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Preface 

 
(1) Hot-dip-zinc-coating of steel components is an adequate measure for a reliable 

protection against corrosion of steel components that might impact durability and 
sustainability. 

 
(2) EN 1090, i.e. the standard for the delivery of prefabricated steel components and 

the execution of steel components and works, addresses zinc-coating. The EN-
Standards for the zinc-coating process as EN ISO 1461 and EN ISO 14713 are 
also referred to in this code. 

 
(3) Cracking of steel under the corrosion attack by liquid zinc in the zinc bath has 

been observed since the 1930´s and has been the concern of various research 
projects. The problem seemed to have been mastered for the usual design of 
components and the usual coating technology applied for many years. 

 
(4) Since 2000 with a peak in 2002, a more frequent occurrence of cracking and 

larger sizes of cracks that could impair the safety of structures could be 
observed. Cracking happened in particular after zinc-coated components had 
been assembled on site and cracks opened under loading filled or covered with 
zinc. These observations were coincident with the production of larger sizes of 
steel components characterized by larger plate thicknesses, the use of new 
constituent materials of higher strength, the use of new zinc alloys and the 
application of various dipping processes. 

 
(5) National and international research initiated for that purpose revealed that these 

cracks could be attributed to liquid metal embrittlement (LME) in the hot-zinc 
bath. The existing codes and standards and also some industry guidance 
established so far in some countries (e.g. in UK, Austria, Japan) do not give 
comprehensive provisions to prevent the risk of LME, so that in some countries 
initiatives came up to develop, on the basis of the existing research results, 
quantitative assessment rules that could mirror the effects of the various 
parameters on the phenomenon. 

 
(6) In view of the development of a consistent “European Standard Family”, and the 

further harmonization of “National choices” in the single market for construction 
products and construction services there was the wish to channel these actions 
to achieve a common European procedure. 

 
(7) To this end representatives of the main stakeholders and parties concerned: 
 

- the European Commission represented by the Joint Research Centre in 
Ispra, 

- the CEN-Management Centre, 
- CEN/TC250 for the structural Eurocodes, 
- CEN/TC135 for the delivery of prefabricated steel components and the 

execution of components and works, 
- CEN/TC262 for zinc-coating process. 
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and also industrial representatives of the European steel producers (Arcelor 
Mittal), steel fabricators (ECCS), zinc coaters (EGGA), and also research 
institutes (RWTH Aachen) met in Ispra on 19th January 2009 to agree on the 
preparation of a “JRC-Scientific and Technical Report” on “Hot-dip-zinc-coating of 
prefabricated structural steel components”. 

 
(8) This report could be - in line with resolution No. 255 agreed at the CEN/TC250 

meeting in Malta – a common basis for further CEN-actions in the various CEN-
Technical Committees, and also serve in the meantime as a reference document 
for intermediate National actions. 

 
 
Ispra, February 2010 
 
J.A. Calgaro, F. Bijlaard, G. Sedlacek, CEN/TC250 
R. Pope, CEN/TC135 
W. Smith, CEN/TC262 
M. Géradin, A. Pinto, H. Varum, JRC 
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JRC-Scientific and Technical Report 

Hot-dip-zinc-coating of prefabricated structural steel components 
 

Executive Summary 
 
(1) This JRC-Scientific and Technical Report gives information from pre-normative 

research methods to avoid liquid metal assisted cracking of prefabricated 
structural components during zinc-coating in the liquid zinc melt that may impair 
the structural safety of structures in which the components are built in. 

 
(2) This information provides a platform upon which further European design and 

product specifications can be developed. It may in particular affect the further 
developments of EN 1993, EN 1090 and EN ISO 1461 and EN ISO 14713. 

 
(3) This report gives the state of the art in understanding the mechanism of liquid 

metal assisted cracking in the zinc bath and methods and models that may be 
used to avoid it. 

 
(4) It could be a basis to propose rules for the design of steel components intended 

to be hot-dip-zinc-coated in such a way that the design is consistent with 
execution rules for hot-dip-zinc-coating. 

 
(5) The workability of the rules proposed for all metal works and steel works that are 

fabricated under EN 1090 and galvanized according to the rules in this report is 
demonstrated by worked examples. 
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1 Objective 
 
(1) This part of the JRC-Scientific and Technical Report deals with the phenomenon 

of “Liquid metal assisted cracking” (LMAC) of prefabricated steel components 
that may occur during hot-dip-zinc-coating in the hot-zinc bath and may in case of 
sufficient sizes of the cracks infringe the safety of the structures, which the steel 
components are built in. 

 
(2) Such serious cracks have been observed in particular after the year 2000, when 

the chemical composition of the zinc alloys was changed, the size of the 
components was increased and the material strength was enhanced. 

 
(3) Therefore, there is a need to inform on the cause of such cracks, to identify the 

most relevant parameters for cracking and to develop methods to avoid such 
cracking. 

 
(4) This information is a summary to give the state of the art on the issue. It is 

addressed to: 
 
 1. the design of prefabricated steel components, 

2. the delivery of constituent products (semi-finished products) for the 
fabrication of steel components, 

3. the fabrication of steel components, 
4.  the hot-dip-zinc-coating of steel components and subsequent checks. 

 
(5) Therefore this information provides a platform upon which further European 

design and product specifications can be developed. It may affect the further 
developments of: 

 
- EN 1993 for the preparation of the component specification (see EN 1090-

1, 3.1.1 and 3.1.2), 
- hEN 1090-1 to cover galvanizing as for welding, 
- EN ISO 1461 and EN ISO 14713. 
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2 Examples of cracks observed 
 
(1) Figure 2-1 shows typical cases of cracking in prefabricated steel components that 

have been hot-dip-zinc-coated.  

 
Fig. 2-1: Damages observed after zinc coating or after erection of hot-dip-
zinc-coated structural components 

 
(2) Particular spots in the components that are sensitive to cracking are e.g.: 
 

- details at the end of steel beams with large depth, e.g. half end plates or 
flame cut or flame cut with subsequent grinding or drilled copes, 
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- the environment of welds in thick plates, 
- nodes of latticed structures, in particular those with hollow sections, 
- holes for the drainage of liquid zinc in corner areas. 

 
(3) Crack sizes may be some millimetres to some decimetres; all usual steel grades, 

e.g. S235, S355 and S460 have been affected by cracks. 
 
(4) Cracks often are only detected after the steel components have been built in a 

structure and loaded, as the cracks in the steel components often are filled and 
covered with zinc. This also makes the detection of cracks after zinc-coating 
difficult and requires e.g. additional measures for magnet particle testing MT, as 
the usual application of EN 1290 would result in a reduced sensitivity for coat 
thicknesses  50 m. 

 
(5) A peak in reports of cracking has occurred concerning work processed in the 

period 2000 to 2006. These reports are associated principally with the use of 
higher concentrations of tin (Sn) together with other elements in the zinc melt in a 
number of countries during this period, to obtain thinner coats that could be better 
controlled and would give better appearance of the surfaces. 

 
(6) The information given below therefore relate to the analysis and investigations 

undertaken to find the causes of the crack damages most frequently observed 
that are related to Liquid Metal Embrittlement (LME) or Liquid Metal Assisted 
Cracking (LMAC) and result from a reduction of ultimate strain capacity of the 
steels in the hot-zinc bath. 

 
(7) The phenomenon “Liquid metal embrittlement in the hot-zinc bath” is caused by 

the contact of steel with the liquid-zinc alloy that causes a reaction between the 
zinc-melt and the steel material (Fe-Zn-reaction). This reaction and its intensity is 
controlled by various parameters as the composition of the zinc alloy, the steel 
material, the local strains and the time of exposure as well as the strain 
resistance of the steel. 

 
(8) Hydrogen induced cracking, that could be excluded as a cause for the cracking 

observed, is not dealt in this report. However, there may be cases where 
hydrogen induced cracking with subsequent liquid metal embrittlement may have 
been relevant. 
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3 Literature survey 
 
(1) A literature survey for the period up to 2000 indicated that:  
 

1. The phenomenon of Liquid Metal Embrittlement during hot-dip-zinc coating 
of steel has been dealt with since the 1930´s:  
 
- Works on other materials than steels, e.g. for stress corrosion of 

aluminium alloys under attack of liquid metals as Mercury, Lithium, 
Gallium, Tin, Zinc, Lead had already revealed the importance of 

 
- the chemical-physical affinity of the liquid metal with limited 

solubility in the base metal, 
- the formation of eutectica with low solution temperature in 

case of liquid metal alloys.  
 

- Early works on steel materials were mainly related to specific 
questions of the durability of the kettles holding the zinc melt. 
Though the evaluation of such test-reports is difficult because of 
lack of suitable data in the documentations, some of the 
conclusions could be drawn as follows [25-27]:  

 
a) Tests with steel specimen in tension in the liquid zinc bath, 

see fig. 3-1 reveal a dependence between the stress-level, 
geometrical notch situation and time to fracture see for 
example fig. 3-2, 

b) The frozen zinc layer forming in the beginning of dipping is 
torn by temperature induced strains and leads to further 
exposure of steel surfaces to liquid zinc thus explaining the 
time effect of exposure.  

c) There are dependences between the time to fracture and the 
strain rate ε  applied to the steel components: the smaller the 
strain rate, the greater the time to fracture.  

 

Meßuhr: elongation measurement, 
 
Temperaturfühler: temperature 
measurements 
 
Gestänge: Application of tension 
force  

Fig. 3-1 Test set-up [26] 
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steel Shape of specimen  stress [N/mm²] Time to fracture 

TU St 37 
„unnotched“ 250 6 min 

„notched“ 330 70 s 

MR St 60 
„unnotched“ 510 5 min 

„notched“ 400 3,5 min 

 Fig. 3-2: Test results [26] 
 

Unfortunately these investigations on the Liquid Metal Embrittlement for hot-dip-
zinc-coating were not continuous and not systematic, so that only the qualitative 
influence of stress, strain, exposure time, zinc alloy and steel quality have been 
detected however without giving quantitative data suitable for assessments. 

