-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by JRC Publications Repository

Estimation of the measurement uncertainty
of ambient air pollution datasets using
geostatistical analysis

+

Michel Gerboles* and Hannes I. Reuter

*Joint Research Centre, Institute for Environment an d Sustainability, Ispra, Italy
“Gisxperts gbr, Dessau, Germany

-

3

-
[~

o

Semi variance y(l) in (pg/m?3)?

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Lag distance in degrees

EUR 24475 EN - 2010

EUROPEAN COMMISSION Institute for °

wm
g3
o

5


https://core.ac.uk/display/38620707?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The mission of the JRC-IES is to provide scientific-technical support to the European Union’s
policies for the protection and sustainable development of the European and global
environment.

European Commission
Joint Research Centre
Institute for Environment and Sustainability

Contact information

Address: Michel Gerboles, Via E. Fermi 2749, | - 21027 Ispra (VA)
E-mail: michel.gerboles@jrc.ec.europa.eu

Tel.: +39 0332 785652

Fax: +39 0332 789931

http://ies.jrc.ec.europa.eu/
http://www.jrc.ec.europa.eu/

Legal Notice
Neither the European Commission nor any person acting on behalf of the Commission is
responsible for the use which might be made of this publication.

Europe Direct is a service to help you find answers
to your questions about the European Union

Freephone number (*):
0080067891011

(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet.
It can be accessed through the Europa server http://europa.eu/

JRC 59441

EUR 24475 EN

ISBN 978-92-79-16358-6

ISSN 1018-5593

doi:10.2788/44902

Luxembourg: Publications Office of the European Union
© European Union, 2010

Reproduction is authorised provided the source is acknowledged

Printed in Italy



Abstract

We developed a methodology able to automaticaltimege of measurement uncertainty in the air
pollution data sets of AirBase. The figures prodlosith this method were consistent with
expectations from laboratory and field estimatidruacertainty and with the Data Quality Objectives
of European Air Quality Directives. The proposedtmoe based on geostatistical analysis is not able
to estimate directly the measurement uncertaintyestimates the nugget effect from variogram
modelling together with a micro-scale variabilithieh must be minimized by accurate selection of
the type of station. Based on the results obtaswefar, it is likely that measurement uncertaistipést
estimated using all background stations of whatevea type. So far the methodology has been used
to estimate measurement uncertainty in datasets #alifferent countries independently. This work
should be continued for the whole Europe or forkigasund station without national borders. The
method has been shown to be also useful to contpargpatial continuity of air pollution in differen
countries that seems to be influenced by the dpdis&ribution of the stations (e.g influenced by
topography) of each country.

Moreover, the method may be used to quantify thediof measurement uncertainty over long periods
(decades) with the possibility to evidence improeeairin the data quality of AirBase datasets.

The implemented outlier detection module would benterest as the warning system when countries
report their measurements to the European Envirahgency. The method could also provides a
simple solution to investigate the assignment arwdiacy of station classification in AirBase.
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Introduction
The European Commission has worked intensivelyherihplementation of a harmonized programme
for the monitoring of air pollutants including anée (As), cadmium (Cd), nickel (Ni), benzo(a)pyrene
mercury (Hg), sulphur dioxide (S¥) nitrogen oxides (NO/Ng, ozone (Q), benzene, carbon
monoxide (CO), benzene and particulate matter (AN, s) and lead (Pb) in ambient air. The
harmonization program relies on the adopted Eunmo@@eectives 2008/50/EC and 2004/107/EC [1,2].
These directives defines limit and target valuesafopollution that should not be exceeded if hiasm
effects on the population and the environment atgetavoided. Exceedances of these limits may have
legal consequences that trigger measures aimirggating the exceeded limit values. To avoid those
measurement artefacts triggering such measurediteetives endeavour to improve the quality of
the measurements by defining stringent protocotstie sampling/analysis/calibration methods and
for the implementation of Quality Assurance/Qualidgntrol programs (QA/QC). They also define
data quality objectives (DQOSs) that represent tighdst allowed relative expanded uncertainty of
measurements applied in the region of the Limitu¢al The reference methods exhibiting the highest
metrological quality of the Directives have beemanslardized by the European Committee for
Standardization (CEN). These standards describend#tbodology to be applied for the estimation of
the measurement uncertainty. This estimation olitieertainty of measurements is a long and tedious
procedure that may require considerable experirhere. The European Directives allows that two

methods of uncertainty estimation are applied foiigy the guidance provided in a CEN report [3]:

» one is based on the Guide to the Expression of tthingy in Measurement [4], generally called

the direct-approach or GUM method, in which theartainty of a measurement is described with

! Directive 2004/107/EC of the European Parliamentafriiie Council of 15 December 2004 relating to micsecadmium,

mercury , nickel and polycyclic aromatic hydrocarban ambient air. Official Journal L 23, 26/01/300

2 Directive 2008/50/EC of the European ParliamentthedCouncil of 21 May 2008 on Ambient Air Qualapd Cleaner Air for
Europe, Official Journal of the European Union 2M150f 11.6.2008

3 Air Quality—Approach to Uncertainty Estimation fAmbient Air Reference Measurement Methods (CR143T2E)

4 International Organisation for Standardisationid@uo the expression of uncertaintynireasurement, ISBN 92-67-10188-9,

ISO, Geneva, 1995
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a measurement model that includes several inpuntfies representing physical variables
influencing the measurement. The standard uncéytainall input quantities must be separately
determined and are subsequently combined accordintpe law of propagation of errors to
estimate the uncertainty of the measurement;

» the second method is based on the determinatioPAofuracy (trueness and precision) of
measurement methods and results” [5], the so cafiddect approach, which is concerned
exclusively with the uncertainty of measurementhods. The model explaining the measurement
Y is based upon the sum of the overall mean, tber&iory bias and the random error. The
laboratory bias and random error components areguantitative terms, obtained by a
collaborative study consisting in an interlaborgtogxperiment run under reproducibility

conditions whose results are treated using theysisabf variance (ANOVA) method.

Nowadays, the methods of estimation of the unadstadf measurements of ambient air pollution
made in Europe are well known. This estimationarried out on a routine basis by the laboratories
reporting their measurements in AirBase, the dambmaaintained by the European Environment

Agency (EEA).

