area is the information set of the operator. (g2, 1 − g2) denotes the
behavioral strategies of the operator.

At the top of this figure it is indicated that at time point t2 the operator either does start
his illegal activity, l(t2), or he does not, l(t2). The inspector chooses at t2 a time point
t1 for his inspection without knowing the operator’s decision at t2. This is indicated by
the oval which is called the information set of the inspector.

If the operator chooses l(t2) and the inspector performs his unannounced interim inspec-
tion at time point t1 , then the expected (conditional with respect β) detection time is
given by

(1− β) · (t1 − t2) + β · (t0 − t2) ,

(we maintain the general form for later purposes), whereas in the in case the operator
chooses l(t2) it is given by t0 − t1.

Let g2 be the behavioral strategy of the operator, i.e., the probability to start the illegal
activity at time point t2. Then the (unconditional) expected detection time3 is

Op1(β; g2, t1) = g2 · [ (1− β) · (t1 − t2) + β · (t0 − t2) ] + (1− g2) · (t0 − t1) . (4.13)

3For the notation of the expected detection times see again Appendix A.
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The solution of this game is given as follows: The optimal inspection time point t∗1 is
given by (remember t2 = 0)

t∗1 − t2 =
1− β

2− β
· (t0 − t2) (4.14)

and the optimal operator strategy by

g∗2 =
1

2− β
. (4.15)

The optimal expected detection time is

Op∗1(β) = t0 − t∗1 =
t0 − t2
2− β

. (4.16)

This result in proven in section D.4.1 of Appendix D.4 .

It should be emphasized that our analysis leads to an explicit dependence of the optimal
time point for inspection t∗1 on β. Whereas for β = 0 the common sense point of
view would lead to this result, for β > 0 one would hardly arrive at this result without
quantitative analysis. The same holds for the operator’s optimal strategy.

Also it is interesting to note that the optimal time point for inspection t∗1 depends on
the length t0 − t2 of the reference time interval and β, while the optimal strategy of
the operator g∗2 is only a function of β. It is intuitive, however, that both t∗1 decreases
with increasing β whereas g∗2 increases with increasing β: for β close to 1 the detection
probability is close to zero and therefore the operator starts with probability close to 1
at time point t2 = 0. Consequently, the inspector will perform his inspections also very
early.

Finally and most importantly, the optimal strategy of the inspector is a pure strategy,
i.e., t∗1 is deterministic. In other words, the inspector can announce the time point of his
interim inspection if he wishes so (and which the operator knows anyhow)4.

Remember that in the discrete time version of this inspection problem this was the case
for just one interim inspection (k = 1) only for special values of β, see section 4.1.1.

The case of two unannounced interim inspections (k = 2)

Again the operator decides at the beginning t3 of the reference time interval [t3, t0]
whether to start his illegal activity immediately or later. In the latter case he decides

4Due to the linearity of the expected detection time in t1, the inspector can also choose the time
point t∗1 for inspection using an arbitrary distribution density f(t1) concentrated on [t2, t0] such that
his optimal expected time point t∗1 for inspection,

t∗1 =

∫ t0

t2

t1 · f(t1) dt1 ,

is the same as the deterministic one given by (4.14). However, this way he does not gain anything.
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after the first inspection at t2, and finally if he does not start the illegal activity at t2,
he has to do this at t1.

The extensive form of this game would have to show this information structure. It would
be the time continuous version of Figure 4.3 and 4.5 and thus, difficult to be represented.
Since, furthermore, the expected detection time can be written down in a straightforward
way we do not show the graphical representation of this game.

Let g3 and g2(t2) be the probabilities that the operator either starts his illegal activity
right at the beginning of the reference time interval, or after the first at t2. Then the
(unconditional) expected detection time is

Op2(β;g, t) = g3 · [ (1− β) · (t2 − t3) + β · (1− β) · (t1 − t3) + β2 · (t0 − t3) ]

+ (1− g3) · [ g2(t2) · ((1− β) · (t1 − t2) + β · (t0 − t2))

+ (1− g2(t2)) · (t0 − t1) ] . (4.17)

The solution of this game is recursively given by (remember t3 = 0)

t∗2 − t3 =
1− β

3− 2 · β
· (t0 − t3) , (4.18)

t∗1 − t∗2 =
1− β

2− β
· (t0 − t∗2) (4.19)

and

g∗3 =
1

3− 2 · β
(4.20)

g∗2(t2) =
1

2
for all t3 < t2 < t0 . (4.21)

The optimal expected detection time is

Op∗2(β) = t0 − t∗1 =
t0 − t3
3− 2 · β

. (4.22)

This result in proven in section D.4.2 of Appendix D.4.

Technically speaking, these solutions are more simple then the corresponding ones for
the discrete game, i.e., no distinction of cases with respect to β are necessary.

Since t∗1 = 2 · t∗2, we obtain that for β < 1 the second inspection takes place after the
double the time than the first one. For β = 0 we get

t∗2 =
1

3
· t0 and t∗1 = 2 · t∗2 =

2

3
· t0 .

As in the case k = 1, for β = 0 the common sense point of view would lead to this
result, for β > 0 one would hardly arrive at this result without quantitative analysis. The
same holds for the operator’s optimal strategy (g∗3, g

∗
2): Since the operator is confronted
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at t3 with three inspection intervals of equal length he chooses g∗3=1/3. After the
first inspection however, only two intervals of equal length are left. Thus, he chooses
g∗2 = 1/2.

Again, most importantly is the fact, that the inspector may announce the optimal time
points of his inspections, if he wishes so, and the same arguments as given in the previous
case hold as well.

The case of three unannounced interim inspection (k = 3)

Even though we do not need it for the purpose of this study, we present some remarks
about extensions of our analysis to more than two interim inspections.

We see that (4.14) for k = 1 and (4.19) for k = 2 are identical – keeping in mind that
in the first one t2 = 0 is fixed. Thus we can guess in which way the determinants for
the optimal strategies build up for increasing number of interim inspections. In fact, for
k = 3 we get

t∗3 − t4 =
1− β

4− 3 · β
· (t0 − t4) , (4.23)

t∗2 − t∗3 =
1− β

3− 2 · β
· (t0 − t∗3) , (4.24)

t∗1 − t∗2 =
1− β

2− β
· (t0 − t∗2) (4.25)

and

g∗4 =
1

4− 3 · β
, (4.26)

g∗3(t3) =
1

3
for all t4 < t3 < t0 (4.27)

g∗2(t3, t2) =
1

2
for all t4 < t3 < t2 < t0 . (4.28)

The optimal expected detection time is

Op∗3(β) = t0 − t∗1 =
t0 − t4
4− 3 · β

. (4.29)

These results which are proven in section D.4.3 of Annex D are identical to those of
a purely sequential variant of our model by Avenhaus and Canty, see [2], in the case
of no errors of the first kind. In the Avenhaus-Canty model also the inspector behaves
sequentially; this means that he decides at the beginning of the reference time interval
at which time point he performs his first inspection, thereafter, when to perform his
section inspection and so on. Of course, for just one inspection the hybrid-sequential
model and the purely sequential model are identical.

One can explain the result that in case there are no errors of the first kind both models
lead to the same solutions – ex post – by the fact that the inspector does not gain
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any information in the course of the game. Therefore, there is no difference between
these two variants. Nevertheless it cannot be seen directly in view of the fact that the
extensive forms of the two variants are so different.

It remains an open question – the answer to which is not subject of this study – whether
or not the solutions of both variants are still the same if errors of the first kind are taken
into account.

Again, it should be mentioned that in practice it may be difficult to plan and perform
inspections with the continuous time model, since this may create too many problems
for the joint performance between IAEA and EURATOM. A practical solution could be
to take the nearest possible time point to the optimal time point(s) of inspection(s).

Discussion of results

Figure 4.10 combines all findings of this section and shows their dependencies and prac-
tical implications.

The optimal expected detection times are drawn in the upper diagram as functions of the
non-detection probability β for the two cases k = 1 and k = 2. We have chosen t0 = 4
according to the quarterly inspections of EURATOM in on-site interim storage facilities
which means that the optimal expected detection times are measured in quarters of
years. Choosing for instance t0 = 12 would lead to a measurement in months.

If the desired optimal expected detection time is about 1.5 quarters of a year, we see that
this optimal expected detection time cannot be reached with one unannounced interim
inspection (k = 1), since with (4.16) we get

Op∗1(0) = 2 > 1.5 .

The mid diagram in Figure 4.10 shows relation (2.1), i.e., the number of checked seals
in case of N = 100, the total number of seals, as a function of β.

The two lower diagrams present the optimal time point(s) for inspection(s) as given by
formulae (4.14) and (4.18) and (4.19): on the left side for k = 1 and on the right side
for k = 2. It is interesting to note that for k = 1 and arbitrary β the optimal time point
for inspection always lies between 0 and 2, whereas in case of k = 2 the first inspection
time point lies between 0 and 2/3 where for the second time point we have 1/3 and 2/3
quarters of a year.

All diagrams of Figure 4.10 can now be linked together as follows: Suppose the desired
optimal expected detection time is about 2.25 quarters of a year. Then we see that

• In case of one unannounced interim inspection the non-detection probability has
to be about 0.22 and therefore - using the mid diagram - the sample size has to
be about 78. The corresponding optimal time point for the inspection is - using
the left lower diagram - about 1.75 quarters of a year. The arrows with the solid
lines illustrate this argumentation.
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• In case of two unannounced interim inspections the non-detection probability has
to be about 0.61 and therefore - using the mid diagram - the sample size has to
be about 39 for each inspection. The corresponding optimal time points for the
inspections are - using the right lower diagram - about 0.8 and 1.75 quarters of a
year. The arrows with the dotted lines illustrate this argumentation.

Figure 4.10 Graphical presentation of results of section 4.2.
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We see that we can assure the same optimal expected detection time of 2.25 quarters
of a year with one or two unannounced interim inspections. In both cases we have to
check in total the same number of seals, namely 78, which follows from the formulae
(2.1), (4.16) and (4.22). It depends on the overhead costs which case is more economic
for the inspection authority.

There is a second way in which Figure 4.10 can be interpreted (although not indicated
with arrows). Starting with the mid diagram we assume that we can only check a small
number of seals n. Then we see that we arrive at a quite high non-detection probability
β and therefore - using the upper diagram - at quite high optimal expected detection
times.

4.3 Presentation and evaluation of results

Let us apply the results presented so far in the same way to both types of nuclear facility
considered in this study, i.e., represent the optimal expected detection times for k = 1
and k = 2 and the discrete and continuous time cases. For this purpose, we take t0 = 4
for the on-site interim storage facility and t0 = 6 for the fuel element fabrication facility.

4.3.1 On-site Interim Storage Facility

Here we obtained with n = 3 in the discrete time model for k = 1 with (4.3)

Op∗3,1(β) =
4

2− β

and we got for the continuous time model with (4.16) and t0 = 4 the same formula

Op∗1(β) =
4

2− β
.

For k = 2 we obtained for the discrete time model with (4.8) and (4.11)

Op∗3,2(β) =


4− β + β2

3− 3 · β + 2 · β2 − β3
for 0 ≤ β < 1/2

1 + β + 2 · β2 for 1/2 ≤ β ≤ 1

and for the continuous time model with (4.22) and t0 = 4

Op∗2(β) =
4

3− 2 · β
.

We see that for just one unannounced interim inspection the optimal expected detection
time is the same in both the discrete and continuous time cases – even though, of course,
the optimal strategies of the inspector are not the same.
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The optimal expected detection times for the various cases considered so far are repre-
sented graphically in Figure 4.11.

Figure 4.11 Optimal expected detection times as functions of the non-detection prob-
ability β for the hybrid-sequential models as applied to the on-site interim storage.

As mentioned, for k = 1 the discrete and the continuous time models give the same
results. For k = 2 they are analytically different, but numerically very close.

It is important to realize that even for β = 0 and two interim inspections the expected
detection time is longer than the conversion time 1, contrary to the situation in the
simultaneous model, see Figure 3.11. The fact, that here the optimal expected detection
times are longer than those for the corresponding simultaneous cases results from the
information the operator can gain in the course of the game.

4.3.2 Fuel Element Fabrication Facility

Here we obtained with n = 5 for the discrete time model for k = 1 with (4.3)

Op∗5,1(β) =
6

2− β
,

and we got for the continuous time model with (4.16) and t0 = 6 the same formula

Op∗1(β) =
6

2− β
.
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For k = 2 we obtained for the discrete time model with (4.12)

Op∗5,2(β) =



6

3− 2 · β
for 0 ≤ β < 2/3

8− 5 · β + 3 · β2

5− 9 · β + 8 · β2 − 3 · β3
for 2/3 ≤ β < 3/4

1 + β + 4 · β2 for 3/4 ≤ β ≤ 1

and for the continuous time model with (4.22) and t0 = 6

Op∗2(β) =
6

3− 2 · β
.

As before, the optimal expected detection times are the same for the time discrete
and continuous cases for just one interim inspection. Here, contrary to the previous
applications, also for k = 2 interim inspections and small values of the non-detection
probability β the optimal expected detection times are the same. This is quite interesting
and was not yet to be foreseen therefore, we dot not make any guesses about larger values
of n.

The optimal expected detection times for the various cases considered so far are repre-
sented graphically in Figure 4.12. Again, for k = 1 the discrete and continuous time
models give the same results, whereas for k = 2 they are numerically very close.

Figure 4.12 Optimal expected detection times as functions of the non-detection proba-
bility β for the hybrid-sequential models as applied to the fuel element fabrication facility.
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Chapter 5

Extensions and further work

Three additional topics will be presented in this chapter; they complement the previous
models and analyses and provide an outlook on possible future work.

First, the question of inducing the operator of a nuclear facility to legal behavior will be
raised. Even though it is not relevant as long as the number of inspections per year, and
the detection probabilities are fixed a priori, the analysis throws an interesting light on
the optimal strategies of the inspector.

Second, so-called critical time games are considered, that is, games where the plant
operator has ”won” the game if his illegal activity is not detected within the critical
time, and where otherwise the inspector has won it: Again, even though there were good
reasons to consider ”playing for time” games in the previous chapters, it is worthwhile
to evaluate the consequences of the differences of these two types of objectives.

Finally, an outlook will be given as to the natural extension of our study. As mentioned,
we considered so far fixed numbers of inspections per year in one plant. It is obvious to
ask how optimal strategies will change if only the number of inspections per year in a
State with more than one facility of a given type is fixed.

5.1 Legal behavior

In order to be able to determine inspection strategies which induce the plant operator to
legal behavior one has to introduce utility functions which describe the losses and gains
of the operator for all possible outcomes of the inspections.

By definition any illegal activity will be detected with certainty at the end of the year.
Therefore, if we normalize the gain (or loss) of the operator in case of legal behavior to
zero, any illegal activity causes the loss b > 0 (gain −b < 0). In addition, according
to our playing for time criterion, the operator, starting an illegal activity, has a gain
proportional to the time4t between the beginning of the illegal activity and its detection
which we denote by d · 4t, d > 0. If we normalize our reference time interval to one,
the maximum gain of the operator in case of illegal behavior is d − b thus, we assume
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d− b > 0 otherwise the operator would never start an illegal activity. In sum, the payoff
to the operator is{

d · 4t− b for illegal behavior and detection time 4t
0 for legal behavior

.

