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EXECUTIVE SUMMARY 

There is a need to integrate existing in vitro dose-response data in a coherent framework for extending 

their domain of applicability as well as their extrapolation potential. This integration would contribute 

towards the reduction of animal use in toxicology by using in vitro data for quantitative risk 

assessment; moreover it would reduce costs and time especially when such approaches would be used 

for dealing with complex human health and ecotoxicological endpoints. In this work, based on HTS 

(High Throughput Screening) in vitro data, we have assessed the advantages that a dynamic biology-

toxicant fate coupled model for in vitro cell-based assays could provide when assessing toxicity data, 

in particular, the possibility to obtain the dissolved (free) concentration which can help in raking the 

toxicity potency of a chemical and improve data reconciliation from several sources taking into 

account the inherent variability of cell-based assays. The results show that this approach may open a 

new way of analyzing this type of data sets and of extrapolating the values obtained to calculate in vivo 

human toxicology thresholds.  
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1. INTRODUCTION 

The hazard assessment of a chemical has traditionally relied on animal models, with protocols that 

have been standardized over the years (OECD, 1993), and in the application of assessment factors 

(AFs) to take into account uncertainties associated with the extrapolation of animal model results to 

humans. However, during the last years, integrated testing strategies (ITS) have gained a considerable 

interest in toxicology (Worth, 2004; Balls et al., 2006; van Leeuwen, et al., 2007) due principally to 

new in vitro and in silico technologies and methods, to new knowledge generated (web databases), to 

new insight on the mechanisms of toxic effects, e.g. toxicogenomics (Heijne et al., 2005), systems 

toxicology  (Waters et al., 2003; Heijne et al., 2005; NRC, 2007), and to an increase of pressure from 

society and legislation to avoid animal testing.  

ITS assumes that a combination of techniques can be able to assess the toxicity of a certain compound 

replacing, or at least reducing considerably, the need for the use of animals. These techniques should 

include (DeJongh et al., 1999; Gubbels-van Hal et al., 2005) read-across, chemical categories, 

(quantitative) structure activity relationships ((Q)SAR), physiologically based pharmacokinetic models 

(PBPK) and in vitro assays. In addition, it is now becoming widely accepted that to progress on our 

understanding on the toxic effects we must try to understand the toxic mechanism at a molecular level 

and how molecular changes relate to functional changes at higher levels of biological organization 

(U.S. EPA, 2003). Recently, the research area devoted to the understanding of the distribution of 

chemicals at the subcellular level of biosystems, in terms of their properties has been called SBSP -

structure-based subcellular pharmacokinetics- (Balaz, 2009). Finally, the incorporation of new 

functional genomics technologies in toxicology, such as the measurement of gene expression 

(transcriptomics), protein levels (proteomics) or metabolite contents (metabolomics), should be also 

considered when developing ITS. 

The first attempts to assess the applicability of ITS for the safety evaluation of chemicals (DeJongh et 

al., 1999; Gubbels-van Hal et al., 2005) were based on the following elements: 

- in vitro/ QSAR data on ADME (Absorption, Distribution, Metabolism, Excretion) as input data to 

- PBPK modelling (rat, human, etc.) for calculating target tissue concentration in vivo for the 

prediction of dose-response curves, NOEL (Not Observed Effect Level), LOEL (Lowest Observed 

Effect Level), etc. 

- in vitro and in vivo studies to validate the approach. 

The application of this approach to a reduced set of substances (ten) to REACH requirements at 

production levels > ten tonnes shown that it was possible to reduce by 38% the number of animals 

used, but further improvement was foreseen with the refinement of the procedure (Gubbels-van Hal et 

al., 2005).  
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Concerning in vitro tests the suggested refinements (Gubbels-van Hal et al., 2005) in the ITS included 

the need to estimate the partitioning and bioavailability of the chemical in the assay to improve the 

methodology used to relate in vitro toxic concentrations to in vivo target tissue concentrations. 

An in vitro cell-based assay at the HTS (High Throughput Screening) facility (Bouhifd et al., 2008) 

consists on the use of plastic tissue culture plates with 96 wells where a monolayer of cells in a culture 

medium with serum is placed and then exposed to the selected dissolved chemicals at several 

concentration levels. Even though in vitro assays are becoming essential to elucidate the toxic potential 

of chemicals; to analyze the toxic mechanism and the mode of action; and, to replace and to reduce the 

number of animals; there are still several problems to be solved. Between them the large inter-assay 

variability, the low sensitivity and the differences found between in vitro and in vivo experiments in 

terms of false positives and negatives (Höfer et al., 2004; Lilienblum et al., 2008). 

There are several concerns when analyzing the data from in vitro experiments. One aspect is the 

partitioning of organic compounds between the medium, the cells and the container (Blaise et al., 

1986). For example, Hestermann et al. (2000) found that up to 56% of 2,3,7,8-tetrachlorodibenzo-p-

dioxin was associated with the polystyrene wells. Another aspect is the evaporation of volatile 

substances and the possibility to cross contamination in adjacent wells as pointed out by Eisentraeger 

et al. (2003) since test are not performed in sealed wells and the volume to surface ratio is small. 

Thellen et al. (1989) found this effect for phenol on an algal growth test in a 96 well microplate. 

Finally, organic substances might not be stable and decompose during the experiment as already 

pointed out and investigated by Simpson et al. (2003). However, this is a general aspect of organic 

compounds not only specific of in vitro tests. Considering all these aspects, Riedl and Altenburger 

(2007) concluded that chemicals with an octanol-water partition coefficient, log KOW, higher than 3 

and air water partition coefficient, log KGL, higher than -4 would produce less reliable results for algal 

test toxicity in a microplate assay that in a growth inhibition test conducted in air tight glass vessels. 

One possible improvement, already suggested and demonstrated by several research groups (Gülden 

and Seibert, 2003; Heringa et al., 2004; DeBruyn and Gobas, 2007; Kramer 2010), would be to correct 

in vitro experiments by considering properly the toxic (bioavailable) concentration in the medium 

which corresponds to the free dissolved concentration. Even though this approach, the partitioning 

approach (Schwarzenbach et al., 2003), has been largely developed when dealing with fate and 

distribution of contaminants in the environment (Carafa et al., 2006; Jurado et al., 2007; Dueri et al., 

2008; Dueri et al., 2009; Marinov et al., 2009), there have been less work at the level of in vitro 

characterization and modelling.  