 
2. Japanese investigations in the 1980´s revealed for the first time the influence of 

the effects of external loading of steel and the reduced resistance of steel to the 
loading in the zinc bath: 

 
- Fig. 3-3 gives stress-strain curves of steel specimens for steels intended to 

be used for masts and towers that reveal that the strain capacity of the 
steel in the molten zinc can be reduced significantly. 

 

 
 Fig. 3-3:  Determination of stress-elongation curves for steel in the liquid zinc 

bath [36, 37] a) Testing set-up,    b) stress-elongation curves 
 
- Further tests to clarify the effects of the steel composition and fabrication 

on the fracture in the molten zinc lead to a “susceptibility factor” sLM400: 
 

 %100
zincanywithoutstressfracturebarnotched

zincmolteninstressfracturebarnotched
s 400LM    (3.1) 

 
 where the index 400 indicates that the fracture strength has been 

determined after an exposure time of 400 sec. Recommendations have 
been given in Japan to reduce this susceptibility factor to avoid cracking in 
the zinc bath. However, the susceptibility index proved to be not suitable to 
explain the damages that occurred after the year 2000 as noted in section 
2. 
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- Japanese investigations have also been made to identify the stress-strain-
development during dipping of steel components in the hot zinc bath. 

 
 Fig. 3-4 gives an example for the influence of the dipping speed on the 

stress-intensity factor K of a plate with a crack. This shows that a low 
dipping speed effects an increase of K-requirement.  

 

 
 Fig. 3-4:  Dependence of stress intensity factor K in dipping situation with 

different dipping speeds a) test specimen, b) influence of dipping speed 
 
 Also large scale tests with hollow sections for masts and towers were 

carried out to determine the development of stresses and strains during 
the dipping process, fig. 3-5. 

 

  
 Fig. 3-5: Large scale tests for hollow sections for masts and towers  

a) measuring devices, b) measured and calculated time history of stresses 
    during dipping (v = 0.4 m/min) [43] 
 
These tests demonstrate: 
 

- the development of stresses with characteristic alternating sign 
during the dipping process, 

- the dependence of the maximum strain requirement on the dipping 
speed; the smaller the dipping speed the higher the strain occurring 
to be regarded as strain requirement. 
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3. In conclusion, the works documented in literature until the year 2000 give 

valuable information, mainly qualitatively or related to specific cases, so that the 
basis of a quantitative assessment to avoid liquid metal induced cracking in the 
zinc bath had not yet been developed at that time. 

 
 They give however already all key information necessary to identify the direction 

of further research that has been carried out after the year 2000 to establish the 
basis for methods for such quantitative assessment. 
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4 Examination of macroscopic cracks 
 
(1) Fig. 4-1 to fig. 4-4 give some microscopic views of cracks in the web of a I-profile 

made of S355J2G3 that occurred in a zinc melt with a Tin (Sn) content of 1 % 
and a lead (Pb) content of about 1 %.  

 

Fig. 4-1: Primary crack and 
secondary crack (200x) 

Fig. 4-2: Secondary crack (2000x) 

 

Fig. 4-3: Surface crack starting 
from dimple (2000x) 

Fig. 4-4: Intergranular crack in 
ferrite-pearlite structure (5000x) 

 
(2) The figures show the following: 
 

1. There are primary wide macro-cracks starting at the steel surface with 
narrow secondary cracks the size of which is either limited to the surface 
or going through the depth of the plate. The cracks are filled with 
components of the zinc melt. Fig. 4-4 shows that the cracks are 
intercristalline. 

 
2. In the secondary crack and the crack tips of the primary cracks (with small 

widths) a decomposition and segregation of the alloy additives as Sn, Pb 
and Bi has taken place, whereas the wide primary cracks are filled with an 
alloy comparable with the composition of the regular zinc bath. 

 
3. There is a roughening effect of the additives as Sn on the surface of the 

steel. 
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(3) The phenomena illustrated in fig. 4-1 to 4-4 are typical for liquid metal 
embrittlement, where a liquid metal phase, consisting of the components Fe, Zn 
and Sn or others penetrates into a solid metal, here steel, via the grain-borders. 

 
(4) The physical mechanism for this is that the cohesion force between the grain 

borders of the steel is smaller than the adhesion force of the liquid metal phase to 
the surface of the steel grains; hence the Gibbs-energy is reduced by the 
embrittlement. 
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5 Conclusions for developing a quantitative assessment method to avoid 
cracking in the zinc bath 

 
(1) From former investigations on LME performed in various countries and the 

thorough examination of the cracks, the following conclusions could be drawn for 
the development of a quantitative assessment method to avoid cracking in the 
zinc bath: 

 
1. Apparently the effect of liquid metal embrittlement of steel in the hot-zinc 

alloy is a reduction of the ultimate strain capacity that should be quantified 
by a “standard test” that simulates the realistic behaviour of steel 
components in the zinc bath. 

 
Such a test should give numerical results for a “strain resistance” R 
depending on several parameters that should be evaluated according to 
EN 1990-Annex D to obtain “characteristic resistance” values. 

 
2. The “characteristic resistance” should be given for two design situations:  

 
a) non-stationary or dipping phase: a design situation during the 

dipping process when the strain requirements from non-stationary 
strains from the temperature differences (superimposed on 
stationary strains from the steel manufacturing process (rolling and 
straightening of the semi-finished product) and fabrication of the 
steel components (welding, bending, cutting, punching etc.)) are a 
maximum,  

 
b) stationary or holding phase: a design situation after the full heating 

of the steel component in the zinc bath, when the non-stationary 
strains have died down, however the strain capacity of the steel is 
further diminished due to the long exposure time (holding time). 

 
3. The strain requirements E that could be used for a limit state assessment 

 
   RE εε          (5.1) 
 

should also be given as characteristic values and be determined by 
numerical simulations of the fabrication procedures and the dipping and 
holding process. 

 
In consequence, both for the instationary design situation (dipping 
process) and for the stationary design situation (holding phase) the limit 
state equations read 

 
   RdEd εε          (5.2) 
   

where the index d designates “design values”, that are derived from 
“characteristic values” to obtain the required reliability. 

 
4. This strain-oriented procedure is consistent with the assumptions made in 

modern “damage theory” that applies in the upper-shelf region of the 
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temperature-toughness diagram for ferrite steels. This theory is capable to 
simulate fracture-mechanics tests as well as the fracture behaviour of 
steels in monotonic and cyclic loading in the elastic and plastic range and 
also works with “equivalent plastic strains”. 
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6 Standard test for determining the strain capacity of steels in the hot-zinc 
bath  

 
(1) The “standard test“ shall provide characteristic values of “equivalent plastic 

strain”-resistance in the zinc melt, that depends on the various process 
parameters, such as:  

 
- composition of zinc melt and bath temperature, 
- steel quality,  
- microstructure and surface condition of steel product or of machined 

surfaces, 
- strain rate.  

 
(2) The standard test needs sufficiently small test specimens, however the results 

should be independent on the scale and the particular loading condition of the 
test specimen and should be transferrable to any large scale structural 
component. 

 
(3) Such a test has been developed from the fracture mechanics CT-test specimen: 

the LNT test specimen. 
 

 
 Fig. 6-1: LNT-test specimen and FEM-mesh for numerical simulation of test 
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 Fig. 6-2: LNT-test setup and load application 
 
(4) Fig. 6-1 gives details of the LNT-test specimen with its dimensions in mm. It can 

be dipped into the zinc melt and loaded horizontally by tensile forces with varying 
force-time characteristics, see fig. 6-2.  

 
(5) The sharp crack tip of the CT-test specimen (in general obtained by applying 

fatigue load cycles to these test specimens) is substituted by a drilled hole, the 
bottom of which is locally strained by the tension forces applied at the top of the 
specimen in such a way, that after a certain exposure time cracking at this hot-
spot can be expected.  

 

 
 Fig. 6-3: Cracks at bottom of hole observed in tests and cracks observed in 

practice 
 
(6) Fig. 6-3 gives the cracks observed in the test and cracks observed in practice at 

a prefabricated steel component.  
 
(7) The local equivalent plastic strain at the bottom of the hole affected by the tensile 

forces can be determined by FEM calculations 
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 dtplplvpl   
3

2
,          (6.1) 

 
(8) Fig. 6-4 gives an example of such calculations with the finite element mesh 

adopted (Fig. 6-4a) and the plot of the plastic strains (Fig. 6-4b). 
 

 Fig. 6-4: FE-mesh and plot of equivalent plastic strains 
 
(9) Fig. 6-5 gives the relationship between the displacement in the line of load 

application and the local equivalent plastic strain resulting from the loads. 

  
 Fig. 6-5: Master-curves for the determination of pl 
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7 Strain resistance of steel material from LNT-tests 
 
(1) As indicated in Fig. 6-5 the load-displacement curve in the line of load application 

can be measured in the test. It exhibits a sudden drop when cracking relevant for 
structural assessment starts. 

 
(2) FEM-calculations can give both the numerical simulation of the load 

displacement curve and the associated local equivalent plastic strain at the 
bottom of the hole where the start of the crack growth is expected. 
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 Fig. 7-1: Load displacement and equivalent plastic strain displacement curve 

for steel exposed to the air with a temperature of 450 °C 
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 Fig. 7-2: Load displacement and equivalent plastic strain displacement curve 

in liquid zinc alloy with Sn 1,2% 
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(3) Tests are run with a strain rate 4105   to simulate the design situation during 
dipping into the zinc bath with instationary stresses and strains. 

 
(4) While the load-displacement curve in fig. 7-1 applies for a test specimen heated 

to 450°C without the corrosion effect of the liquid zinc bath (test specimen 
exposed to the air), giving the plastic strain capacity of 27 %, fig. 7-2 gives the 
values for the zinc alloy a0 with a tin (Sn) content of 1,2 %, see fig. 7-3. All data 
are related to steel S460.  

