
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EUR 24475 EN - 2010

Estimation of the measurement uncertainty 
of ambient air pollution datasets using 
geostatistical analysis  

Michel Gerboles* and Hannes I. Reuter +  
*Joint Research Centre, Institute for Environment an d Sustainability, Ispra, Italy
+Gisxperts gbr, Dessau, Germany  

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by JRC Publications Repository

https://core.ac.uk/display/38620707?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The mission of the JRC-IES is to provide scientific-technical support to the European Union’s 
policies for the protection and sustainable development of the European and global 
environment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
European Commission 
Joint Research Centre 
Institute for Environment and Sustainability 
 
Contact information 
Address: Michel Gerboles, Via E. Fermi 2749, I - 21027 Ispra (VA) 
E-mail: michel.gerboles@jrc.ec.europa.eu 
Tel.: +39 0332 785652 
Fax: +39 0332 789931 
 
http://ies.jrc.ec.europa.eu/ 
http://www.jrc.ec.europa.eu/ 
 
Legal Notice 
Neither the European Commission nor any person acting on behalf of the Commission is 
responsible for the use which might be made of this publication. 
 

Europe Direct is a service to help you find answers 
to your questions about the European Union 

 
Freephone number (*):  

00 800 6 7 8 9 10 11 
 

(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. 

 
A great deal of additional information on the European Union is available on the Internet. 
It can be accessed through the Europa server http://europa.eu/ 
 
JRC 59441 
 
EUR 24475 EN 
ISBN 978-92-79-16358-6  
ISSN 1018-5593
doi:10.2788/44902  
 
Luxembourg: Publications Office of the European Union 
 
© European Union, 2010 
 
Reproduction is authorised provided the source is acknowledged 
 
Printed in Italy 
 



Abstract 
 

We developed a methodology able to automatically estimate of measurement uncertainty in the air 
pollution data sets of AirBase. The figures produced with this method were consistent with 
expectations from laboratory and field estimation of uncertainty and with the Data Quality Objectives 
of European Air Quality Directives. The proposed method based on geostatistical analysis is not able 
to estimate directly the measurement uncertainty. It estimates the nugget effect from variogram 
modelling together with a micro-scale variability which must be minimized by accurate selection of 
the type of station. Based on the results obtained so far, it is likely that measurement uncertainty is best 
estimated using all background stations of whatever area type. So far the methodology has been used 
to estimate measurement uncertainty in datasets from 4 different countries independently. This work 
should be continued for the whole Europe or for background station without national borders. The 
method has been shown to be also useful to compare the spatial continuity of air pollution in different 
countries that seems to be influenced by the spatial distribution of the stations (e.g influenced by 
topography) of each country. 

Moreover, the method may be used to quantify the trend of measurement uncertainty over long periods 
(decades) with the possibility to evidence improvement in the data quality of AirBase datasets. 

The implemented outlier detection module would be of interest as the warning system when countries 
report their measurements to the European Environment Agency. The method could also provides a 
simple solution to investigate the assignment and accuracy of  station classification in AirBase. 
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Introduction 

The European Commission has worked intensively on the implementation of a harmonized programme 

for the monitoring of air pollutants including arsenic (As), cadmium (Cd), nickel (Ni), benzo(a)pyrene, 

mercury (Hg), sulphur dioxide (SO2), nitrogen oxides (NO/NO2), ozone (O3), benzene, carbon 

monoxide (CO), benzene and particulate matter (PM10/PM2.5) and lead (Pb) in ambient air. The 

harmonization program relies on the adopted European Directives 2008/50/EC and 2004/107/EC [1,2]. 

These directives defines limit and target values for air pollution that should not be exceeded if harmful 

effects on the population and the environment are to be avoided. Exceedances of these limits may have 

legal consequences that trigger measures aiming at reducing the exceeded limit values. To avoid those 

measurement artefacts triggering such measures, the Directives endeavour to improve the quality of 

the measurements by defining stringent protocols for the sampling/analysis/calibration methods and 

for the implementation of Quality Assurance/Quality Control programs (QA/QC). They also define 

data quality objectives (DQOs) that represent the highest allowed relative expanded uncertainty of 

measurements applied in the region of the Limit Values. The reference methods exhibiting the highest 

metrological quality of the Directives have been standardized by the European Committee for 

Standardization (CEN). These standards describe the methodology to be applied for the estimation of 

the measurement uncertainty. This estimation of the uncertainty of measurements is a long and tedious 

procedure that may require considerable experimental work. The European Directives allows that two 

methods of uncertainty estimation are applied following the guidance provided in a CEN report [3]:  

� one is based on the Guide to the Expression of Uncertainty in Measurement [4], generally called 

the direct-approach or GUM method, in which the uncertainty of a measurement is described with 

                                                 
1 Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, 
mercury , nickel and polycyclic aromatic hydrocarbons in ambient air. Official Journal L 23, 26/01/2005. 
2 Directive 2008/50/EC of the European Parliament and the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for 
Europe, Official Journal of the European Union L 152/1 of 11.6.2008 
3 Air Quality—Approach to Uncertainty Estimation for Ambient Air Reference Measurement Methods (CR14377:2002E) 
4 International Organisation for Standardisation, Guide to the expression of uncertainty in measurement, ISBN 92-67-10188-9, 
ISO, Geneva, 1995 
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a measurement model that includes several input quantities representing physical variables 

influencing the measurement. The standard uncertainty of all input quantities must be separately 

determined and are subsequently combined according to the law of propagation of errors to 

estimate the uncertainty of the measurement; 

� the second method is based on the determination of “Accuracy (trueness and precision) of 

measurement methods and results” [5], the so called indirect approach, which is concerned 

exclusively with the uncertainty of measurement methods. The model explaining the measurement 

Y is based upon the sum of the overall mean, the laboratory bias and the random error. The 

laboratory bias and random error components are, in quantitative terms, obtained by a 

collaborative study consisting in an interlaboratory experiment run under reproducibility 

conditions whose results are treated using the analysis of variance (ANOVA) method. 

Nowadays, the methods of estimation of the uncertainty of measurements of ambient air pollution 

made in Europe are well known. This estimation in carried out on a routine basis by the laboratories 

reporting their measurements in AirBase, the database maintained by the European Environment 

Agency (EEA).  

