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Abstract

In this work we present some techniques, within the realm of Global Sensitivity Analysis,
which permit to address fundamental questions in term of model’s understanding.

In particular we are interested in developing tools which allow to determine which factor
(or group of factors) are most responsible for producing model outputs Y within or outside
specified bounds ranking the importance of the various input factors in terms of their influence
on the variation of Y .

On the other hand, we look for representing in a direct way (graphically, analytically, etc.)
the relationship between input factors {X1, . . . , Xk} and output Y in order to get a better
understanding of the model itself.
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Chapter 1

Introduction

In the present work we aim to address (as many modellers often do) questions such as:
‘Which factor or group of factors are most responsible for producing model outputs within or
outside specified bounds? Which parameters determine uniqueness or instability or runaway
conditions in a dynamic model?’ For example, if Y were a dose of contaminant, we might be
interested in how much (how often) a threshold level for this contaminant is being exceeded;
or Y might have to fulfil a set of constraints, based on the information available on observed
systems. The latter situation is typical in calibration.

Another typical question is whether it is possible to represent in a direct way (graphically,
analytically, etc.) the relationship between input factors and output Y = f(X1, . . . , Xk).
Computing Y usually requires solving systems of non-linear differential equations and the
relationship f(·) can only be evaluated numerically, its form remaining unknown. Sensitivity
analysis techniques allow for ranking the importance of the various input factors in terms
of influence on the variation of Y . In addition, some sort of direct representation of Y =
f(X1, . . . , Xk) would make the model’s properties even more transparent.

Hence, we will discuss techniques that can help to provide answers to such questions. We
assign all these methods to the Factor Mapping setting, in which specific points/portions of
the model output realizations, or even the entire domain, are mapped backwards onto the
space of the input factors.
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Chapter 2

Monte Carlo Filtering (MCF)

Let us first consider the case where the analyst is interested in targeted portions (extreme
values, ceilings, thresholds, etc.) of the space of Y -realizations. In this situation, it is natural
to partition the model realizations into ‘good’ and ‘bad’. This leads very naturally to Monte
Carlo Filtering (MCF), in which one runs a Monte Carlo experiment producing realizations of
the output(s) of interest corresponding to different sampled points in the input factors’ space.
Having done this, one ‘filters’ the realizations, i.e. the elements of the Monte Carlo sample
that fall within the ‘good’ realization are flagged as ‘behavioural’, while the remaining ones are
flagged as ‘non-behavioural’. Regionalized Sensitivity Analysis (RSA, see Young et al., 1978;
Hornberger and Spear, 1981; Spear et al., 1994; Young et al. 1996; Young 1999 and references
cited therein) is an MCF procedure that aims to identify which factors are most important in
leading to realizations of Y that are either in the ‘behavioural’ or ‘non-behavioural’ regions.
In typical cases, RSA can answer this question by examining, for each factor, the subsets
corresponding to ‘behavioural’ and ‘non-behavioural’ realizations. It is intuitive that, if the
two subsets are dissimilar to one another (as well as, one would expect, to the initial marginal
distribution of the factor), then that factor is influential.

2.1 Implementation of Monte Carlo Filtering

In Monte Carlo filtering a multiparameter Monte Carlo simulation is performed, sampling
model parameters (X1, . . . , Xk) from prior ranges and propagating parameter values through
the model. Then, based on a set of constraints targeting the desired characteristics, a cat-
egorization is defined for each MC model realization, as either within or outside the target
region. The terms behavioural (B) or non-behavioural (B̄) are current in the literature.

The [B− B̄] categorization is mapped back onto the input’s structural parameters, each of
which is thus also partitioned into a B and B̄ subsample. Given a full set of N Monte Carlo
runs, one obtains two subsets: (Xi|B) of size n and (Xi|B̄)] of size n̄, where n + n̄ = N . In
general, the two sub-samples will come from different unknown probability density functions,
fn(Xi|B) and fn̄(Xi|B̄).

In order to identify the parameters that are most responsible for driving the model into
the target behaviour, the distributions fn and fn̄ are compared for each parameter. If for a
given parameter Xi the two distributions are significantly different, then Xi is a key factor
in driving the model’s behaviour and there will be clearly identifiable subsets of values in its
predefined range that are more likely to fall under B than under B̄. If the two distributions
are not significantly different, then Xi is unimportant and any value in its predefined range

3
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Figure 2.1: Graphical representation of the Smirnov test for an important parameter Xi. The
vertical bar is the dn,n̄ statistic. Model realisations under the B category are more likely when
Xi falls on the right of its pre-defined range.

is likely to fall into either B or B̄.
This comparison can be made by applying standard statistical tests, such as the Smirnov

two-sample test (two-sided version). In the Smirnov test the dn,n̄ statistic is defined for the
cumulative distribution functions of Xi by

dn,n̄(Xi) = sup‖Fn(Xi|B) − Fn̄(Xi|B̄)‖

and the question answered by the test is: ‘At what significance level α does the computed
value of dn,n̄ determine the rejection of the null hypothesis fn(Xi|B) = fn̄(Xi|B̄)?’

The smaller α (or equivalently the larger dn,n̄), the more important the parameter is in
driving the behaviour of the model. The procedure is exemplified in Figure 2.1 for a parameter
Xi, uniformly distributed in the range (0, 1) and displaying a significant difference between
the B and B̄ subsets. In order to identify the portion of Xi values more likely to fall under B,
the shape of the cumulative distribution Fn(Xi|B) has to be examined. The latter is steeper
on the right-hand side of the graph (or, equivalently, it has shifted downwards), indicating
that Xi values on the right of its predefined range are more likely to produce a behavioural
model realization.

The B and B̄ subsets can be further probed through bi-dimensional projections, in order to
detect significant patterns. The standard procedure consists of computing the correlation co-
efficients ρij between all parameters under the B or B̄ subsets, and plotting the bi-dimensional
projections of the sample for the couples having |ρij | larger than a significance threshold. This
usually makes it possible to ‘visualize’ relationships between parameters.

For example, let us consider a simple model given by the equation Y = X1 + X2, with
Xi ∈ (0, 1). Let us define the model’s target behaviour as Y > 1. Then, an MCF procedure
can identify a significant negative correlation between X1 and X2 in the B subset, and the
corresponding triangular pattern can be visualized through the projection of the B sample
shown in Figure 2.2. From this pattern, one can deduce a constraint X1 +X2 > 1 to fulfil the
target behaviour.

The same procedure can evidently be applied in more typical cases where the constraint
on the factors is not evident from the form of the mathematical model, i.e. when the model
is a computer code.
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Figure 2.2: Bi-dimensional projection of the B sub-sample for the simple model Y = X1 +X2

(target behaviour Y > 1). The triangular pattern clearly indicates the relationship X1+X2 >
1 for the target behaviour. The correlation coefficient between X1 and X2 in the MC sample
is ρ12 = −0.45.

2.2 Pro’s and con’s

Similarly to variance based methods Regionalized Sensitivity Analysis has many global prop-
erties: (a) the whole range of values of the input factors is considered, and (b) all factors
are varied at the same time. Smirnov analysis considers univariate marginal distributions
and it relates not only to main effects of variance-based methods, but can also highlight cer-
tain types of interaction effects (see the Exercises below). Higher-order analysis can only be
performed for two-way interactions that are detectable through correlation analysis, but no
procedure is provided for more complex interaction structure. Spear et al. (1994), reviewing
their experience with RSA, highlighted two key drawbacks:

1. A low success rate: practice has shown that the fraction of B is barely larger than 5%
over the total simulations for large models (with number of factors k > 20), implying a
lack of statistical power;

2. Difficulty in uncovering correlation and interaction structures of the B subset (see also
Beck’s review, 1987):

• the Smirnov test is sufficient to ascertain whether a factor under analysis is impor-
tant. However, it does not provide a necessary condition for importance, i.e. its
non-significance does not ensure that a factor is non-influential;

• many types of interaction structures induced by the classification are not detected
by the univariate dn,n̄ statistic: e.g. factors combined as products or quotients may
compensate (see Exercise 2.4.6 below, for c = 0);

• the interaction structure is often far too complex for correlation analysis to be
effective, i.e. bivariate correlation analysis is not revealing in many cases (see
Saltelli et al., 2004, Example 2, pp. 159-161).
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Such characteristics of RSA imply that no complete assessment can be performed with RSA,
since for those factors proving unimportant in the Smirnov test, further inspection is needed
(e.g. by applying other global SA tools) to verify that they are not involved in interactions.
Only after this subsequent inspection can the relevance of an input factor be fully assessed. In
order to address these limitations of RSA and to better understand the impact of uncertainty
and interaction in the high-dimensional parameter spaces of models, Spear et al. (1994) devel-
oped the computer intensive Tree-Structured Density Estimation technique (TSDE), which
allows for the characterization of complex interactions in that portion of the parameter space
which gives rise to successful simulations. In TSDE, the B sub-sample is analysed by cluster-
ing regions of input factors characterized by high point density. This is based on a sequence
of recursive binary splits of the B sample into two sub-domains (similarly to peaks and tails
of histograms) of complementary characteristics:

• small regions of relatively high density;

• larger sparsely populated regions.