 

alloy Pb, M.-% Sn, M.-% Bi, M.-% Al, M.-% Ni, M.-% Fe, M.-% 

a0 --- 1,20 0,11 0,0057 0,047 0,028 

a1 0,70 --- --- 0,005 --- 0,03 

a2 1,00 1,1 0,05 0,005 0,05 0,03 

 Fig. 7-3: Chemical composition of zinc alloys used for tests (the composition 
of alloy a2 does not comply with EN ISO 1461 (sum of other elements ≤ 2,0%) 

 
(5) A comparison of test results and the associated scatter of data is given in fig. 7-4.  
 

 
 Fig. 7-4: Test results of LNT-rests 
 
(6) A systematic investigation of the influence of the components Tin (Sn), Lead (Pb) 

and Bismuth (Bi) in the zinc alloy [71, 72] has lead to the equivalent plastic strain 
resistances pl,c [%] as given for the example of Tin in fig. 7-5 and Tin and Lead in 
fig. 7-6. This investigation demonstrates that:  

 
1. Sn is the relevant constituent that gives the steepest gradient for results,  
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2. Classes for differentiation of resistances can be established with the Sn-
content being the leading parameter and the contents of other constituents 
being limited:  

 
  class 1     Sn  0,1 % 
  class 2 0,1 % < Sn  0,3 % 
  class 3 0,3 % < Sn  
 

  where the class-number signifies increasing aggressiveness, see fig. 7-5. 
 

 
Fig. 7-5: Influence of Sn on equivalent plastic strain resistance  
 

 
 

Fig. 7-6: Influence of interaction of Sn and Pb on equivalent plastic strain 
resistance based on mean values  
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(7) Fig. 7-7 gives a suitable classification of zinc alloys in which also the contents of 
Pb and Bi are limited to Pb + 10Bi < 1,5% [75]. Fig. 7-7 gives also the relevant 
plastic strain resistances R,ref, taking account the scatter of results. 
 
Note: The limitation of strain resistance only applies in the hot zinc melt. After galvanizing the 
strain resistance of the steel is recovered. 

 
(8) A side effect of the LNT-test is that the heat transfer coefficient t from zinc to 

steel which is required to calculate the time for heating the steel component from 
the temperature before dipping to the temperature of the zinc bath can be 
experimentally determined. 

 

Zinc 
alloy 
class 

Weight proportion of zinc alloy 
Plastic 
strain 

resistance 
R,ref 

Effective 
heat 

transfer 
coefficient

t,eff 

Sn Pb + 10 Bi Ni Al 

Sum of 
other 

elements 
(without 
Zn + Fe)

1 Sn ≤ 0,1% 1,5 % < 0,1% < 0,1% < 0,1% 12% 
3000 

W/m2K 

2 
0,1% < Sn ≤ 

0,3% 
1,5 % < 0,1% < 0,1% < 0,1% 6% 

6000 
W/m2K 

3 Sn > 0,3% 1,3 % < 0,1% < 0,1% < 0,1% 2% 
15000 
W/m2K 

 
Fig. 7-7:  Equivalent plastic strain resistances measured for double salt flux 
with a salt content of flux  450 g/l and iron content in flux < 10g/l. The values 
t,eff apply to this type of flux and LNT-specimen and have to be adapted to large 
scale components 
Alternative fluxes may have other concentrations that may give different values of 
t,eff. 

 
(9) Fig. 7-8 gives a comparison of the temperature-time curve as measured during 

dipping and as calculated with a numerical value using t. The values t relevant 
for the different zinc alloy classes also are given in Fig. 7-7.  
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 Fig. 7-8:  Comparison of the time histories of temperature of a specimen as 

measured and as calculated 
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8 Strain rate dependency from the LNT-test  
 
(1) The LNT-tests is deformation-controlled with a proportionality between the 

displacement  and the plastic strain  at the bottom of the hole, see fig. 8-1. 
 

  
Fig. 8-1:  Relation of time, load-line deformation and strain at notch tip for 
deformation controlled LNT-tests 

 
 
(2) Tests were carried out for a matrix of parameters, with variation of the strain rate 

ε  for a given alloy and of the alloys for a given strain rate where the corrosion 
aggressiveness decreased with the number of alloy, see fig. 8-2. 

 
(3) The damaging effect of the alloy is expressed by the integral   dttεA pl  (area 

under the pl(t)-curve) see fig. 8-3. Fig. 8-4 shows typical curves for the 
dependency of strain rate, where the integral A is plotted in the logarithmic scale 
ln A. 

 

 
 Fig. 8-2:  Dependence of the LNT-test results on the variation of zinc alloy 

and variation of the strain rate as used for tests 
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 Fig. 8-3:  Damage effect expressed by the integral   dttεA pl  

 

 

 
 Fig. 8-4:  Typical curves lnA for damage A versus strain rate ε  
 

 
  Fig. 8-5:  Linear model for the A-  curve in double logarithmic scale 
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   Fig. 8-6:  Correlation related to   
 
(4) The conclusion from the tests can be taken from fig. 8-5, where a linear model in 

the double logarithmic scale for A and   is given and typical strain rates for 
“dipping” ( ref2 εε    for the relevant strain capacities ref in fig. 7-6) and for “holding” 

 0ε   are indicated. As fig. 8-3 and fig. 8-4 show, a decrease of the strain rate 
from test to test while leaving the composition of the zinc alloy constant leads to 
lower strain resistances.  

 
(5) In using the basic equation in fig. 8-6, where the related value 
 

 
 












  dt

ε

tε
lnAn

*
ref

R         (8.1) 

 
 versus the strain rate  s

1ε  is plotted and the typical “dipping” situation can be 

expressed by the pair 
 
 4

ref,R 105ε   and 5,2An        (8.2) 

 
 and the “holding” situation by the pair 
 
 0εR    and 0,5An  ,                 (8.3)  

     
 
 the following conclusion can be drawn for the holding time tS 
 

 
  

 
SR tε

0

5
*

ref,R

e
ε

dttε
.        (8.4) 

 
 With using a linear function for the (t) curve, see fig. 8-6: 
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    

S

tε

0
*

ref,R

SR
*

ref,R

t
ε

tε
5,0dt

ε

tεSR

        (8.5) 

 
 the holding time reads  
 

      SR

*
ref,R

SR

*
ref,R

S tε

ε5
s

tε

ε
148.2t   [min]      (8.6) 

 
(6) In using ref,R

*
ref,Rs ε60ε   the critical holding time tS for various zinc alloys can be 

determined as given in fig. 8-7.  
 

Strain 
requirement 

ES 

Zinc class 

1 2 3 

R,ref = 12 % R,ref = 6 % R,ref = 2 % 

0,5 % 120 min. 60 min. 20 min. 

1,0 % 60 min. 30 min. 10 min. 

1,5 % 40 min. 20 min. 6,7 min. 

2,0 % 30 min. 15 min. 5 min. 

 
Fig. 8-7: Critical dipping time ts for various zinc alloy classes and strain 
requirements (Ref = */60) 

 
 
(7) It is evident from fig. 8-7 that for zinc alloy class 1 and all relevant strain 

requirements Es all time values ts for holding are within suitable limits, whereas 
zinc alloy classes 2 and 3 require restrictions of holding time. 
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9 Stress-strain requirements  
9.1 General 
 
(1) Equivalent plastic strain requirements result from an accumulation of strains due 

to:  
 
 1. time history of fabrication, 

2. time history of heating process during dipping if the instationary heating 
process is relevant for cracking, 

3. time history of the exposure in the zinc bath, if the time effect on the 
reduction of strain capacity (holding time) is relevant for cracking. 

 
9.2 Stationary strains from fabrication 
 
(1) An example for the effects of fabrication on strain requirements is given in fig. 9-

1. This figure shows a typical stationary stress/strain distribution in rolled profiles, 
where due to different speeds of cooling down from the rolling heat the massive 
flanges get residual tension and the webs get residual compression. These 
stress/strain distributions are constant along the length of the beam except at 
their ends where equilibrium between the tensile and the compressive areas of 
the beam is effected by forming a tensile arch which causes transverse tensile 
stresses in parallel to the cut surfaces at the beam ends. 

 

 
  
 Fig. 9-1: Stress/strain distribution from the rolling of beams and crack 

propagation due to the crack-driving effect of the moving tensile arch at beam 
ends 

 

  
 
 Fig. 9-2: Example for a large crack formed at the ends of a 16 m long beam 

for a composite floor detected after galvanizing 
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(2) If at this surface strain concentrations are present due to welding and shape 
effects and additional plastic strains form due to the temperature gradient from 
dipping into the zinc bath a liquid metal assisted macro crack may occur that 
propagates to a large size due to the crack-driving effect of the accompanying 
tensile arch, see fig. 9-2. 

 
(3) A particular hazard results from cold forming of prefabricated structural 

components, e.g. for hooks, loops etc., where liquid metal assisted cracking 
starts at the concave side of the imposed curvature.  

 
(4) Fig. 9-3 gives an example of a floor beam that was precambered before hot dip 

galvanizing by polygonal cold forming with three point plastic bending. At the 
points of transverse load introduction to the bottom flange plastic prints of the tool 
with large local plastic deformations at the flange surface took place that were 
superimposed with tensile stresses from the elastic reactions of the beam to the 
plastification of the cross-section, see fig. 9-4. After concreting of the floor deck, 
the beam collapsed by opening of a liquid metal assisted crack filled with zinc.  

 
 

 
Figure 9-3: Opening of liquid metal induced crack at a bottom chord of a floor 
beam observed after concreting of the floor deck 

 
 

 
 
Figure 9-4: Stress blocks from plastic cold forming and elastic stresses from 
reactions of the beam to cold forming that give residual tensile stresses to the 
bottom flange on the concave side of the precambered beam 
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9.3 Instationary strains from dipping  
 

 
 Fig. 9-5: Time history of dipping for a mass particle of the structural 

component 
 
(1) Fig. 9-5 shows the dipping procedure versus time and fig. 9-6 gives an example 

of the temperature distributions over a selected cross-section resulting in residual 
strain distributions that are laid over the residual strain distributions of the steel 
component from fabrication.  

 
(2) The residual strains that arise from the temperature distribution are shown in fig. 

9-7.  
 

