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SUMMARY

This report deals with the problem of determining the exact values of the
importance indexes of basic events in case of both unavailability and
frequency analysis of coherent and non-coherent fault trees. In particular a
new method is described for determining the importance of enabling events
in case of frequency analysis. Insights are given into the importance analysis
implemented in the new software ASTRA 3.0 based on the Binary Decision
Diagram approach with Labelled variables (LBDD). The analysis methods
are aso described with reference to modularised fault trees. Simple
numerical examples are provided to clarify how the methods work. Proofs
of the implemented equations are provided in Appendixes.






TABLE OF CONTENTS
1. INTRODUCTION

2. BACKGROUND CONCEPTS
2.1 The binary decision diagram with labelled ables
2.2 Determination of the unconditional failure aegair frequencies using LBDD
2.3 Initiating and enabling events

3. STATE OF THE ART ON COMPONENTS’ IMPORTANCE MEASU RES

4. IMPORTANCE INDEXES BASED ON UNAVAILABILITY
4.1 Unavailability equation
4.2 Marginal importance indexes
4.3 Structural importanceyl
4.4 Criticality index ¢&x
4.5 Risk Achievement Worth and Risk Reduction Wort
4.6 Determination of importance indexes on a maxdsed fault tree
4.7 Example of application

5. IMPORTANCE INDEXES BASED ON FAILURE FREQUENCY
5.1 Determination of the unconditional failure fuegcy
5.2 Importance measures for initiating and engbdivents
5.3 Some clarification examples
5.4 Determination of the importance indexes diating and enabling events
on a modularised fault tree
5.5 Risk Achievement Worth (RAW) and Risk Reductiworth (RRW)
5.6 Implementation issues
5.7 Application of the Importance Measures to a{doherent fault tree

6. CONCLUSIONS

ACKNOWLEDGEMENTS

REFERENCES

APPENDIX 1: Determination of RAW for different type s of variables

APPENDIX 2: Determination of p' and g on a modularised fault tree
APPENDIX 3: Determination of I, ,E,, |-, E. on a modularised fault tree

APPENDIX 4: Complementation of an LBDD

12
12
12
15
15
15
17
19

21
21
21
24

34
39
39
44

48

48
49
50

52
54

56






1. INTRODUCTION

Fault Tree Analysis (FTA) is a popular methodoldgy Reliability, Availability, Maintainability, and
Safety (RAMS) studies of complex systems, allowiogystematically describe the system’s failure
logic - for each system failure state or Top eveahd to determine several probabilistic parameters
useful e.g. for design improvement, diagnostic,nteaiance. In particular the importance measures of
basic events represent the contribution of compisntilure to the occurrence of the system failure
described at the Top-event level.

Fault trees of real systems containing the AND, Bd#dlean operators are referred toGsherent;
they are characterized by monotonic (hon-decreagimgtions with respect to all basic events. Non
monotonic logical functions are also of interebg hon monotonic behavior is due to the presence of
the NOT operator. Fault trees containing the NOT afoerare referred to ason-coherentand are
very helpful in modelling e.g. mutually exclusiveeats, event-tree sequences, top-events conditioned
to the working state of one or more component sgsifem, and maintenance procedures.

ASTRA allows the user to handle both coherent andauherent fault trees. It is based on the state of
the art approach of Binary Decision Diagrams (BDDyvhich labels are dynamically associated with
nodes giving what we called a Labelled BDD (LBDD)ckar description of the LBDD can be found
in Contini & Matuzas (2010a), a report that prowdalso insight into the probabilistic analysis
methods implemented in ASTRA 3.0.

This report is focussed on the methods implemeftdedhe determination of the ranking of basic
events according to a selected set of importanaesures. The ranking of importance measures finds
different applications, in particular for designgrovement when coupled with sensitivity analysis
techniques as described in Contini et al (2010dhe©applications are on system diagnosis and
maintenance.

In literature several importance measures can lbediosometimes the same index is named in
different ways by different scientists and praotigrs. The importance measures considered in this
report are:

— Marginal importance or probability of critical stat

— Criticality importance;

- Risk Achievement Worth;

- Risk Reduction Worth.

The selection of the importance measure of intésesp to the user and depends on the objectives of
the analysis.

Whereas in the scientific literature the importamedexes based on unavailability are extensively
described the importance based on the failure &equ (from which the Expected Number of Failures
is determined and used as upper bound for unrktighs not so rich. In case of failure frequentys
important to classify events as initiators or epablsince they role in systems are different and
consequently they must be treated differently.

The aim of this report is to describe in detail thethods implemented in ASTRA 3.0 for calculating
the importance ranking of basic events in caseoti linavailability and frequency analysis. A hew
method has been developed and implemented formdigtieg the exact importance value of enabling
events and of the enabling contribution of initigtevents.

The report is organised as follows. The next seatiescribes some concepts useful to facilitate the
reading of the report. Section 3 briefly descrities state of the art in importance analysis. Sestb
and 5 constitute the core of the report and aretéevto the description of the analysis methods
implemented in ASTRA 3.0. Proofs of equations ankeptuseful information are given in four
Appendixes.



2. BACKGROUND CONCEPTS

In order to facilitate the comprehension of thetean of this report some basic concept are briefly
described in this section. They concern: 1) the UabdeBDD implemented in ASTRA 3.0; 2) the
equations for determining the unconditional failamed repair frequencies; and 3) the initiating and
enabling events.

2.1 The binary decision diagram with labelled varibles

A BDD with labelled variables (LBDD) is an Orderd8DD (OBDD) in which variables are
dynamically labelled with the information about ithiype (Contini et al. 2006; Contini & Matuzas,
2010a). The LBDD was introduced to analyse non-aafteiault trees which generally contains three
different types of events:

— Single form Positive (SP), i.e. events appearingasitive (normal) form only;

— Single form Negated (SN), i.e. events appearingegated (complemented) form only;

— Double form (DP), i.e. events appearing in botm®i(positive and negated).

The characterisation of three different types ofaldes requires labelling only two of them. Hemte
ASTRA variables of SN type are labelled with the bpi$; variables of DF type are labelled with the
symbol &. Additionally, the ordering used duringgthBDD construction is &xX<x<$x.

For instance the functiop= a b + a c + bc¢ contains the SN variabé the SP variable and the DF
variablec. Hence the function is represented using the ledb@ariables ag=$a b + $a c + b $c.
Events with the “&” label (DF type) are dynamicatignerated during the constructing of the LBDD
when two occurrences of the same event - but difiity labelled - are combined.

The rules for constructing the LBDD for non-coheraénictions are described in Contini & Matuzas
(2010a); for coherent functions the LBDD is obvilgusquivalent to the classical BDD.

The main reason for defining the LBDD is that diéfet types of variables require different algorithms
of analysis presenting different degree of compjexindeed, on nodes with &-variables the
determination of the Prime Implicants (PI) andtw failure and repair frequencies require the lalgic
intersection between the left and right descendlimgtions, whereas this is not needed for the other
two types of variables.

Moreover the knowledge of the variables’ type iefukfor the analysis of very large non-coherent
fault trees, for which the complete LBDD is too cdexpto be stored in the available working
memory. A set of rules, which have been definedContini & Matuzas (2010b), can be used for
constructing a reduced ZBDD (RzZBDD) of a non-coherfault tree embedding only Significant
Minimal Cut Sets (SMCS) having probability greateasn and /or order less that predefined thresholds.
A ZBDD is a convenient way to store MCS.

As an example of LBDD consider the functigfx) = % (X1 + X3 + Xg) + X3 ( X1 + X2 Xg). In this
function all variables are of DF type. After lalved) all negated variables the LBDD is constructed
based on the ordering X x; < X3 < X3. Figure 2.1 shows the LBDD so obtained.
Note that in this LBDD there is one node with a Dfiable (&%) and one node with an SN variable
($x1), whereas the variables associated with all otteetes have no label, i.e. they behave as SP
variables. Thus, in spite of the fact that the tfandle has all four variables of DF type, the LBD&sh
only one.
The above LBDD can be further simplified by apptythe following rules:
— the & label can be removed if the left descendaeual to 1 or the right one is 0;
— if the left descendant is equal to O or the rigie & 1, the & label is substituted by

$ and the two descendants are exchanged.
Changing &x with x,, the final LBDD does not contain any variable of §pe.



Figure 2.1 LBDD representation of Top (X1 + X3+ Xa) + X3 ( X1 + X2 X4).
Left: intermediate result: Right: final result

2.2 Determination of the unconditional failure andrepair frequencies using LBDD

The importance measures described in this repat bmsed on the unavailability and failure
frequencies determined by visiting the LBDD in battup mode.

The equations to be applied to each node depetitedype of the associated variable. The description
of the equations to be applied on an LBDD is predelg the definitions of failure and repair
frequencies.

The time specific unconditional failure frequenyt) of a generic event; xs the probability that;xs
verified (x = 1) at time t-t+dt given thatix O at time 0. IfA ; is the constant failure rate of the
component, themy(t) = A ; (1 — q(t)), where ¢t) is the component unavailability at time t. Fan
repairable components(t) = f(t), the failure density.

The time specific unconditional repair intensityt) of a generic event; s the probability thatixs
not verified (x = 0) at time t-t+dt given that x O at time 0. Ify; is the constant repair rate of the
component, thew;(t) = g(t). For non repairable componepts= 0, i.e.vi(t) = 0.

Let (A B) be a system failure combination, i.e. amal cut set of a fault tree.

The unconditional failure frequen€y(A B) that the combination (A B) occurs (enter irte failed
state) in the time interval dt is given by the @bility that A occurs in t-t+dt (represented doy(t) dt)
with B already failed at t (represented kyft)) or that Boccurs in t-t+dt with A already failed at t, i.e.:

Q(A B) = 0g(t) wa (t) + Ga(t) wa(t)

The unconditional repair frequency V(A B) in theé interval dt is given by the probability that \ i
repaired in t-t+dt (represented hy(t)) with B already failed at t (represented (tj) or that Bis
repaired in t-t+dt with A failed at t, i.e.:

V(a b) = g(t) va (1) + 0a(t) va(t)

With the aim of simplifying the notation from nownahe dependence of time will be omitted,
implicitly meaning that the equations are applied generic time t.

Let X = x F +x G be the generic node of the LBDD. The problenvigétermine the unavailability
and the unconditional failure and repair frequesicidhe following notation is used:
-  Qoutis the unavailability of the function X;



— Wyt IS the unconditional failure frequency of X;

—  Vout IS the unconditional repair frequency of X;

- Q=P(F) and Q= P(G);

— wy anduy are respectively the unconditional failure frequesof F and G;

— v andvpare respectively the unconditional repair frequesi@f F and G;

— Ok W, andvy are respectively the unavailability, failure aegpair frequencies of x.

At terminal nodes of the LBDD:
Q=1 Q=0,t0=0,00=0,v1=0,v0=0.

The parameters 4, tout @andve; at the root node determine the parameters at Veptdevel.

The equations to be applied to nodes with variabfedifferent type are listed herewith (Since the
analysis is of bottom-up type the unavailabilityddrequencies of function F and G are suppose@to b
known).