The TSDE procedure relies on the assumption that any non-random density pattern indicates
an influence of input factors on the model output. Interesting applications of TSDE in envi-
ronmental sciences can be found in Spear (1997), Grieb et al. (1999) and Pappenberger et al.
(2006). In the latter reference it is shown how factor mapping can be used to identify areas
of desirable and undesirable model behaviour, which aids the modelling process. Helton et al.
(2006) also provide mapping techniques on scatterplots, based on the same assumptions as
TSDE.

Our experience suggests that such extended RSA techniques for mapping B subsets can be
revealing when they work, but, in spite of their higher coding and computational complexity,
they may still be characterized by lack of statistical power in discriminating the significance of
such density patterns in a robust manner. Hence, we limit our discussion here to the Smirnov
test and correlation analysis, due to the simplicity of their implementation and their ease of
interpretation. Later on we will present more powerful mapping techniques when discussing
metamodelling.

2.3 Examples

We now show a few examples of the use of MCF to characterize the stability behaviour of
dynamic models. We will give an example for a chemical reactor (continuous time model) and
for a macro-economic model (discrete time model). Finally, we will also consider, in the light
of MCF techniques, an infection dynamics model.

2.3.1 Stability analysis of a controlled chemical reactor

Let us consider a continuous stirred tank reactor (CSTR) where a first-order exothermic
irreversible reaction A → B takes place in liquid phase.

The behaviour of the CSTR can be expressed in terms of mass and heat (enthalpy) balance
equations. Mass balance reads as:

V
dCA

dt̄
= Q(CA0 − CA) − k(T )CA · V (2.3.1)
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where t̄ is time [s], V is the reactor volume [m3]; CA is the concentration of A in the reactor
and at its outlet [kmol/m3]; CA0 is the concentration of A at the inlet; Q is the volumetric
flow rate [m3/s] at the input and output of the reactor, k(T ) is the kinetic ‘constant’ [1/s] of
the first-order chemical reaction A → B, which is expressed as a function of temperature T
[K]:

k(T ) = k0 exp

(

− E

RT

)

,

where k0 is the Arrhenius factor [1/s], E is the activation energy [kJ/kmol] and R is the gas
constant [kJ/(kmol K)].

The mass balance equation (2.3.1) tells us that the rate of change of the amount of reactant
A, given by the left-hand side term V dCA

dt̄ , equals the flow of A at the inlet, Q · CA0, minus
the flow of A at the outlet, Q · CA, and minus the amount of A that is transformed into B
per time unit, k(T ) · CA V .

The heat balance reads as:

V ρcp
dT

dt̄
= Qρcp(T0 − T ) − ∆Hrk(T )CAV − UA(T − Tc) (2.3.2)

where ρ is the density of the reacting mixture [kg/m3], cp is the specific heat of the mixture
[kJ/(kg K)], T0 is the temperature of liquid entering the reactor [K], T is the temperature
of the liquid in the reactor and at its outlet, Tc is the temperature of the reactor’s coolant,
(−∆Hr) is the reaction enthalpy [kJ/kmol], U is the overall heat transfer coefficient between
the inside of the reactor and the coolant [kJ/(s m2 K)], A is the heat transfer area [m2].

The heat balance equation (2.3.2) tells us that the rate of change of enthalpy in the reactor,
V ρ cp

dT
dt̄ , equals the flow of enthalpy at the inlet, Qρ cpT0, minus the flow of enthalpy at

the outlet, Qρ cpT , plus the heat generated by the exothermic reaction, (−∆Hr) k(T )CA V ,
minus the heat removed by the coolant, UA(T − Tc).

The CSTR is controlled, in order to keep the temperature, and the associated quantity
of product B, at the desired set-point Ts. The controlled variable is the temperature T and
the manipulated variable is the coolant temperature Tc. The controller follows a standard
proportional-integral (PI) design, implying the following control rule for the coolant temper-
ature:

(Tc − Tcs) = −kP (T − Ts) − kI

∫ t

0
(T − Ts)dt̄ (2.3.3)

where Tcs is the coolant temperature at the set-point, kP is the proportional control gain and
kI is the integral control gain [1/s]. The control rule (2.3.3) tells us that the coolant ‘error’
(Tc − Tcs) is proportionally adjusted, with opposite sign, with respect to the temperature
error (T − Ts) and with respect to the integral of the temperature error. In other words,
the coolant temperature will go down as the temperature error (T − Ts) and its integral go
up. The control gains kP and kI tell us by how much the coolant temperature is adjusted by
the controller for a given temperature error and integral of the error: the higher the gains,
the greater the change in the coolant. Finally, the integral action assures that the desired
set-point is the unique steady state of the reactor.

Economists or econometricians will be familiar with Taylor rules: in monetary policy,
for example, the controlled variable is inflation and the manipulated variable is the nominal
interest rate. When the economy is ‘over-heated’ (i.e. with high inflation), the Central Bank
increases the nominal interest rate to ‘cool’ the economy. In the case of the CSTR, the PI
regulator decreases coolant temperature to cool an over-heated reactor.



EXAMPLES 8

The controlled CSTR is therefore described by the following system of differential equa-
tions, in dimensionless form:

dξ

dt
= −ξ + Da(ϑ)(1 − ξ) (2.3.4)

dϑ

dt
= ϑ0 + N [ϑcs − kP (ϑ − ϑs) − kIτϕ] − (1 + N)ϑ + Da(ϑ)(1 − ξ) (2.3.5)

dϕ

dt
= ϑ − ϑs (2.3.6)

where (notation of Pellegrini and Biardi, 1990)

ξ =
CA0 − CA

CA0
conversion of A

τ =
V

Q
residence time [s]

t =
t̄

τ
dimensionless time

N =
UA

Qρcp
dimensionless heat transfer coefficient

ϑ =
T − Ts

∆Ta
dimensionless temperature

∆Ta =
−∆HrCA0

ρcp
adiabatic temperature rise [K]

Da(ϑ) = k0τ exp (− E

R(Ts + ∆Taϑ)
) Damkoehler number

ϕ =

∫ t

0
(ϑ − ϑs)dt dimensionless integral of the error

The adiabatic temperature rise indicates the temperature increase that would be caused in
the reactor if the entire amount of input A were converted into B under adiabatic conditions
(i.e. without any heat exchange). The Damkoehler number indicates the average number of
‘reaction events’ that occur during the residence time.

The behaviour of this dynamical system, which can present complex dynamic features,
from instability of the steady state to chaotic behaviour, has been intensively studied (see
Pellegrini and Biardi, 1990; Giona and Paladino 1994; Paladino et al., 1995; Paladino and
Ratto, 2000) .

Our aim in the present example is to study the stability conditions of the controlled CSTR.
The local stability analysis of the reactor in the neighbourhood of the unique steady state
(ξs, ϑs, ϕs) is performed by analysing the Jacobian:

J =





−(1 + a21) a12 0
−a21 −(kP N + N + 1) + a12 −kIτ

0 1 0



 (2.3.7)
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where

a12 = ξs
E∆Ta

R(Ts + ∆Taϑs)2
> 0 (2.3.8)

a21 = Da(ϑs) > 0 (2.3.9)

and

ξs =
Da(ϑs)

1 + Da(ϑs)
.

The steady state is stable if all three eigenvalues of J have negative real parts. This assures
that, as the operating conditions are moved away from the set-point (i.e. the steady state),
the reactor will return to steady state. Many authors have demonstrated that this system
presents a Hopf bifurcation locus. At the Hopf locus the steady state becomes unstable and
the dynamic behaviour of the reactor is characterized by persistent oscillations (limit cycle).
This is, of course, unacceptable and must be avoided.

Although the Hopf bifurcation locus can be computed analytically (Giona and Paladino,
1994), here we analyse the stability conditions by applying the MCF techniques. This will
allow us to confront the results of the MCF analysis with the analytic results. The problem
can be formalized in the MCF framework as follows:

• the input factors are the control gains and the uncertain physico-chemical parameters
of the CSTR model;

• the outputs are the eigenvalues of the Jacobian;

• the filtering criterion is:

– behaviour B if all eigenvalues have negative real parts;

– non-behaviour B̄ otherwise.

The nominal conditions of the CSTR are defined as follows:

k0 = 133600s−1 E/R = 8000K τ = 3600s ∆Ta = 200K T0 = 298.42K
Ts = 430K Tcs = 373.16 ϑs = 0 ξs = 0.8 N = 0.5

Such nominal conditions, depending on the values of the various physico-chemical param-
eters, are subject to a degree of uncertainty.

Let us first analyse the stability of this system under the nominal conditions, by varying
only the control gains kP and kIτ . As anticipated, this analysis can be performed analytically.
We analyse here the Hopf bifurcation locus in the (kP , kIτ) plane using the MCF approach.
The analysis requires the following steps:

• Sample the control gains uniformly in the range [0, 10];

• Compute the eigenvalues of the Jacobian;

• Check the stability condition;

– the set of control gains providing stable eigenvalues (negative real parts) is the
behavioural set;

– the set of control gains providing unstable eigenvalues (non-negative real parts) is
the non-behavioural set;
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• Perform the Smirnov analysis;
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Looking at the plot for kP , we can see that the non-behavioural cumulative distribution
(solid line) has a limit threshold at about k∗

p = 5, above which only stable solutions
are present; this implies that sufficiently large values of the proportional control gain
(kP > k∗

P ) are able to stabilize the reactor, whatever the value of the integral control
gain. The latter gain, on the other hand, is more likely to produce a stable reactor for
small values. However, the two cumulative distributions for kIτ have the same support,
i.e. both ranges of the stable and unstable sets span the entire support [0, 10], implying
that no clear threshold of stability can be identified.

