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SUMMARY 
 
 

In the context of activities related to the application of system analysis to safety and security of 
critical installations a new logical and probabilistic fault tree analysis procedure was developed 
and implemented in the software package ASTRA, version 3.0. This report contains the results of 
the logical and probabilistic analysis for a limited, but significant, subset of test cases considered 
during the test campaign performed at the JRC. Most of the described test cases come from the 
open literature, for which results are available to the reader. For more complex test cases ASTRA 
3.0 was compared with other available tools, such as ASTRA 2.0 and XS-MKA, a Markovian 
analysis package. The experience gained with the testing activity also allowed the identification 
of a set of recommendations for future improvements. 
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1. INTRODUCTION 
 
This report describes the results of the application of ASTRA 3.0 to a set of test cases selected among those 
considered during the beta testing carried out at the JRC.  ASTRA 3.0 is a Fault Tree Analyser (FTA) based on 
the state-of-the-art approach of Ordered Binary Decision Diagrams (OBDD). An OBDD is directed acyclic 
graph particularly suitable to efficiently analyse fault trees. A vast literature on the BDD approach applied to 
fault tree analysis is available, to which the interested reader is addressed, e.g. Bryant (1986); Rauzy (1996). 
The main advantages of the OBDD approach, compared with the previous approach for fault tree analysis based 
on cut sets manipulation, rely on the possibility to:  
− perform the probabilistic analysis directly on the OBDD, i.e. without the need of calculating the Minimal Cut 

Sets, (MCS);  
− determine the exact values of the top event unavailability, expected number of failure and repair, as well as 

the importance measures of basic events, thus avoiding any problem of numerical  approximation implied in 
the so-called bound-approaches; 

− obtain a graph embedding all MCS, from which the Significant Minimal Cut Sets (SMCS) can easily be 
extracted using cut-off techniques. 

The logical and probabilistic analysis implemented in ASTRA 3.0 allows the user to analyse both coherent and 
non coherent fault trees. Briefly speaking non coherent fault trees contain basic events in both positive and 
negated forms.  
 
All these feature make ASTRA 3.0 suitable not only for safety applications, but also for security related ones… 
 
ASTRA 3.0 was extensively verified on a large number of fault trees. The JRC internal test campaign was 
subdivided in different phases: 
− Test of the logical analysis procedure, i.e. the construction of the BDD and the determination of the MCS; 
− Tests of the probabilistic analysis procedure; 
− Tests of the user interface; 
− Test of the Fault tree Editor, Components’ reliability database, Fault tree drawing, and Report Writer. 
 
This report contains an extract of the test cases that were considered for checking the correctness of the 
implemented logical and probabilistic analysis algorithms. A good deal of the selected test cases comes from the 
open literature, for which results are available to the reader. For some other test cases ASTRA 3.0 was 
compared with other software for fault tree analysis such as ASTRA 2.0, ARALIA, RiskSpectrum and with the 
Markovian analysis tool XS-MKA. The experience gained with the test campaign was then summarised in a set 
of recommendations for future implementations.  
 
The next section gives an overview of the main probabilistic analysis equations implemented in ASTRA 3.0. 
The test cases are provided is Section 3. Section 4 summarizes main findings and highlights areas for further 
development… 
 



 

2. SUMMARY OF EQUATIONS FOR PROBABILISTIC ANALYSIS IMPLEMENTED IN ASTRA 3.0 
 
The following parameters results from the probabilistic analysis performed on the Labelled Binary Decision 
Diagrams (LBDD): 
− Unavailability; 
− Unconditional failure and repair frequencies; 
− Expected number of failure and repair; 
− Unreliability; 
− Characteristic times (MTTF, MTTR, MTBF); 
− Importance measures of basic events;  
 
This section contains the list of equations implemented in ASTRA. 
Details can be found in Contini-Matuzas (2009).  
 
2.1 Notation 
 
λ    Failure rate (constant) 
μ    Repair rate (constant) 
τ    Repair time (τ = 1 / μ) 
θ    Time between tests 
θ0    First time to test 
ω(t)    Unconditional failure frequency 
υ(t)    Unconditional repair frequency 
q(t)    Basic event unavailability 
ΛT(t)    Top event conditional failure frequency 
QT(t)     Top event Unavailability at time t 
QT(0)    Top event Unavailability at t=0 
WT(t)     Top event Expected number of failures in 0-t 
VS(t)    Top event Expected number of repair in 0-t 
FT(t)     Top event Unreliability in 0- t 
QCj(t)     Top event Unavailability at time t for the j-th MCS 
QCj(0)    Unavailability at t=0 for the j-th MCS 
WCj(t)     Expected number of failures in 0-t for the j-th MCS 
FCj(t)     Unreliability in 0- t for the j-th MCS 
MTBF     Mean Time Between failures  
MTTR    Mean Time To Repair  
MTTF     Mean Time To failure  
MTTFF  Mean Time To First Failure 
BE    Basic event 
MCS    Minimal Cut Set 
SMCS    Significant MCS 
Ne    Number of basic events of the fault tree 
n    Number of basic events in an MCS/SMCS  
T    Mission time 
pf

x(t)    Probability of failure critical state for the generic event x 
pr

x(t)    Probability of repair critical state for generic event x 
ICx(t)    Criticality index of event x at time t 
RAWx(t) Risk Achievement Worth of event x at time t 
RRWx(t) Risk Reduction Worth of event x at time t 
ISx     Structural criticality of event x 
 
 
 



 

2.2 Unavailability and failure frequency of basic events 
 
ASTRA 3.0 allows the use of four different types of components:   
− Un-repairable; 
− On-line maintained; 
− Periodically tested/inspected; 
− Acting on demand. 
 
The equations applied for determining the unavailability at basic event level are provided in Table 1. 
 
 
Table 1. Equations for determining the basic events’ unavailability  
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failure frequency 
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2.3 Unavailability of a simple module 
 
Let k be the k-th simple module of the modularized fault tree. 
 
The unavailability of a simple module Qk(t) is calculated on the LBDD as: 
 

)t(Q)]t(q1[)t(Q)t(q)t(Q x0xx1xk −+=  
 
Q1x(t) and Q0x(t) are respectively the unavailability of the left (successful state) and right (failed state) branches 
of the node and qx(t) is the unavailability of the basic event x associated to the node.  
 
If x represents a negated variable, say⎯x, then )t(q1)t(q xx −= . 



 

 
Probability of critical states for basic event x in a simple module 
 
Let φk(xk) be the logical function of the k-th simple module containing the vector of basic events 
xk=⎢x1,x2,..,xnk ⎢. 

}Pr{)t(p 0xk1xk
f
xk == φ∧φ=  is the probability that the generic event x ∈ xk is critical, i.e. the module is 

verified if x = 1 and is not verified if x = 0; 
 

}Pr{)t(p 1xk0xk
r
xk == φ∧φ=  is the probability that the generic event x ∈ xk in complemented form is critical, 

i.e. the module is verified if x = 0 and is not verified if x = 1; 
 
If the event x appears in the positive form only, then pr

x(t) = 0.  
If the event x appears in the negated form only, then pf

x(t) = 0.  
 
These values are calculated for each event in each simple module. 
 
 
2.4 Probabilistic quantification of the Top-module 
 
Top event Unavailability 
 
The variables in the LBDD of the Top-module can be simple modules and basic events. 
The Top event unavailability is calculated on the Top-module as a function of the unavailability of its variables 
by applying the same algorithm used for simple modules. 
Besides QTop(t) for 0 ≤ t ≤ T, if tested events are present, then ASTRA also calculates the mean value 
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Probability of critical states for basic events 
 
Indicating with pf

k(t) and pr
k(t) the probability of critical states for the simple module k in the Top-module, the 

values pf
x(t) and pr

x(t) for event x in the input tree are obtained by means of the following equations: 
 

)t(p)t(p)t(p)t(p)t(p r
k

r
x

f
k

f
xk

f
x +=       

 
)t(p)t(p)t(p)t(p)t(p r

k
f
xk

f
k

r
xk

r
x +=       

 
 
Unconditional failure and repair frequencies of the Top event 
 
The probability of critical state determined for all basic events allow calculating the unconditional failure and 
repair frequencies of the Top event. 
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The unconditional repair frequency is given by: 
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Top event Expected number of failures 
 
The Expected Number of Failures WT (t) is obtained as: 
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The ENF can also be interpreted as the upper bound for the unreliability FT(t).  

If ωT(t) ≈ constant then 
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Top event Expected number of repairs 
 
If there are neither INH gates nor tested events then also the Expected Number of Repair VT(t) is calculated as:  

ττυ= ∫ d)()t(V T
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T         

 
Top event Unreliability upper bound 
 
For safety applications the Expected Number of Failure is generally a good upper bound for the top-event 
unreliability FT(t), provided that the unconditional failure frequency is constant or approximately constant. 
A second bound for FT(t) is determined by ASTRA 3.0 when the unconditional failure frequency is not constant. 
In these cases the conditional failure frequency at Top level is determined on the basis of the unconditional 
failure frequency ωT(t) and unavailability QT(t), i.e.: 
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2.5 Importance measures of basic events 
 
The following importance measures are provided by ASTRA 3.0: 
• Probability of critical state; 
• Criticality; 
• Risk Achievement Worth; 
• Risk Reduction Worth. 
• Structural importance; 
 
For each importance measure two contributions are determined for events in double form, since such events are 
present in positive and negated forms. 
 
 
Probability of critical states pf

x(t) and pr
x(t) 

 
The equations for determining the probability of critical state pf

x(t) for positive variables and pr
x(t) for negated 

variables (or negated part of double form variables) have been given above.  
 
Criticality importance measure, ICx   

 
This index represents the probability that the event x is critical and its occurrence leads to system failure.  
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For negated variables: 
 

)t(Q
)t(q1)t(p)t(IC

T

xr
xx

−
=−         

 
 
Risk Achievement Worth, RAWx  

 
The RAW is defined as a measure of the increase of the system failure probability when x is supposed failed or 
removed e.g. for test/maintenance operations. In calculating the RAW it is important to consider all other 
components that are dependent by the failure / removal of x. According to the definition: 
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For negated variables: 
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Risk Reduction Worth RRWx  

 
The RRW is defined as a measure of the decrease of the system failure probability when x is supposed to be 
perfectly working: 
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For negated variables: 
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Structural importance ISx 

 
The Structural importance is determined by applying the equation pf

x(t) and pr
x(t) in which all events have 

probability 0.5.  
 
 
2.6 Probabilistic quantification of SMCS 
 
The determination of the SMCS is followed by the probabilistic quantification of each of them for the 
determination of: Unavailability, unconditional failure frequency, Expected number of failures, and 
Unreliability.  
 
 
 



 

Unavailability of a MCS 
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Expected number of failures of a MCS 
 
The ENF of a MCS is obtained by integrating, over the mission time interval, the unconditional failure 
frequency of the SMCS given by:  
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The above equation expresses the concept that the SMCS occurs in a time interval t, t+dt if: 

• n-1 events have already been occurred at t, given by )(
1
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• the last one occurs in dt, expressed as dtti )(ω  
 
The last event to occur may be the first, the second, and so on, that’s why the use of the summation. 
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Unreliability upper bound of a MCS 
 
As for the Top event, the unreliability of a MCS is calculated by means of the conditional failure frequency of 
the MCS.  
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2.7 Probabilistic quantification of initiating and enabling events  
 
The two descendants of an INH gate represent the initiator of a perturbation of one or more process variables 
beyond a safety threshold that, if not interrupted by the intervention of the protection system (enabler event) a 
dangerous situation arises.   
 
When the parameter of interest is the frequency of the catastrophic Top event then in equations (1), (2) and (3) 
enabler events are characterised by their on-demand unavailability qx(t) only, i.e. their unconditional the failure 
and repair frequencies are set to zero.  
 



 

3. RESULTS OF TESTS ON SELECTED SAMPLE CASES  
 
In this section the results of the performance of ASTRA 3.0 for a significant set of test cases, most of which 
taken from the scientific literature, are provided. The correctness of the results of ASTRA has been verified 
against the values reported in the various reference sources. Several test cases have been compared with the 
Markov modelling analysed by means of the software XS-MKA developed by  De Cola, (2005).  
Each test case taken from the literature is identified by means of the ASTRA filename and the bibliographical 
reference.  
For testing purposes the probabilistic values are represented with more than two significant digits. 
 
The considered examples range in complexity from a single component and simple fault trees up to complex 
fault trees. 
 
In this report for each test case the following information is given: 
− Name of the ASTRA input file;  
− Source of the test case; 
− ASTRA results and comparison with the results from the referenced source; 
− Conclusion on the results given by ASTRA; 
− Suggestions for further implementations (if any).  
 
Input files for all the test cases can be obtained, under request, from the authors. 



 

3.1. Simple systems with repairable, un-repairable and tested components 
 
3.1.1 Single repairable component 
 
Source: ASTRA Development team 
 
Problem description 
Determine the following parameters for a single repairable  component, at three different mission times. 
− Unreliability F 
− Unavailability Q 
− Expected number of failures W 
− Expected number of repair V 
− Mean Time Between failures MTBF 
− Mean Time To Repair MTTR 
− Mean Time To failure MTTF 
 
The component is characterised by: 
Failure rate λ = 1.0e-5 
Repair rate μ = 1.0e-2 
 
 
The following tables contain the results of the analysis performed by means of XS-MKA and ASTRA for 
different mission time intervals. 
 