SP variable
If X is coherent positive, then X =x F + G.
The unavailability is given by:

Qout= &k Q1 + (1- q) Qo (2.1)
Applying the rules for the determination of thddee frequency we get:

Wout = 0y Qu + Gy O + 6o (1- ) —ux Qo (2.2)

Vout = Vx Q1 +V1 Gk + Vo (1- &) —Vx Qo (2.3)
SN variable

If x is negated then X = $x F + G.
Hence the unavailability is given by:

Qout = Osx Q1 + (1- Gx) Qo (2.4)
Applying the rules for the determination of thddae frequency, we get:

Wout =Vx Q1 + (1 - ) Wy + 6o Ok —Vx Qo (2.5)

Vout = x Q1 + (1 - q) V1 +Vo (1- g) —ox Qo (2.6)
DF variable

If x is of DF type then X = x F + $x G + F G. Inishcase the product F G represents the consensus
term and its importance for failure calculations.
The unavailability is given by:

Qou(t) = G Q1 + Gsx Qo (2.7)

Concerning the failure frequency:

Applying the rules for the determination of thddae frequency, we get:
Wout = 0 Qu + G wn + (1 - G) oo +Vx Qo — (@ + V) Pr{F LG} (2.8)
Vout =Vx Q1+ GkVi+ (1 -¢)Vo+ux Qo— (x +Vx) Pr{FOG} (2.9)

NOTE:
In the above equations the dependence on timedtdsern displayed, meaning that the equations are
applied at the generic time t, from t = O to thesgion timet=T.

As can be seen equations (2.8-9) are more complkex ¢quations (2.2-3) and (2.5-6). Using the
LBDD the more complex equations are applied onlymtiney are strictly necessary.



2.3 Initiating and enabling events

In fault tree analysis several types of events amesidered. Along with the positive, negated and
double form events there are situations in whicis mecessary to distinguish between initiating and
enabling events. This occurs when the Top-eventribesca catastrophic system failure that is a
failure that cannot be repaired or a failure witbry dangerous consequences as e.g. “reactor
explosion”, “release of toxic substance in the apiere”, “missile fails to perform its mission”. In
these cases it is important to determine the piibtyabf no failure during the mission time, i.ehd
reliability or its complement to 1 (unreliability).

Note that theexact value of the unreliability of systems with repail@a components cannot be
determined by means of fault tree analysis (Clarat®81). However (good) approximated
conservative results can be obtained through thermeation of the Expected Number of Failures
(ENF). This bound is based on the unconditionaufailfrequency, which is the time derivative of the
ENF (Kumamoto & Henley, 1996).

In performing the importance analysis based onuth@nditional failure frequency it is necessary to
subdivide the basic events into two groups: initaitand enabling because they have different
meaning and they are treated differently. Initigtevents cause perturbations of process variables;
enabling events are associated with the failurel@mand of the protective systems. For instance, in
the following example: “An accident occurs if aethme of occurrence of the initiating event (fadiu
mode of the control system causing a plant pertimbae.g. very high pressure) the enabling event
(failure mode of e.g. the shut-down system) hasaaly occurred or it occurs at the time it is catted
intervene”. The inverse sequence would lead telaet shut down, but not to the accident.

This simple example shows that, differently frore tmavailability analysis (failure at a given tite
where the order in which components fail is noevaht, in case of frequency analysis the failure
sequence is very important.

The sequence of intervention of the initiator andl®er events can be modelled in ASTRA using the
Inhibit (INH) gate, in which the two inputs can bemplex dependent sub-trees.

Output event

Process failure

Safetysysten
Failure

N

Figure 2.2 The INH gate as used in ASTRA for modegllihe relationship
between initiating and enabling events

An Initiating event is an event whose occurreniggérs the intervention of the Enabling event.

The output is true when, at the time the inputri®t the condition defined by the enabler event is
alreadytrue.

The method implemented in ASTRA identifies the esextt eithemitiators or enablersdepending on
the sub-tree they belong to. Common events argdida@s initiators.



The differentiation of the type of events has apagt on the calculation of the ENF, since initiating
events are characterized by their failure frequeafy, whereas enabling events, associated with
components of the protective system, are charaeiy their on-demand unavailability q(t). Hence
the unconditional failure and repair frequenciesmdbling events are set to zero.

Using the INH gate the failure and repair frequesa@f the output event are given by:
Wou(t) = 0 (t) Oe(t)
Voult) =Vi(t) de(t)

In calculating the importance measures it is imgrurto recognise that an initiating event may also
appear, in certain MCS, as enabler. This situatitsses when an initiating event is in a MCS with
another initiating event.

Consider for instance the MCS (A B) where A, B iagependent initiating events.

The failure frequency of the MCS is given by:
wag(t) = wa(t) ge(t) + ws(t) ga(t)

Consider e.g. event A. In the first term of thehtidnand side A behaves as initiator because it is
characterised bgoa(t), whereas in the second term as enabler, clarsetl by g(t).

A description of the need to identify enabling egewith a simple application can be found in
Demichela et al (2003). It is worth to note thathat paper equation (3) is wrongly written: thpityg
noa(t
mistake is pretty obvious. The correct equationdgt) dt = Q_(t) Z% dt.
=1 4

Other examples of application of the determinatdrthe system failure considering initiating and
enabling events are provided in the Test Case Rep&STRA 3.0 (Contini & Matuzas, 2009).



3. STATE OF THE ART ON COMPONENTS’ IMPORTANCE MEASU RES

The importance measures of basic events in faeé &nalysis allows the designer to identify the
relatively most critical points of the system, fire top event of interest, from which design

alternatives can be identified to improve the systeerformances. Other applications are system
diagnoses and maintenance. A clear overview of rtapoce measures can be found/am der Borst &

M., Schoonakker (2001),

For coherent systemsepresented as a monotonic function of the veatorariablesx, in the form

P(X) =X, P(x, =Lx)+P(x, =0,x), the first importance measure was proposed bybBum. The

Birnbaum importance [I&(t)] of a component, sayxis defined as the probability that, at time & th

system is in a critical state for the failure @f ixe. the system works if the component works faid

if the component fails.

Mathematically: IB,, (t) = P(®(x, =1x,t)) - P(P(x, = 0,x,t)) =0Q, (t)/0q,, where Q(t) is the

unavailability of®(x) at time t.

This index does not depend on the failure probgmli component x. However, it is important that:

— It gives the maximum variation of the Top eventwaikbility when the component changes its
state from perfectly working to failed;

— Itis useful when used in connection with otherexess;

— Other indexes can be expressed as a function of it.

For non-coherent systems the Birnbaum index asi@@fabove loses its meaning, since it can assume
negative values. Non coherent systems are desdrjpBdolean functions containing negated events.
The generalization of the Birnbaum index foon-coherentfunctions was proposed by Jackson,
Zhang-Mei, Becker-Camarinopoulos and recently bgdda-Andrews.

In order to be able to rank the events in ordeingfortance Jackson (1983) proposed to use the
absolute value of Ig(t) for non-coherent systems, i.e.

IBRe2(t) = [P(P(x, = Lx,1)) = P(P(X, = 0,x,1))| =[0Q,, (t)/ 00, |
Naturally, the absolute value implies a loss obinfation about the criticality of components.

Zhang and Mei (1985) defined the two probabilitis, (t) andIB,, (t) as representing the two
contributions of the criticality of non-coherentriables:

1B}, (t) =P[D(x, =1,x,t) —D(x, =0,x,t) =1]

1B, (t) =P[P(X, =1Xx,t) —P(x, =0,x,t) =-1]

Becker-Camarinopoulos (1993) introduced the dedinitof Failure Criticality Function (FCF) and
Renewal Criticality Function (RCF).

The Failure Criticality Function for the generiaiadle % is a Boolean function defined as:
FCE, () = d(x, =1Lx,t)[1-P(x, =0,x,t)]. It expresses the fact that a generic componeist x
critical when the system fails if the componenisf@ = 1 = ®(xx=1, x) = 1) AND it works if the
component works = 0= ®(x=0, X) = 0, or equivalently 1®(x,=0, x) = 1).

If X« IS coherent then FGE= By, since®(xx=1, X) ®(xx=0, X) = P(xx=0, X).

The expected value of FGFat time t, i.e. Pr(FCk =1, 1), is indicated as,p(t) and represents the
probability of the critical state for the failuréx; at time t.

The Renewal Criticality Function RGHs a Boolean function defined as:

RCE, (t) = ®(x, = 0,x,t)[L-P(x, =1 x,t)]. It expresses the fact that a generic compongist x
critical when the system fails if the componenteigaired (x = 0= 0= d(xx =0,x) = 0) AND it
works if the component fails {(x 1= ®( xx =1,x) = 0, or equivalently 1 d( xx =1,x) = 1).



If X« IS coherent then RGF= 0 sinceP(xx=1, X) ®(xx=0, X) = P(xx=0, X).
The expected value of RGFat time t, Pr(RCk =1, 1), is indicated as,p(t) and represents the
probability of the critical state for the repaingfat time t.

Beeson-Andrews (2003a) proposed an extension oBittmdaum index of component importance for

non-coherensystems. This measure is given by the sum of tblegbilities of all critical statefr the

non-coherent component, i.e.:

Gu(t) = Gu'(t) + Gu()

- Gu(t) is the probability that, at time t, the systésmnin a working state such that the failure of
component x in t-t+dt causes the system to faf].(t) = 0Q,, (t)/dq,, t)

- Gx(t) is the probability that the system is in a ddilstate at time t such that the repair of
component x causes the system to &, (t) = 0Q,, (t)/dp,, (t)

In these equationsydt)=P(%=1) and p(t)=P(%=0).

The calculation of GR(t) and G (t) is done considering the exact equation of tlystesn

unavailability calculated using the inclusion-exxtn method applied to the disjunction of the prime

implicants or the BDD.

On the basis of the Birnbaum index, extended aswoh-coherent functions, other indexes can easily
be calculated such as the Criticality index, Risthi@vement Worth and Risk Reduction Worth as
described in the next section.

Algorithms for determining importance measures wagkon the BDD representation of fault trees
have been developed by Dutuit and Rauzy (2001).

The importance measures as defined above aresdtban unavailability (failure probability at time
t), i.e. the fault tree is analysed for a Top ewanrtcerning the system unavailability.

The scientific literature describing the determioat of importance measures based on failure
frequency is not as rich as for the case of unabdity. The first paper dates back to 1975 when
Lambert (1975) introduced the definitions of intiey and enabling events. Initiating events cause
perturbations of process variables; enabling evargsassociated with the on-demand unavailabifity o
protective systems.

In IAEA TECDOC 590 (1991) the importance indexesnitiating and enabling events are defined as
“the ratio between the unconditional failure freqaies of the union of MCS that contain the event of
interest over the Top event failure frequency”.

The use of the unconditional failure frequencyeast of the Expected Number of Failure is simpler
and faster compared with the use of the ENF intti@integration is not performed. These importance
measures are almost equal to those calculated eodhis of the ENF only if the system failure

frequency is constant, a condition that occurs wh#n(or almost all) system’s components are
repairable. Unfortunately, this is not the geneese.

Concerning the importance measuresdfating eventshe first method was proposed by Barlow and
Proschan (1975). Indeed the system failure frequéngt) can be expressed, for instance, using the
Becker-Camarinopoulos notation, as:

0,0=Y0.0=Y 'O @w).

The importance of the i-th event is given by itattibution to system failure frequency, i.e.:

10
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This expression can easily be extended to non eah&inctions, for which
Qq(t) =2 Q1) =X [P (1) @(t) + p/ (1) vi(1)]
i=1 i=1

In the above equationsis the number of basic events and(vi) is the unconditional failure (repair)
frequency of the i-th basic event.

The most recent method published is due to Beesuiretvs (2003b). They described aract
methodto determine the contribution to system failureaofenabling event when an initiating event
causes the system to fail. Their method, applicaltde to non-coherent function, is based on the
determination of the second derivatives of the eystinavailability with respect to the considered
couple of initiating and the enabling events. Thithod is briefly described in this report by meahs
some examples.

A method alternative to that of Beeson-Andrewsrigppsed in this report. It allows determining the
importance indexes of initiating and enabling esdot both coherent and non-coherent functions. The
importance measures are derived from the equatioddtermining the system’s unconditional failure
frequency. It is shown that the importance foriatihg events is equal to the Barlow-Proschan index
The complete description of the new method is giwensection 5 together with some simple
clarification examples.

