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ABSTRACT

The work presented has been developed within the Prenormative Research in support of

EuroCode 8 (PREC8) programme of the European Commission. The EuroCode 8 (EC8)

are the provisional European standards for the design of civil engineering structures in

seismic prone areas. This programme included experimental test on a series of bridge

structures that have been tested under Pseudo-Dynamic conditions.

Experimental tests were carried out to study the behaviour of bridge piers under cyclic

loading. The results from these tests underlined the need to improve an existing fiber-

model to represent the non-linear behaviour of structures where the influence of the

shear forces is not negligible. Thus, a strut-and-tie formulation coupled with the classic

fibre model for flexural forces was developed. This formulation is based on the analogy

of a R/C structure damaged with diagonal cracking with a truss made of concrete diago-

nals and steel ties.

The model is applied to a set of bridge piers tested at the ELSA laboratory and the results

are compared with the experimental response.
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 1 INTRODUCTION

Earthquakes damage civil engineering structures every year and bridges are no excep-

tion. Historically, bridges have proven to be vulnerable to earthquakes, sustaining dam-

age to substructures and foundations and in some cases being totally destroyed as

superstructures collapse from their supporting elements [1]. In particular, shear failure

due to inadequate detailing and/or poor confinement of concrete core was observed in

several bridge piers emphasizing the importance of shear strength in the design phase.

As a matter of fact, these seismic events represent an important ‘in situ’ source of infor-

mation that should not be neglected and, furthermore, should be always present in the

improvement of design codes and guidelines. In fact, significant advances in seismic

design and strengthening of bridges have occurred after large earthquakes. The 1971 San

Fernando earthquake caused substantial damage and exposed a number of deficiencies in

the bridge design specifications of that time. During the Loma Prieta earthquake of Octo-

ber 1989, the dramatic collapse of the Cypress Street Viaduct in Okland and the damage

of many elevated freeway bridge structures in the San Francisco bay area highlighted

weaknesses in bent joints, lack of ductility in beams and columns and poor resistance to

longitudinal and transversal loads. Inspections (observed damage) after the earthquake

revealed shear cracking and spalling of concrete especially in outrigger knee joints on

bends of several reinforced concrete (R/C) viaducts [2].

More recent events like the Northridge earthquake of January 1994 and the Kobe earth-

quake of January 1995, stressed once again those deficiencies. In particular, shear failure
NON-LINEAR SHEAR MODEL FOR R/C PIERS 13



was observed on several bridge piers again, emphasizing the importance of design and

detailing of transverse steel to provide proper shear strength/capacity. Changes in the

design code and guidelines were and are still undertaken to compensate for these short-

comings.

It should be pointed out that, although a general design code exists for civil engineering

structures, bridges structures exhibit some characteristics that make them quite different

from ordinary buildings, demanding special guidelines. Firstly, the mass of the bridge

deck is an order of magnitude larger than the mass of a typical floor system. Secondly,

bridge structural systems are not as redundant as typical building structures. This means

that, although in a beam sides-way mechanism the plastic hinges would normally be

located at the extremities of the beams, in bridge structures it is neither feasible nor desir-

able to locate them in the superstructure. Instead, it is preferable to place them in the col-

umns, which end up being the primary sources of energy dissipation.

The aim of design is, therefore, to provide sufficient deformation capacity and shear

strength to ensure that under seismic loads the columns present a ductile behaviour and

that no shear failure occurs. It is now generally accepted that the ductile behaviour of a

reinforced concrete column can be reached by supplying sufficient transverse reinforce-

ment in the plastic hinge regions to provide adequate shear strength and, at the same

time, to properly confine the concrete core in the section and prevent premature buckling

of the longitudinal reinforcement.

The behaviour of bridge structures subject to important transverse type loading is now

more than ever a matter of great experimental and numerical research interest. The aim

of this report is to describe the non-linear shear model developed at the European Labo-

ratory of Structural Assessment (ELSA) at Ispra, Italy, for piers with low shear span

ratio.

After a general and brief description of non-linear shear models, the developed model, a

strut-and-tie type formulation coupled with the fibre model already implemented in

CASTEM 2000 [3], is presented. The details of the constitutive relations for both con-

crete and steel materials are described and several applications are carried out in order to
14 NON-LINEAR SHEAR MODEL FOR R/C PIERS



assess the performance of the tools developed; the numerical response of bridge piers is

compared with experimental results, in particular with those from the experimental cam-

paign performed at the ELSA laboratory [4]: four R/C structures with two different pro-

files representing a regular and an irregular bridge under horizontal transverse cyclic

loading. The main conclusions are drawn in the last section.
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 2 NON-LINEAR SHEAR MODELS

Experimental tests on low shear span ratio R/C columns under important shear forces,

especially when combined with high axial forces, have shown quite a different behaviour

compared to columns under predominant flexural moments. A brittle behaviour with

opening of inclined cracks and sudden crushing of diagonal concrete, caused by the com-

bination of high axial and shear stresses, is often observed in laboratory tests. Seismic

events like the Northridge and the Kobe earthquakes, confirmed these results and under-

lined the need to consider the influence of shear forces on the resistance and ductility

capacity of reinforced concrete structures. This is particularly relevant in structures with

different members set together where, due to their higher initial stiffness, short columns

take most of the horizontal loading.

To develop a model capable of representing the response of such elements subjected to

important transverse forces, it is essential to have a good understanding of the physical

phenomena involved. Hence, before entering into the modelling aspects, the shear mech-

anism and damage process of R/C squat piers is reviewed.

2.1 Shear mechanisms in R/C structural elements

Experimental tests on reinforced concrete columns (e.g. Li [5]) show that, before crack-

ing, the shear force is mainly carried by the concrete. The formation of cracks reduces

the concrete active area, decreasing the shear resisting capacity of the concrete. How-

ever, diagonal cracking activates, through shear deformation, the aggregate interlock

action along the cracks and the dowel force from longitudinal bars, giving a supplemen-

tary shear resistance to the cracked structure. The effectiveness of these two effects

depends on the capacity of transverse steel to maintain both sides of the crack in contact.

This capacity is directly related to the transverse steel ratio and to the spacing of the stir-

rups along the R/C element.

Thus, although before cracking the amount of transverse reinforcement has little effect

on shear carrying capacity, after cracking, and especially in the post-yielding phase, it

increases the shear strength of the column and improves its performance. Therefore, the

role of transverse reinforcement in a column is to resist shear, to provide concrete core
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confinement, increasing the concrete compression strength, and to prevent premature

buckling of longitudinal bars. Experimental tests carried out in the ELSA laboratory

showed that to prevent buckling it is important not only to provide the proper amount

and spacing of transverse steel but also to adequately embrace the longitudinal bars; after

the crushing of the concrete cover, some longitudinal bars not embraced by the stirrups

buckled laterally, presenting an effective length two or three times the spacing of the

transverse steel.

Figure 2.1 - Diagonal cracking: dowel and interlock effect

When the two surfaces of a crack of moderate width slide one against the other, a number

of coarse aggregate particles projecting across the crack will enable shear forces to be

transmitted [6]. As the shear load increases, the interface forces produce local crushing

with a sliding of the crack surfaces and an important decrease in the shear stiffness. Upon

unloading, the surfaces of the crack remain in contact until an opposite shear force

pushes the surfaces in the other direction. Then, the two surfaces slide with little resist-

ance until the aggregate particles come into contact again [7].

The longitudinal reinforcement also has an active role in the shear resisting mechanism.

Firstly, it participates in the truss mechanism activated by diagonal cracking coupled

with the transverse reinforcement and the diagonal concrete. Secondly, it contributes to
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shear strength through its dowel force capacity. The dowel effect depends on many vari-

ables, namely: crack width, concrete cover, bar diameter, stress level in the bar, confine-

ment around the bar and bar spacing. A detailed description of the involved phenomena

can be found in [6] and [8].

Furthermore, axial load also has an important effect on shear strength capacity. While

axial tensile forces favour the opening and delay the closure of diagonal cracks and,

therefore, increase shear strength degradation, axial compression forces, up to a certain

level, delay crack opening and increase the shear strength of the columns. Moreover, test

results indicate that a more severe degradation of shear strength is observed in the case of

varying axial load with cyclic bending.

The experimental results obtained by Li [5] confirm the interaction between shear

strength and displacement ductility capacity; under cyclic loading the shear carried by

the concrete decreases with increasing flexural displacement ductility. The reduction of

shear strength is caused by the degradation of the concrete shear resisting mechanism

during reversed cyclic loading. ‘Concrete shear mechanism’ is the term commonly used

to cover typical phenomena such as the aggregate interlock effect, the dowel action of

flexural reinforcement and the shear transfer by the concrete through the truss mecha-

nism [6].

Concerning shear failure, although it can be expressed in different ways, in general it is

associated to crushing or splitting of the diagonal compressed concrete. It corresponds to

the development of an unstable truss mechanism with cracks propagating through the

compression zone. However, if transverse steel bars yield, they impose an unrestricted

widening of diagonal cracks that cause the aggregate interlock action to become ineffec-

tive. In this case, the dowel effect and the truss mechanism having been pushed to their

limits, failure occurs with little further deformation [6]. As for the inclination of the crit-

ical cracks to the column axis, the observation shows that the angle can be smaller than

45 degrees and, in general, the inclination becomes steeper as cracks propagate further

into the compressed concrete zone. The experimental campaign carried out at the ELSA

laboratory on squat bridge piers subjected to cyclic static loading confirms these results

[4].
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Although experimental results on R/C structures give a better understanding of the

mechanisms involved, there is still much to investigate. The numerical simulation of the

physical phenomena described is not an easy task and it is a present-day research topic.

The next paragraphs give an overview of different numerical models dealing with the

problem of the non-linear behaviour in shear.

2.2 Numerical modelling

Some authors suggest very simple models to represent the response of reinforced con-

crete structures under important transverse forces. The behaviour is simulated through

global shear force-displacement curves representing each of the phenomena involved,

namely: the aggregate interlock and the dowel effect, as described by Fardis [9] and

Jimenez [10]. In general, these curves are based on experimental formulas.

Other authors propose the superimposition of different models for flexural and shear

behaviour and it is common to find empirical laws for both or at least one of these two

models, in particular to predict shear strength. Chang [11] presents a model of this kind.

2.2.1 Chang model

Two formulations are used to compute the response of the piers due to bending and shear

behaviour. At each loading step, the equilibrium of axial forces and flexural moments is

imposed in the column independently of the applied shear force. Then, according to the

damage the column presents, different zones with different elastic equivalent shear stiff-

ness are considered in the column, namely (see Figure 2.2): not cracked, cracked, inside

the hinge or the plastic hinge region or outside. For a cantilever beam of length L, the

elastic shear stiffness is given by:

• prior to cracking,

2.1 

in which Aq is the area contributing to shear stiffness and f is a form section factor.

The shear modulus is ( ) and it arises from the assumption of a Poisson

ratio for concrete ( );

Kνe
G Aq⋅

f
--------------=

G 0.4 Ec⋅=

ν 0.25=
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• after cracking,

2.2 

where θ is the inclination angle of the cracks with respect to the longitudinal axis,

( ) is the volumetric ratio of shear reinforcement, Aν is the total area

of stirrups, bw and d are the width and the length of the concrete cross-section, s is the

stirrups spacing and Es and Ec are the steel and the concrete Young modulus, respec-

tively.

These two expressions are applied to regions where no yielding of the longitudinal bars

occurred. The shear displacement is computed through

2.3 

where V is the transverse force, K represents the shear stiffness and L the total length of

the column along the longitudinal ox axis of the structure. Taking as an example the col-

umn in Figure 2.2 and using equation (2.3), the total elastic shear displacement at the top

is given by

2.4 

where Kνh is the shear stiffness within the hinge zone with length Lh and Kνc is the shear

stiffness outside the hinge zone. Both values are calculated through equation (2.2) but for

different stirrups spacing values, inside or outside the hinge zone. Mcr and Mmax are

respectively the cracking and the maximum flexural moments in the structure. Thus, the

flexural response determines the shear flexibility but without any feedback, i.e, the shear

behaviour does not interfere in the flexural response of the structure.

