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SUMMARY 
 

This report deals with the problem of determining the exact values of the 
importance indexes of basic events in case of both unavailability and 
frequency analysis of coherent and non-coherent fault trees. In particular a 
new method is described for determining the importance of enabling events 
in case of frequency analysis. Insights are given into the importance analysis 
implemented in the new software ASTRA 3.0 based on the Binary Decision 
Diagram approach with Labelled variables (LBDD). The analysis methods 
are also described with reference to modularised fault trees. Simple 
numerical examples are provided to clarify how the methods work. Proofs 
of the implemented equations are provided in Appendixes. 



 



 1 

TABLE OF CONTENTS 
 
1. INTRODUCTION            3 
 
2. BACKGROUND CONCEPTS           4 
 2.1 The binary decision diagram with labelled variables       4 
 2.2 Determination of the unconditional failure and repair frequencies using LBDD    5 
 2.3 Initiating and enabling events          7 
 
3. STATE OF THE ART ON COMPONENTS’ IMPORTANCE MEASU RES    9 
 
4. IMPORTANCE INDEXES BASED ON UNAVAILABILITY    12  
 4.1 Unavailability equation         12 
 4.2 Marginal importance indexes        12 
 4.3 Structural importance ISx         15 
 4.4 Criticality index ICx         15 
 4.5 Risk Achievement Worth and Risk Reduction Worth     15 
 4.6 Determination of importance indexes on a modularised fault tree   17 
 4.7 Example of application         19 
 
5. IMPORTANCE INDEXES BASED ON FAILURE FREQUENCY    21 
 5.1 Determination of the unconditional failure frequency     21 
 5.2 Importance measures for initiating and enabling events     21 
 5.3 Some clarification examples        24 
 5.4 Determination of the importance indexes of initiating and enabling events 

      on a modularised fault tree        34 
5.5 Risk Achievement Worth (RAW) and Risk Reduction Worth (RRW)   39 
5.6 Implementation issues         39 
5.7 Application of the Importance Measures to a Non-coherent fault tree   44 

 
6. CONCLUSIONS           48 
 
ACKNOWLEDGEMENTS          48 
 
REFERENCES           49 
 
APPENDIX 1: Determination of RAW for different type s of variables    50 
APPENDIX 2: Determination of pf and pr on a modularised fault tree    52 
APPENDIX 3: Determination of 

xxxx E,I,E,I  on a modularised fault tree   54 

APPENDIX 4: Complementation of an LBDD       56 



 2 



 3 

1. INTRODUCTION  
 
Fault Tree Analysis (FTA) is a popular methodology for Reliability, Availability, Maintainability, and 
Safety (RAMS) studies of complex systems, allowing to systematically describe the system’s failure 
logic - for each system failure state or Top event - and to determine several probabilistic parameters 
useful e.g. for design improvement, diagnostic, maintenance. In particular the importance measures of 
basic events represent the contribution of components failure to the occurrence of the system failure 
described at the Top-event level.  
Fault trees of real systems containing the AND, OR Boolean operators are referred to as Coherent; 
they are characterized by monotonic (non-decreasing) functions with respect to all basic events. Non 
monotonic logical functions are also of interest; the non monotonic behavior is due to the presence of 
the NOT operator. Fault trees containing the NOT operator are referred to as non-coherent and are 
very helpful in modelling e.g. mutually exclusive events, event-tree sequences, top-events conditioned 
to the working state of one or more component / subsystem, and maintenance procedures. 
 
ASTRA allows the user to handle both coherent and non coherent fault trees. It is based on the state of 
the art approach of Binary Decision Diagrams (BDD) in which labels are dynamically associated with 
nodes giving what we called a Labelled BDD (LBDD). A clear description of the LBDD can be found 
in Contini & Matuzas (2010a), a report that provides also insight into the probabilistic analysis 
methods implemented in ASTRA 3.0. 
 
This report is focussed on the methods implemented for the determination of the ranking of basic 
events according to a selected set of importance measures. The ranking of importance measures finds 
different applications, in particular for design improvement when coupled with sensitivity analysis 
techniques as described in Contini et al (2010c). Other applications are on system diagnosis and 
maintenance.  
In literature several importance measures can be found; sometimes the same index is named in 
different ways by different scientists and practitioners. The importance measures considered in this 
report are: 
− Marginal importance or probability of critical state; 
− Criticality importance; 
− Risk Achievement Worth; 
− Risk Reduction Worth. 
The selection of the importance measure of interest is up to the user and depends on the objectives of 
the analysis.  
 
Whereas in the scientific literature the importance indexes based on unavailability are extensively 
described the importance based on the failure frequency (from which the Expected Number of Failures 
is determined and used as upper bound for unreliability) is not so rich. In case of failure frequency it is 
important to classify events as initiators or enablers since they role in systems are different and 
consequently they must be treated differently. 
 
The aim of this report is to describe in detail the methods implemented in ASTRA 3.0 for calculating 
the importance ranking of basic events in case of both unavailability and frequency analysis. A new 
method has been developed and implemented for determining the exact importance value of enabling 
events and of the enabling contribution of initiating events.  
 
The report is organised as follows. The next section describes some concepts useful to facilitate the 
reading of the report. Section 3 briefly describes the state of the art in importance analysis. Sections 4 
and 5 constitute the core of the report and are devoted to the description of the analysis methods 
implemented in ASTRA 3.0. Proofs of equations and other useful information are given in four 
Appendixes.  
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2. BACKGROUND CONCEPTS 
 
In order to facilitate the comprehension of the content of this report some basic concept are briefly 
described in this section. They concern: 1) the Labelled BDD implemented in ASTRA 3.0; 2) the 
equations for determining the unconditional failure and repair frequencies; and 3) the initiating and 
enabling events. 
 
2.1 The binary decision diagram with labelled variables 
 
A BDD with labelled variables (LBDD) is an Ordered BDD (OBDD) in which variables are 
dynamically labelled with the information about their type (Contini et al. 2006; Contini & Matuzas, 
2010a). The LBDD was introduced to analyse non-coherent fault trees which generally contains three 
different types of events: 
− Single form Positive (SP), i.e. events appearing in positive (normal) form only; 
− Single form Negated (SN), i.e. events appearing in negated (complemented) form only; 
− Double form (DP), i.e. events appearing in both forms (positive and negated). 
 
The characterisation of three different types of variables requires labelling only two of them. Hence in 
ASTRA variables of SN type are labelled with the symbol $; variables of DF type are labelled with the 
symbol &. Additionally, the ordering used during the LBDD construction is &x<x<$x. 
For instance the function φ =a b +a c + bc contains the SN variable a, the SP variable b and the DF 
variable c. Hence the function is represented using the labelled variables as φ = $a b + $a c + b $c. 
Events with the “&” label (DF type) are dynamically generated during the constructing of the LBDD 
when two occurrences of the same event - but differently labelled - are combined.   
The rules for constructing the LBDD for non-coherent functions are described in Contini & Matuzas 
(2010a); for coherent functions the LBDD is obviously equivalent to the classical BDD.  
 
The main reason for defining the LBDD is that different types of variables require different algorithms 
of analysis presenting different degree of complexity. Indeed, on nodes with &-variables the 
determination of the Prime Implicants (PI) and of the failure and repair frequencies require the logical 
intersection between the left and right descending functions, whereas this is not needed for the other 
two types of variables.  
Moreover the knowledge of the variables’ type is useful for the analysis of very large non-coherent 
fault trees, for which the complete LBDD is too complex to be stored in the available working 
memory. A set of rules, which have been defined in Contini & Matuzas (2010b), can be used for 
constructing a reduced ZBDD (RZBDD) of a non-coherent fault tree embedding only Significant 
Minimal Cut Sets (SMCS) having probability greater than and /or order less that predefined thresholds. 
A ZBDD is a convenient way to store MCS.  
 
As an example of LBDD consider the function φ(x) = x2 (x1 +x3 +x4) + x3 (x1 +x2 x4). In this 
function all variables are of DF type. After labelling all negated variables the LBDD is constructed 
based on the ordering x2 < x1 < x3 < x4. Figure 2.1 shows the LBDD so obtained.  
Note that in this LBDD there is one node with a DF variable (&x2) and one node with an SN variable 
($x1), whereas the variables associated with all other nodes have no label, i.e. they behave as SP 
variables. Thus, in spite of the fact that the fault tree has all four variables of DF type, the LBDD has 
only one. 
The above LBDD can be further simplified by applying the following rules:   
− the & label can be removed if the left descendant is equal to 1 or the right one is 0;  
− if the left descendant is equal to 0 or the right one is 1, the & label is substituted by  
 $ and the two descendants are exchanged. 
Changing &x2 with x2, the final LBDD does not contain any variable of DF type. 
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Figure 2.1 LBDD representation of Top = x2 (x1 +x3 +x4) + x3 (x1 +x2 x4). 
Left: intermediate result:  Right: final result 

 
 
2.2 Determination of the unconditional failure and repair frequencies using LBDD 
 
The importance measures described in this report are based on the unavailability and failure 
frequencies determined by visiting the LBDD in bottom-up mode.  
The equations to be applied to each node depend on the type of the associated variable. The description 
of the equations to be applied on an LBDD is preceded by the definitions of failure and repair 
frequencies. 
 
The time specific unconditional failure frequency ωi(t) of a generic event xi is the probability that xi is 
verified (xi = 1) at time t-t+dt given that xi = 0 at time 0.  If λ i is the constant failure rate of the 
component, then ωi(t) = λ i (1 – qi(t)), where qi(t) is the component unavailability at time t. For non 
repairable components ωi(t) = f(t), the failure density. 
 
The time specific unconditional repair intensity νi(t) of a generic event xi is the  probability that xi is 
not verified (xi = 0) at time t-t+dt given that xi = 0 at time 0. If µi is the constant repair rate of the 
component, then νi(t) = µ i qi(t). For non repairable components µ i = 0, i.e. νi(t) = 0. 
 
Let (A B) be a system failure combination, i.e. a minimal cut set of a fault tree.  
The unconditional failure frequency Ω(A B) that the combination (A B) occurs (enter into the failed 
state) in the time interval dt is given by the probability that A occurs in t-t+dt (represented by ωA(t) dt) 
with B already failed at t (represented by qB(t)) or that B occurs in t-t+dt with A already failed at t, i.e.: 
 
Ω(A B) = qB(t)  ωA (t) + qA(t) ωB(t)  
 
The unconditional repair frequency V(A B) in the time interval dt is given by the probability that A is 
repaired in t-t+dt (represented by νA(t)) with B already failed at t (represented by qB(t)) or that B is 
repaired in t-t+dt with A failed at t, i.e.: 
 
V(a b) = qB(t)  νA (t) + qA(t) νB(t)   
 
With the aim of simplifying the notation from now on the dependence of time will be omitted, 
implicitly meaning that the equations are applied at a generic time t. 
 
Let X = x F +x G be the generic node of the LBDD. The problem is to determine the unavailability 
and the unconditional failure and repair frequencies. The following notation is used: 
− Qout is the unavailability of the function X; 

  &x 2 

$x1 

x3 x3 

1 0 

1 

x4 

1 0 

0 

   x2 

$x1 

x3 x3 

1 0 

1 

x4 

1 0 

0 
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− ωout is the unconditional failure frequency of X; 
− νout is the unconditional repair frequency of X; 
− Q1 = P(F) and Q0 = P(G); 
− ω1 and ω0 are respectively the unconditional failure frequencies of F and G; 
− ν1 and ν0 are respectively the unconditional repair frequencies of F and G; 
− qx, ωx, and νx are respectively the unavailability, failure and repair frequencies of x. 
 
At terminal nodes of the LBDD:  
Q1 = 1, Q0 = 0, ω1 = 0, ω0= 0, ν1 = 0, ν0 = 0. 
 
The parameters Qout, ωout and νout at the root node determine the parameters at Top-event level. 
 
The equations to be applied to nodes with variables of different type are listed herewith (Since the 
analysis is of bottom-up type the unavailability and frequencies of function F and G are supposed to be 
known). 
 
SP variable 
If x is coherent positive, then X = x F + G. 
The unavailability is given by: 

Qout = qx Q1 + (1- qx) Q0        (2.1) 
Applying the rules for the determination of the failure frequency we get: 

ωout = ωx Q1 + ω1 qx + ω0 (1- qx) – ωx Q0      (2.2) 
νout = νx Q1 + ν1 qx + ν0 (1- qx) – νx Q0      (2.3) 

 
SN variable 
If x is negated then X = $x F + G.  
Hence the unavailability is given by:  

Qout  = q$x Q1 + (1- q$x) Q0           (2.4) 
Applying the rules for the determination of the failure frequency, we get: 

ωout = νx Q1 + (1 - qx) ω1 + ω0 qx – νx Q0      (2.5) 
νout = ωx Q1 + (1 - qx) ν1 + ν0 (1- qx) – ωx Q0      (2.6) 

 
DF variable  
If x is of DF type then X = x F + $x G + F G. In this case the product F G represents the consensus 
term and its importance for failure calculations. 
The unavailability is given by: 

Qout(t) = qx Q1 + q$x Q0        (2.7) 
 

Concerning the failure frequency: 
Applying the rules for the determination of the failure frequency, we get: 

ωout = ωx Q1 + qx ω1 + (1 - qx) ω0 + νx Q0 – (ωx + νx) Pr {F ∧ G }   (2.8) 
νout  = νx Q1 + qx ν1 + (1 - qx) ν0 + ωx Q0 – (ωx + νx) Pr {F ∧ G }   (2.9) 

 
NOTE: 
In the above equations the dependence on time has not been displayed, meaning that the equations are 
applied at the generic time t, from t = 0 to the mission time t = T. 
 
As can be seen equations (2.8-9) are more complex than equations (2.2-3) and (2.5-6). Using the 
LBDD the more complex equations are applied only when they are strictly necessary. 
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2.3 Initiating and enabling events 
 
In fault tree analysis several types of events are considered. Along with the positive, negated and 
double form events there are situations in which it is necessary to distinguish between initiating and 
enabling events. This occurs when the Top-event describes a catastrophic system failure that is a 
failure that cannot be repaired or a failure with very dangerous consequences as e.g. “reactor 
explosion”, “release of toxic substance in the atmosphere”, “missile fails to perform its mission”. In 
these cases it is important to determine the probability of no failure during the mission time, i.e. the 
reliability or its complement to 1 (unreliability). 
 