 
Fig. 9-6: Time history of temperature for a cross-section of a structural 
component 

 

 
 

 Fig. 9-7: Residual strain increments from temperature distributions 
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9.4 Superposition of stationary and instationary strains 
 

 
 
 Fig. 9-8: Example of a time history of equivalent plastic strain requirements 
 
(1) Fig. 9-8 gives the principle of the time history of equivalent plastic strain from 

fabrication (t=0), superimposed with strains from the heating with the time variant 
temperature distributions until full heating is achieved (situation without any 
temperature gradient). The full equivalent plastic strain accumulation process 
including stress relief by the exposure to the zinc bath is relevant for the strain 
requirement at a certain time.  

 
9.5 Conclusions from variation of detail and plate thickness 
 
(1) FEM-calculations of the instationary component of the strain history have been 

performed with variation of:  
 

- the structural detail considered, see fig. 9-9,  
- the immersion speed during dipping into the smelter, see fig. 9-10, 
- the alloy with varying heat transition coefficients, see fig. 9-11. 

 
 
 
 
 
 



Hot-dip-zinc-coating of prefabricated structural steel components 

 

39 

 

 

 

 

 
 Fig. 9-9: Calculation of maximum strains for different details 
 

 
 Fig. 9-10: Stress-time histories for different dipping speeds 
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 Fig. 9-11: Effect of different zinc-alloys with different heat-transition 

coefficients at on temperature- and equivalent strain-histories 
 
 
(2) Fig. 9-12 gives examples for the instationary part of the equivalent plastic strain 

requirements E for two alloys and immersion speeds representing the normal 
conditions before and after actions were undertaken to reduce damages [75]: 

 
Before actions: zinc alloy class 3 with the parameters: 
 

v = 0,25 m/min (immersion speed) 
 t = 15.000 W/m2K (heat transfer coefficient) 
 TV = 50°C (preheating temperature) 
 TBath = 450°C 

 
After actions: zinc alloy class 1 with the parameters: 
 

v = 0,80 m/min  
 t = 3.000 W/m2K 
 TV = 20°C  
 TBath = 450°C 
 

The data apply for various details and steel grade S355J2. They show for the details 
that are comparable, that zinc alloy 1 in connection with higher dipping speeds gives 
smaller strain requirements. 
 



Hot-dip-zinc-coating of prefabricated structural steel components 

 

41 

 
 Fig. 9-12: Examples of equivalent plastic strain requirements in zinc alloy 

classes 3 and 1 and different dipping speeds and preheating temperatures for 
various details, see also fig. 10-2 

 
 
(3) Fig. 9-13 gives the stationary part of the equivalent plastic strain E resulting 

mainly from the fabrication of the prefabricated steel component and its 
constitutive material, e.g. by rolling, cold forming and welding and the relieving 
effect of the liquid zinc bath. These values are correlated with the thickness s of 
steel and the process time of the steel material in the liquid zinc bath.  
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  Fig. 9-13: Relationship between Es , s and dipping time ts 
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10 Limit state assessments based on equivalent plastic strains  
 
(1) The mechanical background of the two design situations used for the limit state 

assessments to avoid cracking in the zinc bath is given in fig. 10-1. 
 

 
 Fig. 10-1: Cases a) and b) for the limit state assessment 
 
 
(2) This figure demonstrates the principle of the limit state assessment for two zinc 

alloys with different aggressiveness:  
 

case a: For a highly aggressive zinc alloy (e.g. zinc class 3) the peak value 
of the time history of strain-requirements reached during the dipping 
process is relevant for cracking. Cracks may occur during the 
submerging of the structural component into the zinc bath and 
appropriate measures to reduce the risk are related to reducing the 
peak value by preheating or reducing the time required for full 
submergence.  

 
case b:  For moderate and low aggressive zinc alloys (e.g. zinc class 1), the 

exposure time in the zinc bath leading to a reduction of strain 
resistance is relevant for cracking, and appropriate measures to 
reduce the risk are related to reducing the exposure time by 
reducing the thickness of plates and the differences in thickness of 
plates. 

 
(3) For case a) design situation during the dipping phase-, fig. 10-2 gives the results 

of the ratios  
 

 
R

E

ε

ε
η            (10.1) 

 
 for the typical conditions before and after actions to reduce damages [75]  
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Fig. 10-2: Comparison of equivalent plastic strain requirements E and plastic 
strain resistance R in zinc alloy classes 3 and 1 and different dipping speeds and 
preheating temperatures for various details, see also fig. 9-12 

 
 Apparently the content of tin has a dominant effect and zinc alloy class 3 should 

not be used for many details that are frequently applied in practice, whereas zinc 
alloy class 1 is applicable for all details investigated.  

 
(4) Fig. 10-3 gives a further detail for the determination of  for beams with end 

plates and cut outs, which identifies the effect of the depth of beams as observed 
by damages.  
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 Fig. 10-3: Ratios η for different beam depths, based on equation (12.8) 
 
(5) For case b) -design situation during the holding phase- fig. 10-4 gives the 

conclusions for the holding time tS from 
 

  SR

*
ref,R

S tε

ε5
t  [min]        (10.2) 

 
 using the assumptions given in fig. 8-6. 
 

 
Fig. 10-4: Relationship between the plate thickness s resp. the reference 
 thickness tref and the maximum holding time in the zinc bath for zinc alloy class 1, 
2 and 3 

 
 Based upon this research, common steel component thickness can be hot dip 

galvanized in a zinc melt class 1 with no risk of cracking. 
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11 Validation of the strain-oriented assessment method  
 
11.1 General  
 
(1) In the following examples for cracks observed after galvanizing or after erection 

of hot-dip galvanized components are given, which look plausible if compared 
with the assessment method based on equation (10.1) and (10.2). 

 
(2)  Apparently the type of zinc alloy is a main parameter; zinc alloys according to 

zinc class 1 would reduce the problems to mainly structural aspects as choice of 
steel, cross-section and structural detailing in connection with procedural aspects 
as dipping speed and holding time.  

 
(3) The following examples also give an impression how cracks starting at typical 

crack initiation points look like.  
 
11.2 Structural components from car-parkings 
 

 
Construction:  IPE550, l ~ 16 m 
Detail:   half endplate t = 12,5 mm 
Material:   S460N, large KV-value in web 
Zinc alloy:   0,8 Pb + 1,1 Sn + 0,07 Bi 
Crack:   starting from end of endplate, l = 1800 mm 

 

 
Construction:  IPE450, l ~ 16 m, tEndplate = 12,5 mm 
Detail:   half endplate wit cut out d = 30 mm 
Material:   S460N 
Zinc alloy:  1,0 Pb + 1,1 Sn + 0,08 Bi  

(alloy composition does not comply with EN ISO 1461) 
Crack:   starting from cut out, l = 200 mm 
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Construction:  l  16 m 
Detail:   half endplate with oblique cut 
Material:  - 
Zinc alloy:  - 
Crack:   starting at end of radius in web at bottom flange; l ~ 250 mm 
 

 
Construction:  IPE 550, l ~ 16 m 
Detail:   cope cut with radius d = 12 mm 
Material:   S460 
Zinc alloy:   0,2 Pb + 0,6 Sn + 0,1 Bi 
Crack:   starting at end of radius at cut out; l  1500 mm 
 
11.3 Further prefabricated beams 
 

 
Construction:  HEA 550, l = 18 m 
Detail:   as rolled 
Material:   copper 0,3% 
Zinc alloy:   1,0 Pb + 0,6 Sn + 0,02 Bi 
Crack:   across full depth of web, l  550 mm 
   and across part of flange, l  100 mm 
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Construction:  HEB 1000, l = 18 m 
Detail:   holes, d = 36 mm 
Material:   - 
Zinc alloy:   0,9 Pb + 0,8 Sn + 0,02 Bi 
Crack:   starting at holes, l  250 mm 
 

  
Construction:  HD 400 x 509, main tension chord of a lattice girder  

in a stadium roof 
Detail:   plate inserted in web, tpl = 80 mm 
Material:   S355 J2 G3 
Zinc alloy:   1,0 Pb + 1,1 Sn + 0,04 Bi 
   (alloy composition does not comply with EN ISO 1461) 
Crack:   crescent-like crack at the end of inserted plate through entire web  
   and parts of top and bottom flange, l ~ 400 mm 
 
11.4 Prefabricated columns 
 

 
Construction:  HEB 340 
Detail:   horizontal and vertical attachments, tpl = 30 mm and tpl = 50 mm  
   with holes and cut outs 
Material:   S355 J2 G3 
Zinc alloy:   0,3 Pb + 0,9 Sn + 0,08 Bi 
Crack:   starting at holes and cut outs, l ~ 50 mm; at welds l ~ 30 mm 
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Construction:  HEM 300 
Detail:   footplate connection with cut outs r = 50 mm, aweld = 18 mm 
Material:   S355 J2 G3 
Zinc alloy:   0,9 Pb + 0,8 Sn + 0,02 Bi 
Crack:  starting at cut out: running into the web, l ~ 100 mm; running along 

weld toe, l ~ 100 mm 
 
11.5 Latticed structures 
 

 
Construction:  HEA 400 in a chord of a lattice girder, with an additional longitudinal 

plate between flanges to form a boxed section 
Detail:   box type element with small drainage holes 
Material:   S355 J2 G3; microstructure and KV-value at lower bound limits 
Zinc alloy:   1,0 Pb + 0,8 Sn + 0,14 Bi 
Crack:  starting at edge of flange of rolled section running towards midline,  

l ~ 250 mm 
 



Hot-dip-zinc-coating of prefabricated structural steel components 

 

51 

  
Construction:  HEA 400 
Detail:   transverse stiffener 
Material:   S355 J2 G3; microstructure and KV-value at lower bound limits 
Zinc alloy:   1,0 Pb + 0,8 Sn + 0,14 Bi 
Crack:   starting at flange edge, l ~ 150 mm 
 

 
Construction:  welded built-up connection element 
Detail:   lamellas inserted into gusset plate 
Material:   S355 J2 G3 
Zinc alloy:   1,0 Pb + 0,9 Sn + 0,02 Bi 
Crack:   starting at weld-around, l ~ 60 mm 
 
11.6 Cold-formed components 
 

 
Construction:  IPE 450, l  16 m; Precambered by cold forming  
Detail:   local imprint in flange surface from tool for 3-point plastic bending 
Material:   S460 N 
Zinc alloy:   1,0 Pb + 1,1 Sn + 0,08 Bi 
Crack:   transverse to the flange, l  200 mm 
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11.7 Hollow section components 
 

 
Construction:  welded box girder, t = 8 mm; aweld = 5 mm 
Detail:   longitudinal fillet welds 
Material:   S355 J2 G3 
Zinc alloy:   0,7 Pb + 0,2 Sn 
Crack:   starting at edge, l ~ 70 mm 
 

 
Construction:  circular hollow section, RO273 x 6,3, acting as tension rod for a 

stadium roof (suspension)  
Detail:   inserted gusset plate 
Material:   S355 
Zinc alloy:   0,9 Pb + 0,8 Sn + 0,01 Bi 
Crack:   starting at end of gusset plate, l  20-100 mm 
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12 Transfer of results based on equivalent plastic strains into engineering 
models for practical assessments 

 
(1) The limit state assessment based on equivalent plastic strain may be used as 

background procedure for developing more easy-to-use rules for practical 
application. 