Let us assume now that the operator decides before the beginning of the game whether
to start or not to start an illegal activity at all. It will turn out that the operator never
uses a mixed strategy in equilibrium thus, using our previous terminology, his optimal
payoff will be{

d ·Op∗(β)− b for illegal behavior and detection time 4t
0 for legal behavior

,

where Op∗(β) stands for any of the optimal detection times determined in the previous
chapters. Therefore, he will behave legally if

d ·Op∗(β)− b < 0

or equivalently

Op∗(β) <
b

d
.

This is a simple condition for legal behavior. For the case of the on-site interim storage
facility, one unannounced interim inspection and the discrete time model, we get for

0 ≤ β <
1

6
with (3.3)

11

6
+ β <

b

d
.

The question, however, remains what are the appropriate legal behavior Nash equilibrium
inspection strategies. In order to answer this question we have to consider again our
models.

Since we present these considerations for principal purposes, not for immediate practical
applications we limit our analyses to the cases β = 0 and k = 1 even though the
generalization to β > 0 is straightforward. Also, we start with the time continuous
hybrid-sequential model since here the analysis is very simple. Next we continue with the
time continuous simultaneous model, and finally, we consider the time discrete models.

5.1.1 The time continuous hybrid-sequential model

Introducing utilities means that we do not deal any longer with zero sum games. There-
fore, we have to define also the inspector’s payoff as follows:{

− a · 4t for for illegal behavior and detection time 4t
0 for for legal behavior

,
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Figure 5.1 Non-zero sum extensive form game including legal behavior of the operator
(l0, l1), corresponding to the zero-sum extensive form game given in Figure 4.9. Note
that t2 = 0 and t1 = t.

here, we have a > 0 since the highest priority of the inspector is, let us repeat, to induce
the operator to legal behavior. With this definition the extensive form game of section
4.2 which includes legal behavior, is given in Figure 5.1.

Let W be the payoff to the operator, and V that of the inspector for this new game. The
Nash equilibrium condition for the game including the legal behavior of the operator,
W ∗

l = V ∗
l = 0, is given by

0 ≥ W ((l0, l1), t
∗) (5.1)

0 ≥ W ((l0, l1), t
∗) (5.2)

0 ≥ W ((l0, l1), t
∗) (5.3)

0 ≥ V ((l0, l1), t) for all t . (5.4)

Whereas condition (5.4) for the inspector is fulfilled as identity, like condition (5.3),
condition (5.1) and (5.2) are equivalent to

0 ≥ d · t∗ − b and 0 ≥ d · (1− t∗)− b .

They can be combined to

1− b

d
≤ t∗ ≤ b

d
. (5.5)

In order that this interval for t∗ is not empty, we need b/d ≥ 1/2, otherwise the operator
will behave illegally in equilibrium. Let us summarize: For 1/2 ≤ b/d ≤ 1 there is a
Nash equilibrium in which the operator behaves legally. The equilibrium strategy of the
inspector is not unique, but given by (5.5).
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One additional important remark has to be made here: Let W ∗
l
and V ∗

l
be the payoffs

for the equilibrium in which the operator behaves illegally. Then the Nash condition for
the operator is

W ∗
l

≥ W ((l0, l1), t
∗
l
) (5.6)

W ∗
l

≥ W ((l0, l1), t
∗
l
) (5.7)

W ∗
l

≥ W ((l0, l1), t
∗
l
) . (5.8)

In order that legal behavior is the Nash equilibrium, W ∗
l > W ∗

l
has to be fulfilled thus,

with (5.6), (5.7) and (5.8) we can now write

W ∗
l > W ∗

l
≥ W ((l0, l1), t

∗
l
) (5.9)

W ∗
l > W ∗

l
≥ W ((l0, l1), t

∗
l
) (5.10)

W ∗
l ≥ W ∗

l
≥ W ((l0, l1), t

∗
l
) . (5.11)

This means, however, that t∗
l
is also a equilibrium strategy equilibrium in which the

operator behaves legally. In other words, if the inspector uses his (unique) equilibrium
strategy, which corresponds to the illegal equilibrium strategy of the operator, then it is
also equilibrium strategy for the case the operator behaves legally provided 1/2 ≤ b/d
holds.

5.1.2 The time continuous simultaneous model

Let us now turn to the model analyzed in section 3.2, where the equilibrium strategy
of the inspector is a mixed strategy, as we remember.The extensive form of the game
which includes legal behavior, is given in Figure 5.2.

Let again be W and V the payoff to the operator and to the inspector, and let Q and
P be a mixed strategy for the operator respectively the inspector. Furthermore, let q
be the probability that the operator behaves illegally. Then the Nash condition for the
equilibrium in which the operator behaves legally, W ∗

l = V ∗
l = 0, is

0 ≥ W ((q,Q), P ∗) for all (q,Q)

0 ≥ V ((q∗, Q∗), P ) for all P

or equivalently

0 ≥ W ((l, s), P ∗) for all s (5.12)

0 ≥ W ((l, s), P ∗) for all s (5.13)

0 ≥ V ((q∗, Q∗), t) for all t . (5.14)

Whereas (5.13) and (5.14) are again identically fulfilled, (5.12) is explicitly given by

0 ≥
∫ s

0

[ d · (1− s)− b ] · p∗(t) dt+
∫ 1

s

[ d · (t− s)− b ] · p∗(t) dt for all s
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Figure 5.2 Non zero sum extensive form game including legal behavior of the operator
(l0, l1), corresponding to the zero sum game simultaneous game for one unannounced
interim inspection (k = 1) described in section 3.2.

or equivalently, by

b

d
≥

∫ s

0

p∗(t) dt+

∫ 1

s

t · p∗(t) dt−
∫ 1

0

s · p∗(t) dt for all s

or, finally, by

b

d
≥

∫ s

0

p∗(t) dt+

∫ 1

s

t · p∗(t) dt− s := H(s) for all s .

Thus, all mixed strategies densities p∗(t) which fulfill the condition

b

d
≥ max

s
H(s)

are equilibrium strategies for the legal behavior Nash equilibrium. With the same simple
argument used in the previous section we can show that the equilibrium strategy of
the inspector, which belongs to the illegal behavior Nash equilibrium, is also equilibrium
strategy of the legal behavior Nash equilibrium. It is, however, interesting to show that
there are also pure equilibrium strategies of the inspector belonging to the legal behavior
Nash equilibrium.

Let t∗ be such an equilibrium strategy. Then (5.12) is equivalent to

0 ≥
{

d · (t∗ − s)− b for t∗ > s
d · (1− s)− b for t∗ ≤ s

for all s
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or

b

d
≥

{
t∗ − s for t∗ > s
1− s for t∗ ≤ s

for all s . (5.15)

For t∗ > 1/2 this is illustrated graphically in Figure 5.3. Therefore, we get

Figure 5.3 Graphical illustration of the right hand side of (5.15) for t∗ > 1/2.

max
s

{
t∗ − s for t∗ > s
1− s for t∗ ≤ s

= max{ t∗, 1− t∗ }

that is, for t∗ > 1
2
we get

max{ t∗, 1− t∗ } = t∗ , argmax
s

= 0 ,

and for t∗ < 1
2

max{ t∗, 1− t∗ } = 1− t∗ , argmax
s

= t∗ .

Therefore, according to (5.15) we have

for t∗ >
1

2
:

b

d
> t∗ ,

for t∗ <
1

2
:

b

d
> 1− t∗ .

(5.17)

This is represented graphically in Figure 5.4.

We see that the equilibrium strategy of the inspector has to satisfy the condition

t∗1 ≤ t∗ ≤ t2
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Figure 5.4 Graphical representation of (5.17).

or, with t∗1 = 1− b/d and t∗2 = b/d, finally

1− b

d
≤ t∗ ≤ b

d
(5.17)

which is the same condition as in the previous model, as given by (5.5).

Let us mention that the illegal equilibrium leads to the payoff to the operator

W ∗
l
= d · 1

e
− b

thus, the condition for legal behavior is

b

d
>

1

e
.

A necessary condition for the pure equilibrium strategy t∗ was b/d > 1/2, see Figure
5.4. Because of 1/2 > 1/e we conclude that for the pure strategy to be applied by the
inspector the ratio b/d has to be a bit larger than for the mixed strategy p∗(t) density
as given in section 3.2.

5.1.3 Discrete time models

Since all discrete time models, both simultaneous and hybrid-sequential ones, can be
transformed into matrix games, we demonstrate the concept of inducing the operator
to legal behavior just at one simple case, namely the discrete time simultaneous model
with k = 1 and n = 3 as analyzed in section 3.1.

Because of the maximum detection time 4t = 4, now the payoff to the operator in case
he uses the illegal strategy i (i = 0, 1, 2, 3), is

W (i) = d · i− b ,
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where 4 · d− b > 0. His equilibrium payoff in case of illegal behavior is

Wl(i) = d · 11
6

− b ,

thus, he will be induced to legal behavior if

b

d
>

11

6
.

The normal form game, which includes the legal behavior strategy, is given in Figure
5.5.

Figure 5.5 Non zero sum normal form game including legal behavior of the operator
and without his dominated strategy i = 3, corresponding to the zero sum normal form
game given in Figure 3.2, and β = 0.

It can be shown that this game has only an illegal or a legal equilibrium. The Nash
condition for the operator is for the legal equilibrium

0 ≥ (d− b) · p∗1 + (2 · d− b) · p∗2 + (3 · d− b) · p∗3 (5.18)

0 ≥ (3 · d− b) · p∗1 + (d− b) · p∗2 + (2 · d− b) · p∗3 (5.19)

0 ≥ (2 · d− b) · p∗1 + (2 · d− b) · p∗2 + (d− b) · p∗3 , (5.20)

where p∗1 + p∗2 + p∗3 = 1. The Nash condition for the legal equilibrium for the inspector
is identically fulfilled.
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With p∗3 = 1− p∗1 − p∗2 the inequalities (5.18) - (5.20) are equivalent to

b

d
≥ −2 · p∗1 − p∗2 + 3 (5.21)

b

d
≥ p∗1 − p∗2 + 2 (5.22)

b

d
≥ −p∗1 − p∗2 + 3 . (5.23)

For the purpose of illustration we take b/d = 2 which fulfills the condition for legal
behavior of the operator,

11

6
<

b

d
< 4 . (5.24)

Then we get from (5.21) - (5.23)

2 · p∗1 + p∗2 ≥ 1

p∗1 − p∗2 ≤ 0

p∗1 + p∗2 ≥ 1 .

The first inequality is dominated by the third one. In Figure 5.6 we have represented
these conditions graphically.

Figure 5.6 Set of mixed equilibrium strategies of the inspector which induce the operator
to legal behavior.

The shaded are in Figure 5.6 represents the set of equilibrium strategies of the inspector
provided (5.24) is fulfilled. Here we see why M. Kilgour [24] several years ago coined
the term cone of deterrence.

Again, the illegal equilibrium strategy of the inspector is also legal equilibrium strategy
provided (5.24) is fulfilled.
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5.2 The Critical Time concept

Both four our simultaneous and hybrid-sequential models we used the ”playing for time”
concept which means that both the inspector and the operator choose the expected
detection time as their optimization criterion.

In the following we will discuss an alternative concept which has its origin in the so-called
conversion time introduced by the IAEA and mentioned already in the second chapter.
It says that for each type of fissile material some time, namely the conversion time, is
needed to manufacture with its help a nuclear explosive device. Using this definition it
appears to be quite natural to assume that the inspection authority has ”won” the game
if any illegal activity is detected within some ”critical” time, otherwise it has lost it, and
vice versa for the operator of the plant.

Of course, the underlying assumption of this concept is that, if an illegal activity is
detected within the critical time, then some action can be taken by the international
community in order to stop the manufacture, or to impose sanctions, whereas in the
other case the international community has to live with the fact that the State under
consideration has the nuclear device and can use it, at least politically. The weak point
of this concept is that, once an illegal activity is detected it may take weeks and months
for a serious reaction of the international community, that is, a much longer time than
defined by the conversion time.

It is mainly for this reason that we considered so far, only the ”playing for time” concept.
Nevertheless, we will now discuss the critical time concept with the help of one simple
case which we analyzed already in the third chapter of this study, using the simultaneous
approach. In the following we introduce the critical time concept. Thereafter, we
compare the results obtained this way with those of the earlier approach. Finally, we
consider both alternatives together which leads us to a normal form game with vector-
valued payoffs.

The presentation is based on a paper delivered at the ESARDA conference 2007 in Aix
en Provence, see [5]. The formulation has been adapted to what has been said already
in earlier chapters of this study.

5.2.1 The Critical Time game

We consider once more the case of the on-site interim storage facility treated in section
3.1.1. The inspector has three points of time for his unannounced interim inspection at
his disposal, and the operator has four points of time at which he can start an illegal
activity. We select only the case of one unannounced interim inspection (k = 1), and
only the case of perfect inspections (β = 0).

Now, as already stated, we assume that in case the inspection takes place within the
critical time after the start of the illegal activity, the inspector has won and the operator
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has lost, otherwise vice versa. The payoff to the two players (operator, inspector) are

(d1,− c1) for detection of an illegal activity outside the critical time, and

(− b1,− a1) for detection of an illegal activity within the critical time.

Here we assume b1 > 0, d1 > 0 and 0 < a1 < c1, since we normalize the payoffs for legal
behavior to zero, and timely detection of an illegal activity still being worse then legal
behavior of the operator. The normal form of this ”illegal” game, i.e., the game where
the legal behavior of the operator is excluded, is represented in Figure 5.7, where the
rows resp. the columns represent the pure strategies of the operator resp. the inspector,
and where in the lower left resp. upper right corner of each entry the payoffs to the
operator resp. the inspector are given.

Figure 5.7 Normal form of the critical time game.

We realize immediately that the fourth pure strategy of the operator is dominated thus,
we have to consider a quadratic 3×3 game. The Nash equilibrium of this game consists
in mixed strategies, i.e., probabilities with which the pure strategies are played. Using
the symmetry of the 3× 3 matrix we obtain for the operator and for the inspector

q∗0 = q∗1 = q∗2 =
1

3
, q∗3 = 0 and p∗1 = p∗2 = p∗3 =

1

3
,

independent of the payoff parameters; with the expected payoffs to the operator and
inspector1

1For this section 5.2 we use special notations for the equilibrium payoffs of the operator, since it
does interfere with those of the other chapters: Op∗1 for the critical time game, Op∗2 for the playing for
time game and Op∗3 for the vector-valued game. For the inspector a corresponding notation is used.
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Op∗1 =
1

3
· (2 · d1 − b1) and Insp∗1 = − 1

3
· (2 · c1 + a1) .

So far we discussed only the illegal game, i.e., the game in which the operator acts
illegally with certainty. He will behave legally, if his expected payoff in this case is larger
than in the other. Thus, if we add to the game in Figure 5.7 the legal behavior of the
operator as his fifth pure strategy, and since the operator´s expected payoff in case of
legal behavior is zero, for 2 · d1 − b1 < 0 the equilibrium strategy of the operator is legal
behavior, i.e.,

q∗0 = q∗1 = q∗2 = q∗3 = 0 and q∗4 = 1 .