Note that the exact value of the unreliability of systems with repairable components cannot be 
determined by means of fault tree analysis (Clarotti, 1981). However (good) approximated 
conservative results can be obtained through the determination of the Expected Number of Failures 
(ENF). This bound is based on the unconditional failure frequency, which is the time derivative of the 
ENF (Kumamoto & Henley, 1996).  
 
In performing the importance analysis based on the unconditional failure frequency it is necessary to 
subdivide the basic events into two groups: initiating and enabling because they have different 
meaning and they are treated differently. Initiating events cause perturbations of process variables; 
enabling events are associated with the failure on demand of the protective systems. For instance, in 
the following example: “An accident occurs if at the time of occurrence of the initiating event (failure 
mode of the control system causing a plant perturbation, e.g. very high pressure) the enabling event 
(failure mode of e.g. the shut-down system) has already occurred or it occurs at the time it is called to 
intervene”.  The inverse sequence would lead to the plant shut down, but not to the accident.  
This simple example shows that, differently from the unavailability analysis (failure at a given time t) 
where the order in which components fail is not relevant, in case of frequency analysis the failure 
sequence is very important. 
The sequence of intervention of the initiator and enabler events can be modelled in ASTRA using the 
Inhibit (INH) gate, in which the two inputs can be complex dependent sub-trees. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2 The INH gate as used in ASTRA for modelling the relationship  
between initiating and enabling events 

 
 
An Initiating event is an event whose occurrence triggers the intervention of the Enabling event. 
The output is true when, at the time the input is true, the condition defined by the enabler event is 
already true.  
The method implemented in ASTRA identifies the events as either initiators or enablers depending on 
the sub-tree they belong to. Common events are flagged as initiators.  

 

Safety system 
Failure 

Output event 

E 

I 

Process failure 



 8 

 
The differentiation of the type of events has an impact on the calculation of the ENF, since initiating 
events are characterized by their failure frequency ω(t), whereas enabling events, associated with 
components of the protective system, are characterized by their on-demand unavailability q(t). Hence 
the unconditional failure and repair frequencies of enabling events are set to zero. 
 
Using the INH gate the failure and repair frequencies of the output event are given by: 
ωout(t) = ωI(t) qE(t) 
νout(t)  = νI(t) qE(t) 
 
In calculating the importance measures it is important to recognise that an initiating event may also 
appear, in certain MCS, as enabler. This situation arises when an initiating event is in a MCS with 
another initiating event.  
Consider for instance the MCS  (A B) where A, B are independent initiating events.  
 
The failure frequency of the MCS is given by: 
ωAB(t) = ωA(t) qB(t) + ωB(t) qA(t) 
 
Consider e.g. event A. In the first term of the right hand side A behaves as initiator because it is 
characterised by ωA(t), whereas in the second term as enabler, characterised by qA(t).  
 
A description of the need to identify enabling events with a simple application can be found in 
Demichela et al (2003). It is worth to note that in that paper equation (3) is wrongly written: the typing 

mistake is pretty obvious. The correct equation is  dt
tq

t
tQdtt

n

j j

j
cc ∑

=

=
1 )(

)(
)()(

ω
ω . 

 
Other examples of application of the determination of the system failure considering initiating and 
enabling events are provided in the Test Case Report of ASTRA 3.0 (Contini & Matuzas, 2009). 
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3. STATE OF THE ART ON COMPONENTS’ IMPORTANCE MEASU RES 
 
The importance measures of basic events in fault tree analysis allows the designer to identify the 
relatively most critical points of the system, for the top event of interest, from which design 
alternatives can be identified to improve the system performances. Other applications are system 
diagnoses and maintenance. A clear overview of importance measures can be found in Van der Borst & 
M., Schoonakker (2001),   
 
For coherent systems, represented as a monotonic function of the vector of variables x, in the form 

),0x(),1x(x)( kkk xxx =Φ+=Φ=Φ , the first importance measure was proposed by Birnbaum. The 
Birnbaum importance [IBxk(t)] of a component, say xk, is defined as the probability that, at time t, the 
system is in a critical state for the failure of xk, i.e. the system works if the component works and fails 
if the component fails.  
Mathematically: xkkkxk qtQtxPtxPtIB ∂∂==Φ−=Φ= Φ /)()),,0(()),,1(()( xx  where QΦ(t) is the 

unavailability of Φ(x) at time t. 
This index does not depend on the failure probability of component x. However, it is important that: 
− It gives the maximum variation of the Top event unavailability when the component changes its 

state from perfectly working to failed; 
− It is useful when used in connection with other indexes; 
− Other indexes can be expressed as a function of it. 
 
For non-coherent systems the Birnbaum index as defined above loses its meaning, since it can assume 
negative values. Non coherent systems are described by Boolean functions containing negated events. 
The generalization of the Birnbaum index for non-coherent functions was proposed by Jackson, 
Zhang-Mei, Becker-Camarinopoulos and recently by Beeson-Andrews. 
 
In order to be able to rank the events in order of importance Jackson (1983) proposed to use the 
absolute value of IBxk(t) for non-coherent systems, i.e.  

xkkk
Jackson
xk qtQtxPtxPtIB ∂∂==Φ−=Φ= Φ /)()),,0(()),,1(()( xx  

Naturally, the absolute value implies a loss of information about the criticality of components. 
 
Zhang and Mei (1985) defined the two probabilities )t(IBxk

+  and )t(IBxk
−  as representing the two 

contributions of the criticality of non-coherent variables: 
]1)t,,0x()t,,1x([P)t(IB kkxk ==Φ−=Φ=+ xx  

]1)t,,0x()t,,1x([P)t(IB kkxk −==Φ−=Φ=− xx  
 
Becker-Camarinopoulos (1993) introduced the definition of Failure Criticality Function (FCF) and 
Renewal Criticality Function (RCF).  
The Failure Criticality Function for the generic variable xk is a Boolean function defined as:  

)]t,,0x(1)[t,,1x()t(FCF kkxk xx =Φ−=Φ= . It expresses the fact that a generic component xk is 

critical when the system fails if the component fails (xk = 1 ⇒ Φ(xk=1, x) = 1) AND it works if the 
component works (xk = 0 ⇒ Φ(xk=0, x) = 0, or equivalently 1 - Φ(xk=0, x) = 1). 
If xxk is coherent then FCFxk = IBxk, since Φ(xk=1, x) Φ(xk=0, x) = Φ(xk=0, x).  
The expected value of FCFxk at time t, i.e. Pr(FCFxk =1, t), is indicated as pf

xk(t) and represents the 
probability of the critical state for the failure of xk at time t. 
The Renewal Criticality Function RCFxk is a Boolean function defined as:  

)]t,,1x(1)[t,,0x()t(RCF kkxk xx =Φ−=Φ= . It expresses the fact that a generic component xk is 

critical when the system fails if the component is repaired (xk = 0 ⇒ 0 ⇒ Φ(xk =0, x) = 0) AND it 
works if the component fails (xk = 1 ⇒ Φ( xk =1, x) = 0, or equivalently 1 - Φ( xk =1, x) = 1). 
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If xxk is coherent then RCFxk = 0 since Φ(xk=1, x) Φ(xk=0, x) = Φ(xk=0, x). 
The expected value of RCFxk at time t, Pr(RCFxk =1, t), is indicated as pr

xk(t) and represents the 
probability of the critical state for the repair of xk at time t.  
 
Beeson-Andrews (2003a) proposed an extension of the Birnbaum index of component importance for 
non-coherent systems. This measure is given by the sum of the probabilities of all critical states for the 
non-coherent component, i.e.: 
Gxk(t) = Gxk

F(t) + Gxk
R(t) 

− Gxk
F(t) is the probability that, at time t, the system is in a working state such that the failure of 

component x in t-t+dt causes the system to fail. )t(q/)t(Q)t(G xk
F
xk ∂∂= Φ  

− Gxk
R(t) is the probability that the system is in a failed state at time t such that the repair of 

component x causes the system to fail. )t(p/)t(Q)t(G xk
F
xk ∂∂= Φ  

In these equations qxk(t)=P(xk=1) and pxk(t)=P(xk=0). 
The calculation of Gxk

R(t) and Gxk
F(t) is done considering the exact equation of the system 

unavailability calculated using the inclusion-exclusion method applied to the disjunction of the prime 
implicants or the BDD.  
 
On the basis of the Birnbaum index, extended also to non-coherent functions, other indexes can easily 
be calculated such as the Criticality index, Risk Achievement Worth and Risk Reduction Worth as 
described in the next section. 
 
Algorithms for determining importance measures working on the BDD representation of fault trees 
have been developed by Dutuit and Rauzy (2001).  
 
The importance measures as defined above are all based on unavailability (failure probability at time 
t), i.e. the fault tree is analysed for a Top event concerning the system unavailability.  
The scientific literature describing the determination of importance measures based on failure 
frequency is not as rich as for the case of unavailability. The first paper dates back to 1975 when 
Lambert (1975) introduced the definitions of initiating and enabling events. Initiating events cause 
perturbations of process variables; enabling events are associated with the on-demand unavailability of 
protective systems.  
 
In IAEA TECDOC 590 (1991) the importance indexes of initiating and enabling events are defined as 
“ the ratio between the unconditional failure frequencies of the union of MCS that contain the event of 
interest over the Top event failure frequency”.  
The use of the unconditional failure frequency instead of the Expected Number of Failure is simpler 
and faster compared with the use of the ENF in that the integration is not performed. These importance 
measures are almost equal to those calculated on the basis of the ENF only if the system failure 
frequency is constant, a condition that occurs when all (or almost all) system’s components are 
repairable. Unfortunately, this is not the general case.  
 
Concerning the importance measures of initiating events the first method was proposed by Barlow and 
Proschan (1975). Indeed the system failure frequency ΩΦ(t) can be expressed, for instance, using the 
Becker-Camarinopoulos notation, as: 
 

)()()()(
1

ttptt
n

i
i

f
i

n

i
i∑ ∑

=
Φ =Ω=Ω ω . 

 
The importance of the i-th event is given by its contribution to system failure frequency, i.e.:  
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This expression can easily be extended to non coherent functions, for which 
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In the above equations n is the number of basic events and ωi (νi) is the unconditional failure (repair) 
frequency of the i-th basic event.  
 
The most recent method published is due to Beeson-Andrews (2003b). They described an exact 
method to determine the contribution to system failure of an enabling event when an initiating event 
causes the system to fail. Their method, applicable also to non-coherent function, is based on the 
determination of the second derivatives of the system unavailability with respect to the considered 
couple of initiating and the enabling events. This method is briefly described in this report by means of 
some examples.  
 
A method alternative to that of Beeson-Andrews is proposed in this report. It allows determining the 
importance indexes of initiating and enabling events for both coherent and non-coherent functions. The 
importance measures are derived from the equation for determining the system’s unconditional failure 
frequency. It is shown that the importance for initiating events is equal to the Barlow-Proschan index. 
The complete description of the new method is given in section 5 together with some simple 
clarification examples.  
 
The methods described in the next two sections have been implemented in ASTRA 3.0. In section 6 a 
comparison of the results of the analysis of a simple system performed by means of ASTRA 3.0 and of 
the previous version ASTRA 2.1 is provided. Differences are due to the fact that in ASTRA 2.1 the 
probabilistic analysis is performed on MCS and simplified equations substituted the integration of the 
failure frequency.   
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4. IMPORTANCE INDEXES BASED ON UNAVAILABILITY 
 
In case of unavailability analysis, the following importance measures have been implemented in 
ASTRA 3.0 and described in this report: 
− Marginal importance 
− Criticality 
− Risk Achievement Worth 
− Risk Reduction Worth 
 
The equations for determining the above importance measures will be derived considering the case of 
a non-coherent variable, from which the equations for coherent variables can easily be obtained. 
 
4.1 Unavailability equation 
 
Consider the following non-coherent function containing the variable x of DF type: 
 
Φ = x Φ1 +x Φ0           (4.1) 
 
where Φ1 = Φ(xi=1, x) and Φ0 = Φ(xi=0, x). 
 
In order to simplify the notation the time dependency of probabilities will not be explicitly shown, 
meaning that the equations given are supposed to be determined for a generic time t within the mission 
time. 
 
The probability of function (4.1) is given by: 
 

)(P)](P)(P[)x(P)(P 001 Φ+Φ−Φ=Φ  

 
In this function, however, the contributions of x in normal form and in complemented form do not 
explicitly appear. In order to consider both forms it is convenient to add the consensus term Φ1 Φ0 to 
equation (4.1) giving:   
 
Φ = x Φ1 +x Φ0 + Φ1 Φ0         (4.2) 
 
The unavailability of this function can be written in the following form in which the contributions to 
the unavailability of the event in positive and complemented form are made explicit: 
 

)(P)](P)(P[)x(P)](P)(P[)x(P)(P 01010011 ΦΦ+ΦΦ−Φ+ΦΦ−Φ=Φ  
 

Since )BA(P)A(P)BA(P −= , the above can also be written as: 
 

)(P)(P)x(P)(P)x(P)(P 011001 ΦΦ+ΦΦ+ΦΦ=Φ       (4.3) 

 
 
4.2 Marginal Importance Indexes  
 
From eq. (4.3) we find the probability of the system critical state respectively for the failure and repair 
of event x: 
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)(
)(
)(

01 ΦΦ=
∂

Φ∂
P

xP

P
          (4.4) 

 

)(
)(

)(
01 ΦΦ=

∂
Φ∂

P
xP

P
          (4.5) 

 

pf
x = )(P 01 ΦΦ  is the probability of the system critical state for the failure of component x, i.e. the 

system works (the Top event is not verified) if the i-th component works and fails (the Top event is 
verified) if x fails.  

For coherent variables 10 Φ⊂Φ which leads to 001 ΦΦΦ =  or equivalently 0ΦΦ 01 = . 

 

pr
x = )(P 01 ΦΦ  is the probability of the system critical state for the repair of component x, i.e. the 

system works (the Top event is not verified) if the component x fails  and fails (the Top event is 
verified) if x works.  
 
Note that: 
 

r
xxxxox

f

x
pPPp =ΦΦ=ΦΦ= )()( 101

, simply because 1=x is equal to .0=x  

 
 
4.2.1 Implementation in ASTRA  
 
For implementation purposes it was found more practical to use the equivalent form: 
 

)()()( 01101 ΦΦ−Φ=ΦΦ PPP  and )(P)(P)(P 010011 ΦΦ−Φ=ΦΦ  
 
These expressions are calculated in ASTRA for all events by traversing the LBDD twice.  
Once pfi and pri are known then all other indexes can be calculated. 
 