From another perspective, it is possible to detineeuncertainty of spatially referenced measurement
from the nugget effect of variogram analysis. Theyget effect represents fluctuations of the
measurements on a very small scale (tending towdrdsis often decomposed into the sum of micro-

scale variations of the measurand under study atiteaneasurement errors [6].

In this report, we discuss about the possibilitatmomatically derive the uncertainty of measureisien
of ambient air pollutant using a new method basedewostatistical analysis of the spatially refeszhc
datasets present in AirBase, using semi-variogramyais. This report presents the results of a

feasibility study in order to:

5 International Standards, 1994, Accuracy (trueaessprecision) of measurement methods and resblst-2: Basic method
for the determination of repeatability and repraliiity of a standard measurement method, ISO 522894, Geneva, Switzerland.
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1. Develop a methodology for downloading geo-referenag pollution data series of AirBase
and for the automatic estimation of the parameiétieir spherical variogram;

2. Discuss the uncertainty of measurement evaluatedg uthe estimated nugget variance
compared to the DQO for a chosen pollutant M

3. Identify trends over time in the nugget varianceshkmw the variation of the uncertainty of
measurement over the last ten years;

4. Create a warning system for assessing the qudlityeoclassification of monitoring stations.

Methodology

AirBase
The European Environmental Agency (EEA) maintaindasabase on behalf of the participating

countries throughout Europe, the EIONET networkmWer states (MS) are due to report on the basis
of the Council Decision 97/101/EC [7], with amendnse2001/752/EC [8]. Over 6738 stations are in
this database, each providing different componesftsmulti-annual time series of air quality
measurements starting in 1981. Geographically,sthéons are spread all over Europe as seen in

Figure 1 with data collected in 36 different coiedr including 27 European Union Member States.

The location of measuring stations of the EIONETwoek is clustered in general due to nature of the
measuring network. About 155 parameters are reppamtéirBase, ranging from the concentrations of
inorganic/organic gases, particulate matter comagohs and wet and dry deposition with their
speciation. IN 2008, about 66% of all values inBsise comes from four different parameters: O
(21.2%), NQ (17.2%)/NO (8.2 %), S9(18.8%), carbon monoxide (9.4%) and Particulatatdia
(PMg0 9.0 %, PM 5 0.5 %, black smoke 1.1 % Total Suspended Partet&.9 % and Pb/Cd/As/Ni

1.5 %).

6 Statistics for Spatial Data, Noel A. C. Cressiehnld/iley & Sons, P. 59.

! Council Decision 97/101/EC of 27 January 1997 distahg a reciprocal exchange of information antadeom networks and

individual stations measuring ambient air pollutieithin the Member States, Official Journal L 0385/02/1997 P. 0014 - 0022

8 Commission Decision 2001/752/EC of 17 October 28@&nding the Annexes to Council Decision 97/101/E&b#ishing a
reciprocal exchange of information and data frotmvoeks and individual stations measuring ambienpallution within the Member
States.
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The quality of the data depends on the chosen measmt method and QA/QC procedures applied by
each country. The data in AirBase has undergondiawia quality control performed during the
upload of the data from the MS to EEAs databaseguaispecifically designed software called DEM
(Data Exchange Module). The European Topic Cenirdio and Climate Change (ETC/ACC) is also

involved in data quality checking.

:‘E ; - ! - N TR
i C{;_f{ {© gisxperts.def2010

Figure 1: Location of sampling sites reporting dateEEAS Air Quality Database — AirBase - in
Europe

Geostatistical method
Geo-statistics is a branch of applied statisticst tuantify the spatial dependence and the spatial

structure of a measured property. It is based enrdigionalised variable theory by which spatial
correlation of some properties can be treatpdJommonly, the geo-statistical analysis inclutlee

phases: the spatial modelling called variographipieed by spatial interpolation, the most common
one being the Kriging interpolation. In this studye looked at the first step, focussing on the

° Matheron, G., 1963. Principles of geostatistiaork Geol. 58, 1246-1266.
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modelling of the semi-variogram (also simply calletiogram) that describes the spatial correlation
between observations described by the semi varidrte semi variancg() is expressed by equation
1.

M0 =5 Lat,) - 20T Equation 1

where n(l) is the number of sample pairs at eastadce | (called lags) and 2(and z(x,) are the

values of x, the pollutant of interest, at the tamas i and i+l.

The graphical representation of the semi-variapte as a function of the distance is the semi-
variogram or variogram (see an example of variogrmarRigure 2). Its main parameters are: nugget,

sill and range.

The semi-variograms obtained from experimental dfieen have a positive value of intersection with
the semi-variance axis called the nugget variancewugget. From this point, the semi variance
increases until the variances of the data, callkdis reached. Up to this point, the regionalized
variables in the sampling locations are correlaldeky must be considered to be spatially indepeinden
at higher distances than this point, called rafige. sill is the variogram value at distances beyied
range and, generally, it equals or approachesdpalation variance. The range provides the distance

beyond which variogram values remain constant.

An experimental semi variogram is modelled by rigtia simple function to the data pairsyll;).
Linear, spherical or exponential models are oftedu[10]: The spherical model is the most
commonly used one (see Equation 2). For examppharical model is fitted to the experimental data

of the variogram shown in Figure 2.

f 1<a y)=C,+C,[15%-05(;)]
Equation 2

if 1>a p()=C,+C,

Where G is the nugget variance; & the difference between the Sill C and the nuggdance @ (C

=Gy + ), lis the lag distance and a is the range.

The nugget effect is the value of the theoreticaloggiam G at the origin of the variogram (& 0)
and is thus unknown. The empirical nugget is esBohdy extrapolating the empirical variogram
towards h=0. It consists of the short-scale gradi¢izoncentrations in the pollutant at distancesim

shorter than the sampling distance or called nsoade variation and of a stochastic measurement



uncertainty mainly the sampling and analytical a&iility, which should be true uncorrelated random

noise [10]. The nugget varianc?a@getcan be expressed using Equation 3:

2 — o2 2
S Smeas + SSC

nhugget —

Equation 3

where $neasis the variance associated with the sampling amalytical variability and % is the
variance due to micro-scale variability. Equatiois dased on the assumption thatessand s are

not correlated. In fact, for some atmospheric patens, small changes in location can cause
significant changes in the concentration levelhaf pollutant. For example, if one moves from aeidg

to a valley, pollution may change quickly and a&tcale at which we cannot predict because of sparse

observations.
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Figure 2: Example of a semi-variogram for PM10 stations imdpe, showing the nugget (local
spatial variability and measurement uncertainthg tange (the extent of spatial variability) ane th
sill (the total variability in the dataset or thevgn extent). The gray line represents a exampée of
fitted sen-variogram function.