From another perspective, it is possible to derive the uncertainty of spatially referenced measurements 

from the nugget effect of variogram analysis. The nugget effect represents fluctuations of the 

measurements on a very small scale (tending towards 0). It is often decomposed into the sum of micro-

scale variations of the measurand under study and of the measurement errors [6].  

In this report, we discuss about the possibility to automatically derive the uncertainty of measurements 

of ambient air pollutant using a new method based on geostatistical analysis of the spatially referenced 

datasets present in AirBase, using semi-variogram analysis. This report presents the results of a 

feasibility study in order to: 

                                                 
5 International Standards, 1994, Accuracy (trueness and precision) of measurement methods and results - Part 2: Basic method 
for the determination of repeatability and reproducibility of a standard measurement method, ISO 5725-2:1994, Geneva, Switzerland. 
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1. Develop a methodology for downloading geo-referenced air pollution data series of AirBase 

and for the automatic estimation of the parameters of their spherical variogram; 

2. Discuss the uncertainty of measurement evaluated using the estimated nugget variance 

compared to the DQO for a chosen pollutant, PM10; 

3. Identify trends over time in the nugget variance to show the variation of the uncertainty of 

measurement over the last ten years; 

4. Create a warning system for assessing the quality of the classification of monitoring stations. 

Methodology 

 AirBase 
The European Environmental Agency (EEA) maintains a database on behalf of the participating 

countries throughout Europe, the EIONET network. Member states (MS) are due to report on the basis 

of the Council Decision 97/101/EC [7], with amendments 2001/752/EC [8]. Over 6738 stations are in 

this database, each providing different components of multi-annual time series of air quality 

measurements starting in 1981. Geographically, the stations are spread all over Europe as seen in 

Figure 1 with data collected in 36 different countries, including 27 European Union Member States. 

The location of measuring stations of the EIONET network is clustered in general due to nature of the 

measuring network. About 155 parameters are reported in AirBase, ranging from the concentrations of 

inorganic/organic gases, particulate matter concentrations and wet and dry deposition with their 

speciation. IN 2008, about 66% of all values in AirBase comes from four different parameters: O3 

(21.2%), NO2 (17.2%)/NO (8.2 %), SO2 (18.8%), carbon monoxide (9.4%) and Particulate Matter 

(PM10 9.0 %, PM2,5 0.5 %, black smoke 1.1 % Total Suspended Particulate – 2.9 % and Pb/Cd/As/Ni 

1.5 %).  

                                                                                                                                                                       
6 Statistics for Spatial Data, Noel A. C. Cressie,, John Wiley & Sons,  P. 59. 
7  Council Decision 97/101/EC of 27 January 1997 establishing a reciprocal exchange of information and data from networks and 
individual stations measuring ambient air pollution within the Member States, Official Journal L 035 , 05/02/1997 P. 0014 - 0022 
8  Commission Decision 2001/752/EC of 17 October 2001 amending the Annexes to Council Decision 97/101/EC establishing a 
reciprocal exchange of information and data from networks and individual stations measuring ambient air pollution within the Member 
States. 
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The quality of the data depends on the chosen measurement method and QA/QC procedures applied by 

each country. The data in AirBase has undergone additional quality control performed during the 

upload of the data from the MS to EEAs database using a specifically designed software called DEM 

(Data Exchange Module). The European Topic Centre on Air and Climate Change (ETC/ACC) is also 

involved in data quality checking. 

 

 Geostatistical method 
Geo-statistics is a branch of applied statistics that quantify the spatial dependence and the spatial 

structure of a measured property. It is based on the regionalised variable theory by which spatial 

correlation of some properties can be treated [9]. Commonly, the geo-statistical analysis includes two 

phases: the spatial modelling called variography followed by spatial interpolation, the most common 

one being the Kriging interpolation. In this study, we looked at the first step, focussing on the 

                                                 
9 Matheron, G., 1963. Principles of geostatistics. Econ. Geol. 58, 1246–1266. 

 

Figure 1: Location of sampling sites reporting data to EEAs Air Quality Database – AirBase - in 
Europe 
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modelling of the semi-variogram (also simply called variogram) that describes the spatial correlation 

between observations described by the semi variance. The semi variance γ(l) is expressed by equation 
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where n(l) is the number of sample pairs at each distance l (called lags) and z(xi) and z(xi+l) are the 

values of x, the pollutant of interest, at the locations i and i+l.  

The graphical representation of the semi-variance γ(l) as a function of the distance is the semi-

variogram or variogram (see an example of variogram in Figure 2). Its main parameters are: nugget, 

sill and range. 

The semi-variograms obtained from experimental data often have a positive value of intersection with 

the semi-variance axis called the nugget variance or nugget. From this point, the semi variance 

increases until the variances of the data, called sill, is reached. Up to this point, the regionalized 

variables in the sampling locations are correlated. They must be considered to be spatially independent 

at higher distances than this point, called range. The sill is the variogram value at distances beyond the 

range and, generally, it equals or approaches the population variance. The range provides the distance 

beyond which variogram values remain constant.  

An experimental semi variogram is modelled by fitting a simple function to the data pairs li, γ(l i). 

Linear, spherical or exponential models are often used [10]: The spherical model is the most 

commonly used one (see Equation 2). For example, a spherical model is fitted to the experimental data 

of the variogram shown in Figure 2. 
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Equation 2 

Where C0 is the nugget variance, C1 is the difference between the Sill C and the nugget variance C0 (C 

= C0 + C1), l is the lag distance and a is the range.  

The nugget effect is the value of the theoretical variogram C0 at the origin of the variogram (h → 0) 

and is thus unknown. The empirical nugget is estimated by extrapolating the empirical variogram 

towards h=0. It consists of the short-scale gradient of concentrations in the pollutant at distances much 

shorter than the sampling distance or called micro-scale variation and of a stochastic measurement 
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uncertainty mainly the sampling and analytical variability, which should be true uncorrelated random 

noise [10]. The nugget variance s2
nugget can be expressed using Equation 3: 

222
scmeasnugget sss +=  

Equation 3 

where s2meas is the variance associated with the sampling and analytical variability and s2sc is the 

variance due to micro-scale variability. Equation 3 is based on the assumption that s2
meas and s2sc are 

not correlated. In fact, for some atmospheric parameters, small changes in location can cause 

significant changes in the concentration level of the pollutant. For example, if one moves from a ridge 

to a valley, pollution may change quickly and at a scale at which we cannot predict because of sparse 

observations.  