 XS-MKA 
T = 103 

ASTRA 
T = 103 

 XS-MKA 
T=104 

ASTRA 
T=104 

 XS-MKA 
T=105 

ASTRA 
T=105 

F 9.95017e-3 9.95016e-3  9.51626e-2 9.51626e-2  0.632120 0.632120 
Q 9.98959e-4 9.98956e-4  9.99001e-4 9.99001e-4  9.99001e-4 9.99001e-4 
W 9.99100e-3 9.99100e-3  9.99011e-2 9.99011e-2  0.999002 0.999002 
V 8.99173e-3 8.99188e-3  9.89017e-2 9.89017e-2  0.998002 0.998002 

 
 

 XS-MKA ASTRA 
MTBF 1.00100e+5 1.00100e+5 
MTTR 100 100 
MTTF 1.0e+5 1.0e+5 
 
 
Conclusion. The comparison of the results given by ASTRA with those of XS-MKA proves that ASTRA works 
properly.  
 



 

3.1.2 Filename: Series1 
 
Source: Modarres book (1999), page 199. 
 
Problem description: 
Given the Series of three not repairable units, determine: system failure rate, unreliability at 1000 h and MTTF.  
 
Data: 

6e.41 −=λ   6e2.32 −=λ   6e8.93 −=λ  
 
Results: 
 

Parameter Modarres ASTRA 
Sλ  1.7 e-5 1.7 e-5 

)1000(FS  1.7 e-2 1.6856e-2 

SMTTF  58823 h 58855 h 

 
 
The small disagreements between the unreliability values is due to the approximation introduced in the 
reference source (use was made of 983.0)1000(RS =  instead of 9831.0)1000(RS = ).  
 
The difference between the values of MTTF is due to the different method used. In ASTRA the MTTF is 

calculated as dt))t(F1(MTTF
0
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Conclusion: ASTRA performs correctly. 
 
 
 
 



 

3.1.3 Filename: Series2 
 
Source: Kumamoto-Henley (second edition), Example 17, page 397. 
 
Problem description:  
Determine the unavailability and the unconditional failure frequency for each component of a Series of three 
repairable components. Mission time (hours):1100 h  
 
Data: 

Comp. Failure Rate Repair  Time 

1 1.0 E-03 10 

2 2.0 E-03 40 

3 3.0 E-03 60 
 
 
Results from K-H 

Component1:  q = 9.90e-3  ω = 9.90e-4 
Component2:  q = 7.41e-2  ω = 1.85e-3 
Component3:  q = 1.53e-1  ω = 2.54e-3 

 
 
Results from ASTRA 

 
Event  
Name 

Unavailability 
q 

Unconditinal 
failure freq. ω 

1=A 9.900990E-03 9.900991E-04 

2=B 7.407408E-02 1.851852E-03 

3=C 1.525424E-01 2.542373E-03 
 
Same case, but considering that the repair time is equal to zero. Mission time (hours):1100 h  
 
Results from K-H 

Component1:  q = 0.632 ω = 3.33e-4 
Component2:  q = 0.889 ω = 2.22e-4 
Component3:  q = 0.963 ω = 1.11e-4 

 
Results from ASTRA 
 

Event  
Name 

Unavailability 
q 

Unc. Failure  
Frequency ω 

1=A 0.6671289 3.328711E-04 

2=B 0.8891969 2.216063E-04 

3=C 0.9631168 1.106495E-04 

Comment:  good agreement, except for 
the unavailability of the first component, 
which is wrong in the K-H book 
(printing mistake). 
 
Conclusion: ASTRA performs correctly.  



 

3.1.4 Filename: Parallel1 
 
Source: Modarres book, page 202. 
 
Problem Description: 
Given a Parallel System of three not repairable units, determine: the system unreliability at 1000h and the 
MTTF. 
 
 Data: 

6.41 −= eλ   6e2.32 −=λ   6e8.93 −=λ  
 
Results: 

Parameter Modarres ASTRA 
)1000(FS  1.25 e-7 1.2439e-7 

SMTTF  4.35 e+5 h 4.35 e+5 h 

 
 
The following picture shows the curves of the unreliability and of the increasing unconditional failure frequency 
(conservative approximation of the failure rate) for the parallel system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Modarres the MTTF is calculated analytically. 
 
The small difference between the values of MTTF is due to the different method used. In ASTRA the MTTF is 

calculated as dt))t(F1(MTTF
0

SS ∫
+∞

−= . The precision of the result depends on the integration parameter εr, 

representing the relative error.  
 
For this test case the following table shows the variation of the calculated MTTF as a function of εr. The last 
column contains the running times 
 

εr MTTF(h) Time (s) 
10-3 94842  < 0.1 
10-4 335230 < 0.1 
10-5 422600 0.29 
10-6 433785 0.5 
10-7 434950 0.68 
10-8 435070 1.1 

 

F(t) 

ω(t) 



 

 
The MTTF could also be calculated with a separate run in which the mission time is set very long. Considering 
for instance the mission time of 107 h for the parallel system, ASTRA gives the exact value, i.e. MTTF = 
435080 in about 0.03 seconds. 
 
These results seem to suggest that it is preferable to perform a separate run for the determination of the MTTF 
for systems with non repairable components.  
Moreover, since the numerical integration is time consuming it is suggested to adopt the approximated 
expression applicable when the system failure rate is constant. 
 
 
 
3.1.5 Filename: And-Rip 
 
Source: ASTRA Development team. 
 
Problem Description: 
Given a Parallel System of two repairable units,  
determine: 
− The steady-state system unavailability, Q; 
− The mean time between failures, MTBF; 
− The mean time to repair, MTTR; 
− The mean time to failure, MTTF; 
− The conditional failure frequency Λ; 
− The conditional repair frequency M. 
 
 Data:    
λ1 = 1 e-3, μ1 = 0.1 
λ2 = 1 e-4, μ2 = 0.01 
 
The reference tool used is XS-MKA implementing the markovian analysis. 
  

Parameter XS-MKA ASTRA 
Q 9.8029 e-5 9.8029 e-5 
MTBF 9.2736 e 4 9.2736 e 4 
MTTR 9.0909 9.0909 
MTTF 9.2727 e4 9.2727 e4 
Λ 1.0784 e-5 1.0784 e-5 
M 0.11 0.11 

 
The analysis with ASTRA has been performed using a mission time of 100,000 h. 
 
Conclusion: From the content of the above table it is possible to conclude that ASTRA performs correctly. 

2 

1 



 

3.1.6 Majority voting system with not repairable components 
 
Source: Rausand & Houland book, page 161. 
 
Problem Description 1: 
Given a system composed of N components. The system works if at least K out of N components work, 
indicated as K/N or KooN. Determine the system unreliability at 1000h and the MTTF. 
Data: 40.1 −= eλ for all components     
 
The Reliability (survival probability) for KooN redundant configurations in the hypotheses of identical 
components is given by: 
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The following Table gives the expressions for the MTTF for different configurations of identical components. 
 
K                 N 1 2 3 4 5 
1 1/λ 3/2λ 11/6λ 25/12λ 137/60λ 
2 --- 1/2λ 5/6λ 13/12λ 77/60λ 
3 --- --- 1/3λ 7/12λ 47/60λ 
4 --- --- --- 1/4λ 9/20λ 
5 --- --- --- --- 1/5λ 

 
 
In this table 1ooN represents a parallel configuration since we are determining the reliability (the system works 
if at least one component out of N works), whereas KooN is a series configuration (the system works if all 
components work).  
 
The results for equal components with 40.1 −= eλ  are as follows. 
 
K                 N 1 2 3 4 5 
1 1e+4 1.5e+4 1.8333e+4 2.0833e+4 2.2833e+4 
2 --- 5e+3 8.333e+3 1.0833e+4 1.2833e+4 
3 --- --- 3.3333e+3 5.8333e+3 7.8333e+3 
4 --- --- --- 2.5e+3 4.5e+3 
5 --- --- --- --- 2.0e+3 

 
 
Problem Description 2: 
The objective is to determine the MTTF of different configurations using the fault tree technique. Since the FTA 
refers to the unreliability, the equations for determining the MTTF change since the working logic is different 
from the failure logic. Indeed, in the failure logic 1ooN represents a series configuration (the system fails if at 
least one component out of N fails), whereas NooN is a parallel configuration (the system fails if all components 
fail). Moreover if the system works with K components working, it will fail if N-K+1 component fail.  
 
 
 
 
 
 



 

Therefore the KooN in the first Table become (N-K+1)/N in the following Table. 
 
K                 N 1 2 3 4 5 
1 1/λ 1/2λ 1/3λ 1/4λ 1/5λ 
2 --- 3/2λ 5/6λ 7/12λ 9/20λ 
3 --- --- 11/6λ 13/12λ 47/60λ 
4 --- --- --- 25/12λ 77/60λ 
5 --- --- --- --- 137/60λ 

 
The results for equal components with 40.1 −= eλ  determined using ASTRA 3.0 are as follows. 
 
K                 N 1 2 3 4 5 
1 1e+4 5e+3 3.3333e+3 2.5e+3 2.0e+3 
2 --- 1.5e+4 8.333e+3 5.8333e+3 4.5e+3 
3 --- --- 1.8333e+4 1.0833e+4 1.2833e+4 
4 --- --- --- 2.0833e+4 7.8333e+3 
5 --- --- --- --- 2.2833e+4 

 
 
These results have been obtained using the “Relative error parameter RE” = 1e-4 and a very long mission time T 
= 1.0e+6. Indeed, as already pointed out, the computation time for the determination of the unreliability is lower 
using a very long mission time.  
 
The precision of the results depends also on the failure rate value. Consider some of the above configurations 
and suppose that λ = 1e-7. The following table gives the ASTRA results obtained using different values for the 
“Relative error parameter”. The calculations have been performed using a mission time T = 1.0e+6. 
 
Working 
logic 

MTTF exact 
value 

Failure 
logic 

MTTF (h)  
RE = 1e-6 

MTTF (h)  
RE = 1e-7 

MTTF (h)  
RE = 1e-8 

1oo2  1.5e+7 2oo2 1.361375e+7 1.485121e+7 1.498501e+7 
2oo2  5.0e+6 1oo2 6.10701e+6 6.10701e+6 6.10701e+6 
2oo3 8.33333e+6 2oo3 7.920150e+6 8.291366e+6 8.329153e+6 
2oo4 1.083333e+7 3oo4 1.028207e+7 1.077836e+7 1.082789e+7 
2oo5 1.283333e+7 4oo5 1.216790e+7 1.276786e+7 1.282687e+7 
3oo4 5.833333e+6 2oo4 5.634183e+6 5.813490e+6 5.831369e+6 
4oo4 2.5e+6 1oo4 2.439027e+6 2.493765e+6 2.499375e+6 
4oo5 4.5e+6 2oo5 4.382567e+6 4.488402e+6 4.498856e+6 

 
Therefore it is advisable to determine the MTTF using different values of RE, with a very long mission time, in 
order to judge the suitability of the chosen parameters’ values.  
 
Conclusion: From the content of the above table it is possible to conclude that ASTRA works correctly. 
 
Suggestion: implement the exact formula for MTTF of not repairable configurations  
 



 

3.1.7 Majority voting system with tested components and different testing policy 
 
Source: JRC ASTRA development team 
 
Problem description: 
Determination of the point-wise and of the mean unavailability of a 2oo3 system considering the three different 
types of testing policy: simultaneous, sequential and staggered. 
 
Top = a b + a c + b c   
 
The system contains equal components characterised by the following data: 

- failure rate  = 1.e-4 
- repair time  = 1  h 
- test interval = 100 h  

 
 
1. Simultaneous testing policy.  Filename: Tested-Simultaneous-2oo3  
 
 
Components are all put off-line for testing and repair for a time interval given by the sum of the repair time of 
each component. In the hypothesis that the duration of the test is negligible, the data to be used are as follows: 
 

x λ h-1 τ  h θ  h θo h 

A  1.e-4 3 100 0.0 
B  1.e-4 3 100 0.0 
C  1.e-4 3 100 0.0 

 
 
The unavailability of each component is shown in the following figure.  

 
 
At both system and components level the unavailability has the classical saw-tooth behaviour.  
The maximum value of the components’ unavailability is about 10-2 just before the test. 
The mean system unavailability is 9.8500 x 10-5, which follows the behaviour displayed in the following figure. 
The maximum value of the 2oo3 system unavailability is 3.00927 x 10-4. 
 



 

 
 
 
2. Sequential testing policy.  Filename: Tested-Sequential-2oo3 
 
Components are tested one after the other. Only one component is put off line, tested and immediately put on-
line before testing the next component. Suppose that each component is tested after 2 h from the initial testing of 
the previous one (θ0 values). Under these hypotheses the data used are as follows: 
 

x λ h-1 τ  h θ  h θo h 

A  1.e-4 1 100 0.0 
B  1.e-4 1 100 2 
C  1.e-4 1 100 4 

 
 
The plot of the unavailability of all components is shown in the following figure. 
 

  
Concerning the system unavailability the mean value is equal to 9.481495 x 10-5, which follows the behaviour 
displayed in the following figure. The maximum value of the unavailability is 2.89223 x 10-4. 
 



 

 
 
 
3. Staggered testing policy. Filename: Tested-Staggered-2oo3 
 
Components are tested one after the other at regular intervals of time. If θ is the test interval, then the first 
component is tested at t = 0 (first test at θ0 = 0), the second at t = θ / 3 (θ0 = 33.33 h) and the third at  
t = 2θ /3 (θo = 66.66 h). In the hypothesis that the time to test duration is negligible, the data used are as 
follows: 
 

x λ τ θ   θ0 

A  1.e-4 1 100 0.0 
B  1.e-4 1 100 33.33 
C  1.e-4 1 100 66.66 

 
The plot of the unavailability of the three components is as follows. 
 