 
(2)  Such easy-to-use rules may be based on assessment formulae applicable both 

for case a) – the dipping process – and case b) – the holding phase -, see fig. 12-
1. The formulae are derived in section 13, where it is shown, that the results are 
equivalent to the results of an assessment with equivalent plastic strains. 

 

 
 
Fig. 12-1: Flow chart for the structural assessment to avoid cracking from 
liquid metal embrittlement  

 
(3) A further step of simplification is an assessment procedure based on technical 

classes, that avoids any numerical verification. This procedure is given in section 
15.  

 
(4) Both the simplified assessment method in section 13 and the classification 

method in section 15 apply to certain conditions for:  
 

- design of the prefabricated structural steel components, 
- the semifinished (constituent) products, 
- the structural detailing and fabrication of steel components,  
- the preparation of steel components prior to the hot-dip-zinc-coating, 
- requirements for the zinc bath, 
- testing of the zinc bath, 
 

 which are addressed in section 14 of this report. 
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(5) All the practical assessment procedures are calibrated to laboratory tests, 
numerical simulations and experiences. They use technical classes so that 
deliveries with crack sizes that may infringe the structural safety are excluded. 
Due to the large scatter of results a quantification of the reliability index for 
achieving freedom of relevant cracks is however not yet possible. Therefore 
confidence zones as specified in section 14 are introduced. 
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13 Simplified engineering models for numerical assessment 
 
(1) In order to obtain a simple engineering model for assessing the dipping process, 

a rectangular plate with the plate thickness s and the depth h is assumed to be 
dipped with the velocity v into the liquid zinc bath. The plate is supposed to be 
without residual stresses or strains, see fig. 13-1. 

 

  
 Fig. 13-1: Reference model for the dipping process 
 
(2) This reference model is used for the following purposes:  
 

1. to calculate the time tt of a particular plate-element, see fig. 13-1, to heat 
up from the preheating temperature TV to the melting temperature of pure 
zinc Ta = 419°C,  

 
In this calculation, the heat conductivity through the plate thickness is 
neglected. The heat transfer coefficient t is taken as the actual effective 
value for the zinc alloy in question,  

 
2. to determine the time history of instationary residual stresses and strains 

caused by strains * from temperature differences from dipping with 
different velocities v to identify the time t when the maximum of residual 
stresses and strains occurs, 

 
3. to use the pseudo-limit state criterion based on the assumption that in the 

beginning of the heating up phase the zinc coat freezes at the “cold” 
surface of the steel component and hence reduces the corrosion effect of 
the zinc alloy until the steel component has adopted the temperature of the 
zinc bath (cracking of the frozen zinc layer is not considered). 

 
Based on this assumption, the limit state is defined by the requirement, 
that the time interval t for attaining the maximum of the time history of 
residual stresses should be smaller than the heating up time tt: 

 
  t - tt ≤ 0         (13.1) 
 
  or  
 

  1
tt

t



           (13.2) 
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4. to link the simplified limit state equation (13.2) to the actual limit state for 
equivalent plastic strains as given in fig. 10-1 case a) by adaption factors 
kc, see (8).  

 
(3) The calculation of the reference time tt in fig. 13-1 is based on the following 

assumptions:  
 
1. The heat transfer between the zinc bath and the steel plate is constant 

with time:  
 

   TTAα
dt

dT
VρC at         (13.3) 

 
  where 
 
  C is the specific heat capacity of the plate 
   is the specific mass 
  V is the volume of the plate 
  T  is the temperature of the plate 
  t is the time 
  t is the effective heat transfer coefficient for the zinc alloy 
  A is the surface of the plate 
  Ta is the melting temperature of pure zinc (419°C) 
  TBath is the temperature of the zinc bath.  
 
2. The first zinc coat freezes on the plate surface and prohibits further access 

of aggressive constituents of the zinc alloy to the steel surface, thus 
protecting the steel from cracking. Any cracking of the frozen zinc coat is 
not considered.  

 
(4) Equation (13.3) leads to:  
 

 
TT

dT

A

CV
dt

at 





        (13.4) 

 
 which gives  
 

 
Bath

BathV

t

T

T at
t TC

TT
n

sC

TT

dTsC
t

a

V










  41922








     (13.5) 

 
(5) For the example of a plate with  
 
 s  = 0,01 m 
 TBath = 450°C 
 TV  =  50°C 
 t = 6000 W/m2K 
 C = 600 J/kg  K 
  =  7.800 kg/m3 
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 the temperature-time curve is given in fig. 13-2.  
 

   
 Fig. 13-2: Examples for a temperature-time curve 
 
 
(6) The pseudo-limit state equation for the reference model in fig. 13-1 reads:  
 

0
4192







Bath

BathV

t TC

TT
n

Cs

v

h 



       (13.6) 

 
 or: 
 

1

419
ln

12







Bath

BathV

t

TC
TTvCs

h




        (13.7) 

 
(7) For the example of a plate with h = 0,50 m, s = 0,01 m without residual stresses 

and strains, the time histories of stresses during the submerging process are 
given in fig. 13-3 for various dipping velocities.  

 
 

  
 

Fig. 13-3: Time histories of residual stresses for various dipping velocities 
where the pseudo-limit state is reached for  = 3,5 m/min 



Hot-dip-zinc-coating of prefabricated structural steel components 

 

58 

 
 
 In this figure the pseudo-limit state is reached for a velocity v = 3,5/min. 
 
(8) The link of the limit state of this model to the limit state of the model based on 

strain assessment is given in fig. 13-4, where on the left side the limit state 

condition 1
tt

t



  is given for the engineering model and on the right side the role 

of the adaption factor kc is shown to adjust the value tt of the engineering model 
to the value  

 

 
c

t
t k

t
t 
 *          (13.8) 

 
 consistent with the assessment model for strains.  
 
 

 

 
 Fig. 13-4: Conditions for the attainment of the pseudo-limit state 
 
(9) In conclusion, the basic formula for verifying freedom of cracks from hot-dip-

galvanizing is  
 

 
2 1

419

t
c

v Bath

Bath

h
k

T TC s v ln
C T

 


  
  
 

       (13.9)  

 
 where   is the utilisation rate, that theoretically should not exceed the value 

0,1 , see figure 13-4. 
 
(10) Fig. 13-5 gives more details to determine the adaption value kc from equation 

(13.8):  
 

1

419
ln

12










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bathv
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t
c

T
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h
k

t

t
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





1
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12











bath
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t

t

T

TTvsC

h

t

t








engineering model verification model 
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 Fig. 13-5: Determination of real

tt  and tt  to determine kc 

 
 
(10) The factor kc is composed of the following components:  
 
 kc = kdetail  kweld  ksurface  kcoldform  kpreheat     (13.10)  
 
 where  
 
 kdetail  represents the structural detailing  
 kweld  represents the weld thickness  
 ksurface  represents the surface roughness  
 kcoldform  represents the effects of prestraining by cold forming 

kpreheat represents the effects of TV in addition to its effect in the limit state 
formula.  

 
(11) The adjustment factor kc takes the value 1,0 for the following conditions:  
 
 - strain requirement        2,0 % 
 - weld thickness      a < 7 mm 
 - roughness of cut surfaces  

and surfaces according to EN ISO 9013   quality level 4  
 - grade of cold forming      %1ε pl   

 - preheating temperature     TV  50°C 
 
(12) Where these conditions are not met the value of kdetail may be taken from fig. 13-6 

and those of the other k-values from fig. 13-7. 
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Detail class E Detail kdetail 

A ≤2% 

Profiles without attachment parts, constant 
section, no constructive notches 

All rolled sections: I, IPE, HEA, HEB. HEM 

Welded sections taking into account the 
thickness ratio 
tmax / tmin  1,5 

Profiles with attachment parts, constant section, 
constructive notches in terms of attachments 

taking into account the thickness ratio 
 tmax / tmin  1,5 

Distance e of attachment to end of beam: 

e > h 

Holes d  25 mm  

0,3 

B ≤6% 

Profiles with attachment parts, constant section, 
constructive notches in terms of attachments 

taking into account the thickness ratio  
1,5<tmax / tmin <5  

Holes d < 25 mm 
nodes of lattice girders 

hollow sections with connection plates 

0,5 

C ≤12% 
Profiles with constructive notches  

at the free end of a beam 
0,8 

 Fig. 13-6: Classification of structural details and kdetail-values 
 

Adjustment coefficient k 

Weld thickness 
a  5mm 

5mm < a  12mm 
12mm < a 

1,00 
1,25 
1,50 

Surface roughness 
according to EN ISO 

9013, table 5 

Quality level 4 
Quality level 1-3 

1,00 
1,20 

Cold forming 
          pl  1% 
1% < pl  5% 

  5% < pl < 20% 

1,00 
1,10 
1,25 

Preheating 
temperature-effects 

on yield strength 

             TV  50 °C 
50 °C < TV < 200 °C 

1,00 
1,10 – Tv / 400 

 Fig. 13-7: Classification of weld, surface, cold forming- and preheating effects 
 
(13) For a standard process of zinc-coating that could be defined e.g. with the 
following parameters: 
 

- zinc alloy class 1 
- t,eff = 3000 W/m2 K 
- dipping speed  = 0,8 m/min 
- preheating temperature TV = 20°C 

 
the assessment formula (13.9) could be simplified to  
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
27

1

s

h
kC          (13.11) 

 
(14) For the verification of the holding time via formula (10.2) and for the zinc alloy 

class 1 see (13) the permissible holding time dependant on the plate thickness 
may be taken from fig. 13-8.  