10 Isaak, E. H., Srivastava, R. M., 1989, An Intrddrcto ﬁ%plied Geostatistics. Oxford UniversityeBs, New York.



The estimated value of gye:Cannot be decomposed in measurement error vargépgeand micro-
scale variance®s, without further information or prior belief. Howex, the square root o?,ﬁgget
overestimates the uncertainty of measurement aiceptd the extent of’s, the micro-scale variance.

It is then necessary to control the micro-scaléavae so that the nugget variance, used as a siierog
of the uncertainty of measurement, will only slightverestimate the nugget variance. In this study,
the micro-scale variance is minimized by deterngnine nugget variance of subsets of all available
sampling sites selected according of their classifon: background, traffic and industrial stations

order to minimize the micro-scale variance.

The nugget variance is estimated by the interseatibthe fitted model with the Y-axis of the
variogram. However, fitting different model (lineapherical, exponential, power or a combination of
these) to the same experimental data set would restdted in estimating different values for the
same nugget variance. Even more, fitting diffetgpe of models to different data sets would have
ended up in nugget variances that would have neh semparable anymore. In order to be consistent
in the method used to estimated the nugget variahseveral data sets and hence be able to compare
them, it was decided to always fit a spherical nh¢al@ll the prepared variograms.

When the uncertainty of measurement is determisgtguthe direct approach, one starts by listing all

the possible contribution arising from differentrgraeters (sampling, calibration ...) to be able to

combine them afterwards. One nice feature of esitigaincertainty using the nugget variance is that

all these contributions can be included by selgcappropriate sets of sampling sites that would

include different type of sampling lines, methodhodasurements/maintenance/calibration, equipment
brand, etc. The simple fact to select different séthe sampling sites results in a wider estinratb

all parameters contributing to the uncertainty easurements.

However, one should always keep in mind that thera risk to attribute some contribution of the
micro-scale variation to the uncertainty of measweets and that this micro-scale variance might be

magnified by the heterogeneity of the samplingssite

Notably one type of parameter contributing to theartainty of measurement that cannot be detected
by the nugget Variance consists in systematic thialswould be present at all sampling sites elgas

of the measurement methods or chemical interferefioe presence of this type of systematic bias in
all the selected stations is nevertheless highlikely because of the very diverse implementatién o
sampling, analytical and calibration methods maddgedifferent laboratories implementing different
QA/QC procedures for a whole set of monitoringiete.

Finally, the method of estimation of the uncertaiaf measurement proposed in this study relies on
the modelling of the variogram based on the daies gnsisting of lags and semi variances. The
11



nugget variance will depend on the semi-variandbeasmallest lag distance of each variogram. When
the nugget variance is estimated per country udiig sets whose smallest lag are different per
country, one cannot exclude a lack of homogendith® extrapolation of the spherical model on the

Y-axis.

Development of a methodology for downloading geo-ferenced air pollution data series of
AirBase and automatic estimation of the nugget vaance of their variogram;

A PostgresSQL DB V8.3 was installed on a 64bit Ubut4 distribution ffttp://www.ubuntu.con)/
with 8 GB RAM and 4 processors. Data were loadédgua self developed shell script (see Appendix

II: Developed Shell Script for Data import into tiRostgresSQL Database), which automatically
loaded data if their measurement quality flag aldé in AirBase was set to 1. Each data record was
characterized using sample date, measurement valagipn code and component code. For
performance issues each component was indexednenatd station code. Station data locations were
converted into a shapefile and loaded directly Ptstgress. Indexing was performed on station code
and the geometry column. Several iterations whemropmed to determine which combination of
index / requests delivered the fastest return tf.da

For further data analysis, the open source softwar®¥ 2.8.1 (www.r-project.org) with several

extensions (Rdbi + RdbiPgSQL for Database accestat,gsp, automap for semi-variogram
calculations) has been used. Out of this analgsishole toolbox of algorithms (see Appendix I:
Developed R- Routines) has been developed whidwaib process and calculate different kinds of
analysis (e.g. raw and fitted semi-variograms,ieutlalculation, general statistics and fitted fumms

to the time series), all with respect to the analyd the air quality datasets. In general, theadat
analysis consisted of three different steps: logdie data from the DB into memory, performing the
necessary calculations, writing semi-variogram ltssato ASCII files for further analysis.

Data connections between R and the Postgress D& liean established using the RDBI driver. The
time of this driver delivering data is approx 2%mgmared to the time the ODBC Database drivers
would deliver data. Stations were selected, joimath the corresponding location data table and
imported into R. All datum data were converted idtdian day to be able to perform temporal and
spatial selections. If data needed to be normadigriduted for applying the outlier test (see béeloaw
natural logarithmic transformation was performeddaionally, to improve mathematical stability, an
offset has been added before the log transformatesived by the absolute minimum value of the

dataset + 0.5 to avoid undefined values (a loggod or of negative values is not defined).

12



Semi-variogram analysis was performed using annaatic semi-variogram fitting provided by the
automap toolbox (Hiemstra et al, 2008) [11]. Thislbox was adapted by limiting the maximum lag
distance to a total search radius of 2° of latitadd longitude corresponding to ~ 220 km long. This
method automatically could test/fit different semariogram models and fits semi-variogram
parameters based on a given dataset. Usually|dbdathm determines the boundaries for the lags by
determining the spatial boundary and dividing itthg size of the area. However, as the distribution
stations is clustered, this algorithm deliveretiraes lag boundaries, which were not correspontbng
the spatial autocorrelation of the underlying d&tar example, fitting lag distances to Spanish data
without limits resulted in a maximum lag distande-&0° due to some stations on the Canary Islands
as well as on the mainland. By introducing a lingtifactor, the spatial variability of the mainland
which should have been up to a maximum of ~2° fpais could be maintained. Another typical
example is given by stations placed behind a maumgange, while all other stations form a cluster.
Therefore, we let the algorithm estimated the botiedawhile limiting the maximum distance to
preset value of 2°. Thereby we effectively ensuteat the lag boundaries where always within the

autocorrelation range.

Outliers Detection Tests

Multi-
dimension?