 
 
Concerning the system unavailability the mean value is equal to 5.9295 x 10-5, which follows the behaviour 
displayed in the following figure, whereas the maximum value of the unavailability is equal to  
1.25047 x 10-4. 
 

B A C



 

 
 
 
Comparing the three policies it can be noticed, as expected, that the best one is the symmetrical Staggered 
testing. Indeed the mean unavailability of a system under Staggered testing is about 2/3 of the unavailability 
under sequential testing. 
 
The check of the correctness of results given by ASTRA has been performed by hand.  
 
The following table summarises the results 
 
Policy Mean Unavailability Max. unavailability 
Simultaneous 9.85 x 10-5 3.00 x 10-4 
Sequential 9.48 x 10-5 2.89 x 10-4 
Staggered 5.93 x 10-5 1.25 x 10-4 

 
 
Suggestions:  
1) print the max value of Q instead of the value at the mission time if the fault tree contains at least a tested 
event; 
2) add the test duration to the list of data of basic events and modify the equation for determining q(t). 



 

3.2 IEC 61508 standard: Analysis of High Integrity Protection Systems (HIPS)  
 
At the time the specifications of ASTRA were written, there was no idea to meet the requirements of the 
international standard IEC 61508 “Functional safety of electrical/electronic/programmable electronic safety-
related systems”. However, during the ASTRA testing phase it was recognised the need to make ASTRA 
conform to the requirements of the standard by making some minor implementations. As a matter of fact the 
current version of the software is able to deal with such protection systems, but only in those particular cases in 
which the detection system is not present. In general, to correctly model the safety system failure the fault tree 
requires representing each basic event as the OR of two events. This is because the IEC standard considers the 
component failure rate λD (D stands for dangerous) as given by the Detected part (λDD) and the Undetected part 
(λDU).  The first accounts for the failures that can be on-line detected and the second for those that can be 
detected only at test time intervals. In ASTRA the first type of failure is typical on the on-line maintained 
components and the second of tested / inspected components. 
 
The examples given below intend to show on the one hand the practical possibility of the current ASTRA 
version to deal with the analysis of protective systems requiring the conformance to the standard, and on the 
other hand to show which new implementations should be performed to facilitate the system modelling. 
 
 
 
3.2.1 Filename: IEC-1oo2 
 
Source: IEC 61508-6, 2001 – Appendix B 
 
Problem Description: 
Given a 1oo2 Protection System the aim is to determine the Probability of Failure on Demand (PFD) 
considering random failures and Common Cause Failures (CCF) as described in the IEC Standard.  
 
In the considered example the Diagnostic System is able to detect a fraction DC (Diagnostic Coverage) of all 
failures of each channel. Channels are considered to be equal.  
CCF analysis is performed considering the Beta factor model with β = 10% for the un-revealed faults and βD = 
5% for revealed faults. 
 
 
 
 
 
 
 
 
 
 
 
In order to solve this simple problem, two extra data are to be added to the basic events’ parameters and 
consequently the equation of tested events must be modified.  
 
Taking into account the equations implemented in ASTRA 3.0, the problem can be modelled via fault tree as 
follows, where each component is represented by the OR of two events, one for modelling the un-revealed fault 
(tested event) and another for the revealed fault (on-line maintained event).  
 

Channel 1 

Diagnostics 

Channel 2 

1oo2 Common 
cause failure



 

 
 
The failure rate of events AT, BT, representing un-revealed faults, is respectively: λT = λDD(1-DC); whereas the 
failure rate for AR, BR, representing the revealed faults is λR = λDD  DC.  
 
With the inclusion of the CCF analysis, the failure rates of events XT and XR are respectively: 
− for un-revealed faults λT = λDD(1-DC) β; 
− for revealed faults λR = λDD  DC β.  
 
For each basic event the data used are given in the following table. 
  

 
 
The results, for different DC values, are reported below in which the second column contains the values taken 
from the IEC standard. 
 
 

DC PFD according to IEC ASTRA 
0% 8.8 e-3 8.79 e-3 
60% 2.8 e-3 2.76 e-3 
90% 6.0 e-4 5.79 e-4 
99% 6.6 e -5 6.34 e-5 

 
 
The differences between the Standard and ASTRA are due to the different degree of approximation of the 
equations used. The IEC Standard uses slightly approximated equations, whereas ASTRA uses exact equations. 
This explains the slightly lower values of the latter with respect to the former.  

Data used. 
λDD = λDU= λ/2 = 2.5 e-5 
MTTR = 8 h 
Time to test = 4380 h 
DC = 0%; 60%; 90%; 99% 
β = 10% and βD = 5%. 
Time horizon: 23,000 h 



 

3.2.2 Filename: IEC+CCF  
 
Source: IEC 61508-6, 2001 – Appendix B 
 
Problem Description: 
Given a Protection System configured as a 2oo3 systems (the signal from two channels are necessary for 
satisfying the working condition) the aim is to determine the Probability of Failure on Demand (PFD)  
considering both random failures and Common Cause Failures.  
 
 
 
 
 
 
 
 
 
 
 
 
Taking into account the equations implemented in ASTRA 3.0, the problem can be modelled via fault tree as 
follows.  
 

 
 
The results are reported in the following table 
 
 

DC PFD according to IEC ASTRA 
0 1.5 e-2 1.49 e-2 
60 3.9 e-3 3.87 e-3 
90 6.8 e-4 6.57 e-4 
99 6.7 e-5 6.38 e-5 

 
Also in this example each component is represented as the disjunction of two events, for dealing respectively 
with the unrevealed failures (tested event) and revealed failures (on-line monitored). 
 
 

Channel 1 

Diagnostics 

Channel 2 

2oo3 Common 
cause failure

Data used. 
λDD = λDU= λ/2 = 2.5 e-5 
MTTR = 8 h 
Time to test = 4380 h 
DC = 0%; 60%; 90%; 99% 
β = 10% and βD = 5%. 
Time horizon: 23,000 h 

Channel 3 



 

3.2.3 Filename: DRS 
 
Source: Dutuit, Rauzy, Signoret, ESREL 2006, pag 1619 
 
Problem Description: 
Given a Protection System configured as a 2oo3 with a logic solver and two actuators the aim is to determine 
the Probability of Failure on Demand (PFD) considering both random failures and Common Cause Failures. In 
this case it is assumed that DC = 0%. 
 
The fault tree and the basic events data are as follows: 
 

 
 
The authors of the paper determined the 
PFD using a mission time of 23,800 h. The 
PFD was calculated with different time 
intervals dt to show its the effect on the PFD 
value. With dt = 1 h they found, by means 
of Aralia, PFD = 6.374 x 10-3, 
corresponding to a SIL 2 level.   
The analysis of the fault tree with ASTRA 
gives the same result: PFD = 6.370 x 10-3 
 
As pointed out by Dutuit et al., the mean 
value of the PFD is not sufficient to state 
that the protective system presents a given 
SIL level. Indeed, the unavailability 
function has the classical saw-tooth 
behaviour with peaks that may enter in a 
lower SIL level region, as can be seen from 
the graph on the right.  
 
Dutuit and al. calculated that for the present example the peak value of the unavailability on demand was greater 
that 10-2, corresponding to SIL1, for about 12% of the mission time, corresponding to 2865 h, a figure that 
cannot be considered negligible.  
 
Another example is shown in the following figure which is the plot given by ASTRA of the unavailability of the 
2oo3 system with CCF and DC = 99%. In spite of the mean value Q = 6.38e-5 which positions the system at the 
SIL 4 level, the peak unavailability is greater than 10-4, corresponding to a SIL 3 system. More precisely, the 
system will work as a SIL 3 for a certain period of time during which the plant safety is lower than expected.  
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the above simple example it is evident that ASTRA can be correctly applied to analyse HIPS according to 
the standard IEC 61508. Even if it is possible to get the correct results by splitting events when DC > 0%, it is 
more convenient to implement what is needed to reduce the modelling effort.  
 
 
Suggestion: 
In order to represent each component failure mode with a single event it is necessary to: 
− Add the field DC among the basic events’ parameters; 
− Determine the Maximum value of Q and possibly the time spent in each SIL level. 
− Evaluate the need to associate the Beta factor to a set of selected events (CCF analysis). 
 
 

Mean  
unavailability 

Peak unavailability 

SIL 4 
region 

SIL 3 
region 



 

3.3. Importance analysis  
 
3.3.1 Filename: Importance1 
 
Source: Modarres book, page 361 
 
Problem description: 
Determine the Birnbaum importance of each component at 720 hours. 
 

         Components failure data 
 

Event 
Name 

Failure 
Rate 

1  1.0E-05 
2  1.0E-04 
3  1.0E-04 
4  1.0E-04 

 
 
 
In Modarres the importance indexes are calculated with reference to the reliability. However, the book contains 
a typing mistake; it is easy to verify that the reliability values calculated for each of the three components 
correspond to a failure rate of 10-3 and not 10-4 as reported.  
System Reliability at 720 h: 0.859, corresponding to F = 1 – R = 0.141. 
Birnbaum importance values calculated at 720 h: 
 

865.0)720t(IB
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4

B
3 ====  

 
Results from ASTRA 
In order to compare the above figures with the results given by ASTRA, the correct failure rate (10-3) is 
considered.  
Unavailability:  0.1414  Number of MCS:  2 
 
Birnbaum Importance values 
 

 

 
Conclusion: The result obtained with ASTRA perfectly agrees with those from the referred source.  

Event  
Name 

Importance 
Contribution 

1 0.86479 

2 0.26153 

3 0.26153 

4 0.26153 

1 

4 

3 

2 



 

3.3.2 Filename: Importance2 
 
Source: Modarres example 6.6, page 365 and 6.7 page 367 
 
Problem description:  
Determine the Birnbaum, Criticality, Risk Achievement Worth (RAW), Risk Reduction Worth (RRW) and 
Fussell-Vesely importance of the components in the following system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Results from Modarres 
 
System Reliability: 0.989 corresponding to the unreliability of F = 1.1 E-2 
 
Importance of components. 
 

Component Birnbaum Criticality RAW RRW F-V 
V  1 1 90.91 12.2 0.9 
P1 0.03 0.029 3.64 1.1 0.08 
P2 0.03 0.029 3.64 1.1 0.08 

 
 
Results from ASTRA. 
 

System Unreliability: F = 1.0891E-02 

 
Importance of components. 
 

Component Birnbaum Criticality RAW RRW F-V 
V  0.9991 0.917 91.81 12.10 -- 
P1 0.0297 0.0818 3.645 1.089 -- 
P2 0.0297 0.0818 3.645 1.089 -- 

The current version of ASTRA does not calculate the F-V measure, since in practice the F-V measure is  
very close to the Criticality measure. 

 
All results are slightly different. Apart from the Criticality values for both pumps, the reason for the difference 
relies on the different precision of the equations used. The exact equations, manually applied for the calculation 
of the Criticality of P1 and P2, gives the same results of ASTRA, i.e. the Criticality indexes in the reference 
source are approximated. 

P2 

V 

P1 
RV = 0.01 

RP1 = 0.03 

RP1 = 0.03 



 

3.3.3 Filename: Importance3 
 
Rausand book page 134 
 
Problem description:  
determine the structural importance for the 2/3 system. 
 
 
 
 
 
 
 
 
 
 
  
 
Results from Rausand: IS = 0.5 for all components. 
 
 
Conclusion: ASTRA results: same values. 
 
 
 
3.3.4 Filename: Importance4 
 
Rausand book page 134 
 
Problem description:  
determine the structural importance for a series-parallel system. 
 
 
 
 
 
 
 
 
Results from Rausand: 

- Component 1:  IS = 3/4     
- Component 2:  IS = 1/4     
- Component 3:  IS = 1/4     

 
ASTRA results: same values. 
 
 
Conclusion: The results obtained with ASTRA perfectly agree with those from the referenced source.  
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3.3.5 Filename: Importance5 
  
Source: Henley-Kumamoto (first edition), page 434 + Table 10.3. 
 
Problem description: 
Determine Unavailability, Birnbaum and Criticality importance indexes for a majority voting system (2/3).  
Mission time: 20 h  
 
 
 
 
 
 
 
 
Components Data 
 

Comp. 
Name 

Failure 
Rate 

Repair 
Time 

1 1.0E-03 10 

2 2.0E-03 40 

3 3.0E-03 60 
 
 
Results from H-K:  
 
Component1:  IB = 7.89e-2  IC = 0.305 
Component2:  IB = 5.77e-2  IC = 0.803 
Component3:  IB = 3.92e-2  IC = 0.875    
 
 
Results from ASTRA 
 
 

Event  
Name 

Birnbaum Criticality 

1 7.744733E-02 3.025462E-01 

2 5.734178E-02 8.062145E-01 

3 3.896427E-02 8.792604E-01 
 
 
The calculation with Matlab of the Birnbaum index gave results that agreed with those of ASTRA, i.e.: 
Component1:  IB = 7.74e-2   
Component2:  IB = 5.73e-2   
Component3:  IB = 3.90e-2      
 
Conclusion: The results supplied by ASTRA are correct.  
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3.3.6 Filename: Importance6 
 
Source: Kumamoto-Henley (first edition), page 422 + Table 10.2.  
 
Problem description: 
Determine Unavailability, Birnbaum and Criticality importance indexes for a majority voting system (2oo3) 
made up of not repairable components.  Mission time: 20 h  
 
Test: Unavailability, Birnbaum and Criticality importance indexes. 
 