• Plot the the behavioural sample on the (kP , kIτ) plane.
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This shows the boundary of stability that exactly corresponds to the analytic solution
(solid line). Note also that the patterns in the scatterplot are due to the Sobol’ quasi-
random sequences used for the example.

We now check the stability analysis for robustness, by allowing physico-chemical parame-
ters to be uncertain. These uncertainties are given by normal distributions, with the following
characteristics:

(k0, E/R): assuming an estimate of kinetic coefficients, they are likely to be strongly corre-
lated (Bard, 1974) and with much greater uncertainty for k0 than for E/R. So we take
a standard deviation of 35% for k0, 2% for E/R and a correlation coefficient of 0.96
(Paladino and Ratto, 2000).
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(N): the heat transfer coefficient has a standard deviation of 5%, i.e. ∼ N(0.5, 0.025).

(∆Ta): the adiabatic temperature difference has a standard deviation of 5 K, i.e. ∼ N(200, 5)

We then proceed with the MCF analysis, as described below.

• First we perform the Smirnov test.
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The sensitivity behaviour is still dominated by the control gains. In particular, suffi-
ciently large values of kP are still able to stabilize the reactor, whatever the values of kIτ
and all the uncertainties in the physico-chemical parameters. This is very important,
since it allows us to design a stable control, i.e. robust against uncertainties. Looking
very carefully at the physico-chemical parameters, we can also see that, as expected,
the reactor has a very slight tendency towards instability if:

– the heat transfer coefficient decreases;

– the adiabatic temperature difference increases;

– the kinetic parameters increase.

• We then plot the bi-dimensional projection of the unstable sample B̄ onto the (kP , kIτ)
plane.
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This shows that unstable behaviour can be present beyond the Hopf locus computed
at the nominal values of the physico-chemical parameters, implying that safe values for
control gains have to be chosen according to uncertainty considerations. Constraining
gains as kP > 6 and 0 < kIτ < 4 may be a good starting point.

2.3.2 Stability analysis of a small macro-economic model

Let us consider a simple macro-economic model: a Phillips curve. As usual in economics,
this is a discrete-time dynamic model (typically with a quarterly sampling interval). Let ct

and πt denote output gap and inflation, respectively. In macro-economic theory, the output
gap denotes the cyclical component of GDP (gross domestic product) with respect to the
long-term trend. In general terms, it is a quantity linked to the business cycle. We can write
the hybrid Phillips curve as:

πt = ωbπt−1 + ωfEtπt+1 + βct + aπt (2.3.10)

ct = 2A cos(2π/τ)ct−1 − A2ct−2 + ac,t (2.3.11)

where Et denotes the expectation taken at period t, 0 < (ωb, ωf ) < 1, A and τ are the
amplitude and period of ct and aπ,t, ac,t are white noises.

The Phillips curve links the inflation dynamics to the output gap, in such a way that
periods of economic expansion (i.e. with a positive output gap) are typically associated with
an increase in inflation and vice versa. Moreover, the hybrid Phillips curve also says that
inflation in the current period is linked with some persistence ωb to the rate of inflation in the
previous period and to the expected level of inflation in the following period, with a weight
ωf . This leads on to the theory of rational expectation behaviour of economic agents. In
contrast to standard (physical) dynamic systems, the occurrence of a unique, stable solution
in macro-economic rational expectations models requires that there be an equal number of
explosive eigenvalues and forward-looking variables. In discrete-time dynamic models, stable
roots have absolute values less than 1, while explosive ones are larger than 1. In this case,
the Phillips curve has one lag πt−1 and one lead Etπt+1, so we need exactly one stable and
one explosive eigenvalue. To help explain the stability conditions of economic rational expec-
tations models to non-economists, we can say that the fact that the current level of inflation
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depends on both past and future levels, makes the system like a two-point boundary system
(similarly to certain types of differential equations in space describing advection-dispersion
mechanisms). Hence, this implies the presence of initial and terminal conditions, correspond-
ing to backward-looking and forward-looking components, respectively. Likewise in physical
systems, backward-looking behaviour propagates the initial conditions into the future. This
propagation is stable if it is associated to stable eigenvalues, thus assuring that the dynamic
system will asymptotically converge to the steady state. The forward-looking components, on
the other hand, propagate the terminal conditions into the past, i.e. in a symmetrical manner,
reversing the orientation of the time axis. It intuitively makes sense that, if the orientation
of time is reversed, explosive roots looking ‘towards the future’ become stable roots looking
‘towards the past’; therefore, in order to assure stability of the propagation into the past of
forward-looking components, such components need to be associated to explosive roots.

The eigenvalues of this simple model can be computed analytically:

rb =
1/ωf −

√

1/ω2
f − 4ωb/ωf

2

=
1 −

√

1 − 4ωbωf

2ωf
(2.3.12)

rf =
1 +

√

1 − 4ωbωf

2ωf
.

The restriction 1−4ωbωf ≥ 0 ensures that the roots are real. The stability condition is verified
if

ωf < (1 − ωb)

or (2.3.13)

ωf = (1 − ωb) and ωb > 0.5.

We apply the Monte Carlo filtering technique to identify the stable behaviour. The support
for the model coefficients is defined as:

A ∼ U [0, 1], ωb ∼ U [0, 1], ωf ∼ U [0, 1], τ ∼ U [0, 100].

We first perform the Smirnov test for the separation of the B and B̄ subsets.
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The occurrence of stable or unstable behaviour is clearly attributable to the coefficients ωb

and ωf . Moreover, the shape of the dotted curves (corresponding to B) indicates that stable
behaviour will more probably occur for smaller ωb and ωf values.

We subsequently perform a correlation analysis of the stable sample and plot the significant
correlation selected: the bi-dimensional projection of the B subset onto the (ωb, ωf ) plane.
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The dots in this plot clearly indicate the first stability condition ωf < (1 − ωb) in (2.3.13).
The second condition in (2.3.13) is just one limit case, and tells us simply that only the half
part ωb > 0.5 of the stability boundary line ωf = (1− ωb) provides stable behaviour. This is,
of course, hardly visible in the plot.

2.3.3 Mapping propagation of the infection in the simple infection dyna-
mics model

We consider an infective process at its early stage, where I is the number of infected individuals
at time t and S is the number of individuals susceptible to infection at time t.

We assume that the infection is propagated through some kind of contact between indi-
viduals who, especially at the early stage, do not take any precautions to avoid the contagion.

It is reasonable to assume that the number of contacts per unit time is proportional to
the number of individuals in each group (i.e. to I × S) via a contact coefficient k < 1.

Also, the number of infections is proportional to the number of contacts through an ’in-
fection coefficient’ (γ < 1), which is the likelihood that the infection is passed on during a
given contact.

Depending on the dangerousness of the infection, the infected individuals will end their
condition in either of two ways: by recovering or by dying. It is presumed that recovery and
death rates (r and d) are proportional to the number of infected individuals.

The number of susceptible individuals decreases with the number of infections, but can
increase with new births b, proportional to S, or migration which happens at a constant rate
m.

Two equations describe the dynamics of I and S, representing the model of the infection
process:

dI

dt
= γkIS − rI − dI (2.3.14)

dS

dt
= −γIS + bS + m (2.3.15)

Let us investigate the evolution of the infection at its early stage t ∼ 0, when we presuppose
that the number of the susceptible individuals is much larger than that of the infected (S(t) >>
I(t)), and that S is changing slowly (S(t) ∼ S0 = const).

Equation (2.3.14) becomes linear and homogeneous:

dI

dt
= (γkS0 − r − d)I (2.3.16)
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The solution is
I = I0 · exp(Y ),

where Y = γkS0 − r − d.
If Y > 0 the infection spreads, while if Y < 0 the infection dies out.
So, our MCF problem is to map Y < 0, i.e. the stable eigenvalue of the infection propa-

gation dynamics.
Suppose that S0 = 1000 (a small village), and that factors are distributed as follows:

• Infection coefficient γ ∼ U(0, 1). The infection is at an early stage, and no information
is available about how it is acting.

• Contact coefficient. This distribution describes the probability of a person coming into
contact with other individuals. In other words, the probability of meeting all the inhab-
itants of the village (and of meeting nobody) is low, while the probability of meeting an
average number of persons is higher. We will analyze three different beta distribution

k ∼ beta(2, 7);

k ∼ beta(0.5, 10);

k ∼ beta(0.2, 15).

• Recovery rate r ∼ U(0, 1). We assume this to be uniform, as we do not know how it
behaves at the beginning of the propagation.

• Death rate d ∼ U(0, 1), for the same reason as r.

We obtain the following results:

k ∼ beta(2, 7) . In this case, the probability that the infection will die out is very small
(only 1% of the MC sample). Performing the Smirnov analysis we obtain the following
picture:
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This shows that all input factors have a non-negligible effect in driving the propagation
of the infection. However, γ is predominant, based on which it is clear that the infection
can die out only for a very narrow range of γ values, in the lowest part of its range.
Moreover, we can also see that smaller values of k and larger values of r and d tend to
limit propagation of the infection.