 

                                                 
10  Isaak, E. H., Srivastava, R. M., 1989, An Introduction to Applied Geostatistics. Oxford University Press, New York. 

 

Figure 2: Example of a semi-variogram for PM10 stations in Europe, showing the nugget (local 
spatial variability and measurement uncertainty), the range (the extent of spatial variability) and the 
sill (the total variability in the dataset or the given extent). The gray line represents a example of a 
fitted semi-variogram function.  
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The estimated value of s2
nugget cannot be decomposed in measurement error variance s2

meas and micro-

scale variance s2
sc without further information or prior belief. However, the square root of s2

nugget 

overestimates the uncertainty of measurement according to the extent of s2
sc, the micro-scale variance. 

It is then necessary to control the micro-scale variance so that the nugget variance, used as a surrogate 

of the uncertainty of measurement, will only slightly overestimate the nugget variance. In this study, 

the micro-scale variance is minimized by determining the nugget variance of subsets of all available 

sampling sites selected according of their classification: background, traffic and industrial stations in 

order to minimize the micro-scale variance.  

The nugget variance is estimated by the intersection of the fitted model with the Y-axis of the 

variogram. However, fitting different model (linear, spherical, exponential, power or a combination of 

these) to the same experimental data set would have resulted in estimating different values for the 

same nugget variance. Even more, fitting different type of models to different data sets would have 

ended up in nugget variances that would have not been comparable anymore. In order to be consistent 

in the method used to estimated the nugget variance of several data sets and hence be able to compare 

them, it was decided to always fit a spherical model to all the prepared variograms. 

When the uncertainty of measurement is determined using the direct approach, one starts by listing all 

the possible contribution arising from different parameters (sampling, calibration ...) to be able to 

combine them afterwards. One nice feature of estimating uncertainty using the nugget variance is that 

all these contributions can be included by selecting appropriate sets of sampling sites that would 

include different type of sampling lines, method of measurements/maintenance/calibration, equipment 

brand, etc. The simple fact to select different sets of the sampling sites results in a wider estimation of 

all parameters contributing to the uncertainty of measurements.  

However, one should always keep in mind that there is a risk to attribute some contribution of the 

micro-scale variation to the uncertainty of measurements and that this micro-scale variance might be 

magnified by the heterogeneity of the sampling sites.  

Notably one type of parameter contributing to the uncertainty of measurement that cannot be detected 

by the nugget Variance consists in systematic bias that would be present at all sampling sites e.g. a bias 

of the measurement methods or chemical interference. The presence of this type of systematic bias in 

all the selected stations is nevertheless highly unlikely because of the very diverse implementation of 

sampling, analytical and calibration methods managed by different laboratories implementing different 

QA/QC procedures for a whole set of monitoring stations. 

Finally, the method of estimation of the uncertainty of measurement proposed in this study relies on 

the modelling of the variogram based on the data pairs consisting of lags and semi variances. The 
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nugget variance will depend on the semi-variance at the smallest lag distance of each variogram. When 

the nugget variance is estimated per country using data sets whose smallest lag are different per 

country, one cannot exclude a lack of homogeneity of the extrapolation of the spherical model on the 

Y-axis. 

 Development of a methodology for downloading geo-referenced air pollution data series of 
AirBase and automatic estimation of the nugget variance of their variogram; 

A PostgresSQL DB V8.3 was installed on a 64bit Ubuntu 9.4 distribution (http://www.ubuntu.com/) 

with 8 GB RAM and 4 processors. Data were loaded using a self developed shell script (see Appendix 

II: Developed Shell Script for Data import into the PostgresSQL Database), which automatically 

loaded data if their measurement quality flag available in AirBase was set to 1. Each data record was 

characterized using sample date, measurement value, station code and component code. For 

performance issues each component was indexed on time and station code. Station data locations were 

converted into a shapefile and loaded directly into Postgress. Indexing was performed on station code 

and the geometry column. Several iterations where performed to determine which combination of 

index / requests delivered the fastest return of data. 

For further data analysis, the open source software R V 2.8.1 (www.r-project.org) with several 

extensions (Rdbi + RdbiPgSQL for Database access, gstat, sp, automap for semi-variogram 

calculations) has been used. Out of this analysis, a whole toolbox of algorithms (see Appendix I: 

Developed R- Routines) has been developed which allow to process and calculate different kinds of 

analysis (e.g. raw and fitted semi-variograms, outlier calculation, general statistics and fitted functions 

to the time series), all with respect to the analysis of the air quality datasets. In general, the data 

analysis consisted of three different steps: loading the data from the DB into memory, performing the 

necessary calculations, writing semi-variogram results into ASCII files for further analysis.  

Data connections between R and the Postgress DB have been established using the RDBI driver. The 

time of this driver delivering data is approx 2% compared to the time the ODBC Database drivers 

would deliver data. Stations were selected, joined with the corresponding location data table and 

imported into R. All datum data were converted into Julian day to be able to perform temporal and 

spatial selections. If data needed to be normally distributed for applying the outlier test (see below), a 

natural logarithmic transformation was performed. Additionally, to improve mathematical stability, an 

offset has been added before the log transformation derived by the absolute minimum value of the 

dataset + 0.5 to avoid undefined values (a log of zero or of negative values is not defined).  
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Semi-variogram analysis was performed using an automatic semi-variogram fitting provided by the 

automap toolbox (Hiemstra et al, 2008) [11]. This toolbox was adapted by limiting the maximum lag 

distance to a total search radius of 2° of latitude and longitude corresponding to ~ 220 km long. This 

method automatically could test/fit different  semi-variogram models and fits  semi-variogram 

parameters based on a given dataset. Usually, the algorithm determines the boundaries for the lags by 

determining the spatial boundary and dividing it by the size of the area. However, as the distribution of 

stations is clustered, this algorithm delivered at times lag boundaries, which were not corresponding to 

the spatial autocorrelation of the underlying data. For example, fitting lag distances to Spanish data 

without limits resulted in a maximum lag distance of ~10° due to some stations on the Canary Islands 

as well as on the mainland. By introducing a limiting factor, the spatial variability of the mainland 

which should have been up to a maximum of ~2° for Spain could be maintained. Another typical 

example is given by stations placed behind a mountain range, while all other stations form a cluster. 