Components Data 
 

Comp. 
Name 

Failure 
Rate 

1 1.000000E-03 

2 2.000000E-03 

3 3.000000E-03 
 
 
Results from H-K 
 
Unavailability: QS = 4.12258e-3 
 
Component1:  IB = 9.2879e-2  IC = 0.811666 
Component2:  IB = 7.5730e-2  IC = 0.72028 
Component3:  IB = 5.7459e-2  IC = 0.446111 
 
 
Results from ASTRA 
 
Unavailability: QS = 4.122576e-3 
 

Event 
Name 

Birnbaum Criticality 

1 9.287914E-02 8.116660E-01 

2 7.573052E-02 7.202866E-01 

3 5.745905E-02 4.461119E-01 
 
 
 
Conclusion. The result obtained with ASTRA perfectly agrees with those from the referred source.  
 
 
 
 
 
 
 
 
 
 
 
 



 

3.3.7 Filename: Importance7  
 
Source: Dutuit - Rauzy, (2001). 
 
Problem description: 
Determine Unavailability, Birnbaum, Criticality, RAW and RRW for the reliability Block Diagram (RBD) 
reported below (bridge system). 
 
 
 
 
 
 
 
 
 
 
 
 
Results from the source are as follows. 
 
Comp. MIF Criticality RAW RRW 

a 0.22 0.0940171 1.84615 1.10377 
b 0.125 0.106838 1.42735 1.11962 
c 0.06 0.0769231 1.17949 1.08333 
d 0.505 0.863248 2.29487 7.3125 
e 0.3848 0.822222 1.82222 5.625 

 
Since the system is coherent, MIF is the Birnbaum importance index. 
 
The analysis with ASTRA required the transformation of the RBD into a fault tree and then the analysis of the 
resulting fault tree. Results are as follows: Unavailability Qs = 0.234. Number MCS = 4. 
Importance analysis:  
 
Comp. MIF Criticality RAW RRW 

a 0.22 0.0940171 1.846154 1.103774 
b 0.125 0.1068376 1.427350 1.119617 
c 0.06 0.0769231 1.179487 1.083333 
d 0.505 0.8632479 2.294872 7.31250 
e 0.3848 0.8222222 1.822222 5.6250 

 
 
Conclusion. The result obtained with ASTRA perfectly agrees with those from the referred source.  
 
 

a

b

d

e

 
c 

IN OUT 

P(a)  = 0.1 
P(b)  = 0.2 
P(c)  = 0.3 
P(d)  = 0.4 
P(d)  = 0.5 



 

Markov state diagram (from the XS-MKA Software) 

3.4. Modelling catastrophic Top-events using the extended INH gate 
 
3.4.1 Filename:  INH1 
 
Source: Ericson, page 330.   
 
Problem description: 
A system is comprised of two components: A monitors the operation of the component B. System failure occurs 
if both fail, but only if A fails before B. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Component A: λA = 1.e-6 μA = 0 
Component B: λB = 1.e-7 μB = 0 
 
 
This problem can be solved using the Markov approach.. The state diagram is as follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ASTRA allows solving this problem by modelling it by means of an extended implementation of the INH gate.   
In ASTRA the initiating and enabling events can also be complex events (sub-trees) not necessarily 
independent. Common event are treated as initiators. 
Initiator events cause perturbations of process variables; enabling events are associated with the failure on 
demand of protective systems. An accident occurs if at the time of occurrence of the initiating event (plant 
perturbation) the enabling event (protective system) has already occurred (failed) or it occurs at the time it is 
called to intervene.    

System failure 

Failure of B 
(initiating) 

Failure of A 
(enabling) 

A before B 

A fails B fails 



 

The modelling of the above system by means of the fault tree technique is as follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The following table shows the comparison of the unavailability values Qs(t) (which is equal to the unreliability 
F(t) since components are not repairable) obtained using the Markovian approach with those calculated by 
ASTRA, in which the problem is modelled using the (extended) INH gate. 
 
 

Mission time 
(h) 

Markov 
Q(t) 

ASTRA 
Q(t) 

100 4.99980E-10 4.99979E-10 

1,000 4.99800E-8 4.99794E-8 

10,000 4.98006E-6 4.97943E-6 

100,000 4.80542E-4 4.79950E-4 

1,000,000 3.45145E-2 3.41377E-2 

10,000,000 5.41213E-1 4.93338E-1 
 
 
Conclusion: The agreement is very good for all values of practical interest.  

System failure 

Failure of B 
(initiating) 

Failure of A 
(enabling) 

ASTRA representation  



 

Markov state diagram for the system with 
sequential failures  

System model using the extended  
INH gate of ASTRA. 

3.4.2 Filename:  INH2 
 
Source: Ericson, page 330.   
 
Problem description: 
A system is comprised of two components: A monitors the operation of the component B. System failure occurs 
if both fail, but only if A fails before B. The aim is to determine the probability of system failure F(t) for 
different mission times. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Component A: λA = 1.e-4  μA = 0.01 
Component B: λB = 1.e-5  μB = 0.01 
 
 
 
 
 
The following table shows the comparison of the unreliability values Fs(t) obtained using the markovian 
approach (software XS-MKA) and the fault tree technique (ASTRA). 
 
 

Mission time 
(h) 

Markov 
F(t) 

ASTRA 
F(t) 

1,000 8.90125 e-5 8.91150 e-5 

10,000 9.77870 e-4 9.78822 e-4 

100,000 9.82286 e-3 9.83254 e-3 

1,000,000 9.40554 e-2 9.41647 e-2 

10,000,000 0.62693 0.62805 
 
 
 
Conclusion: The agreement between Markov and ASTRA is very good for all values.  
 

System failure 

Failure of B 
(initiating) 

Failure of A 
(enabling) 

A before B 

A fails B fails 

System failure 

Failure of B 
(initiating) 

Failure of A 
(enabling) 



 

3.4.3 Filename: INH2-rep 
 
Source: ASTRA Development team.  
 
Problem description: 
A system is comprised of two components: A monitors the operation of the component B. System failure occurs 
if both fail, but only if A fails before B. The aim is to determine all parameters for three different mission times. 
 
The Markov state diagram is as follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The results obtained are given in the following  
 
 
 
 MKA 

T = 103 
ASTRA 
T = 103 

 MKA 
=105 

ASTRA 
T=105 

 MKA 
T=107 

ASTRA 
T=107 

F 8.90125 e-5 8.91150 e-5  9.82286 e-3 9.83254 e-3  0.62693 0.62805 
Q 9.8855 e-6 9.89024 e-6  9.89100 e-6 9.89101 e-6  9.89100 e-6 9.89101 e-6 
W 8.91148 e-5 8.91220 e-5  9.88120 e-3 9.88130 e-3  0.9890903 0.9890987 
 
 
 MKA ASTRA 
MTBF 1.011020 e+7 1.011010 e+7 
MTTR 100 100 
MTTF 1.010010 e+7 1.011000 e+7 
 
Conclusion: The comparison of the results given by ASTRA with those obtained from XS-MKA show a very 
good agreement.  
 
 
Suggestion: Remove the calculation of V(t) due to the low relevance. 

System failure 

Failure of B 
(initiating) 

Failure of A 
(enabling) 



 

3.4.4 Filename:  INH3 
 
Source: Ericson, page 331 
 
Problem description: 
A system is comprised of two components: A monitors the operation of the component B. However, A can 
monitor only 80% of B. If it detects any failure in B, it takes corrective action. System success requires that B 
must operate successfully. System failure occurs if B fails, which can only happen if A fails to detect a problem 
with the monitored portion of B, or if the unmonitored portion of B fails. 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 Fault tree of the reference source    ASTRA representation 
 
Component A:   λA = 1.e-4  μA = 0 
Component B1: λB = 1.e-5  μB = 0 
Component B2: λB = 1.e-5  μB = 0 
 
The following table shows the comparison of the unreliability values Fs(t) obtained using the markovian 
approach with those calculated by ASTRA, in which the problem is modelled using the (extended) INH gate. 
 

Mission time 
(h) 

Markov ASTRA 

100 0.0001 0.0001 

1,000 0.010314 0.0103010 

10,000 0.103269 0.103186 

100,000 0.666795 0.666151 

1,000,000 0.999982 0.999983 
 
Conclusion: The agreement between Markov and ASTRA is very good for all values.  

Monitored B 
fails 

A before B 

Monitor A 
fails 

B2 fails 

Unmonitored B 
fails (B1) 

System 
fails 

Failure of B 
(initiating) 

Failure of A 
(enabling) 

Unmonitored B 
fails (B1) 

System 
fails 

Monitored B 
fails 



 

3.4.5 Filename: OR-two-INH 
 
Source: ASTRA development team 
 
Problem Description:  
Two process variables A and C are monitored respectively by two other components B and D. The two INH 
gates are connected through a logical OR gate, meaning that the output catastrophic event occurs if at least one 
event occurs. 
The following figures show respectively the fault tree modelling by means of two INH gates and the Markov 
state diagram representation. 
The aim is to determine the system failure probability (unreliability) for different mission times. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Failure of C 
(initiating) 

Failure of D 
(enabling) 

Occurrence 1st 
event 

Failure of A 
(initiating) 

Failure of B 
(enabling) 

Occurrence 2nd  
event 

System 
failure 

ASTRA modelling 

XS-MKA 
Markovian  State diagram 



 

The comparison between the results obtained with XS-MKA and ASTRA are given in the following table. The 
very high mission times are considered for comparison purposes. 
 
 

Mission time 
(h) 

XS-MKA 
F(t) 

ASTRA 
F(t) 

1000 1.77652 e-4 1.78229 e-4 

10,000 1.95254 e-3 1.95674 e-3 

100,000 1.95271 e-2 1.95687 e-2 

1,000,000 0.17896 0.17946 

10,000,000 0.85929 0.86168 
 
 
From the table it is possible to see that the agreement is very good for all mission times. 
 
 
 
Problem description 
Same as before, but considering the restoration of the initiating event with μ=0.01 (for each failure state the 
transition is to the closest state, e.g. from state 6 to state 1, from 8 to 4). 
Results are shown for three mission times. 
 
 

 XS-MKA 
T = 103 

ASTRA 
T = 103 

 XS-MKA 
T=105 

ASTRA 
T=105 

 XS-MKA 
T=107 

ASTRA 
T=107 

F 1.77652 e-4 1.78230 e-4  1.95271 e-2 1.95688 e-2  0.859295 0.861684 
Q 1.97480 e-5 1.97821 e-5  1.97609 e-5 1.97821 e-5  1.97609 e-5 1.97821 e-5 
W 1.77869 e-4 1.78242 e-4  1.97411 e-2 1.97624 e-2  1.97607 1.97817 

 
 
 XS-MKA ASTRA 
MTBF 5.060496 e+6 5.055100 e+6 
MTTR 100 100 
MTTF 5.065355 e+6 5.055000 e+6 

 
 
Conclusion: The comparison of the results given by ASTRA with those obtained from XS-MKA show very 
good agreement.  
 
Note that if the enabling branch of the two INH gates is the same event / sub-tree, i.e. B = D, then the above 
fault tree is equivalent to the following one:  
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Failure of 
A or C 

Failure of B 

System 
failure 

Failure of C Failure of A 



 

3.4.6 Filename: AND-two-INH 
 
Source: ASTRA development team 
 
Problem Description:  
Two process variables A and C are monitored respectively by two other components B and D. The two INH 
gates are connected with a logical AND, meaning that the output event occurs if both events occur. 
The following figures show respectively the fault tree modelling by means of two INH gates and the Markov 
state diagram representation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The comparison between the results obtained with XS-MKA and ASTRA are given in the following 
 table. The very high mission times are considered to compare the two different modelling.  
 
 

Failure of C 
(initiating) 

Failure of D 
(enabling) 

Occurrence 1st 
event 

Failure of A 
(initiating) 

Failure of B 
(enabling) 

Occurrence 2nd  
event 

System 
failure 

ASTRA modelling 

 
XS-MKA 
Markovian  State diagram 



 

Mission time 
(h) 

Markov 
F(t) 

ASTRA 
F(t) 

1000 1.51583 e-9 1.60048 e-9 

10,000 1.91516 e-8 1.92105 e-8 

100,000 1.95512 e-7 1.95311 e-7 

1,000,000 1.95912 e-6 1.95632 e-6 

10,000,000 1.95950 e-5 1.95662 e-5 

100,000,000 1.95937 e-4 1.95647 e-4 

 
 
Conclusion: From the table it is possible to see that the agreement is very good for all mission times. 
 
 
Note that if the enabling branch of the two INH gates is the same event / sub-tree, i.e. B = D, then the above 
fault tree is equivalent to the following one:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Failure of 
A and C 

Failure of B 

System 
failure 

Failure of C Failure of A 



 

3.5 Test on Exclusive OR (XOR) 
 
The use of the XOR logical operator is allowed in ASTRA, but no referenced examples have been found in 
literatures for testing purposes. Hence XS-MKA has been considered as a reference code.  
  
3.5.1 Filename: XOR1  
 
Source: JRC ASTRA development team. 
 
Problem description: 
Determine the Unavailability of Top = A ⊕  B. Components are assumed to be characterised by the following 
values: 
λA = 1.0e-4; μA =1.0e-2 
λB = 1.0e-5; μB =1.0e-2 
The determination of all parameters at system level is requested. 
 
The exclusive OR of two variables is defined as  
 
XOR(A,B) = A ⊕  B = A⎯B +⎯A B,  
 
i.e. if one variable is true the other is false and vice versa. Since XOR(A,B) is a Boolean expression, variables A 
and B are independent.  
The Markov graph is hereinafter represented. 