The determination of the Marginal Importance indexes is briefly described below with reference to the 
following figure showing the different parts of interest of the BDD.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider the node with the variable x. D1 and D0 are the BDD descending respectively from x; R is 
the set of paths from x to the root node included; S is the set of all other paths (from 1 to root) not 
containing the node x. The above sets of nodes are not generally disjoint; only R has no common 
nodes with D1, D0. 
Suppose that there is only one occurrence of x in the BDD.  

x 

Root node 

R 

S 

D1 D0 
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We can write: 
Φ = x R D1 +x R Φ0 + S 

S+DR=Φ 11  and S+DR=Φ 00 .  

)()()( 01101 ΦΦ−Φ=ΦΦ PPP )]DD(P)D(P)[R(P 011 −=  

)()()( 01001 ΦΦ−Φ=ΦΦ PPP )]DD(P)D(P)[R(P 010 −=  
 
The equations for determining pf

i and pri depend on the type of variable, i.e.: 
1. if x is of type SP, then  Φ1 Φ0 = Φ0, which gives: 

0)]P(-)([)( 01 ≠= DDPRPp f
x        

0=pr
x   

Here pfi is nothing but the Birnbaum importance index of x. 
 

2.  if x is of type SN then, according to the classification of variables in ASTRA:  
 pf

$x = 0  
0�‚)]P(D-)[P(DP(R)=p 01

r
$x  

 
3. If x is of type DF then we have to consider the two contributors 

0)]P(-)([)( 011 ≠= DDDPRPp f
x        

0)]DDP(-)D(P[)R(Pp 011
r

x$ ≠=        

 
The determination of Pr(R), Pr(D1), Pr{D0} and Pr(D1 D0) for all nodes is obtained visiting the LBDD 
once upwards and once downwards. 
 
4.2.2 Determination of Pr(D1), Pr(D0) 
 
These values can easily be determined by visiting the LBDD upwards and applying, to each node the 
well known equation: 
 
Q = ql Q1 + qr Q0       
 
Values to be assigned to ql and qr depend on the type of variable. For SP and DF types  
ql = qx and qr = 1 – qx, whereas for SN variables ql = 1 – qx and qr = qx. 
For terminal nodes: Q1 = 1 and Q0 = 0. 
At the root node the Top event unavailability QS is found 
 
4.2.3 Determination of Pr(R) 
 
The LBDD is visited once in top down mode to determine Pr(R) for all variables. Consider the generic 
node x in which Qx

�
T represents the sum of the unavailability of all paths starting from the node x to 

the root (node x excluded). 
 
 
 
 
 
 
 
 
 

x 

y z 

Qx
�

T 

Qz
�

T Qy
�

T 



 15 

The values to be associated to the descending nodes y and z are given by: 

xTxTy qQQ /→→ =          

)1/( xTxTz qQQ −= →→         
 
The application of the above equations to all non terminal nodes allows associating the probability 
P(R) of the union of all paths from each node to the root, node excluded. 
 
ASTRA gives, for DF variable the two contributions and their sum. 
 
 
4.3 Structural importance I Sx 
 
The structural importance index is useful when probabilistic data for basic events are unavailable. 
Consequently, the only way to identify the relatively weak points of the system is to use the structural 
information. Some methods for determining the structural importance index can be found in literature. 
The one implemented in ASTRA 3.0 is due to Birnbaum. The structural indexes for the generic 
component x, ISx can be determined by means of the basic indexes pf

 x and pr x by setting probability 
0.5 to all events. 
 
 
4.4 Criticality index I Cx 
 
This index is defined as the relative variation of the Top event unavailability for a relative variation of 
the component failure / repair probability, i.e.: 
 
ICx(t) = [∂QS(t) / ∂qx(t)] [qx(t) / QS(t)]        
 
For SP variables,  
ICx(t) = pf

x(t) qx(t) / QS(t)         (4.6)  
 
For SN variables,  
IC$x(t) = pr

x(t) px(t) / QS(t)          (4.7) 
where px(t) = 1 - qx(t) 
 
For DF variables 
The positive and the negative contributions are given by the above equations (4.6) and (4.7). 
 
 
4.5 Risk Achievement Worth and Risk Reduction Worth 
 
For coherent functions RAWx is a measure of the risk increase when component x is assumed failed; it 
is defined as the ratio between the top event unavailability assuming event x failed QS(t)|x=1 and QS(t), 
i.e.  
 
RAWx(t) = QS(t)|x=1 / QS(t) 
 
In calculating the RAW it is important to consider all other components that are dependent by the 
failure/removal of x.  
The most important component (most critical) is the one with the highest RAW index. 
From the definition it comes out that, for coherent variables: 1 <  RAWx(t)  ≤ 1/ QS(t)  
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For coherent functions RRWx(t) is a measure of the risk reduction when the component x is assumed 
perfectly reliable: 
 
RRWx(t) = QS(t) / QS(t)|x=0  

        
The most important component is the one with the highest index value; when it works perfectly we 
have the maximum risk reduction. From the definition it follows that:  
1 <  RRW x (t) < ∞  
 
 
4.5.1 Relationships between RAW and RRW for coherent functions 
 
RAW and RRW are related. In fact dividing by Qs(t) the equation 

Qs(t) = qx(t) Qs(t)x = 1 + (1-qx(t)) Qs(t)x = 0, one gets: 
 
1 = qx(t) RAWx(t) + (1 - qx(t)) / RRWx(t)   

 
With simple algebraic manipulations: 
 
 RAWx(t) = 1/ qx(t) [1 – (1 - qx(t)) / RRWx(t)]     (4.8) 
    

RRWx(t) = (1- qx(t))/ [1 - qx(t) RAWx(t)]       (4.9) 
   
 
4.5.2 Relationships between RAW and RRW for non coherent functions 
 
When dealing with non-coherent functions RAW and RRW must be calculated also forx. It can be 
shown that the RAW of a negated variable is equal to the inverse of the RRW of the same variable in 
positive form: 
 

RAWx(t) = QS(t)|x =1 / QS(t) = QS(t)| x=0 / QS(t) = 1 / RRWx(t)   (4.10) 
 
Thus, 0 <  RAWx (t) < 1  
 
Analogously, RRW of a negated variable is equal to the inverse of the RAW of the same variable in 
positive form: 
 

RRWx(t) = QS(t) / QS(t)|x=0 = QS(t) / QS(t)|x=1  = 1/ RAWx(t)    (4.11) 
   

Hence, QS(t) <  RRWx(t)   < 1 
 
Therefore, for DF variables it is sufficient to determine the RAW and RRW for the positive form to 
obtain the same parameters for the negated form.  
 
Moreover, dividing by Qs(t) the equation 
 

Qs(t) = qx(t) Qs(t)x = 1 + (1-qx (t)) Qs(t)x = 0, one gets: 
 
1 = qx(t) RAWx (t) + (1 - qx (t)) / RRWx (t) 
   

With simple algebraic manipulations: 
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RRWx (t) = [1/ qx(t)] [1 / [1 – (1 - qx(t)) RAWx (t)]     (4.12) 
   
RAWx (t) = [1/ (1 - qx(t))] [1 – qx(t) / RRWx (t)]     (4.13)  
 
  

4.5.3 Determination of RAW index for different types of variables 
 
It is proved in Appendix 1 that both RAW and RRW, independently of the type of variable, can be 
based respectively on the probability of critical states for failure and repair pf

x(t) and prx(t): 
 
Let x be a variable and Φ(x) = x Φ(1, x) + Φ(0, x) then:  
 
RAWx(t) = 1 + (1- qx(t)) p

f
x(t) / QS(t)        (4.14) 

 
Let x be an SN variable and φ(x) = $x Φ(1, x) + Φ(0, x) 
 
RAW$x(t) = 1 + (1- q$x(t)) p

f
$x(t) / QS(t)       (4.15) 

 
Let x be a DF variable and φ(x) = &x Φ(1, x) +&x Φ(0, x) = x Φ(1, x) + $x Φ(0, x)  
In this case it is possible to determine both contributions, positive and negative keeping in mind that 
RAWx + RRW$x is not equal to RAW&x, given by the above equations: 

− Positive contribution: equation (4.14) 
− Negative contribution: equation (4.15)      

Note that RAWx + RRW$x is not equal to RAW&x, as can easily be verified.  
 
 
4.5.4 Determination of RRW index  for different types of variables 
 
Analogously to the RAW case the RRW equations are obtained. 
 
If x be an SP variable of φ(x) = x φ(1, x) + φ(0, x) then: 
 
RRWx(t) = 1 / [1 - qx(t) p

f
x(t) / QS(t)]        (4.16) 

 
If x is an SN variable then:  
 
RRW$x(t) = 1 / [1 – (1 - q$x(t)) p

f
$x(t) / QS(t)]       (4.17) 

 
If &x is a DF variable and φ(x) = &x Φ(1, x) +&x Φ(0, x) = x Φ(1, x) + $x Φ(0, x) both 
contributions must be considered: 

− Positive contribution: equation (4.16) 
− Negative contribution: equation (4.17)        

 
Note that RAWx + RRW$x is not equal to RAW&x, as can easily be verified.  
 
 
4.6 Determination of importance indexes on a modularised fault tree 
 
An advantageous operation in fault tree analysis is the modularisation. The original function is 
decomposed into a set of simpler independent sub functions called modules. The remaining of the tree 
is the main module containing the Top event, also called Top module. The cost of the analysis, i.e. the 
computation time and the working memory requirements is generally lower than that of a non-
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decomposed tree. The gain depends on the number and dimensions (number of variables) of the 
modules.  
If the tree is modularised the algorithms of analysis can be independently applied to all modules and 
then the results can be recombined to obtain the final results at Top event level. 
 

Given 0101 ΦΦ+ΦM+ΦM=Φ , where M is a module containing the variable x. 

 

0101 MM+Mx+Mx=M  
 

0101 MMMxMxM ++=  
 
  x ∈ Φ is given by:  Mx ∈  and Φ∈M  or  
                        Mx ∈  and Φ∈M  
 
x ∈ Φ is given by:  Mx ∈  and Φ∈M   or  

                       Mx ∈  and Φ∈M  
 
Let pf

M and prM be the probabilities of critical states for Φ∈M . 
Let pfM

x and prMx be the probabilities of critical states for Mx∈ . 
Let pf

x and prx be the probabilities of critical states for Φ∈x . 
 
The indexes pfx(t) and prx(t) for the generic variable x are obtained by combining pfM

x and prMx with the 
importance of the module M in the Top-module, represented as pfM and prM, by means of the following 
equations (see proof in Appendix2): 

 
pf

x = pfM
x p

f
M + prM

x  p
r
M         (4.18) 

 
pr

x = prM
x p

f
M + pfM

x p
r
M         (4.19) 

 
Equations 4.18 and 4.19 (see proof Appendix 2) take different forms depending on the type of variable 
x in M and M in Top as described in the following Table. 
 

Table 4.1. Equations for determining pf
x and prx in a modularised LBDD 

                 M∈∈∈∈Top 
x∈∈∈∈ M 

SP 
f
Mp  

SN 
r
Mp  

DF 
f
Mp ; r

Mp  
SP    

=f
xp  f

M
fM
x pp  --- f

M
fM
x pp  

=r
xp  --- r

M
fM
x pp  r

M
fM
x pp  

    
SN    

=f
xp  --- r

M
rM
x pp  r

M
rM
x pp  

=r
xp  f

M
rM
x pp  --- f

M
rM
x pp  

    
DF    

=f
xp  f

M
fM
x pp  r

M
rM
x pp  f

M
fM
x pp r

M
rM
x pp+  

=r
xp  f

M
rM
x pp  r

M
fM
x pp  r

M
fM
x pp f

M
rM
x pp+  
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4.7 Example of application  
 
The application of the above procedures is shown with reference to the simple non-coherent tree of 
Figure 1 containing a module. This modularised tree is described by means of two functions: the Top 
module and simple modules in both negated and normal forms. 

MbaMbaTop +=  

dcM =  

dcM +=  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1 Non-coherent fault three, modularised tree and corresponding LBDD 
 
 
This example is solved by means of the application of equations (4.18) and (4.19) on the LBDD. Then 
the same tree will be solved using the classical method based on MCS to show the correctness of the 
proposed equations. 
 

a c d a b b 
• 

• 

Top-event 

• 

Module 

a a b b 
• 

• 

Top-event 

M M 
c d 

• 

M 

a 

&b 0 

0 1 

$M 

0 1 

c 

$d 0 

0 1  M 
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For all variables in both functions the parameters pf(t) and pr(t) are determined. For the sake of 
simplicity the dependence on time is omitted.  All events have the same failure probability. Since the 
example is simple the analytical solution is determined. 
 
Analysis of M for determining qM, pf M

x , p
r M

x  
 

 dcM =  qM = qc  (1 - qd) 

dcM +=  q$M = 1 - qc + qc qd  
 

c = 1 ⇒ dM c1 =       c = 0 ⇒ 0M oc =    
pf M

c = P(M1c) - P(M1c M0c) =1- qd    prM
c = P(M0c) - P(M1c M0c) = 0 

 
d = 1 ⇒ 0M d1 =       d = 0 ⇒ cM d0 =  

pfM
d = P(M1d) - P(M1d M0d) = 0    prMd = P(M0d) - P(M1d M0d) = qc 

 
Analysis of the Top module for determining QS, p

f
M , pr

M as well as the importance of all other events 
not belonging to M. 
 