 
 Fig. 13-8: Maximum holding time in the zinc bath for zinc alloy class 1 (see 

(13)) 
 
(15) For plate thickness tref  30 mm the usual holding time is smaller than 30 min, so 

that no extra provisions apply. For tref > 30 mm the limitation of the holding time to 
27 min (without further procedure tests) should be observed.  
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14 Introduction of Confidence zones  
 
(1) The limit state conditions in equation (10.2) and (13.9) are based on assumptions 

for the classification of thicknesses and details as well as for constituent products 
and for fabrications as follows: 

 
1. Constituent steel products are free of “crack like defects” on the surface 

according to EN 10163-Part 2 for plates and EN 10163-Part 3, Class C 
subgroup 1 for long products.  

 
In particular long products with large depths are produced such that 
residual stresses and differences of yield strength and impact energy 
across the cross-section are kept small.  
 
The chemical composition of steels in particular those produced on the 
scrab-route should be controlled, and meet the requirements for good 
weldability.  

 
2. Residual strains caused by fabrication are limited by appropriate detailing, 

weld preparation, welding procedures and welding sequences e.g.: 
 

- welding of butt welds before fillet welds,  
- no intermitted welds,  
- flexible assembly,  
- accurate and sufficiently robust tackling,  
- no exceedance of weld thicknesses required by design.  

 
3. At welds a component has preferably almost equal plate thicknesses; 

where the ratio of plate thicknesses exceeds 5
min

max


t

t
, the component 

should be separated by assembly joints. 
 

4. The superposition of residual strains from thermal cutting at edges and 
from welding is avoided by a minimum excess length for fillet welds of 2a + 
3 mm where a is the weld thickness. The same value applies for the 
minimum distance of edges of holes to welds. 

 
5. Critical micro-cracks from thermal cutting and punching are avoided by: 

 
- considering either a maximum surface hardness of 340 HV 

according to EN ISO 14713 and fabrication of punched holes with 
undersize and reaming to normal size as for structures subjected to 
fatigue loads, 

 
- or fabrication of punched holes or cold-cut edges according to 

requirements of procedure tests.  
 

6. Excessive cold-forming effects are excluded by:  
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     - considering either the strain limits 
tr

t
plast 


2

   2 % 

where  
t is the plate thickness,  
r is the inner radius of cold forming 

or annealing in cold formed areas,  
 

- application of appropriate “notch-free” tools for cold forming, 
 

- no punch marking except at locations where cracking is not 
expected to occur (e.g. at end plates).  

 
(2) In order to take account of the large scatter of strain requirements and strain 

capacities and of the model uncertainty in particular in equation (13.9) the notion 
of Confidence Zones has been introduced, that gives a relation between the 
utilisation rate   in equation (13.9) and the necessary provisions for inspections, 
see figure 14-1. 

 
Steel grade Detail Class 

A B C 
S235  

 
 
 
 
 
 
 
 
 

7,0  
Confidence Zone 1

2,17,0   
Confidence Zone 2

2,1  
Confidence Zone 3

2,1  
Confidence Zone 1 

2,1  
Confidence Zone 2 

2,1  
Confidence Zone 1 

2,1  
Confidence Zone 2

S275  
 
 
 
 
 

7,0  
Confidence Zone 1 

2,17,0   
Confidence Zone 2 

2,1  
Confidence Zone 3 

0,1  
Confidence Zone 1 

1 1, 2   
Confidence Zone 1 

2,1  
Confidence Zone 3

S355 0,1  
Confidence Zone 1 

2,11   
Confidence Zone 2 

2,1  
Confidence Zone 3 

S460 0,1  
Confidence Zone 2 

2,11   
Confidence Zone 2 

2,1  
Confidence Zone 3

 Fig. 14-1: Allocation of Detail Class and utilisation rate to Confidence Zones 
 
(3) For the various Confidence Zones that signify the confidence in compliance with 

the requirements that the steel component after hot-dip-zinc coating should be 
free of cracks if verified with the method given above, the following 
consequences for inspections have to be considered:  
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- for Confidence Zone 1 only visual inspections (100 %) are necessary, 
 

- for Confidence Zone 2 in addition to the visual inspections spot checks 
using a modified MT-method with adequate sensitivity should be agreed 
(minimum 1 detail from the relevant detail class per lot) to prove that the 
full assessment procedure has been safe-sided, 

 
- for Confidence Zone 3 in addition to the visual inspection a systematic 

check of steel components should be agreed (minimum 1 detail from each 
type of detail occurring in Detail Class C per lot) to prove that the full 
assessment procedure has been safe-sided.  

 
(4) For complex prefabricated structural components as given in fig. 14-2, the 

classification may be performed considering the “component method” used in 
connection design, see EN 1993-1-8. The class with the most onerous detail 
should be considered as representative for the complete steel component.  

 

  
Fig. 14-2: Example for the application of the “component-method” for structural 
connections to the classification of complex prefabricated steel components 
 
(5) In order to control the thermal expansion of lattice girders and similar built-up 

structures it is recommended to avoid excessive instationary residual strains due 
to thermal gradients in the dipping process by segmentation into components 
with assembly joints. 

 

h 

L 

tref 

end 
plate 

end 
plate 

attachment 

transverse 
stiffeners 
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15 Classification system without numerical assessment  
 
(1) In the following a classification system is derived from the assessment methods 

in section 13 and section 14 that applies to standard conditions for  
 
 - the zinc alloy: zinc alloy class 1, see fig. 7-7, 
 - dipping speed: 0,8 m/min, 
 - the preheating temperature: TV = 15°C – 20°C,  
 
 and to frequently used  
  
 - types of construction, 
 - types of detail, 
 -  plate thicknesses,  
 
 assuming ways of fabrication that keep strain-requirements small. 
 
(2) The classification system, that does not need any numerical assessment 

comprises: 
  
 
 1. classification of construction type, 
 2. classification of structural detail, 
 3. classification of predominant product thickness 
 
 see fig. 15-1.  
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 Fig. 15-1: Classification of structural components into Construction Classes, 

Detail Classes and Thickness Classes 
 
(3) Fig. 15-2 gives the classification of prefabricated steel components to 

Construction Classes with a distinction of steel grade, toughness and beam 
depth.
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 Legend: 
 

class Ia:  Profiles (all open sections, all hollow sections) 
class Ib:  Profiles IPE and HE series and equivalent *) 
class Ic:  Profiles IPE and HE series and equivalent *) 
class II:   Profiles IPE and HEA series and equivalent *) 
class III:  Profiles IPE and HEA series and equivalent *) 

 

 *) For built up welded profiles equivalent geometrical dimensions as for rolled sections apply.
 
 Note: The values h1 and h2 have been determined for profiles with large depths h and small 
 web thickness s (h/s  40). The values h1 and h2 are safe-sided for any profile with about 
h/s  < 40. 
 

Fig. 15-2: Classification of prefabricated steel components to Construction Classes 
 
(4) Fig. 15-3 gives a classification of details, where the risk of occurrence of cracks 

(due to the decrease of safety margin of strain assessment) is the greater the 
higher the class is (A  C). Therefore, the Detail Classes are associated with 
different Confidence Zones.  

 
(5) The classification of the predominant product thickness refers to the permissible 

holding time ts in fig. 13-8.  
 
(6) Fig. 15-4 gives the consequences of combination of Construction Class, Detail 

Class and Thickness Class for the Confidence Zone.  
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Frequently used typical details where NDT-methods may give 

indications for cracks 
Detail 
class 

 
Free beam end 

 
Full end plates 

 
Holes in the web at the end of the 

beam with d > 25mm 

 
Transverse stiffener *) connected to 2 

edges 
(end distance e > h) 

 
Transverse stiffener connected to 

3 edges 
(end distance e > h) 

 

 
Transverse stiffener with flange 

connected to 3 edges (end 
distance e > h) 

 

 
Transverse stiffener attached to 

the flange 

  
Shear studs welded to top flange 

 

*)drainage holes where necessary in end-
plates or stiffeners

A 

 
Drainage holes in the web 

 
Holes in the web at the end of the 

beam with d < 25mm 

 
At full welding of fin plates or gusset 

plates 

 
Cope cut 

r ≥ 10 mm, lcope < 150 mm 

 
Attachments with turn around 

welds  

 
Attachment with  

Intermittent welds  
 

B 

 
At the weld around plates inserted into the web  

of profiles or into tubes  

 
In the web of slender profiles below half cover end plates  

 
Cope cut  

r < 10 mm, lcope ≥ 150 mm 
 

C 

 Fig. 15-3: Classification of details 
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Fig. 15-4: List of combination of classes for achieving confidence in freedom 
from cracks 
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16 Worked examples for using the classification method in section 15 
16.1 General 
 
(1) The worked examples presented hereafter demonstrate the use of the 

classification procedure outlined in section 15 that is based on the choice of  
 
 - zinc alloy class 1, 
 - dipping speed 0,8 m/min 
 - preheating temperature TV = 15°C - 20°C. 
 
(2) The examples given cover the most frequent cases of structural components to 

be hot-dip galvanized. 
 
16.2 Usual metal works 
 
(1) Usual metal works as demonstrated in fig. 16-1 and fig. 16-2 are within the limits 

of construction class 1a and may be allocated to confidence zone 1 for all detail 
classes. 

  

 

 
 © BVM 

Figure 16-1: Usual metal works with steel S235JR within the limits of confidence 
zone 1 
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(2) The specification for galvanizing is therefore: 
 

- hot-dip galvanizing according to EN ISO 1461 and the standard procedure 
in section 15  

- construction class 1 
- only visual inspections. 
 