An aspect as important as the partitioning of the chemical in the cell-based assay is the dynamics of the 

cells during the experiment. The fundamental process is the expansion of the population of cells due to 

their growth and division. These processes have also a considerable impact of the cell internal 
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concentration of the chemical which will change during the experiment and therefore on the toxic 

effects experienced by the cells. Whereas growth may be seen as a dilution process, cell division will 

split the chemical content into two cells producing a step change. 

In this work, we are developing an integrated modelling approach to improve the characterization and 

analysis of cell-based assays data. In this first report a mass balance model of the compound based on 

its physico-chemical properties and the partitioning approach has been implemented and tested. The 

results have shown the dependence of the dissolved concentration on the physico-chemical properties 

of the compound and how the value changes over time. In addition, the importance of the partitioning 

of the chemical into different compartments has been quantitatively assessed. 

In the second part of this work a cell development/division model using a bioenergetic modelling 

approach (DEB, Dynamic Energy Budget) will be developed. Both models will then be coupled with a 

toxicity and effect model that simulates the uptake and depuration of the toxicant as well as the toxic 

effects on survival. Furthermore, by combining the results with a PBPK model in vitro and in vivo 

concentrations can be compared on equal basis which would produce a better understanding on the 

toxic potency of a chemical. In addition, this approach will also allow calculating chemical cell 

internal concentrations and to link the values obtained with the TTC (Thresholds of Toxicological 

Concern) concept application (Gross et al., 2010). 

2. METHODS AND APPROACH 

Normally dose-response curves in in vitro experiments are represented using the total amount of 

substance added and not the dissolved (free) concentration which is the bioavailable fraction able to 

produce a toxic effect. Therefore, in vitro dose response curves (or their potency data e.g. EC50, IC50 

values) does not properly reflect the real toxic potency of a chemical since the compound will partition 

into the medium dissolved organic and particulate organic carbon (mainly serum and cells), and into 

the plastic walls as well as into the headspace (Gülden at al., 2001; Heringa et al., 2004; amongst 

others). Another aspect that should be considered when volatile compounds are tested is the possibility 

of evaporation and cross contamination.  

In addition, during the experiments cells growth and divide consuming nutrients, therefore the 

partitioning characteristic of the medium changes with time as well as the internal concentrations in 

the cells complicating even further the comparison between different in vitro experiments and systems 

and therefore call for an integrated modelling approach able to quantify all this aspects and to “correct” 

the nominal concentrations as a function of the cell-based assay and the physico-chemical properties of 

the tested compounds. Part of this integrated modelling approach must be: 

- Fate and transport model 

- Growth and division model 
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- Toxicodynamics model 

The solution of the ordinary differential equations of the model should allow the calculation over time 

of the dissolved concentration of a chemical as well as the internal concentration in the cell-based 

assay. We are briefly going to illustrate the different models and how they are interrelated. 

In this first work, we will develop and test the fate and transport model, whereas in the second part the 

growth and toxicodynamics models will be developed and validated. 

2.1. FATE AND TRANSPORT: MASS BALANCE MODEL 

The fate and transport model consists of a dynamic mass balance that includes a time-variable 

chemical transport and fate model for calculating the chemical concentration in the medium as well as 

in the headspace. The gas phase has been included to consider, in a second step, the possible losses and 

cross contamination between the 96 wells in the TC plates, since the TC are not hermetic even though 

the system was designed to minimize this aspect. To quantify this phenomenon, there are not enough 

experimental data at the moment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Overview of the process included in the fate and transport model (modified from Kramer, 

2010) 

 

 

Assuming a well mixed medium and headspace and that the sorption processes are fast compared with 

the other processes then the mass balance equations for both compartments can be written as: 

- Total concentration in the medium: 
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= ⋅ − ⋅ ⋅  (1) 
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where VM refers to the volume of the medium (m
3
) and T refers to the total concentration (mg m

-3
); the 

first term of the rhs represent the transfer of chemical across the air-water interface whereas the second 

term represent transformation/losses from the medium, e.g. degradation, decomposition, etc. 

- Total concentration in the air: 

A similar equation can be written for the headspace: 

Air

H s AW l l

dC
V A F A F

dt
= − ⋅ − ⋅  (2) 

where VH refers to the headspace volume (m
3
); the first term represents the transfer of chemical across 

the air-water interface whereas the second term represents the losses from the headspace due to gas 

exchange, which we will consider zero in this first approach. 

To model the partitioning of an organic chemical in the medium (Kramer, 2010), we can consider that 

the compounds are either purely dissolved (C
diss

), bound to the serum in the culture medium (C
S
), 

bound to the cells (C
cell

) and bound to the (plastic/glass) surface of the culture vessel (C
p
).  Therefore, 

the total concentration of an organic contaminant in the medium, C
T
, can be described by following 

equation:
 

M

MpcellSdissT

V

S
CCCCC +++=   (3) 

where SM refers to the surface of the well in contact with the medium.  

2.1. 1. Partitioning of chemicals 

A general approach to describe the distribution of the organic compound is by means of the partition 

coefficients Ki, defined as the relationships between the concentration in a particular medium and in 

the water. In this case we need to calculate: 

- Serum protein partitioning: 

diss

S

S
C

S
C

K
][

=  (4) 

where [S] is the concentration of proteins in the medium (mole protein
.
m

-3
). Kramer (2010) found the 

following correlation studying PAHs: 

)12.0(29.0log)03.0(37.0log ±−±= owS KK  (5) 

where the partition coefficient KS is expressed in m
3.

mol
-1

. A MW = 66400 g/mol is used for Bovine 

Serum Albumin (BSA). In a compilation of blood protein (albumin) data DeBruyn and Gobas (2007) 

for different tissues found that the sorptive capacity of protein in solid animal tissues was higher than 

Kow for low Kow chemicals (-1.3≤ log Kow ≤2) with a value around 1.31(±0.62) (ml g
-1

 albumin). For 

more lipophobic chemicals (2 < log Kow ≤ 5.1) the logarithm of the partition constant increased with 

log Kow following: 0.57 log Kow +0.69, whereas at higher Kow approached the lipid equivalence value 
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of 0.05, i.e. log Kow-1.3. In addition, they recommended, for modelling purposes, to estimate the 

sorptive capacity of animal protein as 5% that of lipid. 