The corresponding equilibrium strategy of the inspector is not unique, as the Nash
condition for the operator show:

0 ≥ − b1 · p∗1 + d1 · p∗2 + d1 · p∗3
0 ≥ d1 · p∗1 − b1 · p∗2 + d1 · p∗3
0 ≥ d1 · p∗1 + d1 · p∗2 − b1 · p∗3

or equivalently

p∗j ≥
1

1 + b1/d1
, j = 1, 2, 3 , p∗1 + p∗2 + p∗3 = 1 .

Because of 2 · d1 − b1 < 0 we have 1 + b1/d1 > 3, which means that the equilibrium
strategy for the game in which the operator behaves only illegally is contained in the set
of legal behavior equilibrium strategies.

5.2.2 The Playing for Time game

Now we consider once more the inspection problem treated before, but take like in
section 3.1.1 the expected detection time as payoff to the operator. In order to be able
to compare the results with those of the previous section, however, we have to generalize
the payoffs as follows. Let i, i = 1, 2, 3, be the time between the start of the illegal
activity and its detection. Then the payoff to the two players (operator, inspector) are

(d2 · i− b2,− c2 · i− a2) ,

where d2 > 0, b2 > 0, c2 > 0 and a2 > 0. Let us mention in passing that for d2 = c2 = 1
and b2 = a2 = 0 we arrive again at the same game treated in section 3.1.1 of this study.

The normal form of this game is given in Figure 5.8; we see that the fourth pure strategy
of the operator is again dominated.

Again there is a Nash equilibrium in mixed strategies. With the help of a Mathematica R©-
program developed by J. M. Canty, see [10], we obtain for the operator and for the
inspector

q∗0 =
1

3
, q∗1 =

1

6
, q∗2 =

1

2
, q∗3 = 0 and p∗1 =

1

3
, p∗2 =

1

2
, p∗3 =

1

6
,
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Figure 5.8 Normal form of the playing for time game.

again independent of the payoff parameters. They are the same as those given in section
3.1.1. The expected equilibrium payoffs are

Op∗2 =
11

6
· d2 − b2 and Insp∗2 = − 11

6
· c2 − a2 .

With the same arguments as before we note that for 11 · d2 − b2 < 0 the equilibrium
strategy of the operator is legal behavior; the corresponding equilibrium strategy of the
inspector has the same properties as that for the critical time game.

5.2.3 The vector-valued game

We now analyze the critical time game and the playing for time game simultaneously.
Since in both games the pure strategies of both players are the same, we just have to
consider the payoffs simultaneously which leads to a vector-valued game the normal form
of which is given in Figure 5.92.

We can see that the components of the operator´s payoff if he plays his 3rd pure strategy
are always greater or at least equal to the corresponding components if he plays his
fourth pure strategy, i.e., the fourth pure strategy of the operator is again dominated.
The analysis of this game still poses problems, since the payoffs of the two separate
games cannot be compared directly. For example is d1 an absolute gain of the operator,
whereas d2 is the rate of a gain. Therefore, we make the additional assumptions that
the maximal and minimal payoffs to both players are the same. We justify this with the

2In an introductory textbook one would put an asterisk at the heading of this section meaning that
this section is not necessary at first reading.
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Figure 5.9 Vector valued normal form game.

remark that both games describe the same principal conflict situation thus, the best and
the worst outcome is evaluated in the same way by the two players. This leads to the
following conditions

d2 − b2 = − b1 , 3 · d2 − b2 = d1 , − c2 − a2 = − a1 , − 3 · c2 − a2 = − c1

which is equivalent to

d2 =
1

2
· (b1 + d1) , b2 =

1

2
· (3 · b1 + d1) , c2 =

1

2
· (c1 − a1) , a2 =

1

2
· (3 · a1 − c1) .

Because of b1 > 0, d1 > 0 and a1 > 0, c1 > 0 the following conditions have to be
fulfilled

0 < d2 < b2 < 3 · d2 and 0 < a2 < c2 < 3 · a2 .

Taking these conditions into account we can model the conflict situation as the vector-
valued normal form game given in Figure 5.10, where we have already deleted the fourth
pure strategy of the operator, as argued above.

5.2.4 Vector-valued games in normal form

In order to analyse the vector-valued normal form game formulated in the previous
section, we have to introduce the concept of the Pareto equilibrium, which is a natural
generalization of the Nash equilibrium concept.
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Figure 5.10 Modified and reduced vector valued normal form game.

For vectors Z = (z1, . . . , zn) and W = (w1, . . . , wn) we define the natural semi-order in
Rn by W � Z, i.e., W dominates Z, if and only if wi ≥ zi for all i (i = 1, . . . , n) and
wi > zi for at least one i (i = 1, . . . , n), see, e.g., [44]. For a set A ⊆ Rn we define

M(A) = {Z ∈ A : there exists no W ∈ A with W � Z }

as the set of undominated elements of A. It can be shown that Z ∈ M(A) if and only
if

A ∩ {W ∈ Rn : wi ≥ zi for all i = 1, . . . , n } = Z .

which represents a geometrical interpretation of M(A), see, e.g., [8].

The vector-valued normal form game considered in this section is a game with two players,
namely the inspector and the operator, and each of the players has a finite set of pure
strategies. The operator´s set of pure strategies consists of all time points, where he can
start his illegal activity, i.e., 0, 1, 2, 3. The inspectors´s set of pure strategies consists of
all time points, where he can perform his inspection, i.e., 1, 2, 3. Given a pure strategy
combination (i, j), the operator will receive the payoff vector Op3(i, j) ∈ R2 and the
inspector the payoff vector Insp3(i, j) ∈ R2.

The games in section 3.1 are special cases of vector-valued normal form games; the
players receive a real number as payoffs instead of a vector.

A mixed strategy of the operator is again – like in section 3.1 page 22 –

q := (q0, q1, q2) with qi ≥ 0 , i = 0, . . . , 2 and
2∑

i=0

qi = 1 ,

where qi is the probability, that the operator starts his illegal activity at time point i.
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For the inspector we get

p := (p1, p1, p2) with pj ≥ 0 , j = 1, 2, 3 and
3∑

j=1

pj = 1 ,

where pj is the probability, that the inspector performs his inspection at time point j.

Having introduced the concept of mixed strategies, the vector-valued payoff function
of each player, originally defined on the set of pure strategy combinations { 0, 1, 2 } ×
{ 1, 2, 3 }, can be extended to the set of mixed strategies in the following way:

Op3(q,p) =
2∑

i=0

3∑
j=1

qi · pj ·Op3(i, j)

and

Insp3(q,p) =
2∑

i=0

3∑
j=1

qi · pj · Insp3(i, j) .

Op3(q,p) respectively Insp3(q,p) is called the expected payoff vector to the operator
respectively to the inspector.

Let us now introduce the Pareto equilibrium concept. We consider the mixed extension
of a vector-valued normal form game. Then (q∗,p∗) is a Pareto equilibrium of the game
if and only if

Op3(q
∗,p∗) ∈ M(Op3(q,p

∗)) and Insp3(q
∗,p∗) ∈ M(Insp3(q

∗,p)) .

This definition says, that any unilateral deviation of one player from the mixed strategy
combination (q∗,p∗) will not improve his expected payoff vector. In case of real-valued
payoff´s to each player, the set of Pareto equilibria is equal to the set of Nash equilibria
however, there are important differences between real- and vector-valued normal form
games which are discussed in [25] and [26].

The Pareto equilibrium was first introduced by Shapley [42] - he called it strong equi-
librium - for two-person vector-valued zero-sum normal form games. Borm et. al. [8]
generalized Shapley´s idea considering strong equilibria for two-person vector-valued nor-
mal form games. A further generalization to strong equilibria for n-person vector-valued
normal form games was made by Krieger in [25] and [26].

It is quite difficult to determine the Pareto equilibria of vector-valued normal form games
by using the definition of these equilibria. Therefore, we present a Lemma which shows
a very close relation between Pareto equilibria in vector-valued normal form games and
Nash equilibria in certain induced real-valued normal form games.

Let us consider the mixed extension of a (in our case: two-component) vector-valued
normal form game, and define

∆ = { a = (a1, a2)
T ∈ R2 : a1 ≥ 0 , a2 ≥ 0 and a1 + a2 = 1 } .

Then the following Lemma holds:
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1. Consider arbitrary vectors λ, γ ∈ ∆: If the mixed strategy combination (q∗,p∗) is
a Nash equilibrium of the (real-valued) normal form game with expected payoffs
λT Op3(q,p) for the operator and γT Insp3(q,p) for the inspector, then (q∗,p∗)
is a Pareto equilibrium of the original game.

2. If the mixed strategy combination (q∗,p∗) is a Pareto equilibrium of the original
game, then there exist vectors λ, γ ∈ ∆ such that (q∗,p∗) is a Nash equilibrium
of the (real-valued) normal form game with expected payoffs λT Op3(q,p) for the
operator and γT Insp3(q,p) for the inspector.

The proof of this Lemma may be found in [8] or a generalization in [27]. Using this
Lemma and Nash´s famous existence theorem, see [32], we get the result, that every
vector-valued normal form game has at least one Pareto equilibrium in mixed strategies.

5.2.5 Solution of the vector-valued game

Using the payoff matrix in Figure 5.10 the operator´s payoff vectors are multiplied with
the scalarization vector (γ, 1 − γ)T (γ ∈ [0, 1]) and the inspectors payoff vectors with
the scalarization vector (λ, 1− λ)T (λ ∈ [0, 1]). This leads with the abbreviations

a =
1

2
· [ (1 + γ) · d1 − (1− γ) · b1 ] b = − 1

2
· [ (1 + γ) · c1 − (1− γ) · a1 ]

to the real-valued normal form game given in Figure 5.11.

Figure 5.11 Scalarized form of the vector-valued normal form game given in Figure
5.10.

Because of the many - in total six - parameters of this game it is not so easy to use
Canty´s program, see [10], for the determination of its Nash equilibria. It is better
instead, to use the method of making the adversary indifferent as regards to his strategies
to be chosen. This way we obtain for fixed values of γ and λ the only Nash equilibrium
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in mixed strategies of this game as follows. The equilibrium strategies of the operator
are

q∗0(λ) =
1 + λ

(1 + λ)2 + 2
, q∗1(λ) =

1

2
· (1 + λ)2

(1 + λ)2 + 2
, q∗2(λ) =

1

2
· 3 + λ2

(1 + λ)2 + 2
,

and for the inspector

p∗1(γ) =
1 + γ

(1 + γ)2 + 2
, p∗2(γ) =

1

2
· 3 + γ2

(1 + γ)2 + 2
, p∗3(γ) =

1

2
· (1 + γ)2

(1 + γ)2 + 2
,

and the expected equilibrium payoffs (of the scalarized game)

Op∗3(γ) = (d1 + b1) ·
(
f(γ)− 1

1 + d1/b1

)
and

Insp∗3(λ) = − (c1 − a1) ·
(
f(γ)− 1

1− c1/a1

)
,

where f(x) defined on [0, 1] is given by

f(x) =
1 + x

2
− 1

4
· (1 + x)2

(1 + x)2 + 2
.

According to the Lemma in the previous section, the complete set of Pareto equilibria is
given by the set of these Nash equilibria for all combinations (λ, γ) ∈ [0, 1]× [0, 1].

As we see the equilibrium strategies of both players depend only on γ respectively λ;
more than that, q∗0(λ) and p∗1(γ) depend on λ respectively γ very slightly, see Figure
5.12. For p∗1(γ) we have for example

p∗1(0) = p∗1(1) =
1

3

and the only maximum of p∗1(γ) in [0, 1] is given at

γ0 =
√
2− 1 ≈ 0.412 and p∗1(γ0) =

√
2

4
≈ 0.353 .

The function f(x) determining the equilibrium payoffs is monotonely increasing from
f(0) = 5/12 to f(1) = 2/3 = 8/12. Recall that λ = γ = 0 corresponds to the playing
for time game and λ = γ = 1 to the critical time game.

So far we discussed only the illegal game, i.e., the game in which the operator acts
illegally with certainty. We assume that the operator will behave legally if his expected
payoff vector in case of legal behavior is larger than in case of illegal behavior in both
components. Since the operator´s payoff vector in case of legal behavior is zero in both
components, the condition for legal behavior is:

Op∗3 < 0 or equivalently f(γ) <
1

1 + b1/d1
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Figure 5.12 Illustration of p∗j(γ), j = 1, 2, 3, as functions of γ.

for all γ ∈ [0, 1]. Since f(x) is a monotonely increasing function, this condition can be
assured if we postulate

f(1) <
1

1 + b1/d1
or explicitly 2 · d1 < b1 .

Like in the games considered in sections 5.2.1 and 5.2.2 the equilibrium strategy of the
inspector is not unique, as the Nash condition for the operator show (for fixed γ):

0 ≥ − b1 · p∗1 + a · p∗2 + d1 · p∗3
0 ≥ d1 · p∗1 − b1 · p∗2 + a · p∗3
0 ≥ a · (p∗1 + p∗2)− b1 · p∗3 ,

where a has been defined before.

We see that these conditions for the operator are fulfilled for any γ ∈ [0, 1] if they are
fulfilled for γ = 1. This means that the inspector is on the safe side if he plays the
critical time game.

One can understand this simple result if one realizes that, if the payoffs of the critical
and the playing for time game are adjusted in the way we did it, the condition for legal
behavior in the critical time game implies that condition in the playing for time game.
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5.2.6 Concluding Remarks

It is obvious, that the critical time concept is appealing from a theoretical point of view
since it describes very well the real intentions of the NPT verification, in particular the
aspect of inducing a State to legal behavior. Nevertheless, we preferred the playing for
time concept for real applications for two reasons:

(i) As mentioned already before, it is difficult to justify the critical time concept in
practice in view of the long delays of a reaction of the international community
once an illegal activity of a State has been detected.

(ii) The true value of the critical time concept lies in its evaluation of the inducing to
legal behavior principle which in turn requires the definition of payoff parameter.
The estimation of numerical values of these parameters, however, has not yet been
tackled in practice.

Instead, the safeguards authorities went into a different direction which will be discussed
in the next section.

5.3 Global inspection effort

In the central analytical parts of this study, e.g., in the third and fourth chapters, we
considered inspections in single on-site interim storage and fuel element fabrication fa-
cilities. We assumed that the number of unannounced interim inspections in one facility
and one year was either one or two, in one case also three (only for the purpose of
illustration), and we considered this number as one of the parameters of the inspection
problem.

In this section we discuss in which way this number might be determined in practice. For
this reason, we have to consider the total number of unannounced interim inspections in
one State and one year. Given that total number, a rule has to be formulated according
to which the number of unannounced interim inspections in one facility and one year is
determined.

It should be mentioned that this discussion goes beyond the scope of the study, therefore,
it will not be carried through here in detail. Instead it is meant to complement the work
of the central chapters of this study and also to give an outlook on possible future work
concerning unannounced interim inspections in the European Union (EU) as a whole.