© BVM 
Figure 16-2: Usual metal works with steel S235JR within the limits of confidence 
zone 1 
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16.3 Detailed examples 
 
(1) Detailed examples are given in fig. 16-3 to fig. 16-11. 
 
 
Beams for stairs material 

profile/ 
beam 
depth 

detail 
cold -
forming 

max. plate 
thickness 
tref 

 
Sketch / description: 

 
- welded beam 
- no welded attachments 

S235JR U 140 
drilled 
hole  
d<25mm

no ≤ 30mm 

 
Assessment for `dipping´ 
 detail class:  B 

construction class: Ia 
 

 
 
 confidence zone 1 
 no special provisions 

 
Assessment for `holding´ 
 

 
 no extra provisions 

 
Fig. 16-3: Beams for stairs 
 
 
 
Columns for an industrial building material 

profile/ 
beam 
depth 

detail 
cold-
forming 

max. plate 
thickness 
tref 

 
Sketch / description: 

 
- rolled section with welded footplate 
- drilled holes in footplate 
- flange  not relevant 

S235JR 
HEA 
500 

foot plate no ≤ 30mm 

 
Assessment for `dipping´ 
 detail class:  A 

construction class: Ic 
  

 
 
 confidence zone 1 
 no extra provisions 

 
Assessment for `holding´ 
 

 
 no special provisions 

 
Fig. 16-4: Columns for an industrial building 
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Welded frame beam for an industrial 
building 
 

material 
profile / 
beam 
depth 

detail 
cold-
forming 

max. plate 
thickness 
tref 

 
Sketch / description: 

 
- rolled section with a haunched end 

and end plates 
- drilled holes in end plates 
- flange  not relevant 

S235JR 
IPE 
500 

end plate no 40mm 

 
Assessment for `dipping´ 
 detail class:  A 

construction class: Ic 
 

 
 
 confidence zone 1 
 no extra provisions 
 

 
Assessment for `holding´ 
 

 
 limitation of the holding time to 27 min 
 

 
Fig. 16-5: Welded frame beam for an industrial building 
 
 
 
Floor beam for a parking house material 

profile/ 
beam 
depth 

detail 
cold-
forming 

max. plate 
thickness 
tref 

 
Sketch / description: 

 
- rolled section with full endplates 
- welded shear studs 
- drilled holes in endplates  not relevant 

S355J2G3
IPE 
550 

end 
plate 

≤ 0,5% ≤ 30mm 

 
Assessment for `dipping´ 
 detail class:  A 

construction class: III 
 

 
 
 confidence zone 1 
 no extra provisions 

 
Assessment for `holding´ 
 

 
 no special provisions 

 
Fig. 16-6: Floor beam for a parking house 
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Floor beam for a parking house 

material 
profile / 
beam 
depth 

detail 
cold-
forming 

max. 
plate 
thickness 
tref 

 
Sketch / description: 

 
- rolled section with holes in the web at the 

end of the beam with d > 25 mm 
- welded shear studs 

S460M 
IPEa 
550 

drilled 
holes,  
d > 25mm 

≤ 0,5% ≤ 30mm 

 
Assessment for `dipping´ 
 detail class:  A 

construction class: III 
  

 
 
 confidence zone 1 
 no extra provisions 

 
Assessment for `holding´ 
 

 
 no extra provisions 

 
Fig. 16-7: Floor beam for a parking house 
 
 
 
Floor beam for a parking house material 

profile / 
beam 
depth 

detail 
cold-
forming 

max. plate 
thickness 
tref 

 
Sketch / description: 

 
- rolled section with cope cut 
- welded shear studs 

S460M 
IPEa 
550 

drilled 
holes,  
d > 25mm; 
cope cuts  
r < 10mm 

≤ 0,5% ≤ 30mm 

 
Assessment for `dipping´ 
 detail class:  C 

construction class: III 

 
 
 confidence zone 3 
 spot wise MT-test in the area of the cope cut 
 

 
Assessment for `holding´ 
 

 
 no extra provisions 

 
Fig. 16-8: Floor beam for a parking house 
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Chord of a truss material 

profile / 
beam 
depth 

detail 
cold-
forming 

max. plate 
thickness 
tref 

 
Sketch / description: 

 
- rolled section with fin-plate and 
 gusset plates inserted into the fin 

plate 

S355J2 
HEB 
320 

- no ≤ 30mm 

 
Assessment for `dipping´ 
 detail class:  C 

construction class: II 

 
 
 confidence zone 2 
 spot wise MT-test in the area of welded insertions 

 
Assessment for `holding´ 
 

 
 no extra provisions 

 
Fig. 16-9: Chord of a truss 
 
 
 
Beam-column connection material 

profile / 
beam 
depth 

detail 
cold-
forming 

max. plate 
thickness 
tref 

 
Sketch / description: 

 
- rolled beam with end plates 
- rolled column with connection 

plate 

S235JR 
HEA 
240 

end plate no ≤ 30mm 

 
Assessment for `dipping´ 
 detail class:  A 

construction class: I 

 
 
 confidence zone 1 
 no extra provisions 
 

 
Assessment for `holding´ 
 

 
 no extra provisions 

 
Fig. 16-10: Beam-column connection 
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Bracing in a roof material 

profile / 
beam 
depth 

detail 
cold-
forming 

max. plate 
thickness 
tref 

 
Sketch / description: 

 
- hollow section with inserted 

gusset plate 

S355J2H 
273 
mm 

inserted 
gusset 
plate 

no ≤ 30mm 

 
Assessment for `dipping´ 
 detail class:  C 

construction class: II 

 

 
 
 confidence zone 2 
 spot wise MT-test in the area of insertion of 
gusset plate 
 

 
Assessment for `holding´ 
 

 
 no extra provisions 

 
Fig. 16-11: Bracing in a roof 
 
 
16.4 Examples of choices made in the fabrication 
 

 

S355J0 

Construction class II 

Detail class B 

 

 Confidence zone 1 

 

S235JR 

Construction class Ib 

Detail class B 

 

 Confidence zone 1 
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S235JR 

Construction class Ib 

Detail class C 

 

 Confidence zone 1 

 

S355J0 

Construction class II 

Detail class A 

(In case of cold-formed angles with 
pl > 2% subject of procedure tests) 

 

 Confidence zone 1 

 

S355J0 

Construction class II 

Detail class B 

 

 Confidence zone 1 

 

S355J0 

Construction class II 

Detail class C 

 

 Confidence zone 2 
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S355J0 

Construction class II 

Detail class C 

 

 Confidence zone 2 

 
 

S235JR 

Construction class II 

Detail class B 

 

 Confidence zone 1 

 

S235JR 

Construction class I 

Detail class B 

(In case of cold-formed angles with 
pl > 2% subject of procedure tests) 

 

 Confidence zone 1 
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S235JR 

Construction class I 

Detail class B 

(In case of cold-formed angles with 
pl > 2% subject of procedure tests) 

 

 Confidence zone 1 

 

S235JR 

Construction class I 

Detail class B 

(In case of cold-formed angles with 
pl > 2% subject of procedure tests) 

 Confidence zone 1 

 
S235JR 
Construction class I 
Detail class B 
(In case of cold-formed angles with 
pl > 2% subject of procedure tests) 
 
 Confidence zone 1 

 
S235JR 
Construction class I 
Detail class B 
(In case of cold-formed angles with 
pl > 2% subject of procedure tests) 
 
 Confidence zone 1 
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S235JR 
Construction class I 
Detail class B 
(In case of cold-formed angles with 
pl > 2% subject of procedure tests) 
 
 Confidence zone 1 

 
 
S235JR 
Construction class I 
Detail class B 
 
 Confidence zone 1 

 
S355J0 
Construction class I 
Detail class C 
 
 Confidence zone 1 
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S355J0 
Construction class I 
Detail class A 
 
 Confidence zone 1 

 
 
S355J0 
Construction class I 
Detail class C 
 
 Confidence zone 1 

 
S355J0 
Construction class II 
Detail class A 
 
 Confidence zone 1 
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S355J0 
 
Construction class I 
Cold formed ends with pl > 2% 
 
 subject of procedure tests 
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17 Procedure tests 
 
(1) Where the standard assumptions e.g. related to the aspects in fig. 17-1 which 

have been made for applying the assessment methods in section 13 to 15 are 
not met, “procedure tests” with additional non-destructive testing may be applied 
to achieve hot-dip galvanizing without LMAC.  

 
(2) The “procedure tests” after acknowledgement identify the particular conditions to 

be met for the structural detailing, the fabrication of the component and the 
galvanizing process that have been varied.  

 
(3) The basis of “procedure tests” is a provisional instruction for galvanizing which 

comprises all relevant aspects of design, steel products, fabrication and 
galvanizing procedure and of the NDT to be carried out after galvanizing.  

 
(4) If the testing is successful the applicant (steel fabricator and zinc coater) may get 

an acknowledgement according to the legal conditions.  
 
  

Examples for variations Extend of NDT 
Cold cut edges  
Cold forming 
Ratio of plate thickness 
Structural detailing  
Latticed structure without joints 
Longer holding time  

Confidence Zone 3 
according to fig. 14-1 however with 

testing all details 

 Figure 17-1: Extend of testing for the procedure tests 
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18 Supplementary rules for execution of hot-dip-zinc coating 
 
18.1 General 
 
(1) The assessment methods based on numerical calculations as given in section 13 

and 14 or based on the classification method as given in section 15 include the 
concept of confidence zones which require that:  

 
1. testing of the galvanizing procedure is carried out to secure that the 

conditions for works as assumed are met and remain stable (independent 
on time),  

2. testing after the galvanizing process reveals that no cracks have occurred 
and hence the assessment procedure is safe-sided.  

 
(2) An important issue of stability of conditions for the galvanizing process is the 

control of the zinc melt.  
 
(3) Testing after the galvanizing process is the non destructive testing (NDT) of 

galvanized components with visual inspections (100 %) and a limited number of 
MT-tests, where required by the designer (e.g. according to the Confidence Zone 
resulting from the assessment) or where required after visual tests.  