 
 
Results from XS-MKA and ASTRA are shown for three mission times. 
 

 XS-MKA 
T = 102 

ASTRA 
T = 102 

 XS-MKA 
T =103 

ASTRA 
T=103 

 XS-MKA 
T=104 

ASTRA 
T=104 

F 1.09341e-2 1.09430e-2  0.104076 0.104310  0.66052 0.66778 
Q 6.95487e-3 6.91876e-3  1.08798e-2 1.08798e-2  1.08802e-2 1.08802e-2 
W 1.09583e-2 1.09589e-2  0.109088 0.109091  1.090087 1.09008 
V 4.10301e-3 4.04012e-3  9.83056e-2 9.82074e-2  1.07930 1.07920 



 

 
 
The characteristic times have been obtained with MKA by running the code with the Steady State (SS) analysis 
option, whereas with ASTRA the mission time of 10,000 h has been used. 
 
 XS-MKA (SS) ASTRA (T=104) 
MTBF 9.1743e+3 9.1743e+3 
MTTR 99.819 99.818 
MTTF 9.0900e+3 9.07450e+3 
Λ 1.10198e-4 1.10198e-4 
M 1.00181e-2 1.00181e-2 

 
 
Conclusion: The agreement is quite good. 
 
 
3.5.2 Filename: XOR3  
 
Source: JRC ASTRA development team. 
 
Problem description: 
Determine the Unavailability of Top = A ⊕  B ⊕  C. Components are assumed to be characterised by the 
following values: 
λA = 1.0e-4; μA =1.0e-2 
λB = 2.0e-4; μB =1.0e-2 
λC = 3.0e-4; μC =1.0e-2 
 
The determination of all parameters at system level is requested. 
 
As described before the calculation is performed by ASTRA on the reduced XOR function.  
 
Results from XS-MKA and ASTRA are shown for three mission times. 
 

 XS-MKA 
T = 102 

ASTRA 
T = 102 

 XS-MKA 
T =103 

ASTRA 
T=103 

 XS-MKA 
T=104 

ASTRA 
T=104 

F 5.76318e-2 5.85759e-2  0.443373 0.461060  0.979564 0.99799 
Q 3.67007e-2 3.67013e-2  5.65430e-2 5.65428e-2  5.65450e-2 5.65447e-2 
W 5.90577e-2 5.90575e-2  0.586502 0.586495  5.862160 5.862167 
V 2.23552e-2 2.23487e-2  0.529948 0.529876  5.805604 5.804789 

 
 
The characteristic times have been obtained with MKA by running the code with the Steady State (SS) analysis 
option, whereas with ASTRA the mission time of 10,000 h has been used. 
 
 XS-MKA (SS) ASTRA (T=104) 
MTBF 1.70594e+3 1.70595e+3 
MTTR 96.46799 96.46302 
MTTF 1.66666e+3 1.60949e+3 
Λ 6.21316e-4 6.21328e-4 
M 1.03666e-2 1.03667e-2 

 
 
Conclusion: The agreement is quite good. 
 



 

3.6 Coherent Fault Tree analysis 
 
3.6.1 Filename: AFS 
 
Source: Modarres book, page 320. 
 
Problem description: 
Determine the Unavailability and the Minimal Cut Sets (MCS) of a Simplified Auxiliary Feed water System of 
a PWR. Assume that the system is in stand-by mode and all of the components are periodically tested. The 
following data characterise the components: 

 
Block 
name 

Failure 
Rate 

Average 
Repair Time 

Average test 
duration 

Test 
Interval 

First Time 
to Test 

A 1.000000E-07 5.000000E+00 0 7.200000E+02  
B 1.000000E-07 5.000000E+00 0 7.200000E+02  
C 1.000000E-06 1.000000E+01 0 7.200000E+02  
D 1.000000E-06 1.000000E+01 0 7.200000E+02  
E 1.000000E-06 1.000000E+01 0 7.200000E+02  
F 1.000000E-06 1.000000E+01 0 7.200000E+02  
H 1.000000E-07 2.400000E+01 0 7.200000E+02  
I 1.000000E-04 3.800000E+01 0 7.200000E+02  
J 1.000000E-04 3.800000E+01 2 7.200000E+02  
K 1.000000E-05 2.600000E+01 2 7.200000E+02  
L 1.000000E-07 1.000000E+01 2 7.200000E+02  
M 1.000000E-04 1.000000E+01 0 7.200000E+02  
MG1 1.000000E-07 1.500000E+01 0 7.200000E+02  
N 1.000000E-07 5.000000E+00 0 7.200000E+02  

 
Since the Test interval is the same for all components the test policy is “simultaneous testing”. 
In the reference source the system is described by means of a Reliability Block Diagram.   
 
Results from Modarres.  
Mean unavailability (rare event approximation): 51049.7 −= xQS ; 26:CSMofNumber  
 
 
Analysis with ASTRA 
 
The RBD has been transformed into the equivalent fault tree (Filename: AFS) 
 
Basic events are all tested at 720 h. This produces discontinuities on the system unavailability function at 720 h 
and its multiple values.  
 
Looking at the different data on components, it can be realised that the model used by ASTRA for determining 
the unavailability of tested component is different from the one used in the reference case. Indeed, ASTRA 
considers the time to perform the test as negligible, whereas in the reference case there are three components i.e. 

J, K, L with a test time of 2 h. The corresponding unavailability is 3
test 10x7.2

720
2q −== , which is about 

1/10 of the of unavailability between tests.  
 
 
 
 
 
 
 



 

The input fault tree and the parameters of basic events are shown below. 
 
 

Gate Name Op. Sons 

TOP OR N G1  
G1 AND G11 G12  
G11 OR L G2  
G12 OR M G3  
G2 AND G21 G22  
G3 OR H G7  
G21 OR MG1 G4  
G22 OR K G3  
G7 AND G71 G72  
G4 AND G41 G42  
G71 OR A D  
G72 OR F B  
G41 OR I G5  
G42 OR J G5  
G5 OR MG1 G6  
G6 AND G61 G62  
G61 OR C A  
G62 OR E B  

 
 
Primary Events Input Data 
 
Event  
Name 

Failure 
Rate 

Repair  
Time 

On-demand 
Unavailability 

Test 
Interval 

First Test 
Time 

A  1.000000E-07  5.000000E+00                7.200000E+02               
B  1.000000E-07  5.000000E+00                7.200000E+02               
C  1.000000E-06  1.000000E+01                7.200000E+02               
D  1.000000E-06  1.000000E+01                7.200000E+02               
E  1.000000E-06  1.000000E+01                7.200000E+02               
F  1.000000E-06  1.000000E+01                7.200000E+02               
H  1.000000E-07  2.400000E+01                7.200000E+02               
I  1.000000E-04  3.800000E+01                7.200000E+02               
J  1.000000E-04  6.400000E+01                7.200000E+02               
K  1.000000E-05  5.200000E+01                7.200000E+02               
L  1.000000E-07  3.800000E+01                7.200000E+02               
M  1.000000E-04  1.000000E+01                7.200000E+02               
MG1  1.000000E-07  1.500000E+01                7.200000E+02               
N  1.000000E-07  5.000000E+00   7.200000E+02  

 
 
The plot of the point wise unavailability and the mean unavailability determined by ASTRA is represented in 
the following figure.  
 



 

 
 
 
The mean value of the unavailability is Qs = 3.87 x 10-5. The number of MCS is 26. 
 
The reason why the mean unavailability calculated with ASTRA is different from that of the reference case 
cannot be due to the different model used for determining the unavailability of the tested components; rather the 
Modarres value is the maximum Top-event unavailability valuew, not the mean one! 
 
Below is the list of the 26 MCS obtained by ASTRA. 
 
The list of MCS sorted by importance is represented in the following table.  
 

# Value Importance Order Minimal Cut Set 
1  1.199993E-05  9.878587E-01 1 N   
2  1.431386E-07  1.178346E-02 2 L M  
3  2.035424E-09  1.675603E-04 4 I 

M 
J K 

4  1.707398E-09  1.405565E-04 3 H I J 
5  1.716633E-10  1.413167E-05 3 K M MG1 
6  1.439983E-10  1.185423E-05 2 H MG1  
7  1.439983E-10  1.185423E-05 2 H L  
8  1.439983E-10  1.185423E-05 2 A B  
9  2.048644E-12  1.686486E-07 4 D 

J 
F I 

10  2.059724E-13  1.695607E-08 4 C 
M 

E K 

11  2.048755E-13  1.686577E-08 4 A 
J 

F I 

12  2.048755E-13  1.686577E-08 4 B 
J 

D I 

13  1.727782E-13  1.422346E-08 3 B C D 
14  1.727782E-13  1.422346E-08 3 C E H 
15  1.727782E-13  1.422346E-08 3 D F L 
16  1.727782E-13  1.422346E-08 3 A E F 
17  1.727782E-13  1.422346E-08 3 D F MG1 



 

# Value Importance Order Minimal Cut Set 
18  2.059836E-14  1.695699E-09 4 B 

M 
C K 

19  2.059836E-14  1.695699E-09 4 A 
M 

E K 

20  1.727876E-14  1.422423E-09 3 A E H 
21  1.727876E-14  1.422423E-09 3 B C H 
22  1.727876E-14  1.422423E-09 3 B D MG1 
23  1.727876E-14  1.422423E-09 3 B D L 
24  1.727876E-14  1.422423E-09 3 A F MG1 
25  1.727876E-14  1.422423E-09 3 A F L 
26  2.073102E-16  1.706620E-11 4 C 

F 
D E 

 
 
The results given by ASTRA are equal to those of the reference source. 
 
 
Suggestion: In future implementations the test duration should be introduced. 



 

3.6.2 Filename: Chemical-Reactor 
 
Source: Kumamoto-Henley (first edition), page 524 + Table 10.3. Fault tree in Fig.13.6 
 
Problem description: 
Analysis of a simplified chemical reactor for the top event: runaway reaction. Mission time = 100h 
  
Fault tree description 
 
Gate Name Op. Sons Description 
TOP AND GTEMP GEXC  Runaway  
GTEMP OR GFICV GCOOL  Temp. Excursion towards 300   
GEXC OR GSV1 FICV BY1HE Excursion not arrested  
GFICV OR GWRONG

S 
BY1HE FICV FICV-702 opens or sticks open  

GCOOL OR GPRESS WATER HEAT Loss of cooling to reactor      
GSV1 OR GCIRC SV1  SV-1 fails to open  
GWRONGS OR PINST SENSOR  FE/FT-702 send wrong signals to 

FICV-702  
GPRESS OR GPMOTOR PUMP  Loss of pump pressure  
GCIRC AND GPS1 GPS  Interlock circuit not opened  
GPMOTOR OR MOTOR POWER  Pump motor stops  
GPS1 OR PS1 TETT  PS-1 fails to open  
GPS OR GBUTTON PS  Panic switch fails to open  
GBUTTON OR GHORN OPERATOR  Operator fails to push button  
GHORN OR GPS2 HORN POWER Horn fails to sound  
GPS2 OR PS2 TETT  PS-2 fails to close  

 
 
Primary Events Input Data 
 
Event  
Name 

T Failure 
Rate 

Repair  
Time 

On-demand 
Unavailability 

Description 

BY1HE OM 1.000000E-06 1.000000E+02               By-pass opens (human 
error) 

FICV OM  7.000000E-05  3.000000E+01               primary control valve 
failure (open) 

HEAT OM  5.000000E-05  5.000000E+01               Heat exchanger failure 
HORN UN                              3.000000E-04 Horn fails to sound 
MOTOR OM  1.000000E-06  2.000000E+01               Primary motor failure 

OPERATOR UN                              1.000000E-03 Operator failure 
PINST OM  5.000000E-05  1.000000E+01               Primary instrument failure 
POWER OM  3.000000E-07  1.000000E+02               Area power failure 
PS UN                              3.000000E-04 Panic switch fails 
PS1 OM  4.000000E-05  2.000000E+01               PS-1 failure 
PS2 OM  4.000000E-05  2.000000E+01               PS-2 failure 
PUMP OM  3.000000E-06  2.000000E+01               Primary pump failure 
SENSOR OM  1.300000E-04  2.000000E+01               Sensor failure (low 

reading) 
SV1 OM  5.000000E-05  2.000000E+01               SV-1 stuck closed 



 

Event  
Name 

T Failure 
Rate 

Repair  
Time 

On-demand 
Unavailability 

Description 

TETT OM  4.000000E-05  2.000000E+01               TE/TT-714 
transmits/reads low temp.  

WATER OM  1.000000E-06  3.000000E+02               Utility interruptions 
(water) 

 
 
 
Results from Kumamoto-Henley 
 
Q-Unavailability:  2.20582E-03 

ω-Unconditional failure frequency:  7.17993E-05 

ν-Unconditional repair frequency:  7.19580E-05 

W-Expected number of failures:  7.16904E-03 

V-Expected number of repairs:  7.15654E-03 

Number of MCS: 41 distributed as 2 of order 1; 15 of order 2; 24 of order 3; 
 
Check:  Q = W – V = 1.2503E-2  WRONG because of the use of approximated equations. 
 