In the following we will first present the way in which EURATOM and IAEA have fixed
the total number of unannounced interim inspections of the IAEA for on-site interim
storage facilities (SFSFs) in each State of the EU and per year. Similar considerations
could be performed for fuel element fabrication facilities. Thereafter we will discuss
different schemes for allocating the total number of unannounced interim inspections
to the SFSFs in a State. This is a non-trivial problem only for Germany since in the
other (non-nuclear weapons) States of the EU only one inspection is foreseen. Finally,
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we present for the purpose of illustration a very simplified game theoretical analysis of
the allocation of the global inspection effort within one State of the EU.

Quite generally, i.e., not considering unannounced interim inspections specifically, has the
allocation of (IAEA) inspections resources to different States already been investigated
some years age, see [1]. The purpose of those analysis was, among others, to analyze
the effect of different incentives of States for illegal behavior. Here we assume that these
incentives, if at all, are the same for all States of the EU.

5.3.1 Total number of inspections in one State of the EU

According to the IAEA/EURATOM partnership approach the total number of unan-
nounced interim inspections in one facility and one year is specified for each type of
nuclear facility. In the IAEA/EURATOM partnership approach under Integrated Safe-
guards for SFSFs, this is done for this type of facility. Even though it is not quite clear
how the procedure presented there has to be implemented, see [4], we propose here a rule
which then leads to the numbers given in the IAEA/EURATOM partnership approach.

The rule may be formulated as follows: The number k of unannounced interim inspec-
tions in the SFSFs of one State of the EU and one year is the smallest integer which
guarantees that each SFSF is inspected with at least 20% probability. Let us mention
in passing that no justification for that rule has been given in the IAEA/EURATOM
partnership approach. At the end of this section we will indicate what this rule means
in decision theoretical terms.

As already stated have all (non-nuclear weapons) States of the EU except for Germany
so few SFSFs that there is only one unannounced interim inspection per year. Germany
has 16 SFSFs and we will show now that 4 inspections fulfill the rule given above.

In doing so we assume in line with section 2.1.3 – at least in principle, see the remark
at the end of this section – that each SFSF can be inspected at most three times. Then
the probability that one SFSF is inspected at least once is determined as follows with
the help of Laplace’s rule:

(i) Number of possible events:

– One SFSF is inspected 3 times: 16 ·
(
15
1

)
= 16 · 15.

– Two SFSFs are inspected twice:
(
16
2

)
= 16 · 15/2

– One SFSF is inspected twice: 16 ·
(
15
2

)
= 16 · 15 · 14/2

– Each SFSF is inspected at most once:
(
16
4

)
.

(ii) Number of favorable events (for the inspection of one specific SFSF):

– The SFSF is inspected 3 times: 15.

– The SFSF is inspected twice: 15 +
(
15
2

)
– The SFSF is inspected once: 15 + 15 · 14 +

(
15
3

)
.
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Thus the probability that one (specific) SFSF will be inspected is

P({ a specific SFSF is inspected })

= P({ the specific SFSF is inspected exactly 3 times })

+ P({ the specific SFSF is inspected twice })

+ P({ the specific SFSF is inspected once })

=

(
15
1

)
+
( (

15
1

)
+
(
15
2

) )
+
( (

15
1

)
+ 2 ·

(
15
2

)
+
(
15
3

) )
16 ·

(
15
1

)
+
( (

16
2

)
+ 16 ·

(
15
2

) )
+
(
16
4

) =
163

772
≈ 0.21 ,

i.e., slightly above 20%.

Let us finally determine the probability that 1 out of 16 SFSFs is inspected exactly 3
times:

P({ 1 SFSF out of 16 SFSFs is inspected exactly three times })

=
16 · 15

16 ·
(
15
1

)
+
( (

16
2

)
+ 16 ·

(
15
2

) )
+
(
16
4

) =
12

193
≈ 0.062 .

In the third and fourth chapter we did not consider explicitly this possibility (with a few
exception in the subsections on page 29, 53 and 62); from a common sense point of
view it appears not reasonable, anyhow, to inspect 1 out of 16 facilities three times,
if only four inspections can be performed in total. Therefore, we made the additional
assumption that at most two unannounced interim inspections are performed in one
facility and the reference time interval.

5.3.2 Allocation of inspections to facilities

Once the total number of unannounced interim inspections for one category of facilities
in one State is fixed, the question arise how these inspections have to be distributed on
the single facilities (if there is more than one) and on the possible time points.

There are at least three different procedures which one might imagine. We will take the
example of Germany.

First, what one might call a purely statistical approach: There are 16 · 3=48 possibilities
for inspections. Thus one has to allocate randomly the four inspections to these 48
possibilities. Of course, this procedure ignores any kind of incentives of the operator
resp. the State.

Second, one may randomly allocate the four inspections to the 16 facilities such that at
most two inspections can be performed in one facility. Thereafter, one may proceed as
outlined in chapter 3 and 4 of this study. This procedure ignores the fact that the State
is party to the NPT and not the operator of the single facilities.

90



5.3. GLOBAL INSPECTION EFFORT

Third, one allocates the inspection to the different facilities and time points with the
help of a strategic analysis. Assuming that in one facility at most two inspections can
be performed, the inspection authority has

•
(
16
2

)
possibilities to perform two inspections in two facilities,

• 16 ·
(
15
2

)
= 3 ·

(
16
3

)
possibilities to perform two inspections in one and one in

inspection in two facilities,

•
(
14
4

)
possibilities to perform one inspection in four facilities.

Since, furthermore, there are three possibilities to distribute both one or two inspections
on three time points, we have in the first case 32, in the second 33 and in the third case
34 possibilities. Thus, in total we have

32 ·
(
16

2

)
+ 33 · 3 ·

(
16

3

)
+ 34 ·

(
16

4

)
= 193860

pure strategies of the inspection authority. Furthermore, if only one illegal activity is
planned in all facilities (which is a worst case assumption from the inspection authority’s
point of view) the State has

16 · 3 = 48

pure strategies. Such a huge game is hardly mathematically feasible with standard
techniques. Therefore, one has to look for approaches which are feasible.

In order to illustrate the third approach, however, which from a theoretical point of
view represents a consequent generalization of the work performed in this study, we will
discuss a simplified problem.

5.3.3 Strategic analysis

Let us consider the hypothetical case that there are two interim storage facilities in one
State, and that in total two unannounced interim inspections will be performed at the
possible three different time points in each facility. As mentioned before, in line with
the fact that the State is the party to the NPT, we assume that only one illegal activity
will take place. Also, we model this problem like in the third chapter of this study:
Both players choose their strategies simultaneously, and the payoff to the the State is
the detection which in turns is the negative payoff to the inspector. For the sake of
simplicity, we ignore errors of the second kind, i.e., we take β = 0.

The normal form of this game is represented in Figure 5.13. A subset of the set of all
optimal strategies of both players, together with the optimal expected detection time
2, is given in Figure 5.14. Let us look at some interesting properties of these optimal
strategies
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• No pure strategy, which contains the inspection at time point 3, is ever played in
a saddle point determined by Canty’s program, see [10].

• The two pure strategies (1, 2)1 and (1, 2)2, according to which in each facility the
time points 1 and 2 are selected for inspection, are always played with positive
probability. In fact, one optimal strategy of the inspector is to use only these two
strategies.

• The optimal inspection strategies need not be symmetrical with respect to both
States: consider the third one in Figure 5.14: Here the expected number of in-
spections in the first facility is

2 · 5

18
+ 1 · 2

9
+ 1 · 1

6
=

17

18
< 1 ,

whereas that of the second facility, of course, is greater one.

• The State starts his illegal activity either in the first or in the second facility at time
point 2, or uses any mixture of these two pure strategies in an optimal strategy.

Taking the first and third property together, one understands that the State takes time
point 2 for the start of his illegal activity since no inspection takes place at time point 3.
Vice versa it is not so clear why time point 3 is not used for inspection, perhaps due to
the fact that nine pure strategies contain this choice and therefore, the State would be
tempted to start the illegal activity earlier if this time point would be taken into account.

It remains to be investigated if these properties of the equilibria hold also for more
complicated games which are closer to the reality in Germany, or if, on the contrary
with each new model new properties surface, as it is so frequently the case with game
theoretical analyses.

One final remark shall be made as regards to the determination of the necessary number
of inspections in one State. In the case discussed here, the two inspections lead to the
optimal expected detection time 2. Introducing the payoff parameters b and d like in
section 5.1, the equilibrium payoff to the State in case of illegal activity is 2 ·d−b.Taking
again payoff zero for legal behavior we see that the State will behave legally if b/d > 2.
Thus, if we would have solved the game for Germany (16 SFSFs and 4 inspections), we
would be able to show which relation between b and d has been assumed for Germany.

Finally, from a decision theoretical point of view it would be more satisfying, not to
determine the total number of inspections for one type of facility in a State of the EU
with the help of the probabilistic rule described in section 5.3.1, but to fix the same ratio
b/d for all States of the EU and derive this way the necessary number of inspections in
the way described above.
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Figure 5.13 The matrix game explained in detail section 5.3.3.
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Figure 5.14 Optimal strategies of the matrix game given in Figure 5.13.
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Chapter 6

Summary and Recommendations

Having analyzed two models – simultaneous and hybrid-sequential – in two versions –
time discrete and time continuous – for the planning of unannounced interim inspections
in nuclear facilities in States of the European Union (EU), and having applied the results
to on-site interim storage facilities and fuel element fabrication facilities, two question
arise. First, what kind of conclusion can be drawn from these results? And second,
which recommendations can be given to practitioners, who are expected to be users of
these results?

From the theorists’ point of view one might respond to the second question that practi-
tioners have to choose those models and versions, whose underlying assumptions fit best
to their views of the inspection problem, and then appropriate recommendations can be
given. Of course, reality is not that simple and therefore, in this chapter conclusions
from the results obtained in previous chapters are formulated which then lead to some
recommendations which have to be weighted with arguments additional to those taken
into account in this study.

In the following an overview of the models considered in this study is given. Thereafter,
some conclusions are drawn, in particular concerning the comparison of the simultaneous
and hybrid-sequential models, since comparisons of the time discrete and continuous
versions have already been made at the ends of the third and fourth chapters. Finally,
with all due care some recommendations are formulated.

6.1 Overview of models and versions

In Table 6.1 an overview of the two models and their two versions analyzed in this study
is given, together with the sections in which they are analyzed and where the results are
applied to the two types of nuclear facilities.
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Table 6.1 Overview of inspection models and versions considered in this study and
sections in which they are analyzed.

time

(version) →
operator’s

behavior (model) ↓

discrete continuous

simultaneous 3.1.1 (Storage), 3.1.2 (Fuel fabrication) 3.2 (Both)

hybrid-sequential 4.1.1 (Storage), 4.1.2 (Fuel fabrication) 4.2 (Both)

The arguments for the selection of these four models and versions have already been
given in previous chapters, in particular in the first one. They will not be repeated here;
instead it is assumed for the sake of practicability that they are the only practically
relevant ones, and that the problem is now to draw conclusions from their results and
to formulate recommendations, as stated above.

Just for the sake of clarity, let us repeat the basic assumptions underlying the four
variants, i.e., models and versions.

• Discrete time models are characterized by the assumption that IAEA inspectors
can perform their unannounced interim inspections only together with EURATOM
inspections which take place every three months in on-site interim storage facilities
and every two months in fuel element fabrication facilities.

• Continuous time models, on the contrary, permit IAEA inspections at any time
point of the reference time interval.

• Simultaneous models are characterized by the assumption that both ”players” plan
their activities in advance, before the beginning of the reference time interval. This
means that they choose their time points for inspection and start of the illegal
activity, eventually with the help of a random experiment using a random number
generator, in advance.

• Hybrid-sequential models permit the facility operator to only decide before the
beginning of the reference time interval whether or not to start immediately an
illegal activity or to delay it. The same after the first inspection and so on.

Of course there are many more assumptions which are listed in the third and fourth
chapter. They are, however, less important for the discussion to follow.
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6.2 Overview of solutions and conclusions

In Figure 6.1 the optimal expected detection times for the models and versions considered
in this study and applied to the on-site interim storages for spent nuclear fuel elements
are given, and in Figure 6.2 they are given as applied to the fuel element fabrication
facility. In the following we discuss only the case of the on-site interim storage facility
since the conclusions to be drawn for the fuel element fabrication facility are more or
less the same.

We do not present here again the graphical representations of the optimal expected
detection times as function of the non-detection probability β. Putting for each type of
facility the eight functions into one figure would not improve the understanding of these
results, as we think.

Before comparing the contents of the different formulae presented in Figure 6.1 let us
remember the different mathematical methods for obtaining the results: Whereas in
the cases of the on-site interim storage facility standard techniques for the solution of
normal and extensive form games could be used by hand, in case of the fuel element
fabrication facility computer programs had to be applied. In the time continuous version
advanced analytical techniques had to be used; for the case of two unannounced interim
inspections original research had to be performed.

Even more generally formulated, one realizes that any change of assumptions leads
to different models and mathematical problems, and results from the solution of one
problem cannot be extrapolated to those of the other ones.

On the other hand once the assumptions are made one obtains solutions which are very
interesting and cannot be gained with common sense considerations. For example, in
the continuous time models, where pure optimal strategies exists, game theory offers a
unique possibility to link together the non-detection probability β with the optimal time
point(s) of inspection(s).

In section 3.3 and 4.3 we have already compared the results of the time discrete and
continuous versions of the simultaneous and hybrid-sequential models separately. Let us
shortly repeat the main findings.

For the simultaneous model all optimal expected detection times as function of the non-
detection probability β, i.e., the graphical representations of the analytical expressions
given in the two upper boxes of Figure 6.1, are given in Figure 3.11. Both for k = 1
and k = 2 inspections in the continuous time model result in shorter expected detection
times for all values of β. However, for k = 2 the discrete time model gives a shorter
optimal expected detection time than the continuous time model with k = 1. Also, as
it was demonstrated in Figure 3.8, k = 1 inspection with a smaller value of β may lead
to the same optimal expected detection time as k = 2 inspections with a larger value of
β.

Correspondingly, for the hybrid-sequential model all optimal expected detection times
as function of β, i.e., the graphical representation of the analytical expressions given in
the two lower boxes of Figure 6.1 are given in Figure 4.11. Their properties are similar
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to those described above, however, for k = 1 inspection both the time discrete and
continuous models lead to the same optimal expected detection time.

Let us now turn to the comparison of the simultaneous and the hybrid-sequential models
for the discrete time version – the two left hand boxes in Figure 6.1 – and for the
continuous time version – the two right hand boxes in Figure 6.1.

In all cases we get for β = 1 the same optimal expected detection time four. This is
obvious since in that case the detection of an illegal activity is only possible at the end of
the reference time interval and consequently, the operator starts his illegal activity right
at the beginning of that interval. Thus, we consider in the following only small values
of β.

For the discrete time version, both models lead to very similar results. For k = 1 and
β = 0 we get for the optimal expected detection time 11/6 for the simultaneous, and 2
for the hybrid-sequential model. For k = 2 and β = 0 we get 4/3 for both models.

For the continuous time version the situation is a little different. For k = 1 and β = 0
we get 4/e ≈ 1.47 for the simultaneous, and 2 for the hybrid-sequential model, that is,
relatively large differences. For k = 2 we get 4/(e · (e−1)) ≈ 0.85 for the simultaneous,
and 4/3 ≈ 1.33 for the hybrid-sequential model.