Top = a bM + ab M   
QTop = qa qb (1 – qM) + qa (1 - qb)  qM 
 

a = 1 ⇒ MbMbTop a1 +=      a = 0 ⇒ 0Topoa =    
pf

a = qb (1 - qc + qc qd) + (1- qb) qc  (1 - qd)  pr
a = 0 

 

b = 1 ⇒ MaTop b1 =       b = 0 ⇒ MaTopob =    

pf
b = qa (1 - qc + qc qd)      pr

b = qa qc (1 – qd)  
 

M = 1 ⇒ baTop M1 =       M= 0 ⇒ baTopoM =    

pf
M = qa (1 - qb)     pr

M =  qa qb   
 
Application of equations (4.18) and (4.19) to events in the module M 
.   

pf
c = pf M

c p
f
M = (1 - qd) qa (1 - qb) 

pr
c = pf M

c p
r
M = (1 - qd) qa qb     

pf
d = pr M

d p
r
M = qc qa (1 - qb) 

pr
d = pr M

d p
f
M = qc qa qb 

 
 
The following table summarises the results 
 
Event pfx pr

x 
a qb (1 - qc + qc qd) + (1- qb) qc  (1 - qd) 0 
b qa (1 - qc + qc qd) qa qc (1 – qd) 
c (1 - qd) qa (1 - qb) (1 - qd) qa qb  
d qc qa (1 - qb) qc qa qb 

 
The correctness of the results in this table has been checked by hand based on the MCS. 
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5. IMPORTANCE INDEXES BASED ON FAILURE FREQUENCY 
 
5.1 Determination of the unconditional failure frequency  
 
Consider the following non-coherent function 
 
Φ = x Φ1 +x Φ0 + Φ1 Φ0          
 
Since x is a variable of DF type then the consensus term is considered too, because it represents a valid 
implicant:   
 
The failure frequency of Φ is given by: 
 

)()()()()()( 01010101 ΦΦΩ−ΦΦΩ−ΦΦΩ+ΦΩ+ΦΩ=ΦΩ xxxx  

 
Expanding the different terms: 
 

)(P)x()()x(P)(P)x()()x(P

)()(P)x()()x(P)(P)x()()x(P)(

01010101

010011

ΦΦΩ−ΦΦΩ−ΦΦΩ−ΦΦΩ−

+ΦΦΩ+ΦΩ+ΦΩ+ΦΩ+ΦΩ=ΦΩ
 

Rearranging: 
 

)()](P)(P[)x()]()([)x(P

)](P)(P[)x()]()([)x(P)(

01010010

011011

ΦΦΩ+ΦΦ−ΦΩ+ΦΦΩ−ΦΩ+

+ΦΦ−ΦΩ+ΦΦΩ−ΦΩ=ΦΩ
 

 

Since )BA(P)A(P)BA(P −= , the above equation can also be written as: 
 

)()(P)x(

)()x(P)(P)x()()x(P)(

0110

100101

ΦΦΩ+ΦΦΩ+

ΦΦΩ+ΦΦΩ+ΦΦΩ=ΦΩ
     (5.1) 

 
From equations (5.1) it is straightforward to derive the equations for coherent functions. Indeed if x is 

coherent then 001 Φ=ΦΦ , which also means that 010 =ΦΦ . Hence equation (5.1) becomes: 
 

)()(P)x()()x(P)( 00101 ΦΩ+ΦΦΩ+ΦΦΩ=ΦΩ       (5.2) 

 
 
5.2 Importance measures for initiating and enabling events  
 
From equation (5.1) the following expressions are derived, from which the importance measures of 
initiating and enabling events are determined. They represent the probability/frequency of critical 
states. I and E indicate respectively Initiator and Enabler and the subscript represents the name (x) of 
the generic variable. 
 
Equation (5.3) allows to determine the probability of the critical state for the occurrence of the 
initiating event x, i.e. the system fails in t-t+dt when the initiating event x occurs in t-t+dt. In other 
words the Ix ωx represents the system failure frequency caused by the occurrence of x. 

)(
)(

)(
01 ΦΦ=

Ω∂
ΦΩ∂= P
x

I x          (5.3) 
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Equation (5.4) represents the system failure frequency caused by an initiating event given that the 
enabler event x is failed. Hence Ex P(x) represents the contribution of the failure of x to the system 
failure frequency. 

)(
)(

)(
01 ΦΦΩ=

∂
ΦΩ∂=
xP

Ex          (5.4) 

 
Equation (5.5) gives the probability of the critical state for the restoration of the event x, i.e. the system 
is failed in t-t+dt when the initiating event x is restored in t-t+dt. In other words xx

νI  represents the 

system failure frequency caused by the restoration of x. 

)(
)(

)(
10 ΦΦ=

Ω∂
ΦΩ∂= P
x

I
x

         (5.5) 

 
Finally equation (5.6) represents the system failure frequency caused by the repair of an initiating 
event given that the enabler eventx has already occurred. Hence

xx
qE  is the contribution of the repair 

of to the system failure frequency: 

)(
)(

)(
10 ΦΦΩ=

∂
ΦΩ∂=
xP

E
x

         (5.6) 

 
It has to be stressed that in applying the above equations, from (5.3) to (5.6), the negated variables 

resulting from 01 ΦΦ  and 10 ΦΦ  are characterised by their success probability only: their frequency 
must be set to zero. Indeed, the negated part is not a real non coherence, but more simply it represents 
a logical condition that must be satisfied for determining the logical function of the critical state. For 
this reason negated events cannot be considered as initiating events, which means that their failure 
frequency must set to zero.   
 
Note that in equations 5.3 and 5.5 we find again the probabilities of critical states for failure and repair 
introduced in section 4, i.e. f

xx pI =  and r
xx

pI = .  

 
The importance indexes, expressed with respect to the Expected Number of Failures (ENF), take the 
following form: 
 
Initiator failure importance: 

),0(/)()(
0

tWdIII
t

xxx ∫= τττω         (5.7) 

 
Enabler failure importance: 

),0(/)()(
0

tWdEqIE
t

xxx ∫= τττ         (5.8) 

 

where ττ dtW
t

),(),0(
0

ΦΩ= ∫ is the expected number of failures of the Top-event in which: 

∑
=

ΦΦ=ΦΩ
N

i
iP

1
01 )(),(),( τωττ  

N is the number of basic events of the fault tree. 
 
The index IIx represents the well known Barlow-Proschan importance index for initiating events. 
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If x is an initiating event, then IEx is its contribution to the system failure frequency when another 
initiating event causes the system failure. 
If x is an enabling event, then IEx represents its importance index. 
 
Analogously, for negated events:   
 
Initiator repair importance: 

),0(/)()(
0

tWdIII
t

xxx ∫=− τττν         (5.9) 

 
Enabler repair importance: 

),0(/)())(-1(
0

tWdEqIE
t

xxx ∫= τττ         (5.10) 

For non coherent fault trees the Expected Number of Failure ∫ ΦΩ=
t

dtW
0

),(),0( ττ considers also the 

repair as initiating events, i.e.: 
 

∑∑
==

ΦΦ+ΦΦ=ΦΩ
Nn

i
i

Np

i
i PP

1
01

1
01 )(),()(),(),( τνττωττ  

 
Np and Nn are respectively the number of basic events in positive and negated form. 
 
 
5.2.1 The Beeson-Andrews method for the determination of the importance of enabling events. 
 
Beeson & Andrews proposed an exact method for determining the importance measures of initiating 
and enabling events based on the second partial derivative of the system unavailability. To our 
knowledge this is the first exact method published so far. For this reason this method will be 
considered as the reference method to show that our method gives the same results. 
 
The main steps of the Beeson & Andrews are briefly described below for the coherent case and limited 
to the determination of the importance of enabling events or the importance of the enabling 
contribution of initiating events. As far as the importance of initiating events is concerned reference is 
made to the Barlow-Proschan method. 
 
Given the Top event expressed as the disjunction of its MCS (or prime implicants) and the exact 
unavailability expression QS(t) the first MCS containing x is considered. 
 
xi�xj is a notation introduces here meaning that xi is the enabling event that contribute to the failure 
probability of ΦS when the initiating event xj fails in t-t+dt leading to the system failure. 

1. Determine the second partial derivative of QS with respect to xi and xj:  Gi,j(τ) = 
)()(

)(2

ττ
τ

xjxi

S

qq

Q

∂∂
∂

 

2. Determine the unavailability QM, of the function M = Φ\ (MCS considered), i.e. the function without the 
    considered MCS. 

3. Determine the second partial derivative of QM with respect to xi and xj:  GM i,j(τ) = 
)( )(

)(,
2

ττ
τ

xjxi

jMi

qq

Q

∂∂
∂
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4. Calculate 
)()(

)(
-

)()(
)(

)( ,
22

, ττ
τ

ττ
ττ

xjxi

jMi

xjxi

S
xjxi qq

Q

qq

Q
E

∂∂
∂

∂∂
∂=  

 

5. 
),0(

)()()(
0

,

, tW

dqE

IE
S

t

xjxixjxi

xjxi

∫
=

ττωττ
 (WS(0,t) is the ENF of the system for the mission time interval 0 - t) 

 
Repeat steps 1-5 for all MCS containing xi and xj (i=1, 2,..).  
 

The final result is given by: ∑=
j

xjxixi IEIE ,  

 
5.2.2 The ASTRA method for the determination of the importance of enabling events. 
 
Let us recall the steps of our method for determining the importance of an enabling event or the 
enabling contribution to the importance of an initiating event. 
 
Variable in positive form.  
 
1. Determine 1xx1 =Φ=Φ  and 0xx0 =Φ=Φ  

 

2. Determine )ΦΦ(Ω=E x0x1x  in such a way that negated variables inx0Φ  have v = 0. 

3. 
),0(

0

tW

dqE

IE
S

t

xx

x

∫
=

τ
 

 
 
Variable in negated form. 
 
1. Determine 1xx1 =Φ=Φ  and 0xx0 =Φ=Φ  

 

2. Determine )ΦΦ(Ω=E x1x0x
 in such a way that negated variables inx1Φ  have v = 0. 

3. 
),0(

0

tW

dqE

IE

t

xx

x
Φ

∫
=

τ
 

 
Some examples of application of the above described methods are given below. 
 
 
5.3 Some clarification examples 
 
In this section some examples are provided to clarify the application of the ASTRA method for the 
determination of the importance indexes for initiating and enabler events, giving more emphasis to the 
latter because it is based on a new method.   
The results obtained using the ASTRA method are compared with those determined by applying the 
exact Beeson-Andrews method.  
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5.3.1 First Example: coherent function  
 
Consider the following coherent function: 
  

ycax)ba( ++=Φ  
 
Suppose that x, y are enabling events; b, c are initiating events; the event a has an enabling 
contribution to system failure since it is in combination with the initiating event c in the cut set (a c y). 
Analogous consideration holds for c. 
 
Determination of IEx , the importance of the enabling event x 
 
Beeson-Andrews method. 
 
Let us apply the above steps to the system function yca+xb+xa=Φ   
 

yxcaxbaycaxbxaS qqqq-qqq-qqq+qq+qq=Q  

 
Since x is an enabling event that belongs to MCS containing the initiating events a and b than x� a 
and x�b are to be considered.  
 
x�a 
 

1: ycb
ax

S qqq
qq

Q
--1

2

=
∂∂

∂
 

 
2: ycaxbM +=Φ  yxcbaycaxbM qqqqqqqqqqQ −+=  

 

3: ycb
ax

M qqq
qq

Q
-

2

=
∂∂

∂
 

 

4: ycbycb
ax

M

ax

S qqqqqq
qq

Q

qq

Q +=
∂∂

∂
∂∂

∂
--1-

22

 

 

5: 
),0(

]--1[[
0

, tW

dqqqqqqq

IE
S

t

xycbycba

ax

∫ +
=

τω
 

 
The dependence of probabilities and failure frequency on time is not shown for the sake of simplicity.  
 
Now consider the second MCS containing x.  
 
x� b 
 

1: a
bx

S q
qq

Q
-1

2

=
∂∂

∂
 

 
2: ycaxaM +=Φ   yxcaycaxaM qqqqqqqqqQ −+=  
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3: 0
qq

Q

bx

M
2

=
∂∂

∂
 

 

4: a
bx

M

bx

S q
qq

Q

qq

Q
-1-

22

=
∂∂

∂
∂∂

∂
 

 

5: 
),0(

)]-1([
0

, tW

dqq

IE

t

xab

bx
Φ

∫
=

τω
 

 
Since there is no other MCS containing x, the calculation ends: IEx = IEx,a + IEx,b 
 
ASTRA frequency-based method 
 
This method is now applied to determine IEx  
 

ycax)ba( ++=Φ  
 
1. bax1 +=Φ  and  ycax0 =Φ  

 

2. ba)yc(b)yc(ax0x1 ++++=ΦΦ  

 

3. )qq1(q)q1()qq1()( ycbaabycax0x1 −ω−−ω+−ω=ΦΦΩ  

4. 
),0(

)()]-1(-)-1()-1([
0

tW

dqqqqqqq

IE

t

xycbaabyca

x
Φ

∫ +
=

ττωωω
 

 
It is easy to verify the equivalence of this result with that previously calculated with the Beeson-
Andrews method.  
 
How the result of step 3 has been obtained is described in detail below.  
 

)]yc(ba[)]yc(ba[]ba[)]yc(b[)]yc(a[)( x0x1 +Ω−+Ω−Ω++Ω++Ω=ΦΦΩ  

 
We elaborate the above expression without developing the terms containing negated variables. 
 

).()()()(

)()()()()(

)()()()()()()( 01

ycaPqycPaq

ycPaPycqqycPqycPq

aqaPycqycPycqycP

bb

bbaabba

bbbbaaxx

+Ω−+Ω−

++−+Ω−+−+−

+Ω+++Ω++++Ω++=ΦΦΩ

ωωω
ωωω

 

Now we develop the probability of the negated terms, but not the frequency, and separate the two sub-
expressions.  
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).yc()q1(q

)qq1()a(q)yc(qq)a(q)yc(q)yc(q

)qq1()q1(

)qq1(q)qq1(q)q1()qq1()qq1()(

ab

ycbbabba

ycab

ycabycbaabycbycax0x1

+Ω−−

+−Ω−+Ω−Ω++Ω++Ω+

+−−ω−

+−ω−−ω−−ω+−ω+−ω=ΦΦΩ

 

Now we “correct” this expression by setting Ω(logically negated variables) = 0, i.e. 0)x( =Ω , 
obtaining.  
 

)qq1()q1()qq1(q

)qq1(q)q1()qq1()qq1()(

ycabycab

ycbaabycbycax0x1

−−ω−−ω−

+−ω−−ω+−ω+−ω=ΦΦΩ
 

Rearranging and simplifying: 
 

)qq1(q)q1()qq1()( ycbaabycax0x1 −ω−−ω+−ω=ΦΦΩ  

 

Therefore the determination of )( 01 xx ΦΦΩ must be performed in such a way to consider, for negated 

events inΦ0  only their probability. 
 