 
 
Results from ASTRA 
 
Q-Unavailability:  2.094106E-03 

ω-Unconditional failure frequency:  7.175528E-05 

ν-Unconditional repair frequency:  6.889023E-05 

W-Expected number of failures:  7.159382E-03 

V-Expected number of repairs:  5.065273E-03 

Number of MCS: 41 distributed as 2 of order 1; 15 of order 2; 24 of order 3; 
 
Check:  Q = W – V = 2.094109E-03 CORRECT 
 
 
 



 

Analysis Results: Cut-sets vs. Unavailability 
 
# Value Importance Order Minimal Cut Set 
1  2.021362E-03  9.652629E-01 1 FICV   
2  6.320941E-05  3.018444E-02 1 BY1HE   
3  2.556183E-06  1.220656E-03 2 SENSOR SV1  
4  2.141345E-06  1.022558E-03 2 HEAT SV1  
5  2.045341E-06  9.767136E-04 2 SENSOR TETT  
6  1.713407E-06  8.182046E-04 2 HEAT TETT  
7  4.958813E-07  2.367986E-04 2 PINST SV1  
8  3.967816E-07  1.894755E-04 2 PINST TETT  
9  8.438209E-08  4.029505E-05 2 SV1 WATER  
10  6.751871E-08  3.224226E-05 2 TETT WATER  
11  5.913361E-08  2.823812E-05 2 PUMP SV1  
12  4.731602E-08  2.259486E-05 2 PUMP TETT  
13  1.971196E-08  9.413070E-06 2 MOTOR SV1  
14  1.881742E-08  8.985900E-06 2 POWER SV1  
15  1.577262E-08  7.531910E-06 2 MOTOR TETT  
16  1.505685E-08  7.190108E-06 2 POWER TETT  
17  1.505685E-08  7.190108E-06 2 POWER PS1  
18  2.045342E-09  9.767136E-07 3 OPERATOR PS1 SENSOR 
19  1.713407E-09  8.182047E-07 3 HEAT OPERATOR PS1 
20  1.623993E-09  7.755066E-07 3 PS1 PS2 SENSOR 
21  1.360438E-09  6.496511E-07 3 HEAT PS1 PS2 
22  6.136025E-10  2.930141E-07 3 PS PS1 SENSOR 
23  6.136025E-10  2.930141E-07 3 HORN PS1 SENSOR 
24  5.140221E-10  2.454614E-07 3 HEAT HORN PS1 
25  5.140221E-10  2.454614E-07 3 HEAT PS PS1 
26  3.967816E-10  1.894755E-07 3 OPERATOR PINST PS1 
27  3.150430E-10  1.504427E-07 3 PINST PS1 PS2 
28  1.190345E-10  5.684264E-08 3 PINST PS PS1 
29  1.190345E-10  5.684264E-08 3 HORN PINST PS1 
30  6.751871E-11  3.224227E-08 3 OPERATOR PS1 WATER 
31  5.360958E-11  2.560023E-08 3 PS1 PS2 WATER 
32  4.731602E-11  2.259486E-08 3 OPERATOR PS1 PUMP 
33  3.756873E-11  1.794022E-08 3 PS1 PS2 PUMP 
34  2.025561E-11  9.672680E-09 3 PS PS1 WATER 
35  2.025561E-11  9.672680E-09 3 HORN PS1 WATER 
36  1.577262E-11  7.531910E-09 3 MOTOR OPERATOR PS1 
37  1.419481E-11  6.778458E-09 3 HORN PS1 PUMP 
38  1.419481E-11  6.778458E-09 3 PS PS1 PUMP 
39  1.252339E-11  5.980306E-09 3 MOTOR PS1 PS2 
40  4.731785E-12  2.259573E-09 3 MOTOR PS PS1 
41  4.731785E-12  2.259573E-09 3 HORN MOTOR PS1 
 
 
 
 
 
 
 



 

 
 
ASTRA plot of results at the system level. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.6. Non-Coherent Fault Tree analysis 

 
 

Q = Unavailability 

R = Expected number  
        of repairs 

F = Unreliability  
W= Expected Number of Failures 
In figure F = W 



 

3.7 Non-Coherent Fault Tree analysis 
 
3.7.1. Filename: Zhang-Mei0.  
 
Source: Zhang-Mei, IEEE Trans. Reliab. Vol R-34, N,. 4, 1985, 308-313 
 
Problem description: 
Determine Unavailability, Failure frequency, Birnbaum and Criticality importance indexes of the following non-
coherent function:  
TOP = x1 x2 + x1 x3 + x2⎯x3  
 
Primary Events Input Data 
 

Event  
Name 

Failure 
Rate 

Repair  
Time 

1 1.000000E-03 10 

2 2.000000E-03 20 

3 3.000000E-03 60 
 
Mission time (hours): 500 h  
 
 
Zhang-Mei    ASTRA 3  
 
QUB = 3.4 e-4   QTOP = 3.4105 e-2    
 
ω = 1.9e-3   ω = 1.9017e-3    
 
 
Importance analysis Zhang-Mei 
 

Event IB IB+ IB- IC IC+ IC- 
x1 1.525e-1   4.42847e-2   
x2 8.475e-1   9.95571e-1   
x3  9.5e-3 3.8e-2  4.25813e-2 9.46254e-1 

 
 
Importance analysis ASTRA 3 
 

Event IB IB+ IB- IC IC+ IC- 
x1 1.525e-1   4.42819e-2   
x2 8.4746e-1   9.955718e-1   
x3  9.520e-3 3.808e-2  4.25788e-2 9.46255e-1 

 
 
Conclusion: The results from ASTRA are in perfect agreement with those of the reference source. 



 

3.7.2 Filename: Zhang-Mei1  
 
Source: Zhang-Mei, IEEE Trans. Rel., Vol. R326, N. 4, 1987, 436-439 
 
Problem description: 
Determine Unavailability, Failure frequency,  
Birnbaum and Criticality importance indexes  
of the non-coherent fault tree shown on the right  
(red events are negated events) 
 
 
The following table contains the data characterising  
the basic events 
 
vent  
Name 

Failure 
Rate h-1 

Repair  
Time h 

Description 

1 1.0 E-05 200 Excitor failure 

10 1.0 E-04 100 Amplifier 1 fails 

11 1.0 E-04 100 Amplifier 2 fails 

12 1.0 E-04 200 Ionization chamber 1 
fails 

13 1.0 E-04 200 Ionization chamber 2 
fails 

14 1.0 E-05 100 Comparator supply 1 
fails 

15 1.0 E-05 100 Comparator supply 2 
fails 

16 4.0 E-06 100 Comparator 1 fails 

17 4.0 E-06 100 Comparator 2 fails 

18 1.0 E-05 100 Relay 7 fails to close 

19 1.0 E-05 100 Relay 8 fails to close 

2 5.0 E-06 200 DC motor fails 

3 5.0 E-06 200 Control road stuck 

4 1.0 E-05 100 Relay 1 fails to close 

5 1.0 E-05 100 Relay 2 fails to close 

6 1.0 E-05 100 Relay 3 fails to close 

7 1.0 E-05 100 Relay 4 fails to close 

8 1.0 E-05 100 Relay 5 fails to close 

9 1.0 E-05 100 Relay 6 fails to close 
 
 
Results: 
 
Zhang-Mei   ASTRA 3  
QTOP = 6.5 E-3  QTOP = 6.477 E-3    
ωTOP = 5.0 E-5  ωTOP = 4.97 E-5   
 



 

MTBF= 20000 h  MTBF= 20111 h   
 
The small differences are due to the fact that Zhang-Mei use the rare event approximation. 
 
Birnbaum importance 
 
Zhang-Mei ASTRA 3 
Ranking IB = IB+ -  IB- IB+ IB- Compar. 
1 0.995510 0.9955097 0 OK 
2 0.994516 0.994516 0 OK 
3 “ “ 0 OK 
18 0.962571 0.962706 0 OK 
16 0.961994 0.9619936 0 OK 
12 3.25519e-2 3.387804e-2 1.326127e-3 OK 
13 “ 3.25519e-2 0 OK 
10 3.22328e-2 3.35545e-2 1.326127e-3 OK 
11 “ 3.223277e-2 0 OK 
4 3.19456e-2 3.32469e-2 1.301425e-3 OK 
5 “ “ “ OK 
6 “ 3.19455e-2 0 OK 
7 “ “ “ OK 
8 “ “ “ OK 
9 “ “ “ OK 
14 “ 3.32469e-2 1.301425e-3 OK 
15 “ 3.19455e-2 0 OK 
19 “ “ “ OK 
17 0.319264e-2 0.319264e-2 0 OK 
 
 
Criticality importance 
 
Zhang-Mei ASTRA 3 
Ranking IC+ IC- IC+ IC- Compar. 
1 0.306766 0 0.300766 0 OK 
4 0.512765e-2 0.200717 0.5127647e-2 0.2007174 OK 
5 “ “ “ “ OK 
6 “ “ “ “ OK 
14 “ “ “ “ OK 
10 5.127665e-2 0.200717 5.1276647e-2 0.2007174 OK 
12 0.102533 0.200717 0.1025529 0.2007174 OK 
2 0.153383 0 0.1533832 0 OK 
3 “ 0 “ 0 OK 
18 0.148456 0 0.1484563 0 OK 
13 9.85386e-2 0 9.85386e-2 0 OK 
16 5.93825e-2 0 5.93825e-2 0 OK 
11 4.92693e-2 0 4.92693e-2 0 OK 
7 4.92693e-3 0 4.92693e-3 0 OK 
8 “ 0 “ 0 OK 
9 “ 0 “ 0 OK 
19 “ 0 “ 0 OK 
17 1.97077e-3 0 1.97077e-3 0 OK 
 
 
 
Conclusion: The results from ASTRA are in perfect agreement with those of the reference source. 



 

3.8 Test on the use of Cut off thresholds 
 

The following test cases are reported to prove the correct implementation of the cut-off technique.  
 
3.8.1 Filename: Salp3   
 
N. events: 34; N. gates: 45; Mission time T= 8760 h. 
 
ASTRA 3 
 
Qm(T) = 7.789e-4  due to the presence of tested events. 
 
Total number of MCS = 205        
 
Distribution of MCS vs. order and vs probability  
 
Order Number of MCS   
1  0    
2  5    
3  13    
4  38 
5  102 
6  43 
7  4 
 
Decade Number of MCS   
1.e-4  6 
1.e-5  2 
1.e-6  6 
1.e-7  5    
1.e-8  25    
1.e-9  11    
1.e-10  39 
1.e-11  23 
1.e-12  29 
1.e-13  21 
1.e-14  2    
1.e-15  21    
1.e-16  10    
1.e-17  12 
1.e-18  2 
 
Check on the percentage value 
 
Nlim = 4 Plim = 0 N.MCS = 56  % QTOP = 99.98  OK 
Nlim = 2 Plim = 0 N.MCS = 5  % QTOP = 33.22  OK 
Nlim = 99 Plim = 1.e-6 N.MCS = 56  % QTOP = 99.98  OK 
Nlim = 99 Plim = 1.e-5 N.MCS = 8  % QTOP = 99.85  OK 
Nlim = 99 Plim = 1.e-4 N.MCS = 6  % QTOP = 98.30  OK 
Nlim = 2 Plim = 1.e-7 N.MCS = 5  % QTOP = 33.22  OK 



 

3.8.2 Filename: Baobab1  
 
Source: Dutuit - Rauzy (2001)  
 
N. events: 61; N. gates: 84; Mission time: 8760 h. 
 
ASTRA 3 
 
QTOP = 1.282305e-6.  Total number of MCS = 46,188        
 
Distribution of MCS vs. order and probability 
 
Order Number of MCS (ASTRA)  Number of MCS (source)  
1  0    0    
2  1    1    
3  1    1    
4  70    70 
5  400    400 
6  2212    2212 
7  14748    14748 
8  8460    8460 
9  10624    10624 
10  6600    6600 
11  3072    3072   

 
The agreement between ASTRA and the source is perfect. 
 
Decade Number of MCS   
1.e-8  12 
1.e-9  244 
1.e-10  1357 
1.e-11  6664    
1.e-12  5777    
1.e-13  5202    
1.e-14  4176 
1.e-15  3496 
1.e-16  4872 
1.e-17  3852 
1.e-18  3196    
1.e-19  4840    
1.e-20  2252    
1.e-21  248 
 
Check on the percentage value 
Nlim = 5 Plim = 0 N.MCS = 472  % QTOP = 5.00  OK 
Nlim = 8 Plim = 0 N.MCS = 25892 % QTOP = 99.99  OK 
Nlim = 99 Plim = 1.e-10 N.MCS = 1613  % QTOP = 84.29  OK 
Nlim = 99 Plim = 1.e-11 N.MCS = 8277  % QTOP = 98.52  OK 
Nlim = 6 Plim = 1.e-12 N.MCS = 2142  % QTOP = 73.14  OK 
Nlim = 6 Plim = 0 N.MCS = 2684  % QTOP = 73.15  OK 
Nlim = 7 Plim = 0 N.MCS = 17432 % QTOP = 99.89  OK  



 

3.9 Comparison of ASTRA with other FTA tools 
 
3.9.1 Comparison on the number of MCS 
 
Source: Rauzy (1993), Caldarola (1980), JRC ASTRA development team. 
 
Comparison of the total number of MCS for a set of fault trees of different complexity. ASTRA results were 
compared with the results obtained using ARALIA and RISKSPECTRUM PSA (Relcon Scandpower, 
http://www.riskspectrum.com) tools. 
 
Table below presents number of MCS obtained using ASTRA and ARALIA. 