1-Dimension
(Linear)?

2 dimensions:
ocation + attribute

Homogeneous
dimension?

A
Frequency
distribution over

attribute value [14,
16]
Smooth
v v spatial
Distance-based (FindOut) Wavelet Depth threshold attribute
(Knorr and Ng based (Yu et al.) (Ruts and (used
[17]) [21] Rousseew [11] || method)[12]
y 4
Distance to K-th (Optics -OF)
Neighbor Density in
(Ramaswamy et al. Neighborhood
)] (Breunig et al. [15]

Figure 3: Several methods to detect outliers in 2iadets (Figure taken from Chang-Tien Lu[12] )

In the beginning of the analysis, a couple of heddsemi-variograms were computed: It became clear

that outliers influenced the semi-variogram caltata which rendered analysis of spatial dependency

u Hiemstra, P.H., Pebesma, E.J., Twenhdfel, C.J8\GRB.M. Heuvelink (2008). Automatic real-time irefation of radiation

hazards: a prototype and system architecture ceragidns. International Journal of Spatial Datadstructures Research, vol 3, p 58-
72
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using semi-variance analysis questionable. Theeratinfluenced the fitting of the semi-variogram
function and led to an artificial increase of thegyget effect.

Therefore an outlier procedure was implemented basealready existing literature. Chang-Tien Lu
[*] have outlined and classified several algoritht®,14,15,1617,18,19,20,21] as seen in Figure 3.
Two families of outlier detection methods can beidigiished. First the ones which calculates statist
of the distribution of pollutant in one dimensiamdagnore geographical location [14, 16]. The second
family, the spatial-set outlier detection methodsnsider both attribute values and spatial
relationships. Within this family we used the “SrttodSpatial Attribute method” [12] that was
developed for the identification of outliers inffr@a sensors. This method is thought to be fit floe t
identification of outliers in a given homogeneouwgaset of air quality data that represents in alaim

way a quantity measured in time and space.

The Smooth Spatial Attribute method relies on thind@n of a neighbourhood for each air pollutant
measurement. It corresponds to a spatio-temporahdvolimited in time (+/- 1 day) and distance (+/-
1 degree) around location The neighbourhood is better understood by obsgrthe diagram in
Figure 4. The objective of the method is that withigiven spatio-temporal domain in which the value
of the attribute values of neighbours have a m@ahip due to the distribution/transport/emissiod a
reaction of air pollution, outliers will be detedtby extreme value of their attribute value comgace
the attribute value of their neighbours. The maimpotation cost of the method is dominated by disk
Input/Output cost and the main constrain of thehmetis the normality of the distribution of the

attribute values of neighbours.

In the following text, we calle&k the concentration of a pollutant or its locatiaivithin each

neighbourhood, several measurements of the sampoeords at different locations and timg,; are

12 Chang-Tien Lu, Dechang Chen, Yufeng Kou, "Detec8pgtial Outliers with Multiple Attributes," ictgpp.122, 15th IEEE
International Conference on Tools with Artificialtétligence (ICTAI'03), 2003.

B M. Ankerst, M. Breuning, H. Kriegel and J. Sand®ptics: Ordering points to identify the clusteristgucture in Proceedings

of the 1999 ACM SIGMOD International Conference onnsigement of Data, Philadelphia, Pennsylvania, is8es 49-60, 1999.

14 V. Barnett and T. Lewis. Outliers in Statisticait®. John Wiley, New York,8Ed. 1994.

5 M. Breuning, H. Kriegel, R. T. Ng and J. SanderT@IF5-OF: Identifying Local Outliers in Proc. Of PKDB9, Prague,
Czech Republic, Lectures Notes in Computer Scienc@(lIN04), pp 262-270, Springer Verlag, 1999.

16 R. Johnson. Applied Multivariate Statistical Argifyy Prentice Hall, 1992.

e E. Knorr and R. Ng. Algorithms for Mining DistanBased Outliers in Large Datasets in Pric" 24DB Conference, 1998.

18 M. Kraak and F. Ormeling. Cartographer: Visualmaof Spatial Data. Longman, 1996

19 F. Preparata and M. Shamos. Computational Geonfetrintroduction. Springer Verlag, 1998.

20 I. Ruts ans P. Rousseeuw. Computing Depth ContduBsv@riate Point Clouds. In Computational Statisacsl Data

Analysis, 23:153-168, 1996.

2 D. Yu, G. Shekholeslami and A. Zhang. Findoutdkiig Outliers in Very Large Datasets. In DeparttradrComputer Science

and Engineering State University of New York at BldfBuffalo, Technical report 99-0Bttp://www.cse.buffalo.edu/tech-reports/
1999.
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available. Equation 4 allows computing a weightedrage of all available measuremexgs; within
each neighbourhood where the weights corresporidetanverse spatial and time distance between

Xxiyi andx.
[Legend
Time n @ Spatial
X _=)wzx patia
it 21" P Neighbors
Temporal 0 Temporal
Negighborhood Neighbors
@ Additional Neighbors
ty [ : in Spatial-Temporal
_____ Spatial Neighborhood
t Neighborhood
tp +---- Window of
. Spatial-Temporal
Spatial-Temporal Neichborhood
Neighborhood -

S; S2 S3 Space——
Figure 4: Spatial and temporal outliers — definition ofigigborhood [12]

After a log-transformation of non - Gaussian datéghw any neighbourhood, we computed the
differencesSx between value ak and the average of its neighbourhood for each umeasent

according to Equation 5.

Xy = Zl:Wi Xy Equation 4
Sx= fx—X .
0y Equation 5
X =X
4= Equation 6
z>0 Equation 7

Then within each neighbourhood, tB& values were normalised to center data at 0 wistaadard

deviation of 1 using Equation 6 in whick and s are the weighted average and weighted sthnda
deviation of all possibl&xvalues within any neighbourhood. Finally, the festdetecting an outlier,
given in Equation 7, searches farvalues exceeding a threshold value consistinghe rmoving

average of five consecutivewalues plus a threshold value of 2 correspondrg ¢confidence interval
15



in which 95 % of zvalues would lay. In contrast to the paper by 18]] we did not use an absolute
value of the z-transformation due to the fact thatsign of the outlier is of interest to us asweat to
understand if a station is measuring to low questior to high quantities compared to the its
neighbourhood stations with the same classifica(imban, background, traffic ..). By plotting the
result of the zi against the moving average ofzhplus the threshold value, outliers were ideadifi
An example is given in Figure 5 for an Austriantista monitoring PMo with the identification of 19

outliers of daily values in 2007.