The methods described in the next two sections baea implemented in ASTRA 3.0. In section 6 a
comparison of the results of the analysis of a Brsgstem performed by means of ASTRA 3.0 and of
the previous version ASTRA 2.1 is provided. Diffieces are due to the fact that in ASTRA 2.1 the
probabilistic analysis is performed on MCS and difieol equations substituted the integration of the
failure frequency.

11



4. IMPORTANCE INDEXES BASED ON UNAVAILABILITY

In case of unavailability analysis, the followingportance measures have been implemented in
ASTRA 3.0 and described in this report:

- Marginal importance

— Criticality

— Risk Achievement Worth

- Risk Reduction Worth

The equations for determining the above importaneasures will be derived considering the case of
a non-coherent variable, from which the equati@nsbherent variables can easily be obtained.

4.1 Unavailability equation

Consider the following non-coherefninction containing the variable x of DF type:

D=xP; + XD (41)
where®; = ®(x;=1, X) and®y = O(x;=0, X).

In order to simplify the notation the time depentef probabilities will not be explicitly shown,
meaning that the equations given are supposed deteemined for a generic time t within the mission
time.

The probability of function (4.1) is given by:

P(®) = P(x) [P(®,) = P(®,)] + P(®,)

In this function, however, the contributions of rx mormal form and in complemented form do not
explicitly appear. In order to consider both forins convenient to add the consensus térp, to
equation (4.1) giving:

d=xP, + X D + P Py (4-2)

The unavailability of this function can be writtenthe following form in which the contributions to
the unavailability of the event in positive and gemented form are made explicit:

P((D) = P(X) [P(cbl) - P(q)1 q)o)] + P(;() [P((Do) - P(q)1 q)o)] + P(q)1 q)o)
SinceP(A B) =P(A) —P(A B), the above can also be written as:

P(®) = P(x) P(®, ) + P(x) P(®, @) + P(P, @) (4.3)

4.2 Marginal Importance Indexes

From eq. (4.3) we find the probability of the systeritical state respectively for the failure aegair
of event x:
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0P(®) _

P) P(®, ®,) (4.4)
OP(®) _
PO P(®, ) (4.5)

py = P(®, CFO) is the probability of the system critical state the failure of component x, i.e. the

system works (the Top event is not verified) if it component works and fails (the Top event is
verified) if x fails.

For coherent variablesb, 0 ®, which leads to®, &, = @, or equivalentlyd, &, =0.

Py = P(E1 ®,) is the probability of the system critical state tbe repair of component x, i.e. the

system works (the Top event is not verified) if #t@mponent x fails and fails (the Top event is
verified) if x works.

Note that:

=P(®. ®_)=P(®,, ) = p;, simply because = 1is equal tox =0.

4.2.1 Implementation in ASTRA

For implementation purposes it was found more prakto use the equivalent form:
P(®, ) = P(®,) ~ P(®, ®,) and P(®, ) = P(d,) — (D, B,)

These expressions are calculated in ASTRA fonadhés by traversing the LBDD twice.
Once ﬁ and [y are known then all other indexes can be calculated

The determination of the Marginal Importance indebsebriefly described below with reference to the
following figure showing the different parts of @mést of the BDD.

Root node

D, Do

Consider the node with the variable x. D1 and D& tae BDD descending respectively from x; R is
the set of paths from x to the root node includgds the set of all other paths (from 1 to root) no
containing the node x. The above sets of hodematraggenerally disjoint; only R has no common
nodes with B, Dy.

Suppose that there is only one occurrence of RerBDD.

13



We can write:

Od=xRD+XR®;+S

®, =RD, +Sand®,=RD, +S

P(®, ®,) = P(®,) - P(®, ;) = P(R)[P(D,) - P(D, D,)]
P(®, @) = P(®,) - P(P, ;) = P(R)[P(D,) - P(D, D,)]

The equations for determininé and f depend on the type of variable, i.e.:
1. if x is of type SP, thertb; ®y= ®y, which gives:
p. =P(R [P(D,)-P(D,)] # 0
P, =0
Here é is nothing but the Birnbaum importance index of x.

2. if x is of type SN then, according to the cifisation of variables in ASTRA:
pf$x =0
Ps« = P(R)[P(D,) -P(Dy)] .0

3. If x is of type DF then we have to considertiie contributors
p. = P(R [P(D,)-P(D, D,)] # 0
Ps = P(R) [P(D,) -P(D, D,)] £ 0

The determination of Pr(R), Pr(p Pr{Do} and Pr(Dy Do) for all nodes is obtained visiting the LBDD
once upwards and once downwards.

4.2.2 Determination of Pr(D;), Pr(Do)

These values can easily be determined by visitieglBDD upwards and applying, to each node the
well known equation:

Q=qAxu+qgQ

Values to be assigned tpand g depend on the type of variable. For SP and DFstype
g =g and g =1 — g, whereas for SN variablesg1 — g and q = g..

For terminal nodes: = 1 and Q= 0.

At the root node the Top event unavailability i® found

4.2.3 Determination of Pr(R)

The LBDD is visited once in top down mode to detieerPr(R) for all variables. Consider the generic
node x in which Q. represents the sum of the unavailability of athgastarting from the node x to
the root (node x excluded).

QxeT
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The values to be associated to the descending yoales z are given by:
Qy-.T = Qx-.T /qx
QzﬂT = QxﬂT /(1_ qx)

The application of the above equations to all nermtnal nodes allows associating the probability
P(R) of the union of all paths from each node ®rthot, node excluded.

ASTRA gives, for DF variable the two contributicgausd their sum.

4.3 Structural importance | sx

The structural importance index is useful when plolistic data for basic events are unavailable.
Consequently, the only way to identify the relalyvereak points of the system is to use the stradtur
information. Some methods for determining the dtriad importance index can be found in literature.
The one implemented in ASTRA 3.0 is due to Birnbadrhe structural indexes for the generic
component x, 4« can be determined by means of the basic indekeanul P by setting probability
0.5 to all events.

4.4 Criticality index | cx

This index is defined as the relative variatiorthad Top event unavailability for a relative varatiof
the component failure / repair probability, i.e.:

lex(t) = [0Qs(t) / dax(t)] [ax(t) / Qs(b)]

For SP variables,

lex(t) = Px(t) o(t) / Qs(t) (4.6)

For SN variables,

les(t) = Px(t) pe(t) / Qs(t) (4.7)
where p(t) =1 - g(t)

For DF variables
The positive and the negative contributions aremiby the above equations (4.6) and (4.7).

4.5 Risk Achievement Worth and Risk Reduction Worth

For coherent functions RAWSs a measure of the risk increase when componenagsumed failed; it
is defined as the ratio between the top event uladitity assuming event x failed 41)[x=1 and (1),
i.e.

RAW () = Qs(t)ke1 / Qs(t)

In calculating the RAW it is important to considalt other components that are dependent by the
failure/removal of x.

The most important component (most critical) isdne with the highest RAW index.

From the definition it comes out that, for cohereaiables: 1 < RAW1t) < 1/ Qs(t)

15



For coherent functions RRM{) is a measure of the risk reduction when the poment x is assumed
perfectly reliable:

RRWA(t) = Qs(t) / Qs(t)k=0

The most important component is the one with tlghést index value; when it works perfectly we
have the maximum risk reduction. From the defimitibfollows that:

1< RRWi(t) <

4.5.1 Relationships between RAW and RRW for coherent functions

RAW and RRW are related. In fact dividing by Q$(#& equation
Qs(t) = g(t) Qs(thx =1+ (1-a(t)) Qs(t}x =0, one gets:

1 = q(t) RAWK(Y) + (1 - q(b)) / RRW(Y)
With simple algebraic manipulations:
RAW (1) = 1/ q(t) [1 - (1 - (1)) / RRW(1)] (4.8)

RRW(t) = (1- a(B))/ [1 - ai(t) RAWK(D)] (4.9)

4.5.2 Relationships between RAW and RRW for non coherent functions
When dealing with non-coherent functions RAW andvRRiust be calculated also fox It can be

shown that the RAW of a negated variable is equahé¢ inverse of the RRW of the same variable in
positive form:

RAW-«(t) = Qs(t)x =1/ Qs(t) = Qs(t)|x=0/ Qs(t) = 1 / RRW(t) (4.10)
Thus, 0 < RAW (t) < 1

Analogously, RRW of a negated variable is equahtinverse of the RAW of the same variable in
positive form:

RRW (1) = Qs(t) / Qs(t)x=0= Qs(t) / Qs(t)k=1 = 1/ RAWK(t) (4.11)
Hence, Q(t) < RRW(t) <1

Therefore, for DF variables it is sufficient to éehine the RAW and RRW for the positive form to
obtain the same parameters for the negated form.

Moreover, dividing by Qs(t) the equation
Qs(t) = au(t) Qs(thrx=1+ (1-ax (1)) Qs(t)rx=0, ONE gets:
1= qx(t) RAW- (t) + (1 - Gx (t)) I RRW (t)

With simple algebraic manipulations:
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RRW  (t) = [1/ a(O] [1 /[1 - (1 - g(t)) RAW« (1)] (4.12)

RAW= (1) = [1/ (1 - g(1))] [1 — q(t) / RRW (1)] (4.13)

4.5.3 Determination of RAW index for different types of variables

It is proved in Appendix 1 that both RAW and RRWdeépendently of the type of variable, can be
based respectively on the probability of critidaltes for failure and repaifx[i) and p(t):

Let x be avariableand®(x) = x ®(1, x) + ®(0, x) then:
RAW,(t) = 1 + (1- g() P'x(®) / Qs(t) (4.14)
Let x be arSN variableand@(x) = $xP(1, x) + P(0, x)
RAWg(t) = 1 + (1- @x(t)) Psx(t) / Qs(t) (4.15)
Let x be aDF variableand@X) = &x ®(1, x) + &x ®(0, x) = xP(1, x) + $xD(0, X)
In this case it is possible to determine both dgbations, positive and negative keeping in mindt tha
RAW, + RRWy is not equal to RAW,, given by the above equations:
— Positive contribution: equation (4.14)

- Negative contribution: equation (4.15)
Note that RAW + RRWy is not equal to RAW, as can easily be verified.

4.5.4 Determination of RRW index for different types of variables

Analogously to the RAW case the RRW equations ataioed.

If x be anSP variableof ¢(x) = x @(1, X) + @0, x) then:

RRW(t) = 1/[1 - g(t) px(t) / Qs(t)] (4.16)

If x is anSN variablethen:

RRWax(t) = 1/[1 = (L - &(t)) Plsx(t) / Qs(t)] (4.17)

If &x is a DF variable and @(x) = &x ®(1, x) + & ®(0, x) = x ®(1, X) + $x ®(0, x) both
contributions must be considered:

— Positive contribution: equation (4.16)
— Negative contribution: equation (4.17)

Note that RAW + RRWy is not equal to RAW, as can easily be verified.

4.6 Determination of importance indexes on a modui&sed fault tree

An advantageous operation in fault tree analysishess modularisation. The original function is
decomposed into a set of simpler independent suttifins called modules. The remaining of the tree
is the main module containing the Top event, aldted Top module. The cost of the analysis, i.e. th
computation time and the working memory requireraeist generally lower than that of a non-
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decomposed tree. The gain depends on the numbediarehsions (humber of variables) of the
modules.

If the tree is modularised the algorithms of analysan be independently applied to all modules and
then the results can be recombined to obtain tfa fesults at Top event level.

Given® =M @, +M @, +d, d,, where M is a module containing the variable x.

M=xM,+xM,+M, M,

x[O®is given by: xOM andMO® or
xOM andM O®

“x O®is given by: xOM andMO® or
“xOM andM O®

Let p'M and pyv be the probabilities of critical states ot I @ .
Let g™, and PV, be the probabilities of critical states fRf1M .
Let Py and i be the probabilities of critical states fRE1P.