 
Tree N. gates N. events N. MCS Aralia N. MCS ASTRA 
Chinese 36 25 392 392 
European1 84 61 46,188 46,188 
European2 40 32 4,805 4,805 
European3 107 80 24,386 24,386 
1-das-008 145 103 8,060 8,060 
2-das-1 82 122 14,217 14,217 
3-das-3 30 51 16,200 16,200 
4-das-4 30 53 16,704 16,704 
5-das-5 20 51 17,280 17,280 
6-das-6 112 121 19,518 19,518 
7-das-7 275 276 25,988 25,988 
9-das-2 36 49 27,788 27,778 

 
 
In the Caldarola report two simplified scram systems are described and solved. The results are given in the 
following table: 
 

Tree N. gates N. events N. MCS Caldarola N. MCS ASTRA 
Cal2 40 32 5,630 5,630 
Cal3 68 58 11,220,036 12,378,546 

 
The agreement is perfect, except for the Cal3 fault tree.  
 
Comment: The manual verification of the calculation made by Caldarola (Cal3) has confirmed the ASTRA 
result not the Caldarola’s result. Difference in the results is due to the incorrect number of MCS in the 
Caldarola report for the supercomponent SCO1. 
 
The Table below contains the number of MCS obtained using ASTRA and RISKSPECTRUM PSA (RS) for a 
set of fault trees of real systems. 
 

Tree N. gates N. events N. MCS RS N. MCS ASTRA 
Abtrw014 88 118 10302 10302 
ASEA1and 178 149 347936 347936 
Iveco_01 165 392 67762 67762 
Reactinh 15 16 41 41 
TOP 4 252 264 53378 53378 
UTOP 2 49 67 12096 12096 

 
 
Conclusion: The agreement between ASTRA and the tools ARALIA and RISKSPECTRUM PSA is perfect. 



 

3.9.2 Comparison of ASTRA 3 with ASTRA2  
 

This set of tests concerns the comparison between ASTRA2 and ASTRA3 on a set of coherent fault trees of real 
systems. 
For each fault tree, analysed by means of ASTRA 2 and ASTRA 3, all results are considered. ASTRA 2 
performs the probabilistic analysis on the basis of the set of significant MCS, i.e. using the rare event 
approximation. For this reason the rare event approximation has also been implemented, for testing purposes 
only, in ASTRA 3.  
 
3.9.2.1. Filename: gen-008  
 
N. events: 73; N. gates: 85; Mission time: 8760 h. 
 
 
ASTRA 2   ASTRA 3 
 
QUB =  2.23340e-1  QTOP = 2.0990e-1   QUB = 2.23340e-1                                  
(UB = upper bound) 

ω TOP = 2.40449e-5 
 
WUB =  2.23340   WTOP =  2.09843e-1       
     
 
 
Distribution of MCS in ASTRA 2 
 
Total Number of MCS = 551 
 
Order Number   
1 6    
2 60    
3 299    
4 170    
5 16    
 
 
Distribution of MCS in ASTRA 3 
 
Total Number of MCS = 551 
 
Order Number   
1 6    
2 60    
3 299   
4 170    
5 16    
 
 
Conclusion: For this test case the agreement between ASTRA 2 and ASTRA 3 is perfect. 
 
 
 
 
 
 
 



 

3.9.2.2. Filename: hur-001  
 
N. events: 108; N. gates: 101; Mission time: 8760 h. 
 
 
ASTRA 2   ASTRA 3 
 
QUB =  2.0046e-2  QTOP = 1.99442e-2   QUB = 2.0046e-2 
 
  
Distribution of MCS in ASTRA 2 
 
Total Number of MCS = 7958          
 
Order Number   
1 2    
2 1    
3 39    
4 23    
5 34 
6 698 
7 2448 
8 4156 
9 560    
 
 
Distribution of MCS in ASTRA 3 
 
Total Number of MCS = 7958 
 
Order Number   
1 2    
2 1    
3 39    
4 23    
5 34 
6 698 
7 2448 
8 4156 
9 560   
 
 
Conclusion: For this test case the agreement between ASTRA 2 and ASTRA 3 is perfect. 
 
 
 
 
 
 



 

3.9.2.3 Filename: isp-001  
 
N. events: 143; N. gates: 104; Mission time: 8760 h. 
 
 
ASTRA 2   ASTRA 3 
 
QUB =  6.8811e-2  QTOP = 5.17 e-2   QUB = 6.8811e-2 
 
Note the difference between the QUB and the exact value QTOP. 
  
 
Distribution of MCS in ASTRA 2 Automatic probabilistic cut-off = 1.0e-10 
 
Total Number of MCS = 276.785          
 
Order Number   
1 1    
2 587    
3 100    
4 85    
5 106,920 
 
 
Distribution of MCS in ASTRA 3  With probabilistic cut-off = 1.0e-10 
 
Total Number of MCS =276.785          
 
Order Number   
1 1    
2 587    
3 100    
4 85    
5 106,920 
 
 
Conclusion: For this test case the agreement between ASTRA 2 and ASTRA 3 is perfect. 
 
 
 
 
 
 



 

3.9.2.4 Filename: isp-002  
 
N. events: 116; N. gates: 122; Mission time: 8760 h. 
 
 
ASTRA 2   ASTRA 3 
 
QUB =  1.79519e-2  QTOP = 1.72447e-2 QUB = 1.79519e-2 
 
  
Distribution of MCS in ASTRA 2 Automatic probabilistic cut-off Plim = 1.0e-10; nLim = 99 
 
Total Number of MCS = 5.197.647          
 
Order Number   
1 1    
2 77    
3 210    
4 3973   
 
 
Distribution of MCS in ASTRA 3  With probabilistic cut-off Plim = 1.0e-10; nLim = 99 
 
Total Number of MCS = 5.197.647          
 
Order Number   
1 1    
2 77    
3 210    
4 3973   
 
 
Conclusion: For this test case the agreement between ASTRA 2 and ASTRA 3 is perfect. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

3.9.2.5 Filename: isp-003  
 
N. events: 91; N. gates: 95; Mission time: 8760 h. 
 
 
ASTRA 2   ASTRA 3 
 
QUB =  3.5308e-3  QTOP = 3.23326e-3 QUB = 3.5308e-3 
 
  
Distribution of MCS in ASTRA 2  
 
Total Number of MCS = 3434         
 
Order Number   
1 0    
2 22    
3 1320    
4 1070 
5 720 
6 200 
7 82 
8 16 
 
 
Distribution of MCS in ASTRA 3  
 
Total Number of MCS = 3434         
 
Order Number   
1 0    
2 22    
3 1320    
4 1070 
5 720 
6 200 
7 82 
8 16 
 
 
Conclusion: For this test case the agreement between ASTRA 2 and ASTRA 3 is perfect. 
 
 
 
 
 
 
 



 

3.9.2.6 Filename: ixi-003  
 
N. events: 74; N. gates: 73; Mission time: 8760 h. 
 
 
ASTRA 2   ASTRA 3 
 
QUB = 1.009014e-5  QTOP = 1.007926e-5 QUB = 1.009014e-5  
 
  
Distribution of MCS in ASTRA 2  
 
Total Number of MCS = 1446         
 
Order Number   
1 1    
2 525    
3 820    
4 100 
 
 
Distribution of MCS in ASTRA 3  
 
Total Number of MCS = 1446        
 
Order Number   
1 1    
2 525    
3 820    
4 100 
 
 
Conclusion: For this test case the agreement between ASTRA 2 and ASTRA 3 is perfect. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

3.9.2.7 Filename: psa-002  
 
N. events: 174; N. gates: 191; Mission time: 8760 h. 
 
 
ASTRA 2   ASTRA 3 
 
QUB = 2.378224e-4  QTOP = 2.347892e-4 QUB = 2.378224e-4 
 
  
 
Distribution of MCS in ASTRA 2  
 
Total Number of MCS = 470         
 
Order Number   
1 0    
2 2    
3 173    
4 167 
5 102 
6 26 
 
 
Distribution of MCS in ASTRA 3  
 
Total Number of MCS = = 470 
 
Order Number   
1 0    
2 2    
3 173    
4 167 
5 102 
6 26 
 
 
Conclusion: For this test case the agreement between ASTRA 2 and ASTRA 3 is perfect. 
 
 
 
 
 
 
 
 
 
 
 



 

3.9.2.8 Filename: iveco-01  
 
N. events: 392; N. gates: 165; Mission time: 8760 h. 
 
 
ASTRA 2   ASTRA 3 
 
QUB = 0.6163417  QTOP = 0.466617 QUB = 0.616341 
 
ω UB = 3.84779e-5  ω TOP = 6.65147e-5 
 
WUB = 4.67521e-1  WTOP =  6.89016e-2       
 
  
 
Distribution of MCS in ASTRA 2  
 
Total Number of MCS = 67,762  Plim automatically determined. Plim = 7.66 e-7   
     
Order Number   
1 235    
2 1969    
3     
4  
5  
 
 
Distribution of MCS in ASTRA 3  
 
Total Number of MCS = 67,762 
 
Order Number   
1 235    
2 1969    
3 22    
4 0 
5 65,536 
 
 
Conclusion: For this test case the agreement between ASTRA 2 and ASTRA 3 is perfect. 
 
 
 
 
 
 
 
 
 
 



 

3.9.3. Comparison of ASTRA with SAPHIRE 
 

Source: SAPHIRE in NUREG/CR-6116, EGG-2717, Vol. 1. 
 
Comparison between ASTRA3 and SAPHIRE on a simple system.   
 
Filename: Saphire1 N. events: 5; N. gates: 5;  
 
P(B1) = 0.01; P(B2) = 0.02; P(B3) = 0.03; P(B4) = 0.04; P(B5) = 0.05.  
 
 
ASTRA 3   SAPHIRE 
 
QUB = 7.05e-4   QUB = 7.05e-4  
 
QEXACT = 6.94024e-4  QEXACT = 6.93148e-4 
 
Total number of MCS = 5    
 
Distribution of MCS in ASTRA 3  
 
Order Number   
1 0    
2 2    
3 3    
 
 
Importance analysis SAPHIRE 
 

Event RAW RRW Birnbaum 
B1 86.1 7.832 6.060E-2 
B2 16.96 1.484 1.148E-2 
B3 5.809 1.175 3.494E-3 
B4 16.64 2.877 1.148E-2 
B5 3.827 1.175 2.097E-3 

 
 
Importance analysis ASTRA 3 
 

Event RAW RRW Birnbaum 
B1 87.33 7.8155 6.0522E-2 
B2 16.54 1.4618 1.1011E-2 
B3 5.75 1.1723 3.4008E-3 
B4 16.54 2.8397 1.1240E-2 
B5 3.79 1.1723 2.0405E-3 

 
 
From hand calculations the results obtained are equal to those given by ASTRA. The unavailability value 
reported in the Saphire manual is not correct. This explains also the differences in the importance analysis 
tables.  



 

3.10 Test on the application of Boundary Conditions 
 
 
3.10.1 Application of boundary conditions to the SAPHIRE fault tree. See 3.9.3 
 
Source: SAPHIRE in NUREG/CR-6116, EGG-2717, Vol. 1. 
 
 Filename: Saphire1 N. events: 5; N. gates: 5;  
 
P(B1) = 0.01; P(B2) = 0.02; P(B3) = 0.03; P(B4) = 0.04; P(B5) = 0.05.  
 
In ASTRA basic events may be associated with boundary conditions, i.e. their state can be set and remain fixed 
for the whole mission interval. Boundary conditions are applied to the fault tree prior to the modularisation. 
Hence the fault tree is reduced by properly deleting the events with an associated BC value.  
 
Boundary Condition set: B4=good;  B5 = failed. 
 
In ASTRA good = 0; failed = 1. 
 
Minimal Cut Sets without boundary condition analysis: 
 
B1 B4 
B1 B2 
B3 B4 B5 
B2 B3 B5 
B1 B3 B5 
 
QEXACT = 6.94024e-4 
 
 
 
Minimal Cut Sets with boundary condition analysis: 
 
B1 B2 
B2 B3  
B1 B3  
 
QEXACT = 1.08800e-3 
 
 
Conclusion: Boundary conditions correctly applied. 
 
 
 
 



 

3.10.2 Application of boundary conditions to the Chemical reactor fault tree. See 3.6.2 
 
Source: Kumamoto-Henley (first edition), page 524 + Table 10.3. Fault tree in Fig.13.6 
This Fault tree has already been considered in 3.6.2. 
 
Cut-sets list 
 
# Orde

r 
Minimal Cut Set 

1 1 FICV   
2 1 BY1HE   
3 2 SENSOR SV1  
4 2 HEAT SV1  
5 2 SENSOR TETT  
6 2 HEAT TETT  
7 2 PINST SV1  
8 2 PINST TETT  
9 2 SV1 WATER  
10 2 TETT WATER  
11 2 PUMP SV1  
12 2 PUMP TETT  
13 2 MOTOR SV1  
14 2 POWER SV1  
15 2 MOTOR TETT  
16 2 POWER TETT  
17 2 POWER PS1  
18 3 OPERATOR PS1 SENSOR 
19 3 HEAT OPERATOR PS1 
20 3 PS1 PS2 SENSOR 
21 3 HEAT PS1 PS2 
22 3 PS PS1 SENSOR 
23 3 HORN PS1 SENSOR 
24 3 HEAT HORN PS1 
25 3 HEAT PS PS1 
26 3 OPERATOR PINST PS1 
27 3 PINST PS1 PS2 
28 3 PINST PS PS1 
29 3 HORN PINST PS1 
30 3 OPERATOR PS1 WATER 
31 3 PS1 PS2 WATER 
32 3 OPERATOR PS1 PUMP 
33 3 PS1 PS2 PUMP 
34 3 PS PS1 WATER 
35 3 HORN PS1 WATER 
36 3 MOTOR OPERATOR PS1 
37 3 HORN PS1 PUMP 
38 3 PS PS1 PUMP 
39 3 MOTOR PS1 PS2 
40 3 MOTOR PS PS1 
41 3 HORN MOTOR PS1 
 
 
1) Boundary condition Set1:    SENSOR = failed; SV1 = failed 
 
    Result from ASTRA: The Top-event is verified.   
 