16
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Figure 5: Outlier analysis for Austrian Station AT0227AdGenzersdorf/Glinzendorf) using the
developed method. The Station Values (black cjrelesshown with the average of the
surrounding stations circle(red line) +/- 2 standadeviation (SD) (Top Left), the histogram of the
(log transformed) measurement value for normaliyp(Right); the Sx values for the station
(black) with respect to the surrounding Mean (Raatj SD(blue)(Middle Left); the Quantile
distribution of the Sx values (Middle Right) to ffee distribution contains any large deviations;
the z values of the station (black) plotted againstgpecified threshold (Lower Left); and in the
lower right corner the average number of statiamshie surrounding used for the calculations and
the number of identified outliers out of one year .

Finally, the methodology developed for the estioratf the uncertainty of measurement based on the

nugget variance can be described by the flow aheen in Figure 6.
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Download data from Airbase

Import data into database

Select monotoring station per country,
component, year, station type and area

type

Outlier test based on average space
(2° =220 km) and time +/- 1 day

4

Compute variogram including nugget
error and spherical model

Extract nugget variance,
range and sill

y

Add nugget, range and sill to table of
results

Figure 6: Flow chart representing the differentsdeof the developed methodology for the
estimation of uncertainty of measurements

If more than 20 stations were available at any mitrme step (e.g. day), a semi-variogram analysis
was performed consisting of a nugget effect anglascal model. An example of the effect of
discarding outliers producing a decrease of thegaugffect and sill is presented in Figure 7 far th

rural background station in Germany for Rvh 2007.
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All data Outliers discarded
Sill >
< Nuqgget

Figure 7: Decrease of the nugget effect and sill of threisariogram for Julian Day 17176 in Germany on
rural background stations by discarding outliersf{lall monitoring stations are used, right outbeare
dicrarded
Estimation of the measurement uncertainty using th@ugget variance
For PMy, our pollutant of interest, the number of monigristations increased in all countries
whatever station or area type as shown in Tablen 22007, Germany had a total of 358 stations
(among which 155 traffic stations in urban ared@gnce had 238 stations (among which 126
background stations in urban areas), Italy had stdfions (among which 86 traffic stations in urban
areas) and Austria had 87 stations with 59 backgt@tations in urban areas. The number of stations
included for which data are present in AirBasedibpossible combination of station and area type i
given in Table 2. As the micro micro-scale varigpikestimated form the geostatistical analysis of
Industrial stations was expected to be higher thiéim urban and industrial stations, it was decidet

to select this type of station in the analysis.

As mentioned in Introduction, the European Directivkefines data quality objectives (DQOSs) that
represent the highest allowed expanded uncertafimyeasurements in percentage of the Limit Value.
Table 4 gives for each pollutant the combined uageas in pg/m3 corresponding to this percentage.
For PM10, we will remember that the combined uraety corresponding to the European Data

Quality Objective is 5 pg/ms.

For Year 2007, we calculated the averages of aly daeasurement uncertainties estimated by the
square root of the nugget variance and rangeseotdmi-variograms for different station and area
types for Austria, (AT), Germany (DE), France (FR{ dtaly (IT). The values are given in Table 4.
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Table 1: Number of Stations for the most abundanameters of AIRBASE in 2002 and 2007 for
traffic (TR) and background (BG) type stationsddoan (UR), rural (RU) and suburban (SU) areas.

S0, 0; NO, PM10
AT [DE [ FR | IT |[AT[DE]FR [T |AT][DE]FR [ IT|AT[DE]FR [ IT
TR-UR | 31 94 | 7 | 27| 2 |47 | 29| 26 | 44 | 196 | 28 | 155 | 27 | 86
~ | BG-RU | 87 1 |21 |50 |69 |62]41 |34 ]11[30]37|19]5]11]3s
S [BourR| 29 | 1 42 | 17 | 82 |164| 69 | 22 | 14 [183| 90 | 20 | 86 | 126 | 31
BG-SU | 52 5 | 25 | 23 [ 72 147 41 | 24 [ 27 [115| 48 | 20 | 65 | 74 | 16
TR-UR | 58 29 | 6 | 41| 6 [ 18 |27 [ 19 [ 39 ] 41| 15|84 ]| 26 17
~ | BGRU | 103 2 | 6 [ 53] 7253|1537 ] 9 [36|13]12]3]11] -
€ [Beur | 55 | 2 15 | 18 | 92 [130] 21 | 23 | 19 [147 | 21 | 9 | 79 [ 101 ] 10
BGSU | 54 | 1 10 | 21 | 84 [136] 19 | 22 [ 36 [119] 12 | 11 [ 52 [ 70 | -

Table 2: Classification of station and area in AistGermany, France and lItaly.

Station type Area type Number of station Station type | Area type Number of station
Industrial suburban 524 Background urban 1658

Industrial urban 263 Background | suburban 1213

Industrial * 1 Background unknown 35

Industrial unknown 17 Background rural 814

Industrial rural 298 Unknown rural 2

Traffic unknown 5 * * 4

Traffic suburban 248 Unknown unknown 32

Traffic urban 1493 * suburban 1

Traffic rural 44 Unknown urban 67

Stars denote missing station types.

First of all, they are consistent with the expeatadertainty in field. They are generally lower thha
data quality objective expressed as combined waiogytof the Limit Value (5 pg/m3). It is likely #t
the estimation of the measurement uncertainty usaffjc type station is overestimated by a micro-
scale variation included in this type of statiowr rban traffic, Austria shows the lowest values f
nugget, followed by Germany and France with doubke amount effect. Italy shows the highest

amount for the nugget.

Background stations do not show such clear pattéfhe nugget values of Austria are double
compared to the observed values for Germany amc€ravhile Italy shows nearly three fold values
of these nuggets. The reason for the nugget diffeeris unclear. A clear attribution to different
station networks or different traceability of stand strategies seems not be possible but should be
investigated. A second factor could be the differgpatial distributions of the station networks for

background stations influencing the computed resulfe believe that the best estimated of the
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measurement uncertainty is the one found for “atlidground stations” with enough stations including
different factors in the estimation of nugget effé@r Austria, France and Germany the nugget effec

is lower than the Limit Value while the Limit Valug slightly exceeded in lItaly.