The correlation analysis reveals a negative correlation between γ and k under the be-
havioural subset, which reflects the product interaction between these two factors. Note
also that γ-values in this behavioural scatterplot are constrained in the range [0, 0.05]
out of a full sample in the range [0, 1].
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k ∼ beta(0.5, 10) . Changing the prior distribution of k raises the probability that the
infection will die out to about 20%. Performing the Smirnov analysis produces the
following modified picture for the model parameters:
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Now the importance of k has increased, and we can see that the behavioural runs are
linked merely to k, falling in the lowest part of its range. Moreover, small γ values and
large r and d values also tend to produce a declining infection dynamics.

The correlation analysis confirms the negative correlation between γ and k, while the
hyperbola shape linked to the product interaction of these two parameters in the model
is now more sharply visible.
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k ∼ beta(0.2, 15) . In this case, the probability of a declining infection dynamics rises to
57%. The Smirnov analysis indicates that k is now the dominant factor in driving
the behaviour of the infection dynamics model, leaving a minor role to the remaining
parameters:
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The correlation analysis still produces a negative correlation between γ and k with the
hyperbola boundary between the B and B̄ subsets.

0 0.5 1
0

0.05

0.1

0.15

0.2

γ

k
cc = −0.16708

2.4 Exercises

Exercise 2.4.1. Interpret the plots below, which represent the Smirnov test for a set of input
factors. The behavioural set is indicated by dotted lines, the non-behavioural by solid lines.
Think of some functional forms that could produce such results. The D-stat above each plot
indicates the value of the Smirnov statistic.
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Exercise 2.4.2. Interpret the plots below, showing the bi-dimensional projections of be-
havioural subsets. Think of an analytic form of the types of interaction that produce the
behavioural sets.
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Exercise 2.4.3. Consider the model Y = Z1 + Z2, with

Z1 ∼ N(0, 1)

Z2 ∼ N(0, 3)

Discuss the mapping problem Y > 0 analytically and using the MCF techniques.

Exercise 2.4.4. For the same model as in Exercise 2.4.3, map the highest 5% quantile for Y
onto the input space.

Exercise 2.4.5. For the same model as in Exercise 2.4.3, map the highest 5% quantile for Y
when

Z1 ∼ N(0, 1)

Z2 ∼ N(0, 1).

Exercise 2.4.6. Consider the model Y = X1 · X2, with Xi ∼ N(0, 2) and discuss the cases
Y > −1, Y > 0, Y > 1.

Exercise 2.4.7. Consider the model Y = X1 ·X2 ·X3, with Xi ∼ U(0, 2) and discuss the case
Y < 1.

2.5 Solutions

Exercise 2.4.1 Three input factors out of four have a significant effect on the behavioural
properties of the model. Only X3 has a negligible effect.

The dotted cumulative distribution curve for X1 is steepest on the right-hand side (it
has shifted downwards), so high values of X1 are more likely to produce behavioural
model realizations. This kind of result suggests a monotonic mapping between X1 and
Y , e.g. a simple linear relationship.

Input factor X2, on the other hand, has two different behavioural regions: the dotted
line has two separate sections of steepness, one for the smallest values and one for the
largest. This implies that the extreme values of X2 (either smallest or largest) are more
likely to produce behavioural realizations of Y . This kind of result suggests a non-
monotonic mapping between X2 and Y , e.g. a quadratic form. Also, interaction effects
can lead to the same type of Smirnov test (see Exercise 2.4.6 below).
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For X4 we have the opposite situation with respect to X2: the dotted line is steeper
in the central part of the support, implying that the extreme values of X4 have to be
avoided in order to produce behavioural model realizations. This kind of result suggests
a non-monotonic mapping between X4 and Y , e.g. a quadratic form with opposite
concavity with respect to X2

1.

Exercise 2.4.2 The first shape is characterized by a negative correlation between X1 and
X2 in producing behavioural model realizations. Negative correlations suggest that the
two input factors act through sum or product relationships. In this case, a plausible
description for the behavioural set is given by X1 +X2 > 0, i.e. an additive relationship.

The second shape is also characterized by a negative correlation, suggesting action
through sum/product. In this case, the shape resembles an hyperbola, suggesting a
plausible functional form as X1 · X2 < const.

The third shape is characterized by a positive correlation, implying that the action
is now through difference/quotient. Possible relationships are a · X1 − b · X2

2 < 0 or
X1/X2

2 < const.

The fourth shape is again with positive correlation, but flipped with respect to the
previous one, so plausible relationships are a · X1 − b · X2

2 > 0 or X1/X2
2 > const.

Exercise 2.4.3 The behavioural criterion Y > 0 is fulfilled by parameter combinations in
the upper-right half plane delimited by the line Z1 = −Z2 (i.e. Z1 > −Z2). If we also
consider the input factor distributions (Gaussian), we know that normal samples will
fall into the range ±1.96 · σ with 95% probability, where σ is the standard deviation
of the Gaussian distribution. So, the behavioural samples will be mainly concentrated
(with 95% probability) in the upper part of an ellipse with vertical major axis of height
5.88 and horizontal minor axis of width 1.96, cut by the line Z1 = −Z2. Moreover, since
Z2 has a wider variance than Z1, it will also be clear that Z2 drives the sign of Y more
powerfully, i.e. extreme values of Z2 will be able to drive the sign of Y regardless of the
actual values of Z1.

We now perform the analysis applying the MCF approach (we give MATLAB commands
as an example).

1. Generate a sample of 1000 elements from two normal distributions of standard
deviation 1 and 3

x1 = randn(1000,1);

x2 = randn(1000,1).*3;

2. generate the output:

y = x1+x2;

3. look for behavioural elements of the sample:

ib = find(y>0);

and for the non-behavioural:

in = find(y<=0);

1The true model used for this example was Y = 4X1 + (4X2

2 − 1) − X3

3 − (2X4

4 − 1) with Xi ∼ U [−1, 1]
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4. compute the Smirnov statistics (e.g. the outputs d1 and d2 of the MATLAB
Statistical Toolbox function kstest2):

[h1, p1, d1] = kstest2(x1(ib),x1(in));

[h2, p2, d2] = kstest2(x2(ib),x2(in));

5. plot the empirical cumulative density plots (e.g. using MATLAB Statistical Tool-
box function cdfplot)

figure,

subplot(2,2,1)

h=cdfplot(x1(ib));

set(h,’linestyle’,’:’),

hold on, cdfplot(x1(in))

gca, title([’d-stat ’,num2str(d1)]), xlabel(’Z1’), ylabel(’’)

subplot(2,2,2)

h=cdfplot(x2(ib));

set(h,’linestyle’,’:’),

hold on, cdfplot(x2(in))

gca, title([’d-stat ’,num2str(d2)]), xlabel(’Z2’), ylabel(’’)
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From the Smirnov analysis we can see that, while both input factors have a signif-
icant effect on the behavioural realizations of Y , Z2 has the greater impact on the
sign of Y (it has a far larger Smirnov statistic). As already mentioned, this is due to
the larger variance of Z2 with respect to Z1, which allows sufficiently large values of
Z2 to force a positive sign in Y , regardless of the values of Z1. The behavioural/non-
behavioural subsets for Z2 are therefore almost disjoint (they overlap only in the
range [-1.5, 1.5] within a full support of [-9, 9]), while for Z1 the two subsets have
a much larger degree of overlap.

6. compute the correlation coefficient under the behavioural subset:

cc = corrcoef(x1(ib),x2(ib))

and plot the bi-dimensional projection of the behavioural sample, which fills the
half plane Z1 + Z2 > 0, as expected.

plot(x1(ib),x2(ib),’.’)

xlabel(’z1’), ylabel(’z2’), title([’cc= ’,num2str(cc(2,1))])



SOLUTIONS 21

−4 −2 0 2 4
−4

−2

0

2

4

6

8

10

z1

z2

cc= −0.36081

Exercise 2.4.4 The output Y is the sum of two normally distributed variables, so Y ∼
N(0,

√
10). The 5% upper tail of a Gaussian distribution is located at a distance from

the mean of 1.65 · σ. Hence the upper 5% tail of the output probability is given by the
set Y > Y 95, where Y 95 = 1.65 ·

√
10 = 5.22. So the behavioural set of the input factors

is given by the upper half plane delimited by the line Z1 + Z2 = Y 95.

Performing the same analysis applying MCF techniques requires the use of the same
sample used in Exercise 3 and re-computing the new behavioural set.

1. Sort the output values:

[ys, is]=sort(y);

2. define the behavioural (upper 5 %) and non-behavioural sets (the rest of the sample)

ib = is(951:1000);

in = is(1:950);

3. compute the Smirnov statistics and plot the cumulative distributions as in the
previous exercise:
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Again we can see that the behavioural and non-behavioural subsets of Z2 are almost
disjoint and sufficiently large values of Z2 are capable of driving Y into the upper
5% quantile, whatever the value of Z1.