Normally, these correlations refer to non-specific binding. Depending on the specific structure of the 

chemical and the protein, specific binding can occur and then the value could be completely different. 

- Partitioning to well plate plastic: 

The partitioning constant to plastic, Kp (m), is defined as: 

diss

p

p
C

C
K =  (6) 

where C
p
 (mg m

-2
) is the concentration sorbed in plastic. Kramer (2010) found a linear correlation 

between Kp and Kow for the PAHs (Polycyclic aromatic hydrocarbons) family.  

)80.0(94.6log)15.0(97.0log ±−±= owp KK  (7) 

As an example, if we consider a well with half of the liquid and a hydrophobic compound such as 

Benzo[a]pyrene (log Kow = 6.13 and log Kp = -0.99), 98% of Benzo[a]pyrene binds to plastic. 

- Partitioning to cells: 

According to Kramer (2010) the partition coefficient of a chemical with cells, KC (m
3
 kg

-1
), could be 

equated to their partition with the lipid content, Klip, and therefore it was possible to write: 

diss

cell

C
C

C
C

K
][

=  (8) 

where [C] is the concentration of cell lipid in medium (kg m
-3

). Jonker and van der Heijden (2007) 

found for PAHs a linear correlation between the lipid-water partition coefficient and the octanol water 

partition coefficient as: 

)37.0(70.3log)06.0(25.1log ±−±= owC KK  (9) 

The relationship between the concentration in an organism (the cell) and in the water is called the 

bioconcentration factor (BCF). It has been demonstrated (Swackhamer and Skoglund, 1993; Stange 

and Swackhamer, 1994) that, for many organic compounds, the logarithm of the bioconcentration 

factor plotted against the logarithm of the octanol/water partition coefficient gives two linear 

correlations (with a plateau in correspondence to log Kow ≈ 6.5, that can be fitted by least squares and 

may be represented by the following log linear equations (Del Vento and Dachs, 2002): 

log BCF= 1.085 log Kow – 3.770                 for log Kow < 6.4 (10) 

log BCF= 0.343 log Kow + 0.913                 for log Kow ≥ 6.4 (11) 

BCF is expressed in m
3
 kg

-1
. 
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The existence of this plateau has been questioned by Jonker and van der Heijden (2007) due to two 

factors: equilibrium was not reached when the measurement was done and the dissolved organic 

carbon (DOC) concentration was not considered in the measurement. 

All these relationships presuppose that the compound has a linear sorption isotherm which is normally 

a good approximation at low concentrations. In addition, it is also assumed that there is no saturation 

(plastic surface, protein binding sites, etc.) which may occur in experiments at high doses. Even 

though the correlations are probably only valid for PAHs, in this work we will use it as a first 

approximation to develop the model and then we will test the results for other families of compounds 

using literature data. 

The partition of the compound between the different phases can be expressed as a function of the total 

(nominal) concentration in the well as: 

M

M
pCS

Tdiss

V

S
KCKSK

C
C

⋅+⋅+⋅+

=

][][1

 (12) 

M

M
pCS

TSS

V

S
KCKSK

CSK
C

⋅+⋅+⋅+

⋅⋅
=

][][1

][
  (13) 

M

M
pCS

TCcell

V

S
KCKSK

CCK
C

⋅+⋅+⋅+

⋅⋅
=

][][1

][
 (14) 

M

M

pCS

TPP

V

S
KCKSK

CK
C

⋅+⋅+⋅+

⋅
=

][][1

 (15) 

2. 1. 2. Air-Water Exchange 

Organic pollutants will move in the headspace of the well and since the TC plates are not hermetically 

close they will diffuse to the other wells during the experiment. The final concentration will depend on 

the physico-chemical properties of the assessed compound as well as on the dosed concentrations. As a 

first approximation, we will concentrate on simulating the air-water exchange on a well assuming no 

transport outside takes place, but we will write the mass balance equation and, when experimental data 

will become available, we will be able to model the diffusion to other wells in the plate. In this case, 

the exchange between the headspace and the aqueous medium occurs through diffusive gas exchange 

between the headspace and medium boundary layer. 

- Diffusive exchange  

The diffusive air-water exchange flux FAW at the interface (i) is represented as (Westerterp et al., 

1984): 
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







−=

diss

GL

air

AWAW C
K

C
kF  (16) 

where air
C  and diss

C  are the gas-phase and the dissolved (liquid) concentrations, respectively. KGL is 

the dimensionless gas-liquid distribution coefficient, i

L

i

GGL CCK = , and is calculated from the Henry’s 

law constant using: 

TR

H
KGL

⋅
=   (17) 

where H (Pa m
3
 mol

-1
) is the Henry law constant, R is the universal gas constant, 8.314 J.(mol.K)

-1
, 

and T is the temperature (K). The temperature dependence of Henry’s law constant can be expressed 

as: 

T

B
AH H

H +=ln  (18) 

where AH and BH are two constants that depend on the specific compound. 

The mass transfer coefficient kAW is given by following equation: 

1

11
−









+

⋅
=

LGLG

AW
kKk

k  (19) 

where and kG and kL are the mass transfer coefficients (m s
-1

) in the air and the water films, 

respectively.  

The liquid phase mass transfer coefficient, kL, is calculated from the mass transfer coefficient of CO2 

in the water side, 
2COLk (Kanwisher, 1963) which when there is no wind has a constant value: 

2101.4
2

−⋅=
COLk  (m s

-1
), by applying a correction factor: 

5.0

6002

−









=

Sc
kk LCOL  (20) 

where Sc is the Schmidt number of the pollutant and 600 accounts for the Schmidt number of CO2 at 

298 K. The Schmidt number is defined as: 

ρ

µ

⋅
=

LD
Sc  (21) 

where ρ and µ are the density and viscosity of the fluid respectively while DL is the coefficient of 

molecular diffusion of the dissolved compound. The temperature dependence of the diffusion 

coefficient in water is calculated with following correlation by Wilke and Chang (1955): 

T
V

MW
D

b

L ⋅
⋅

⋅
=

−

6.0

5.012 )(104.7

µ

α
 (22) 
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where T is the temperature of the solvent [K] and µ is its viscosity [cP], Vb [cm3 mol
-1

] is the molar 

volume of the organic compound at its normal boiling point, MW is the molecular weight [g mol
-1

] of 

solvent and α is the association factor of the solvent, α = 2.6 for organic solutes diffusing into water 

(Perry and Chilton, 1984) and DL is given in m2 s
-1

. 