 
2) Boundary condition Set2:    TETT = good; SV1 = good 
 



 

     
 
Test: MCS containing TETT or SV1 are removed from the full list, giving the flowing reduces list. 
 

# Orde
r 

Minimal Cut Set 

1 1 FICV   

2 1 BY1HE   

3 2 POWER PS1  

4 3 OPERATOR PS1 SENSOR 

5 3 HEAT OPERATOR PS1 

6 3 PS1 PS2 SENSOR 

7 3 HEAT PS1 PS2 

8 3 HORN PS1 SENSOR 

9 3 PS PS1 SENSOR 

10 3 HEAT PS PS1 

11 3 HEAT HORN PS1 

12 3 OPERATOR PINST PS1 

13 3 PINST PS1 PS2 

14 3 OPERATOR PS1 WATER 

15 3 PS1 PS2 WATER 

16 3 HORN PINST PS1 

17 3 PINST PS PS1 

18 3 HORN PS1 WATER 

19 3 PS PS1 WATER 

20 3 OPERATOR PS1 PUMP 

21 3 PS1 PS2 PUMP 

22 3 MOTOR OPERATOR PS1 

23 3 PS PS1 PUMP 

24 3 HORN PS1 PUMP 

25 3 MOTOR PS1 PS2 

26 3 MOTOR PS PS1 

27 3 HORN MOTOR PS1 
 
3) Boundary condition Set3:    TETT = good; SV1 = failed 
 

 
 
 
 
 
 
 
 
 



 

 
 
Test: MCS containing TETT are removed; SV1 is removed from all MCS in which appears and finally all 
remaining combinations must be minimised.  This activity has been performed manually.  

 
# Order Minimal Cut Set 

1 1 SENSOR   

2 1 HEAT   

3 1 FICV   

4 1 PINST   

5 1 WATER   

6 1 BY1HE   

7 1 PUMP   

8 1 POWER   

9 1 MOTOR   
 
 
Conclusion: Boundary conditions correctly applied. 
 
 
 
 



 

 
 
3.10.3 Application of boundary conditions to a non-coherent fault tree. See 3.7.2 
 
Source: Zhang-Mei, IEEE Trans. Rel., Vol. R326, N. 4, 1987, 436-439 
 
        List of MCS calculated without any boundary condition. 
 

# Order Minimal Cut Set 

1 1 1   

2 1 18   

3 1 2   

4 1 3   

5 1 16   

6 2 12 13  

7 2 10 13  

8 2 11 12  

9 2 10 11  

10 2 13 6  

11 2 12 8  

12 2 13 5  

13 2 12 9  

14 2 13 4  

15 2 13 14  

16 2 12 19  

17 2 12 15  

18 2 12 7  

19 2 11 5  

20 2 11 14  

21 2 11 6  

22 2 10 15  

23 2 10 8  

24 2 10 7  

25 2 10 19  

26 2 11 4  

27 2 10 9  

28 2 12 17  

29 2 10 17  

30 2 4 9  

31 2 4 7  

32 2 6 7  

33 2 5 7  



 

# Order Minimal Cut Set 

34 2 6 9  

35 2 5 9  

36 2 15 6  

37 2 6 8  

38 2 5 8  

39 2 4 8  

40 2 15 5  

41 2 15 4  

42 2 19 4  

43 2 19 5  

44 2 19 6  

45 2 14 19  

46 2 14 15  

47 2 14 9  

48 2 14 7  

49 2 14 8  

50 2 17 6  

51 2 17 5  

52 2 14 17  

53 2 17 4  
 
 
1) Boundary condition Set3:    5 = 12 = good; 11 = failed 
 
 

Test: manual removal of MCS containing events 5 or 12; event 11 is also removed from all MCS in which it 
appears and finally all remaining combinations have been minimised. Results reported in the following Table 
are the same as determine by ASTRA. 
 

 
# Order Minimal Cut Set  # Order Minimal Cut Set 

1 1 1    6 2 10   

2 1 18    7 2 14   

3 1 2    8 2 6   

4 1 3    9 2 4   

5 1 16         
 



 

3.11 Analysis of large fault trees: truncated ZBDD 
 
For very large fault trees the working memory can be not sufficient to generate and store the LBDD 
representation. In order to analyse large fault trees the direct ZBDD construction module was developed. By 
using this module it is possible to apply the cut-off technique during the ZBDD construction, thus by-passing 
the LBDD construction. The advantage is the decreased memory usage; the high level of quantification accuracy 
is still achievable even without any information on the truncation error. The current implementation is limited to 
coherent fault trees; the extension to non coherent fault trees is part of future developments. 
The set of tests described in this section concerns the comparison of MCS obtained by the ZBDD module using 
different probabilistic cut-off levels with the MCS calculated by the ASTRA3 LBDD module.  
 
3.11.1 Filename: 7-das-7 
 
Source: Rauzy (1993) 
 
N. events: 276; N. gates: 275.  
 
Problem description: 
Determine the Minimal Cut Sets (MCS) and the Upper-bound unavailability of a large fault tree by applying 
different cut-off levels. All components are assumed to be characterised by the same probability: 
q = 1.0e-2. 
 
MCS obtained using ASTRA 3 LBDD module 
 
Total Number of MCS = 25988 
QUB = 4.554e-1 

Cut-off level Number of MCS* 
1e-02 32 
1e-04 1277 
1e-06 12082 
1e-08 25988 

* Number of MCSs was obtained using the ASTRA 3 Cut-sets analysis module 
 
 
MCS obtained using ASTRA 3 ZBDD module with different cut-off levels 
 

Cut-off level Number of MCS QUB 
1e-02 32 3.20000e-01 
1e-04 1277 4.44500e-01 
1e-06 12082 4.55305e-01 
1e-08 25988 4.55444e-01 

 
 
The peek size of the ITE records table during execution of the LBDD module was 20452. The memory usage by 
the ZBDD algorithm changes with the probabilistic cut off value and  is provided in the table below. 
 

Cut-off level ITE peek 
1e-02 1435 
1e-04 2833 
1e-06 6725 
1e-08 7563 

 
It can be seen that the maximum memory usage by ZBDD module was significantly lower than that used by the 
LBDD module. 
 
Conclusion: For this test case the agreement on MCS number between ASTRA 3 LBDD and ZBDD modules is 
perfect. 



 

3.11.2 Filename: Baobab1 
 
Source: Dutuit - Rauzy (2001) 
 
N. events: 61; N. gates: 84.  
 
Problem description: 
Determine the MCS and the Upper-bound unavailability for a large fault tree by applying different cut-off 
levels. All components are assumed to be characterised by the same probability: q = 1.0e-2. 
 
MCS obtained using ASTRA 3 LBDD module 
 
Total Number of MCS = 46188 
QUB = 1.681464E-06 
 
 

Cut-off level Number of MCS* 
1e-08 12 
1e-09 256 
1e-10 1613 
1e-11 8277 
1e-12 14054 
1e-13 19256 
1e-14 23432 
1e-15 26928 
1e-16 31800 
1e-17 35652 
1e-18 38848 
1e-19 43688 
1e-20 45940 
1e-21 46188 

* Number of MCSs was obtained from the chapter 3.7.2 
 
 
 
MCS obtained using ASTRA 3 ZBDD module with different cut-off levels 
 

Cut-off level Number of MCS QUB 
1e-08 12 1.996769e-07 
1e-09 256 9.525085e-07 
1e-10 1613 1.423015e-06 
1e-11 8277 1.656581e-06 
1e-12 14054 1.679147e-06 
1e-13 19256 1.681284e-06 
1e-14 23432 1.681450e-06 
1e-15 26928 1.681462e-06 
1e-16 31800 1.681463e-06 
1e-17 35652 1.681464e-06 
1e-18 38848 1.681464e-06 
1e-19 43688 1.681464e-06 
1e-20 45940 1.681464e-06 
1e-21 46188 1.681464e-06 

 
 
The ITE peek size during execution of LBDD module was 34476. The memory usage by the ZBDD algorithm is 
provided in the table below. 
 
 



 

Cut-off level ITE peek 
1e-08 2260 
1e-09 4877 
1e-10 8447 
1e-11 15673 
1e-12 28997 
1e-13 52800 
1e-14 98845 
1e-15 174733 
1e-16 318732 
1e-17 549817 
1e-18 938637 
1e-19 1397785 
1e-20 2022743 
1e-21 2593887 

 
 
It can be seen that the peek size of the ITE record table used by the ZBDD module is lower for higher cut-off 
levels. Lowering of the cut-off level leads to rapid increase of the peek ITE record table size. This is mainly due 
to the caching of the ITE records and frequent rewriting of the ZBDD during the elimination of non-minimal 
cut-sets.  
However in many cases the top-event probability converges very fast to the exact value and there is no need of 
using very low cut-off values. 
 
The plot of the QUB vs. cut-off level showing the convergence is represented in the following figure, in which it 
can be seen that a good approximation of the Top event unavailability can be obtained using a probabilistic cut-
off value equal to 10-12 – 10-13. 
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Conclusion: For this test case the agreement on MCS number between ASTRA 3 LBDD and ZBDD modules is 
perfect. 
 
 
 
 
 



 

3.11.3 Filename: EDF9203 
 
Source: Rauzy webpage (http://iml.univ-mrs.fr/~arauzy/aralia/benchmark.html). 
 
N. events: 362; N. gates: 707. 
 
Problem description: 
Determine the Minimal Cut Sets (MCS) and the Upper-bound unavailability of a fault tree by applying different 
cut-off levels. All components are assumed to be characterised by the same probabilities: 
q = 1.0e-03. 
 
MCS obtained using ASTRA 3 LBDD module 
 
Total Number of MCS =20807446   
QUB = 4.565136e-02 
 

Cut-off level Number of MCS* 
1e-03 37 
1e-06 8368 
1e-09 327178 
1e-12 1873598 
1e-15 3580162 
1e-18 N/A 
1e-21 N/A 
1e-24 N/A 
1e-27 N/A 
1e-30 N/A 
1e-33 N/A 
1e-36 N/A 

* Number of MCSs was obtained using ASTRA 3.0. Cut-sets analysis module 
N/A – result not available due to the insufficient working memory 

 
 
MCS obtained using ASTRA 3 ZBDD module with different cut-off levels 
 

Cut-off level Number of MCS QUB 
1e-03 37 3.700000e-02 
1e-06 8368 4.533100e-02 
1e-09 327178 4.564981e-02 
1e-12 1873598 4.565136e-02 
1e-15 3580162 4.565136e-02 
1e-18 5413130 4.565136e-02 
1e-21 8809758 4.565136e-02 
1e-24 13381950 4.565136e-02 
1e-27 20500566 4.565136e-02 
1e-30 20500566 4.565136e-02 
1e-33 20798206 4.565136E-02 
1e-36 20807446 4.565136E-02 

 
 
The ITE peek size during the execution of the LBDD module was 1634239. The memory usage by the ZBDD 
module vs. the probabilistic cut off value is provided in the table below. 
 
 
 
 
 



 

Cut-off level ITE peek 
1e-03 4041 
1e-06 20848 
1e-09 83793 
1e-12 221018 
1e-15 444296 
1e-18 663475 
1e-21 1254806 
1e-24 1922312 
1e-27 2191710 
1e-30 3363473 
1e-33 3669406 
1e-36 3673573 

 
Top-event upper bound probability converges to the exact value very fast. The exact value is obtained by using 
1e-12 cut-off value. With this cut-off level the peek size of the ITE record table was 221018 in comparison to 
the 1634239 used by LBDD module. The plot of the QUB vs. Cut-off level showing the convergence is 
represented in the following figure. 
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Conclusion: For this test case the agreement on available MCS data between ASTRA 3 LBDD and ZBDD 
modules is perfect. 



 

4. CONCLUSIONS 
 
In this report the results of the application of ASTRA 3.0 to a selected number of fault trees extracted from 
those considered during the test activity have been described. This activity allowed to prove the correctness of 
the implemented algorithms and to identify further improvements. 
 
ASTRA is based on the state-of-the-art approach of Binary Decision Diagrams. Two analysis procedures have 
been developed. The main procedure is based on the dynamic labelling of nodes with the type of the associated 
variables in order to apply to each node the appropriate logical and probabilistic algorithms; the probabilistic 
quantification is exactly performed on the LBDD, i.e. without calculating the MCS. Unfortunately, for very 
complex fault trees, the number of nodes of the LBDD grows exponentially: it may happen that the working 
memory is not enough to store all nodes; in these cases the analysis cannot be completed. To overcome this 
difficulty a second analysis method has been implemented which, however, gives approximated results.  
 
The two analysis methods have been successfully tested on a wide range of fault trees as described in this report. 
 
Suggestions for further improvements have also been identified, namely: 
− There is room to improve the efficiency of some algorithms, e.g. integration of unreliability function, 

construction of the LBDD, determination of the SMCS; 
− Implementation of the importance measures of basic events in case of failure frequency analysis; 
− Extension of the algorithm based on direct construction of truncated ZBDD for non coherent fault trees; 
− Make ASTRA conform with the standard IEC 61508 “Functional safety of electrical / electronic / 

programmable electronic safety-related systems”. 
− Insert the new basic event parameter duty time to model components with mission time less than the system 

mission time; 
− Development of a module for uncertainty analysis applied to the LBDD 
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