SOLUTIONS 22

4. compute the correlation coefficient of the behavioural set and plot the bi-dimensional
projection of the input factor behavioural sample, which fills the half plane Z1 +
Z2 > Y 95, as expected. This plot also confirms the Smirnov analysis by showing
that Z2 values have to remain significantly positive to drive Y to its upper values,
while Z1 values can range almost symmetrically around zero.
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Exercise 2.4.5 In this case, the two input factors have the same variance, so we can expect
an equal impact on the extreme values of Y . In analytic terms, Y now has a Gaussian
distribution N(0,

√
2). Hence the upper 5% quantile is given by Y > Y 95 = 1.65 ·

√
2 =

2.33.

Performing the MCF analysis, we first obtain the Smirnov statistics and plot the cumu-
lative distributions, which clearly display the similarity of the effects of the two input
factors on Y .
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We can subsequently perform the correlation analysis and plot the bi-dimensional pro-
jection of the behavioural sample, which also confirms the equivalent effect of Z1 and
Z2 on Y .



SOLUTIONS 23

−1 0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

3

z1

z2

cc= −0.75105

Exercise 2.4.6 Analytically, the problems can be formalized as Y > c, with c = −1, 0, 1.
This implies that X1 · X2 > c.

For c = −1, the behavioural condition is fulfilled for the portion of the (X1, X2) plane
between the two branches of the hyperbola X1 = −1/X2. This also implies that the
central part of the support of each input factor will be more likely to produce behavioural
Y -realizations.

For c = 0, the behavioural condition is fulfilled if X1 and X2 have the same sign, i.e. all
positive values of both X1 and X2 or all negative values of both X1 and X2. This also
implies that any value in the support of one input factor has an equal probability of
producing a behavioural or non-behavioural run, conditional on the value of the other
one. Therefore, the Smirnov test would not highlight any significant effect of X1 and
X2.

For c = 1, the behavioural condition is fulfilled for the two portions of the (X1, X2)
plane outside the two branches of the hyperbola X1 = 1/X2. This also implies that
the lower/upper part of the support of each input factor will be more likely to produce
behavioural Y -realizations.

The MCF analysis can be implemented in a completely identical manner to the examples
before.

c = −1. We first compute the Smirnov statistics and plot the cumulative distributions.
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Analysing the steepness of the cumulative distributions under B and B̄ shows that
the behavioural distribution is concentrated (steeper) in the central part of the
initial support, while the non-behavioural is concentrated (steeper) in two disjoint
subsets in the lower and upper part of the initial support.

We then compute the correlation coefficient and plot the bi-dimensional projection
of the behavioural subset.
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This shows neatly the portion of space between the two branches of hyperbola
X1 = −1/X2 that produces behavioural Y -realizations.

c = 0. We first compute the Smirnov statistics and plot the cumulative distributions.
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This shows that the two subsets have the same distribution, i.e. any value in the
original support for each input factor is equally likely to produce behavioural or
non-behavioural realizations.

We then compute the correlation coefficient and plot the bi-dimensional projection
of the behavioural subset.
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This allows us to understand the interaction mechanism between X1 and X2 that
produces behavioural realizations.

c = 1. We first compute the Smirnov statistics and plot the cumulative distributions.
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This shows that values of the input factors concentrated in the lower/upper part
of each support are more likely to produce behavioural runs, while the central
values of the original support are excluded from the behavioural set (the dotted
cumulative lines are flat around the zero values of Zi, implying a zero density of
points of the behavioural subset in the central part of each support).

We then compute the correlation coefficient and plot the bi-dimensional projection
of the behavioural subset.
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This shows the two disjoint portions of the (X1, X2) plane outside the two branches
of the hyperbola X1 = 1/X2 that produce the behavioural Y realizations.

Exercise 2.4.7 We first compute the Smirnov statistics and plot the cumulative distribu-
tions.
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This shows that, to maintain the output realization smaller than 1, all factors must
be sufficiently small. The behavioural distribution is therefore steepest towards the
smallest values of the original supports of Xi.

We then compute the correlation coefficient and plot the bi-dimensional projection of
the behavioural subset.
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The negative correlation coefficients indicate that the effect of input factors on Y is
through sums/products. Moreover, these plots show nicely that the upper-right regions,
combining large values of all the input factors, have to be avoided to assure that Y < 1.



Chapter 3

Metamodelling and the
High-Dimensional Model
Representation

Let us now consider the problem of representing in a clear and immediate way the relationship
Y = f(X1, . . . , Xk), whose form is usually unknown to the analyst. This is essentially a prob-
lem of model approximation or metamodelling, whereby the analyst aims to identify a simple
relationship between Xi’s and Y that fits the original model well and is less computationally
demanding.

There is a vast literature on this subject. Local approximation methods take the value of
f and its derivatives at a base point X0 and construct a function that matches the properties
of f at X0 and in the nearby region (Taylor series). Interpolation methods look at ‘nice’
functions that go through a set of data points spanning the entire domain of the Y = f(·)
mapping. The approximation is then identified by fixing p parameters (e.g. the coefficients of
the polynomials) using p data points (Lagrange, Chebyshev interpolation). Tensor products
of orthogonal polynomials or complete polynomials are usually applied to span the space of
functions in Rk and to interpolate Y = f(X1, . . . , Xk). Regression/smoothing methods differ
from interpolation in that a set of N > p data points is used to identify the approximating
function. For univariate functions f , the interpolation, regression and smoothing approaches
can be extended by applying piecewise polynomials, constructing functions that are only
piecewise smooth. Splines (cubic splines are the most popular) are a powerful and widely
used approach to piecewise polynomial interpolation and regression/smoothing (in the latter
case they are called smoothing splines). Splines are smooth where the polynomial pieces
connect. In the multivariate case, radial basis function (RBF) networks can be seen as the
equivalent of univariate piecewise interpolation, regression and smoothing approaches (RBF’s
are also classified under the heading of kernel regression smoothing methods).

Before proceeding with the description of the methodologies, we would like to draw at-
tention to some additional properties of the approximating functions, which also uncover
fundamental links between metamodelling and the theory of variance-based sensitivity anal-
ysis.

Let g(·) be the generic function approximating the true model Y = f(X1, . . . , Xk) and let
us assume a quadratic loss function E[(Y − g(·))2] as a measure of ‘fit’ for g.

If we were to approximate f with a function of one single parameter Xi, what function
g∗i (Xi) would produce minimum loss?

28
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It is well known, from any standard text on statistics, that the univariate function

g∗i = E[Y |Xi], (3.0.1)

i.e. the conditional expectation of Y given Xi, is the minimum loss approximation to f . The
expression (3.0.1) tells us that at any p-location Xi = xi,p, the value of g∗ is obtained by
integrating (averaging) Y over all the remaining [X1, . . . , Xi−1, Xi+1, . . . , Xk] input factors.

Equation (3.0.1) can be generalized to any subset of the input factors XI , indexed by
I = (i1, . . . , il), as

g∗I = E[Y |XI ]. (3.0.2)

Equations (3.0.1,3.0.2) obviously link to the ANOVA-HDMR decomposition of f .

f(X1, X2, . . . , Xk) = f0 +
∑

i

fi +
∑

i

∑

j>i

fij + . . . + f12...k, (3.0.3)

where the connection between the fi terms of the HDMR and the minimum loss approximating
functions g∗(·) is made explicit by

f0 = E(Y )

fi(Xi) = E(Y |Xi) − f0 = g∗i − f0 (3.0.4)

fij(Xi, Xj) = E(Y |Xi, Xj) − fi(Xi) − fj(Xj) − f0 = g∗i,j − fi(Xi) − fj(Xj) − f0

Each term of the ANOVA-HDMR decomposition tells the analyst how much, on average,
Y can be moved with respect to its mean level f0 by acting on single input factors or groups of
them. Moreover, the quantity V (g∗I (XI))/V (Y ) = corr(g∗I (XI), Y ) is well known in statistics
as ‘correlation ratio’ or ‘non-parametric R-squared’, and provides the fraction of the variability
of Y that is explained with the best predictor based on XI . The equivalence between non-
parametric R-squared and variance-based sensitivity indices is obvious and this closes the
parallel between the problem of estimating and measuring the explanatory power of covariates
in regression and variance-based sensitivity analysis.

Coming back to the metamodelling problem, kernel regression methods can be shown to
provide, under certain regularity conditions, consistent estimators of g∗(·), which are asymp-
totically normal at the

√
N rate (see Doksum and Samarov, 1995, and references cited therein)

, i.e. as N → ∞,

E

∫

(ĝ(XI) − g∗(XI))
2dXI = o(N−1/2)

The metamodelling approach that we follow in this book can be classified under kernel
regression smoothing methods. However, due to its recursive implementation, our approach
differs with respect to other en-bloc methods. This has some advantages, such as the estima-
tion of ‘smoothing parameters’ with maximum likelihood and greater flexibility in managing
non-linearities in f(·).