Table 3 Data quality objectives for ambient air tygassessment and its corresponding
combined uncertainty at the limit/target valuesréiative2004/107/EC and 2008/50/EC)

Data Quality Corresponding
Objectives (relative Limit/Target value combined
expanded uncertainty) uncertainty
Sulphur dioxide, SQ 15 % Yea.lrly 350 pg/me 26,2 pg/m’
Daily : 125 pg/m3 7,8 ug/m3
Nitrogen dioxide NQ 15 % Yer':\rly: 40 pg/me 3 Hg/m?
Daily: 200 pg/ms3 15 pg/ms3
Ozone, Q 15% 8 hr mean: 120 pg/mp 9 pg/ms
Carbon monoxide, CO 15% 8 hr mean: 10 mg/m 0,75 mg/m3
Benzene 25 % Yearly: 5 pg/ms 0,63 pg/ms?
P 25 % Daly SOpgme | 6 ngms
PM;s 25 % Yearly: 25 pg/m? 3,1 ug/m3
Lead, P 25 % Yearly: 0,5 pg/m? 0,063 pg/m?
Benzo(a)pyrene 50 % 1 ng/m3 0,25 ng/m3
Arsenic, As 40 % 6 ng/m3 1,2 ng/m3
Cadmium, Cd 40 % 5 ng/m3 1 ng/m3
Nickel, Ni 40 % 20 ng/m3 4 ng/m3

* expanded uncertainty for Pthat will be used in this study

Unfortunately, not all combinations delivered enoutata points (e.g. less than 300 days or less than
20 stations), therefore no average values couldeperted e.g. background-urban (BG-UR). For

comparison we also report the values for all statitype — station area type in Table 2.

The range values increase in a different manner tiamugget effect. Observing the ranges for the
“All background” stations, we can see that Austmal Italy have a range about 0.9° while the one of
Germany and France is about 1.2° which would intpgt the long range spatial dependency also
increase. In fact, it was expected that the spatiatinuity of the PMy concentrations would be higher
for Germany/France as a result of the higher nurabstations in low land areas compared to Austria
and Italy.

A conclusion drawn from the different results are:

Austria as a country with medium background and lowan traffic nugget also shows the

lowest overall nugget as well as range effect.
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Italy, shows the largest nugget parameters acilbssrabinations. The reason for this is still

unclear.

Station classification appears to influence thegetigand range results in different MS in

various degrees - a more precise classificatiowetsl an increased spatial dependency

The spatial distribution of the station network (etige Austrian/ltalian Mountain Valley
situation versus a German/France lowland situatimight have influenced the quantified

nugget and range values as well. However the $iteeffect is uncertain.
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Table 4 Averaged Daily Nugget and Range Valuethioryear 2007 for the EU Member states Austria
(AT), Germany (DE),France (FR) and Italy (IT) ftwetStation Type - Station Area Type Combinations
Traffic-Urban (TR-UR), Background-rural (BG-RU), &a@round-Urban (BG-UR), Background-
Suburban (BG-SU), all Background stations (BG-Alany all stations (ALL-ALL).

Station Combination Nugget and Range Values for th&¥ear 2007 for PMo
St - Iso AT DE FR IT
TR-UR 3.8 5.5 5.3 9.3
o BG-RU 1.9
£
ks)
? BG-UR 2.8 1.6 7.5
S BG-SU 1.9 1.9
(@)
Z
BG-ALL 4.0 2.7 3.1 7.0
ALL-ALL 4.2 6.1 6.2 8.9
" TR-UR 0.93 1.22 1.06 1.20
&
o BG-RU 1.19
©
©
2 BG-UR 1.06 0.91 1.10
£
” BG-SU 0.94 1.16
£
) BG-ALL 0.9 1.17 1.2 0.89
©
04
ALL-ALL 0.91 1.01 1.16 1.11
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Trend over time of the measurement uncertainty indtated by the nugget
effect

While the results for year 2007 give only a shodshot in time, we investigated how the nugget and
range change over time. The same geostatisticaysasas for year 2007 was performed over the
timeframe 1997-2007.

By plotting the nugget effect of PiWersus time, it is possible to observe that thpeslof regression
line (-0,002) for Germany (see Figure 8) shows @ekese that indicates a slight improvement of the
measurement uncertainty between 1997-2007. The shroeease of measurement uncertainty is
stronger for Austria as shows the slope of the atiggriance versus time (-0,010, see Figure 9).
However one should note that the initial nuggetarare of Austria in 1997 was higher than the one of
Germany. This is evidenced by the intercept of Aastf 213, compared to 45 for Germany (see
Figure 8 and Figure 9). Figure 8 also shows an anefiect of changes in spatial distribution in
Austria that is clearly visible in the yearly inase in small scale variability (i. e. nugget effetiring

the winter months.

Component: 00005 for Country: DE and Station Combination: BackgroundALL

1000
|

800

600
|

Coeff: -0.002 Intercept: 45.762 adjusted r2:0

Nugget Variance

400
|

200
|

14000 15000 16000 17000

Julian Day

Figure 8: Nugget Semi-variance (gray circles) mottversus Time (Julian Day) for all German
Background Stations over the timeframe 1997-2008@. réd line indicates a linear model fit for the
plotted data; the parameters shown in the centrimeffigure.
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Component: 00005 for Country: AT and Station Combination: BackgroundALL
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Figure 9: Nugget Semi-variance (gray circles) pottversus Time (Julian Day) for all Austrian
Background Stations over the timeframe 1997-200@. réd line indicates a linear model fit for the
plotted data; the parameters shown in the centrimefigure

A more general picture for the different statiogpets can be found using simple linear regression
analysis as shown in the Table 5. In general wergbse decrease in small scale variability acroks al
years. For the “All background stations (line BG-ALLa negative coefficient can be observed.

Certainly, the values are rather small considetitggfact that 10 years of observations are takem in

account. While Germany has the smallest decreagbeimugget effect with time (e.g. the least
reduction in small scale variability), we could ebs Austria and France had similar decreasing
values. The largest decrease could be observethafpr(fourfold over that from Austria).

For the Urban Traffic combination the results arffedent. We see the strongest decrease in the
Austrian dataset, followed by Germany and ltalyetaestingly, France showed an increase in small

scale variability with years which need furtherastigation.