The gas phase mass transfer coefficient, kG, is calculated using the mass transfer coefficient for water, 

which for the case of no wind has a constant value: 3

0, 103
2

−⋅=HGk (m
.
s

-1
), and then 

67.0

0,

0,

2

2 












=

HG

G

HGG
D

D
kk  (23) 

where DG and DG,H2O refers to the diffusion coefficients in the gas phase (air) of the chemical and 

water, respectively (Schwarzenbach et al., 2003). 

An empirical correlation that has been extensively used to estimate the diffusion coefficients in air, DG 

in m2 s
-1

, as a function of temperature is the one presented in Fuller et al. (1966): 

[ ] [ ]( )23/13/1

2/1

75.17

)()(

10

∑∑ +










⋅

+
⋅

=

−

BAir

BAir

BAir

G

P

MWMW

MWMW
T

D

υυ
 (24) 

where T is the temperature (K), P is the pressure (atm), MW are the molecular weights (g/mol) of air 

(28.8) and the organic compound, and υ are the atomic diffusion values, ΣυAir=20.1, that can be 

determined form the values in Table 1.  

 

Table 1. Atomic diffusion volumes for use in estimating D by the method of Fuller, Schettler and 

Giddings (1966). 

 
C 16.5 Cl 19.5 

H 1.98 S 17.0 

O 5.48 Aromatic ring -20.2 

N 5.69 Heterocyclic ring -20.2 

 

For the specific case of water in air, which is used after to calculate the mass transfer coefficient in the 

gas phase, we have adjusted the experimental values modifying the atomic diffusion values, i.e. 

Συwater=10.8., then the diffusion coefficient of water in air is calculated as: 

75.19

0, 102365.1
2

TD HG

−⋅=  (25) 

2.1.3. Degradation, Decomposition and Metabolism 

In absence of detailed experimental data, degradation, decomposition or metabolism fluxes are 

represented as a first order reaction model. Therefore for degradation and decomposition we will have: 

diss

rr CkF ⋅= degdeg  (26)  
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where C
diss

 is the concentration of the contaminant in dissolved form and kdegr may be the degradation 

rate resulting from hydrolysis, photodegradation, etc. Normally, when no detailed data is available, the 

degradation rate kdegr is calculated from half life times 

rk
t

deg

2/1

2ln
=   (27) 

For metabolism, we will assume the same principle and write: 

cell

metmet CkF ⋅=  (28) 

Then, the metabolism rate will be obtained from biodegradation half-times as above. 

 

2.2. EXPERIMENTAL SET-UP AND CELL LINE CHARACTERISTICS 

The experimental procedure for the 3T3 BALB/c Neutral Red Uptake (NRU) cytotoxicity assay was 

developed for the NICEATM/ECVAM validations study requirements (ICCVAM, 2006a, b), whereas 

issues concerning the automation and the implementation of the assay using the Pilot Test Platform 

(PTP) of the IHCP automated test facility may be found in Bouhifd et al. (2005) and Bouhifd and 

Whelan (2006). 

The results of the testing for the validation study have been reported in ICCVAM (2006a) whereas the 

results obtained by testing 28 chemicals at the High Throughput Screening (HTS) platform are 

described in Norlén et al. (2007). 

The configuration of the 96-well test plate is shown in Fig.2. The dimensions of each well are: 

- Top internal radius: 3.425
.
10

-3
 m. 

- Bottom internal diameter: 3.175
.
10

-3
 m. 

- Depth: 10.76 
.
10

-3
 m. 

- Bottom area 3.16 
.
10

-5
 m

2
 

 
Figure 2. Configuration of the 96-well test plate. Blue: cells with dosing solutions of test chemical, six 

replicates for each dose and eight concentrations, C1 is the highest and C8 is the lowest concentration; 

green:  Black: only medium, blank experiments; green: Vehicle Controls (VC), contain cells in 

medium and no test compound (the VCs are considered to have 100% viability). 
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With these dimensions and assuming the experiments contained 100 µL, i.e. VM = 10
-7

 m
3
, we can 

obtain: 

- Total well volume (assuming a truncated cone): 

( ) 722 10683.3
3

1 −⋅=+⋅+= hRRrrVW π  m
3
. 

- Headspace volume (m
3
): VH = 2.683

.
10

-7
 m

3
. 

- Surface of the well in contact with the medium, bottommM SgrrS ++= )(π , where rm is the radius of 

the occupied volume and g is the slant height. SM = 9.392
.
10

-5
 m

2
. 

- Surface of the cell-based assay medium, 52 10312.3 −⋅=⋅= mS rA π m
2
. 

Assuming a 5% (v/v) serum in the medium, then [S]0=2.34 10
-2

 mol protein m
-3

. 

 

For 3T3 cells, a volume of 1.8±0.7 10
-15

 m
3
/cell was calculated by Gülden et al. (2002), considering 

spherical cells. Also the protein content was assessed, with 0.37±0.11 mg/10
6
 cells with a ratio of 

0.231 mg lipid/mg protein. A doubling time of ~19 h was measured in the HTS laboratory
1
, see Fig. 3. 

Assuming an initial concentration of 2.0
.
10

3
 cells at each well, we can calculate the number of cells as 

a function of time as: ncells=2.0
.
10

3.
exp(1.0098

.
10

-5.
t), where t is the time in s from the beginning of the 

experiment. Therefore: [C] = 1.1877
.
10

-6.
ncells (kg lipids m

-3
). 

 
Figure 3. Experimental measured growth of 3T3 cells and fitted exponential curve after 

acclimatization. 

                                                
1 In the second report a model for growth and reproduction will be added that will replace this part. 
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The total cell volume changes between 3.74
.
10

-12
 m

3
 and 2.14

.
10

-11
 m

3
 which represent the 0.0037 and 

the 0.021% of the total volume. Therefore we can neglect this change when compared with the 

medium volume. 