 
(4) In the following examples for specifying rules for the control of the zinc melt and 

for NDT-testing of galvanized components are given, which have been taken 
from [75].  

 
18.2 Control of chemical composition of the zinc melt  
 
18.2.1 Relevant Standards  
 
 QM-documentation of the zinc coater 
 EN ISO 1461 
 Requirements for accident prevention  
 
18.2.2 Equipment, tools and sampling 
 
(1) The outfit for personal protection and the sampling procedure may depend on the 

regional health and safety requirements.  
 
(2) Sampling should be carried out from a well mixed zinc bath sufficiently long after 

measures for maintenance of the zinc bath (e.g. for refurbishment the alloy, etc.).  
 

Note: This requirement would be met if sampling would be made under regular 
working conditions at least 1 hour after begin of production.  

 
(3) The sample should be taken always at the same spot of the zinc bath.  
 

Note: E.g. the position should be located at the middle of the long side of the 
tank, at a distance of 20 cm from the edge and 20 cm below the surface.  
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Note: A proposal for a device for sampling is given in fig. 18-1. This should be, 
once the top opened, dipped slowly at an angle to the bath surface until the depth 
mark is reached. 

 

 
Figure 18-1: Proposal for a device for sampling  

 
(4) The device for sampling should be moved in the zinc bath sideways (to the right 

and left) for 2 minutes.  
 
(5) After that the top of the device should be closed right down by turning.  
 
(6) The device should be taken out vertically quickly from the zinc bath (Attention to 

heat protective gloves necessary for regaining one´s grip to the hot bar of the 
sampling device).  

 
(7) Once outside the zinc tank the bottom part of the sampling device with the 

samples should be dipped into water, with the samples only partly submerged 
until solidification and then fully submerged for cooling.  

 
(8) After cooling the samples should be taken from the device, one for the analysis, 

the other as reserve for the quality check.  
 
(9) The samples should be marked with a permanent marker.  
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(10) The sampling should be documented in a data sheet for the control 

documentation.  
 
18.2.3 Method for analysis 
 
(1) The analysis should only be carried out in laboratories laid down in the QM 

system. 
 
(2) The analysis of the zinc sample should give quantitative values for the following 

elements (8-elements) to characterize sufficiently the composition of the zinc 
alloy and to check the requirements given in fig. 7-7:  

 
- aluminium (Al) 
- lead (Pb) 
- cadmium (Cd) 
- iron (Fe) 
- copper (Cu) 
- nickel (Ni) 
- bismuth (Bi) 
- tin (Sn)  

 
18.3 Non destructive testing procedures for zinc coated structural components  
 
18.3.1 General  
 
(1) The non destructive testing (NDT) of zinc coated structural components to detect 

possible cracks under the zinc coat should be performed with appropriate testing 
methods, e.g. the magnetic flux tests (MT) taking account of:  

 
- reduced sensitivity from zinc coat thicknesses tZn  50 m (see EN 1290, 

Annex A1) 
- limited accessibility in the area of spandrels from web, flange and 

endplates.  
 
(2) The following specification applies to the MT-procedure and contains 

requirements for the test parameters to achieve an optimum sensitivity for test.  
 
18.3.2  References to standards  
 
 EN 473  Qualification and certification of personal for NDT 
 
 EN ISO 9934-1 Magnetic flux testing – General basis 
 
 EN ISO 9934-2 Magnetic flux testing – Means for testing  
 
 EN ISO 9934-3 Magnetic flux testing – Equipment for magnetizing  
 

EN ISO 3059 Magnetic flux testing and penetration testing – Conditions for 
visual testing  
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18.3.3 Test personal 
 
(1) The NDT-checks may only be carried out by qualified personal (at least level II-

requirement according to EN 473 for the MT-procedure).  
 
18.3.4 Preparation of surface for testing  
 
(1) The surfaces should be checked visually (VT) and cleaned where appropriate. 

Locations where the visual test gives indications should be included in the list of 
spots prepared by the designer for MT-checks.  

 
(2) After cleaning, the surfaces for tests should be free of any soiling impeding 

appropriate testing.  
 
18.3.5 Testing equipment and means for testing 
 
(1) The testing equipment and the means for testing should comply with the relevant 

standards.  
 
18.3.6 Check of sufficient magnetizing of the testing system 
 
(1) Sufficient magnetizing of the steel surface should be achieved by an appropriate 

level of the strength of the magnetic field.  
 
(2) The magnetizing should be checked by measuring the tangential strength of the 

magnetic field.  
 
 The strength measured as closely as possible at the surface on the basis of the 

Hall-effect should attain a value of 4 kA/m (40 A/cm). 
 
(3) Electric power generators used should give sufficient power supply.  
 
18.3.7 Check of sufficient magnetizing for a project  
 
(1) Before starting the test works (at least once a day) the magnetizing should be 

checked with a reference component.  
  
18.3.8 Means for testing 
 
(1) The means for testing should comply with the requirements of EN ISO 9934-2 

and the particular conditions from reduced sensitivity by the zinc coat.  
  
 Note:  The following means for testing have proved to be suitable:  
 
 - MR 76  MR-Chemie  
 - NRS 107 Helling 
 - Ferroflux-Pulver-Suspension 690.2 
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18.3.9 Visual evaluation 
 
(1) The following conditions apply for the visual evaluation using black means of 

testing:  
 

- the surface should be controlled with an illumination strength of at least 
500 Lux.  

 
18.3.10 Area to be tested  
 
(1) The areas to be tested should be determined by the designer, see fig. 18-2. 

These areas should be supplemented by spots where visual testing has identified 
indications.  

 
(2) Magnetizing should by achieved by hand-magnets. Sufficient time for post-

magnetizing should be taken into account.  
 

Note: A sufficient time for magnetizing of 6 s and a subsequent post magnetizing 
time of 6 s would provide sufficient time for the formation of indications.  

 
(3) The overlapping of areas to be tested should be sufficient.  
 
18.3.11 Limits for confidence  
 
(1) Linear indications caused by material discontinuities (e.g. cracks, fusion lacks,  

flow over of weld material) are not permitted.  
 
(2) Where the existence of cracks is suspected, the test should be performed without 

the zinc coat after grinding.  
 
(3) Unless otherwise specified by the designer indications with lengths  3 mm may 

be disregarded.  
 
 Note: In areas with high local plastic strains which may occur in the parent material by weld-

shrinkage adjacent to large welds, indications may be found inspite of fulfilling all conditions to 
avoid LMAC. In case of such indications, it has to be decided whether these indications mean 
through cracks or only surface cracks and whether further measures, e.g. grinding, is necessary. 

 
18.3.12 Demagnetizing  
 
(1) A demagnetizing of welded structural components normally is not necessary.  
 
 
18.3.13 Treatment of structural components with faults  
 
(1) Any decision for the treatment of structural components with faults should be 

made together with the designer.  
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Frequently used typical details where NDT-methods may give 

indications for cracks 
Detail 
class 

 
Free beam end 

 
Full end plates 

 
Holes in the web at the end of the 

beam with d > 25mm 

 
Transverse stiffener *) connected to 

2 edges (end distance e > h) 

 
Transverse stiffener connected to 3 edges

(end distance e > h) 
 

 
Transverse stiffener with flange connected 

to 3 edges (end distance e > h) 
 

 
Transverse stiffener attached to the flange 

  
Shear studs welded to top flange 

 

*)drainage holes where necessary in end-plates or 
stiffeners 

A 

 
Drainage holes in the web 

 
Holes in the web at the end of the 

beam with d < 25mm 

 
At full welding of fin plates or 

gusset plates 

 
Cope cut 

r ≥ 10 mm, lcope < 150 mm 
 

 
Attachments with turn around welds 

 

 
Attachment with intermitted welds  

B 

 
At the weld around plates inserted 

into the web  
of profiles or into tubes  

 
In the web of slender profiles below 

half cover end plates  

 
Cope cut  

r < 10 mm, lcope ≥ 150 mm 
 

C 

Figure 18-2: Areas to be tested  
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18.3.14 Documentation of the tests  
 
(1) The documentation of the tests should comply with the requirements in EN ISO 

9934-1.  
 
(2) The location and the sizes of faults should be clearly documented. 
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19 Conclusion 
 
(1) This JRC-Scientific and Technical Report gives a survey on the state-of-the-art in 

explaining the causes of liquid metal assisted cracking (LMAC) of prefabricated 
structural steel components in the zinc melt during hot-dip galvanizing that may 
impair their structural safety. It also offers ways to avoid it. 

 
(2) Various parameters related to:  
 

- the design of prefabricated components, 
- the fabrication of prefabricated component,  
- the zinc alloy and the galvanizing process.  

 
control the likelihood for occurrence of this phenomenon, so that information 
across design, fabrication and galvanizing need to be taken into account to 
produce hot-dip-galvanized structural components that are free from cracks.  

 
(2) This report also demonstrates mechanical models suitable to consider cracking in 

the zinc melt as a limit state related to plastic strain requirements on one side 
and ultimate plastic strain resistances on the other side.  

 
(3) To determine such plastic strain resistances a new testing procedure with small 

scale LNT-test specimen has been developed, that reveals the interaction 
between the steel material, zinc alloy and galvanizing process and time. To 
determine plastic strain requirements numerical simulations of the “stationary” 
strain field from the fabrication of components and of the “non-stationary” strain 
fields from the dipping and holding processes are necessary.  

 
(4) For practical use simplified methods have been derived from the results of such 

limit state studies, either with simplified mechanical models for numerical 
assessment or with classification methods, that do not need any calculation. 
These models are based on standardized conditions for:  

 
- choice of profiles and steel, 
- structural detailing considering notch effects, 
- galvanizing process, 
- inspection and testing. 

 
(5) Due to various uncertainties related to compliance with these conditions and to 

the simplified assessment model used, confidence zones are introduced for 
which rules for inspection and non-destructive testing are defined, so that the 
combination of assessment and testing produces the reliability required for 
avoiding liquid metal assisted cracking. 

 
(6) Worked examples complete the survey; they give proof that the methods 

developed are workable and applicable to practical use. 
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