When yielding of steel bars occurs, the behaviour is no longer elastic and an iterative

process, using a strut-and-tie type model, is used to calculate the inelastic shear deforma-

tion. This method is based on a truss analogy where shear forces are resisted by a mech-

Kν
bw d θcot⋅ ⋅

1
Es ρν⋅
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Ec θsin( )4⋅
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anism made of concrete struts and tensile ties that carry compression and tensile forces

respectively. From the compatibility of displacements and the equilibrium of forces in

the truss, a plastic shear deformation γ is computed. The total displacement due to shear

is then given by

2.5 

being Lpc the yielded zone length.

Figure 2.2 - Chang model

2.2.2 Priestley model

Some authors consider other semi-empirical models, most of them based in truss analo-

gies. In general, they are used to calculate shear strength and not to establish hysteretic

shear force-displacement response curves; given a structure with a pre-defined rein-

forced concrete cross section, these models predict a resisting mechanism and compute

the contribution of the concrete and steel to the shear strength within that mechanism.

Priestly [12], for instance, defines shear strength through the superimposition of three

independent components which account for the contribution of the concrete, Vc, of the

transverse steel via a truss mechanism, Vs, and of the axial load through an arch action,

Vp,

2.6 
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There are several expressions available in the literature and in the design codes [13] to

account for the contribution of the concrete and of the transverse steel to shear strength.

However, in the case of the concrete, most of these expressions can be grouped in the

general equation

2.7 

where d is the effective depth of the section,  is the compression strength of the con-

crete and the parameter K includes the contribution of other factors to the concrete shear

strength. Many codes consider the effect of the axial force through K, for instance.

For the contribution of transverse steel Vs, the equilibrium within the truss mechanism

for a cracking angle θ gives

2.8 

Asw being the cross-sectional area of the stirrups, fsw the stirrups yielding stress and s the

stirrups spacing.

Priestly considers for the compression diagonals of the truss an inclination angle of

( ) to the column axis and calculates the contribution of the axial load Vp to

shear strength through the horizontal component of a compression diagonal strut devel-

oping from the top of the column to the bottom, as illustrated in Figure 2.3. However, to

capture the mechanics of the involved phenomena, more accurate models have to be

used.

2.2.3 A Strut-and-Tie model for 2D elements

A strut-and-tie type model is often adopted for membrane elements. It assumes that the

direction of principal stresses coincide with the direction of principal strains, which, in

turn, are computed through the equations of compatibility of deformations in the mem-

brane. The equilibrium equations are established making use of the uniaxial constitutive

laws of the materials applied to each principal direction.

Two different modelling assumptions can be adopted: a rotating or a fixed crack angle

Vc K f'c bw d⋅ ⋅ ⋅=

f'c

Vs Asw fsw
d
s
--- θcot⋅ ⋅ ⋅=

θ 30o=
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formulation. In the first case, the cracking angle follows the direction of the principal

compression stresses in the concrete which, on the other hand, depend on the relative

amount and distribution of steel in the plane of the membrane. On the contrary, in a fixed

angle formulation the direction of the first crack defines the cracking angle for the rest of

the loading history. In this case, the compatibility of displacements and the equilibrium

of forces introduce an additional variable in the model: a shear strain together with a

shear stress-strain law.

Figure 2.3 - Contribution of axial load to shear strength (Priestly model [12])

However, since the uniaxial stress-stain laws assume the material is homogeneous and

damage is uniform, to represent appropriately the global behaviour of the concrete struts

these laws should integrate the state of the concrete in a wide zone of the structure. In the

Compression Field Theory (CFT), Vecchio and Collins proposes the first modified stress

versus strain curve for the concrete in compression [14]. This uniaxial law tries to repre-

sent the average stress versus strain constitutive laws in the element.

The characteristics of the curve, strength and stiffness, depend on the principal tensile

strain ε1 (see Figure 2.4). The constitutive equations are expressed by

2.9 
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for compression forces and by

2.10 

for tensile forces.

Figure 2.4 - Average stress-strain response of concrete. Modified model due to Vecchio and Collins

Since strut-and-tie type models make use of uniaxial stress-stain laws to represent the

behaviour of concrete struts, the adoption of modified constitutive laws, taking into

account the global state of the concrete, represented a considerable improvement to these

models. Before that, the uniaxial compression strength of standard concrete cylinders

was used, giving an overestimation of shear and torsional strength.

2.2.4 Fibre based models

The use of modified behaviour curves to represent the heterogeneous state of a material

through a single homogenized law, is now common practice in several models. Garstka

[15] superimposes a strut-and-tie model based on the CFT for shear deformations with a

classic fibre model for flexural deformations. The model defines a truss made of concrete

struts which follow a uniaxial stress-strain law modified to take into account the cracks

in the perpendicular direction.
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For structures with an one-dimensional (1D) geometry (e.g. beam, columns), Petrangeli

and Pinto [16] propose the use of a fibre type model with three-dimensional (3D) consti-

tutive laws for the concrete fibres to introduce diagonal cracking in the structure. In the

algorithm, and apart from the global equilibrium of forces, the model establishes, at the

level of each fibre, a supplementary internal equilibrium in the transverse direction

which allows the computation of the transverse strain; an iterative process taking into

account the amount of transverse steel in the cross-section has to be used for this pur-

pose. The internal equilibrium having been established, the two or three-dimensional

state of the concrete is defined.

The main difficulty in such a model is to find a three-dimensional model for the concrete

which covers the entire range of possible cyclic loads. Furthermore, the computation

phase can be far more time consuming and the number of variables defining the internal

state of the cross-section can be much greater than in a standard model.

The model developed in ELSA for beam/column reinforced concrete elements under

important shear loading is based on the procedure presented by Garstka: it superimposes

the classic fibre model, which gives very good results for bending, with a strut-and-tie

model to simulate cyclic shear behaviour.
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 3 STRUT-AND-TIE MODEL IN FIBRE MODELLING

A series of experimental tests on reinforced concrete bridge piers have been performed

in the ELSA laboratory at Ispra. Simultaneously, a classic fibre model was used to pre-

dict the response of those structures under cyclic loading. The comparison of the experi-

mental results with the numerical results pointed out the importance of developing a

model to represent the non-linear shear behaviour of squat piers. In that context, a model

based on a strut-and-tie type formulation was developed and implemented in CASTEM

2000.

The model is coupled with the classic fibre model which is briefly described below. Sev-

eral aspects of the strut-and-tie formulation are presented and discussed and the imple-

mentation procedures are reviewed.

3.1 Fibre model

The fibre model in CASTEM 2000 is implemented in a three-dimensional Timoshenko

beam element [17]: plane sections remain plane after being deformed but do not, neces-

sarily, maintain the initial angle with the beam axial axis (see Figure 3.2). With this ele-

ment, different interactions between axial and shear forces and bending moments can be

considered. The complexity of the model depends on the complexity of the constitutive

laws representing the behaviour of the materials. To take into account the non-linear

behaviour in shear, a multi-dimension formulation for monotone increasing load using

the Mazars concrete model was attempted with promising results [18]. However, typi-

cally a fibre model considers axial stress-strain constitutive laws uncoupled with linear

elastic shear behaviour laws at each fibre.

A fibre model is a refined way of analysing the state of a section within a structure. The

structure is divided in three-dimensional linear elements which are sub-divided in longi-

tudinal fibres defining a mesh in the transverse section.

Given a loading history, a numerical step-by-step procedure is used to calculate the value

of the shear and axial strain and the rotation along the three main axis of each Gauss

point of each element, as in any three-dimensional beam model. Then, making use of the
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assumptions of the Timoshenko beam element, the program goes deeper in the cross-sec-

tion and computes the strain at each Gauss point i of each fibre through the equations of

compatibility of displacements (see Figure 3.2)

3.1 

Figure 3.1 - Fibre model - deformation of the transverse section

No warping of the cross-section is considered. A constant unitary function is adopted for

the distribution of shear strain in the transverse section and a linear elastic behaviour

model is considered for shear forces. With the strain values and the constitutive laws for

the materials, the axial stress σi and the shear stresses, (τxy)i and (τxz)i, are computed and

integrated in the section. The final solution is found when the equilibrium of forces is

respected,
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3.2 

Thus, in a fibre model the global response curve represents the integral of the local state

of each section at the level of each Gauss point of each fibre. The global moment versus

curvature curve is not defined a prior but it is the result of the integral of all the section

forces. Any variation of the axial force and/or application of biaxial bending moments is

automatically taken into account in the equilibrium equations.

The model implemented in CASTEM 2000 considers four Gauss points per fibre and one

per beam element. Furthermore, the formulation for the beam element refers to an axial

axis which can be eccentric to the ‘axis of gravity’ of the element.

3.2 Non-linear shear modelling

The global behaviour of reinforced concrete columns with low shear span ratio is

strongly influenced by shear forces and this effect must be considered in the response.

Classic fibre models, like the one originally implemented in CASTEM 2000 and

described above, consider a linear elastic behaviour law for shear; the fibres belonging to

the same section ‘see’ the same shear strain and contribute to the final force proportion-

ally to their area and distortional modulus. The influence of the stirrups is neglected and

it interferes only in the concrete core axial stress-strain law through the confinement

effect; it modifies the peak value and the after peak softening behaviour, increasing the

strength and rigidity of the concrete.In order to consider the influence of the non-linear

behaviour in shear, a formulation based on a strut-and-tie model, coupled with the classic

fibre model for flexural forces, is developed.

Figure 3.3 illustrates the main internal resisting forces in a short cantilever beam dam-
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aged by a transverse and longitudinal force applied at the extremity. The resisting ele-

ments along the cracks are the steel reinforcing bars which tie both sides of the crack

together, and the concrete through the aggregate interlock effect (see zoomed section 2 in

Figure 3.3). Furthermore, the concrete also contributes to shear strength with its own

shear resisting capacity and, above all, through a truss mechanism effect which is

described hereafter.

Figure 3.2 - Fibre model - deformation of the transverse section

In Figure 3.4, a short cantilever beam under shear forces, one can observe that a new

structure appears from diagonal cracking analogous to a truss made of transverse and

longitudinal steel ties and diagonal concrete struts. The non-linear shear model devel-

oped here is based on this analogy. Although the interlocking forces along the cracks and

the dowel effect illustrated in Figure 3.3 are neglected in the present formulation, they

are implicitly taken into account in the constitutive laws (see section 3.2.4).

Referring to Figure 3.4, the compatibility of displacements in the transverse direction is

set out through the geometric analysis of the truss deformed by the axial force P, the

Deformation due to Torsional
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transverse force V and the bending moment M. Moreover, the two models interact

through the ‘average axial strain’ computed at the level of each transverse section. Actu-

ally, the coupling between the fibre and the strut-and-tie model is ensured by that defor-

mation.

Figure 3.3 - Cracking pattern - internal acting forces

The algorithm for the case of shear force in one main transverse direction of the column

is described in the next section. The equations of compatibility of displacements and

equilibrium of forces are then described together with the constitutive laws at the strut

and tie elements. The shear cracking angle and the cross-sectional area of the diagonal

elements adopted in the model are discussed. The participation of the tensile strut in the

global response and the possibility to consider a damage parameter at the diagonals are

also referred to.

In the text, the words ‘diagonal’ and ‘strut’ are used indistinctly to refer to the concrete

elements of the truss.

3.2.1 Compatibility equations

Two concrete diagonals are considered in the formulation. For each loading direction

there is one strut under compression forces and another under tensile forces. In the case

of shear forces in both main transverse directions of the element, the procedure described

V 
h

bw

P 

L

Asw

Longitudinal steel bars
Transverse steel bars
Forces at the concrete
Forces at the steel bars

1
2

3
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2

3
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for one direction is valid for the perpendicular direction and the two responses are super-

imposed.

Figure 3.4 - Truss analogy

The struts are represented by their central axis. The same cracking angle is adopted for

both diagonals, i.e., the two struts are symmetric in relation to the axis of the column.

Note that the angle is a model parameter, in other words, it does not change during the

loading history. The shear cracking angle is discussed later.

The diagonals represent the direction of the pseudo principal stresses. The word pseudo

refers to the fact that the principal directions were estimated and not calculated through a

Mohr’s circle. This also means that the strut under tensile stresses is not always perpen-

dicular to the compressed strut. The angle between the two pseudo principal directions is

( ), the two concrete diagonals being perpendicular one to the other only when

( ) (see Figure 3.5). 