3.1 Estimating HDMR’s and meta-models

In the literature on sensitivity analysis there has been a growing interest in metamodelling
and smoothing techniques. Storlie and Helton (2006) have reviewed smoothing methods for
sensitivity analysis, from smoothing splines to various types of univariate and multivariate
kernel regression approaches. Li et al. (2002, 2006) developed the so-called Random Sampling
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HDMR, which involves approximating the truncated HDMR expansion up to order three,
based on orthogonal polynomials. Pappenberger and Stauch (2007) uses spline smoothing to
estimate sensitivity indices. Ratto et al. (2004, 2006, 2007) have developed a non-parametric
approach which is very similar to smoothing splines and kernel regression approaches, but
which is based on recursive filtering and smoothing estimation (the Kalman Filter, KF). Such
a recursive least-squares implementation has some fundamental advantages: (a) it is couched
with optimal Maximum Likelihood estimation, thus allowing for an objective estimation of
‘smoothing’ parameters, and (b) it allows for greater flexibility in adapting to local discon-
tinuities, heavy non-linearity and heteroscedastic error terms (see below). All such methods
can be assigned to the regression/smoothing class of approximation approaches.

An example of interpolating metamodels, on the other hand, is given by Gaussian em-
ulators (see Oakley and O’Hagan, 2004, and the references cited therein, for a detailed de-
scription) and kriging metamodels (Kleijnen, 2007b,a). Kriging metamodels are similar to
Gaussian, except that they do not rely on Bayesian interpretation. While theoretically ap-
pealing, Gaussian emulators can be prone to the curse of dimensionality and to the smoothness
assumptions of the function under analysis. This is because, instead of trying to identify the
best predictors of Y based on a subset of input factors or on low-order ANOVA-HDMR terms,
Gaussian emulators try to interpolate and predict the f(·) mapping by applying a Gaussian
kernel of the same k-dimensionality as the input parameter space. Therefore, as k increases,
the number of ‘hyper-parameters’ to be estimated (linked to the covariance structure of the k-
dimensional Gaussian kernel), increases strongly, often implying problems with identification
and over-parameterization.

Such problems are well known in standard interpolation and smoothing techniques based
on k-dimensional kernel regressors. They imply that Gaussian emulators are only effective,in
practice, for model structures having a small number of significant main effects and very mild
interactions, for which such problems are made irrelevant by the very few highly identifiable
elements of the f(·) mapping.

In other words, in regression/smoothing techniques, metamodels are based on subsets of
input factors and/or truncated HDMR expansions of order smaller than k, and their identifi-
cation and estimation incorporate sensitivity analysis criteria, in that non-significant contribu-
tions to Y are identified and eliminated within the process of construction of the approximation
to Y . In contrast to this, Gaussian emulators aim first to estimate a full k-order mapping
on the basis that a sensitivity analysis applied afterwards to the emulator will automatically
reveal the significant contributions to Y .

Once identified, estimated and parameterized, metamodels provide a direct, albeit ap-
proximated, analytic expression of the Y = f(X1, . . . , Xk) mapping, which accounts for non-
linearities and interaction terms of increasing order. As such, they can be used for various
purposes:

• sensitivity analysis, by helping to highlight the most important input factors of the
mapping;

• model simplification, by finding a surrogate model containing a subset of the input
factors that account for most of the variability of Y ;

• model calibration, in which the metamodel is used to find directly the optimal parame-
terization for the fulfilment of the given calibration criteria.
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A detailed description of all the available metamodelling techniques is beyond the scope
of this book: readers can refer to the cited works for further information. We will concentrate
here on non-parametric methods and, in particular, we will demonstrate simple implemen-
tations of univariate non-parametric smoothing methods that give the ‘flavour’ of the more
sophisticated multivariate, recursive procedure of Ratto et al. (2004, 2006, 2007). In non-
parametric methods, the function E(Y |Xi) is not approximated by a basis of functions that
span the entire domain of Xi; rather many ‘local’ approximations are identified which move
along the Xi-axis. Such ‘local’ functions are subsequently joined using ad hoc criteria, such
as imposing some smoothness properties like continuity (piecewise linear interpolation is an
example of this). This in practice gives a ‘look-up’ table of the function fi = g∗(Xi) which can
subsequently be parameterized using functional bases, such as polynomials, Fourier expansions
or linear wavelets.

Smoothing scatterplots using the Haar wavelet

Wavelets, and in particular the Haar wavelet, provide a very simple approach to smoothing
signals.

The 2 × 2 Haar matrix is given by

H2 =
1√
2

[

1 1
1 −1

]

.

Given an MC sample of f(·) whose length N is a power of two (y1, y2, . . . , y2n−1, y2n), i.e.
N = 2n, and where the sample is sorted with respect to the input factor Xi under analysis,
we may group its elements as ((y1, y2), . . . , (y2n−1, y2n)) and we may right-multiply each term
by matrix H2,

H2

(

y2j−1

y2j

)

=

(

sj

dj

)

for j = 1, . . . , 2n−1

obtaining two new sequences (s1, . . . , s2n−1) and (d1, . . . , d2n−1). The sequence s gives the
sum between two consecutive points whilst the sequence d gives the difference. Since the
original signal has a length equal to 2n, one can recursively apply the same procedure to
s-sequences up to n times. For each λ = 1, . . . , n we call the associated sequence sλ the λth
Haar approximation coefficients and dλ the λth Haar detail coefficients.

For each λ = 1, . . . , n we may use sλ to create an approximation f̂λ of the original signal
f . This is obtained first by re-scaling each value of sλ by

√
2λ and then by replicating each

of them 2λ times.
Example: Consider a sample of length 24 = 16 from a function Y = f(X) = (X−0.5)2+ε,

where X ∼ U [0, 1] and ε is a white noise normally distributed N(0, 0.03):

f = (0.21, 0.19, 0.14, 0.1, 0.05, 0.01, 0.03,−0.01, 0.01,

−0.03, 0.01, 0.06, 0.04, 0.1, 0.13, 0.19).

• First stage (λ = 1). From the first pair of y-points we compute the first element of s1:
(0.21 + 0.19)/

√
2 = 0.2828. Repeating this with all pairs of y we get:

s1 = (0.2828, 0.1697, 0.0424, 0.0141,−0.0141, 0.0495, 0.0990, 0.2263)
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Scaling the first term of s1 by
√

2 we get 0.2, which is replicated 21 times to construct
the first two elements of f̂1. This is repeated to get:

f̂1 = (0.2, 0.2, 0.12, 0.12, 0.03, 0.03, 0.01, 0.01,

−0.01,−0.01, 0.035, 0.035, 0.07, 0.07, 0.16, 0.16)

• Second stage (λ = 2): Replicating the steps of the first stage to the s1 sequence, we get:

s2 = (0.32, 0.04, 0.025, 0.23)

and

f̂2 = (0.16, 0.16, 0.16, 0.16, 0.02, 0.02, 0.02, 0.02,

0.013, 0.013, 0.013, 0.013, 0.12, 0.12, 0.12, 0.12)

• ... and so on.

If we compare the graph of the original signal f and its first- and second-level approxima-
tions f̂1, f̂2 we obtain the following picture:
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The picture above shows that f̂λ may be used to infer the smoothed behaviour of the signal
f , where λ plays the role of a smoothing parameter: the higher λ, the smoother the signal
extraction. At the highest level of smoothing λ = n , the Haar wavelet will simply provide
the unconditional mean E(Y ). Note also that this smoothing approach can be implemented
recursively, and does not require any matrix inversion.

Exercise 3.1.1. Write a code for the Haar wavelet and reproduce the results shown in the
previous example.

Spline smoothing

Smoothing splines are a non-parametric method which is very useful for understanding the
more sophisticated methodology to be discussed later in this report. Given a Monte Carlo
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sample of size N , a cubic smoothing spline is a function ĝ that minimizes the penalized
residuals’ sum of squares:

N
∑

j=1

[yj − ĝ(xj)]
2 + λ

∫ b

a
[
d2ĝ(x)

dx2
]2dx (3.1.1)

where a ≤ min(xj), b ≥ max(xj), j = 1, . . . , N and λ is the Lagrange Multiplier, which plays
the role of a smoothing parameter (i.e. the bigger λ, the smoother ĝ). In (3.1.1), the first term
is the sum of squared residuals, measuring fit to the data, while the second term penalizes
too high a curvature in ĝ. This approach is also known in numerical analysis as regularization
(or deterministic regularization, DR).

The unique, explicit solution to (3.1.1) is given by a natural cubic spline with knots at each
observed value xj (see Hastie and Tibshirani, 1990) . A cubic polynomial spline is a function
that is a cubic polynomial on any interval defined by adjacent knots, has two continuous
derivatives and a third which is a step function that jumps at the knots.

Spline smoothing can easily be implemented by taking the discrete formulation of (3.1.1),
where the long-term signal t̂ is given by the solution of the minimization problem:

min

(

N
∑

s=1

[ys − t̂s]
2 + λ

N−1
∑

s=2

[(t̂s+1 − t̂s) − (t̂s − t̂s−1)]
2

)

, (3.1.2)

where the index s scans the data in a sorted order with respect to the input factor under
analysis. In econometrics this is called the Hodrick-Prescott (HP) filter (Hodrick and Prescott,
1980), and it is used for trend extraction in economic time-series analysis (in such cases s scans
the data in temporal order).