Therefore, we let the algorithm estimated the boundaries, while limiting the maximum distance to 

preset value of 2°. Thereby we effectively ensured that the lag boundaries where always within the 

autocorrelation range. 

In the beginning of the analysis, a couple of hundred  semi-variograms were computed: It became clear 

that outliers influenced the semi-variogram calculation, which rendered analysis of spatial dependency 

                                                 
11  Hiemstra, P.H., Pebesma, E.J., Twenhöfel, C.J.W and G.B.M. Heuvelink (2008). Automatic real-time interpolation of radiation 
hazards: a prototype and system architecture considerations. International Journal of Spatial Data Infrastructures Research, vol 3,  p 58-
72 

 

Figure 3: Several methods to detect outliers in 3D datasets (Figure taken from Chang-Tien Lu[12] )  
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using semi-variance analysis questionable. The outliers influenced the fitting of the semi-variogram 

function and led to an artificial increase of the nugget effect.  

Therefore an outlier procedure was implemented based on already existing literature. Chang-Tien Lu 

[12] have outlined and classified several algorithms [13,14,15,1617,18,19,20,21] as seen in Figure 3. 

Two families of outlier detection methods can be distinguished. First the ones which calculates statistic 

of the distribution of pollutant in one dimension and ignore geographical location [14, 16]. The second 

family, the spatial-set outlier detection methods, consider both attribute values and spatial 

relationships. Within this family we used the “Smooth Spatial Attribute method” [12] that was 

developed for the identification of outliers in traffic sensors. This method is thought to be fit for the 

identification of outliers in a given homogeneous dataset of air quality data that represents in a similar 

way a quantity measured in time and space.  

The Smooth Spatial Attribute method relies on the definition of a neighbourhood for each air pollutant 

measurement. It corresponds to a spatio-temporal domain limited in time (+/- 1 day) and distance (+/- 

1 degree) around location x. The neighbourhood is better understood by observing the diagram in 

Figure 4. The objective of the method is that within a given spatio-temporal domain in which the value 

of the attribute values of neighbours have a relationship due to the distribution/transport/emission and 

reaction of air pollution, outliers will be detected by extreme value of their attribute value compared to 

the attribute value of their neighbours. The main computation cost of the method is dominated by disk 

Input/Output cost and the main constrain of the method is the normality of the distribution of the 

attribute values of neighbours. 

In the following text, we called x the concentration of a pollutant or its location. Within each 

neighbourhood, several measurements of the same compounds at different locations and time xxi,yi are 

                                                 
12 Chang-Tien Lu, Dechang Chen, Yufeng Kou, "Detecting Spatial Outliers with Multiple Attributes," ictai, pp.122, 15th IEEE 
International Conference on Tools with Artificial Intelligence (ICTAI'03), 2003.  
13  M. Ankerst, M. Breuning, H. Kriegel and J. Sander. Optics: Ordering points to identify the clustering structure in Proceedings 
of the 1999 ACM SIGMOD International Conference on Management of Data, Philadelphia, Pennsylvania, USA, pages 49-60, 1999. 
14  V. Barnett and T. Lewis. Outliers in Statistical Data. John Wiley, New York, 3rd Ed. 1994. 
15  M. Breuning, H. Kriegel, R. T. Ng and J. Sander. OPTICS-OF: Identifying Local Outliers in Proc. Of PKDD ’99, Prague, 
Czech Republic, Lectures Notes in Computer Science (LNAI 1704), pp 262-270, Springer Verlag, 1999. 
16  R. Johnson. Applied Multivariate Statistical Analysis, Prentice Hall, 1992. 
17  E. Knorr and R. Ng. Algorithms for Mining Distance-Based Outliers in Large Datasets in Pric. 24th VLDB Conference, 1998. 
18  M. Kraak and F. Ormeling. Cartographer: Visualization of Spatial Data. Longman, 1996 
19  F. Preparata and M. Shamos. Computational Geometry: An Introduction. Springer Verlag, 1998. 
20  I. Ruts ans P. Rousseeuw. Computing Depth Contours Of Bivariate Point Clouds. In Computational Statistics and Data 
Analysis, 23:153-168, 1996. 
21  D. Yu, G. Shekholeslami and A. Zhang. Findout: Finding Outliers in Very Large Datasets. In Department of Computer Science 
and Engineering State University of New York at Buffalo Buffalo, Technical report 99-03, http://www.cse.buffalo.edu/tech-reports/, 
1999. 
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available. Equation 4 allows computing a weighted average of all available measurements xxi,yi within 

each neighbourhood where the weights correspond to the inverse spatial and time distance between 

xxi,yi and x. 

After a log-transformation of non - Gaussian data within any neighbourhood, we computed the 

differences Sx between value at x and the average of its neighbourhood for each measurement 

according to Equation 5. 

ii yx

n

iyx xwx ∑=
1

,  
Equation 4 

yixi
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−=  
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xx
z i

i

−
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Then within each neighbourhood, the Sx values were normalised to center data at 0 with a standard 

deviation of 1 using Equation 6 in which x  and s are the weighted average and weighted standard 

deviation of all possible Sx values within any neighbourhood. Finally, the test for detecting an outlier, 

given in Equation 7, searches for zi values exceeding a threshold value consisting in the moving 

average of five consecutive zi values plus a threshold value of 2 corresponding to a confidence interval 

 

Figure 4: Spatial and temporal outliers – definition of neighborhood [12] 
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in which 95 % of zi values would lay. In contrast to the paper by Lu [12], we did not use an absolute 

value of the z-transformation due to the fact that the sign of the outlier is of interest to us as we want to 

understand if a station is measuring to low quantities or to high quantities compared to the its 

neighbourhood stations with the same classification (urban, background, traffic ..).  By plotting the 

result of the zi against the moving average of the z- plus the threshold value, outliers were identified. 