To establish the equations of compatibility of displacements, the deformation due to

shear forces is set apart from the average axial deformation due to bending moments and

axial forces. Assuming a cracking angle θ, as illustrated in Figure 3.5, the components j

of the displacement of diagonal i, ∆ij, are given by

V Fs1 Fs2
Fc1

P 

Fc2

L

θθ

Fs1
Fs2

Fc1 Fc2

Tensile diagonal
Compressive diagonal

Longitudinal steel bars
Transverse steel bars
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θ
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2 θ⋅
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3.3 

Figure 3.5 - Compatibility of displacements

where hν, hν
∗ and hoe, are the displacements due to the stirrups strain εwy, to the shear

deformation γ and to the average axial strain εoe, respectively,

3.4 

The superimposition of the two partial displacements, ( ), gives the total

displacement of each diagonal

3.5 

These two expressions represent the compatibility of displacements to be respected in

each transverse section. The uniform strain at the diagonals is obtained dividing both

equations by the length of the diagonals, , 

∆11 hν∗ hν–( ) θsin( )⋅= ∆12 hoe θcos( )⋅=

∆21 hν∗ hν+( ) θsin( )⋅= ∆22 hoe θcos( )⋅=

∆2∆1

θ

∆wy
hoe

hν

γ

θ
l

h hν*

θ

∆wy

hν

γ 

θ

hν*

θ

hoe

θ= +

∆11 ∆21

∆12 ∆22

Displacement due
to the shear and

stirrups deformation

Displacement due
to the average= +

axial deformation
Total Shear

displacement

hν ∆wy εwy h⋅= =

hν∗ l γtan⋅=

hoe εoe l⋅=

∆i ∆i1 ∆i2+=

∆1 εwy h⋅ l γtan( )⋅–( ) θsin( )⋅ εoe l θcos( )⋅ ⋅+=

∆2 εwy h⋅ l γtan( )⋅ ·+( ) θsin( )⋅ εoe l θcos( )⋅ ⋅+=

l θcos( )⁄
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3.6 

The strains γ and εoe come directly from the 3D Timoshenko beam element algorithm.

Instead, the stirrups strain, εwy, is computed internally at the level of the transverse sec-

tion. This value must respect the equilibrium of forces inside the 3D element. The proce-

dure used to calculate εwy is presented in section 4.2.

3.2.2 Equilibrium equations

With the deformation of each diagonal calculated through equation (3.6), the forces act-

ing on the struts, Fc1 and Fc2, and stirrups, Fwy, are computed through the constitutive

laws of the materials (see Figure 3.6),

3.7 

( ) being a measure of the transverse steel ratio and σc and fsw,

respectively, the stresses at the concrete (struts) and stirrups (ties). The value Asw is the

cross-sectional area of the transverse steel, s the stirrups spacing and bw and h the dimen-

sions of the column transverse section (see Figure 3.3). The hysteretic curves adopted for

both the concrete and the transverse steel are those already implemented in CASTEM

2000 for the fibre model and are presented in section 3.2.4.

The forces given by equation (3.7) must respect the internal and the external equilibrium

in the structure:

• equilibrium of internal forces at point A (dashed lines in Figure 3.6):

3.8 

• equilibrium of total forces at the cross-section:

ε1
∆1

l θcos( )⁄
---------------------- εoe θcos( )2 εwy θsin( )2 γtan

2
---------- 2θ( )sin( )⋅–⋅+⋅= =

ε2
∆2

l θcos( )⁄
---------------------- εoe θcos( )2 εwy θsin( )2 γtan

2
---------- 2θ( )sin( )⋅+⋅+⋅= =

Fc1 σc ε1( ) ASturt⋅ σc ε1( ) bw h θcos( )⋅ ⋅ ⋅= =

Fc2 σc ε2( ) ASturt⋅ σc ε2( ) bw h θcos( )⋅ ⋅ ⋅= =

Fwy fsw εwy( ) h θtan( )⁄
s

----------------------- 2 Asw⋅( )⋅ ⋅ fsw εwy( ) bw h θtan( )⁄ ρsw⋅ ⋅ ⋅= =

ρsw 2 Asw⋅( ) bw s⋅( )⁄=

Fwy Fc1 Fc2+( ) θsin( )⋅+ 0=
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3.9 

This system of equations is solved in two stages. Firstly, equation (3.8) is used to calcu-

late the deformation of the stirrups, i.e., the strain at the transverse steel satisfying the

compatibility of displacements and, at the same time, respecting the internal equilibrium

in the element. Then, with εwy, the shear resisting force in the transverse section is com-

puted and the equilibrium with the applied transverse force is checked (equation (3.9)).

Substituting equation (3.7) into equation (3.8) and equation (3.9), we obtain

3.10 

3.11 

Note that the transverse steel ratio is taken into account in equation (3.10) and that it con-

tributes to shear strength through the strains ε1 and ε2 at the struts in equation (3.11).

Figure 3.6 - Internal forces in the section

3.2.3 Damage of the struts

Damage of concrete due to flexural and axial forces can be included in the non-linear

shear model not only through the average axial strain, as described in section 3.2.1, but

also through a damage parameter that would represent the state of the transverse section

due to those forces. Actually, with this procedure, the decrease in the concrete shear

V Fc1 Fc2–( ) θsin( )⋅+ 0=

fsw εwy( ) ρsw⋅ σc ε1( ) σc ε2( )+( ) θsin( )2⋅+ 0=

σc ε2( ) σc ε1( )–( ) bw h⋅ θsin( ) θcos( )⋅ ⋅ ⋅ V=

hoe

hν hν*h

Fc2

l = h/(tanθ)

h
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P V 

A

γ Fc2Fc1
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strength of R/C columns under cyclic loading for increasing flexural displacement duc-

tility can be described in a more suitable way. Different cumulative damage parameters

can be used; from a simple parameter proportional to the maximum compression strain

computed at the concrete core area of the cross-section, to more sophisticated parameters

that include the amount of energy dissipated during the loading history. Actually, this

damage parameter establishes a supplementary link between the longitudinal fibres and

the strut-and-tie model. 

In this case, two internal variables, D1 and D2, one per diagonal, have to be included in

the model. These two parameters allow damage due to loading in one direction to be

‘independent’ from loading in the opposite direction. Thus, equation (3.7) for the force at

the concrete struts is modified to

3.12 

which corresponds to substituting the stresses at the diagonals, , by

3.13 

where ( ) refers to each strut. In the numerical tests illustrated in the present

report this link has not been considered, ( ).

3.2.4 Constitutive laws. Tensile strut

The axial stress versus strain laws used for the concrete and steel in the strut-and-tie

model are the same as the ones used for the longitudinal fibres. However, the parameters

that control the crack-closing and the tension-stiffening effect may present different val-

ues. Note that a non-linear shear model like the one considered in this report, attempts to

reproduce the response of a structure through the behaviour of just three elements per

cross-section: two made of concrete and one made of steel. This means that it is not pos-

sible for the model to ‘disguise’ any singularity present in the axial stress-strain response

curve of these three elements. For example, cracking of a diagonal or yielding of trans-

verse steel occurs throughout the cross-sectional area of the strut or tie. Instead, in the

bending fibres that only occurs at one Gauss point of one of the fibres in the cross-sec-

tion.

Fci σc εi( ) 1 Di–( ) b⋅ w h θcos( )⋅ ⋅ ⋅=

σc εi( )

σc∗( )i σc εi( ) 1 Di–( )⋅=

i 1 2,=

Di 0=
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Therefore, to properly represent the global shear stress versus strain response curve of

the structure and to avoid numerical problems, smooth axial stress versus strain constitu-

tive laws have to be used to ‘hide’, as much as possible, the particularities in the behav-

iour of the steel and the concrete. Special care is given to the crack-closing and tension-

stiffening phenomena.

Concrete constitutive model

The model used for the concrete follows a law of Hognestad type with two branches: a

hardening branch before the compression peak followed by a softening branch until a

residual compression plateau. The model represents the confinement effect of transverse

steel through a parameter which increases the strength and post-peak stiffness of the con-

crete. Tensile stresses are included through a linear model with a post-peak softening

behaviour. The equations used in the model and a brief description of the phenomena

involved can be found in [17].

For cyclic loading, the model follows empiric based rules. To take into account phenom-

ena like crack closing, stiffness degradation and tension stiffening, loading and unload-

ing laws are considered and represented by an exponential equation. Different

parameters are prescribed for unloading and reloading cycles.

An arbitrary axial stress-strain cyclic history is represented in Figure 3.7. The circles

indicate either the extremities of the different branches of the hysteretic curve or the

points where the load changes direction. Thus, before reaching the softening branch of

the tensile stress-strain curve, the unloading curve from the compression envelope is

described by a straight line with growing stiffness degradation given by

3.14 

where Ee is the Young modulus of the virgin concrete and ( ) is the

maximum compression strain ever reached during the loading history  normalized

by the strain at the peak compression stress . After that point, if loading changes direc-

tion, both the unloading and reloading curves follow an exponential type curve. Taking

Ed Ee 1
ε∗max( )

2

1 ε∗max– ε∗max( )
2+

--------------------------------------------------–
 
 
 

=

ε∗max εmax
c εo

c⁄=

εmax
c

εo
c
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as an example the loading curve from point 4 to point 5, the response is described by the

equation

3.15 

where ( ), ( ) and  and  are the tangents of the curve at

points 4 and 5, respectively.

Figure 3.7 - Axial stress-strain constitutive law for concrete

To define the exponential curve, four parameters, , ,  and , two per each

extreme point, are used. Taking now the unloading curve from point 7 to point 8 and the

reloading curve from point 10 to point 11, the following expressions are obtained:

• Unloading curve (7-8):

3.16 
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 being the deformation at zero stress when unloading from the envelope curve, 

the maximum strain ever reached since last unloading from the monotonic curve and

 the maximum tensile stress still available. For this particular curve

( ) and ( ).

In addition, the following conditions must hold true,

3.17 

In the case ( ), as for curve (18-19), the strain at point 19 is given by

• Reloading curve (10-11):

3.18 

where ( ). In addition, the following conditions must hold true,

3.19 

The choice of the parameters of the exponential curve must be made taking into account

that the axial stress-strain behaviour law of the concrete should represent what happens

in the whole diagonal concrete element, in other words, it should integrate the bi-axial

state of the concrete. Thus, the parameters may assume different values when represent-

ing the behaviour of the struts or of the concrete longitudinal fibres. The interlocking and

εpla εmax
t

σmax
t

εpla ε2 σ– 2 Ed⁄= εmax ε4=

σ'7
σ7

ε7 εpla–( ) 1 10⁄ εpla ε8–( )⋅–
-------------------------------------------------------------------------< 

  σ'7 Ed<( )∧
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the dowel effect can be implicitly taken into account through these parameters.

Figure 3.8 - Influence of the tensile behaviour law in the shear stress versus strain response curve

Concerning the contribution of the tensile stresses to the shear response, it should be also

pointed out that:

a) to properly represent the shear force-displacement behaviour before yielding of the

longitudinal steel bars, tensile stresses should be considered at the struts;

b) the tensile constitutive law at the diagonals should be carefully chosen so that an

anomalous behaviour like the one described hereafter and illustrated in Figure 3.8 be

avoided. When unloading after an important monotonic loading, the tensile strut dis-

charges along the zero stress line (already fully cracked and still virgin in compres-

sion) and the shear stress is controlled by the compressed strut (see equation (3.9))

which, on the other hand, also depends on the transverse steel behaviour law. After
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decreasing to zero, the stress in the compressed strut increases up to the tensile peak

(still virgin in tension) and it decreases again following the softening branch of the

tensile concrete curve (see Figure 3.8). Since the shear stresses follow the strut, they

respond in the same way: a peak shear stress-strain point followed by a softening

curve. This behaviour is, of course, anomalous and should be avoided;

c) as the non-linear shear model considers the diagonals to be symmetrical to the column

axis, only for ( ) are the diagonals perpendicular to each other. Note that this

angle defines the direction of the principal compression stresses. Thus, when the

cracking angle is different to 45o, the strain at the tensile strut does not correspond to

the strain in the direction perpendicular to the compressed strut but to a value closer to

the strain in the compressed strut. This means that the peak tensile stress is reached at

the strut after being reached at the pseudo principal tensile direction, in other words,

the diagonal under tensile strains is delayed in relation to the principal direction;

d) finally, although shear and flexural algorithms follow similar concrete constitutive

laws, there is no link between them concerning tensile behaviour. The two elements

may reach cracking at different steps of the loading history.