Determination of the IEa, i.e. the enabling contribution of the initiating event a 
 
Application of the Beeson-Andrews (BA) method. 
 

ycaxbxa ++=Φ  
 

yxcaxbaycaxbxaS qqqq-qqq-qqq+qq+qq=Q  

 
a�c in MCS (a c y) 
 

1: yxy
ca

S qqq
qq

Q
-

2

=
∂∂

∂
 

 
2: x)ba(M +=Φ   xbaxbxaM qqqqqqqQ −+=  

 

3: 0
qq

Q

ca

M
2

=
∂∂

∂
 

 

4: yxy
ax

M

ax

S qqq
qq

Q

qq

Q
--

22

=
∂∂

∂
∂∂

∂
 

 

5: 
),0(

)(
0

, tW

dqqqq

IE

t

cayxy

ca
Φ

∫ −
=

τω
 

 
Since a does not combine with any other initiating events in MCS the calculation terminates. 
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Application of the ASTRA frequency-based method 
 
1: ycxa1 +=Φ and xba0 =Φ  

 

2: xycbycbxa0a1 ++=ΦΦ  

 

3: )q1(q)(E xyca0a1a −ω=ΦΦΩ=  

 

4: 
),0(

)(
0

tW

dqqqq

IE

t

ayxyc

a
Φ

∫ −
=

τω
 

 
Also in this case we show the detail of the calculation performed at step 3. 
 

)xbyc()byxc()xyc()byc()bx()( a0a1 Ω−Ω−Ω+Ω+Ω=ΦΦΩ  

 

The determination of )( a0a1 ΦΦΩ  is performed setting to zero the failure frequency of negated events. 

Note that, as previously mentioned, the frequency is set to zero also for all enabling events. 

Note that )bx(Ω  is set to zero because νb= 0. But if x was combined with an initiating event in 

positive form the frequency would have been zero because νx= 0.  
 

)qqqq1(q)q1(qq)q1(q)q1(q)( xbxbycbyxcxycbyca0a1 +−−ω−−ω−−ω+−ω=ΦΦΩ  

 

After simplifying, the final result is as follows: )q1(q)( xyca0a1 −ω=ΦΦΩ  

 
This expression, multiplied by qa, gives the same results as the B-A method. 
 
 
5.3.2 Second Example: coherent function  
 
This example concerns the determination of the contribution to the system failure frequency 
considered by Beeson-Andrews (2003b). 
 

hdgbfedeba +++=Φ  
 
Application of the Beeson-Andrews (BA) method. 
 
The above authors determined, in their paper, the exact value of the enabling contribution of event d 
when the failure is caused by the event e, i.e. d�e. The result was: 
 

),0(

])1([
0

*
,,

, tW

dqqq

I
Top

t

edgbahf

ed

∫ Ψ−
=

τω
  

 

gbagbba
*

g,b,a qqqqqqq1 +−−=Ψ  
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Application of the ASTRA frequency-based method 
 
We apply our method to determine the importance of d, supposing that all other events are initiating 
(no information is given in the BA paper about the types of events). 
 

hgbfeebad1 +++=Φ  
 

gbebad0 +=Φ  
 

gegabd0 ++=Φ  
 

geh+)ga+b(h+)ga+b(fe=ΦΦ d0d1  

 

)egageb(P)gab(Pqq)gab(Pqq)gab(Pqq

)ge(P)gab(P)gab(Pq)gab(Pq)(

hfehhefhfe

hheffed0d1

+ω−+ω−+ω−+ω−

+ω++ω++ω++ω=ΦΦΩ
 

 
This expression contains all contributions of d with all other initiating events, not only with e. If we 
consider only the terms with ωe we get the contribution d� e calculated by multiplying the 
corresponding terms by qd: 
 

),0(

)]1()([
0

, tW

dqqgabPq

I
Top

t

edhf

ed

∫ −+
=

τω
 

 

where gbagbba qqqqqqq1)gab(P +−−=+  is equal to *
,, gbaΨ  

 
The other contributions of qd, not reported in the BA paper are as follows:  
 
d�f 
 

),0(

)1(
0

*
,,

, tW

dqqq

I
Top

t

fdhgbae

fd

∫ −Ψ
=

τω
 

 
 
d�h 
 

),0(

])1([
0

,,,
*

,,

, tW

dqqq

I
Top

t

hdgebafegba

hd

∫ Ψ+−Ψ
=

τω
 

 
)qqqq1(qq gegebag,e,b,a +−−=Ψ  

 
This example clearly shows that the ASTRA frequency method is able to exactly calculate the 
importance index of enabling events in coherent functions. 
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5.3.3 Third example: a non coherent function  
 
This example is taken again from Beeson Andrews (2003b).  
 

dcaedaedccbadba ++++=Φ  
 
The example concerns the determination of the enabler importance of event b when c fails. 
 
Application of the Beeson-Andrews method 
 
b�c 
 

0IE c,b =  

),0(

)-1()-1(
0

, tW

dqqq

IE
S

t

cbda

cb

∫
=

τω
 

 
Being b a DF event, it has both a positive and a negative contribution. As can be seen from the results 
the positive contribution is 0 because the event b (in its positive form) does not appear in any prime 
implicant with c; the negative contribution is not zero because b (in its negated form) is contained in 
the second implicant (ab c) with c. 
 
Application of the ASTRA frequency-based method.  
 
Determination of the positive contribution, given by: 
 

)(E b0b1b ΦΦΩ=  

 

edcdab1 +=Φ  

edaedccab0 ++=Φ  

ec+dc+ca+ea+da=Φ b0  

ecda=ΦΦ b0b1  

 

)ec(Pq)ec(Pq)(E addab0b1b ω+ω=ΦΦΩ=  
 
In this expression there are no terms containing ωc; hence 0=E c,b , that is 0=IE c,b  

 
Other contributions (not reported in the BA paper) are the following: 
 

)qqqq1(qE ececdaa,b +−−ω=  

)qqqq1(qE ececadd,b +−−ω=  

 
Determination of the negative contribution, given by: 
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)(E b0b1b
ΦΦΩ=  

eacadb ++=Φ1  

dcab1b0 =ΦΦ  

 

)q-1(q)q-1(q)(E dacdcab1b0b
ω+ω=ΦΦΩ=  

 
The term with ωc allows obtaining the importance of b � c. 
 

)q1(q)(E dacb0b1c,b
−ω=ΦΦΩ=  

),0(

)-1()-1(
0

, tW

dqqq

IE
S

t

bdac

cb

∫
=

τω
 

  
The result is the same as the one reported in the BA paper.  
 
Besides this contribution there is also b � a: 
 

)q-1(q=E dcaa,b
ω  

),0(

)-1()-1(
0

, tW

dqqq

IE
S

t

bdca

ab

∫
=

τω
 

From this example it can be seen that b0b1
Φ=Φ ; b1b0

Φ=Φ ; this property can be used to speed up the 

calculations. 
 
 
5.3.4 Fourth example: another non-coherent function  
 
This example considers the determination of the importance indexes of the two variables of an XOR 
function. These variables are both initiating but they also have the enabling contribution.  
 

ba+ba=Φ  
 
Determination of the importance of initiating events  
 
Determination of aI  

b=Φ a1 and b=Φ a0 ⇒ b=ΦΦ a0a1  

)q1()(PI ba0a1a −=ΦΦ=  

),0(

)1(
0

tW

dq

I

t

ab

a
Φ

∫ −
=

τω
 

 
Determination of 

a
I  

b=Φ a1 and b=Φ a0 ⇒ b=ΦΦ a1a0  
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ba1a0a
q=)ΦΦ(=I  

),0(
0

tW

dq

I

t

ab

a
Φ

∫
=

τν
 

 
Determination of bI  

a=Φ b1 and a=Φ b0 ⇒ a=ΦΦ b0b1  

ab0b1b q1)(PI −=ΦΦ=  

),0(

)1(
0

tW

dq

I

t

ba

b
Φ

∫ −
=

τω
 

 
Determination of 

b
I  

a=Φ b1 and a=Φ b0 ⇒ a=ΦΦ b1b0  

ab1b0b
q=)ΦΦ(P=I  

),0(
0

tW

dq

I

t

ba

b
Φ

∫
=

τν
 

 
 
Determination of the enabling contribution of initiating events 
 
Determination of aIE  

b=Φ a1 and b=Φ a0 ⇒ b=ΦΦ a0a1  

ba0a1a =)ΦΦ(Ω=E ν  

),0(
0

tW

dq

IE

t

ba

a
Φ

∫
=

τν
 

 
Determination of 

a
IE  

b=Φ a1 and b=Φ a0 ⇒ b=ΦΦ a1a0  

ba1a0a
=)ΦΦ(=E ω  

),0(

)1(
0

tW

dq

IE

t

ba

a
Φ

∫ −
=

τω
 

 
Determination of bIE  

a=Φ b1 and a=Φ b0 ⇒ a=ΦΦ b0b1  

ab0b1b =)ΦΦ(=ΩE ν  
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),0(
0

tW

dq

IE

t

ab

b
Φ

∫
=

τν
 

 
Determination of 

b
IE  

a=Φ b1 and a=Φ b0 ⇒ a=ΦΦ b1b0  

ab1b0b
=)ΦΦ(Ω=E ω  

),0(

)1(
0

tW

dq

IE

t

ab

b
Φ

∫ −
=

τω
 

 
From this example it can be seen that: 
 

ba IEI =  and ba
IEI =   and vice versa exchanging a with b. This property can be used to speed up the 

calculations. 
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5.4 Determination of the importance indexes of initiating and enabling events on a modularised 
fault tree 
 
If the tree is modularised the algorithms of analysis can be independently applied to all modules and 
then the results can be recombined to obtain the final results at Top event level. 
In this section the equations are given with reference to the more general case of a non-coherent 
function. Proofs are provided in Appendix 3. 
 

Given 0101 ΦΦ+ΦM+ΦM=Φ , where M is a module containing the variable x. 

0101 MM+Mx+Mx=M  

0101 MMMxMxM ++=  
 
  x ∈ Φ is given by:  Mx ∈  and Φ∈M  or  

                        Mx ∈  and Φ∈M  
 

x ∈ Φ is given by:  Mx ∈  and Φ∈M   or  
                       Mx ∈  and Φ∈M  
 
The above conditions lead to the relationships for determining the integrand function of importance 
indexes of initiating events as described in Table 5.1 and the relationships for determining the 
integrand functions of the importance of enabling events as in Table 5.2.  
The importance indexes are finally obtained by applying equations from (5.7) to (5.10). 
 

Table 5.1. Equations for determining xI  and 
x

I in a modularised LBDD 

                 M∈∈∈∈Top 
x∈∈∈∈ M 

SP 

MI  
SN 

M
I  

DF 

MI ;
M

I  

SP    

=xI  M
M
x II  --- M

M
x II  

=
x

I  --- M
M
x II  

M
M
x II  

    
SN    

=xI  --- M
M
x

II  
M

M
x II  

=
x

I  M
M
x

II  --- M
M
x

II  

    
DF    

=xI  M
M
x II  M

M
x

II  M
M
x II

M
M
x

II+  

=
x

I  M
M
x

II  
M

M
x II  M

M
x

II
M

M
x II+  
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Table 5.2. Equations for determining xE  and 
x

E in a modularised LBDD 

                 M∈∈∈∈Top 
x∈∈∈∈ M 

SP 

ME  
SN 

M
E  

DF 

ME ;
M

E  

SP    
=xE  M

M
x EI  --- M

M
x EI  

=
x

E  --- M
M
x EI  

M
M
x EI  

    
SN    

=xE  --- M
M
x

EI  
M

M
x

EI  

=
x

E  M
M
x

EI  --- M
M
x

EI  

    
DF    

=xE  M
M
x EI  M

M
x

EI  M
M
x EI +

M
M
x

EI  

=
x

E  M
M
x

EI  
M

M
x EI  M

M
x

EI +
M

M
x EI  

    
 
 
 
5.4.1 Example of application  
 
The application of the above procedures is shown with reference to the simple non-coherent tree of 
Figure 5.1 containing a module.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.1. Sample Fault tree with a simple module  
 
In ASTRA the above fault tree is transformed into the one in Figure 5.2, in which the gates INH are 
replaced by AND gates; all events of the protection system are identified and labelled as enabler. The 
resulting function is: )bycMz(x +=Φ  
 
The types of variables are identified; they are: 
• initiating and coherent: c, h, k 
• enabling and coherent: b, x, y, and z; 
Before determining the importance measures of events in M it is necessary to determine the 
unavailability and expected number of failure of M. 

khM qqQ =   

  k h 

M 

Top 

y 

M 

x 

z 
c 

b 
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∫ +=
t

hkkhM dqqW
0

)( τωω  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.2. Fault tree of Figure 5.1 after removing INH gates  
 
Analysis of the events h and k in M 
 
Since h and k are both initiating events, their importance measures are calculated through the marginal 
importance fM

k
fM
h p,p which can be determined as described in section 4. 

),0(

)()(
0

tW

dp

II
M

t

h
fM
h

M
h

∫
=

ττωτ
   

),0(

)()(
0

tW

dp

II
M

t

k
fM
k

M
k

∫
=

ττωτ
 

 
Analogously the importance of the module M in the Top module is given by: 

),0(

)()(
0

tW

dp

II

t

M
f
M

M
Φ

∫
=

ττωτ
  

  
The importance index is given by composing the above indexes, i.e.: 

M
M
hh IIIIII = and M

M
kk IIIIII =  

 
The contributions of these events to system failure frequency when another initiating event causes the 
system failure are calculated using the ASTRA method. 
 

)MM(E h0h1h Ω=  

)MM(E k0k1k Ω=  

)(E M0M1M ΦΦΩ=  
 
Results are as follows: 

),0(

)(
0

tW

dq

IE
M

t

hk

h

∫
=

ττω
 

  k h 

M 

Top 

y 

M 

x 

z c 

b 
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),0(

)(
0

tW

dq

IE
M

t

kh

k

∫
=

ττω
 

 

0IEM =  Indeed 0))byc(zx()( M0M1 =++Ω=ΦΦΩ  since x and z are enablers (ω = 0).  