An example is given in Figure 5 for an Austrian station monitoring PM10 with the identification of 19 

outliers of daily values in 2007.  
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Finally, the methodology developed for the estimation of the uncertainty of measurement based on the 

nugget variance can be described by the flow chart given in Figure 6. 

 

Figure 5: Outlier analysis for Austrian Station AT0227A (Großenzersdorf/Glinzendorf) using the 
developed method. The Station Values (black circles) are shown with the average of the 
surrounding stations circle(red line) +/- 2 standard deviation (SD) (Top Left), the histogram of the 
(log transformed) measurement value for normality (Top Right); the Sx values for the station 
(black) with respect to the surrounding Mean (Red) and SD(blue)(Middle Left); the Quantile 
distribution of the Sx values (Middle Right) to see if the distribution contains any large deviations; 
the zi values of the station (black) plotted against the specified threshold (Lower Left); and in the 
lower right corner the average number of stations in the surrounding used for the calculations and 
the number of identified outliers out of one year . 
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If more than 20 stations were available at any given time step (e.g. day), a semi-variogram analysis 

was performed consisting of a nugget effect and a spherical model. An example of the effect of 

discarding outliers producing a decrease of the nugget effect and sill is presented in Figure 7 for the 

rural background station in Germany for PM10 in 2007.  

 

Download data from Airbase

Import data into database

Select monotoring station per country,
component, year, station type and area

type

Outlier test based on average space
(2º = 220 km) and time ±/- 1 day

Compute variogram including nugget
error and spherical model

Extract nugget variance,
range and sill

Add nugget, range and sill to table of
results

 

Figure 6: Flow chart representing the different steps of the developed methodology for the 
estimation of uncertainty of measurements 
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Estimation of the measurement uncertainty using the nugget variance 
For PM10, our pollutant of interest, the number of monitoring stations increased in all countries 

whatever station or area type as shown in Table 1. In 2007, Germany had a total of 358 stations 

(among which 155 traffic stations in urban areas), France had 238 stations (among which 126 

background stations in urban areas), Italy had 141 stations (among which 86 traffic stations in urban 

areas) and Austria had 87 stations with 59 background stations in urban areas. The number of stations 

included for which data are present in AirBase for all possible combination of station and area type is 

given in Table 2. As the micro micro-scale variability estimated form the geostatistical analysis of 

Industrial stations was expected to be higher than with urban and industrial stations, it was decided not 

to select this type of station in the analysis.  

As mentioned in Introduction, the European Directives defines data quality objectives (DQOs) that 

represent the highest allowed expanded uncertainty of measurements in percentage of the Limit Value. 

Table 4 gives for each pollutant the combined uncertainty in µg/m³ corresponding to this percentage. 

For PM10, we will remember that the combined uncertainty corresponding to the European Data 

Quality Objective is 5 µg/m³. 

For Year 2007, we calculated the averages of all daily measurement uncertainties estimated by the 

square root of the nugget variance and ranges of the semi-variograms for different station and area 

types for Austria, (AT), Germany (DE), France (FR) and Italy (IT). The values are given in Table 4. 

 

Figure 7: Decrease of the nugget effect and sill of the semi variogram for Julian Day 17176 in Germany on 
rural background stations by discarding outliers (left all monitoring stations are used, right outliers are 
discarded) 
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Table 1: Number of Stations for the most abundant parameters of AIRBASE in 2002 and 2007 for 
traffic (TR) and background (BG) type stations for urban (UR), rural (RU) and suburban (SU) areas.  

  SO2 O3 NO2 PM10 

AT DE FR IT AT DE FR IT AT DE FR IT AT DE FR IT 

2
0

0
7

 

TR-UR 31   94 7 27 2 47 29 26 44 196 28 155 27 86 

BG-RU 87  1 21 50 69 62 41 34 11 30 37 19 52 11 8 

BG-UR 49 1  42 17 82 164 69 22 14 183 90 20 86 126 31 

BG-SU 52  5 25 23 72 147 41 24 27 115 48 20 65 74 16 

2
0

0
2

 

TR-UR 58   29 6 41 6 18 27 19 39 41 15 84 26 17 

BG-RU 103  2 6 53 72 53 15 37 9 36 13 12 35 11 - 

BG-UR 55 2  15 18 92 130 21 23 19 147 21 9 79 101 10 

BG-SU 54 1  10 21 84 136 19 22 36 119 12 11 52 70 - 

Table 2: Classification of station and area in Austria, Germany, France and Italy. 

Station type Area type Number of station Station type Area type Number of station 

Industrial suburban 524 Background urban 1658 

Industrial urban 263 Background suburban 1213 

Industrial * 1 Background unknown 35 

Industrial unknown 17 Background rural 814 

Industrial rural 298 Unknown rural 2 

Traffic unknown 5 * * 4 

Traffic suburban 248 Unknown unknown 32 

Traffic urban 1493 * suburban 1 

Traffic rural 44 Unknown urban 67 

Stars denote missing station types. 

First of all, they are consistent with the expected uncertainty in field. They are generally lower than the 

data quality objective expressed as combined uncertainty of the Limit Value (5 µg/m³). It is likely that 

the estimation of the measurement uncertainty using traffic type station is overestimated by a micro-

scale variation included in this type of station. For urban traffic, Austria shows the lowest values for 

nugget, followed by Germany and France with double the amount effect. Italy shows the highest 

amount for the nugget.  

Background stations do not show such clear patterns. The nugget values of Austria are double 

compared to the observed values for Germany and France; while Italy shows nearly three fold values 

of these nuggets. The reason for the nugget differences is unclear. A clear attribution to different 

station networks or different traceability of standard strategies seems not be possible but should be 

investigated. A second factor could be the different spatial distributions of the station networks for 

background stations influencing the computed results. We believe that the best estimated of the 
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measurement uncertainty is the one found for “all background stations” with enough stations including 

different factors in the estimation of nugget effect. For Austria, France and Germany the nugget effect 

is lower than the Limit Value while the Limit Value is slightly exceeded in Italy. 