3. RESULTS  

3.1. SIMULATION OF PAHs DISTRIBUTION 

Since some of the partitioning coefficients developed by Kramer (2010) were experimentally verified 

for Polycyclic Aromatic Hydrocarbons (PAH), we will first test here the simulation results for this 

family of compounds. The differences between our approach and the approach developed by Kramer 

(2010) resides mainly in the dynamic aspect of our simulation and in our objectives toward an 

integrated modelling approach, including the cell growth and reproduction model and toxicodynamics 

as a function of internal concentrations in the cell, which will constitute the second part of this report. 

Polycyclic aromatic Hydrocarbons are produced during combustion of carbonaceous materials 

including wood and fuel oils, especially under limited oxygen availability. They are also emitted 

during aluminium smelting. There are several natural and anthropogenic sources for these compounds. 

Furthermore, there is a growing concern because several of them are believed to be human 

carcinogens, mutagenic and teratogenic (IARC, 1991).  

In this report, we have selected twelve PAHs to simulate. These are: 

Naphthalene 

 

Chrysene 

 
Anthracene 

 

Benzo [b] fluoranthene 

 
Fluorene 

 

Benzo [k] fluoranthene 

 
Phenanthrene Benzo [a] pyrene 

 

Pyrene 

 

Benzo [ghi] perylene 

 
Fluoranthene 

 

Indeno [1,2,3,cd] pyrene 
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The physico-chemical parameters for the PAHs family, as well as literature references are given in 

Table 2. 

 

Table 2. Specific PAHs parameters. 
Parameter Range Ref 

MW 
Molecular weight (g/mol) 128.17  :Naphthalene 

178.23  :Anthracene 

166.22  :Fluorene  

178.23  :Phenanthrene 

202.26  :Pyrene 

202.26                 :Fluoranthene 

228.30                 :Chrysene 

252.29  :Benzo [b] fluoranthene 

252.29  :Benzo [k] fluoranthene 

252.29  :Benzo [a] pyrene  

276.31  :Benzo [ghi] perylene 

276.31  :Indeno [1,2,3-cd] pyrene 

 

MV 
Molar volume (cm

3
/mol) 148.0  :Naphthalene 

197.0  :Anthracene 

188.0  :Fluorene  

199.0  :Phenanthrene 

214.0  :Pyrene 

217.0  :Fluoranthene 

251.0  :Chrysene 

253.0  :Benzo [b] fluoranthene 

253.0  :Benzo [k] fluoranthene 

263.0  :Benzo [a] pyrene  

277.0  :Benzo [ghi] perylene 

265.8  :Indeno [1,2,3-cd] pyrene 

 

H 
Henry (Pa m

3
/mol) values  

ln H=Ah - Bh /T  

Ah  Bh 

5.07  922 :Naphthalene 

21.91  6013 :Anthracene 

22.52  6044 :Fluorene 

21.31                       5925        :Phenanthrene 

17.57  5104 :Pyrene 

17.26                       4946 :Fluoranthene 

42.05                      12727 :Chrysene 

9.83  3275 :Benzo [b] fluoranthene 

9.83  2979 :Benzo [k] fluoranthene 

12.02  3558 :Benzo [a] pyrene  

12.83  4006 :Benzo [ghi] perylene 

10.36  3208 :Indeno [1,2,3-cd] pyrene 

Paasivirta et 

al. 1999; 
Bamford et 

al. 1999. 

Kow (298 

K) 

 

Octanol-water partition 

coefficient 

2.34
.
10

3
  :Naphthalene 

3.47.104  :Anthracene 

1.32.104  :Fluorene  

3.73.104  :Phenanthrene 

1.51.105  :Pyrene  

1.70.105  :Fluoranthene 

6.46.105  :Chrysene 

2.75.106  :Benzo [b] fluoranthene 

2.75.106  :Benzo [k] fluoranthene 

1.10.106  :Benzo [a] pyrene  

7.94.106  :Benzo [ghi] perylene 

3.84.106  :Indeno [1,2,3-cd] pyrene 

Mackay and 

Hickie 2000 

kdeg Decomposition rate in 

water column (s
-1

)] 

6.7.10-7  :Naphthalene 

3.5.10-7  :Anthracene 

3.8.10-7  :Fluorene  

1.1.10-7  :Phenanthrene 

1.1.10-7  :Pyrene  

1.1.10-7  :Fluoranthene 

1.1.10-7  :Chrysene 

3.5.10-7  :Benzo [b] fluoranthene 

3.5.10-7  :Benzo [k] fluoranthene 

1.1.10-7  :Benzo [a] pyrene  

1.3.10-8  :Benzo [ghi] perylene 

1.3.10-8  :Indeno [1,2,3-cd] pyrene 

Mackay and 
Hickie 2000 
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The dynamical system, Eqs. (1)-(2) was run for the twelve PAHs for 48 h assuming there was no 

decomposition, the serum concentration was constant and there were no toxicity effects, i.e. the cell 

growth was equivalent in all experiments. As an example, Figures 4 and 5 show the variation in the 

total concentration in the medium and in the headspace as a function of time for results for 

Naphthalene and Indeno[1,2,3-cd]pyrene, whereas Figures 6 and 7 show the variation of the 

distribution of the concentration in the medium for the same compounds. Finally, Table 3 summarizes 

the partitioning (in percentages) for all compounds at the end of the simulation, i.e. after 48 h. 

 
Figure 4. Simulated Naphthalene total concentration in the medium (top) and in the headspace 

(bottom). 

 
Figure 5. Simulated Indeno [1,2,3,cd] pyrene total concentration in the medium (top) and in the 

headspace (bottom). 
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Figure 6. Simulated Naphthalene concentrations in the dissolved phase (D), bound to the serum (S), 

attached to the cells (C) and to the plastic surface in contact with the medium (P).   

 
Figure 7. Simulated Indeno [1,2,3,cd] pyrene concentrations in the dissolved phase (D), bound to the 

serum (S), attached to the cells (C) and to the plastic surface in contact with the medium (P).   
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Table 3. Final distribution in mass percentages of the PAHs between headspace (H), and medium: 

dissolved (D), serum (S), attached to cells (C) and to the plastic wall (P). 