Let us put these results for β = 0 together: For k = 1 inspection both versions of the
hybrid-sequential model lead to an optimal expected detection time two, which at the
same time is the longest among the four models and versions. The shortest optimal
expected detection can be found in the continuous time version of the simultaneous
model with 4/e ≈ 1.47. For k = 2 the situation is similar: Here, interesting enough,
three of the four models and versions lead to 4/3 ≈ 1.33, the shortest being again the
continuous time version of the simultaneous model with 4/(e · (e− 1)) ≈ 0.85.

In sum, the hybrid-sequential model leads to longer optimal expected detection times
than the simultaneous one, both for the discrete and the continuous time version. This
is intuitive, since the operator is able to make use of the information he gains in the
course of the game. Of course, k = 2 leads to shorter expected detection times than
k = 1 for all models and versions and given values of the non-detection probability β.

6.3 Recommendations

Let us finally turn to the question of what can be recommended to the two inspection
authorities after having analyzed the two models and versions. In the following we
consider again only the on-site interim storage facility since similar arguments hold for
the fuel element fabrication facility.

The scope of our study was the planning of unannounced interim inspections in one
single facility. Thus, let us consider first those States of the EU which have only one
on-site interim storage facility. For those States, k = 1 unannounced interim inspection
is foreseen, and it has to be decided with the help of which model and version this
inspection has to be planned.
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If the inspection authorities cannot agree on which model and version should be used
and therefore, want to be on the safe side, the recommendation is simple. The time
continuous version of the hybrid-sequential model leads to the longest optimal expected
detection time therefore, this variant should be used. There are two additional advan-
tages, namely that there is a complete freedom of choice in time, and the inspectorate
can use a pure strategy, i.e., it can plan and announce it. A disadvantage of this proce-
dure may be that the IAEA inspection may take place at different time points than the
EURATOM inspection thus, an additional burden may be posed on the plant operator.

At first sight, it may be surprising that at the end of a detailed mathematical study on
unannounced interim inspections it is a recommendation to announce the inspections. It
should be kept in mind, however, that it is also possible not to announce the inspections,
but rather plan them with the help of a random experiment using a random number
generator as long as it leads to the same optimal expected detection time. Nevertheless,
the fact remains that it is not really intuitive that the announcement works as well.

For those States of the EU which have so few on-site interim storage facilities that for
them again just one unannounced interim inspection is foreseen, this procedure can also
be applied: Since they are all considered to be equal, the inspectorate chooses one of
them at random (each with the same probability) and then proceeds as described above.

For Germany the situation is more complicated, and its analysis goes beyond the scope
of this study, since four inspections have to be distributed on 16 facilities. It has been
sketched in section 5.3 that in principle this problem leads to a rather complicated
mathematical model, independently of the variant to be used. Therefore, at this point
no recommendation can be formulated except for some pragmatic approach like one of
those mentioned in section 5.3, the effectiveness of which still has to be demonstrated.
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Figure 6.1 Optimal expected detection times for the variants considered in this study
as applied to the on-site interim storage facility.
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Figure 6.2 Optimal expected detection times for the variants considered in this study
as applied to the fuel element fabrication facility.
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Appendix A

Notation of the (optimal) expected
detection time Op and Op∗

According to the assumptions, see Figure 1.1, a large number of game theoretical models
has been considered; all of them leading to an optimal expected detection time Op∗.
Figure 6.1 presents them for the on-site interim storage facility; the same number exists
for the fuel element fabrication facility – even though for the time continuous version
the factor 4 just has to be replaced by 6. Thus, we have in total 16 different optimal
expected detection times.

It is reasonable mathematical practice not to use the same symbol for different analytical
forms therefore we have to use different symbols. The easiest way would be to number
them from 1 to 16, however, this way one would lose any intuition. What would mean
for example Op∗13?

In order to maintain some kind of intuition and simplicity at the same time, we proceed
as follows:

• We do not differentiate between the (optimal) expected detection times for on-site
interim storage facilities and for fuel element fabrication facilities, since we never
compare them. So we use the same symbols for them, even though the analytical
forms are different, of course.

• Also we do not differentiate between the (optimal) expected detection times for the
simultaneous and for the hybrid-sequential models: They are treated in different
chapters, and when they are put together and compared – in the sixth chapter –
we can easily avoid to use the same symbols for different analytical forms.

• Thus, the possible time points for inspections n and the number of unannounced
interim inspections k remain to be indicated. For the time discrete version we use
a pair of indices, Opn,k and Op∗n,k, and for the time continuous version just one
index, Opk and Op∗k. This way, as already mentioned, we use different forms for
the time discrete versions for the on-site interim storage facilities and for the fuel
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element fabrication facilities: In the former ones, we have n = 3, whereas in the
latter ones n = 5.

In addition, we describe functions in the usual form, namely, e.g., Op∗(β) or
Op∗(β;q∗,p∗) means the optimal expected detection time as a function of the non-
detection probability β.
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Zero-sum matrix games

In this appendix we give a short introduction into zero-sum matrix games. There is a
large amount of literature on this subject which differs in length, mathematical rigor and
applications. We present the most important concepts along the lines of [30].

B.1 Pure strategies and the payoff matrix

Let ΦOp and ΦInsp be the finite sets of pure strategies of the operator and the inspector.
If the combination (i, j) ∈ ΦOp × ΦInsp of pure strategies is played, then the operator
receives the payoff Op(i, j). In the games of section 3.1 this payoff is the elapsed time
between start and detection of the illegal activity, when the operator starts his illegal
activity at time point i and the inspector performs his inspection(s) at time point(s) j.

Since the operator wants to maximize this detection time and the inspector wants to
minimize this time, the payoff to the inspector is the negative of the payoff to the
operator, i.e., Insp(i, j) = −Op(i, j) for each pair (i, j) ∈ ΦOp × ΦInsp. These games
are called zero-sum games. The game is played as follows: Each player chooses an
i ∈ ΦOp and j ∈ ΦInsp. These choices are made simultaneously and independently of
the other player. Then the operator receives Op(i, j) and the inspector −Op(i, j).

Since we have only two players in the games discussed in this study, the conflict situation
can be described with the help of a payoff matrix A. The two players are referred to
as row player and the column player, respectively. The row player has |ΦOp| strategies1
which are identified with the rows of A. The column player has |ΦInsp| strategies which
are identified with the columns of A. If the row player plays strategy i and the column
players plays strategy j, then the payoff to the row player is Op(i, j) and the payoff to
the column player is −Op(i, j). It is important to make it clear form the beginning that
larger numbers in A are favored by the row player and smaller ones by the column player.
Thus, a negative entry is a loss to the row player but a gain (of the absolute value) to
the column player.

1For a finite set Φ the number of elements is denoted |Φ|.

113



APPENDIX B. ZERO-SUM MATRIX GAMES

B.2 Mixed strategies, expected payoffs and the sad-
dle point condition

We first want to explain the idea of the saddle point concept - the solution concept of
zero-sum games - using the above introduced pure strategies: A combination (i∗, j∗) of
pure strategies is a saddle point of the game, if any unilateral deviation does not improve
the deviator’s payoff, i.e., mathematically speaking

Op(i, j∗) ≤ Op(i∗, j∗) ≤ Op(i∗, j) for all i ∈ ΦOp and j ∈ ΦInsp .

The left hand inequality reflects the idea that the operator wants to maximize the detec-
tion time, while the right hand inequality shows the minimization of the detection time
by the inspector. The pair (i∗, j∗) fulfilling the inequalities above is called saddle point
(in pure strategies). It should be noted that the saddle point concept was introduced
by von Neumann and Morgenstern, see [33], is a special case of the famous and widely
used concept of the Nash equilibrium, see [32].

Let us consider for the purpose of illustration the zero-sum matrix games in Figure B.1.

Figure B.1 Two zero-sum matrix games with different payoff matrices.

1 2 3

0 2 1 1

1 −1 0 −1

2 3 1 1

3 0 0 0

1 2 3

0 1 2 3

1 3 1 2

2 2 2 1

3 1 1 1

In both games the operator has the set of pure strategies ΦOp = { 0, 1, 2, 3 } and the
inspector’s set of pure strategies is ΦInsp = { 1, 2, 3 }. If for instance the pair (0, 3) is
played in the left matrix game, the operator receives the payoff 1 and the inspector −1.
It can be easily checked, that in the left matrix game the pairs (0, 2), (0, 3), (2, 2) and
(2, 3) are the only saddle points. Furthermore, it can be seen that the right zero-sum
matrix game does not possesses a saddle point in pure strategy combinations!

It is important to note that in game theory it is always assumed that both players know
the pure strategy sets (the own and that of the other player) and also the payoff matrix.
This condition is called common knowledge without which game theory - as used in this
study - would not work.
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A new idea is needed in order to get closer to a satisfactory concept of a solution of a
matrix game if there is no saddle point in pure strategies: Each player should choose a
strategy at random. In this way, the other player has no way of predicting which strategy
will be used. The probabilities with which the various pure strategies are chosen will
probably be known to both opponents (since they can make the same considerations
and because of the common knowledge assumption), the particular strategy chosen for
a particular game will not be known. The problem of each player will then be to set
these probabilities in an optimal way. Thus, we have to introduce the concept of mixed
strategies:

A mixed strategy of a player is a probability distribution over his set of pure strategies.
Although all of the following concepts can be introduced quite abstract, we restrict
ourselves to the case that |ΦOp| = 4 and |ΦInsp| = 3, because these are the interesting
cases in this study. We get for the operator’s set of mixed strategies

QOp =

{
qT = (q0, q1, q2, q3) ∈ R4 : qi ≥ 0 for i = 0, . . . , 3 and

3∑
i=0

qi = 1

}

and for the inspector’s one

QInsp =

{
pT = (p1, p2, p3)

T ∈ R3 : pj ≥ 0 for j = 1, . . . , 3 and
3∑

j=1

pj = 1

}
.

A pure strategies can be seen as a special case of a mixed strategy. If the players play
the mixed strategy combination (q,p), the operator’s expected payoff defined on the
set QOp ×QInsp is given by

Op(q,p) = qT Ap =
3∑

i=0

3∑
j=1

qi pj Op(i, j) . (B.1)

According to our assumptions the inspector’s expected payoff is
Insp(q,p) = −Op(q,p).

Now the idea of the saddle point in pure strategies can be generalized to the saddle
point criterion, see, e.g., [31]:

A mixed strategy combination (q∗,p∗) ∈ QOp × QInsp constitutes a saddle point in
mixed strategies of the zero-sum game with payoff matrix A if and only if

Op(q,p∗) ≤ Op(q∗,p∗) ≤ Op(q∗,p) for all q ∈ QOp and all p ∈ QInsp ,

where Op(q,p) is given by (B.1). �

Op∗ = Op(q∗,p∗) is called the value of the game. For the matrix games considered in
this study we often write for the value of the game Op∗k(β) in order to emphasize the
dependence of Op∗ from the number k of unannounced interim inspections and the error
of the second kind β. q∗ resp. p∗ are also called optimal strategies of the operator resp.
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the inspector. It can be shown that every zero-sum game with finite pure strategy sets
possesses at least on saddle point in mixed strategies, see [32] or [33], but of course -
see the argumentation above - not always a saddle point in pure strategy combinations.

If one only has to prove that a given pair of mixed strategies is a saddle point, the
following characterization is very useful: (q∗,p∗) is a saddle point of the zero-sum game
if only if

Op(i,p∗) ≤ Op(q∗,p∗) for all i = 0, 1, 2, 3

and

Op(q∗,p∗) ≤ Op(q∗, j) for all j = 1, 2, 3 ,

see, e.g., [31], i.e., both inequalities have only to be proven for the pure strategies of
the players.

If a zero-sum game has the saddle points (q∗,p∗) and (q∗
1,p

∗
1), then (q

∗,p∗
1) and (q

∗
1,p

∗)
are also saddle points of the game with the property

Op(q∗,p∗) = Op(q∗,p∗
1) = Op(q∗

1,p
∗) = Op(q∗

1,p
∗
1) ,

i.e., all saddle points are interchangeable and lead to the same value. For this reason
finding all saddle points is more a mathematical challenge than necessary for applica-
tions.
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Extensive form games

Matrix games are deceptively simple. The concept of a strategy comprises many different
aspects, for example sequencing, information, chance and others. These aspects which
are so important for real life conflicts, are much better expressed in extensive form games.

C.1 Definition of extensive form games

A non-cooperative game in extensive form is a graphical representation of the possible
moves of all players from the beginning of the game until its end. It has the form of the
tree - growing from the top to the bottom - where a set of branches starting at some
point indicate a player´s alternative at that point. For the sake of illustration we refer
in the following to the extensive form game in Figure 4.3 and its reduced form in Figure
4.4.

A precise mathematical definition of extensive form games has been given, for example,
by [19] and [31] and goes as follows. Let us mention in passing that we present the
general definition for n-person extensive form games, even though we consider only the
case n = 2, since it is not more complicated then the special one.

An n-person game non-cooperative extensive form game is a rooted tree – usually grow-
ing from the top to the bottom – together with labels at every decision point or node
and decision alternative or branch, defined as follows:

• Each nonterminal node has a player label that is taken from the set {0, 1, . . . , n}.
Nodes that are assigned a player label 0 are called chance nodes. The set
{1, 2, . . . , n} represents the set of players in the game, and for each individual
player i in this set, the nodes with the player label i are decision nodes that are
controlled by that player.

• Every alternative at a chance node has a label that specifies its probability. At
each chance node, these chance probabilities of the alternatives are nonnegative
numbers that sum to one.
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• Every decision point or node that is controlled by a player has a second label that
specifies the information state that the player would have if the path of the play
reached this node. When the path of the play reaches a node controlled by a
player, the player knows only the information state on the current node. Thus,
two nodes that belong to the same player should have the same information state
only if the player would be unable to distinguish between the situations represented
by these nodes when either occurs in the play of the game.

• Each alternative or branch at a node that is controlled by a player has an alternative
or move label. Furthermore, for any two nodes x and y that have the same player
label and the same information label, there must be one alternative or move at
both nodes that has the same move label.

• Each terminal or outcome node has a payoff label for each player, such that for
each player i, there is a payoff ui, measured on some utility scale.

As mentioned above, we consider only two-person games. Chance nodes play a major
role in our games since, once the inspector performs an inspection after the beginning
of an illegal activity, a chance node describes whether or not the illegal activity will be
detected (with probability 1− β) or not (with probability β).

C.2 Pure strategies, mixed strategies and behavioral
strategies

A pure strategy in an extensive form game is any rule for determining a move at every
possible information state in the game. Mathematically, a strategy is a function that
maps information states into moves. For each player i let Si denote the set of possible
information states of player i in the game. For each information state s in Si let Ds

denote the set of moves that would be available to player i when he moved at a node
with information state s. Then the set of pure strategies for player i in the extensive
form game is the cartesian product ×s∈Si

Ds. In other words, a pure strategy of a player
is a complete plan for his choices at all his information sets.

A mixed strategy means that the player chooses, before the beginning of the game, one
such comprehensive plan at random according to a certain probability distribution.