To take these aspects in consideration, the model of the concrete under tensile forces was

changed; the tensile strength of the struts is no longer a parameter of the model but it

depends on the deformation of the longitudinal fibres. The strut reaches the peak tensile

strength when the average axial deformation of the cross-section, εoe, reaches the peak

tensile stress of the concrete of the longitudinal fibres. This solution introduces an addi-

tional link between the flexural and the shear model. Furthermore, and to take into

account that the concrete model should represent the global behaviour of the struts, the

post-peak tensile softening branch adopted for the concrete at the shear model is usually

much smoother than at the longitudinal fibres.

Steel constitutive model

The constitutive law used for the cyclic behaviour of the steel bars is the explicit formu-

lation of Menegotto-Pinto [19]. The transverse steel follows the rules of this model for

both monotonic or cyclic loading histories (see Figure 3.9). Note that in the case of the

θ 45o=
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steel of the longitudinal bars, steel follows first the monotonic curve (elastic branch, pla-

teau and hardening branch) and only when, or if, an important unloading after yielding

occurs is the hysteretic Menegotto-Pinto model activated. The model is described in [17]

and it is given by

3.20 

where

3.21 

This equation defines a family of transition curves between two asymptotes with slopes

Eo and Eh having  as a common point (see Figure 3.9). The pair of values 

are the coordinates of the reversal loading point. Furthermore, b factor represents the

slope hardening ratio, that is, the ratio between the hardening slope Eh and the initial

slope Eo and R defines the shape of the curve. This last parameter depends on ξ which

measures the maximum strain ever reached in the loading direction, the value at point 2

in the case of curve (5-6) in Figure 3.9, in relation to , normalized by . In

the case of curve (5-6), the reversal loading point coincides with point 5 and point 2 rep-

resents the maximum strain ever reached in the loading direction, i.e.,

3.22 

The values Ro, a1 and a2, are parameters of the steel behaviour model.

The monotonic curve was not considered in the constitutive law of the transverse steel to

avoid the plateau zone after yielding interfering negatively in the shear stress versus

strain response curve.

3.2.5 Shear ‘cracking’ angle

In the formulation described in this report, it is assumed that the cracking angle, better,

the strut angle θ, is a model parameter. It is computed through the geometrical character-

istics of the structure and of the longitudinal and transverse steel reinforcement ratio;

σ∗ b ε∗⋅ 1 b–( )

1 ε∗( )
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knowing the structure and the type of loading to be applied, with or without important

axial forces, semi-empirical expressions can be used to find a suitable value for θ. In the

next paragraphs a very simple approach described in [11] is presented.

Figure 3.9 - Axial stress-strain constitutive law for steel

Cracking limit analysis

In this first approach, the crack inclination angle is calculated through the analysis of

three possible shear failure modes in membrane type elements, namely: a) yielding of the

steel in both directions with no crushing of the concrete, b) yielding of the steel in the

weak direction with concrete crushing and the steel in the strong direction remaining

elastic and, finally, c) crushing of the concrete without yielding of the steel. In the case of

columns the in-plane steel grid corresponds to the longitudinal and transverse steel bars.

The strong and weak directions are the longitudinal and transverse directions of the

beam, respectively (see Figure 3.10).

For each of the failure modes a different expression is found for the inclination angle of

the principal compression stress at failure θ [20]:

• yielding of both reinforcements without crushing of the concrete,

3.23 
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3.24 

are the longitudinal, ρs, and transverse steel ratios, ρsw, with Asl and Asw the steel rein-

forcing areas, fsw and fsy the correspondent yielding stresses, bw and h the width and

the length of the core of the cross-section and s the spacing of the stirrups. The shear

stress corresponding to that failure mode is given by

3.25 

• yielding of the transverse reinforcement without yielding of the longitudinal steel bars

and crushing of the concrete,

3.26 

fcd being the concrete strength and the shear failure stress given by

3.27 

• crushing of the concrete without yielding of both transverse and longitudinal rein-

forcements,

3.28 

In this case the element is subjected to pure shear.

From the three possible failure modes, the governing mode is the one corresponding to

the lowest τu value. Nevertheless, and according to this formulation, the crack inclination

angle is not to be taken less than a minimum given by

3.29 

Experimental results obtained at the ELSA laboratory on squat piers showed cracking

angles that were not in agreement with the values calculated with this formulation (see

section 5.2.3). Thus, another algorithm making use of the compression forces at the strut

ρs
Asl
hbw
---------= ρsw

Asw
sbw
--------=

τu ρsw ρs fsy fsw⋅ ⋅ ⋅=

θsin
ρsw fyw⋅

fcd
--------------------=

τu fcd ρsw fsw⋅–( )ρsw fyw⋅=

θ 45o=( ) τu
1
2
--- fcd⋅= 

 ∧

θmintan h
2L
------=
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and of the tensile forces at the steel longitudinal and transverse bars was developed for

columns. The cracking angle is computed through the equilibrium of the horizontal and

vertical forces in a cracked column. This formulation is named ‘cracking equilibrium

model’ and is presented hereafter.

Figure 3.10 - Analogy with a membrane

Cracking equilibrium model

In this new approach, the critical cracking angle is established through the equilibrium of

forces in two resisting mechanisms: one made of a concrete strut going from the top to

the bottom of the column and transmitting the applied axial forces to the basement (see

Priestly [12]) and a truss made of concrete struts and transverse and longitudinal steel

ties. Since in the analysis the column is assumed to be cracked, no tensile strength is con-

sidered in the concrete.

The equilibrium is established on the transverse and longitudinal direction of the column.

As illustrated in Figure 3.11 the equilibrium in the transverse direction is given by

3.30 

Fcs being the compression force in the strut (positive) within the truss mechanism, and P

the compression axial force (negative) on the top of the column.

In the longitudinal direction of the column, the axial force is transferred directly to the

concrete compression zone at the basement, without passing through the truss. Thus, the

equilibrium on the longitudinal direction gives the force at the concrete strut, Fcs, which
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must be in equilibrium with the remaining compression force,

3.31 

Substituting equation (3.30) into equation (3.31), the angle θ is given by

3.32 

Knowing the distribution of flexural moments along the longitudinal axis of the structure

, , equation (3.32) becomes

3.33 

To simplify the next steps, a cantilever element with a transverse force V at the top, as it

is illustrated in Figure 3.11, is adopted, ( ).

Figure 3.11 - Cracking equilibrium model

Therefore, given a structure and the applied axial force, the moment versus curvature

history, , and the compression force at the concrete, , can be computed at

any transverse section, in particular at the critical section (in this case at the bottom near

the basement, ( )). Substituting these two values in equation (3.33), the

cracking angle is given by

3.34 

Fcs θcos⋅ Fc P–( )–=

θtan V P αtan⋅+
P Fc–

------------------------------=

ox M x( )

θ x( )[ ]tan dM x( )
dx

---------------- P αtan⋅+ 
  P Fc–( )⁄=

M x( ) V x⋅=

Fs1

Fs2

Fcs
V

P

Fsw

L
Lo

Longitudinal steel

Transverse steel

θ

Fc c

D
α P/cosα

M φ( ) Fc φ( )

x L Lo 2⁄–=

θ φ( )[ ]tan M φ( )
L Lo 2⁄–( )

--------------------------- P αtan⋅+ 
  F φ( )( )⁄=
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where ( ) and ( ). Furthermore, as illus-

trated in Figure 3.11, Lo also depends on the cracking angle,

3.35 

 being the width of the compression zone. Substituting this value in equation (3.34),

a polynomial of the second degree is obtained for ( ),

3.36 

The history of flexural moments, the compression forces in the concrete and the width of

the compression zone, are calculated through the fibre model. However, the resulting

transverse force, ( ) must also be in equilibrium with the tensile force in the stir-

rups crossing the diagonal crack, Fsw. Using equation (3.30) and assuming an elastic per-

fectly plastic material for the transverse steel, the equilibrium is given by

3.37 

where fyw is the yielding stress of the transverse steel, ρsw is the volumetric transverse

steel ratio and bw is the width of the transverse section.

Finally, substituting equation (3.35) into equation (3.37), we obtain

3.38 

where ( ) and ( ). The cracking angle in the model is the

angle satisfying both equation (3.36) and equation (3.38), for a curvature corresponding

to yielding of the longitudinal and/or of the transverse steel rebars (see the example in

Figure 5.7).

3.2.6 Strut cross-section area

The angle θ defines the direction of cracking. Therefore, the orientation of the com-

pressed strut, which contributes the most to shear strength, is correct. However, as both

αtan D c φ( )–( ) 2L( )⁄= F φ( ) P Fc φ( )–=

Lo
D c φ( )–

θtan
---------------------=

c φ( )

θtan

F φ( ) θtan( )2 αtan F φ( ) P+( )⋅ M φ( )
L

-------------+ 
  θtan⋅ P αtan( )⋅ 2+–⋅ 0=

Fc θsin⋅

M
L Lo 2⁄–( )

--------------------------- P αtan⋅+ fyw ρsw bw Lo⋅ ⋅ ⋅≤

P αtan⋅ M φ( )
L

-------------+ 
  θtan( )2 αtan P αtan⋅ B+( )⋅( ) θtan⋅–⋅ B αtan( )2⋅+ 0<

θtan 0> B 2 L fyw ρsw bw⋅ ⋅ ⋅ ⋅=
NON-LINEAR SHEAR MODEL FOR R/C PIERS 47



diagonals are symmetric to the element axis, the tensile strut does not necessarily respect

the perpendicularity to the direction of cracking. This means that, for angles not far from

45o, the model is coherent but, whenever angles closer to 0o or 90o are forecasted, some

adjustments must be made. In particular, the area of the transverse section Astrut must be

carefully analysed.

As shown in Figure 3.12, the cross-sectional area of the diagonals is given by

3.39 

where bw and h represent the dimensions of the effective shear resisting area, which usu-

ally corresponds to the concrete core area.

If the two extreme values ( ) and ( ) are considered in equation (3.39),

the area of the cross-section of the struts is ( ) and zero, respectively. This means

that for low cracking angles the total active area of the two diagonals can be almost twice

the concrete core area and that it tends to zero when θ tends to 90o. Therefore, equation

(3.39) should be modified to take into account all possible range of angles from 0o to

90o.

Figure 3.12 - Cross-sectional area of the struts

Since the two diagonals should represent the two principal strain directions, they should

be, at each loading step, perpendicular to each other,

AStrut bw h θcos( )⋅ ⋅=

θ 0o= θ 90o=

bw h⋅

l

h

bw

h.(cos θ)

θ

Cross-section

h

Strut
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3.40 

Moreover, as a compressed strut becomes, with cyclic loading, a tensile strut and vice

versa, the two diagonals should have the same cross-sectional area. Hence, the average

value of the two areas in equation (3.40) has been adopted,

3.41 

and the transverse area given by equation (3.39) must be multiplied by

3.42 

3.3 Summary

A strut-and-tie type model coupled with the classic fibre model has been presented. To

compile the information given in section 3.2, the main steps within the new formulation

are schematically described in the next paragraphs. Thus,

1 • calculate the average axial strain εoe in the cross-section, using equation (3.1) from

the bending model, 

3.43 

2 • admit an initial value for the transverse steel strain εwy,

3 • establish the compatibility of displacements in equation (3.6). The shear strain is

computed within the hypothesis of the Timoshenko beam element,

4 • with the strain in the struts and in ties and the constitutive laws for the materials,

the forces in the elements of the truss are computed through equation (3.7),

5 • establish the equilibrium of internal forces within the transverse section. If the

equilibrium is respected, go to the next step. Otherwise, estimate another value for

ASturt( )1 bw h θcos( )⋅ ⋅=

AStrut( )2 bw h 90o θ–( )cos( )⋅ ⋅=

ASturt∗
ASturt( )1 AStrut( )2+

2
------------------------------------------------ bw h θcos θsin+

2
-----------------------------⋅ ⋅= =

kAs
θcos θsin+

2 θcos⋅
----------------------------- 1 θtan+

2
--------------------= =

εoe εi Ai⋅
i

∑ 
 
 

Ai
i

∑ 
 
 

⁄=
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εwy and go to step 2,

6 • compute the shear reaction force in the transverse section using equation (3.11).