Compound H D S C P 

Naphthalene 0.63    74.89   15.87    3.32    5.29 

Anthracene 0.34    26.08   14.97   33.48   25.13 

Fluorene 0.99    45.80   18.39   17.56   17.27 

Phenanthrene 0.23    24.82   14.62   34.75   25.58 

Pyrene 0.022    7.08    7.01    57.38   28.50 

Fluoranthene 0.024    6.29    6.50    58.87   28.31 

Chrysene 0.0042        1.45 2.46    72.19   23.89 

Benzo [b] fluoranthene 0.0001    0.27    0.77    81.09   17.88 

Benzo [k] fluoranthene 0.0003    0.27    0.77   81.09   17.88 

Benzo [a] pyrene 0.0014    0.79    1.62    75.92   21.66 

Benzo [ghi] perylene 0.0001    0.07    0.32    85.58   14.03 

Indeno [1,2,3,cd] pyrene 0.0002    0.18    0.59    82.59   16.64 

 

During the previous simulations we did not consider decomposition reactions taking place. Assuming 

that the water environmental half-life times provided by Mackay and Hickie (2000) are realistic for an 

in vitro experiment, we have checked if there are differences in the simulated results. As an example, 

Figures 8 and 9 show the comparison of the results without and with the decomposition reaction. As 

can be observed there are substantial differences between both cases. 

 

Figure 8. Simulated Naphthalene total concentration in the medium (top) and in the headspace 

(bottom) without decomposition (red lines) and with decomposition reaction. 
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Figure 9. Simulated Naphthalene concentrations in the dissolved phase (D), bound to the serum (S), 

attached to the cells (C) and to the plastic surface in contact with the medium (P) without 

decomposition (red lines) and with decomposition reaction.   

 

3.2. SIMULATION OF LITERATURE CASE STUDIES 

To assess the potential of using the same correlations to calculate the fate of a certain chemical in the 

cell-based assays, we have run the model trying to simulate experimental from other families of 

compounds. Therefore, we have applied the modelling approach to data sets corresponding to two 

different families of compounds: organochlorine pesticides (p,p’-DDT; p,p’-DDE; dieldrin and 

lindane) and chlorophenols (Pentachlorophenol; 2,4,5-trichlorophenol; 2,4-dichlorophenol; 4-

chlorophenol and phenol). 

p,p’-DDT 

 

Pentachlorophenol 

 
p,p’-DDE 

 

2,4,5-trichlorophenol 

 
dieldrin 

 

2,4-dichlorophenol 
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lindane 

 

4-chlorophenol 

 
  phenol 

 
 

Table 4. Specific physico-chemical parameters. 
Parameter Range Ref 

MW 
Molecular weight (g/mol) 354.49  : p,p’-DDT 

318.02  : p,p’-DDE 

380.91  : dieldrin  

290.83  : lindane  

266.34  : Pentachlorophenol 

197.45                 : 2,4,5-trichlorophenol 

163.00                 : 2,4-dichlorophenol 

128.56  : 4-chlorophenol 

94.11  : phenol 

 

MV 
Molar volume (cm3/mol) 335.4  : p,p’-DDT  

318.0  : p,p’-DDE 

217.7  : dieldrin  

135.0  : lindane 

184.0  : Pentachlorophenol 

133.0  : 2,4,5-trichlorophenol 

125.0  : 2,4-dichlorophenol 

102.0  : 4-chlorophenol 

  88.0  : phenol 

 

H 
Henry (Pa m

3
/mol) values  

ln H=Ah - Bh /T  

 

 

H (298 K) 

Ah  Bh 

13.02  3369 : p,p’-DDT 

12.62  3291 : p,p’-DDE 

11.58                       3093        : lindane 
 

1.01                : dieldrin 

2.48.10-3                : Pentachlorophenol 

1.64.10-1                : 2,4,5-trichlorophenol 

4.35.10-1                : 2,4-dichlorophenol  

6.35.10-2                : 4-chlorophenol 

3.72.10-2                : phenol 

Paasivirta et 

al. 1999; 
EPI Suite 

log Kow 

(298 K) 

 

Octanol-water partition 

coefficient 

6.31  : p,p’-DDT 

6.96  : p,p’-DDE 

5.30  : dieldrin  

3.86  : lindane 

5.12  : Pentachlorophenol  

3.72  : 2,4,5-trichlorophenol 

3.06  : 2,4-dichlorophenol 

2.39  : 4-chlorophenol 

1.46  : phenol 

EPI suiteTM 

kdeg Decomposition rate in 

water column (s
-1

)] 

2.44.10-9  : p,p’-DDT 

2.55.10-9  : p,p’-DDE 

4.46.10-8  : dieldrin  

4.46.10-8  : lindane 

4.46.10-8  : Pentachlorophenol  

1.34.10-7  : 2,4,5-trichlorophenol 

2.13.10-7  : 2,4-dichlorophenol 

5.34.10-7  : 4-chlorophenol 

5.34.10-7  : phenol 

EPI suiteTM 

 

In this case, we have modified the experimental conditions as reported by Gülden et al. (2002): VM = 

2
.
10

-7
 m

3
; ncells=6.0

.
10

3.
exp(9.1686

.
10

-6.
t) (~21 h doubling time); duration of the experiment 72 h. The 

normal culture medium containing [S]0=1.81 10
-2

 mol
.
protein m

-3
 was supplemented with additional 
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38.8 mg
.
ml

-1
 BSA obtaining cultures with [S]0=0.602 mol

.
protein m

-3
. Table 5 summarises the results 

of both simulations and shows the comparison with experimental data from Gülden et al. (2002). 

 

Table 5. Comparison between experimental and calculated fraction attached to serum. Data from 

Gülden et al. (2002).  

Substance Exp.fraction 
[S]0=1.81 10-2 mol.protein m-3 

Calc. 

fraction  

Exp. fraction  
[S]0=0.602 mol.protein m-3 

Calc. 

fraction  

p,p’-DDT 0.075 0.093 0.74 0.77 

p,p’-DDE 0.10 0.066 0.79 0.70 

dieldrin 0.14 0.15 0.86 0.85 

lindane 0.17 0.17 0.87 0.87 

Pentachlorophenol 1.00 0.16 1.00 0.86 

2,4,5-trichlorophenol 0.68 0.31 0.98 0.94 

2,4-dichlorophenol 0.09 0.23 0.77 0.91 

4-chlorophenol 0.10 0.12 0.77 0.82 

phenol 0.0 0.04 0.0 0.57 

 

4. DISCUSSION 

4.1. KS CORRELATIONS 

Figure 10 shows the two correlations used in this work. Whereas Kramer (2010) correlation was 

developed specifically for PAHs (logKow between 3.3 and 6.1), the correlation from deBruyn and 

Gobas (2007) is based on a literature analysis covering a wide margin of log Kow values (-1.3 to 8.8). 