 

Unfortunately, not all combinations delivered enough data points (e.g. less than 300 days or less than 

20 stations), therefore no average values could be reported e.g. background-urban (BG-UR). For 

comparison we also report the values for all stations type – station area type in Table 2.  

The range values increase in a different manner than the nugget effect. Observing the ranges for the 

“All background” stations, we can see that Austria and Italy have a range about 0.9º while the one of 

Germany and France is about 1.2º which would imply that the long range spatial dependency also 

increase. In fact, it was expected that the spatial continuity of the PM10 concentrations would be higher 

for Germany/France as a result of the higher number of stations in low land areas compared to Austria 

and Italy. 

A conclusion drawn from the different results are: 

 Austria as a country with medium background and low urban traffic nugget also shows the 

lowest overall nugget as well as range effect. 

Table 3 Data quality objectives for ambient air quality assessment and its corresponding 
combined uncertainty at the limit/target values (Directive2004/107/EC and 2008/50/EC) 

 Data Quality 
Objectives (relative 

expanded uncertainty) 
Limit/Target value  

Corresponding 
combined 

uncertainty 

Sulphur dioxide, SO2 15 % 
Yearly :350 µg/m³ 

Daily : 125 µg/m³ 

26,2 µg/m³ 

7,8 µg/m³ 

Nitrogen dioxide NO2 15 % 
Yearly: 40 µg/m³ 

Daily: 200 µg/m³ 

3 µg/m³ 

15 µg/m³ 

Ozone, O3 15 % 8 hr mean: 120 µg/m³ 9 µg/m³ 

Carbon monoxide, CO 15 % 8 hr mean: 10 mg/m³ 0,75 mg/m³ 

Benzene 25 % Yearly: 5 µg/m³ 0,63 µg/m³ 

PM10 25 % Yearly: 40 µg/m³    
Daily: 50 µg/m³ 

* 5 µg/m³                
6,3 µg/m³ 

PM2,5 25 % Yearly: 25 µg/m³ 3,1 µg/m³ 

Lead, P 25 % Yearly: 0,5 µg/m³ 0,063 µg/m³ 

Benzo(a)pyrene 50 % 1 ng/m³ 0,25 ng/m³ 

Arsenic, As 40 % 6 ng/m³ 1,2 ng/m³ 

Cadmium, Cd 40 % 5 ng/m³ 1 ng/m³ 

Nickel, Ni 40 % 20 ng/m³ 4 ng/m³ 

* expanded uncertainty for PM10 that will be used in this study 
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 Italy, shows the largest nugget parameters across all combinations. The reason for this is still 

unclear.  

 Station classification appears to influence the nugget and range results in different MS in 

various degrees - a more precise classification delivers an increased spatial dependency 

 The spatial distribution of the station network (e.g. the Austrian/Italian Mountain Valley 

situation versus a German/France lowland situation) might have influenced the quantified 

nugget and range values as well. However the size of this effect is uncertain.  
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Table 4 Averaged Daily Nugget and Range Values for the  year 2007 for the EU Member states Austria 
(AT), Germany (DE),France (FR) and Italy (IT) for the Station Type - Station Area Type Combinations 
Traffic-Urban (TR-UR), Background-rural (BG-RU), Background-Urban (BG-UR), Background-
Suburban (BG-SU), all Background stations (BG-ALL), and all stations (ALL-ALL). 

Station Combination Nugget and Range Values for the Year 2007 for PM10 

 St - Iso AT DE FR IT 

N
ug

ge
t i

n 
µ

g/
m

³ 

TR-UR 3.8 5.5 5.3 9.3 

BG-RU  1.9   

BG-UR  2.8 1.6 7.5 

BG-SU  1.9 1.9  

BG-ALL 4.0 2.7 3.1 7.0 

ALL-ALL  4.2 6.1 6.2 8.9 

R
an

ge
 in

 s
ph

er
ic

al
 d

eg
re

es
 TR-UR 0.93 1.22 1.06 1.20 

BG-RU  1.19   

BG-UR  1.06 0.91 1.10 

BG-SU  0.94 1.16  

BG-ALL 0.9 1.17 1.2 0.89 

ALL-ALL  0.91 1.01 1.16 1.11 
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Trend over time of the measurement uncertainty indicated by the nugget 
effect  
While the results for year 2007 give only a short snapshot in time, we investigated how the nugget and 

range change over time. The same geostatistical analysis as for year 2007 was performed over the 

timeframe 1997-2007.  

By plotting the nugget effect of PM10versus time, it is possible to observe that the slope of regression 

line (-0,002) for Germany (see Figure 8) shows a decrease that indicates a slight improvement of the 

measurement uncertainty between 1997-2007. The same decrease of measurement uncertainty is 

stronger for Austria as shows the slope of the nugget variance versus time (-0,010, see Figure 9). 

However one should note that the initial nugget variance of Austria in 1997 was higher than the one of 

Germany. This is evidenced by the intercept of Austria of 213, compared to 45 for Germany (see 

Figure 8 and Figure 9). Figure 8 also shows an annual effect of changes in spatial distribution in 

Austria that is clearly visible in the yearly increase in small scale variability (i. e. nugget effect) during 

the winter months. 

 

Figure 8: Nugget Semi-variance (gray circles) plotted versus Time (Julian Day) for all German 
Background Stations over the timeframe 1997-2007. The red line indicates a linear model fit for the 
plotted data; the parameters shown in the centre of the figure.  
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Figure 9: Nugget Semi-variance (gray circles) plotted versus Time (Julian Day) for all Austrian 
Background Stations over the timeframe 1997-2007. The red line indicates a linear model fit for the 
plotted data; the parameters shown in the centre of the figure 

A more general picture for the different stations types can be found using simple linear regression 

analysis as shown in the Table 5. In general we observe a decrease in small scale variability across all 

years. For the “All background stations (line BG-ALL)”, a negative coefficient can be observed. 

Certainly, the values are rather small considering the fact that 10 years of observations are taken into 

account. While Germany has the smallest decrease in the nugget effect with time (e.g. the least 

reduction in small scale variability), we could observe Austria and France had similar decreasing 

values. The largest decrease could be observed for Italy (fourfold over that from Austria).  

For the Urban Traffic combination the results are different. We see the strongest decrease in the 

Austrian dataset, followed by Germany and Italy. Interestingly, France showed an increase in small 

scale variability with years which need further investigation.  