The new non-linear transverse forces substitute the values Fy and Fz in equation (3.2)

and the algorithm used before in the fibre model is used again in the equilibrium of the

external forces.
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 4 NUMERICAL IMPLEMENTATION

To implement the strut-and-tie model, a new fibre with special characteristics is added to

the transverse section. It is made of concrete and steel and reacts to shear forces accord-

ing to equation (3.9). As in the longitudinal fibres, four Gauss points are used. To distin-

guish this new element from the classic longitudinal fibres, in the report it is referred to

as shear fibre. In the case that shear force exists in both principal directions of the trans-

verse section, one shear fibre needs to be considered in each direction. If torsional

moments also exist, the position and geometric characteristics of these new fibres must

be carefully chosen. This topic is discussed later on.

In a classic fibre model the algorithm is straightforward; the program calculates, at each

Gauss point of each three-dimensional element, the axial deformation, the rotation in the

three directions and the shear strain in both transverse directions of the cross-section.

Then, at each Gauss point of each fibre the program computes the axial strain through the

equations of compatibility of displacements, and the internal stresses via the constitutive

laws of the materials which are explicit in terms of strain. When dealing with shear

fibres, an intermediate step has to be considered. The strain in the struts depends on the

strain in the stirrups which is computed through the equilibrium of internal forces in the

cross-section. This intermediate procedure requires an iterative algorithm.

This issue and other aspects linked to the implementation procedures, such as: the

parameters of the model in CASTEM 2000, and the shear tangent stiffness used in the

algorithm, are presented in the next sections. Finally, the possibility to represent torsional

moments is discussed.

4.1 Parameters of the model in CASTEM 2000

The parameters for the shear fibre behaviour model in CASTEM 2000 are divided into

three groups namely: one group with the parameters of the concrete constitutive law for

the struts, another group with the parameters of the steel law for the ties and, finally, a

third group with the specific parameters of the non-linear shear model. The first and the

second group of parameters are described in [17]. The third group includes three param-

eters: the transverse steel ratio ρ, “ROST”, the shear cracking angle θ, “THET”, and a
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parameter defining the ultimate state of the concrete (deformation, energy), “EULT”,

which is used to define the struts damage D.

4.2 Strain in the transverse steel

Knowing the shear deformation arising from the 3D Timoshenko element, the equilib-

rium of internal forces in the cross-section is established and the strain in the stirrups is

obtained through an iterative algorithm as described in section 3.3 and illustrated in Fig-

ure 4.1. This procedure is internal to the cycle of equilibrium of external forces.

Figure 4.1 - Shear fibre model

The algorithm used to solve this internal step requires the equations of compatibility of

SHEAR FIBRE MODEL

Compatibility of Displacements

y

z
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εoe

γxy , Fy , εwy 
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Average Axial

εwy( )i 0=Stirrups Strain -> 
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Equilibrium of Internal Forces? i i 1+=

εwy( )i

Constitutive Laws

Shear Force
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displacements to be formulated not in terms of total displacements but in terms of incre-

mental displacements. Therefore, before describing the algorithm, the modifications per-

formed to equation (3.6) are presented.

4.2.1 Equations of compatibility for incremental displacements

Referring to the equations of compatibility of displacements in section 3.2.1, if in equa-

tion (3.6) the deformation at loading step  is described as a function of the deforma-

tion at loading step  plus an incremental value ∆, it becomes

4.1 

where

4.2 

However, since the cracking angle does not depend on the loading step,

4.3 

and ( ), the two formulations, considering incremental dis-

placements (equation (4.1)) or total displacements (equation (3.6)), are similar.

The iterative algorithm that solves the internal equilibrium in the cross-section follows

the displacement incremental formulation in equation (4.1).

4.2.2 Equilibrium of internal forces - Iterative algorithm

As stated above, the behaviour of shear fibres depends on the average axial and shear

strain in the transverse section and on the strain at the stirrups. The first two values come

directly from the flexural fibre model. To calculate the third one, the equilibrium of inter-

nal forces is established in the cross-section through equation (3.10). However, since this

equation is implicit on the transverse steel strain and functions σc and fsw are non-linear,

i( )

i 1–( )

εk i( ) εk i 1–( ) ∆εk i( )+= k 1 2,=

∆εk i( ) ∆εoe θcos( )2⋅ ∆εwy θsin( )2 1–( )k ∆γtan
2

-------------- 2θ( )sin( )⋅ ⋅+⋅+
i( )

=

εoe i( ) εoe i 1–( ) ∆εoe i( )+=

εwy i( ) εwy i 1–( ) ∆εwy i( )+=

γ i( )tan γ i 1–( ) ∆γ i( )+( )tan
γ i 1–( )tan ∆γ i( )tan+

1 γ i 1–( )tan ∆γ i( )tan⋅+
--------------------------------------------------------= =

1 γ i 1–( )tan+ ∆γ i( )tan⋅ 1≅
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an iterative process must be used.

The system to be solved is an equation with one unknown; so, a very simple iterative

algorithm is adopted. It starts from the equilibrium at loading step  and applies the

equilibrium at the next step looking for the new strain at the stirrups. For a certain step

 and iteration , the compatibility of displacements for the two diagonals becomes

4.4 

where the strain in the stirrups is given by

4.5 

In the case ( ),

4.6 

Considering now equation (3.10), the internal equilibrium must be respected allowing a

maximum absolute error that should not be greater than an established tolerance (Tol),

4.7 

where  is the residual function. Ignoring pointer  and knowing that for small

incremental values ∆ε one can write

4.8 

equation (3.10) becomes linear in ,

4.9 

i.e,

l 1–( )

l( ) j( )

εi l( )[ ] j( ) εi l( )[ ] j 1–( ) ∆εwy l( )[ ] j( ) θsin( )2⋅+= i 1 2,=

εwy l( )[ ] j( ) εwy l( )[ ] j 1–( ) ∆εwy l( )[ ] j( )+=

j 1=

εi l( )[ ] 0( ) εi l 1–( ) ∆εoe θcos( )2⋅ 1–( )i ∆γtan
2

-------------- 2θ( )sin( )⋅ ⋅+
l( )

+=

εwy l( )[ ] 0( ) εwy l 1–( )=

R εwy l( )[ ] j( )( ) σ ε1 l( )[ ] j( )( ) σ ε2 l( )[ ] j( )( )+[ ] θsin( )2⋅ fsw εwy l( )[ ] j( )( ) ρsw⋅+= Tol≤

R εwy( ) l( )

F ε ∆ε+( ) F ε( )
εd

d F ε( ) ∆ε⋅+≅

∆εwy j( )

σ ε1 j 1–( )( ) σ ε2 j 1–( )( )+[ ] Ect ε1 j 1–( )( ) Ect ε2 j 1–( )( )+[ ] ∆εwy j( ) θsin( )2⋅ ⋅+

fsw εwy j 1–( )( )– Est εwy j 1–( )( ) ∆εwy j( )⋅–

θsin( )2
------------------------------------------------------------------------------------------------ ρsw⋅=
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4.10 

or,

4.11 

where ( ) and  and  are the axial tan-

gent stiffness of struts and ties respectively.

Note that, occasionally, the convergence of the algorithm can be quite slow. During the

numerical analysis performed with this algorithm, cases were found in which the residual

function had a very smooth tangent which increased abruptly in a very narrow band

around the zero of the function. In these cases, another algorithm was used to find the

solution of equation (3.10): the bisection method applied to the residual function in equa-

tion (4.7). The convergence criterion was given by

4.12 

where εw,yield is the yielding strain of the stirrups.

4.3 Shear tangent stiffness

The resolution of non-linear structural problems requires, very often, the tangent stiff-

ness within each Gauss point of the element. For the shear fibres the tangent modulus is

given by

4.13 

Substituting equation (3.11) in equation (4.13), one can write

4.14 

Taking into account the dependency of εoe and εwy of γ,

∆εwy j( )

f– sw εwy j 1–( )( ) ρsw⋅ σ ε1 j 1–( )( ) σ ε2 j 1–( )( )+[ ] θsin( )2⋅–

Est εwy j 1–( )( ) ρsw⋅ Ect ε1 j 1–( )( ) Ect ε2 j 1–( )( )+[ ] θsin( )4⋅+
-------------------------------------------------------------------------------------------------------------------------------------------------≅

∆εwy j( )

R εwy j 1–( )( )–
ER j 1–( )

--------------------------------=

ER j 1–( ) R εwy j 1–( )( )∂ εwy j 1–( )( )∂⁄= Ect ε( ) Est ε( )

εwy j( ) εwy j 1–( )– 10 4– εw yield,⋅<

γd
d τ γ( ) γd

d V bw h⋅( )⁄( )=

γd
d τ γ( )

ε2∂
∂ σc ε2( )

ε2∂
γ∂

--------⋅
ε1∂
∂ σc ε1( )

ε1∂
γ∂

--------⋅– 
  θsin( ) θcos( )⋅ ⋅≡
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4.15 

and using the equation (3.6) of compatibility of displacements, the partial derivative

becomes

4.16 

Substituting now equation (4.16) into equation (4.14), the shear tangent stiffness is

finally given by

4.17 

The partial derivatives of the axial strain εoe and of the transverse steel strain εwy with

respect to the shear strain γ are calculated through a sensitive analysis on the equation of

equilibrium of internal forces. To calculate ( ), the algorithm checks what hap-

pens to εwy when in equation (3.10) the shear strain is incremented by ∆γ,

4.18 

with

4.19 

Using equation (3.10) and the hypothesis expressed in equation (4.8), the equation

becomes linear in ∆εwy,

4.20 

Since for small incremental values ( ) and ( ), the deriva-

tive of the transverse steel stain with respect to shear strain becomes

εi∂
γ∂

-------
εi∂

εoe∂
----------

εoe∂
γ∂

----------⋅
εi∂

εwy∂
-----------

εwy∂
γ∂

-----------⋅
εi∂
γ∂

-------+ += i 1 2,=

εi∂
γ∂

------- θcos( )2 εoe∂
γ∂

----------⋅ θsin( )2 εwy∂
γ∂

-----------⋅ 1–( )i

2 γcos( )⋅ 2
-------------------------- 2θ( )sin( )⋅+ +=

γd
d τ γ( ) 2θ( )sin

2 γcos( )⋅ 2
-------------------------- Ect ε1( ) Ect ε2( )+( )⋅=

θcos( )2 εoe∂
γ∂

----------⋅ θsin( )2 εwy∂
γ∂

-----------⋅+ 
 – Ect ε1( ) Ect ε2( )–( )⋅

εwy∂ γ∂⁄

fsw εwy ∆εwy+( ) ρsw⋅ σc ε1 ∆ε1+( ) σc ε2 ∆ε2+( )+( ) θsin( )2⋅+ 0=

∆εi ∆εwy θsin( )2 1–( )i ∆γtan
2

-------------- 2θ( )sin( )⋅ ⋅+⋅= i 1 2,=

∆εwy Est εwy( ) ρsw⋅ Ect ε1( ) Ect ε2( )+( ) θsin( )4⋅+[ ]⋅

Ect ε1( ) Ect ε2( )–( ) θsin( )2 2θ( )sin
2

------------------- ∆γtan⋅ ⋅ ⋅=

∆εwy ∆γ⁄ εwy γ∂⁄∂≅ ∆γtan ∆γ≅
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4.21 

Using the same procedure for the axial strain (i.e., check what happens to εoe when in

equation (3.10) the shear strain is incremented by ∆γ) the partial derivative of εoe with

respect to the shear distortion is given by

4.22 

For the linear elastic case the elastic modulus of both struts are equal to each other and to

the concrete elastic modulus Ec ( ) leading to

4.23 

Moreover, since ( ) equation (4.14) becomes

4.24 

Comparing with the ‘classic’ elastic shear modulus expression ( ) an

equivalent Poisson ratio can be derived

4.25 

4.4 Modelling and implementation remarks

Some comments on the behaviour of the strut-and-tie model result from the analysis of

the equations of equilibrium forces and compatibility of displacements. They concern the

yielding of transverse steel, the possibility of representing torsional moments and,

finally, the snap-back phenomenon that may occur in the shear stress-strain response

curve for low shear strains after unloading, as illustrated in Figure 4.5.