 
Therefore: 

f
M

fM
hhkM

M
hh ppqIEE ω==  

f
M

fM
kkhM

M
kk ppqIEE ω==  

 
Analysis of c 
The initiating event c in the Top-module is coherent. Then: 
 

),0(

)()(
0

tW

dp

II

t

c
f

c

c
Φ

∫
=

ττωτ
 

 

0)(E c0c1c =ΦΦΩ=  
 
Analysis of b 
This event is enabler: 
 

)ycMz(xb1 +=Φ  

 

Mzxb0 =Φ ⇒ Mzxx0 ++=Φ  

 

)Mz(ycxobb1 +=ΦΦ  

 

)q1()q1(qq)(E Mzxycb0b1b −−ω=ΦΦΩ=   

 

),0(

)()]1()1([
0

tW

dqqqqq

IE

t

bMzxyc

b
Φ

∫ −−
=

ττω
 

 
Analysis of x 
 

bycMzx1 +=Φ  
 

0x0 =Φ ⇒ 1x0 =Φ  

 

Therefore: )qq1()qqqq()qqq1(qbycMz)( zMycbybcycbzMx0x1 −ω+ω+−ω=+=ΦΦΩ  
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),0(

)()]1()()1([
0

tW

dqqqqqqqqqqq

IE

t

xzMycbybcycbzM

x
Φ

∫ −++−
=

ττωωω
 

 
Analysis of y 
 

)bcMz(xy1 +=Φ  

 

Mzxy0 =Φ ⇒ Mzxy0 ++=Φ  

 

)Mz(bcxoyy1 +=ΦΦ  

Therefore: )qqqq1()qqqq()( MzMzxcbxbcy0y1 +−−ω+ω=ΦΦΩ  

 

),0(

)()1()(
0

tW

dqqqqqqqqq

IE

t

yMzMzxcbxbc

y
Φ

∫ +−−+
=

ττωω
 

 
Analysis of z 
 

)bycM(xz1 +=Φ  
 

bycxz0 =Φ ⇒ bycxz0 +++=Φ  

 

)byc(Mxoyy1 ++=ΦΦ  

 

Therefore: )]q1()q1()q1[(q)( bycxMz0z1 −+−+−ω=ΦΦΩ  

 

),0(

)()]1()1()1[(
0

tW

dqqqqq

IE

t

zbycxM
z
y

Φ

∫ −+−+−
=

ττω
 

 
The following table summarises the results 

 
Event Type II IE 

b enabling --- 0IEb >  

c initiating  0II c >  0IEc =  

h “ 
M

M
hh IIIIII =  M

M
hh IEE =  

k “ 
M

M
kk IIIIII =  M

M
kk IEE =  

x enabling --- 0IEx >  
y “ --- 0IEy >  

z “ --- 0IEz >  
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5.5 Risk Achievement Worth (RAW) and Risk Reduction Worth (RRW) 
 
RAW and RRW can easily be determined after determining )( 1ΦΩ  and )( 0ΦΩ  

),0(

),(

)( 0

1

tW

d

tRAW

t

x
Φ

∫ ΦΩ
=

ττ
        (5.11)   

 

∫ ΦΩ
= Φ

tx

d

tW
tRRW

0

0 ),(

),0(
)(

ττ
        (5.12)   

 
The determination of ),( 1 τΦΩ and ),( 0 τΦΩ can be performed by visiting the BDD in bottom up way 

for each basic event and for each time τ.  
 
5.6 Implementation issues 
 
5.6.1 Importance of initiating events. 
 
As mentioned in 5.1 the importance of initiating events, respectively in positive and negated form is 
given by: 
 

( ) τ
τ

ττω
d

I
II

t
xx

x ∫ ΦΩ
=

0 ,
)()(

          (5.13) 

 

τ
τ

ττν
d

I
II

t
xx

x ∫ ΦΩ
=

0 ),(

)()(
         (5.14) 

 
In these equations )(I x τ and )(I

x
τ are nothing but the probabilities of critical states for failure and 

repair of x, represented in section 4 as f
xp and r

xp . Since these parameters have already been 
implemented in ASTRA the problem of determining the importance indexes of initiating events is 
straightforward.  
 
 
5.6.2 Importance of enabling events 
 
Let x be an enabling event. The determination of the Criticality importance index for enabling events 

requires the calculation of )(E 01x ΦΦΩ=  and / or )(E 10x
ΦΦΩ=  

 

The determination of the exact values of the importance of enabling events, e.g. for )(E 01x ΦΦΩ= , 
can be done following the definition: 
1. Determine Φ1; 
2. Determine Φ0; 
3. DetermineΦ0; 
4. Determine Φ1Φ0; 

5. Determine )(E 01x ΦΦΩ=  or )(E 10x
ΦΦΩ=  depending on the type of event.  
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Step 5 must be applied as many times as the number of time instants in which the mission time is sub-
divided. 

Finally the integration of  )(E 01x ΦΦΩ=  and )(E 10x
ΦΦΩ=  gives the importance indexes. Since 

this operation is time consuming the following faster methods can be applied: 
− If all initiating events are not repairable, then the importance measures for unavailability can be 

used also for unreliability since in this case WS(t) = QS(t); 
− If the failure frequencies of the numerator and denominator of equations 5.8 and 5.10 are almost 

constants then the integration can be avoided in that W(t) = Ω(t) T, which means that 

Sxxx Ω/Ωq=IE  and Sxxx
Ω/Ω)q-1(=IE . 

 
 The implementation of the above procedure in ASTRA 3.0 is straightforward, but it may be time 
consuming on large fault trees if the integration of the frequency functions must be performed.  
To reduce the computation time the following approximated method may be considered. 
 
Approximated method to determine the importance of enabling events 
 
The LBDD of a function can be represented as follows: 
 

[ ] SDxxR)Φ(  xk0xk xk1xkTxk

N

1k

x

++= →
=

∨ Dx       (5.15) 

 
where: Nx is the number of occurrences of nodes with x; D1xk and D0xk are Boolean functions, i.e. the 
LBDD descending from the k-th occurrence (node) of x;  TxkR →  is the disjunction of all paths from the 
k-th occurrence of x to the root of the LBDD; S is the disjunction of all paths not containing x. 
 
Hence: 

k xk1Txk

N

1k
1 SR)(Φ

x

+= →
=

∨ Dx  

k xk0Txk

N

1k
0 SR)(Φ

x

+= →
=

∨ Dx  

It is easy to see that: kDD SRΦ 0xk1xkTxk

N

1k
01

x

→
=

∨=Φ . 

 
Rk is independent from D1k, D0k, whereas Sk may share common events with Rk, D1k and D0k. A first 
simplifying hypothesis is that Sk is independent from Rk.  
 
Therefore: 

∑∑
=

→→
=

→ Ω+Ω≈Ω=
Nx

k

kxkxkTxkkxkxkTxk

Nx

k
kxkxkTxkx SDDRPSDDPRSDDRE

1
0101

1
01 )]()()()([)(  

 
In order to further simplify the calculation the hypothesis of independence of S from D1 and D0 cal 
also be assumed. This means that Ex  is (non-conservatively) approximated by: 
 

∑
=

→→ Ω+Ω≥
Nx

k

kxkxkTkxxkxkTkxx SPDDRPDDPRE
1

0101 )()]()()()([     (5.16) 

 

It can be shown that )(\ 01 xkxkTxkk DxDxRS +Φ= → .  
Passing to probabilities:  
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)]()-1()([)(-)()( 01 xkxxkxTxkk DPqDPqRPPSP +Φ= →      (5.17) 

 

An alternative hypothesis is to set 1=)S(P k , which means that 0=)S(P k  and 0=)S(Ω=)S(Ω kk . 
Under this hypothesis the approximated Ex value is given by: 
 

 )()()()( 0101 xkxkTxkxkxkTxkx DDRPDDPRE Ω+Ω≈ →→      (5.18) 
  
For each basic event the determination of the importance measures requires as many BDD traversing 
as the number of time points.  
 

Determination of )DD(Ω 01  and )DD(P 01  

In practice, for each occurrence of x the BDD of 01 DD is determined from which  )DD(P 01  and 

)DD( 01Ω  are obtained by means of the application of the following equations, applied visiting the 

LBDD in a bottom-up way. Note that the frequency of negated variables is set to zero.  
 

If y is of SP type: 

 Y = y F + G 

Qout = qy Q1 + (1 – qy) Q0      

If y is initiator then  
ωout = ωy (Q1 – Q0) + qy ω1 + (1 – qy) ω0     (5.19) 

   else 
ωout = qy ω1 + (1 – qy) ω0  

 
If y is of SN type: 

Y = $y F + G 

Qout = q$y Q1 + (1 – q$y) Q0       (5.20) 

ωout = q$y ω1 + (1 – q$y) ω0   for both initiator and enabler 
 
If y is of DF type: 

 Y = y F +y G 

Qout = qy Q1 + (1 – qy) Q0       (5.21) 

If y is initiator then  
ωout = ωy Q1 + qy ω1 + (1 – qy) ω0 – ωy Pr {F ∧ G } 

   else 
ωout = qy ω1 + (1 – qy) ω0  for both initiator and enabler 

 

The above equations (5.19-21) can also be applied to the BDD of Φ for determining )ΦΦ(Ω 01 , 

)ΦΦ(Ω 10  
 
Quantification of )( TxkR →Ω  and )( TxkRP →  

For the quantification of these parameters it is necessary to consider the type of variable (y) as 
described in the Table below. In this case it is also necessary to consider whether the variable under 
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consideration is initiating or enabling. In the first case the value of the failure frequency is different 
from zero for SP and DF events only if the event is initiating. 
 
 

Table 5.3. Values assumed by the variables for calculating P(R) and Ω(R). 

y is Initiating event y is Enabling event 

Var.  
type  

F          G 
Left branch 

 
F          G 

Right branch 

 
F         G 

Left branch 

 
F         G 

Right branch 
R = y R =y R = y R = y 
P(R) = qy Ω(F) P(R) = (1 - qy) Ω(G) P(R) = qy Ω(F) P(R) = (1 - qy) Ω(G) SP 
Ω(R) = ωy P(F) Ω(R) = - ωy P(G) Ω(R) = 0 Ω(R) = 0 
R = $y R = $y R = $y R = $y 
P(R) = (1 - qy) Ω(F) P(R) =  qy Ω(G) P(R) = 1 - qy P(R) =  qy Ω(G) SN 
Ω(R) = Ω(F) Ω(R) = Ω(G) Ω(R) = 0 Ω(R) = 0 
R = y R =y R = y R =y 
P(R) = qy Ω(F) P(R) = (1 - qy) Ω(G) P(R) = qy P(R) = (1 - qy) Ω(G) DF 
Ω(R) = ωy [P(F) -P(F∧G)] Ω(R) = Ω(G) Ω(R) = 0 Ω(R) = 0 

 
 
5.6.3 Determination of RAW and RRW 
 
To determine RAW and RRW it is necessary to determine Ω(Φ1x) and Ω(Φ0x) 
 
Determination of Ω(Φ0x) 
Let x be the variable for which the RAW and RRW are to be determined and y the current variable. 
The dependence on time is omitted in order to use a simpler notation.  
If y ≠ x then:  

The variable y represents an initiating event.  

If y is of SP type: 

 Y = y F + G 

Qout = qy Q1 + (1 – qy) Q0      

ωout = ωy Q1 + qy ω1 + (1 – qy) ω0 - ωy Q0  
 
If y is of SN type: 

Y = $y F + G 

Qout = qy Q1 + (1 – qy) Q0      

ωout = νy Q1 + (1 – qy) ω1 + qy ω0 - νy Q0  
 
If y is of DF type: 

 Y = y F +y G 

Qout = qy Q1 + (1 – qy) Q0      

ωout = ωy Q1 + qy ω1 + (1 – qy) ω0 + νy Q0 – (ωy + νy) Pr {F ∧ G }  
 



 43 

The variable y represents an enabling event 
An event is enabler if: 1) it is flagged as protective; and 2) it has λ = 0. 
In this case the failure frequency is zero. The unavailability equation is the same as before. 
Concerning the failure frequency: 
 
If y is of SP type:  ωout = qy ω1 + (1 – qy) ω0  

If y is of SN type:  ωout = (1 – qy) ω1 + qy  ω0  

If y is of DF type: ωout = qy ω1 + (1 – qy) ω0  

If y = x then x = 1; qx=1; ωx = νx = 0; q$x=0; ω$x = ν$x = 0.  

If y is of SP type: 

Qout = Q1       

ωout = ω1   
 
If y is of SN type: 

Qout = Q0      

ωout = ω0   
 
If y is of DF type: 

Qout = Q1       

ωout = ω1  
 
At the root node Qout = P(Φ1x) and ωout = Ω(Φ1x). 

 
Determination of Ω(Φ0x) 
Let x be the variable for which the RAW and RRW are to be determined and y the current variable. 
The dependence on time is omitted in order to use a simpler notation. 
 
If y ≠ x the equations to be applied are those above described. 
If y = x then x = 0; qx=0; ωx = νx = 0; q$x=1; ω$x = ν$x = 0.  

If y is of SP type: 

Qout = Q0       

ωout = ω0   
 
If y is of SN type: 

Qout = Q1      

ωout = ω1   
 
If y is of DF type: 

Qout = Q0       

ωout = ω0  
 
At the root node Qout = P(Φ0x) and ωout = Ω(Φ0x). 
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5.7 Application of the Importance Measures to a Non-coherent fault tree 
 
To show the result of the developed importance measures for initiating and enabling events a simple 
system taken from Beeson-Andrew (2003b) is considered. The schematic diagram of this system is 
presented in Figure 5.3. 

 
Figure 5.3. Leak-protection system 
 
A leak in the high-pressure gas supply system beyond the isolation valve (IV) can occur due to the 
pipe leak (LP) or failure of the flange sealing (LF). In order to simplify the analysis the gas detection 
system is assumed perfectly reliable. In case of gas leak the isolation valve controller sends the signal 
to the isolation valve and closes it. In order to avoid the hammer effect on the isolation valve due to the 
high pressure - possibly resulting in pipe rupture before a valve - a pressure relief valve (PRV) is 
installed diverting the gas into a safe location outside permanent ignition source present close to the 
isolation valve. 
 
The fault tree representing the system’s failure is shown in Figure 5.4 in which, according to the  
ASTRA graphical notation, INH (Inhibit) gates are used to represent the combinations of initiating and 
enabler events, the latter acting on demand.  
This fault tree has the following 8 prime implicants: 
 
{LP  IV  I1} 
{LP  C   I1} 
{LF  IV  I1} 
{LF  C   I1} 
{LP  PRV  I1} 
{LF  PRV  I1} 
{LP IV C  PRV} 
{LF IV C  PRV} 
 
The parameters of basic events are provided in Table 5.4. Note that the possible ignition source, 
represented by the event I1, occurs once a week and lasts for 12 minutes. This has been modelled by 
BA as having a constant unconditional failure frequency of 1/840 (h-1) and unavailability equal to 
1/840. In ASTRA this event has been characterised as repairable with failure rate equal to 1/840 and 
repair time of 1 hour in order to have a constant unconditional failure frequency; in this way both the 
unconditional failure frequency and unavailability are equal to 1/840 as considered in the referenced 
paper. 
 