An alternative method of randomization for the player is to make an independent random
choice at each one of his information states. That is, rather than selecting for every
information set, one definite choice – as in a pure strategy – he specifies instead a
probability distribution over the set of choices there; moreover, the choices at different
information sets are stochastically independent. These randomization procedures are
called behavior(al) strategies.

Without going into details of games with perfect recall – which we are considering
exclusively in our applications – we assert that mixed strategies and behavioral strategies
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of these games are equivalent to each other in the sense that they lead to the same
expected payoffs, see, e.g. Hart [19].

Let us illustrate these concepts with the help of the extensive form game represented
graphically in Figure 4.4 and its normal form representation in Figure D.3.

From Figure 4.4 and formula (4.5) we get with slightly rearranging the terms

Op3,2(β;g,p) = g0 · [A · p(1,2) +B · p(1,3) + C · p(2,3) ]
+ p(1,2) · [ (1− g0) · g1 · d+ (1− g0) · (1− g1) · 2 ]
+ p(1,3) · [ (1− g0) · g1 · 3 + (1− g0) · (1− g1) · 1 ]
+ p(2,3) · (1− g0) · f .

From Figure D.3 with qT = (q1, q2, q3, q4) being the mixed strategy of the operator we
get

Op3,2(β;g,p) = (q1 + q2) · [A · p(1,2) +B · p(1,3) + C · p(2,3) ]
+ q3 · [ p(1,2) · d+ p(1,3) · e+ p(2,3) · f ]

+ q4 · [ p(1,2) · 2 + p(1,3) · 1 + p(2,3) · f ]

= (q1 + q2) · [A · p(1,2) +B · p(1,3) + C · p(2,3) ]
+ p(1,2) · [ q3 · d+ q4 · 2 ]
+ p(1,3) · [ q3 · e+ q4 · 1 ]
+ p(2,3) · [ q3 + q4 · f ] .

Thus we see immediately, that

g0 = q1 + q2

(1− g0) · g1 = q3

(1− g0) · (1− g1) = q4

lead to the same expected payoff to the operator.

Let us add that because of q1+ q2 = 1− q3− q4 we have in both cases two free variables
for optimizing payoffs, say q3 and q4 on the one hand, and g0 and g1 on the other.

A Nash equilibrium, i.e., a saddle point in a zero-sum game, is defined in the same way in
extensive form games as in normal form games. It can be determined in different ways,
let us just mentioned three of them: In extensive form games with perfect information,
i.e., in extensive form games where all information states of all players consists of exactly
one decision node, a backward induction procedure is used which means that non-optimal
moves are eliminated from the bottom to the top (in our application we do not use such
games). Or one uses behavioral strategies and tries to find a Nash equilibrium with the
help of the Nash conditions. Or one transforms the extensive form game into a normal
form game and applies the solution techniques available for this type of games. In our
application we use both methods.

It should be mentioned in passing that normal form games, which corresponds to ex-
tensive form games, may have more Nash equilibria than the latter ones, but in our
applications we do not encounter this difficulty.
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Appendix D

Proofs

D.1 Proof of the saddle point solution for the simul-
taneous discrete time game

For the proofs in this section we use the following property of optimal strategies in zero-
sum games: q∗ and p∗ are optimal strategies for the operator resp. the inspector if only
if

Op(i,p∗) ≤ Op(q∗,p∗) for all i = 0, 1, 2, 3 (D.1)

and

Op(q∗,p∗) ≤ Op(q∗, j) for all j = 1, 2, 3 . (D.2)

For the sake of simplicity we will write throughout this section Opn,k(q,p) instead of
Opn,k(β;q,p).

D.1.1 The case n = 3 and k = 1

We now prove that the strategies given on the pages 23 to 25 are indeed optimal
strategies. The proof is presented in several steps.

The case 0 ≤ β < 1/6: One easily sees that (3.1) and (3.2) fulfill the conditions

q∗i ≥ 0 for i = 0, . . . , 3 and
3∑

i=0

q∗i = 1 and (D.3)

p∗j ≥ 0 for j = 1, 2, 3 and
3∑

j=1

p∗j = 1 (D.4)

and are therefore mixed strategies of the operator resp. the inspector.
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With (3.1) and (3.2) we get

Op3,1(0,p
∗) = Op3,1(1,p

∗) = Op3,1(2,p
∗)

= Op3,1(q
∗, 1) = Op3,1(q

∗, 2) = Op3,1(q
∗, 3)

and therefore

Op∗3,1(β) = Op3,1(q
∗, 1) =

11

6
+ β (> 1) ,

i.e., (3.3). For i = 3 we obtain Op3,1(3,p
∗) = 1 < Op∗3,1(β). Thus, both inequalities

(D.1) and (D.2) are fulfilled and therefore q∗ and p∗ are optimal strategies.

The case 1/6 < β < 2/3: One easily sees that (3.7) and (3.8) fulfill the conditions
(D.3) and (D.4) and are therefore mixed strategies of the operator resp. the inspector.

Furthermore, we obtain with (3.7) and (3.8)

Op3,1(0,p
∗) = Op3,1(1,p

∗) = Op3,1(q
∗, 1) = Op3,1(q

∗, 2)

and therefore

Op∗3,1(β) = Op3,1(q
∗, 1) =

10

6
+ 2 · β (> 2) ,

i.e., (3.9). For i = 2, 3 we get

Op3,1(2,p
∗) = 2 < Op∗3,1(β) and

Op3,1(3,p
∗) = 1 < Op∗3,1(β)

and for j = 3

Op3,1(q
∗, 3) =

16

6
+ β > Op∗3,1(β) .

Thus, both inequalities (D.1) and (D.2) are fulfilled and therefore q∗ and p∗ are optimal
strategies.

The case 2/3 < β ≤ 1: One easily sees that (3.13) and (3.14) fulfill the conditions
(D.3) and (D.4) and are therefore mixed strategies of the operator resp. the inspector.

Furthermore, we obtain with (3.13) and (3.14)

Op3,1(0,p
∗) = Op3,1(q

∗, 1)

and therefore

Op∗3,1(β) = Op3,1(q
∗, 1) =

6

6
+ 3 · β (> 3) .

For i = 1, 2, 3 we get

Op3,1(1,p
∗) = 3 < Op∗3,1(β) and

Op3,1(2,p
∗) = 2 < Op∗3,1(β) and

Op3,1(3,p
∗) = 1 < Op∗3,1(β)
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and for j = 2, 3

Op3,1(q
∗, 2) =

12

6
+ 2 · β > Op∗3,1(β)

Op3,1(q
∗, 3) =

18

6
+ β > Op∗3,1(β) .

Thus, both inequalities (D.1) and (D.2) are fulfilled and therefore q∗ and p∗ are optimal
strategies.

The proof that (3.4) and (3.5) are optimal strategies leading to the optimal expected
detection time (3.6) can be shown in the same ways as in case 1/6 < β < 2/3. The
same holds for β = 2/3 and the corresponding optimal strategies (3.10) and (3.11) with
the optimal expected detection time (3.12). �

D.1.2 The case n = 3 and k = 2

We now prove that the strategies given on the pages 27 to 28 are indeed optimal
strategies. The proof is again presented in several steps.

The case 0 ≤ β < 1/2: Again one sees that (3.19) and (3.20) fulfill condition (D.3)
and – with some lengthy calculations – that (3.16) - (3.18) fulfill the condition

p∗(1,2) ≥ 0 , p∗(1,3) ≥ 0 , p∗(2,3) ≥ 0 and p∗(1,2) + p∗(1,3) + p∗(2,3) = 1 ,

and are therefore mixed strategies of the operator resp. the inspector.

With (3.16) - (3.18) and (3.19) - (3.20) we obtain

Op3,2(0,p
∗) = Op3,2(1,p

∗) = Op3,1(3,p
∗)

= Op3,2(q
∗, 1) = Op3,2(q

∗, 2) = Op3,2(q
∗, 3)

and therefore

Op∗3,2(β) = Op3,2(q
∗, 1) =

4 + 6 · β + 5 · β2 + 2 · β3

3 + 2 · β + β2
(≥ 4

3
> 1) ,

i.e., (3.21). For i = 3 we have Op3,2(3,p
∗) = 1 < Op∗3,2(β). Thus, both inequalities

(D.1) and (D.2) are fulfilled and therefore q∗ and p∗ are optimal strategies.

The case 1/2 < β ≤ 1: One easily sees that (3.25) and (3.26) are correctly normalized
and are therefore mixed strategies of the operator resp. the inspector.

Furthermore, we get

Op3,2(0,p
∗) = Op3,2(q

∗, 1)

and therefore

Op∗3,2(β) = Op3,2(q
∗, 1) = 1 + β + 2 · β2 (> 2) ,
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i.e., (3.27). For i = 1, 2, 3 we have

Op3,2(1,p
∗) = 1 + 2 · β < Op∗3,2(β) and

Op3,2(2,p
∗) = 2 < Op∗3,1(β) and

Op3,2(3,p
∗) = 1 < Op∗3,1(β)

and for j = 2, 3

Op3,2(q
∗, 2) = 1 + 2 · β + β2 ≥ Op∗3,2(β)

Op3,2(q
∗, 3) = 2 + β + β2 ≥ Op∗3,2(β) .

Thus, both inequalities (D.1) and (D.2) are fulfilled and therefore q∗ and p∗ are optimal
strategies.

For the limiting case β = 1/2 the optimal strategies are given by (3.22) and (3.23) with
the corresponding optimal expected detection time (3.24). The proof goes along the
same line like in case 1/2 < β ≤ 1. �

D.1.3 The case n = 5 and k = 1

We now prove that the strategies given on the pages 33 to 35 are indeed optimal
strategies. The proof is again presented in several steps.

The case 0 ≤ β < 13/60: One easily sees that (3.28) and (3.29) as well as (3.30)
are correctly normalized and are therefore mixed strategies of the operator resp. the
inspector.

Furthermore we obtain with some lengthy calculations

Op5,1(0,p
∗) = Op5,1(1,p

∗) = Op5,1(2,p
∗) = Op5,1(3,p

∗)

= Op5,1(q
∗, 1) = Op5,1(q

∗, 2) = Op5,1(q
∗, 3) = Op5,1(q

∗, 4)

and therefore

Op∗5,1(β) = Op5,1(q
∗, 1) =

77

30
+ 2 · β (≥ 77

30
> 2) ,

i.e., (3.31). For i = 4, 5 we obtain Op5,1(i,p
∗) = 6− i ≤ 2 < Op∗5,1(β). For j = 5 we

get

Op5,1(q
∗, 5) = β +

107

30
>

77

30
+ 2 · β = Op∗5,1(β) .

Thus, both inequalities (D.1) and (D.2) are fulfilled and therefore q∗ and p∗ are optimal
strategies.

The case 13/60 < β < 11/20: Again, one easily sees that (3.32) and (3.33) as well as
(3.34) are correctly normalized and are therefore mixed strategies of the operator resp.
the inspector.
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Furthermore we get – again with some lengthy calculations –

Op5,1(0,p
∗) = Op5,1(1,p

∗) = Op5,1(2,p
∗)

= Op5,1(q
∗, 1) = Op5,1(q

∗, 2) = Op5,1(q
∗, 3)

and therefore

Op∗5,1(β) = Op5,1(q
∗, 1) =

47

20
+ 3 · β (> 3) ,

i.e., (3.35). For i = 3, 4, 5 we have

Op5,1(3,p
∗) = 3 < Op∗5,1(β) and

Op5,1(4,p
∗) = 2 < Op∗5,1(β) and

Op5,1(5,p
∗) = 1 < Op∗5,1(β)

and for j = 4

Op5,1(q
∗, 4) = (4 + 2 · β) · 12

20
+ (3 + 2 · β) · 3

20
+ (2 + 2 · β) · 5

20

= 2 · β + 4 · 12
20

+ 3 · 3

20
+ 2 · 5

20

= 2 · β +
67

20
>

47

20
+ 3 · β = Op∗5,1(β) .

For j = 5 we obtain in analogy

Op5,1(q
∗, 5) = (5 + β) · 12

20
+ (4 + β) · 3

20
+ (3 + β) · 5

20

= β +
87

20
>

47

20
+ 3 · β = Op∗5,1(β) .

Thus, both inequalities (D.1) and (D.2) are fulfilled and therefore q∗ and p∗ are optimal
strategies.

The case 11/20 < β < 4/5: Again, one easily sees that (3.36) as well as (3.37)
are correctly normalized and are therefore mixed strategies of the operator resp. the
inspector.

Furthermore we obtain

Op5,1(0,p
∗) = Op5,1(1,p

∗) = Op5,1(q
∗, 1) = Op5,1(q

∗, 2)

and therefore

Op∗5,1(β) = Op5,1(q
∗, 1) =

9

5
+ 4 · β (> 4) ,

i.e., (3.38). For i = 2, . . . , 5 we have

Op5,1(i,p
∗) = − (i− 2) + 4 ≤ 4 < Op∗5,1(β)
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and for j = 3, 4, 5

Op5,1(q
∗, 3) = 3 · β +

14

5
>

9

5
+ 4 · β = Op∗5,1(β)

Op5,1(q
∗, 4) = 2 · β +

19

5
>

9

5
+ 4 · β = Op∗5,1(β)

Op5,1(q
∗, 5) = β +

24

5
>

9

5
+ 4 · β = Op∗5,1(β) .

Thus, both inequalities (D.1) and (D.2) are fulfilled and therefore q∗ and p∗ are optimal
strategies.

The case 4/5 < β ≤ 1: It is clear that (3.39) as well as (3.40) are correctly normalized
and are therefore mixed strategies of the operator resp. the inspector.

Furthermore we obtain

Op5,1(0,p
∗) = Op5,1(q

∗, 1)

and therefore

Op∗5,1(β) = Op5,1(q
∗, 1) = 1 + 5 · β (> 5) ,

i.e., (3.41). For i = 1, . . . , 5 we have

Op5,1(i,p
∗) = − (i− 2) + 4 ≤ 5 < Op∗5,1(β)

and for j = 2 . . . , 5

Op5,1(q
∗, j) = j + (6− j) · β > 1 + 5 · β = Op∗5,1(β) ,

since j − 1 > β · (j − 1) for all j = 2, . . . , 5. Thus, both inequalities (D.1) and (D.2)
are fulfilled and therefore q∗ and p∗ are optimal strategies.

The proof of the limiting cases is omitted. �

D.2 Proof of the saddle point solution for the simul-
taneous continuous time game

In order to solve the game with payoff kernel given on page 41 we transform the game
into another one to simplify the analysis: We consider a game with the payoff kernel

Ã2(x, (y1, y2)) =


− (1− β) · y2 − β · (1− β) · y1 + x 0 ≤ y1 < y2 < x ≤ t0
− (1− β) · y1 + x 0 ≤ y1 < x ≤ y2 ≤ t0
x 0 ≤ x ≤ y1 < y2 ≤ t0

.(D.5)

The idea of this transformation is that we consider the remaining time until the game
ends. Let

Y := { (y1, y2) : 0 ≤ y1 < y2 ≤ t0 } .
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In the following we are going to solve the game with payoff kernel Ã2(x, (y1, y2)), i.e.,

we want to determine probability distribution functions Q̃∗(x) on [0, t0] for the operator

and P̃ ∗
(Y1,Y2)

(y1, y2) on Y for the inspector such that

E(x, P̃ ∗) ≤ E(Q̃∗, P̃ ∗) ≤ E(Q̃∗, (y1, y2)) (D.6)

for all x ∈ [0, t0] and all (y1, y2) ∈ Y .