4.4.1 Yielding of transverse steel

If the stirrups do not plastify, a reduction on the ratio of transverse steel, ρsw, does not

modify substantially the shear force versus displacement response curve. It increases the

εwy∂
γ∂

-----------
Ect ε1( ) Ect ε2( )–( ) θsin( )3 θcos⋅ ⋅

Est ρsw⋅ Ect ε1( ) Ect ε2( )+( ) θsin( )4⋅+
------------------------------------------------------------------------------------------------≅

εoe∂
γ∂

----------
Ect ε1( ) Ect ε2( )–( )
Ect ε1( ) Ect ε2( )+( )

---------------------------------------------- θtan⋅≅

Ect ε1( ) Ect ε2( ) Ec= =

εwy∂
γ∂

-----------
εoe∂
γ∂

---------- 0= =

γcos 1≅

γd
d τ γ( )

Ec
2
----- 2θ( )sin( )2⋅=

G Ec 2 1 ν+( )( )⁄=

ν 1
2θ( )sin( )2

-------------------------- 1–=
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stirrups strain proportionally to the decrease of ρsw, so that the transverse steel maintains

more or less the same level of reaction force, and it only introduces minor changes in the

diagonals strain.

In the case that the transverse steel do plastify, the response depends on the state of the

diagonal under tensile strain. Substituting the force Fc1 in the compressed strut given by

equation (3.8) into equation (3.9), one can write

4.26 

in other words, if the tensile strut is completely cracked, ( ), the structure slides

and the incremental top displacement of the pier is mainly due to shear strain. Further-

more, equation (3.8) shows that, in that case, the force in the compressed strut can not

increase substantially either. Therefore, the shear resisting force at the cross-section fol-

lows the steel constitutive law of the stirrups.

On the other hand, if the diagonal under tensile strain still resists to tensile forces and

goes through the softening branch after peaking, the increase of the strain at the tensile

diagonal implies, through equation (3.8) and equation (4.26), the decrease of the com-

pression force in the compressed strut. Consequently, the global shear resisting force also

decreases and this occurs until no residual tensile strength exists in the strut. From that

point, the structure is fully cracked and responds accordingly (see Figure 4.2). This

underlines the need to chose behaviour laws for the struts and ties that are smooth and

integrate the whole state of the elements they represent.

4.4.2 Torsional moments

As illustrated in Figure 4.3, the torsional moment in the transverse section S of an ele-

ment with longitudinal axis , is given by the integral of the moment of shear forces,

( ) and ( ), in relation to . Since the shear fibre model simulates the

response of structures submitted to shear forces, it should also be able to simulate the

response due to torsional moments. In this case, the description of the truss in the 3D ele-

ment must take into account the existence of torsional moments, i.e., of a non-uniform

distribution of shear deformations in the cross-section. Two solutions are proposed: to

increase the number of shear fibres to properly simulate the distribution of shear forces

V Fwy 2 Fc2 θsin⋅ ⋅+=

Fc2 0=

ox

τxy Sd⋅ τxz Sd⋅ ox
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in the cross-section or to expand or shrink the transverse section of the shear fibres to

make the Gauss points coincide with representative points of the structure.

Figure 4.2 - Influence of yielding of the stirrups in the shear stress versus strain response curve

In order to explain further the meaning of these two solutions, a 3D beam element with a

rectangular hollowed core section is considered. The first solution consists in describing

each of the four side walls of the beam by a different shear fibre element with a trans-

verse section proportional to the zone of the cross-section it represents. Each Gauss point

of each shear fibre ‘sees’ different shear strains, depending on the torsional rotation and

the position it occupies in the cross-section and, therefore, it contributes differently to

resist torsional moments (see Figure 4.4-a)).

The second solution is to change the cross-sectional area of the shear fibres by expanding

it so that the position of each of the 2 per 2 Gauss points represents the average shear

stress of each quarter of the total cross-section (see Figure 4.4-b)). A corrective factor

must be used to convert the expanded area to the real transverse area. In the case of the

model in CASTEM 2000, the warping parameter α, described in [17], is used. It repre-
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sents the quotient between the real area and the expanded area.

Figure 4.3 - Torsional moments

This procedure must be applied to both transverse directions; at least two shear fibres,

one per each transverse direction, must be considered in the 3D element. In Figure 4.4-a)

the stresses at the shear fibres are represented by one vector per fibre and not one per

each Gauss point so as not to overcharge the picture.

4.4.3 The snap-back phenomenon

A snap-back phenomenon has been observed at the shear stress-strain response curve

after cracking. The reason for this phenomenon is found in the equations of compatibility

of displacements and equilibrium of forces of the model. The strain in the struts is the

combination of three different deformations: the average axial strain εoe, the stirrups

strain εwy, and the shear strain γ. During cyclic loading and after cracking of the concrete,

the average axial strain grows with loading. When the structure unloads, εoe decreases to

a minimum that corresponds to the pinching zone of the flexural force versus displace-

ment curve. This is particularly evident after yielding of the longitudinal steel bars. How-

ever, while some cracks close, others open and εoe increases again till the peak

displacement in the other direction is reached. Still, as growing shear forces correspond

to, or should correspond to, growing shear deformations, the shear strain should increase

y

z
Mx Vz τ⊗ xy– Vy τxz⊗+( ) Sd

S
∫=
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x
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Vz
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o
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and decrease following the loading history.

Figure 4.4 - Numerical simulation of torsional moments resisting mechanism

Thus, when the structure unloads after cracking, the absolute value of the two strains

may progress in opposite directions. In fact, the shear strain changes sign before the min-

imum average axial strain is reached (see the example in Figure 4.5 - circle 1). After this

point, while the absolute value of the shear strain increases, the average axial strain goes
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on decreasing and demanding even higher shear strain in order to respect the compatibil-

ity of displacements and equilibrium of forces in the structure. This is true until the min-

imum average axial strain occurs. Then it increases giving, together with the shear strain,

a ‘positive’ contribution to the deformation of the compressed strut.

Figure 4.5 - The ‘snap-back’ phenomenon

To respect the equilibrium of forces and the compatibility of deformations in the struc-

ture, the change in the growing direction of the average axial strain may force the shear

strain to decrease in order to compensate for the increase of the mean axial strain that,

sometimes, is quite abrupt. This gives rise to the ‘snap-back’ phenomenon in the shear

stress versus strain response curve, i.e., the decrease of the shear strain for an increase of

the shear force, illustrated in Figure 4.5 (circles 1 and 3). The numerical simulation cor-
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responds to the response of a bridge pier submitted to a cyclic static horizontal displace-

ment at the top. The cross-section and other characteristics of the structure correspond to

the bridge pier with section type 3 referred to in section 5.

To confirm this analysis a checking procedure was implemented: the value of the aver-

age axial strain due to the axial force and flexural moment was ‘frozen’ each time the

shear strain changed sign, i.e., each time the shear stress-strain response curve crossed

the shear stress axis. This value represented the minimum axial strain allowed in the

compressed strut for the following steps and it was corrected each time a higher axial

strain occurred in the same circumstances (Figure 4.5 - circle 2).

For most of the examples solved with this procedure the ‘snap-back’ phenomenon did

not occur. In the case of piers with low axial forces, although the phenomenon was still

reproduced, it was much less evident. This procedure seems to confirm the previous

analysis and, at the same time, it stresses the importance of the average axial strain in the

global shear response. However, other numerical analyses performed with the same

structure as in Figure 4.5 show that the shear cracking angle also plays a fundamental

role in this process: a higher cracking angle reduces the weight of the average axial strain

in the struts strain disguising the ‘snap-back’ phenomenon.
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 5 MODEL VALIDATION

To check the proposed non-linear shear model, a set of squat bridge piers tested at the

ELSA laboratory in Ispra, Italy, have simulated numerically. These squat piers are part of

a series of bridges designed under the research programme of the European Community:

Pre-normative Research in Support of Eurocode 8 (PREC8) [4]. The structures, one reg-

ular bridge and three irregular bridges with the same profile, were tested following the

pseudo-dynamic testing procedures and using the reaction-wall facility of the laboratory.

Furthermore, a cyclic static test on an isolated squat pier with increasing top displace-

ments was also carried out at the ELSA laboratory.

These experimental results are used in this work to validate the numerical model. Since

the aim of this section is not to simulate the bridges response but to check the behaviour

of the non-linear shear model, instead of applying the seismic action to the global struc-

ture, the history of displacements found during the tests is applied directly to the top of

the piers. Furthermore, only the short pier of the irregular bridges is analysed (see Figure

5.1).

Figure 5.1 - Geometrical characteristics of bridges tested at the ELSA laboratory (scale 1:1)

Thus, after a brief description of the experimental campaign, in particular of the charac-
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teristics of the structures being analysed, the numerical and experimental results of, first

the isolated squat pier and then the three piers belonging to the three bridges of PREC8

programme, are presented. The response of the two models, considering non-linear and

linear elastic shear behaviour, are also compared.

5.1 Experimental reference results

The research programme at the ELSA laboratory included the pseudo-dynamic testing of

six bridges using substructuring techniques: a regular and 3 irregular (1:2.5) scale

bridges (see Figure 5.1). One of the irregular structures was also tested with isolation/

dissipation devices and asynchronous motion. This was the first large scale testing cam-

paign successfully performed with such a technique [4]: the piers were tested in the labo-

ratory and the deck was simulated with a linear elastic model in the computer. A design

earthquake corresponding to the Eurocode 8 [21] response spectrum for soil type B and

5% damping was applied to the bridges.

No flexural moments were transferred through the pier-deck connection points. The

superstructure and the substructure moved together in the horizontal transverse direction

but were disconnected in the vertical and longitudinal direction of the bridge. A vertical

force of 1.72MPa is applied to the top of the piers to simulate the dead load of the deck.

Four experimental results at the squat pier are presented, corresponding to the static

cyclic test on the squat pier and to the Pseudo Dynamic test on the three irregular

bridges. They are referred to as P3S, P1D, P3D and P5D, where the number refers to the

section type according to the nomenclature presented in [23], [4] and [22] and illustrated

in Figure 5.2, and the last letter refers to the static test (S) or the PSD test (D).

The mechanical characteristics of the materials: steel (B500 Tempcore) and concrete

C25/30 have been evaluated on the basis of the tests performed on the material samples

and are presented in Table 5.1 and Table 5.3, respectively.

The piers in the laboratory are build in plinths rigidly attached to the strong floor. The

local deformation of the plinths introduces a supplementary rotation at the bottom of the

pier. This effect is taken into account in the numerical tests through a flexible foundation
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represented by a linear elastic rotational spring calibrated for the experimental tests [22].

Only the irregular bridge, and in particular the shortest pier illustrated in Figure 5.1, is

referred to in the report. Three different doubly symmetric cross-sections with different

volumetric ratios of longitudinal and transverse steel bars are considered (see Figure 5.2

and Table 5.3), where the number of the type of section follows the nomenclature pre-

sented in [4], [22] and [23]. During the experiments the piers were fitted with displace-

ment transducers distributed along the sides of the columns. The squat pier has been

especially well fitted to enable the splitting of bending and shear displacements [4]. The

Table 5.1: Steel mechanical properties (average values)

Bar Diam.
[mm]

Average
Bar Diam.

[mm]

Number of
Tests

σy
[MPa]

σu
[MPa]

εu
[%]

σu/σy

φ5 4.7 7 700 731 1.6 1.05
φ6 6.4 6 364 430 15.1 1.18
φ8 8.2 4 503 563 12.3 1.12
φ10 10.0 4 489 572 14.5 1.17
φ12 11.9 4 558 647 12.8 1.16
φ14 13.8 4 477 578 13.0 1.21

Table 5.2: Concrete cubic compressive strength (average values)

Pier Type
P3S P1D P3D P5D

Strength [MPa] 35.4 41.2 37.0 40.2

Table 5.3: Longitudinal and transverse reinforcement in the piers cross-section

Section Type

S1 S3 S5
Volumetric ratio of longitudinal 
rebars, (ρl)a [%]

a. 

0.50 0.92 1.69

Mechanical volume ratio of confining 
hoops, (ωwd)b [%]

b.  and 

24.7 20.5 35.5

ρl
Volume of longitudinal bars

Volume of concrete
----------------------------------------------------------------------------------=

ωω
Volume of confining hoops

Volume of concrete core
------------------------------------------------------------------------------

fωy
fc

-------⋅= fωy 500MPa=( ) σc 30MPa=( ),
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displacements due to bending forces were computed through a quadratic integration of

the rotations measured along the length of the column (see Figure 5.3). The difference

between the total displacements observed during the experiment and the bending dis-

placements gives the deformation due to shear forces. Note that with this approach, dis-

placements like those due to the deformation of the basement appear in the shear curves.