Gas flow Isolation Valve 
(IV) 

Pressure Relief 
Valve (PRV) 

Valve 
Controller  

(C) 

  

Permanent Ignition 
Source 

LP/LF 

Gas Leak 

Possible Ignition 
Source 

 I1 
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Figure 5.4. Fault tree of Leak-protection system’s failure 

 
 

Table 5.4. Failure rate, mean time to repair and inspection interval for the system components 
 

Component Failure rate, 1/h MTTR, h Inspection Interval, h 
LF – leak from flange 1.80E-06 1 0 
LP – leak from pipe 2.00E-08 1 0 
IV – isolation valve 1.73E-05 20 8760 
C   – valve controller 5.00E-06 12 8760 
I1  – ignition source 1/840 1  
PRV – relief valve 1.73E-06 20 8760 

 
 
 
Before starting the analysis the role (initiating, enabling) that each component can have in a system-
failure is analysed and taken into consideration. Based on the component’s role the appropriate 
importance measures are calculated in order to assess component’s contribution to the system’s failure 
(top event). 
According to the system’s description three components (PRV, IV and C) are enablers, whereas LF, 
LP and I1 are initiators.  
 
Table 5.5 contains the unavailability, unconditional failure and repair frequencies values for all basic 
events. Significant differences between these values and those presented in the BA paper concerns: 
Unavailability of event C: in the paper the value 0.2196 indicates a printing mistake; 
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Unconditional repair frequencies of enabling events are wrongly determined in the paper on tested 
events. 

 
Table 5.5. Component unavailability and unconditional failure and repair frequencies 

 
Component Unavailability Unconditional 

failure frequency 
Unconditional repair 
frequency 

LF – leak from flange 1.799997E-06 1.799997E-06 1.799997E-06 
LP – leak from pipe 2.000000E-08 2.000000E-08 2.000000E-08 
IV  – isolation valve 7.240800E-02 0.000000E+00 0.000000E+00 
C   -  valve controller 2.164267E-02 0.000000E+00 0.000000E+00 
I1  -  ignition source 1.189060E-03 1.189060E-03 1.189060E-03 
PRV – relief valve 7.240800E-02 0.000000E+00 0.000000E+00 

 
 
In order to make calculation results comparable to the one provided in the Beeson-Andrews (2003) 
paper an attempt was made to use identical parameters. The mission time was not indicated in the 
article so 87,600 h was assumed for the mission time. Note that since all events’ data represent 
repairable and tested components the unavailability value is not affected by the mission time; on the 
contrary the Expected Number of Failures WS(t) strongly depends on it.  
The results obtained at system level are as follows:  
− System unavailability QS = 1.198E-07; 
− Expected Number of Failures WS(87,600) = 1.051E-02. 
The results at system level QS and WS are not provided in the BA paper.  
  
The results obtained on importance indexes from applying ASTRA are given in Table 5.6. The last 
column contains the total importance values: the ranking is given between brackets.  
Concerning initiators the most significant contribution to the system’s failure is given by LF, while LP 
is ranked 2nd and I1 is ranked as a least likely event to cause system’s failure. 
Among the enabling events the most importance one is related to the failure of the pressure relief 
valve, followed by the negated events. In our opinion the negated events should not be considered for 
design improvements because they represent conditions that must be satisfied for the occurrence of the 
Top event (in our case explosion). Therefore the top event frequency can be reduced by: 
− reducing the unavailability of the pressure relief valve, e.g. by reducing the test interval; and/or 
− by reducing the frequency of flange leaks.   
 
A comparison of results from applying the ASTRA method and the BA method can be seen in Table 
5.7. The main concern was raised by the difference of enabler importance measures for IV, C and C .  

In case of C and 
–
C the strong difference could be due to a mistake in the compilation of the table (the 

values could have been wrongly exchanged). The hand calculation performed resulted in the 
importance of C as equal to 6.38E-04. Taking into account the approximation introduced it can be 
stated that the correct result is that of ASTRA.  
Moreover from Table 5.7 is can be verified that the sum of the importance measures for initiating 
events correctly sums to 1 for ASTRA; the sum of the values in the BA paper gives 0.97923, which is 
not correct.  
 
In order to check the correctness of the importance measures for positive events provided in Beeson-
Andrews (2003b) additional calculation was performed. From the original fault tree two negated 

events IV  and C  were removed making the fault tree coherent. The calculated importance values for 
both initiators and enablers for the coherent fault tree are shown in Table 5.8. This confirms the correct 
behaviour of ASTRA 3.0.  
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Table 5.6. ASTRA results for the various importance measures 

 
Event IB (eq. 5. 3 – 5.5) II (eq. 5. 7) IE (eq. 5.8 ) Total II + IE 

LF 6.582142E-02 9.873628E-01 2.729906E-03 9.900927E-01  (2) 
LP 6.582130E-02 1.097070E-02 3.033229E-05 1.100103E-02  (4) 
I1 1.683198E-07 1.667760E-03 1.667760E-03 3.333552E-03  (5) 
IV 1.963944E-09  2.369955E-03 2.369955E-03  (6) 

IV  1.287769E-07  9.954808E-01 9.954808E-01  (3) 

C 1.862038E-09  6.716204E-04 6.716204E-04  (7) 

C  1.220949E-07  9.954808E-01 9.954808E-01  (3) 

PRV 1.651677E-06  9.966658E-01 9.966658E-01  (1) 
 
 
 

Table 5.7. Comparison of the importance measures and their ranking 
 

Initiators Enablers Event 
ASTRA [BA] ASTRA [BA] 

LF 9.874E-01 (1) 9.571E-01 (1) 2.730E-03  (3) 5.790E-03  (5) 
LP 1.097E-02 (2) 1.063E-02 (2) 3.033E-05  (6) 6.660E-05  (7) 
I1 1.668E-03 (3) 5.830E-03 (3) 1.668E-03  (5) 5.700E-03  (5) 
IV   2.370E-03  (4) 9.976E-01  (3) 

IV    9.955E-01  (2) 9.621E-01  (4) 

C   6.716E-04  (5) 9.998E-01  (2) 

C    9.955E-01  (2) 4.350E-04  (6) 

PRV   9.967E-01  (1) 9.999E-01  (1) 
 
 
 

Table 5.8. Comparison of the importance measures for coherent system 
 

Initiators Enablers Event 
Coherent Non-coherent Coherent Non-coherent 

LF 9.876E-01 (1) 9.874E-01 (1) 1.389E-03  (4) 2.730E-03  (2) 
LP 1.097E-02 (2) 1.097E-02 (2) 1.544E-05  (6) 3.033E-05  (6) 
I1 1.405E-03 (3) 1.668E-03 (3) 1.405E-03  (3) 1.668E-03  (4) 
IV   2.152E-03  (2) 2.370E-03  (3) 
C   6.098E-04  (5) 6.716E-04  (5) 
PRV   9.971E-01  (1) 9.967E-01  (1) 

 



 48 

6. CONCLUSIONS  
 
In this report we have described the methods implemented in ASTRA 3.0 to perform the importance 
analysis as part of the fault tree analysis procedure.   
Equations for determining the importance measures for unavailability analysis for both coherent and 
non coherent fault trees have been described for the more general case of a modularised fault tree.  
 
Among the importance measures that can be found in the scientific literature the following four have 
been considered for implementation in ASTRA 3.0: 
− Probability of system critical state (equal to Birnbaum for coherent variables); 
− Criticality 
− Risk Achievement Worth 
− Risk Reduction Worth 
 
The well known Fussell-Vesely index has not been considered because its values for risk analysis 
applications are very close to the Criticality index values and also because it is related to the RRW, i.e. 
they present the same ranking.   
 
These four indexes have been extended to the case of failure frequency analysis in which system 
components have different role and their failure can be categorised as initiating events and enabling 
events. The former events cause perturbation of process variables to critical values that require the 
intervention of the protective system. The failure of protective system components enable the 
perturbation to further propagate and eventually to lead to an accident.  
 
The components importance ranking for unavailability and failure frequency for any importance 
measure are obviously different, except when all initiating events are non-repairable.   
 
The literature on the importance measures for frequency analysis is not as rich as that of unavailability. 
Only few methods are available. A new method for the calculation of the importance indexes is 
described in this report. For initiating events the importance measure coincides with that of Barlow-
Proschan, whether the importance measure for enabling events or for the enabling contribution of 
initiating events is based on a novel method. The comparison of our method with the exact method 
developed by Beeson-Andrews shows a complete agreement.  
 
 
  
 
ACKNOWLEDGEMENTS 
 
The present work has been executed as a collaboration between the Nuclear Security and the Traceability and 
Vulnerability Assessment units if the IPSC, respectively in the framework of current activities of the actions 
NUSIM and CI-CHEM.  
The authors wish to thanks W. Janssens, M. Sironi, P. Peerani and M. Christou  for the support provided to the 
ASTRA development. Thanks are also due to G.G.M. Cojazzi for the support given until this research was part 
of his previous activity.  
 



 49 

REFERENCES 
 
Barlow R. Proschan F. (1975), Importance of System Components and Fault Tree Events, Stochastic Processes and their 

Applications, vol. 3, pp 153-173. 
 
Beeson S., Andrews J.D., (2003a), Birnbaum Measure of Component Importance for Non-coherent Systems, IEEE 

Transaction of Reliability, Vol.R52, N.2. 
 
Beeson S., Andrews J.D., (2003b), Importance Measures for Non-Coherent-System Analysis, IEEE Transaction on 

Reliability, Vol. 52, N. 3, pp 301-310. 
 
Becker, G., Camarinopoulos, L. (1993), Failure frequencies of non-coherent structures, Reliability Engineering and System 

safety, Vol. 41: 209-215. 
 
Clarotti C. A., (1981), Limitation of Minimal Cut Set Approach in Evaluating Reliability of Systems with Repairable 

Components, IEEE Trans. Reliability, Vol. R-30, pp335-338. 

 

Contini S., Cojazzi G.G.M., De Cola G., (2006), On the exact analysis of non coherent fault trees: the ASTRA package, 

PSAM 8, New Orleans, USA. 

 
Contini, S., Cojazzi, G.G.M., Renda G., (2008), On the use of non-coherent fault trees in safety and security studies, 

Reliability Engineering and System safety, V.93, N.12. 
 
Contini S., Matuzas V., (2009), ASTRA 3.0: Test Case Report, EUR 24124, ISBN 978-92-79-14608-4, ISSN 1018-5593, 

DOI 10.2788/51332. 
 
Contini S., Matuzas V., (2010a), ASTRA 3.0: Logical and Probabilistic Analysis methods, EUR 24152, ISBN 978-92-79-

14857-6, ISSN 1018-5593, DOI 10.2788/55214. 
 
Contini S., Matuzas V., (2010b), Reduced ZBDD construction algorithms for large fault tree analysis, ESREL 2010, 

Greece (to be published). 
 
Contini S., Fabbri L., Matuzas V., (2010c), Sensitivity Analysis Applied to Multiple Fault Tree, Chemical Engineering 

Transactions, 19, 225-230 DOI: 10.3303/CET1019037. 
 
Demichela M., Piccinini N., Ciarambino I., Contini S., (2003), “On the numerical solution of fault trees” Reliability Eng., 

Sys, Safety,  Vol 82, pp 141-147 

 

Dutuit Y., Rauzy A., (2001), Efficient algorithms to assess component and gate importance in fault tree analysis, Reliability 

Engineering and System Safety, 72, 
 
Kumamoto H., Henley E.J., (1996), Probabilistic Risk Assessment and Management for Engineers and Scientists, IEEE 

Press, New York. 
 
IAEA (1991), Case study on the use of PSA methods: determining safety importance of systems and components at nuclear 

power plants, IAEA TECDOC 590, ISSN 1011-4289, Vienna 
 
Jackson P.S., (1983), On the s-Importance of Elements and Prime Implicants of Non-Coherent Systems, , IEEE Transaction 

on Reliability, Vol.R32 No 1. 
 
Lambert H. E., (1975), Measures of importance of events and cut sets in fault trees, Reliability and Fault Tree Analysis, 

SIAM Philadelphia.  
 
Van der Borst  M., Schoonakker, H. (2001), An overview of PSA importance measures, Reliability Engineering and System 

Safety, Vol . 72. 
 
Zhang Q., Mei Q., (1985), Elements Importance and System failure Frequency of a 2-State Systems, IEEE Transaction on 

Reliability, 1985 Vol.R34 No 2. 
 



 50 

APPENDIX 1 
 
 
Determination of RAW for different types of variables 
 
Let x be an SP variable and Φ(x) = x Φ(1, x) + Φ(0, x)  
 
QS(t) = qx(t)) QS(t)|x=1 + (1 - qx(t)) QS(t)|x=0 
 
pf

x(t) = QS(t)|x=1 – QS(t)|x=0  which is valid only for SP events 
 
QS(t)|x=0 = QS(t)|x=1  - p

f
x(t)    which, substituted into  

 
QS(t) = qx(t) QS(t)|x=1 + (1 - qx(t)) QS(t)|x=0 gives:  QS(t)|x=1  = QS(t) + (1- qx(t)) p

f
x(t) 

 
Therefore, RAWx(t) = QS(t)|x=1 / QS(t) becomes:        
  
RAWx(t) = [QS(t) + (1- qx(t)) p

f
x(t) ] / QS(t) = 

 
RAW x(t) = 1 + (1- qx(t)) p

f
x(t) / QS(t)      

 
 
Let x be an SN variable and Φ(x) = $x Φ(1, x) + Φ(0, x)  
 
QS(t) = q$x(t)) QS(t)|$x=1 + (1 - q$x(t)) QS(t)|$x=0 

 
Pf

$x(t) = QS(t)|$x=1 – QS(t)|$x=0 which is valid only for SN events 
 
QS(t)|$x=0 = QS(t)|$x=1  - p

f
$x(t)    which, substituted into  

 
QS(t) = q$x(t) QS(t)|$x=1 + (1 - q$x(t)) QS(t)|$x=0 gives: QS(t)|$x=1  = QS(t) + (1- q$x(t)) p

f
$x(t) 

 
Therefore, RAW$x(t) = QS(t)|$x=1 / QS(t) becomes:        
  
RAW$x(t) = [QS(t) + (1- q$x(t)) p

f
$x(t)  ] / QS(t) = 

 
RAW$x(t) = 1 + (1- q$x(t)) p

f
$x(t)  / QS(t)       

 
Since q$x(t) = 1 - qx(t) and pf$x(t) = pr

x(t) then RAW can be re-written as : 
 
RAW $x(t) = 1 + qx(t) p

r
x(t)  / QS(t)       

 
 
Let x be a DF variable. In this case both the positive and negated contribution are calculated as above 
described. 
 