A fundamental role for the construction of the optimal strategies, i.e., the probability
distribution functions Q̃∗(x) and P̃ ∗

(Y1,Y2)
(y1, y2) play the functions h1(x) and h2(x)

fulfilling the following differential equation system

h′
1(x) = (1− β) · h1(x) (D.7)

h′
2(x) = (1− β) · h2(x)− (1− β)2 · h1(x) (D.8)

with

h1(0) = 1 and h2(0) = h1(1) . (D.9)

The solution of this differential equation system was already given (3.45) and (3.46). At
this point the concrete structure of the solution is not really needed. It is only important
that the functions h1(x) and h2(x) fulfill (D.7) and (D.8) with the boundary condition
(D.9) and that they are monotone increasing function of x for i = 1, 2.

Without loss of generality we assume in the following analysis that t0 = h2(1), see [13].

We first show that the each pair of strategies of player 2 (the player corresponding to
the inspector in the original game) (y∗1, y

∗
2) with y∗1 := h1(u) and y∗2 := h2(u) for all

u ∈ [0, 1] makes player 1 (the player corresponding to the operator in the original game)
indifferent with respect to his pure strategies x ∈ [0, t0].

For x ∈ (h1(0), h1(1)) we have

0 ≤ U < h−1
1 (x) ⇐⇒ y∗1 < x ≤ y∗2 ⇐⇒ − (1− β) · h1(U) + x

and

h−1
1 (x) ≤ U ≤ 1 ⇐⇒ x ≤ y∗1 < y∗2 ⇐⇒ x .

Therefore we get for all x ∈ (h1(0), h1(1))

Õp2(x, P̃
∗) =

∫
[0,t0)

∫
(t1,t0]

Ã2(x, (y1, y2)) dP̃
∗
(Y1,Y2)

(y1, y2)

=

∫ 1

0

Ã2(h
−1
1 (x), (h1(u), h2(u))) · 1 du

=

∫ h−1
1 (x)

0

[− (1− β) · h1(u) + x ] du+

∫ 1

h−1
1 (x)

x du

= x− (1− β) ·
∫ h−1

1 (x)

0

h1(u) du . (D.10)
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Differentiation with respect to x leads for all x ∈ (h1(0), h1(1)) to

d

dx
Õp(x, P̃ ∗) = 1− (1− β) · h1(h

−1
1 (x)) · d

ds
h−1
1 (x)

= 1− (1− β) · x · d

ds
h−1
1 (x) .

Since

d

ds
h−1
1 (x) =

1

h
′
1(h

−1
1 (x))

(D.7)
=

1

(1− β) · h1(h
−1
1 (x))

=
1

(1− β) · x

we get

d

dx
Õp(x, P̃ ∗) = 0 for all x ∈ (h1(0), h1(1)) .

For x ∈ (h2(0), h2(1)) we obtain in analogy to the considerations made above

Õp(x, P̃ ∗) =

∫ h−1
2 (x)

0

[− (1− β) · h2(u)− β · (1− β) · h1(u) + x ] du

+

∫ 1

h−1
2 (x)

[− (1− β) · h1(u) + x ] du . (D.11)

Differentiation with respect to x leads for all x ∈ (h2(0), h2(1)) to

d

dx
Õp(x, P̃ ∗) = 1 +

(
− (1− β) · x+ (1− β)2 · h1(h

−1
2 (x))

)
· 1

h
′
2(h

−1
2 (x))

(D.8)
= 0 .

From (D.10) and (D.11) we see that Õp(x, P̃ ∗) is a continuous function in x and

therefore we obtain Õp(x, P̃ ∗) = C for all x ∈ [h1(0), h2(1)]. This leads for x = h1(0)
to the value of the transformed game (remember h1(0) = 1)

Õp(h1(0), P̃
∗) = h1(0) = 1 .

For all x ∈ [0, h1(0)) we have Õp(x, P̃ ∗) = x < h1(0). Therefore, we have shown

E(x, P̃ ∗) ≤ E(Q̃∗, P̃ ∗) ,

i.e., the left hand inequality of (D.6). Furthermore we have E(Q̃∗, P̃ ∗) = h1(0) = 1.

We now want to show the right hand inequality of (D.6), i.e.,

E(Q̃∗, P̃ ∗) ≤ E(Q̃∗, (y1, y2))

for all (y1, y2) ∈ Y .
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We first get for all (y1, y2) ∈ Y and all every distribution function Q̃(x), see , e.g., [12]

E(Q̃, (y1, y2)) =

∫ 1

0

Ã2(x, (y1, y2)) dQ̃(x)

=

∫
[0,y1]

x dQ̃(x) +

∫
(y1,y2]

[− (1− β) · y1 + x ] dQ̃(x)

+

∫
(y2,t0]

[− (1− β) · y2 − β · (1− β) · y1 + x ] dQ̃(x)

=

∫
[0,t0]

x dQ̃(x)− [ (1− β) · y1 ] · (Q̃(y+2 )− Q̃(y+1 ))

− [ (1− β) · y2 + β · (1− β) · y1 ] · (Q̃(t+0 )− Q̃(y+2 )) .

Rearranging leads us finally to

E(Q̃, (y1, y2)) =

∫
[0,t0]

x dQ̃(x) + [ (1− β) · y1 ] · Q̃(y+1 )

+ (1− β) · [ y2 − (1− β) · y1 ] · Q̃(y+2 )

− [ (1− β) · y2 + β · (1− β) · y1 ] · Q̃(t+0 ) (D.12)

We now define the optimal distribution function of player 1:

Q̃∗
2(x) :=



0 : 0 ≤ x < h1(0)

1− h2(1− h−1
1 (x))

h2(1)
: h1(0) ≤ x < h1(1) = h2(0)

1− h1(1− h−1
2 (x))

h2(1)
: h2(0) ≤ x < h2(1) = t0

1 : x = h2(1) = t0

. (D.13)

It can be shown that Q̃∗
2(x) is indeed a probability distribution function, that is

lim
x→−∞

Q̃∗
2(x) = 0 , lim

x→∞
Q̃∗

2(x) = 1

and monotone increasing in x. Furthermore, it can be easily seen that Q̃∗
2(x) is a

continuous function on [0, t0), but not differentiable at x ∈ {h1(0), h1(1), h2(1)}. At
x = h2(1) = t0 this distribution function has an atom.

We now have to show that P̃ ∗(y1, y2) minimizes the function E(Q̃∗, P̃ (y1, y2)). This is
done in several steps. We use the notation of Figure D.1.
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Figure D.1 Different domains used in the proof.

Before starting we note that we get with (D.12) for all y1 ∈ (0, t0) \ {h1(0), h2(0)}

1

1− β
· ∂

∂y1
E(Q̃∗, (y1, y2)) = Q̃∗(y1) + y1 ·

d

dy1
Q̃∗(y1)− (1− β) · Q̃∗(y2)− β

(D.14)

and for all y2 ∈ (y1, t0) \ {h1(0), h2(0)}

1

1− β
· ∂

∂y2
E(Q̃∗, (y1, y2)) = Q̃∗(y2) + (y2 − (1− β) · y1) ·

d

dy2
Q̃∗(y2)− 1 .

(D.15)

The domains D1, D2 and D3: We get for all y1 ∈ (0, h1(0)) and for all y2 ∈ (y1, t0]
with (D.14) and definition (D.13)

1

1− β
· ∂

∂y1
E(Q̃∗, (y1, y2)) = −(1− β) · Q̃∗(y2)− β .

We now distinguish two cases:

If y2 ∈ (y1, h1(0)], then we have Q̃∗(y2) = 0 and therefore

1

1− β
· ∂

∂y1
E(Q̃∗, (y1, y2)) = −β ≤ 0 .

In addition we have with (D.15) that

1

1− β
· ∂

∂y2
E(Q̃∗, (y1, y2)) = −1 ,

i.e., the function E(Q̃∗, (y1, y2)) is monotone increasing in y2 in the set D1, see Figure
D.2.

130



D.2. PROOFS FOR THE SIMULTANEOUS CONTINUOUS TIME GAME

Figure D.2 Monotonicity properties of E(Q̃∗, (y1, y2)).

If y2 ∈ (h1(0), t0], then Q̃∗(y2) > 0 and therefore

1

1− β
· ∂

∂y1
E(Q̃∗, (y1, y2)) < 0 .

Because of the continuity of E(Q̃∗, (y1, y2)) on Y we obtain

inf
(y1,y2)∈[0,h1(0)]×(y1,t0]

E(Q̃∗, (y1, y2)) = min
y2∈(h1(0),t0]

E(Q̃∗, (h1(0), y2)) .

We now want to determine this minimum. Again we consider two cases

If y2 ∈ (h1(0), h1(1)) we have with (D.15)

1

1− β
· ∂

∂y2
E(Q̃∗, (h1(0), y2))

= Q̃∗(y2) + (y2 − (1− β) · h1(0)) ·
d

dy2
Q̃∗(y2)− 1

= −h2(1− h−1
1 (y2))

h2(1)
+ (y2 − (1− β) · h1(0)) ·

h
′
2(1− h−1

1 (y2))

h2(1) · h
′
1(h

−1
1 (y2))

(D.7),(D.8)
=

h2(1− h−1
1 (y2))

h2(1)
·
(
−1 +

y2 − (1− β) · h1(0)

y2

)
− (1− β) · (y2 − (1− β) · h1(0)) · h1(1− h−1

1 (y2))

h2(1) · y2
< 0 ,

since (1 − β) · h1(0) < y2. The result of this analysis is, that E(Q̃∗, (h1(0), y2)) is a
monotone decreasing function on y2 ∈ (h1(0), h1(1)), see Figure D.2.
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If y2 ∈ (h2(0), t0) we have with (D.15)

1

1− β
· ∂

∂y2
E(Q̃∗, (h1(0), y2))

= Q̃∗(y2) + (y2 − (1− β) · h1(0)) ·
d

dy2
Q̃∗(y2)− 1

= −h1(1− h−1
2 (y2))

h2(1)
+ (y2 − (1− β) · h1(0)) ·

h
′
1(1− h−1

2 (y2))

h2(1) · h
′
2(h

−1
2 (y2))

(D.7)
=

h1(1− h−1
2 (y2))

h2(1)
·
(
−1 +

(1− β) · (y2 − (1− β) · h1(0))

h
′
2(h

−1
2 (y2))

)
> 0 ,

whereas the last inequality can be seen as follows: The condition

(1− β) · (y2 − (1− β) · h1(0)) > h
′

2(h
−1
2 (y2))

is with (D.8) equivalent to

y2 − (1− β) · h1(0) > y2 − (1− β) · h1(h
−1
2 (y2))

and equivalent to (because of the construction of h1)

h1(0) < h1(h
−1
2 (y2)) ,

which is always fulfilled. The result of this analysis is, that E(Q̃∗, (h1(0), y2)) is a
monotone increasing function on y2 ∈ (h2(0), t0], see again Figure D.2.

Together we have shown, that

inf
(y1,y2)∈[0,h1(0)]×(y1,t0]

E(Q̃∗, (y1, y2)) = min
y2∈(h1(0),t0]

E(Q̃∗, (h1(0), y2))

= E(Q̃∗, (h1(0), h2(0))) ,

i.e. the infimum is reached in the left lower edge of the square A in Figure D.2.

The domain B: In this case we have with (D.14)

1

1− β
· ∂

∂y1
E(Q̃∗, (y1, y2))

= Q̃∗(y1) + y1 ·
d

dy1
Q̃∗(y1)− (1− β) · Q̃∗(y2)− β

= 1− h2(1− h−1
1 (y1))

h2(1)
+ y1 ·

1

h2(1)
· h

′
2(1− h−1

1 (y1))

h
′
1(h

−1
1 (y1))

− (1− β) ·
(
1− h2(1− h−1

1 (y2))

h2(1)

)
− β

(D.7)
= − h2(1− h−1

1 (y1))

h2(1)
+

h
′
2(1− h−1

1 (y1))

h2(1) · (1− β)
+ (1− β) · h2(1− h−1

1 (y2))

h2(1)

(D.8)
=

(1− β)

h2(1)
·
(
h2(1− h−1

1 (y2))− h1(1− h−1
1 (y1))

)
> 0 ,
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because h1(x) and h2(x) have disjunct ranges (except the end points of the interval). In

the previous paragraph we have shown, that E(Q̃∗, (h1(0), y2)) is a monotone decreasing
function on y2 ∈ (h1(0), h2(0)). Therefore, we finally get

inf
(y1,y2)∈(h1(0),h2(0))×(y1,h2(0)]

E(Q̃∗, (y1, y2)) = min
y2∈(h1(0),h2(0)]

E(Q̃∗, (h1(0), y2))

= E(Q̃∗, (h1(0), h2(0))) ,

see again for a graphical illustration Figure D.2.

The domain C: In this case we get with (D.15)

1

1− β
· ∂

∂y2
E(Q̃∗, (y1, y2))

= Q̃∗(y2) + (y2 − (1− β) · y1) ·
d

dy2
Q̃∗(y2)− 1

= −h1(1− h−1
2 (y2))

h2(1)
+ (y2 − (1− β) · y1) ·

h
′
1(1− h−1

2 (y2))

h2(1) · h
′
2(h

−1
2 (y2))

(D.7)
=

h1(1− h−1
2 (y2))

h2(1)
·
(
−1 +

(1− β) · (y2 − (1− β) · y1)
h

′
2(h

−1
2 (y2))

·
)

.

Since y1 > h2(0) we get from construction of h1 that

1 < h1(h
−1
2 (y2)) < h1(1) = h2(0) < y1 .

Therefore we get

(1− β) · (y2 − (1− β) · y1)
h

′
2(h

−1
2 (y2))

(D.8)
=

(y2 − (1− β) · y1)
y2 − (1− β) · h1(h

−1
2 (y2))

< 1 .

This leads us finally to

1

1− β
· ∂

∂y2
E(Q̃∗, (y1, y2)) < 0

and therefore

inf
(y1,y2)∈[h2(0),t0)×(y1,t0]

E(Q̃∗, (y1, y2)) = min
y1∈[h2(0),t0)

E(Q̃∗, (y1, t0)) .

We now evaluate the right expression in this equation. First we get with (D.14)

1

1− β
· ∂

∂y1
E(Q̃∗, (y1, t0)) = Q̃∗(y1) + y1 ·

d

dy1
Q̃∗(y1)− 1

= −h1(1− h−1
2 (y1))

h2(1)
+ y1 ·

h
′
1(1− h−1

2 (y1))

h2(1) · h
′
2(h

−1
2 (y1))

(D.7)
=

h1(1− h−1
2 (y1))

h2(1)
·
(
−1 +

(1− β) · y1
h

′
2(h

−1
2 (y1))

)
> 0 ,
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where the validity of the last inequality follows from the fact that (for β < 1)

(1− β)2 · h1(h
−1
2 (y1)) > 0

and therefore

(1− β) · y1 > (1− β) · y1 − (1− β)2 · h1(h
−1
2 (y1))

= h
′

2(h
−1
2 (y1)) (> 0) .