The indexes f|;a(t) and p(t) for the generic variable x are obtained by coniny p'MX and p", with the
importance of the module M in the Top-module, repréed asfp and pwv, by means of the following
equations (see proof in Appendix2):

pr = de pr + F{Mx ¥ (4.18)

P =" Pm + ™ Pu (4.19)

Equations 4.18 and 4.19 (see proof Appendix 2) therent forms depending on the type of variable
x in M and M in Top as described in the followingble.

Table 4.1. Equations for determininf and f in a modularised LBDD

MOTop SP SN DF

xOM Pu Py Pl Py

SP

P, = P Pl Py Py

P, = Py Py Py Py

SN

P, = Py Py Py Py

P = Py Py Py Py

DF

P, = Py Py Py Py Py Py Py Py
P = Py Py Py Py Py Py + Py Py
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4.7 Example of application

The application of the above procedures is showth véference to the simple non-coherent tree of
Figure 1 containing a module. This modularised tsegescribed by means of two functions: the Top
module and simple modules in both negated and ndomas.

Top=abM+abM
M =cd
M =c+d

Top-even

e

Top-even @

(@]
o

ipE
e
B 4—D
-
SO

Figure 4.1 Non-coherent fault three, modularised &nd corresponding LBDD

This example is solved by means of the applicatibequations (4.18) and (4.19) on the LBDD. Then

the same tree will be solved using the classicahotebased on MCS to show the correctness of the
proposed equations.
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For all variables in both functions the parametp‘(is) and p(t) are determined. For the sake of
simplicity the dependence on time is omitted. édents have the same failure probability. Since the

example is simple the analytical solution is deiagd.

Analysis of M for determiningy, p'Mx , p"Vx

M =cd v = (1-q)

M =c+d Om=1-Q+ G Qg

c=1=>M, =d c=0=>M, =0

p™M. = P(My) - P(MicMog) =1- g e = P(Moo) - P(MicMog) = 0
d=1=>M, =0 d=0= M, =c

p™4 = P(Myg) - P(MigMog) = 0 M4 = P(Mog) - P(MiaMog) = o

Analysis of the Top module for determini@g p'v , pP'w as well as the importance of all other events
not belonging to M.

Top=abM+abM
Qrop= b (1 —qu) + G (1 - @) Qu

a=1=Top,=bM+bM a=0=>Top, =0
Pa= (-G + ) + (- &) G (1 - o) p'a=0
b=1=Top, =aM b = 0=Top,, =aM
P = (L - G + G Q) P'b = Chc (1 — @)

M =1=Top,, =ab M= 0=Top,, = ab
p'v = (1 - @) P'M = Ga B

Application of equations (4.18) and (4.19) to egdantthe module M
=P cpv=(1-9)G(1-q)
e=P cPw=(1-0)0k0%
Pda= de Pm= G 0a(l - )
Pa=p"aPm =G0

The following table summarises the results

Event | B Px

a 6(1-¢+Ga)+(1-4)q(1-a) |0

b Gh(1 -+ Qg GaQc (1 — @)
c 1-4)0a(l-a) (1-9) 0%
d q;qa(l - Cb) Oc Ja Ob

The correctness of the results in this table has lobecked by hand based on the MCS.
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5. IMPORTANCE INDEXES BASED ON FAILURE FREQUENCY
5.1 Determination of the unconditional failure frequency

Consider the following non-coherefoinction

D =xP; + X Dy + Dy Dy

Since x is a variable of DF type then the consetesus is considered too, because it representtich va
implicant:

The failure frequency o is given by:
Q(CD) = Q(X ¢’1) + Q(;( cDo) + Q(q:)1 q)o) - Q(X ch cDo) - Q(;( ch cDo)
Expanding the different terms:

Q(®) = P(x) Q(P,) + Q (x) P(®,) + P(x) Q(®,) + Q (X) P(Py) + Q(®P; By) +

= P(x) Q(P, ®,) = Q (x) P(®; Py) — P(x) Q(P, D) = Q (X) P(P, D)
Rearranging:

Q(®) = P(x) [Q(P,) = Q(P, Py)] +Q(x) [P(P,) = P(P, Dy)] +
+ P()_() [Q(q)o) - Q(cbl cl30)] + Q(;() [P(cbo) - P(cbl cDo)] + Q(q)l cDo)

SinceP(A B) =P(A) -P(A B), the above equation can also be written as:

Q(®) = P(x) Q(P, D) + Q(x) P(®, D,) + P(x) Q(P, D,)

_ - (5.1)
+Q(X)P(P, @) +Q(P, D)

From equations (5.1) it is straightforward to derthe equations for coherent functions. Indeedisf x
coherent therb, ®, = ®,, which also means tha, ®, =0. Hence equation (5.1) becomes:

Q(®) = P(x) Q(P, Dy) +Q (X) P(P, D) + QD) (5.2)

5.2 Importance measures for initiating and enablingevents

From equation (5.1) the following expressions agewveéd, from which the importance measures of
initiating and enabling events are determined. Theyesent the probability/frequency of critical

states. | and E indicate respectively Initiator &mdibler and the subscript represents the namef (x)

the generic variable.

Equation (5.3) allows to determine the probabilify the critical state for the occurrence of the
initiating event x, i.e. the system fails in t-thdhen the initiating event x occurs in t-t+dt. Ither
words the ] ) represents the system failure frequency causedebgccurrence of x.

_0Q(®) _ —
T 0000 P(®, ®,) (5.3)
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Equation (5.4) represents the system failure fraquecaused by an initiating event given that the
enabler event x is failed. Hencg E(x) represents the contribution of the failurexab the system
failure frequency.

_0Q(®) _ —
T Q(®, @) (5.4)

Equation (5.5) gives the probability of the critistate for the restoration of the event x, i.e. slgstem
is failed in t-t+dt when the initiating event xrnsstored in t-t+dt. In other words v, represents the

system failure frequency caused by the restoration

_0Q(®) _ o
= 3000 P(®, D) (5.5)

Finally equation (5.6) represents the system failirequency caused by the repair of an initiating
event given that the enabler evenhas already occurred. Herfegq. is the contribution of the repair

of to the system failure frequency:

_ 0Q(®) _ o
= 3P0 =Q(®, D,) (5.6)

It has to be stressed that in applying the abowatsans, from (5.3) to (5.6), the negated variables
resulting from®, 50 and @, 51 are characterised by their success probability:ahkir frequency

must be set to zero. Indegle negated part is not a real non cohererimg more simply it represents
a logical condition that must be satisfied for deti@ing the logical function of the critical stateor
this reason negated events cannot be consideredtiaing events, which means that their failure
frequency must set to zero.

Note that in equations 5.3 and 5.5 we find agagnpitobabilities of critical states for failure aregair
introduced in section 4, i.¢, =p] andl_=p;.

The importance indexes, expressed with respedteadkpected Number of Failures (ENF), take the
following form:

Initiator failure importance:

I, = tJa)x(r) [, (r)dr/W(O,t) (5.7)

Enabler failure importance:

IE, = tj.qx(r) E (7)dr/W(O,t) (5.8)

t
whereW (0,t) = J' Q(®d,7) dris the expected number of failures of the Top-euemthich:
0

N _
Q(®,7) =Y P(®, ®,,T) @(7)

i=1
N is the number of basic events of the fault tree.

The index I represents the well known Barlow-Proschan impagandex for initiating events.
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If x is an initiating event, then JAs its contribution to the system failure frequemnvelgen another
initiating event causes the system failure.
If X is an enabling event, then,JEepresents its importance index.

Analogously, for negated events:

Initiator repair importance:

I = tjll/x(r) I (7) dT/W(O1) (5.9)

Enabler repair importance:

IE, = ](1—qx(r)) E. (r) d7/W(O,t) (5.10)

t
For non coherent fault trees the Expected Numbetadtire W (O,t) = J'Q(CD,T) dr considers also the
0

repair as initiating events, i.e.:

Q(®,7) = ip: P(®, ®,,7) w (1) + i P(®, ®,,7) v, ()

i=1 i=1

Np and N,are respectively the number of basic events intipesand negated form.

5.2.1 The Beeson-Andrews method for the determination of the importance of enabling events.

Beeson & Andrews proposed an exact method for ohénérg the importance measures of initiating
and enabling events based on the second partialatiee of the system unavailability. To our
knowledge this is the first exact method publistsed far. For this reason this method will be
considered as the reference method to show thahetirod gives the same results.

The main steps of the Beeson & Andrews are brigdlycribed below for the coherent case and limited
to the determination of the importance of enabliengnts or the importance of the enabling
contribution of initiating events. As far as thepiontance of initiating events is concerned refegegsc
made to the Barlow-Proschan method.

Given the Top event expressed as the disjunctioitsoMCS (or prime implicants) and the exact
unavailability expression &) the first MCS containing x is considered.

Xi=>X; is a notation introduces here meaning that xnésénabling event that contribute to the failure
probability of®s when the initiating event xj fails in t-t+dt leadi to the system failure.

OZQS(T)
aa,;(7) dq,;(7)

2. Determine the unavailability,§Q of the function M =®\ (MCS considered), i.e. the function without the
considered MCS.

1. Determine the second partial derivative @ivith respect to xi and Xj: §§1) =

azQMi,j (1)

3. Determine the second partial derivative @f @ith respect to xi and xj: (1) = —————
aqxi (T) aQXj (T)
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4. CalculateE,; (1) = 0°Qs(7) } 07 Qi (1)

dq,,(r) 0g,(r) 0q,(7) aq,(7)

[Ea (1) 0 (7) @y (1) dT

S IE, 4 = 0 (Ws(0,t) is the ENF of the system for the mission timterval O - t)
’ W; (0,t)

Repeat steps 1-5 for all MCS containing xi and=x}.{2,..).

The final result is given bytE,; = > IE,;
i

5.2.2 The ASTRA method for the determination of the importance of enabling events.

Let us recall the steps of our method for detemgnihe importance of an enabling event or the
enabling contribution to the importance of an atitig event.

Variable in positive form

1. Determine®,, =@, and®,, =d|,_,

2. DetermineE, = Q(®,, @, ) in such a way that negated variablesti, havev = 0.

]EX q, dr

c I | R —
W, (O,t)

Variable in negated form.

1. Determine®,, =@, and®,, =d|,_,

2. DetermineE. = Q(®,, @.,) in such a way that negated variablesiyy havev = 0.

]EX q, dr

3 IEE=2——
W, (O1)

Some examples of application of the above descmibetthods are given below.

5.3 Some clarification examples

In this section some examples are provided tofgldine application of the ASTRA method for the
determination of the importance indexes for initigtand enabler events, giving more emphasis to the
latter because it is based on a new method.

The results obtained using the ASTRA method arepawed with those determined by applying the
exact Beeson-Andrews method.
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5.3.1 First Example: coherent function

Consider the following coherent function:

d=(@+b)x+acy

Suppose thak, y are enabling eventdy, ¢ are initiating events; the evemt has an enabling
contribution to system failure since it is in comdtion with the initiating evert in the cut setg c ).
Analogous consideration holds far

Determination of | E4, the importance of the enabling event x

Beeson-Andrews method.

Let us apply the above steps to the system funeborax +bx+acy

Qs =0, 0, +0, dy +0,q.d, -, dy A -9, 9. dy 0,

Since x is an enabling event that belongs to MQ8aining the initiating events a and b that »xa
and x>b are to be considered.