For the simulation of cell-based assays for PAHs we employed the first correlation, whereas for the 

simulations in Table 9 (log Kow from 1.5 to 7) we used the second correlation which improved the 

results when compared with the experimental data.  

 
Figure 10.Comparison between the two correlations to calculate KS as a function of Kow used in this 

work. 



 20 

In any case, independently of the correlation used, the results point out the importance to considering 

the binding to proteins when assessing the toxicity of a certain compound. In addition, they have also 

shown that there are some problems to characterize this influence by considering only the Kow, see for 

example the extreme cases, from one to zero, of pentachlorophenol and phenol, but in general terms 

they probably would improve the assessment of the toxicity of a certain compound.  

The case of pentachlorophenol may be due to specific binding with albumin, whereas for phenol, there 

is a high variability (see confidence intervals in Fig. 10) at log Kow values lower than 2.  

4.2. THE INFLUENCE OF SERUM ON in vitro EXPERIMENTS 

Another aspect to consider is the type of effect serum has on the EC50 values obtained during in vitro 

experiments. Gülden et al. (2002) found a linear relationship between the EC50 values and the serum 

level for several compounds. To compare with their results, we have calculated the dissolved 

concentration at serum level 1.81
.
10

-2
 mol

.
protein m

-3
 that we would obtain with a nominal 

concentration of 30.6, 33.3, 39.2 and 219 µM reported in their paper as the EC50 values for p,p’-DDT, 

Dieldrin, Pentachlorophenol and 4-Chlorophenol, respectively. Then we have calculated which value 

of this nominal concentration would produce the same dissolved concentration as the amount of serum 

increases in the medium.  

 

Figure 11. Relation between toxic potency of p,p’-DDT, Diledrin, 4-Chlorophenol and 

Pentachlorophenol -defined as the nominal concentration that produces a dissolved phase 

concentration equivalent to that obtained at [S]0=1.81
.
10

-2
 mol

.
protein m

-3
 - and albumin concentration. 

 

The results are summarized in Figure 11. As it can be observed the model also predicts a linear 

relationship between EC50 and serum levels as observed experimentally by Gülden et al. (2002). In 
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addition, the extrapolation values at high serum levels agree with the experimental values reported by 

Gulden et al (2002) with the exception of Pentachlorophenol, where the calculated EC50 values are 

lower than the experimental ones. As pointed out by Gülden et al. (2002) this indicates the serum has 

no other effect than to bind the chemicals. In addition, our simulation points out that the same 

dissolved concentration will produce the same observed effect, in this case EC50, therefore, serum 

influence can be removed from in vitro experiments by considering dissolved concentrations. The 

different behaviour of Pentachlorophenol, which was also clear in the results from Table 5, suggests 

that the binding in this case is of different nature than the non-specific binding assumed for the 

development of correlations for KS. 

4.3. LOOSES TROUGH THE HEADSPACE 

To analyze the dynamics of looses due to volatilization and the possibility of cross contamination 

between wells in the plate, we have analyzed the extreme case of two wells with a common headspace, 

see Figure 12. We have assumed the same conditions in each well in terms of volume of liquid, 

number of cells and serum. Furthermore, we have placed, at the beginning of the simulation, a certain 

amount of a chemical compound in one well. At the end of the experiment, and assuming there are no 

decomposition/metabolism reactions, we will have the same concentrations in both wells. The 

objective is to assess how long it will take to reach the equilibrium as a function of the Henry law 

constant values in relation with the normal duration of a cell-based assay experiments (2-4 days). 

 

 
Figure 12. Simulated experiment with common headspace. 

 

Figures 13 and 14 shows the two extreme cases for PAH as a function of the values of the Henry law 

constant at 37° C. As can be observed in Figure 13, for fluorene, the equilibrium is reached after only 

two hours of the experiment; therefore one should expect that this compound would be able to 

contaminate adjacent wells in experiment not performed with closed wells. Conversely, for Benzo [b] 

fluoranthene the time necessary to reach equilibrium is much longer that the duration of the 

experiment and therefore, the risk of cross contamination under normal conditions is quite low.  

Air exchange 

Chemical (CA=x) 

Cell 

Headspace 

Air exchange 

Control (CA=0) 

Cell 
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Figure 13. Simulated total concentrations for Fluorene in the liquid and gas phases of two wells with a 

common headspace during a 48 h experiment. 

 

 
Figure 14. Simulated total concentrations for Benzo [b] fluoranthene in the liquid and gas phases of 

two wells with a common headspace, during a 48 h experiment. 

 

If we assume that the experimental conditions are standard at the HTS facility and we impose a 10% 

limit for the losses (one should consider that the simulated case is not realistic since the wells are 

covered by a lid and therefore the headspace losses are less than the simulated ones) and a compound 
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with the physico-chemical properties of Phenanthrene, we can establish a limit value for the H37 as 

0.024 Pa m
3
 mol

-1
. In a similar way, this value can be calculated for the other compounds, but the 

simulations show that the H value is also related to the other physico-chemical properties, mainly log 

Kow as well as the experimental conditions. 

4.4. TIME SCALES 

One important assumption in this mass balance model is that sorption processes are fast compared with 

the other processes, i.e. the partitioning is instantaneous. To check the validity of this assumption, we 

have modelled the bioconcentration of compounds by 3T3 cells assuming constant uptake and 

depuration rates and by modelling the medium-cell exchange as shown by Del Vento and Dachs 

(2002). 

The concentration of a compound in the 3T3 cells over time can be expressed, assuming a self-

sustained cell community (no dilution effects due to growth), and a metabolism rate much lower than 

the depuration rate, as: 

cell
diss cell

upt dep

dC
k C k C

dt
= ⋅ − ⋅  (29) 

where kupt (m
3
 mg

-1
 h

-1
) and kdep (h

-1
) are the uptake and depuration rates constants. Uptake and 

depuration constants can be parameterized as function of bioconcentration factors of the chemical, 

permeability (P, m h
-1

) of the cell membrane and specific surface area (Sp, m
2
 kg

-1
) (Del Vento and 

Dachs, 2002): 

PSk

BCF

PS
k

pupt

p

dep

⋅=

⋅
=

 (30) 

The specific surface area of 3T3 has been estimated by assuming spheric shape and a volume of 

1.8±0.7 10
-15

 m
3
 (Gülden et al., 2002) and a density of 1025 kg m

-3
 (Del Vento and Dachs, 2002). This 

gives a specific surface area (Sp) of 387.9 m
2
 kg

-1
. 