Range effects for “All background stations” (e.g. the length of the spatial dependency) are actually 

increasing for Germany and slightly increasing for France, while decreasing for Austria and slightly 

decreasing for Italy. This might indicate that the stations with an increasing range show a more 

homogeneous picture of the air quality situation surrounding it. In fact, it might be due to an increase 

of QA/QC actions performed over the years. It could also be the result of a change in the nature or 

quantity of air pollution emissions/transport or reactions over the year. Another reason might be the 
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increase/decrease of number of monitoring stations or change in the station classifications. For traffic 

stations, such statement cannot be made. We observed increase in ranges for Austria, Italy and 

Germany ans significant decrease for France.  

Table 5 Coefficients for fitted linear models for nugget and Range Values for Austria (AT), Germany 
(DE), France (FR) and Italy (IT) for the Station Type - Station Area Type - Combinations Traffic-
Urban(TR-UR), Background-rural(BG-RU), Background-Urban(BG-UR), Background-Suburban(BG-
SU), All Background stations (BG-ALL). 

 Slope of regression lines over 10 years 

 St - Iso  AT DE FR IT 

S
lo

pe
 in

 %
 fo

r 
nu

gg
et
 

TR-UR -1,8 % -0,2 % 0,6 % 0,0 % 

BG-RU  -0,8 %   

BG-UR  -0,6 % -1,6 % -1.9 % 

BG-SU  -0,2 % -1,7 %  

BG-ALL -1,0 % -0,2 % -1,2 % -4,3 % 

S
lo

pe
 in

 %
 fo

r 
R

an
ge

  TR-UR 12,2 % 2,8 % -6,0 % 4,0 % 

BG-RU  2,0%   

BG-UR  3,3% -5,9 % 5,8 % 

BG-SU  1,7% -1,4 %  

BG-ALL -2,8 % 2,6% 1,0 % -1,0 % 

 

All the semi-variograms of Germany between 1997 and 2007 are shown in Figure 10. Along the x-axis 

the Julian Day is shown, while in y direction the lag distances are plotted. The height of each cross 

displays the semi-variance for background stations in rural area. Additionally, a surface is plotted 

inside the figure that fits all points in the semi-variograms. This surface gives a linear model with 

respect to the time and the distance. For Germany and rural background stations, a clear decreasing 

trend can be observed for the nugget effect as well as for the semi-variogram range. 
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Figure 10: The raw semi-variogram plotted versus Julian day. The x-axis shows the Julian day; the y-
axis shows the lag distance; the z-axis the calculated semi-variance. The surface inside the 3D plot 
represents a fitted model of the semi-variance versus julian day and lag distance; while parameters of 
these equation are shown at the bottom part of the figure. Black crosses indicates higher values than 
black crosses. 

Create a warning system for classification of monitoring stations 
For the identification of environments responsible for population exposure we applied the functions 

developed in the outlier detection methodology. An example from the results is shown in Table 6. We 

classified every single measurement that exceeded our conservative threshold of 2. The identified 

outliers as well as the given percentages are similar for urban and rural areas in Austria. For Germany, 

quite some significant difference can be observed as almost 2 % of the urban stations measurements 
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are detected as outliers, similar to the Austrian data. However, Germany's rural background station 

data show a very low number of outliers.  

Table 6 General Statistics of number of records, identified outliers and percentages of outliers 
identified for four different station type - station area type combinations 

Station Type Number of Records Identified Outliers  Percentage Outliers 

DE Background rural 38480 27 0.07 

DE Background urban 63906 1259 1.97 

AT Background rural 13339 331 2.48 

AT Background urban 13990 352 2.52 

 

Based on these data we divided the stations with respect to their average zi values in 4 classes. For 

example, for the background data shown in the table above, the four classes are delimited by: low-level 

stations (bg, with z < -1), stations below average (ba, with -1<z<0), above average(aa, with 0<z<1), 

and high level stations stations(nb with z>1). Examples for the four cases are shown in Figure 11 to 

Figure 14. For the rural background type, stations which are classified as high level stations should be 

examined further and a reclassification of the station type and of the station area type should be 

considered if appropriate. It should be stressed that the proposed methodology is a first preliminary 

assessment, which needs expert validation from the local station managers to see if the assignment 

needs to be changed. The same is valid for urban background stations which are classified as bg 

stations – a reclassification as rural background stations might be appropriate. However, more 

investigations have to be performed to include actual population density data as well as more in depth 

investigations to quantify the differences in population exposure measurements and the ambient air 

measurements to come to a sound scientific assessment.  
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Figure 11: Classification of station for Austria for the rural station type for PM10. Station Labels 
without points are positions where no classification has been performed  
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Figure 12: Classification of station for Austria for the urban station type for PM10. Station Labels 
without points are positions where no classification has been performed. 
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Figure 13: Classification of station for Germany for the rural station type for PM10. Station Labels 
without points are positions where no classification has been performed 
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Figure 14: Classification of station for Germany for the urban station type for PM10. Station Labels 
without points are positions where no classification has been performed 
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Conclusions 
We developed a methodology able to automatically estimate the measurement uncertainty in the air 

pollution data sets of AirBase. The figures estimated with this method were consistent with 

expectations from laboratory and field estimation of uncertainty and with the Data Quality Objectives 

of the European Directives.  

The proposed method based on geostatistical analysis is not able to estimate directly the measurement 

uncertainty. It estimates the nugget effect together with a micro-scale variability that must be 

minimized by accurate selection of the type of station. Based on the results obtained so far, it is likely 

that measurement uncertainty is best estimated using all background stations of whatever area type.  

So far the methodology has been used to estimate uncertainty in 4 different countries independently. 

This work should be continued for the whole Europe or for background station without national 

borders. The method has been shown to be also useful to compare the spatial continuity of air pollution 

in different countries that seems to be influenced by the topography of each country.  