Range effects for “All background stations” (e.ge tlength of the spatial dependency) are actually
increasing for Germany and slightly increasing Foance, while decreasing for Austria and slightly

decreasing for Italy. This might indicate that thatisns with an increasing range show a more
homogeneous picture of the air quality situatiomaunding it. In fact, it might be due to an insea

of QA/QC actions performed over the years. It caalsb be the result of a change in the nature or

quantity of air pollution emissions/transport oacgons over the year. Another reason might be the
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increase/decrease of number of monitoring statonshange in the station classifications. For tcaff
stations, such statement cannot be made. We obls@neecase in ranges for Austria, Italy and

Germany ans significant decrease for France.

Table 5 Coefficients for fitted linear models faigget and Range Values for Austria (AT), Germany
(DE), France (FR) and lItaly (IT) for the StationpEy- Station Area Type - Combinations Traffic-
Urban(TR-UR), Background-rural(BG-RU), Backgroundsin(BG-UR), Background-Suburban(BG-
SU), All Background stations (BG-ALL).

Slope of regression lines over 10 years
St - Iso AT DE FR IT
TR-UR -1,8 % -0,2 % 0,6 % 0,0 %
S
(@]
= BG-RU -0,8 %
S
;\Z BG-UR -0,6 % -1,6 % -1.9%
£
S BG-SU -0,2 % -1,7 %
o
0
BG-ALL -1,0 % -0,2 % -1,2% -4,3 %
TR-UR 12,2 % 2,8 % -6,0 % 4,0 %
S
g BG-RU 2,0%
S
9 BG-UR 3,3% -5,9 % 5,8 %
£
Gé BG-SU 1,7% -1,4 %
0
BG-ALL -2,8 % 2,6% 1,0% -1,0%

All the semi-variograms of Germany between 1997 20@7 are shown in Figure 10. Along the x-axis
the Julian Day is shown, while in y direction tlag Idistances are plotted. The height of each cross
displays the semi-variance for background stationsural area. Additionally, a surface is plotted
inside the figure that fits all points in the sevaHograms. This surface gives a linear model with
respect to the time and the distance. For Germadyraral background stations, a clear decreasing

trend can be observed for the nugget effect asagdibr the semi-variogram range.
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Component: 00005 for Country: DE and Station Combination: Backgroundrural
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Figure 10: The raw semi-variogram plotted versubaluday. The x-axis shows the Julian day; the y-
axis shows the lag distance; the z-axis the catedlaemi-variance. The surface inside the 3D plot
represents a fitted model of the semi-varianceugejslian day and lag distance; while parameters of
these equation are shown at the bottom part ofithee. Black crosses indicates higher values than
black crosses.

Create a warning system for classification of mondring stations

For the identification of environments responsifile population exposure we applied the functions

developed in the outlier detection methodology.ekample from the results is shown in Table 6. We

classified every single measurement that exceededcanservative threshold of 2. The identified

outliers as well as the given percentages areairfat urban and rural areas in Austria. For Gerynan

quite some significant difference can be obsensedlmost 2 % of the urban stations measurements
27



are detected as outliers, similar to the AustriatadHowever, Germany's rural background station

data show a very low number of outliers.

Table 6 General Statistics of number of recordentdied outliers and percentages of outliers
identified for four different station type - statiarea type combinations

Station Type Number of Records Identified Outliers = Percentage Outliers
DE Background rural 38480 27 0.07
DE Background urban 63906 1259 1.97
AT Background rural 13339 331 2.48
AT Background urban 13990 352 2.52

Based on these data we divided the stations w#pet to their average zi values in 4 classes. For
example, for the background data shown in the tabtee, the four classes are delimited by: lowdleve
stations (bg, with z < -1), stations below averéog with -1<z<0), above average(aa, with 0<z<1),
and high level stations stations(nb with z>1). Exesgor the four cases are shown in Figure 11 to
Figure 14. For the rural background type, statiwhgh are classified as high level stations shddd
examined further and a reclassification of thei@tatype and of the station area type should be
considered if appropriate. It should be stressadl tfie proposed methodology is a first preliminary
assessment, which needs expert validation fromdta station managers to see if the assignment
needs to be changed. The same is valid for urbakgbaund stations which are classified as bg
stations — a reclassification as rural backgroutations might be appropriate. However, more
investigations have to be performed to include @gbopulation density data as well as more in depth
investigations to quantify the differences in p@pian exposure measurements and the ambient air

measurements to come to a sound scientific assassme
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Background rural Austria
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Figure 11: Classification of station for Austriarféhe rural station type for PM. Station Labels
without points are positions where no classificatias been performed
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Latitude

Background urban Austria
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Figure 12: Classification of station for Austriarfthe urban station type for Pjd Station Labels

Longitude

without points are positions where no classificatias been performed.
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Background rural Germany
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Figure 13: Classification of station for Germany tbe rural station type for PM. Station Labels
without points are positions where no classificatias been performed
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Background urban GERMANY
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Figure 14: Classification of station for Germany the urban station type for P Station Labels

without points are positions where no classificatias been performed
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Conclusions
We developed a methodology able to automaticallynese the measurement uncertainty in the air

pollution data sets of AirBase. The figures estimateith this method were consistent with
expectations from laboratory and field estimatidmuocertainty and with the Data Quality Objectives

of the European Directives.

The proposed method based on geostatistical an&ysw able to estimate directly the measurement
uncertainty. It estimates the nugget effect togetiwéh a micro-scale variability that must be
minimized by accurate selection of the type ofistatBased on the results obtained so far, itkislyi

that measurement uncertainty is best estimated adilackground stations of whatever area type.

So far the methodology has been used to estimatertamty in 4 different countries independently.
This work should be continued for the whole Europefasr background station without national
borders. The method has been shown to be also ueefampare the spatial continuity of air pollution

in different countries that seems to be influenioedhe topography of each country.

Moreover, it may be used to quantify the trend @&asurement uncertainty over long periods like
decades with the possibility to evidence improveimerthe data quality of AirBase datasets. Over the
last 10 years for Austria, Germany, France ang katlecrease in the nugget effect can be observed,
while the change in range (long range spatial dégecy) was not significant. Further investigations
are needed to determine if this decrease of nuggetnce is caused by a decrease of the measurement
uncertainty or by long term variations of air paitun or other meteorological factors. We showed tha
the nugget and range for RiMn 2007 differed significantly between traffic stens while being more

or less consistent for all background station typ#ed in whatever area type. Traffic situations
showed up to twice higher nugget effects compavdahtkground station scenarios. Data for different

seasons are computed. However more analysis iedeedlarify the results.