Figure 5.2 - Reinforcement layout (all the measurements and diameters are in [mm])

Four experimental results at the squat pier are presented, corresponding to the static

cyclic test on the squat pier and to the Pseudo Dynamic test on the three irregular

bridges. They are referred to as P3S, P1D, P3D and P5D, where the number refers to the

section type according to the nomenclature presented in [23], [4] and [22] and illustrated

in Figure 5.2, and the last letter refers to the static test (S) or the PSD test (D).

5.2 Numerical applications

The three different cross-sections are made of bending and shear fibres. Since the applied

load introduces transverse forces only in one direction of the pier and, furthermore, no

torsional moments exist, a ‘I’ type cross-section was adopted. The distribution of con-
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fined and unconfined concrete and steel fibres in the cross-section is illustrated in Figure

5.6. The parameters of the model defining both the steel and the concrete characteristics

are presented in Figure 5.4 and Figure 5.5. The piers were divided in 5 plus 2 Timosh-

enko elements with lengths of 0.34m and 0.55m, respectively.

Figure 5.3 - Splitting of shear and bending displacements

5.2.1 Model parameters

The expression used to describe the confinement of the concrete core is the one specified

in Eurocode 8 [21]. According to this reference code, the increase in the compression

strength and corresponding strain due to confinement effect depends on the cross-section

characteristics, in particular on the transverse steel ratio and spacing. Furthermore, the

four parameters presented in equation (3.16) and equation (3.18) which define the load-

ing and unloading laws of the hysteretic concrete constitutive law, are ( ),

( ) and ( ) and ( ) for the longitudinal fibres and

( ) and ( ) for the shear fibres.

P
V

d1

d2 d’
2

d’
1

h1

h2

Displacements transducer

Level 1 ( l1 )
Level 2 ( l2 )

Bending

b1 = l1 * r1

D

b2 = b1 + (l2 - l1) * (r2 + 2*r1) / 3

s1 = h1 - b1

s2 = h2 - b2

Level 1

Level 2

Shear

Horizontal displacement

r1 = (d’1 - d1) / D

r2 = r1 + (d’2 - d2) / D

Level 1

Level 2

Bending rotation

ri = r(i-1) + (d’i - di) / DLevel i

bi = b(i-1) + (li - l(i-1)) * (ri + 2*r(i-1)) / 3Level i si = hi - bi

F1 2.0=

F2 0.75= F1' 20.0= F2' 20.0=

F1' 20.0= F2' 3.0=
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The parameters adopted in the Menegotto-Pinto model are ( ), ( ) and

( ). The properties of the steel are illustrated in Figure 5.5.

Figure 5.4 - Confined and unconfined concrete characteristics

Figure 5.5 - Longitudinal and transverse steel characteristics

Note that if shear stresses exist in the cross-section and are important, cracking of con-

crete occurs along a surface oblique to the longitudinal fibres. This means that the physi-

cal structure opens cracks before the longitudinal fibres reach the tensile strength of the

Piers  fco [MPa]  fco*[MPa] εco [%] εco∗[%] Z Z*  ft [MPa]
aεtm/εt

a. Longitudinal fibres

bεtm/εt

b. Shear fibres

S1 36.2 45.6 0.25 0.40 100 27.7 1.6 10 100
S3 32.0 40.2 0.25 0.39 100 28.3 1.2 7 100
S5 35.2 43.3 0.25 0.38 100 30.3 0.1 5 100

Piers  fsy [MPa]  ful [MPa] εsh∗[%] εul [%] Eo [GPa] Eh/Eo[%]

S1
Long. Fibres 490.0 570.0 2.00 14.5

206.0 0.55
Shear Fibres 700.0 730.0 0.34 1.6

S3
Long. Fibres 540.0 630.0 2.00 13.2

206.0 0.55
Shear Fibres 700.0 730.0 0.34 1.6

S5
Long. Fibres 480.0 580.0 2.0 13.0

206.0 0.55
Shear Fibres 365.0 430.0 2.0 15.0

Ro 10.0= a1 9.0=

a2 0.15=

 fco

 fco*

εco

εco∗
 f 

ε

(Z)
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Unconfined

Confined
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concrete, in other words, the tensile strength in the model should not be the value from

the axial test, or any equivalent test like the Brazilian test, but a lower value. Thus, and in

order to adequately represent the pre-yielding branches of the global force-displacement

curve, the tensile strength adopted in the concrete presented in Figure 5.4 is the value

that fits the envelope of the top force-displacement experimental curve.

As for the transverse steel ratio, it is given by

5.1 

where ( ) and r measures the superposition of the stirrups, i.e., the ratio

between the total length of the stirrups and the length of the cross-section,

( ), s is the stirrups spacing and Asw is the area of the stirrups

cross-section. The values in equation (5.1) for the three different sections are presented

in Table 5.4.

5.2.2 Fibre discretization

To describe the flexibility of the plinth at the basement of the pier, a linear elastic rota-

tional spring is placed at the bottom of the pier. It is simulated through a fictitious 

length element (1:2.5 scale) with the same cross-section of the pier and a Young modulus

of . The distribution of the longitudinal and shear fibres in the pier cross-section

is illustrated in Figure 5.6.

The transverse section of the shear fibre considers that only the side-walls of the pier

contribute to shear strength, and it includes the unconfined concrete. Thus, the shear

Table 5.4: Transverse steel ratio

Pier Asw [m2] s [m] ρsw [%]

S1 (5)a

a. Stirrups diameter in [mm]

1.963x10-5 0.050 0.905
S3 (5) 1.963x10-5 0.060 0.754
S5 (6) 2.827x10-5 0.050 1.304

ρsw
4 Asw r⋅ ⋅

bw s⋅
-----------------------=

bw 0.32m=

r 6 0.492m⋅( ) 1.60m( )⁄=

0.01m

0.2GPa
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fibres measure 0.32m per 1.44m.

Figure 5.6 - Distribution of the fibres in the cross-section (bending + shear)

5.2.3 Struts inclination angle

The critical cracking angle is calculated using the model described n section 3.2.5 and

referred to as ‘cracking limit analysis’. Again, only the side walls of the pier were con-

sidered to contribute to shear strength. The values required to compute the angle θ for the

three different cross-sections are presented in Table 5.4 and Table 5.5.

For the ‘cracking equilibrium model’, the results for the three different cross-sections are

presented in Figure 5.7. The curves illustrated by broken lines represent the limits for the

cracking angle given by equation (3.38). The angle to be used in the non-linear shear

model is the lowest value that corresponds to yielding of the longitudinal steel or to

Table 5.5: Critical cracking angle θ

Pier fsw
[MPa]

aρs
[%]

a. , being  in S1 and  in S3 and S8.

bfsy
[MPa]

b. It refers only to the steel in the side walls of the structure

fc
[MPa]

cτu
[MPa]

c. 

dτu
[MPa]

d. 

eτu
[MPa]

e. 

fθ
[degrees]

f. 

S1 700 0.276 364 41.2 2.52 14.86 20.6 68.3
S3 700 0.491 503 37.0 3.61 12.94 18.5 55.6
S5 364 0.491 503 42.2 3.42 13.33 21.1 54.2

Unconfined Concrete Longitudinal Steel Shear

FIBRES

Confined Concrete

ρs 10 π D2⋅ ⋅( ) 1.28m 0.32m⋅( )⁄= D 6mm= D 8mm=

τu ρsw ρs fsy fsw⋅ ⋅ ⋅=

τu fcd ρsw fsw⋅–( )ρsw fyw⋅=

τu fcd 2⁄=

θ ρsw fsw⋅( ) ρs fsy⋅( )⁄[ ]atan=
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yielding of the transverse steel. The yielding point is indicated in the graphics by a verti-

cal broken line and the corresponding cracking angles are presented in Table 5.6.

Figure 5.7 - Cracking angle using the ‘cracking equilibrium model’

The angles considered in these two methods are quite different one from the other; the

results from the ‘cracking equilibrium model’ agree quite well with the experimental val-

ues whereas the shear angles using the ‘cracking limit analysis’ are far from the experi-

mental angles observed in the piers at the laboratory (around 45o for the three piers: P1,

P3 and P5).

Table 5.6: Cracking angle
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Since the angles computed through the ‘cracking equilibrium model’ are close to 45o,

this value was adopted for the three piers. However, the angles referred to in Table 5.5

are also considered in the numerical calculations presented in the report.
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 6 RESULTS

The numerical response of the piers is calculated using the fibre model and the two dif-

ferent approaches for the shear forces: the linear elastic law and the non-linear shear

model described in the report. The histories of displacement registered at the top of the

four piers during the cyclic static and the Pseudo-Dynamic tests are applied to the top of

the numerical structures (see Figure 9.1).

For each test the following response curves are presented: transverse force versus total

transverse displacement at the top of the pier and at a height of 1.70m, transverse force

versus shear and flexural transverse displacements at a height of 1.70m and, finally, the

peak displacement profiles for both loading directions. For pier P5S, apart from the two

analytical cracking angles two other angles are adopted: ( ) and ( ). Still

for pier P5D and for cracking angle ( ), two additional transverse steel ratios are

considered: ( ) and ( ).

After an overview of the main outcomes of the model, the analytical results are com-

pared with the experimental response obtained at the ELSA laboratory. A more detailed

analysis pier by pier is made before the final conclusions are drawn.

6.1 General results

Although the piers have the same concrete cross-section and the same shear span ratio,

( ), the influence of shear forces in the response is quite different from one

pier to the other. As the strength to flexural moments increases with the longitudinal steel

ratio and higher flexural strength means higher allowable transverse force at the top of

the pier, a stronger participation of shear mechanisms in the response is expected when

the longitudinal steel ratio increases. This is confirmed by the diagrams in Figure 9.18:

the proportion of shear displacement increases from section type 1 to section type 5.

Furthermore, the presence of transverse forces changes the orientation of the principal

directions that become diagonal to the longitudinal axis of the structure and, in this case,

the transverse steel has a very important role in resisting shear forces; the longitudinal

and transverse steel form a steel grid that, together with the concrete, define a truss

θ 48°= θ 51°=

θ 45°=

ρsw 0.0115= ρsw 0.0100=

rsp 2.8 1.6⁄=
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mechanism that controls the deformation of the structure. Therefore, the resistance to

shear forces depends strongly on the amount of transverse steel in the pier. An example

using pier P5D for different transverse steel ratios is illustrated in Figure 9.20.

Note that the non-linear shear model uses the average axial deformation that comes from

the flexural model which, in turn, depends on the dimension of the elements defining the

structure. Thus, in order to verify the dependency of the response to the mesh discretiza-

tion, four tests were done on pier P5 considering elements with different lengths near the

basement: 2 elements of 0.85m in the first test, 3 elements of 0.56m in the second test, 5

elements of 0.34m in the third test and 4 elements of 0.17m plus 3 elements of 0.34m in

the last test. A cyclic displacement history was applied to the top of the pier: a 2cm

amplitude cycle followed by a 4cm cycle. The results presented in Figure 9.21 show that

the four responses agree quite well with each other. Even the case where only two 0.85m

length elements are considered near the basement gives a response close to the more

refined solution.

6.1.1 Low strength pier - P1

Pier P1 is the least reinforced of the three piers. The first comment is that in spite of the

general good agreement between the numerical and the experimental results, the ultimate

state of the pier was not caught by the numerical model. The decrease of strength regis-

tered in the experimental force versus displacement curve is due to the rupture of the lon-

gitudinal steel bars which did not occur in the numerical test. After this loading step the

comparison between the experimental and the analytical results makes no sense.

The simulation of the ultimate state of a structure caused by an abrupt event like the rup-

ture of a steel bar is a very a difficult subject. Small variations in the geometry and/or on

the materials can explain the differences to the experimental results. In the case of a sym-

metrical cross-section with uniaxial bending, such as the one under analysis, one bar can

not break alone leaving all the others at the same level still resisting, unless different

fibres with different materials characteristics, which would have to be known extremely

accurately, were considered for each one of the rebars. Furthermore, the degradation of

the characteristics of the materials with cyclic loading would have also to be properly

taken into account.
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From the comparison of the results using the linear and the non-linear shear behaviour

model in Figure 9.2 to Figure 9.5 and in Figure 9.22 and Figure 9.23, it seems that no

evident benefit comes from the non-linear shear model. The shear displacements ratio is

very low and the stiffness of the structure is not strongly affected by the degradation of

shear stiffness. Nevertheless, and in spite of the large over-estimation of the shear dis-

placements, the force-displacement curves at a height of 1.70m for the non-linear shear

model are closer to the experimental results. The over-estimation of the numerical shear

displacements is partly due to a more flexible response at the post-cracking branch

before yielding of the longitudinal bars. Although this is true for both cracking angles,

( ) and ( ), the first angle gives a behaviour in shear closer to the exper-

imental response. Nevertheless, the global force-displacement curves for both angles,

experimental and analytical, are similar and very close to the experimental response.