Moreover, it may be used to quantify the trend of measurement uncertainty over long periods like 

decades with the possibility to evidence improvement in the data quality of AirBase datasets. Over the 

last 10 years for Austria, Germany, France and Italy a decrease in the nugget effect can be observed, 

while the change in range (long range spatial dependency) was not significant. Further investigations 

are needed to determine if this decrease of nugget variance is caused by a decrease of the measurement 

uncertainty or by long term variations of air pollution or other meteorological factors. We showed that 

the nugget and range for PM10 in 2007 differed significantly between traffic stations while being more 

or less consistent for all background station types sited in whatever area type. Traffic situations 

showed up to twice higher nugget effects compared to background station scenarios. Data for different 

seasons are computed. However more analysis is needed to clarify the results.  

Thanks to the implemented outlier detection module, that could also be of interest as a warning system 

when countries report their measurements to EEA, we have proposed a simple solution to investigate 
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station classifications in AirBase. We tested the method on the German and Austrian background 

stations. For several stations, differences in classification could be identified which appeared with 

respect to the inherent data properties of the selected dataset. However, validation of the outcome of 

this module has to be performed thoroughly. 

The developed method presents a number of shortcomings: 

1. The nugget variance overestimates the uncertainty of measurement because of the micro-scale 

variations and in case of lack of spatial continuity of the pollutant (river, island, mountains ...)  

2. The micro-scale variance might be magnified/decreased by the heterogeneity/homogeneity of 

the sampling sites. 

3. The nugget variance cannot detect systematic bias e.g. bias of the measurement methods or 

chemical interference. This type of systematic bias is unlikely if the selected sufficient 

sampling sites have different sampling systems, analytical and calibration methods and 

QA/QC. 

4. The nugget variance will depend on the semi-variance of the smallest lag distance of each 

variogram. When the nugget variance is estimated per country using data sets whose smallest 

lag are different, one cannot exclude a lack of comparability with the extrapolation of the 

spherical model on the Y-axis.  

Seen the number of shortcomings of the method, validation of the method by comparison to direct 

approach is needed. For now, this method can be used as a confirmation tool or a ranking tool.  

Future study:  
Some points of the method need subsequent validation or modification: 

� Optimization of the maximum lag distance of the variogram in order to strengthen the 

estimation of the nugget effect, range and sill. Currently, we preset the maximum extent of the 

boundaries for the semi-variogram analysis to effectively ensured that the lag boundaries were 

always within the autocorrelation range. Further research has to investigate how the boundaries 
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could be fitted automatically also for different area size dataset. 

� Optimization and validation of the parameters used for the outliers test (the limit of the 

neighbourhood ± 1 day and ± 2º and the criteria for the z test: z average over 5 days ± 2). It 

might be that the test threshold should be different for different components or location.  

� Should the semi-variogram be plotted in absolute or in relative values on its y-axis? This is an 

evaluation of the effect of local mean that may have an effect on the nugget, range and sill. 

Study whether the uncertainty has a constant value for the whole range of concentration of 

pollutant (i.e. like in our estimation) or is dependent of the level of concentration (i.e a 

percentage of the concentration). The latter case is more likely, the variogram should thus be 

built using the percentage of the concentration of pollutant versus the limit value. 

� To diminish the contribution of the micro-scale variability to the nugget effect, explicative 

variables known on the whole dominium with a high density should be included in 

multivariable geostatistics like co-Kriging or Kriging with external drift. 

� Setup a system to be able to spike air pollution data sets with signal noise (error), quantify the 

effect on the nugget effect, range and sill in order to validate the whole methodology of 

uncertainty estimation. 

� Validation of the method by comparing its estimation of uncertainty with estimation carried out 

with laboratory or field experiments. Another solution could be chosen by selecting variograms 

with pure nugget error to estimate the measurement uncertainty and compare this value with 

the one only estimated from background stations or against direct estimates of uncertainty with 

the direct approach. 

� Determine which subset of station type and area type to estimate these metrics. The actual 

hypothesis is that the nugget variance should be estimated using all background stations which 

lead to a low sill, long range and nugget variance near pure measurement error. 

� Look for variables with high density values that are correlated with the concentrations of 

pollutants (emissions, population density, number of buildings, models outputs ...). By 

developing variogram of the detrended variables, the influence of the micro-scale variation on 

the nugget variance might be deleted.  

� Optimization of the outlier procedure in terms of computing speed to reach a near-to-real time 

detection method that might be useful when countries report their data.  
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The computation of statistics and their evaluation needs be continued: 

� Carry out the assessment of nugget variance, range and sill for other pollutants with sufficient 

monitoring stations (eg. O3, NO2…) and for the averaging time of the monitoring for regulatory 

purposes defined in the European Directives.  

� The values of nugget variance should be investigated according to the type calibration chain of 

standards and other QA/QC and sampling procedures that is implemented by each country or in 

relation to the implemented inter-comparison exercises to check if these factors may influence 

the nugget variance.  

� The spatial continuity estimated using the range of variograms (the longer the range the more 

stable the spatial distribution) should be investigated to evidence which compounds are more 

affected by local emissions, reaction or log-range transport of pollutants. 

� Evaluate the trend of nugget variance, sill and range of spatial continuity e.g. over the last 10 

years. 

� Investigate effect of season. While we have performed a time series analysis to establish how 

the nugget and range effect changes over a ten year time frame, we already could see from our 

analysis the influence of seasons. Still the question remains about how the seasonality 

influences these results in a quantitative way. We should split up the 10 year dataset in steps of 

3-4 month each (maybe using a cluster analysis) and analyze them separately. This is important 

to evidence effects of the station density across different years and for a better understanding of 

the uncertainty of the different contributing measurement networks of the AirBase Database. 

� Estimate the sill, range and nugget variance by selecting monitoring stations belonging to more 

than one country to detect the presence of possible clusters with borders.  

� Map of number of outliers: by performing this in a consistent way across several components, 

countries might be able to further streamline and improve their station monitoring network. 

Based on the analysis performed in the classification of sampling sites for the year 2007, we 

observed that different stations with respect to their station area type or their station type would 

have to be reclassified. However, what is currently missing is the temporal domain. We 

urgently need to re evaluate this kind of classification over a range of years to see if a 

consistent pattern can be detected, otherwise no sound scientific advice can be given to 

reclassify these stations. 
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Appendix I: Developed R- Routines 
 

Appendix II: Developed Shell Script for Data import into the 
PostgresSQL Database 
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