Thanks to the implemented outlier detection modiiat could also be of interest as a warning system

when countries report their measurements to EEA, ave Iproposed a simple solution to investigate
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station classifications in AirBase. We tested thethrnd on the German and Austrian background
stations. For several stations, differences insdiaation could be identified which appeared with
respect to the inherent data properties of thecsledataset. However, validation of the outcome of

this module has to be performed thoroughly.
The developed method presents a number of shortgsmin

1. The nugget variance overestimates the uncertaintgezfsurement because of the micro-scale

variations and in case of lack of spatial contyuwit the pollutant (river, island, mountains ...)

2. The micro-scale variance might be magnified/decikdsethe heterogeneity/homogeneity of

the sampling sites.

3. The nugget variance cannot detect systematic bgasbe&as of the measurement methods or
chemical interference. This type of systematic bmsunlikely if the selected sufficient

sampling sites have different sampling systems,|yacal and calibration methods and
QA/QC.

4. The nugget variance will depend on the semi-variasicthe smallest lag distance of each
variogram. When the nugget variance is estimatecc@entry using data sets whose smallest
lag are different, one cannot exclude a lack of marability with the extrapolation of the

spherical model on the Y-axis.

Seen the number of shortcomings of the methoddatdin of the method by comparison to direct

approach is needed. For now, this method can lkassa confirmation tool or a ranking tool.

Future study:
Some points of the method need subsequent validationodification:

» Optimization of the maximum lag distance of theiogwram in order to strengthen the
estimation of the nugget effect, range and sillkréntly, we preset the maximum extent of the
boundaries for the semi-variogram analysis to éffely ensured that the lag boundaries were
always within the autocorrelation range. Furtheesech has to investigate how the boundaries
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could be fitted automatically also for differenearsize dataset.

Optimization and validation of the parameters u$adthe outliers test (the limit of the
neighbourhood + 1 day and * 2° and the criteriatlier z test: z average over 5 days + 2). It

might be that the test threshold should be diffefendifferent components or location.

Should the semi-variogram be plotted in absolute oelative values on its y-axis? This is an
evaluation of the effect of local mean that mayéan effect on the nugget, range and sill.
Study whether the uncertainty has a constant vimuehe whole range of concentration of
pollutant (i.e. like in our estimation) or is depent of the level of concentration (i.e a
percentage of the concentration). The latter caseoi® likely, the variogram should thus be

built using the percentage of the concentratiopadiutant versus the limit value.

To diminish the contribution of the micro-scale iahility to the nugget effect, explicative
variables known on the whole dominium with a higknsity should be included in

multivariable geostatistics like co-Kriging or Kigy with external drift.

Setup a system to be able to spike air pollutial dats with signal noise (error), quantify the
effect on the nugget effect, range and sill in ortte validate the whole methodology of

uncertainty estimation.

Validation of the method by comparing its estimatad uncertainty with estimation carried out
with laboratory or field experiments. Another sauatcould be chosen by selecting variograms
with pure nugget error to estimate the measuremecertainty and compare this value with
the one only estimated from background statiorsgainst direct estimates of uncertainty with

the direct approach.

Determine which subset of station type and area tgpestimate these metrics. The actual
hypothesis is that the nugget variance should bma&®d using all background stations which

lead to a low sill, long range and nugget variamear pure measurement error.

Look for variables with high density values thae arorrelated with the concentrations of
pollutants (emissions, population density, numbérbaildings, models outputs ...). By
developing variogram of the detrended variables,itifiluence of the micro-scale variation on

the nugget variance might be deleted.

Optimization of the outlier procedure in terms ohputing speed to reach a near-to-real time

detection method that might be useful when cousiteport their data.

35



The computation of statistics and their evaluatieeds be continued:
» Carry out the assessment of nugget variance, randesill for other pollutants with sufficient
monitoring stations (eg. NQO....) and for the averaging time of the monitoring fegulatory

purposes defined in the European Directives.

» The values of nugget variance should be investigatedrding to the type calibration chain of
standards and other QA/QC and sampling procedhagsstimplemented by each country or in
relation to the implemented inter-comparison exagito check if these factors may influence

the nugget variance.

» The spatial continuity estimated using the rangeasiograms (the longer the range the more
stable the spatial distribution) should be investd to evidence which compounds are more
affected by local emissions, reaction or log-ratigasport of pollutants.

» Evaluate the trend of nugget variance, sill and eamigspatial continuity e.g. over the last 10

years.

» Investigate effect of season. While we have peréatra time series analysis to establish how
the nugget and range effect changes over a terntigeaframe, we already could see from our
analysis the influence of seasons. Still the qaastiemains about how the seasonality
influences these results in a quantitative way.siauld split up the 10 year dataset in steps of
3-4 month each (maybe using a cluster analysispaatyze them separately. This is important
to evidence effects of the station density acra$srdnt years and for a better understanding of
the uncertainty of the different contributing me@saent networks of the AirBase Database.

» Estimate the sill, range and nugget variance bycgsetemonitoring stations belonging to more

than one country to detect the presence of possilréters with borders.

» Map of number of outliers: by performing this ircansistent way across several components,
countries might be able to further streamline amgrove their station monitoring network.
Based on the analysis performed in the classiboatif sampling sites for the year 2007, we
observed that different stations with respect trthtation area type or their station type would
have to be reclassified. However, what is curremtigsing is the temporal domain. We
urgently need to re evaluate this kind of clasatfan over a range of years to see if a
consistent pattern can be detected, otherwise modsascientific advice can be given to
reclassify these stations.
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Appendix I: Developed R- Routines

Appendix II: Developed Shell Script for Data import into the
PostgresSQL Database

Please contact the Authors
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borders. The method has been shown to be also useful to compare the spatial continuity of air pollution in
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Moreover, the method may be used to quantify the trend of measurement uncertainty over long periods
(decades) with the possibility to evidence improvement in the data quality of AirBase datasets.

The implemented outlier detection module would be of interest as the warning system when countries report
their measurements to the European Environment Agency. The method could also provides a simple solution to
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