Xx—>a

1 0°Q,
dq,0q

=1- qb - chy

X a

2: ®, =bx+acy Qy=9,09,+0d,9.d,—d,0,d.d q,

62
3: aqgg =-0, 4. qy
Qs 9’
4. o8 - Q :1'Qb'chy+qb A 9y

© 09,00, 04,90,

t
flea, 1- 0, - g, +a, 0. 9,1 g, d7

5. 1E,, =2
' W (0.1

The dependence of probabilities and failure fregyem time is not shown for the sake of simplicity.
Now consider the second MCS containing x.

x=> b

2
1: 00 =1-q,
6C]xaqb

2 q)M:aX+aCy QM:qaqx+qachy_qachx qy
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3: _OZQM =
aqxaqb

2 2
4 aQS _aQM :1_qa
aC‘xaqb aqxaqb

flea, @-a)1 g dr
5. 1E,, =2

W, (O,t)
Since there is no other MCS containing x, the datan ends: Ik = IEx 4+ |Exp

ASTRA frequency-based method

This method is now applied to determing IE
d=(@+b)x+acy

1. d, =a+band &, = acy

2.d, ®, =alc+y)+b(c+y)+ab

3. Q(®, P,) =, L-0, G,) +, 1-0,) ~w, g, L7 )

flea @-a. a)) + e, A-0,)- @, 6, A-0, )] 6, () d7
4. 1E, =2

W, (O,t)

It is easy to verify the equivalence of this reswith that previously calculated with the Beeson-
Andrews method.

How the result of step 3 has been obtained is destin detail below.

Q(®,, B,,) =Qlalc+y)]+Q[b(c+y)]+Q[ab]-Q[ab(c+y)] - Q[ab(c+y)]

We elaborate the above expression without deveipihia terms containing negated variables.
Q(®,, @,,) =@, P(c+Y)+0, Qc+y) + & Pc+y)+6, Qc+Y) + o, P(@) +g, Q@) +

-w, g, P(c+Yy)-a, g, PlC+Y) -0, 0, Q(C+Y) -, P(@) P(c+Y)+

-, Q(a) P(c+Yy) —q, P(a) Q(c+Y).
Now we develop the probability of the negated terma not the frequency, and separate the two sub-
expressions.
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Q(q)lx q)_Ox) = wa (l_qc qy) +(*)b (l_qc qy) +(*)n (l_qa) - wa qb (1_qc qy) _wb qa (l_qc qy) +

-w, 1-09,) A-q.q,)+

+0, Q(c+y) +q, Qc+y) +d, Q@) -4, q, Ac+y)-g, Q@ @-q, q,)+

~gy (L-9,) Q(c+y).
Now we “correct” this expression by settir@g(logically negated variables) = 0, i.@(i) =0,
obtaining.

Q(,, By,) =, L-d, q,) +®, (L-9, d,)+&, (-0d,) -, d, 1-9, )+
-, g, 0-q. q,)~w, @-0q,) @-q.q,)
Rearranging and simplifying:

Q(®,, ) =w, 1-q, q,)+w, L-9,)-w, g, 1-q, q,)

Therefore the determination €(®,, ®,,) must be performed in such a way to consider, foate
events in@,_only their probability.

Determination of the | E,, i.e. the enabling contribution of the initiating event a

Application of the Beeson-Andrews (BA) method.

d=ax+tbx+acy

Qs =d,q, +4d, d, +d,d. d, -9, d, d, -9, 9. 9, g,

a>cinMCS (acy)

0°Q
1: S =q, -
8q.0q, b
2 (DM :(a+b)X QM =qaqx+qb qx _qaqb qX
: 0°Qu =0
00,00,
92 92
4: QS - QM = qy - qqu

" 09,09, 00,00,

t
[(@,-g4a,)q, @ dr
5 IE,, =2

W, (O,t)

Sincea does not combine with any other initiating evant®CS the calculation terminates.
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Application of the ASTRA frequency-based method

1: ¢, =x+cyand®  =bx
2: b, d, =xb+cyb+cyx

3:E, =Q(P, Py) =w, q,1-q,)

t
[e (@,~a4a,) q, dr
4: 1E, =2

Wd: (Ovt)
Also in this case we show the detail of the caltoiaperformed at step 3.
Q(P, ) =Q(xb)+Qcyb)+Qcyx)-Q(cxyb)-Q(cybx)

The determination of2(®,, CD_Oa) is performed setting to zero the failure frequeatyegated events.
Note that, as previously mentioned, the frequeaet to zero also for all enabling events.

Note that Q(x B) is set to zero becausg= 0. But if x was combined with an initiating event
positive form the frequency would have been zeabsevx= 0.

Q(&, D) =w, q,(-0,) +®, q,A-0,)~®, d, q,L-d,) -, d,(L-q, =0, +d, q,)
After simplifying, the final result is as follow€(®,, ®,) = w, q,(L-q,)

This expression, multiplied by,cgives the same results as the B-A method.

5.3.2 Second Example: coherent function

This example concerns the determination of the rdmutton to the system failure frequency
considered by Beeson-Andrews (2003b).

® = abe+def +bg+dh

Application of the Beeson-Andrews (BA) method.

The above authors determined, in their paper, Xaetevalue of the enabling contribution of event d
when the failure is caused by the event e, i2edThe result was:

t
J.[Qf (1_Qh) qJ;b,g] Uy @, dr

-0

I de
| W, (0.1)

Wb, =1-0,0, — 0, 0, + 0, q, g,
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Application of the ASTRA frequency-based method

We apply our method to determine the importancd, gupposing that all other events are initiating
(no information is given in the BA paper about tiges of events).

®,=abe+ef+bg+h

®,, = abe+bg

®y =b+ag+eg
o, O, =ef (b+ag)+h(b+ag)+heg
QP Por) =w, qP(b+ag) +w, qPb+ag)+w,Pb+ag)+w, PEg)+
-, ¢,q,P(b+ag) - w, q4,Pb+ag) -w, ¢gqPb+ag)-w,Pbe g+ age)

This expression contains all contributions of dwatl other initiating events, not only with e.viie
consider only the terms witlho, we get the contribution & e calculated by multiplying the
corresponding terms by:q

[a,P(b+ag)@d-q,)] g, @, dr
[, =2
Wi, O1)

whereP (b+ag) =1-q, g, —d, d, +d, g, d, is equal toW, ,

The other contributions ofygnot reported in the BA paper are as follows:

d->f

t

J qe l'IJa,b,g (l_qh) qd wf dT
las = .

Wiy (O.)

d-=>h

t

I[ LIJa,b,g (1_ qe qf) + l'lJa,l;),e,g] qd 6‘41 dT
lgp =

Wiop (0,1)

l'IJa,b,e,g = qa qb (1_ qe - qg + qe qg)

This example clearly shows that the ASTRA frequemogthod is able to exactly calculate the
importance index of enabling events in coherenttions.
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5.3.3 Third example: a non coherent function

This example is taken again from Beeson Andrew83B}
®=abd+abc+ cde+ ade+ acd

The example concerns the determination of the enambportance of event b when c fails.

Application of the Beeson-Andrews method

b->c
IE,,=0
t
fa, @-a) @-q,) @ dr
IE, =2
< W (O,t)

Being b a DF event, it has both a positive andgatiee contribution. As can be seen from the result
the positive contribution is 0 because the eve(ihbts positive form) does not appear in any prime
implicant with c; the negative contribution is resro because b (in its negated form) is contained i
the second implicant (& c) with c.

Application of the ASTRA frequency-based method.

Determination of the positive contribution, giveyr b

E, = Q(cDmcD_Ob)

®, =ad+ cde

®,, =ac+ cde+ ade

®, =ad+ae+ac+cd+ce

o, B, =adce

E, =Q(®,, ®,) =, gy Pce)+w, g, P(ce)

In this expression there are no terms containdencee, . =0, thatislE, =0

Other contributions (not reported in the BA papes the following:

Eb,a = wa qd (1_qc _qe +qc qe)
Eb,d = wd qa(l_qc _qe +qc qe)

Determination of the negative contribution, given b
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EE = Q(cD]bq)_Ob)

®, =d+ac+ae
®

o Py, =acd

Ej = Q(®g, P1,) =, 0, (1-0) + @, d, (L-qy)

The term withw, allows obtaining the importance of c.
Ep = Q(P,Py) =0, g, (L-q,)

[, 4, @-q,) @-q,) dr

IE. =2
be W, (0,t)

The result is the same as the one reported in ghpdper.
Besides this contribution there is alse>ba:
Ebea =0,q; (1'qd)

t
[w, . @-q,) @-q,) dr
IEEa =2

W; (0,t)
From this example it can be seen tigt =@, ; ® . =®, ; this property can be used to speed up the
calculations.

5.3.4 Fourth example: another non-coherent function

This example considers the determination of theontgmce indexes of the two variables of an XOR
function. These variables are both initiating eyt also have the enabling contribution.

Determination of the importance of initiating eve@nt

Determination ofl,
®,=bandd, =b= @, D, =b
I, =P(Py, cD_Oa) =(1-q,)
t
[a-a) @, dr
=0

la W, (0,t)

Determination oﬂa

®,=bandd, =b= &, ®, =b
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Ig = (Dg (I)_la) =0,
t
J.qb Va dT
|l-=0
& W, (O
Determination ofl,

®, =aand®d, =a= O, O, =a
Iy = P(®y, q)_Ob) =1-q,
t
[a-a,) @ dr
-0

ly W, (O,t)

Determination ofIE
®, =a and®, =a= O, d, =a
Iy, =P(®q, D) =0,

t

J.qa l/b dT
|, -0
bW, (O,t)

(0] 1

Determination of the enabling contribution of iailihg events

Determination oflE,
®,=band®, =h= ®_d,_ =b
E.=Q(0, Og) =v,

tJ'qa v, dr

|Ea -0
W, (0,t)

Determination ofIEa
®,=bandd, =b= &, ®, =b
E = (D, (D_la) =0,

t

[a-a,) @ dr

=0

IE.=Y———
: W, (0,1)

Determination oflE,

®, =a and®, =a= O, O, =a
E,Q = (D, (D_Ob) =V,
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t
J.qb Va dT
|Eb =0
W, (0,t)
Determination ofIEE
®, =aand®, =a= O, O, =a
EE = Q((I)Ob (I)_:Ib) =W,

t
J.(l_ qb) w, dr
|EB -0
W, O.t)
From this example it can be seen that:

l,=1E, and I =IE, and vice versa exchanging a with b. This propeaty be used to speed up the

calculations.
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5.4 Determination of the importance indexes of iniating and enabling events on a modularised
fault tree

If the tree is modularised the algorithms of analysn be independently applied to all modules and
then the results can be recombined to obtain tia fesults at Top event level.

In this section the equations are given with rafeeeto the more general case of a non-coherent
function. Proofs are provided in Appendix 3.

Given® =M @, +M @, +d, d,, where M is a module containing the variable x.
M=xM,+xM,+M, M,
M=xM,+xM;+M, M,
xO® is given by: xOM andMO® or
xOM andM O®

“x Odis given by: xOM andMO® or
“xOM andM O®

The above conditions lead to the relationshipsdietermining the integrand function of importance
indexes of initiating events as described in Tablé and the relationships for determining the
integrand functions of the importance of enabliagres as in Table 5.2.

The importance indexes are finally obtained by wpgl equations from (5.7) to (5.10).

Table 5.1. Equations for determinimg and . in a modularised LBDD

MOTop SP SN DF
xOM L I L i 1
SP
Ix: I:\(A IM - I:\(A IM
I = I 1 I
SN
|, = M I 1
I = 1Y, 1Y,
DF
I, = 1M1, L Iy + 11
I = 1Y, I 1 M1y + 01
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Table 5.2. Equations for determinirtgy and E;in a modularised LBDD

MOTop SP SN DF
xOM Ew E, Ew;Ey
SP
E.= |>’\</I Ev - IQA Ev
E = = =
SN
E. = 1% Egy 1% Ex
E = L= 1" E,

DF
E, = I Ey = IY Ey+ 1Y Ey
E = 1M E,, 1Y E; IV E, +1} E;

5.4.1 Example of application

The application of the above procedures is showh véference to the simple non-coherent tree of
Figure 5.1 containing a module.