 
Determination of RRW for different types of variables 
 
Let x be a SP variable and Φ(x) = x Φ(1, x) + Φ(0, x)  
 
QS(t) = qx(t)) QS(t)|x=1 + (1 - qx(t)) QS(t)|x=0 
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pf

x(t) = QS(t)|x=1  – QS(t)|x=0  

 
QS(t)|x=1 = QS(t)|x=0  + pf

x(t)    which, substituted into  
 

QS(t) = qx(t) QS(t)|x=1 + (1 - qx(t)) QS(t)|x=0 gives: QS(t)|x=0  = QS(t) - qx(t) p
f
x(t) 

 
Therefore, RRWx(t) = QS(t) / QS(t)|x=0 becomes: 
        
RRWx(t) = [QS(t) / [QS(t) - qx(t) p

f
x(t)] =  

 
RRWx(t) = 1 / [1 - qx(t) p

f
x(t) / QS(t)]       

 
 
Let x be a SN variable and Φ(x) = $x Φ(1, x) + Φ(0, x) 
 
QS(t) = q$x(t)) QS(t)|$x=1 + (1 - q$x(t)) QS(t)|$x=0 

 
pf

$x(t) = QS(t)|$x=1 – QS(t)|$x=0 

 
QS(t)|$x=1 = QS(t)|$x=0  + pf

$x(t)     which, substituted into  
 

QS(t) = q$x(t) QS(t)|$x=1 + (1 - q$x(t)) QS(t)|$x=0 gives: QS(t)|$x=0  = QS(t) – q$x(t) p
f
$x(t) 

 
Therefore, RRW$x(t) = QS(t) / QS(t)|$x=0 becomes:        
  
RRW$x(t) = QS(t) / [QS(t) – q$x(t) p

f
$x(t)] = 

 
RRW$x(t) = 1 / [1- q$x(t) p

f
$x(t)  / QS(t)]       

 
Since q$x(t) = 1 - qx(t), and pf$x(t) = pr

x(t) then 
 
RRW$x(t) = 1 / [1 – (1 - qx(t)) p

r
x(t) / QS(t)]      

 
 
Le x be a DF variable. In this case both the positive and negated contributions are calculated as above 
described. 
Finally, it can be seen that: 
 

xx& RAWRAW =  xx& RRWRRW =  x$x&
RAWRAW =  x$x&

RRWRRW =  
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APPENDIX 2 
 
Determination of f

xp  and r
xp  on a modularised fault tree 

 

Let 0101 MM ΦΦ+Φ+Φ=Φ        

be the non-coherent function Φ expanded with respect to the module M where Φ1 and Φ0 are the 
residues. 

Let 0101 MMMxMxM ++=  

be the function of the module M(x)  expanded with respect to the variable x and  

0101 MMMxMxM ++=  its complemented form. 
Passing to probabilities: 

)(P)](P)(P[)M(P)(P)(P[)M(P)(P 01010011 ΦΦ+ΦΦ−Φ+ΦΦ−Φ=Φ  

)MM(P)]MM(P)M(P[)x(P)]MM(P)M(P[)x(P)M(P 01010011 +−+−=  

)MM(P)]MM(P)M(P[)x(P)]MM(P)M(P[)x(P)M(P 01010011 +−+−=  
 
The above equations can also be written as: 

)(P)(P)M(P)(P)M(P)(P 011001 ΦΦ+ΦΦ+ΦΦ=Φ  

)MM(P)MM(P)x(P)MM(P)x(P)M(P 011001 ++=  

)MM(P)MM(P)x(P)MM(P)x(P)M(P 011010 ++=  
 
Now, the importance of x ∈ Φ is obtained when: 
( Mx ∈  and Φ∈M )  or ( Mx ∈  and Φ∈M ) 
 
Analogously, the importance ofx ∈ Φ is obtained when: 
( Mx ∈  and Φ∈M )  or ( Mx ∈  and Φ∈M ) 
 
Indicating with f

xp the probability of the system critical state for the failure of x with respect to Φ, and 

with r
xp  the probability of the system critical state for the repair of x with respect to Φ, we can write:. 

 
1) For the importance of x ∈ Φ: 
 

fM

x

f

M

fM
x

f
M

f
x

ppppMMPPMMPP

MP

P

PMP

P

P
p

+=ΦΦ+ΦΦ=

=
∂

∂
∂

Φ∂+
∂

∂
∂

Φ∂=

)()()()(

)xP(

)(

)M(

)(
(x)

)(
(M)

)(

10100101

 

 
2) For the importance ofx ∈ Φ: 
 

fM

x

f
M

fM
x

f

M

f

x

ppppMMPPMMPP

MP

P

PMP

P

P
p

+=ΦΦ+ΦΦ=

=
∂

∂
∂

Φ∂+
∂

∂
∂

Φ∂=

)()()()(

)xP(

)(
(M)

)(
P(x)

)(

)M(

)(

10010110

 

 
Considering that r

x
f
x

pp =  and vice versa, the above equation can also be written as: 

rM
x

r
M

fM
x

f
M

f
x ppppp +=        (A2.1) 
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 rM
x

f
M

fM
x

r
M

r
x ppppp +=        (A2.2) 

where 

)(Pp 01
f
M ΦΦ=  is the probability of the system critical state for the failure of M in Φ;  

)(Pp 01
r
M ΦΦ=  is the probability of the system critical state for the repair ofM in Φ.  

)MM(Pp 01
fM
x =   is the probability of the critical state of x in M. 

)MM(Pp 01
rM
x =  is the probability of the critical state for the repair of x in M. 

 
The dependence of time of the above equations is not represented for the sake of simplicity, but it is 
understood that fxp  and r

xp are calculated at a give time t. 
 
Equations A2.1 and A2.2 are valid for DF variables; simpler relationships can be derived for SP and 
SN variables. 
 
SP variables 
The importance of x ∈ Φ is obtained when: Mx ∈  and Φ∈M  
 
Equations are derived from A2.1 and A2.2 considering that for coherent positive variables 001 Φ=ΦΦ  

and 001 MMM = ; consequently 001 =ΦΦ  and .0MM 01 = Hence  

 

fM
x

f
M

f
x ppMMPP

MP

P

P
p =ΦΦ=

∂
∂

∂
Φ∂= )()(

P(x)
)(

(M)
)(

0101      (A2.3) 

0pf
x

=             (A2.4) 

 
SN variables 

Analogously, the importance ofx ∈ Φ is obtained when: Mx ∈  and Φ∈M  
 
Equations are derived from A2.1 and A2.2 considering that for negated variables 101 Φ=ΦΦ  

and 101 MMM = ; consequently 010 =ΦΦ  and .0MM 10 = Hence  
 

0pf
x =  

rM
x

f
M

r
x ppMMPP

MP

P

P
p =ΦΦ=

∂
∂

∂
Φ∂= )()(

)xP(

)(

(M)

)(
1001  
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APPENDIX 3 

Determination of
xxxx E,I,E,I  on a modularised fault tree 

 

Given the more general case of a non-coherent function 0101 ΦΦ+ΦM+ΦM=Φ , where M is a 

module containing the DF variable x, and the function 0101 MM+Mx+Mx=M , the objectives is to 

find the relationships linking the importance of x in M and of M in Φ to find the importance of x in Φ 
in case of frequency analysis.  
 
Since the variable is non-coherent we expect to obtain the positive and the negative contributions. The 
failure frequency of Φ is given by: 
 

)()M(P)(P)M()()M(P)(P)M(

)()()M(P)(P)M()()M(P)(P)M()(

01010101

010011

ΦΦΩ−ΦΦΩ−ΦΦΩ−ΦΦΩ−

+ΦΦΩ+ΦΩ+ΦΩ+ΦΩ+ΦΩ=ΦΩ
 

 
or equivalently as: 
 

)()()M(P)(P)M()()M(P)(P)M()( 0101010101 ΦΦΩ+ΦΦΩ+ΦΦΩ+ΦΦΩ+ΦΦΩ=ΦΩ  

For the module M in positive form we have (see Appendix 2): 

0101 MMMxMxM ++=  

)MM(P)MM(P)x(P)MM(P)x(P)M(P 011001 ++=  

)MM()MM()x(P)MM()x(P)MM(P)x()MM(P)x()M( 0110011001 Ω+Ω+Ω+Ω+Ω=Ω  

For the module in negated form we have: 

0110 MMMxMxM ++=  

)MM(P)MM(P)x(P)MM(P)x(P)M(P 011010 ++=  

)MM()MM()x(P)MM()x(P)MM(P)x()MM(P)x()M( 0101101001 Ω+Ω+Ω+Ω+Ω=Ω  

Considering that the importance of x ∈ Φ is obtained when: 

( Mx ∈  and Φ∈M )  or ( Mx ∈  and Φ∈M ) we have respectively for initiating and enabling events 
that: 
 

=
Ω∂
Ω∂

Ω∂
ΦΩ∂+

Ω∂
Ω∂

Ω∂
ΦΩ∂=

=
Ω∂

ΦΩ∂=

)x(

(M)

)M(

)(
(x)
(M)

(M)
)(

(x)
)(

xI

 

M

xM

M
xM10100101 IIII)MM(P)(P)MM(P)(P +=ΦΦ+ΦΦ=     (A3.1) 

 

=
∂
∂

∂
ΦΩ∂+

∂
∂

∂
ΦΩ∂=

=
∂

ΦΩ∂=

)x(

(M)

)M(

)(
(x)
(M)

P(M)
)(

(x)
)(

P

P

PP

P

P
Ex

 

M
xM

M
xM10100101 IEIE)MM(P)()MM(P)( +=ΦΦΩ+ΦΦΩ=     (A3.2) 

 
Analogously, the importance ofx ∈ Φ is obtained when: 

( Mx ∈  and Φ∈M )  or ( Mx ∈  and Φ∈M ) 
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=
Ω∂
Ω∂

Ω∂
ΦΩ∂+

Ω∂
Ω∂

Ω∂
ΦΩ∂=

=
Ω∂

ΦΩ∂=

)x(

(M)

(M)

)(

(x)

(M)

)M(
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)x(

)(
x

I

 

M
xM

M
xM10010110 IIII)MM(P)(P)MM(P)(P +=ΦΦ+ΦΦ=     (A3.3) 

 

=
∂
∂

∂
ΦΩ∂+

∂
∂

∂
ΦΩ∂=

=
∂

ΦΩ∂=

)x(

(M)

P(M)

)(

(x)

(M)

)M(

)(

)x(

)(

P

P

P

P

P

P
E

x

 

M
xM

M
xM10010110 IEIE)MM(P)()MM(P)( +=ΦΦΩ+ΦΦΩ=     (A3.4) 

 
Equations A3.1 and A3.4 are valid for DF variables; simpler relationships can be derived for SP and 
SN variables. They are reported here below for the sake of completeness. 
 
 
SP variables 
The importance of x ∈ Φ is obtained when: Mx ∈  and Φ∈M  
 
Equations are derived from A3.1 and A3.2 considering that for coherent positive variables 001 Φ=ΦΦ  

and 001 MMM = , i.e. 001 =ΦΦ  and .0MM 01 = Therefore: 
  

=
Ω∂
Ω∂

Ω∂
ΦΩ∂=

Ω∂
ΦΩ∂=

(x)
(M)

(M)
)(

(x)
)(

xI M
xM0101 II)MM(P)(P =ΦΦ     (A3.5) 

  

(x)
(M)

P(M)
)(

(x)
)(

P

P

P
Ex ∂

∂
∂

ΦΩ∂=
∂

ΦΩ∂= M
xM0101 IE)MM(P)( =ΦΦΩ=     (A3.6) 

         
 
SN variables 

Analogously, the importance ofx ∈ Φ is obtained when: Mx ∈  and Φ∈M  
 

=
Ω∂
Ω∂

Ω∂
ΦΩ∂=

Ω∂
ΦΩ∂=

)x(

(M)
(M)

)(

)x(

)(
x

I M

xM1001 II)MM(P)(P =ΦΦ     (A3.6) 
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P
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xM1001 IE)MM(P)( =ΦΦΩ     (A3.7) 
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APPENDIX 4 
 
Complementation of an LBDD 
 
In ASTRA 3 the fault tree is represented as a Labelled BDD, i.e. an OBDD in which the variables 
associated to the nodes are dynamically labelled with their type (Contini et al, 2008). Indeed a non-
coherent fault tree may contain three different types of basic events or variables, namely:  

1. normal or positive, e.g. x; 
2. negated, e.g.y; 
3. events that appear both in positive and negated forms, e.g. z,z.  

 
In ASTRA the following definitions are used. Variables of type 1 are referred to as Single form 
Positive variables (SP), variables of type 2 as Single form Negated variables (SN), whereas variables 
of the third type as Double Form variables (DF). For instance, the function Φ =a b +a c + bc 
contains the SN variable a, the SP variable b and the DF variable c.  
 
Each negated variablesx is represented as a labelled normal variable $x. For instance, the function 
Φ=a b +a c + bc is written as Φ = $a b +$a c + b $c.  
 
A coherent function contains only coherent variables, i.e. variables in positive form (SP). 
 
A non coherent function contains also variables in negated form (SN, DF).  
 
During the LBDD construction variables of DF type may be generated as a combination of two 
variables of different type.  
The label associated to a variable (note that the same variable in two different nodes may have 
different labels) is the information used to apply the appropriate logical and probabilistic algorithms. 
 
In this report the importance measures requires the complementation of Boolean function represented 
as LBDD. It is well known that the complementation of a BDD is obtained by complementing only the 
terminal nodes. The LBDD nodes are associated with the variables type. Hence the complementation 
of an LBDD needs to change also the variables types. 
 
Given a function stored in the form of an LBDD its complemented form is obtained visiting it in Top-
down mode and applying the following rules to each node, non terminal and terminal (the symbol ¬ 
means NOT): 
 
¬&x = &x  
¬x = $x   exchanging its descendants 
¬$x = x  “ “ “ 
¬0 =1 
¬1 = 0 
 
The double form nodes are not changed. The SP and SN are changed plus their left and right 
descendants are exchanged. The simple inversion (complementation) is done for terminal nodes 1, 0. 
 
As a simple example of the application of the above rules consider the following non-coherent 

function: dcaedaedccbadba ++++=Φ  whose LBDD is shown on the left of Figure A.1. 
The complemented form is on the right. 
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Figure A.1. Resulting function (on the left) obtained complementing the function on the right 
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