Before going further into the analysis of the results, two comments must be made.

Firstly, the split of total displacements in flexural and shear displacements is fully legiti-

mate only when dealing with numerical results; in a real structure there is a perfect cou-

pling between the two displacements. Secondly, since in the numerical model the

flexural behaviour assumes that cracking is perpendicular to the longitudinal axis of the

structure, the diagonal cracking on the physical structure changes the conditions that

make the splitting fully comparable with the numerical results. Therefore, the first com-

parison between the analytical and the experimental results should be done at the level of

the global force versus displacement curves and only after the flexural and the shear

behaviour should be analysed separately. Regardless, the splitting of the total experimen-

tal displacements gives a good idea of how much the behaviour of the structure is influ-

enced by shear forces and, furthermore, how far the numerical model is to predict non-

linear shear behaviour.

The profiles of maximum displacements are closer to the experimental results when the

angle from the ‘cracking limit analysis’ is used (see Figure 9.18 and Figure 9.30). In this

case, and in spite of the more flexible behaviour of the model near the basement in rela-

tion to the experiment, the two results are quite close.

θ 68°= θ 45°=
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6.1.2 Medium strength pier - P3

Pier P3 was tested for two different top displacement-time histories. The first one corre-

sponds to the displacement measured during the Pseudo-Dynamic test of bridge B213A

according to [4]. The second is a displacement-time history for growing peak displace-

ments as it is described in [23] and illustrated in Figure 9.1.

The global force versus displacement curves for both assumed cracking angles follow

quite well the experimental results; although the analytical angle ( ) gives a less

dissipative shear curve, the test with the angle ( ) shows a shear force versus dis-

placement curve which is closer to the results found in the laboratory (see Figure 9.6 to

Figure 9.13 and Figure 9.24 to Figure 9.27). For this particular pier, the ‘snap-back’ phe-

nomenon is also clear. This is especially evident for ( ), since in this case the

participation of the average axial deformation in the non-linear shear model is more

important (see equation (3.6)). This happens for both displacement-time histories.

Regarding the flexural behaviour, the fibre model describes the response due to flexural

moments with great accuracy.

Since a higher longitudinal steel ratio enables greater shear forces on the structure, pier

P3 shows a behaviour which is clearly more influenced by shear forces than pier P1. This

is evident in the shape of the global response curve. For the same displacement imposed

at the top of the pier, the results using the linear shear model are more dissipative show-

ing a typical flexural behaviour. This model does not reproduce properly the narrowing

and lengthening of the hysteretic force-displacement curve typical of structures submit-

ted to important transverse forces.

The profiles of maximum displacements show that the pier in the test considering the

‘cracking limit analysis’ angle is less flexible near the basement giving better results (see

Figure 9.18 and Figure 9.30). Nevertheless, the non-linear shear model considering both

angles represents well the results from the experiments.

6.1.3 High strength pier - P5

From the three piers analysed in the report, P5 is the pier with the higher longitudinal and

transverse reinforcement ratio. The analytical results using both cracking angles are dis-

θ 56°=

θ 45°=

θ 45°=
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cussed before; any comparison with the experimental response is done. Looking at Fig-

ure 9.14 and Figure 9.15, the first comment is that the analytical angle, ( ), gives

a very flexible response mainly controlled by the shear (truss) mechanism. When the

maximum shear strength of the truss is reached, i.e., the transverse steel bars yield, the

structure cannot respond to the new demand of shear force and it slides near the base-

ment. Thus, the maximum flexural moment is controlled by the truss mechanism and the

contribution of the flexural mechanism to the global behaviour of the structure is reduced

significantly.

The second comment comes from Figure 9.19. In the case of pier P5, the analytical

results are quite sensitive to the cracking angle adopted in the strut-and-tie model. A

decrease of 3o in the value of the cracking angle corresponds to a decrease of more than

30% in the shear displacement.

Two circumstances contribute to the high sensitivity of the analytical results to small var-

iations of the cracking angle at pier P5: the low yielding stress of the transverse rebars,

365.0MPa, and the proximity between the maximum shear force from the truss and the

flexural mechanism. In this case, a small decrease of the cracking angle corresponds to

an increase of the amount of transverse steel involved in the internal equilibrium of the

structure (see equation (3.7)), in other words, to an increase of the strength of the truss,

enough to allow the flexural mechanism to go much further in the inelastic range. This is

well illustrated in the comparison of Figure 9.14 and Figure 9.15 with Figure 9.28 and

Figure 9.29.

The comparison with the experimental results shows clearly that the ‘cracking limit

analysis’ angle does not properly represent what happens in the physical pier. Further-

more, the analytical response for the ‘cracking equilibrium model’ angle is quite close to

the experimental results. These results are confirmed by the profiles of maximum dis-

placements illustrated in Figure 9.18 and Figure 9.30. This shows that the expressions

given by the ‘cracking limit analysis’ are not only unsuitable to represent the cracking

pattern observed in the experiments but should also not be used to compute the cracking

angle of the non-linear shear model.

θ 54°=
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Finally, the model was able to represent the non symmetrical behaviour in shear due to

yielding of transverse steel bars; although two struts are considered to represent the state

of the concrete for both loading directions, the stirrups are the same regardless of the

loading direction. Thus, if after loading the structure in one direction the stirrups yield,

the plastic deformation at the steel bars is transmitted when the load goes in the opposite

direction. This phenomenon is not so evident in the flexural behaviour since the longitu-

dinal rebars under tensile forces change when the structure is loaded in different direc-

tions.

When compared with the response using the linear elastic model in shear (see Figure

9.16 and Figure 9.17), a much more dissipative global force versus displacement curve is

found in opposition to the experimental results.
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 7 CONCLUSIONS

The results expressed in Figure 9.22 to Figure 9.29, show, in general, a very good agree-

ment between the numerical and the experimental results. The comparison is made at

two levels: at the top and at 1.70m from the bottom of the pier. The numerical transverse

force versus displacement curves at both levels fit the experimental results. The behav-

iour of structures where the effect of shear forces in the response is not negligible is well

reproduced by the non-linear shear model; the narrowing and lengthening of the force

versus displacement curves observed in the experimental results due to the shear forces

is well represented.

In a strut-and-tie based model like the one described in this report, the determination of

the angle of the cracking pattern is very important. Special care must be taken when deal-

ing with structures where the applied transverse force is near to its maximum shear

capacity. In this case, small variations of the shear cracking angle can greatly change the

response.

Furthermore, the numerical tests presented in the report show that the analytical model

referred to as ‘cracking limit analysis’ to estimate the critical cracking angle is not suita-

ble to represent what happens in the structure. Angles much higher than the experimental

values were computed with this formulation and gave results that for the critical pier P5

were quite far from the experimental results. Instead, the ‘cracking equilibrium model’

developed in section 3.2.5 gave, for the three piers, cracking angles in very good agree-

ment with the values observed during the experiments.

The tests done on pier P5 also show that the results can be considered mesh independent.

Four different meshes, more or less refined near the basement, gave similar top trans-

verse force versus displacement response curves.
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 9 FIGURES

Figure 9.1 - History of displacements imposed at the top of the piers
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Figure 9.2 - Numerical versus experimental force-total displacement response curves for pier P1D at 
two different height levels and using the non-linear shear model with θ=68o
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Figure 9.3 - Numerical versus experimental force-flexural and shear displacement response curves 
at 1.7m from the bottom, for pier P1D, using the non-linear shear model with θ=68o
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Figure 9.4 - Numerical versus experimental force-total displacement response curves for pier P1D at 
two different height levels and using the linear elastic shear model
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Figure 9.5 - Numerical versus experimental force-flexural and shear displacement response curves 
at 1.7m from the bottom, for pier P1D, using the linear shear model
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Figure 9.6 - Numerical versus experimental force-total displacement response curves for pier P3D at 
two different height levels and using the non-linear elastic shear model with θ=56o
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Figure 9.7 - Numerical versus experimental force-flexural and shear displacement response curves 
at 1.7m from the bottom, for pier P3D, using the non-linear shear model with θ=56o
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Figure 9.8 - Numerical versus experimental force-total displacement response curves for pier P3D at 
two different height levels and using the linear elastic shear model
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Figure 9.9 - Numerical versus experimental force-flexural and shear displacement response curves 
at 1.7m from the bottom, for pier P3D, using the linear elastic shear model
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Figure 9.10 - Numerical versus experimental force-total displacement response curves for pier P3S 
at two different height levels and using the non-linear shear model with θ=56o
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Figure 9.11 - Numerical versus experimental force-flexural and shear displacement response curves 
at 1.7m from the bottom, for pier P3S, using the non-linear shear model with θ=56o
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Figure 9.12 - Numerical versus experimental force-total displacement response curves for pier P3S 
at two different height levels and using the linear elastic shear model
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Figure 9.13 - Numerical versus experimental force-flexural and shear displacement response curves 
at 1.7m from the bottom, for pier P3S, using the linear elastic shear model
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Figure 9.14 - Numerical versus experimental force-total displacement response curves for pier P5D 
at two different height levels and using the non-linear shear model with θ=54o
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Figure 9.15 - Numerical versus experimental force-flexural and shear displacement response curves 
at 1.7m from the bottom, for pier P5D, using the non-linear shear model with θ=54o

 -2.0    .0   1.0
X1.E-2

 -2.0

   .0

  2.0

 -4.0    .0   3.0
X1.E-2

 -2.0

   .0

  2.0

P5D-Flexural at 1.7m

P5D-Shear at 1.7m
(Non-linear: 54o)

(Non-linear: 54o)

Force [MN]

Force [MN]

Displ. [m]

Displ. [m]

Numerical 
Experimental 
NON-LINEAR SHEAR MODEL FOR R/C PIERS 99



Figure 9.16 - Numerical versus experimental force-total displacement response curves for pier P5D 
at two different height levels and using the linear elastic shear model
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Figure 9.17 - Numerical versus experimental force-flexural and shear displacement response curves 
at 1.7m from the bottom, for pier P5D, using the linear elastic shear model
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Figure 9.18 - Numerical versus experimental peak displacement profiles for the four piers and the 
non-linear shear model
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Figure 9.19 - Numerical versus experimental force-total, flexural and shear displacement response 
curves for pier P5D with different transverse critical cracking angles
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Figure 9.20 - Numerical versus experimental force-total, flexural and shear displacement response 
curves for pier P5D for different transverse steel ratios
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Figure 9.21 - Numerical force versus total, flexural and shear displacement response curves for pier 
P5D for different mesh discretization
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Figure 9.22 - Numerical versus experimental force-total displacement response curves for pier P1D 
at two different height levels and using the non-linear shear model with θ=45o
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Figure 9.23 - Numerical versus experimental force-flexural and shear displacement response curves 
at 1.7m from the bottom, for pier P1D, using the non-linear shear model with θ=45o
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Figure 9.24 - Numerical versus experimental force-total displacement response curves for pier P3D 
at two different height levels and using the non-linear elastic shear model with θ=45o
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Figure 9.25 - Numerical versus experimental force-flexural and shear displacement response curves 
at 1.7m from the bottom, for pier P1D, using the non-linear shear model with θ=45o
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Figure 9.26 - Numerical versus experimental force-total displacement response curves for pier P3S 
at two different height levels and using the non-linear shear model with θ=45o
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Figure 9.27 - Numerical versus experimental force-flexural and shear displacement response curves 
at 1.7m from the bottom, for pier P3S, using the non-linear shear model with θ=45o
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Figure 9.28 - Numerical versus experimental force-total displacement response curves for pier P5D 
at two different height levels and using the non-linear shear model with θ=45o
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Figure 9.29 - Numerical versus experimental force-flexural and shear displacement response curves 
at 1.7m from the bottom, for pier P5D, using the non-linear shear model with θ=45o
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Figure 9.30 - Numerical versus experimental peak displacement profiles for the four piers and the 
non-linear shear model
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