Top

y b
Figure 5.1. Sample Fault tree with a simple module

In ASTRA the above fault tree is transformed irtie bne in Figure 5.2, in which the gates INH are
replaced by AND gates; all events of the protectgstem are identified and labelled as enabler. The
resulting function is® =x (zM + cyb)

The types of variables are identified; they are:

» initiating and coherent: c, h, k

* enabling and coherent: b, x, y, and z;

Before determining the importance measures of evémtM it is necessary to determine the
unavailability and expected number of failure of M.

Qu =0, gy
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t
W, = [(e4, G + @ q,) dr
0

Top

Figure 5.2. Fault tree of Figure 5.1 after remoMiNgl gates

Analysis of the events h and kin M

Since h and k are both initiating events, theirom@nce measures are calculated through the margina
importancep]” , pi which can be determined as described in section 4.

[ (1) @ (r) dr [P (7) @ (r) dr
W, 0 =W o

Analogously the importance of the module M in tleTnodule is given by:

[pl() @y () dr
= W00

The importance index is given by composing the alindexes, i.e.:
I, =1y n,andil, =11}" 1,

The contributions of these events to system faiftequency when another initiating event causes the
system failure are calculated using the ASTRA metho

E, =Q(M,, M_Oh)
E, =Q(My My,)
Ey =Q(®yy Poy)

Results are as follows:
t
[ea a,(r) dr

|Eh =0 @@
W, O.1)
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[, a(r) az
|Ek =0 @@
W, ()

IE,, =0 IndeedQ(®,,, ®,,) =Q(x z(c+y +b)) =0 since x and z are enablets £ 0).

Therefore:
E,=E} Iy =®, q, Py’ Py
E, =E! Iy =w, g, py' Py,

Analysis of ¢
The initiating event c in the Top-module is coherdinen:

[pl (@) w(r) dr
¢ W, (0,t)

E. =Q(®,, ®y) =0

Analysis of b
This event is enabler:

®, =x(zM+cy)

P, =XZM=>D, =x+z+M
®, D, =xCy(Z+M)

Eb = Q(q)]b q)_()b) = wc qy qx (1_ qz) (1_q[\/|)

flw,a, a, @-q,) @-a,)] ,(7) dr
IE, =2

W, (O,t)

Analysis of x

®,=zM+cyb

Therefore:Q((DlXaoX) =zM+cyb=w, q,0-g,9.4,) +(®, 6,49, +w, ¢4,) 1-9,d,)
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[leay 0, @~ aa0,) + (@, a0, +a, 60,) €= a,a,)] 6,(7) dr
IE, =2

W, (O,t)

Analysis of y

®,, =Xx(zM +cb)

Py, =XZM =Py =x+2+ M

®, ®, = xcbz+M)
Therefore:Q(®,, Poy) = (0, 0, Gy + 0, G, ) L=, =y, + G,0y)

t
[(w, a, o, + @, g, q,) @-a, -, +qa,) q,(7) dr
IE, =2
y

W, (O,t)

Analysis of z

®,=x(M+cyb)

®,=xcyb=>d,=x+c+y+b

P, P, =xM (c+y+b)

Therefore:Q(d)lzaoZ) =wy 9,[(1-9.)+@-q,) +(L-q,)]

[eay al@-0q) + @-q,) + @~ )] q,() d7
= W, 0.1)

The following table summarises the results

Event Type Il IE
b enabling IE, >0
c initiating I,>0 IE. =0
h ‘ 1, =1, E =E"I,
k =1y, E.=E'I,
X enabling IE, >0
y “ IE, >0
z “ IE, >0

38



5.5 Risk Achievement Worth (RAW) and Risk ReductionWorth (RRW)
RAW and RRW can easily be determined after detangiQ(®,) and Q(®,)

]Q(fbl,r) dr

RRW() = e O

jQ(cbO,r) dr

(5.12)

The determination of2(®,,1) and Q(®,,1) can be performed by visiting the BDD in bottom ugyw
for eachbasic event and for each time

5.6 Implementation issues
5.6.1 Importance of initiating events.

As mentioned in 5.1 the importance of initiatingerts, respectively in positive and negated form is
given by:

t

I, = J—“’xg(g,xr()r) dr (5.13)
t |7
I = Oj% dr (5.14)

In these equations, (t)and I (1) are nothing but the probabilities of critical stater failure and

repair of x, represented in section 4 gSandp). Since these parameters have already been

implemented in ASTRA the problem of determining thgortance indexes of initiating events is
straightforward.

5.6.2 Importance of enabling events

Let x be an enabling event. The determination ef@miticality importance index for enabling events
requires the calculation &, = Q(®, ®,) and / orE_ = Q(®P, ®,)

The determination of the exact values of the imgrme of enabling events, e.g. faf = Q(®, CTO),

can be done following the definition:
1. Determineby;

2. Determinady;

3. Determine®y;

4. Determineb; ®q;

5. DetermineE, = Q(®, ,) or E. = Q(®, ®,) depending on the type of event.
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Step 5 must be applied as many times as the nuofltiene instants in which the mission time is sub-
divided.

Finally the integration of E, = Q(®, CTO) and E. =Q(®, 31) gives the importance indexes. Since

this operation is time consuming the following &snethods can be applied:

— If all initiating events are not repairable, thém® timportance measures for unavailability can be
used also for unreliability since in this casg(iV= Qs(t);

— If the failure frequencies of the numerator andageimator of equations 5.8 and 5.10 are almost
constants then the integration can be avoided at WW(t) = Q(t) T, which means that

IE, =q, Q,/Qg andIE, =(@-q,) Q. /Qq.
The implementation of the above procedure in ASTR@ is straightforward, but it may be time
consuming on large fault trees if the integratibthe frequency functions must be performed.
To reduce the computation time the following apprated method may be considered.

Approximated method to determine the importana@nabling events

The LBDD of a function can be represented as fatow
(I)(X)z tkaaT[ Xxk Dlxk+Xxk DOxk ]+S (515)
k=1

where: N is the number of occurrences of nodes with xxRnd Dy are Boolean functions, i.e. the
LBDD descending from the k-th occurrence (nodey;oRR,, ; is the_disjunction of all patifsom the
k-th occurrence of x to the root of the LBDD; She disjunction of all paths not containing x.

Hence:

D, (x) = ERXK-»T Do +Sk
k=1

NX
D,(X) =[JR_1 Dou *+Sk
k=1

— NX
It is easy to see tha®, ®, = []R,, .+ Dy« Dox Sk.
k=1

Rk is independent from £, Dok, Whereas Smay share common events with, B,k and DQy. A first
simplifying hypothesis is thaty$s independent from R

Therefore:

NXx - NX - -
Ex = ZQ(kaaT Dlxk DOxk S<) = Z[Q(kaq) P(Dlxk DOxk Sk) + P(kaq) Q(Dlxk DOxk Sk)]
k=1 k=1

In order to further simplify the calculation thedothesis of independence of S from &nd ) cal
also be assumed. This means thaisEnon-conservatively) approximated by:

E, > 3[Ry +) P(Dye Do) + P(Rer) Dy Dog)] P(S) (5.16)

It can be shown tha®, = ®\ R, (X D, +X D).
Passing to probabilities:
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P(S.) = P(®) - P(Ry 1) [, P(Dy) + - 09,) P(Doy] (5.17)

An alternative hypothesis is to & ) =1, which means thaP§ ) =0 andQ (S )=Q (&) =0.
Under this hypothesis the approximatgdvBlue is given by:

E, = Q(Ry 1) P(Dy Do) + P(Ryc1) Q(Dyy Do) (5.18)

For each basic event the determination of the itapoe measures requires as many BDD traversing
as the number of time points.

Determination ofQ(D, D_O) and P(D, D_O)
In practice, for each occurrence of x the BDD @f D, is determined from whichP(D, D,) and
Q(D, D_O) are obtained by means of the application of tHewong equations, applied visiting the
LBDD in a bottom-up way. Note that the frequencyiefated variables is set to zero.
If y is of SP type:
Y=yF+G
Qout=0 Q1+ (1 - g) Q

If y is initiator then

Wout = 0y (Qu— Q) + gy on + (1 —g) wo (5.19)
else

Wout = Oy w1 + (1 — @) o
If y is of SN type:
Y=%yF+G
Qout= Gy Q1 + (1 — @) Qo (5.20)
Wout = Oy w1 + (L — @y) o for both initiator and enabler

If y is of DF type:
Y=yF+yG
Qout=q Q1+ (1-g) Qo (5.21)

If y is initiator then

Wout=wWy Qu+ gy + (1 —-q) wo—wy Pr{FOG}
else

Wout= g + (1 —¢g) o for both initiator and enabler

The above equations (5.19-21) can also be appbethé BDD of @ for determining(®, (ITO),
Qe, D))

Quantification ofQ(R, ) andP(R, - )

For the quantification of these parameters it isessary to consider the type of variable (y) as
described in the Table below. In this case it &alecessary to consider whether the variable under
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consideration is initiating or enabling. In thesficase the value of the failure frequency is diffié
from zero for SP and DF events only if the evemiigating.

Table 5.3. Values assumed by the variables foutastiog P(R) andX(R).

y is Initiating event y is Enabling event
Var. p ﬁ }a\ ﬁ
type Y N N N\
F G F G F G F G
Left branch Right branch Left branch Right branch

R=y R=y R=y R=y

SP 1 P(R) =g Q(F) P(R) = (1-9 Q(G) P(R) = qQ(F) P(R) =(1-9 Q(G)
Q(R) =w, P(F) Q(R) = -w,P(G) QR)=0 QR)=0
R = $y R = $y R = $y R = 3y

SN 1 P(R) = (1 - g) Q(F) P(R) = 9Q(G) PR)=1-9 P(R) = 4 Q(G)
QR) =Q(F) QR) =Q(G) QR)=0 QR)=0
R=y R=y R=y R =y

DF | P(R) =g Q(F) P(R) = (1-9 Q(G) PR)=g P(R) =(1-9) Q(G)
Q(R) =w, [P(F) -P(RG)] | Q(R) =Q(G) QR)=0 QR)=0

5.6.3 Determination of RAW and RRW

To determine RAW and RRW it is necessary to deteefi(®1,) andQ(Poy)

Determination of2( @)
Let x be the variable for which the RAW and RRW #ryébe determined and y the current variable.

The dependence on time is omitted in order to uEmpaler notation.
If y # x then:

The variable y represents an initiating event.
If y is of SP type:

Y=yF+G

Qout=0 Qu+(1-9) Qo

Wout = 0y Q1+ ¢y w1 + (1 — @) wo - @y Qo
If y is of SN type:

Y=%yF+G

Qout=0 Qu+(1-9) Qo

Wour =Vy Q1+ (1 - @) 01 + ¢ & - Vy Qo
If y is of DF type:

Y=yF+yG

Qout=0 Qu+(1-9) Qo

Wout = Wy Q1+ ¢y w1 + (1 — @) wo +Vy Qo— Wy +vy) Pr{FUG}
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The variable y represents an enabling event
An event is enabler if: 1) it is flagged as protestand 2) it haa = 0.

In this case the failure frequency is zero. Thevanability equation is the same as before.
Concerning the failure frequency:

If yis of SP type: wow=0q o+ (1—-g) wo
If yis of SN type:  wout=(1—q) w + g, Wy
If yis of DF type: wou=0q o+ (1 —-@) o
Ify=xthenx=1; g=1; ux =Vx = 0; Gx=0; wysx =Vgx = 0.

If y is of SP type:

Qout=Qu

Wout = W1
If y is of SN type:

Qout= Qo

Wout = Wo
If y is of DF type:

Qout=Q

Wout = L

At the root node @i = P@1x) andwoyu: = Q(P1x).

Determination of2( @qy)

Let x be the variable for which the RAW and RRW #rébe determined and y the current variable.
The dependence on time is omitted in order to uwEmpaler notation.

If y # x the equations to be applied are those aboveilledc
If y = x then x = 0; g=0; wy = Vx = 0; Gs=1; sx = Vg« = 0.