This shows that E(Q̃∗, (y1, t0)) is a monotone increasing function for y1 ∈ (h2(0), t0)
and leads us finally to

inf
(y1,y2)∈[h2(0),t0)×(y1,t0]

E(Q̃∗, (y1, y2)) = min
y1∈[h2(0),t0)

E(Q̃∗, (y1, t0))

= E(Q̃∗, (h2(0), t0)) ,

the right upper corner of set A, see Figure D.2.

The domain A: The necessary condition for a minimum (y∗1, y
∗
2) is, that

∂

∂y1
E(Q̃∗, (y1, y2))

∣∣∣
(y∗1 ,y

∗
2)
= 0 and

∂

∂y2
E(Q̃∗, (y1, y2))

∣∣∣
(y∗1 ,y

∗
2)
= 0 . (D.16)

We obtain

1

1− β
· ∂

∂y2
E(Q̃∗, (y1, y2))

= Q̃∗(y2) + (y2 − (1− β) · y1) ·
d

dy2
Q̃∗(y2)− 1

= −h1(1− h−1
2 (y2))

h2(1)
+ (y2 − (1− β) · y1) ·

h
′
1(1− h−1

2 (y2))

h2(1) · h
′
2(h

−1
2 (y2))

(D.7)
=

h1(1− h−1
2 (y2))

h2(1)
·
(
−1 +

(1− β) · (y2 − (1− β) · y1)
h

′
2(h

−1
2 (y2))

)
.

This expression is zero if and only if

(1− β) · (y2 − (1− β) · y1) = h
′

2(h
−1
2 (y2))

(D.8)
= (1− β) · y2 − (1− β)2 · h1(h

−1
2 (y2))

which is equivalent to

h−1
1 (y1) = h−1

2 (y2) .

If one defines x := h−1
1 (y1), then x ∈ (0, 1) and we have, that all pairs (y∗1, y

∗
2) with

y∗1 = h1(x) and y∗2 = h2(x) (D.17)
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fulfill the optimal condition on the right hand side of (D.16). But do they also fulfill the
left hand equality? From (D.14) we obtain

1

1− β
· ∂

∂y1
E(Q̃∗, (y1, y2)) = Q̃∗(y1) + y1 ·

d

dy1
Q̃∗(y1)− (1− β) · Q̃∗(y2)− β

= 1− h2(1− h−1
1 (y1))

h2(1)
+ y1 ·

1

h2(1)
· h

′
2(1− h−1

1 (y1))

h
′
1(h

−1
1 (y1))

− (1− β) ·
(
1− h1(1− h−1

2 (y2))

h2(1)

)
− β

(D.7)
= − h2(1− h−1

1 (y1))

h2(1)
+

h
′
2(1− h−1

1 (y1))

h2(1)
+ (1− β) · h1(1− h−1

2 (y2))

h2(1)

(D.8)
=

(1− β)

h2(1)
·
(
h1(1− h−1

2 (y2))− h1(1− h−1
1 (y1))

)
.

The pair (y∗1, y
∗
2) with (D.17) makes this equation to zero. Summing up we have shown

that Q̃∗(x) is an optimal strategy of player 1 and that player 2 has to play the pair
(y∗1, y

∗
2) according to (D.17). This completes the proof. �

From the construction of the game with payoff kernel (D.5) we can immediately deter-
mine the solution of the original game:

Let t0 > 0 be an arbitrary number, i.e., t0 6= h2(1) is possible. Then the inspector has
to perform his inspections at the time points

t∗1 = t0 − y∗2 and t∗2 = t0 − y∗1

which leads to

t∗1 = t0 ·
(
1− h2(1− u)

h2(1)

)
and t∗2 = t0 ·

(
1− h1(1− u)

h2(1)

)
,

where u is the realization of a uniformly distributed random variable U on [0, 1].

The optimal expected detection time is

Op∗2(β) =
t0

h2(1)
.

This completes the proof. �

D.3 Proof of the saddle point solution for the hybrid-
sequential discrete time game

D.3.1 The case k = 1 and arbitrary n

We show that the strategies given by (4.1) and (4.2) indeed constitutes a saddle point
of the game with value (4.3).
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The saddle point criterion is in this case given by

Opn,1(i,p
∗; β) ≤ Op∗n,1(β) ≤ Opn,1(q

∗, j; β) (D.18)

for i = l0, l0 and j = 1, . . . , n. In order to verify the left hand inequality of (D.18) we
have to show

Opn,1(l0,p
∗; β) ≤ n+ 1

2− β
and Opn,1(l0,p

∗; β) ≤ n+ 1

2− β
.

This is equivalent to

n∑
j=1

[ (1− β) · j + β · (n+ 1) ] · p∗j ≤
n+ 1

2− β
and

n∑
j=1

[n+ 1− j ] · p∗j ≤
n+ 1

2− β
,

which holds as equalities because of (4.2).

The right hand side of (D.18) is equivalent to

n+ 1

2− β
≤ 1

2− β
· [ (1− β) · j + β · (n+ 1) ] +

1− β

2− β
· (n+ 1− j)

for j = 1, . . . , n, which is fulfilled as equality for all j. This completes the proof. �

D.3.2 The case n = 3 and k = 2

With the notation introduced in Figure 4.4 the expected detection time, i.e., the payoff
to the operator is

Op3,2(β) = g0 · [A · p(1,2) +B · p(1,3) + C · p(2,3) ]
+ (1− g0) · [ g1 · (d · p(1,2) + e · p(1,3))

+ (1− g1) · (2 · p(1,2) + p(1,3)) + f · p(2,3) ]

We determine the saddle point of this game in such a way that we choose the optimal
strategies of the two players in such a way that the adversaries are rendered indifferent
with respect to their own strategies. Thus, the indifference condition for the operator
are

g1 : d · p∗(1,2) + e · p∗(1,3) − 2 · p∗(1,2) − p∗(1,3) = 0 ,

g0 : A · p∗(1,2) +B · p∗(1,3) + C · p∗(2,3) − 2 · p∗(1,2) − p∗(1,3) − f · p∗(2,3) = 0 , (D.19)

p∗(1,2) + p∗(1,3) + p∗(2,3) = 1 .

The indifference condition for the inspector are

p(1,2) : g∗0 · (A− C) + (1− g∗0) · [ g∗1 · d+ (1− g∗1) · 2− f ] = 0 , (D.20)

p(1,3) : g∗0 · (B − C) + (1− g∗0) · [ g∗1 · e+ (1− g∗1) · 1− f ] = 0 .
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Furthermore the value of the game is

Op3,2(β) = g∗0 · C + (1− g∗0) · f . (D.21)

Solving the systems of equations (D.19) and (D.20) we get (4.6), (4.7) and (4.8).
Writing the nominator of p∗(1,3) in the form (1− 2 ·β) · (1+β2) we see immediately that
this solution holds only for β < 0.5. In order to prove the saddle point condition for
β ≥ 0.5 we either have to guess and to prove it, or more systematically, transform the
extensive form game into a normal form one.

To arrive at the normal form, we have to determine all pure strategies of both players
which means all choices of all information sets (even if some of them actually cannot be
reached. Thus, for the inspector the pure strategies are again (1, 2), (1, 3) and (2, 3),
whereas for the operator they are

l0 l1, l0 l1, l0 l1 and l0 l1 .

The normal form of this game is given in Figure D.3.

Figure D.3 Normal form of the extensive form game given in Figure 4.4. q = (q1, q2, q3)
and p = (p(1,2), p(1,3), p(2,3)) are the mixed strategies of both players. The second row
can be deleted.

(1, 2) (1, 3) (2, 3)

l0 l1 1 + β + 2 · β2 1 + 2 · β + β2 2 + β + β2

l0 l1 1 + β + 2 · β2 1 + 2 · β + β2 2 + β + β2

l0 l1 1 + 2 · β 2 + β 1 + β

l0 l1 2 1 1 + β

This normal form game can still be solved analytically. More easily is it, to use the
Mathematica R© program adapted by M. Canty, see [10], for the solution of zero-sum
games. For β ≤ 0.5 we get the solution

q∗1 =
1

N
· (1− β + β2) ,

q∗2 =
1

N
· (1− β + β2 − β3) , (D.22)

q∗3 =
1

N
· (1− β) .
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p∗ and the value of the game are given by (4.7) and (4.8). In order to complete the
analysis we identify the two solutions for β ≤ 0.5. According to Figure 4.4 and D.3 we
have

prob(l0) = q∗1 = g∗0 =
1

N
· (1− β + β2)

and furthermore

prob(l0 l1) = q∗2 = (1− g∗0) · g∗1 ,

thus,

g∗1 =
q∗2

1− g∗0
=

q∗2
1− q∗1

.

With (D.22) we arrive indeed at the form for g∗1 as given by (4.6).

D.4 Proof of the saddle point solution for the hybrid-
sequential continuous time game

D.4.1 The case k = 1

In order to determine the solution of this game, we apply again the technique of ren-
dering the adversary indifferent. If this works the saddle point conditions are fulfilled as
equalities.

We see immediately that the operator is indifferent with respect to his mixed strategy
(g2, 1 − g2), if the inspector chooses his inspection time point t∗1 for given values of t2
and t0 according to

(1− β) · (t∗1 − t2) + β · (t0 − t2)− (t0 − t∗1) = 0 (D.23)

which gives

t∗1 − t2 =
1− β

2− β
· (t0 − t2) ,

i.e., (4.14). (D.23) gives immediately with (4.13)

Op∗1(β) = t0 − t∗1 (D.24)

and therefore (4.16). Conversely, the inspector is indifferent with respect to his strategy
t1, if the operator chooses his (behavioral) strategy g∗2 according to

(1− β) · g∗2 − (1− g∗2) = 0 ,

which gives us (4.15), which completes the proof. �
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D.4.2 The case k = 2

The indifference conditions for the operator are with (4.17)

g2(t2) : (1− β) · (t∗1 − t∗2) + β · (t0 − t∗2)− (t0 − t∗1) = 0 , (D.25)

g3 : (1− β) · (t∗2 − t∗3) + β · (1− β) · (t∗1 − t3) + β2 · (t0 − t3)− (t0 − t∗1)

= 0 . (D.26)

The indifference conditions for the inspector are:

t2 : g∗3 · (1− β) + (1− g∗3) · [ g∗2 · (−(1− β)− β) ] = 0 , (D.27)

t1 : g∗3 · β · (1− β) + (1− g∗3) · [ g∗2 · (1− β)− (1− g∗2) ] = 0 . (D.28)

The optimal expected detection time is therefore

Op∗2(β) = t0 − t∗1 (D.29)

and has the same form as (D.24).

We show that the solutions (4.18) - (4.21) fulfill equations (D.25) - (D.28). (4.22) then
follows immediately from (D.29).

(D.25) is identical to (D.23). Therefore, (4.19) holds as well. Furthermore we get with
some lengthy calculation

t∗1 − t3 = 2 · 1− β

3− 2 · β
· (t0 − t3)

and

t0 − t∗1 =
1

3− 2 · β
· (t0 − t3) .

Inserting these expressions into (D.28) shows the validity of our results.

Finally, it is straightforward to show that (4.20) and (4.21) fulfill equations (D.27) and
(D.28), which completes the proof. �

D.4.3 The case k = 3

In this case the expected detection time is

Op3(β;g, t) = g4

[
(1− β) (t3 − t4) + β (1− β) (t2 − t4) + β2 (1− β) (t1 − t4) + β3 (t0 − t4)

]
+ (1− g4)

[
g3(t3) ·

{
(1− β) (t2 − t3) + β (1− β) (t1 − t3) + β2 (t0 − t3)

}
+(1− g3(t3))

{
g2(t3, t2) ·

{
(1− β) (t1 − t2) + β (t0 − t2)

}
+(1− g2(t3, t2)) (t0 − t1)

}]
. (D.30)
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Therefore the indifference condition for the operator are (we delete the stars)

g2(t3, t2) : (1− β) (t1 − t2) + β (t0 − t2)− (t0 − t1) = 0 (D.31)

g3(t3) : (1− β) (t2 − t3) + β (1− β) (t1 − t3) + β2 (t0 − t3)

− (t0 − t1) = 0 (D.32)

g4 : (1− β) (t3 − t4) + β (1− β) (t2 − t4) + β2 (1− β) (t1 − t4)

+β3 (t0 − t4)− (t0 − t1) = 0 . (D.33)

The optimal expected detection time is

Op∗(β) = t0 − t1 . (D.34)

Equations (D.31) and (D.32) are formally identical to equations (D.25) and (D.26),
therefore, their solutions are identical to (4.18) and (4.19), i.e., (4.24) and (4.25) hold.
In order to prove (4.23), we show, again with some lengthly calculations

t2 − t3
(4.24)
=

1− β

3− 2 β
(t0 − t3) =

1− β

3− 2 β
(t0 − t4 + t4 − t3)

(4.23)
=

1− β

3− 2 β

(
1− 1− β

4− 3 β

)
(t0 − t4) =

1− β

4− 3 β
(t0 − t4)

and

t1 − t2
(4.25)
=

1− β

2− β
(t0 − t2) =

1− β

2− β
(t0 − t4 + t4 − t3 + t3 − t2)

=
1− β

2− β

(
1− 1− β

4− 3 β
− 1− β

4− 3 β

)
(t0 − t4) =

1− β

4− 3 β
(t0 − t4)

and

t2 − t4 = t2 − t3 + t3 − t4 = 2
1− β

4− 3 β
(t0 − t4)

t1 − t4 = t1 − t2 + t2 − t4 = 3
1− β

4− 3 β
(t0 − t4)

t0 − t1 = t0 − t4 + t4 − t1 =

(
1− 3

1− β

4− 3 β

)
(t0 − t4) =

t0 − t4
4− 3 β

. (D.35)

Inserting these forms into the left hand side of equation (D.33) and using the identity

(1− β)2 + 2 β (1− β)2 + 3 β2 (1− β)2 + β3 (4− 3 β)− 1 = 0

for all β ∈ [0, 1], we see that the left hand side of equation (D.33) is equal to zero.
Equation (4.29) follows immediately from (D.34) and (D.35).
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The indifference conditions for the inspector are

t3 : g4 (1− β) + (1− g4) g3 = 0

t2 : g4 β (1− β) + (1− g4) [ g3 (1− β)− (1− g3) g2 ] = 0

t1 : g4 β
2 (1− β) + (1− g4) [ g3 β (1− β) + (1− g3) (g2 (2− β)− 1) ] = 0 .

They are equivalent to

g4
1− g4

(1− β)− g3 = 0 (D.36)

g4
1− g4

β (1− β) + g3 (1− β)− (1− g3) g2 = 0 (D.37)

g4
1− g4

β2 (1− β) + g3 β (1− β) + (1− g3) (g2 (2− β)− 1) = 0 . (D.38)

Inserting (D.36) in (D.37) we get

g3
1− g3

= g2

and therefore with (D.36) and (D.38)

g2 =
1

2

from which g3 and g4 follow as given by (4.27) and (4.26).

This completes the proof. �
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