In order to predict uptake and depuration rates it is necessary to know values for BCF and P. Since 

estimations of BCF and P exist only for a few number of compounds (e.g. Skoglund et al., 1996; 

Wallberg and Andersson, 1999; Swackhamer and Skoglund. 1993), these parameter has been 

calculated using empirical approximation based on the physical-chemical properties of the 

contaminant. For BCF we have used Eqs. (10)-(11). The same considerations can be made for the 

estimation of permeability of cell membrane and similar regressions have been proposed (Del Vento 

and Dachs, 2002): 

log P= 1.340 log Kow – 8.433                      for log Kow < 6.4 (31) 

log P= 0.078                                                for log Kow ≥ 6.4 (32) 



 24 

Table 6 summarizes the uptake and depuration constants used in Eq. (29) to calculate the rate of 

change of concentrations of PAHs in 3T3 cells 

 

Table 6. Uptake (m
3.

kg
-1.

h
-1

) and depuration (h
-1

) constants used in the model. 

Compound (PAHs) 3T3 cells  

 kupt kdep 
Naphthalene 0.047 0.061 

Anthracene 1.74 0.121 

Fluorene 0.47 0.095 

Phenanthrene 1.90 0.123 

Pyrene 12.50 0.176 

Fluoranthene 14.59 0.182 

Chrysene 87.32 0.255 

Benzo [b] fluoranthene 464.22 0.351 

Benzo [k] fluoranthene 464.22 0.351 

Benzo [a] pyrene 177.55 0.292 

Benzo [ghi] perylene 464.22 0.244 

Indeno [1,2,3,cd] pyrene 464.22 0.314 

 

Figures 15-17 show the results of the simulation of the behaviour of the internal concentration during a 

48 h experiment assuming constant external concentration and zero initial internal concentration. As 

can be observed, even though the internal concentration reach its equilibrium value before the end of 

the experiment there is a transition period. Therefore, the assumption of equilibrium for the cells does 

not hold and a cell line dynamic model is necessary to consider this part.  

 
Figure 15. Simulated internal concentrations (mg kg

-1
 ww) in 3T3 for Naphthalene, Fluorene, 

Anthracene and Phenanthrene PAHs. t(C = Cfinal/2)= 10.5, 7.2, 5.7, 5.6 h , respectively. 
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Figure 16. Simulated internal concentrations (mg kg

-1
 ww) in 3T3 for Pyrene, Fluoranthene, and 

Chrysene PAHs. t(C = Cfinal/2)= 3.9, 3.8, 2.7 h, respectively. 

 

Figure 17. Simulated internal concentrations (mg kg
-1

 ww) in 3T3 for Benzo[b]fluoranthene, 

Benzo[k]fluoranthene, Benzo[a]pyrene, Benzo[ghi]perylene and Indeno[1,2,3,cd] pyrene PAHs. t(C = 

Cfinal/2)= 1.9, 1.9, 2.4, 2.8 and 2.2 h, respectively. 
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Furthermore as can be observed from the internal concentrations reached; there is a correlation 

between log Kow values and the final internal concentration. In addition, the time to reach the half 

value of the internal concentration is inversely proportional to the log Kow until the value of 6.4 that 

modifies the trend and changes the form of the correlations. 

 

5. CONCLUSIONS 

A dynamical mass balance model that considers the partitioning between the medium and the 

headspace as well as the partitioning in the medium between plastic walls, dissolved, attached to serum 

and to cells, has been developed and implemented. The model predicts how much of the “nominal” 

concentration will contribute to the real toxicity experienced by the cells. This value depend on the 

physico-chemical properties of the compound, principally the octanol-water partition coefficient, Kow,  

and the gas-liquid partition coefficient, KGL. In addition, there is a typical dynamic behaviour of the 

dissolved concentration in the medium that decreases during the experiment due to the growth and 

reproduction of the cells. Consequently, even in the absence of decomposition or metabolism, the 

concentrations in the different compartments of the in vitro cell-based assay are changing over time. 

The model is also able to predict the observed linear effect of serum concentrations on the EC50 value 

found experimentally by Gülden et al (2002) as well as to define a Henry low value above which one 

may expect volatilization problems. Of course, this is an arbitrary limit that should be revised using 

real measurements in the plates. 

Finally, a model of the cell dynamics uptake and depuration rates seems necessary to consider the 

delays in reaching the final concentration during the 48 h experiments. Our next step would consist on 

the development of such a model as well as on the possibility to verify experimentally the results 

obtained concerning the dynamics of chemicals in the cell-based assays. 
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6. NOTATION 

As medium-headspace exchange surface area, m
2
,  

Al headspace losses surface area, m
2
, 

C Concentration, mg/m
3
, 

[C] concentration of cell lipid in medium, kg m
-3

, 

D diffusion coefficient, m
2
 s

-1
, 

F mass flow, mg m
-2

 s
-1

, 

H Henry law constant, Pa m
3
 mol

-1
, 

KC cells-medium partitioning coefficient, m
3
 kg

-1
 lipid, 

KGL gas-liquid distribution coefficient, 

Kow octanol-water partition coefficient 

KP plastic-medium partitioning coefficient, m, 

KS partitioning coefficient between serum and medium, m
3
 mol

-1
, 

kAW two film mass transfer coefficient, m s
-1

, 

kG air film mass transfer coefficient, m s
-1

, 

kL liquid film mass transfer coefficient, m s
-1

, 

k reaction rate constant, s
-1

, 

MW molecular weight, g/mol 

P pressure, Pa, 

R  universal gas constant 

Sc Schmidt number,  

[S] concentration of proteins in medium, mol m
-3

,  

SM plastic- medium exchange surface area, m
2
 

t time, s, 

T temperature, K 

V  volume, m
3
, 

 

Greek symbols 

ρ  density, kg m
-3

, 

µ viscosity, , 

 

Superscripts 

diss dissolved 

p plastic 

S serum 

T total 

 

Subscripts 

AW air-water 

degr degradation 

l loses 

M medium 

H headspace 
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