The solution to this problem can be written taking derivatives with respect to t̂s:

y1 = (1 + λ)t̂1 − 2λt̂2 + λt̂3

y2 = −2λt̂1 + (1 + 5λ)t̂2 − 4λt̂3 + λt̂4

. . .

ys = λt̂s−2 − 4λt̂s−1 + (1 + 6λ)t̂s − 4λt̂s+1 + λt̂s+2

s = 3, . . . , n − 2

. . .

yn−1 = λt̂n−3 − 4λt̂n−2 + (1 + 5λ)t̂n−1 − 2λt̂n

yn = λt̂n−2 − 2λt̂n−1 + (1 + λ)t̂n.

This can easily be put into matrix form,

y = (I + λUTU) · t̂λ
, (3.1.3)

where I is the N × N identity matrix, y is the 1 × N vector of model output data and U is
the following N × N matrix:

U =



















0 0 0 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0
1 −2 1 0 . . . 0 0 0
0 1 −2 1 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . 1 −2 1
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The explicit solution is easily found to be:

t̂
λ

= (I + λUTU)−1 · y = W−1 · y. (3.1.4)

The ‘trend’ t̂
λ

is a non-parametric estimate of the univariate ‘metamodel’ fi(Xi) = E(Y |Xi),
which approximates the function f(·). The dependence of such an estimate on the smoothing

parameter is made explicit in (3.1.3,3.1.4) by the λ exponent in t̂
λ
. The appropriate value for

λ is not immediately apparent: cross–validation, graphical methods and measures of degrees
of freedom are used for this purpose (see Hastie and Tibshirani, 1990, Storlie and Helton,
2006, for more details) . Moreover, en-bloc smoothing methods like the one presented here
require the inversion of a matrix of the same dimension N of the MC sample, so that they
can be computationally very intensive and require a large memory size for large MC samples.
This contrasts with recursive methods like the State Dependent Regression described next.
Finally, note that in the en-bloc approaches it is also possible to obtain the standard errors of
the estimated tλ. Readers can refer to Hastie and Tibshirani (1990) for a detailed discussion
of en-bloc methods and estimation of standard error bands and to Young and Pedregal (1999)
for a combined discussion of recursive and en-bloc approaches.

Example: Consider the same example used above for the Haar wavelet. Using the same

data, we get the following estimates for t̂
λ
, at various smoothing levels:

• λ = 1:

t̂
1

= (0.22, 0.18, 0.14, 0.096, 0.055, 0.026, 0.011,

−0.0012,−0.0064,−0.0069, 0.01, 0.036, 0.059, 0.095, 0.14, 0.18)

• λ = 10:

t̂
10

= (0.21, 0.17, 0.13, 0.095, 0.061, 0.033, 0.013,

0.00069,−0.0035, 0.00068, 0.014, 0.036, 0.063, 0.096, 0.13, 0.17)

• λ = 100:

t̂
100

= (0.17, 0.14, 0.12, 0.093, 0.071, 0.053, 0.039,

0.03, 0.027, 0.029, 0.036, 0.048, 0.064, 0.082, 0.1, 0.12)

Such smoothed estimates are shown in the following plot:
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This plot shows the smoothing effect of increasing λ. If λ tends to infinity, the HP-filter
simply provides the unconditional mean E(Y ). Judging by eye, the best smoothing seems be
obtained using λ values between 1 and 10.

Exercise 3.1.2. Write a code for the spline smoothing (HP-filter) and reproduce the results
shown in the previous example.

State Dependent Regressions

Ratto et al. (2004, 2006, 2007) have recently presented a flexible and efficient approach to the
estimation of g∗I (XI) = E(Y |XI) and of truncated ANOVA-HDMR decompositions. The es-
timation procedure is based on State Dependent Regression (SDR) models: a non-parametric
approach, based on recursive filtering and smoothing estimation.

In brief, the fundamental concept underlying of SDR approach is that any term like
E(Y |XI) can be viewed as an SDR model of the form:

Ys = pI,s(ξI) + es (3.1.5)

where the state dependent parameter (SDP) pI,s(ξI), I = i1, . . . , il, depends on a state variable
ξI that moves according to a generalized sorting strategy along the co-ordinates of the single
factors or groups of factors indexed by I; and es is the residual, i.e. the portion of variability
of Y that cannot be explained by the group of factors indexed by I only.

Extending this definition, the truncated ANOVA-HDMR expansion can also be expressed
as an SDR model as follows:

Ys − f0 =
∑

i

pi,s(ξi) +
∑

j>i

pij,s(ξij) +
∑

l>j>i

pijl,s(ξijl) + es (3.1.6)

=
∑

i

fi,s(Xi) +
∑

j>i

fij,s(Xi, Xj) +
∑

l>j>i

fijl,s(Xi, Xj , Xl) + es

where es now represents the higher-order terms of the ANOVA-HDMR. Note also that, in
formulation (3.1.5), the SDP accounts for all cumulative effects within group I, be they first-
order or interaction terms. As such, it can be applied to any type of dependency structure
among input factors. On the other hand, in the HDMR formulation (3.1.6), each SDP accounts
only for its associated first-order or interaction term of the HDMR.
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According to the generalized sorting strategy adopted in (3.1.5) and (3.1.6), the group
of input factors of interest I is characterized by a low-frequency spectrum (e.g. by some
quasi-periodic pattern) while the remaining ones present a white spectrum. In this way, the
estimation of the various HDMR terms is reduced to the extraction of the low-frequency
component (i.e. of a ‘trend’) from the sorted output Y . To do so, the SDP’s are modelled by
one member of the generalized random walk (GRW) class of non-stationary processes. For
instance, the integrated random walk (IRW) process turns out to produce good results, since
it ensures that the estimated SDP relationship has the smooth properties of a cubic spline.

Given the IRW characterization, the model (3.1.6) can be put into state-space form as:

Observation Equation: Ys = 1sps + es

State Equations: pI,s = pI,s−1 + dI,s−1

dI,s = dI,s−1 + ηI,s

(3.1.7)

where 1s is the unit constant regressor and es (observation noise) and ηI,s (system distur-
bances) are zero-mean white-noise inputs with variance σ2 and σ2

η(I) respectively. Given this
formulation, SDP’s are estimated using the recursive Kalman Filter and associated recursive
Fixed Interval Smoothing (FIS) algorithm (Kalman, 1960; Young, 1999b). The recursive state
estimation requires that each SDP be estimated in turn, each with a different ordering of the
data, within a backfitting procedure (Young, 2000, 2001). At each backfitting iteration, the
hyper-parameters associated with (3.1.7), namely the white noise variances σ2 and σ2

η(I), are

optimized by maximum likelihood (ML), using prediction error decomposition (Schweppe,
1965). In fact, by a simple reformulation of the KF and FIS algorithms, each SDP and
its stochastic IRW process model can be entirely characterized by one Noise Variance Ratio
(NVR) hyper-parameter, where NVRI = σ2

η(I)/σ2. Hence, only NVR’s need to be optimized.

One very useful implication of the KF/FIS algorithms underlying SDR estimation is that
the standard error σf,s of the SDP’s is recursively produced in a natural manner by the
covariance matrix of the state vector. This allows us to distinguish the significance of the
estimated functions E(Y |XI).

A similar backfitting procedure is also applied in the Generalized Additive Modelling
(GAM) approach of Hastie and Tibshirani (1990). However, the SDP approach is couched
with optimal ML estimation and seems more elegant and flexible than the scatterplot smooth-
ing used by Hastie, Tibshirani and others. Moreover, the stochastic model for each SDP can
be based on any member of the GRW family and does not have to be limited to the IRW
model. For example, Random Walk (RW) or Smoothed Random Walk (SRW) might be iden-
tified as being preferable in certain circumstances because they yield less smooth estimates.
The recursive formulation of the SDR modelling also implies much greater flexibility in the
estimations, whenever required. For example, if any sharp changes or jumps seem possible fol-
lowing an initial identification phase in the analysis, then these can be handled using ‘variance
intervention’ (see Ng and Young, 1990), i.e. the NVR at some specific locations is allowed
to assume a large value in order to accomodate sharp changes in the underlying Y -signal.
Moreover, in the case of heteroscedastic behaviour (i.e. change in variance) in the observa-
tion noise, this can be further modelled in some SDP manner, e.g. by making the NVR a
function of the state ξI . This can then easily be plugged into the KF and FIS algorithms.
In practice, these extensions enable the SDR models to adapt to such situations, typical in
non-linear systems, where one single, constant smoothing parameter λ does not allow us to
follow appropriately the observed patterns of the f(·) mapping.

In its basic IRW formulation, the links between the SDR approach and the HP-filter
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smoothing are clear: both of them have the properties of a smoothing cubic spline. More-
over, it is also easy to verify the equivalence between the NVR and λ, linked by the simple
relationship: λ = 1/NVR. NVR therefore plays the role of the inverse of a smoothing pa-
rameter. SDR advantages, however, are in terms of the ML estimation of the NVR, which
makes the choice of the smoothing parameter completely objective, and in the great flexibility
features mentioned above. These properties provide optimal convergence properties of the
SDR estimates to the best least-squares predictor of Y , given by g∗(XI).

The SDR smoothing techniques based on GRW processes can also be seen as low-pass
filters. In the case of IRW, the 50% cutoff frequency ω∗ is linked to the NVR by the relationship
NVR= 4(1 − cos(2πω∗))2 (see e.g. Young and Pedregal, 1999) . The period T ∗ = 2π/ω∗

which is obtained with maximum likelihood can be compared to N to get an idea of ‘typical’
T ∗/N ratios and to identify some rule-of-thumb criterion for the smoothing parameter λ
of the HP-filter. Our experience suggests that a reasonable rule of thumb can be to set
T ∗ = N/3 −→ N/2 and to derive λ accordingly.