If y is of SP type:
Qou=Q
Wout = Wp

If y is of SN type:
Qout=Qu
Wout = W

If y is of DF type:
Qout= Qo
Wout = W

At the root node @ = P@oy) andwoy: = Q(Poy).
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5.7 Application of the Importance Measures to a Nowwoherent fault tree

To show the result of the developed importance oreasfor initiating and enabling events a simple
system taken from Beeson-Andrew (2003b) is coneitlefhe schematic diagram of this system is
presented in Figure 5.3.

Possible Ignition

Valve
Pressure Relic Controller Source
Valve (PRV) (C)
Gas flow Isolation Valve Gas Lea

(V)

Permaner Ignition
Source

Figure 5.3. Leak-protection system

A leak in the high-pressure gas supply system beybe isolation valve (V) can occur due to the
pipe leak (LP) or failure of the flange sealing JLF order to simplify the analysis the gas detect
system is assumed perfectly reliable. In case sflgak the isolation valve controller sends theaig
to the isolation valve and closes it. In ordervoid the hammer effect on the isolation valve duéhe
high pressure - possibly resulting in pipe ruptbegore a valve - a pressure relief valve (PRV) is
installed diverting the gas into a safe locatiotsme permanent ignition source present close ¢o th
isolation valve.

The fault tree representing the system’s failurshswn in Figure 5.4 in which, according to the
ASTRA graphical notation, INH (Inhibit) gates arged to represent the combinations of initiating and
enabler events, the latter acting on demand.

This fault tree has the following 8 prime implicent

{LP IV 11}

{LP C 11}

{LF IV 11}

{LF C 11}

{LP PRV 11}
{LF PRV I1}
{LPTIVC PRV}
{LFTIV"C PRV}

The parameters of basic events are provided ineT&bt. Note that the possible ignition source,
represented by the event |1, occurs once a weekaatglfor 12 minutes. This has been modelled by
BA as having a constant unconditional failure fremey of 1/840 () and unavailability equal to
1/840. In ASTRA this event has been characterisetepairable with failure rate equal to 1/840 and
repair time of 1 hour in order to have a constartomditional failure frequency; in this way botteth
unconditional failure frequency and unavailabilise equal to 1/840 as considered in the referenced

paper.
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Figure 5.4. Fault tree of Leak-protection systefaikire

Table 5.4. Failure rate, mean time to repair asgection interval for the system components

Component Failure rate, 1/h MTTR, |h  Inspectionnvdg h
LF — leak from flange 1.80E-06 1 0
LP — leak from pipe 2.00E-08 1 0
IV —isolation valve 1.73E-05 20 8760
C —valve controller 5.00E-06 12 8760
I1 —ignition source 1/840 1
PRV — relief valve 1.73E-06 20 8760

Before starting the analysis the role (initiatiegiabling) that each component can have in a system-
failure is analysed and taken into consideratioasd®l on the component’s role the appropriate
importance measures are calculated in order tesagssmponent’s contribution to the system’s failure

(top event).
According to the system’s description three compt®éPRYV, IV and C) are enablers, whereas LF,

LP and I1 are initiators.

Table 5.5 contains the unavailability, unconditiofsalure and repair frequencies values for allibas
events. Significant differences between these gadunel those presented in the BA paper concerns:
Unavailability of event C: in the paper the valu21®6 indicates a printing mistake;
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Unconditional repair frequencies of enabling evearis wrongly determined in the paper on tested
events.

Table 5.5. Component unavailability and uncondaidiilure and repair frequencies

Component Unavailability Unconditional Unconditional repai
failure frequency | frequency

LF — leak from flange 1.799997E-06 1.799997E-06 999D7E-06

LP — leak from pipe 2.000000E-08 2.000000E-08 2000&-08

IV —isolation valve 7.240800E-02 0.000000E+00 00@OOE+00

C - valve controller 2.164267E-02 0.000000E+00 .000000E+00

I1 - ignition source 1.189060E-03 1.189060E-03 189060E-03

PRV — relief valve 7.240800E-02 0.000000E+00 0.0Q0EB00

In order to make calculation results comparabléhto one provided in the Beeson-Andrews (2003)
paper an attempt was made to use identical parasnditee mission time was not indicated in the
article so 87,600 h was assumed for the missiom.tiNote that since all events’ data represent
repairable and tested components the unavailahiditye is not affected by the mission time; on the
contrary the Expected Number of Failureg(¥strongly depends on it.

The results obtained at system level are as follows

— System unavailability @= 1.198E-07;

— Expected Number of Failures87,600) = 1.051E-02.

The results at system leve@nd W are not provided in the BA paper.

The results obtained on importance indexes fronlyapp ASTRA are given in Table 5.6. The last
column contains the total importance values: tikiray is given between brackets.

Concerning initiators the most significant conttiba to the system’s failure is given by LF, whil@

is ranked ¥ and 11 is ranked as a least likely event to cayseem’s failure.

Among the enabling events the most importance snelated to the failure of the pressure relief
valve, followed by the negated events. In our apinihe negated events should not be considered for
design improvements because they represent comglitiat must be satisfied for the occurrence of the
Top event (in our case explosion). Therefore tipesteent frequency can be reduced by:

— reducing the unavailability of the pressure religve, e.g. by reducing the test interval; and/or

— by reducing the frequency of flange leaks.

A comparison of results from applying the ASTRA hut and the BA method can be seen in Table
5.7. The main concern was raised by the differefi@nabler importance measures for IV, C &hd

In case of C an@ the strong difference could be due to a mistakiné compilation of the table (the
values could have been wrongly exchanged). The haaldulation performed resulted in the
importance of C as equal to 6.38E-04. Taking intooant the approximation introduced it can be
stated that the correct result is that of ASTRA.

Moreover from Table 5.7 is can be verified that then of the importance measures for initiating
events correctly sums to 1 for ASTRA,; the sum @f wialues in the BA paper gives 0.97923, which is
not correct.

In order to check the correctness of the importaneasures for positive events provided in Beeson-
Andrews (2003b) additional calculation was perfodm&rom the original fault tree two negated

eventslV andC were removed making the fault tree coherent. Tdleutated importance values for
both initiators and enablers for the coherent fagk are shown in Table 5.8. This confirms theaxir
behaviour of ASTRA 3.0.
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Table 5.6. ASTRA results for the various importantEasures

Event | IB(eq.5.3-5.5) Il (eq.5.7) IE (eq. 5.8) Total Il + IE
LF 6.582142E-02 9.873628E-01 2.729906E-01 9.900927K2)
LP 6.582130E-02 1.097070E-02 3.033229E-0 1.1004003K4)
11 1.683198E-07 1.667760E-03 1.667760E-01 3.333552K5)
\% 1.963944E-09 2.369955E-03 2.369955E-03 (6
V2 1.287769E-07 9.954808E-01 9.954808E-01 (3
C 1.862038E-09 6.716204E-04 6.716204E-04 (7
C 1.220949E-07 9.954808E-01 9.954808E-01 (3
PRV 1.651677E-06 9.966658E-01 9.966658E-01 (1

O~

Table 5.7. Comparison of the importance measuredteir ranking

Event Initiators Enablers
ASTRA [BA] ASTRA [BA]

LF 9.874E-01 (1) | 9.571E-01 (1)| 2.730E-03 (3) S5EEB (5)
LP 1.097E-02 (2) | 1.063E-02 (2)|] 3.033E-05 (6) 6666 (7)
11 1.668E-03 (3) | 5.830E-03 (3)| 1.668E-03 (5) 5H@B (5)
IV 2.370E-03 (4) | 9.976E-01 (3)
v 9.955E-01 (2) 9.621E-01 (4)
C 6.716E-04 (5) 9.998E-01 (2
c 9.955E-01 (2) 4.350E-04 (6)
PRV 9.967E-01 (1) 9.999E-01 (1

Table 5.8. Comparison of the importance measurresdioerent system

Event Initiators Enablers
Coherent Non-coherent Coherent Non-coherent

LF 9.876E-01 (1) | 9.874E-01(1)] 1.389E-03 (4) 2HAB (2)

LP 1.097E-02 (2) | 1.097E-02 (2)] 1.544E-05 (6) 3BBB (6)

11 1.405E-03 (3) | 1.668E-03 (3)] 1.405E-03 (3) 1BEB (4)

IV 2.152E-03 (2) | 2.370E-03 (3)

C 6.098E-04 (5)| 6.716E-04 (5)
PRV 9.971E-01 (1)] 9.967E-01 (1)
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6. CONCLUSIONS

In this report we have described the methods imetded in ASTRA 3.0 to perform the importance
analysis as part of the fault tree analysis promdu

Equations for determining the importance measusesihavailability analysis for both coherent and
non coherent fault trees have been described éomibre general case of a modularised fault tree.

Among the importance measures that can be fourldeirscientific literature the following four have
been considered for implementation in ASTRA 3.0:

- Probability of system critical state (equal to Biaum for coherent variables);

— Criticality

— Risk Achievement Worth

— Risk Reduction Worth

The well known Fussell-Vesely index has not beensimered because its values for risk analysis
applications are very close to the Criticality ird@lues and also because it is related to the RV,
they present the same ranking.

These four indexes have been extended to the dagelwe frequency analysis in which system
components have different role and their failure ba categorised as initiating events and enabling
events. The former events cause perturbation afgs® variables to critical values that require the
intervention of the protective system. The failusé protective system components enable the
perturbation to further propagate and eventuallg&al to an accident.

The components importance ranking for unavailabifind failure frequency for any importance
measure are obviously different, except when #lbitng events are non-repairable.

The literature on the importance measures for faqy analysis is not as rich as that of unavaitgbil
Only few methods are available. A new method fae talculation of the importance indexes is
described in this report. For initiating events thmportance measure coincides with that of Barlow-
Proschan, whether the importance measure for emglNents or for the enabling contribution of
initiating events is based on a novel method. Tomarison of our method with the exact method
developed by Beeson-Andrews shows a complete agr@em
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APPENDIX 1

Determination of RAW for different types of variables

Let x be arSP variableand®(x) = x ®(1, x) + ®(0, x)

Qs(t) = a()) Qs(t)lk=1 + (1 - &(t)) Qs(t)lx=0

() = Qs(t) k=1 — Qs(t)k=0 Which isvalid only for SP events

Qs(t)lxeo = Qs(t)ler - Px(t)  which, substituted into

Qs(t) = ak(t) Qs(Ber + (1 - a(t) Qs(Bkeo gives: Qt)h=1 = Q(t) + (1- &(t)) Px(t)
Therefore, RAW(t) = Qs(t)|x=1 / Qs(t) becomes:

RAW (1) = [Qs(t) + (1- &(t)) Px(t) ]/ Qs(t) =

RAW,(t) = 1 + (1- g(t)) p'x(t) / Qs(t)

Let x be arSN variableand®(x) = $x®(1, x) + P(0, x)

Qs(t) = asx(t)) Qs(t)lsx=1 + (1 - @x(1)) Qs(t)lsx=0

P'sx(t) = Qs(t)lsx=1— Qs(t)|sx=0 Which isvalid only for SN events

Qs(0)lsx-0 = Qs(t)lsx=1 - P'sx()  which, substituted into

Qs(t) = Gsx(t) Qs(B)lsx=1 + (1 - G(1)) Qs(B)lsx=0 Gives: Qt)lsx=1 = Q) + (1- (1)) Plse(t)
Therefore, RAW(t) = Qs(t)lsx=1/ Qs(t) becomes:

RAWs(t) = [Qs(t) + (1~ (1)) P'sx(t) 1/ Qs(t) =

RAWs(t) = 1 + (1- g(t)) P'sx(t) / Qs(t)

Since @(t) = 1 - g(t) and fe(t) = Pi(t) then RAW can be re-written as

RAW g(t) = 1 + q(t) prx(t) / Qs(t)

Let x be aDF variable In this case both the positive and negated dmuticn are calculated as above
described.

Determination of RRW for different types of variables

Let x be aSP variableand®(x) = x d(1, x) + ®(0, x)

Qs(t) = k(1)) Qs()x=1 + (1 - a(t)) Qs(t)=0
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Px() = Qs(t)=1 — Q=0

Qs(t) k=1 = Qs(t)lx=0 + Px(t) which, substituted into

Qs(t) = ak(t) Qs(Bher + (1 - A(t) Qs(Bkeo gives: Q(t)h=o = Q(t) - k(t) P'x(t)
Therefore, RRW(t) = Q«(t) / Qs(t)|x=0 becomes:

RRW(t) = [Qs(t) / [Qs(t) - ak(t) Px(t)] =

RRW () = 1/[1 - a(t) p'x(t) / Qs(t)]

Let x be aSN variableand®(x) = $x®(1, X) + D(0, x)

Qs(t) = Gs() Qs{t)lsx=s + (1 - (1)) Qe(Dlsco

Psx(t) = Qs(t)lx=1— Qs(lsx=o

Qs(Dsx=1 = Qs(t)|sx=0 + p'$x(t) which, substituted into

Qs(t) = asx(t) Qs(B)lsxe1 + (L - Ge(1)) Qs(B)lsx=o Give's: QD=0 = Qs(t) — Gx(t) Plsx(t)
Therefore, RRW(t) = Qs(t) / Q«(t)[sx=0 becomes:

RRWax(t) = Qs(t) / [Qs(t) — ae(t) Plsx(t)] =

RRWa(t) = 1/ [1- G(t) P'sx(t) / Qs(t)]

Since g«(t) = 1 - g(t), and fix(t) = P(t) then

RRWs,(t) = 1/[1 - (1 - g(1) p'x(t) / Qs(t)]

Le x be aDF variable In this case both the positive and negated dmrtians are calculated as above
described.
Finally, it can be seen that:

RAW,, = RAW, RRVW, = RRW, RAW,. = RAW,, RRW, = RRW,
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APPENDIX 2

Determination of p! andp on a modularised fault tree

Let D=M &, +M dy+ D, D,
be the non-coherent functich expanded with respect to the module M whéreand ®, are the
residues.

Let M=x M, +X M, +M, M,
be the function of the module k) expanded with respect to the variable x and
M =X M1 +x Mo +M;: Mo its complemented form.
Passing to probabilities:
P((D) = P(M) [P(ch) - P(ch cDo) + P(M) [P(CDO) - P(ch cDo)] + P(ch cDo)
P(M) = P(x) [P(M,) =P(M, M)] + P(x) [P(M) =P(M, M)] +P(M, M)
P(M) = P(x) [P(M1) —P(M1 Mo)] + P(x) [P(Mo) - P(M1 Mo)] + P(M1 Mo)

The above equations can also be written as:

P(®) = P(M)P(®, ®,) + P(M)P(P, ®,) + P(P, P,)
P(M) = P(x) (M, M) + P(x) (M, My) +P(M, M,)
P(M) = P(x) P(Mo M,) + P(x) P(Mo M,) +P(M1 Mo)

Now, the importance of Xl ® is obtained when:
(xOM andMO®) or (xOM andM O®)

Analogously, the importance of [ ® is obtained when:
(xOM andM O®) or (xOM andM O ®)

Indicating with p! the probability of the system critical state foe flailure of x with respect @, and
with p; the probability of the system critical state foe repair of x with respect tb, we can write:.

1) For the importance of X ®:
t _ OP(®) 0P(M) N 0P(®) 0P(M) _
“ 0P(M) a(x) OP(M) 9P(x)
= P(®, ®;) P(M, M) + P(®, ®,) P(M, M,) = p, p" +py; p"

2) For the importance o 0 @:

i _ 9P(®) OP(M) , 9P(P) OP(M) _
X 9P(M) OP(x) OP(M) 9P(x)
=P(®, ®,) P(M, M) + P(®, &) P(M, M) = p& p™ + py, p™

X

Considering thapf; = p, and vice versa, the above equation can also lieewas:

P, = Pu Py + Py Py’ (A2.1)
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Pl = Pu Py Py PY’ (A2.2)
where
p, = P(®, CFO) is the probability of the system critical state tioe failure of M in®;
Pu = P(5l ®,) is the probability of the system critical state tioe repair ofM in ®.
pM =P(M, M_O) is the probability of the critical state of x
pM = P(M_l M,) is the probability of the critical state for thepair of x in M.

The dependence of time of the above equationstisepoesented for the sake of simplicity, but it is
understood thap! andp! are calculated at a give time t.

Equations A2.1 and A2.2 are valid for DF variablgisapler relationships can be derived for SP and
SN variables.

SP variables
The importance of x] ® is obtained whenx M andM O ®

Equations are derived from A2.1 and A2.2 considgtivat for coherent positive variablég ®, = @,
andM, M, =M, ; consequentlyd, ®, =0 andM, M, = 0.Hence

¢ _ OP(®) OP(M)
* 7 9P(M) 0P(x)
p. =0 (A2.4)

=P(®, ®,) P(M,; M) = py p (A2.3)

SN variables
Analogously, the importance of O @ is obtained whenx M andM O®

Equations are derived from A2.1 and A2.2 considerthat for negated variable®, ®, =@,
andM, M, =M, ; consequentlyd, ®, =0 andM, M, = 0.Hence

p, =0
_OP(®)P(M) _ . — o
X _aP(M) ap(;) P(¢’1 cl)o) P(Mo Ml) pM px
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APPENDIX 3

Determination of |, E I;, E; on a modularised fault tree

X' =X

Given the more general case of a non-coherentitmeb =M @, + M @, + ®, ®,, where M is a

module containing the DF variable x, and the funet = x M, + x M, + M, M, the objectives is to

find the relationships linking the importance ofxM and of M in® to find the importance of x ifP
in case of frequency analysis.

Since the variable is non-coherent we expect tainlihe positive and the negative contributionse Th
failure frequency ofb is given by:

Q(®) = Q(M)P@,) +P(M) Q(@,) + Q(M) P(®,) + P(M) Q(@®,) + Q(®, ;) +
- Q(M)P@, ®,) -P(M) Q(@®, ;) - Q(M) P(@, D,) —P(M) Q(®, ®,)

or equivalently as:

Q(®) = Q(M)P(®, ) +P(M) Q(®, By) +Q(M) P(®, By) +P(M) Q(®, By) +Q(P, By)
For the module M in positive form we have (see Auje 2):

M=xM,+xM,+M, M,

P(M) = P(x) P(M, M) + P(x) (M, M,) +P(M, M)

Q(M) =Q(x) P(M; M) +Q(x) P(My My) +P(x) Q(M M) +P(x) Q(M M) + Q(M; M)
For the module in negated form we have:

M =xM,+x M, +M, M,

P(M) = P(x) P(Mo M,) + P(x) P(Mo M,) + P(M1 Mo)

Q(M) =Q(x) P(M; M) +Q(x) P(My My) +P(x) Q(MM,) +P(x) Q(M;M,) + Q(M; M)
Considering that the importance ofIx® is obtained when:

(xOM andM O®) or (xOM and M O®) we have respectively for initiating and enablaents
that:

_ 0Q(®) 0Q(M) , 0Q(P) 0Q(M) _
QM) aQ(x) 9Q(M) aQ(x)
= P(®, ®,) P(M, M) + P(@, ®)P(M, M) =1, I} + 1 1Y (A3.1)
E = 0Q(®P) _
dP(x)
_ 0Q(®) 9P(M) , 9Q(®) 9P(M) _
0P(M) dP(x) dP(M) 0dP(x)
=Q(®, c’?o) P(M, M_o) +Q(®, a1) P(M, ml) =Ey |>’\<A +E;

I

b (A3.2)

Analogously, the importance of O @ is obtained when:
(xOM andM O®) or (xOM andM O®)
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|2 09(®) _

7 9Q(x)

_ 90(®) 0Q(M) | 9Q(P) 0Q(M) _
QM) 3Q(x)  dQ(M) dQ(X)

= P(®, ®,)P(M; M) + P(@, ®)P(M, M) =1 1} +1,, 1" (A3.3)

_0Q(®P) _
T P(x)
_ 0Q(®) 9P(M) , 0Q(P) P(M) _
oP(M) 0P(x) dP(M) oP(x)
=Q(®, ®,)P(M, M;) +Q(®, D,)P(M, M,) =E,; I} +E,, IV (A3.4)

Equations A3.1 and A3.4 are valid for DF variablgispler relationships can be derived for SP and
SN variables. They are reported here below fosstle of completeness.

SP variables
The importance of x] ® is obtained whenx M andM O®

Equations are derived from A3.1 and A3.2 considgtirat for coherent positive variablég ®, = ®,
andM, M, =M,, i.e. ®, ®, =0 andM, M, = 0. Therefore:

_0Q(®) _ 9Q(®) 0Q(M)

=000~ aaM) 900 P Pl P(My Mo) =1y 1y (A3.5)

_ 0Q(®) _ 0Q(®) IP(M)

<= 3P0) ~ 3P(M) 3PGO = Q(®, ®,)P(M, M,) =E,, I (A3.6)

SN variables
Analogously, the importance of [0 ® is obtained whenx JM andM O ®

_ 0Q(®) _ 9Q(P) QM) _
X 9Q(x) QM) aQ(x)

P(®, ®,)P(M, M) =1, 1 (A3.6)

£ = 09(P) _ 0Q(®) IP(M)
X 9P(x) OP(M) AP(x)

= Q(®, P,) P(M, M,) =E,, I" (A3.7)
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APPENDIX 4
Complementation of an LBDD

In ASTRA 3 the fault tree is represented as a UabeBDD, i.e. an OBDD in which the variables
associated to the nodes are dynamically labelled thieir type (Contini et al, 2008). Indeed a non-
coherent fault tree may contain three differenety/pf basic events or variables, namely:

1. normal or positive, e.g. X;

2. negated, e.qgy;

3. events that appear both in positive and negatedsoe.g. z,z.

In ASTRA the following definitions are used. Variab of type 1 are referred to &ngle form
Positive variablegSP) variables of type 2 aSingle form Negated variabl¢SN), whereas variables
of the third type a®ouble Form variable§DF). For instance, the functioh = a b +a c + bc
contains the SN variabk the SP variable and the DF variable.

Each negated variablesis represented as a labelled normal variableF$x.instance, the function
®O=ab+ac+bciswrttenasb=%ab +$ac+b $c.

A coherent function contains only coherent variapig. variables in positive form (SP).
A non coherent function contains also variablesegated form (SN, DF).

During the LBDD construction variables of DF typeaynbe generated as a combination of two
variables of different type.

The label associated to a variable (note that Hmaesvariable in two different nodes may have
different labels) is the information used to apiblg appropriate logical and probabilistic algorigim

In this report the importance measures requiresdneplementation of Boolean function represented
as LBDD. It is well known that the complementatafra BDD is obtained by complementing only the
terminal nodes. The LBDD nodes are associated tw@ghvariables type. Hence the complementation
of an LBDD needs to change also the variables types

Given a function stored in the form of an LBDD dtsmplemented form is obtained visiting it in Top-
down mode and applying the following rules to eacde, non terminal and terminal (the symbol
means NOT):

- &X = &X

=X = $x exchanging its descendants
_|$X = X 113 13 13

-0=1

-1=0

The double form nodes are not changed. The SP &hdir8 changed plus their left and right
descendants are exchanged. The simple inversiomplementation) is done for terminal nodes 1, 0.

As a simple example of the application of the aboules consider the following non-coherent
function: ® = abd + abc+ cde+ ade+ acd whose LBDD is shown on the left of Figure A.1.
The complemented form is on the right.
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Figure A.1. Resulting function (on the left) obtaghcomplementing the function on the right
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