In the last step of the SDR analysis, the smoothed non-parametric ‘curves’ obtained from
the SDR model estimation are parameterized by, for example, a linear wavelet functional
approximation, allowing us to build a full metamodel to replace the original one.

Example: Consider again the simple example used before. Using the same data, we get
NVR=0.59 from ML estimation. This implies that the equivalent optimal λ for the HP-filter
would be about 1.7, matching the values that ‘looked’ acceptable in the HP-filter analysis.
The plots of the SDR estimate and the equivalent HP-filter estimate using λ = 1/NVR are
shown below:
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This clearly shows substantial identity between the HP-filter and IRW smoothing (the
curves overlap), as well as the importance of an estimation procedure linked to maximum
likelihood, providing for optimal identification of the smoothing parameter.

Estimating sensitivity indices

Once the smoothed estimates ĝI of E(Y |XI) have been obtained, the estimation of sensitivity
indices SI = V [E(Y |XI)]/V (I) is straightforward. As discussed in Doksum and Samarov
(1995), three estimators can be applied for this purpose. The one we use is:

ŜI =
N−1

∑N
s=1(ĝI(xI,s) − ḡ)2

σ2
Y

(3.1.8)
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where ḡ = N−1
∑

ĝI(xI,s) and σ2
Y = N−1

∑

(ys − Ȳ )2. Doksum and Samarov (1995) also

provide the error estimate for (3.1.8), by showing that N1/2(ŜI −SI) is asymptotically normal
with mean zero and variance (1−SI)

2V [y∗2−u2], where y∗ and u are the standardized output
and residual respectively, i.e. y∗s = (ys − µY )/σY and us = [ys − ĝI(xI,s)]/(σY (1 − SI)

1/2).
Hence, the standard error of the estimate of SI is given by:

SE(ŜI) = (1 − ŜI)std[y∗s
2 − u2

s]/N
1/2 (3.1.9)

3.2 Examples

3.2.1 A simple example

We give here an example of the smoothing estimation procedures. Let us consider the simple
model

Y = X1 + X2
2 + X1 · X2 (3.2.1)

with input distributions Xi ∼ N(0, 1). This model has the simple ANOVA-HDMR represen-
tation:

f0 = 1 (3.2.2)

f1(X1) = X1

f2(X2) = X2
2 − 1

f1,2(X1, X2) = X1 · X2

We apply the smoothing procedures described above, by using an LPτ sample of N = 256
model evaluations.

Haar wavelet smoothing

Let us first perform the smoothing with the Haar wavelet. As a rule-of-thumb criterion for
the smoothing parameter of the Haar wavelet, we dictate that the extracted signal be made
of 8 = 23 values, i.e. we construct the smoothing by taking eight local averages from the
sample of Y divided into eight bins. Given the sample of N = 256 = 28 = 2n, this implies
that λ=8-3=5. The sample of the output Y has to be sorted according to each input factor
and the Haar smoothing procedure described above has to be applied for each sorted sample.

The results of this procedure are shown in Figure 3.1. This shows that the rule of thumb
of eight local means is able to provide an illustrative idea of the fi patterns.

Spline smoothing (HP-filter)

In this case we have to choose the value for the smoothing parameter of the HP-filter. Using
λ=50000, which is in the range of rule-of-thumb values for the cut-off frequency ω∗ described
above, we get the results shown in Figure 3.2. We can observe the much nicer pattern provided
by the cubic spline properties of the HP-filter with respect to the Haar wavelet. The problem,
however, still lies in the approximate choice of λ.
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Figure 3.1: Haar estimation of the first-order HDMR of the simple model (3.2.1).
(a,b) scatterplots of Y versus X1 and X2 (grey dots), with the smoothed estimates of the
fi + f0 functions (solid lines).
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Figure 3.2: HP-filter estimation of the first-order HDMR of the simple model (3.2.1).
(a,b) scatterplots of Y versus X1 and X2 (grey dots), with the smoothed estimates of the
fi + f0 functions (solid lines).

SDR estimation

The maximum likelihood optimization of the NVR’s gives the following results for the two
input factors: NVR1=4.46e-6, NVR2= 4.675e-5.

In Figure 3.3(a,b) we show the scatterplots of Y versus the two model parameters together
with the result of the SDR recursive filtering and smoothing estimation of the fi terms (fi+f0

are plotted to match the same level of Y values). In Figure 3.3(c,d) we show the detail of
the SDR estimates, compared to the analytical values (3.2.2). Apart from expectable border
phenomena, the SDR estimates are excellent. In Figure 3.3(c,d) the dashed lines show the 95%
error bands (= ±2 · σf,s) of the estimated patterns. This permits us to assess the significance
of the estimated patterns by simply checking whether the zero-line is always included in the
error band (implying insignificance) or not.

Using 1/NVRi as smoothing parameters for the HP-filter analysis produces the same
results as for the SDR analysis, provided that the backfitting procedure is also applied –
otherwise the results will be slightly different.



EXAMPLES 40

−3 −2 −1 0 1 2 3
−5

0

5

10

15
(a)

Y

−3 −2 −1 0 1 2 3
−5

0

5

10

15
(b)

Y

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3
(c)

X
1

1(X
1)

−3 −2 −1 0 1 2 3
−2

0

2

4

6

8
(d)

X
2

2(X
2)

ff

Figure 3.3: SDR estimation of the first-order HDMR of the simple model (3.2.1).
(a,b) Scatterplots of Y versus X1 and X2 (grey dots), with the smoothed estimates of the
fi + f0 functions (solid lines) and their 95% error bands (dashed lines).
(c,d) Detail of the estimated fi functions (solid lines) with estimated 95% error bands (dashed
lines) and analytic fi functions (dotted lines).
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3.2.2 Another simple example

Let us consider the function

Y = X1 · X2 + X3 (3.2.3)

with
Xi ∼ U(−1, 1).

We perform an analysis using a Sobol’ LPτ sample of dimension 256. This model has only
one non-zero main effect for X3 and one second-order interaction term for (X1, X2). In Figure
3.4 we show the SDP estimation of the first-order HDMR terms f1, f2 and f3. We also report
the standard error band, showing that only f3 has a significant main effect.

In order to give the flavour of the generalized sorting strategy used in the SDR methodology
for interaction terms, let us perform the analysis of second-order interaction term (X1, X2).
Since we want to compute the f12 interaction effect, the 2D sorting requires exploration of the
(X1, X2) plane along a closed trajectory, like the one shown in Figure 3.5, with the sorting of
the sample points carried out as they fall within the band delimited by two adjacent lines. This
allows for the identification of an ordering in which (X1, X2) has low-frequency characteristics
while X3 maintains the white spectrum (Figure 3.6). The corresponding sorted output signal
Y can then be analysed to identify the second-order interaction term. This is shown in Figure
3.7, where we compare the analytic values and the SDP estimates of the sorted f1,2 interaction
term.
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Figure 3.4: SDR estimation of the first-order HDMR of the simple model (3.2.3).
(a,b,c) Scatter plots of Y versus Xi (grey dots), with the smoothed estimates of the fi + f0

functions (solid lines) and their 95% error bands (dashed lines).
(d,e,f) Detail of the estimated fi functions (solid lines) with estimated 95% error bands (dashed
lines) and analytic fi functions (dotted lines).
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Figure 3.5: Sorting trajectory in the (X1, X2) plane.
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Figure 3.6: Sorted sample used to compute the (X1, X2) interaction.
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Figure 3.7: Upper panel: Sorted output signal (grey line) and smoothed low-frequency
component (bold line) attributable to the (X1, X2) interaction. Lower panel: Smoothed
low-frequency component (solid line) with standard error (dashed lines) and sorted analytic
(X1, X2) interaction (dotted line).
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3.3 Exercises

Exercise 3.3.1. Compute the analytic HDMR expansion of the function Y = X1 + X2 + X3,
with Xi ∼ N(µi, σi). Assign values to (µi, σi) and perform the regression/smoothing analysis
with the Haar wavelet and spline smoothing.

Exercise 3.3.2. Compute the analytic HDMR expansion of the Ishigami function (Ishigami
and Homma, 1990):

Y = sin X1 + A sin2 X2 + BX4
3 sinX1

where Xi ∼ U(−π, π). Perform the regression/smoothing analysis with the Haar wavelet and
spline smoothing, when A = 7 and B = 0.1.

Exercise 3.3.3. Compute the analytic HDMR expansion of the Sobol’ g-function. Perform
the regression/smoothing analysis with the Haar wavelet and spline smoothing, when:

• a = [0, 1, 4.5, 9, 99, 99, 99, 99];

• a = [0, 0, 1, 1, 4.5, 4.5, 9, 9, 99, 99, 99, 99, 99, 99, 99];

• a = [0, 0.01, 0, 0.2, 0.3, 0, 0.5, 1, 1.5, 1.8, 3, 4.5, 8, 9, 99];.

Exercise 3.3.4. Compute the HDMR expansion of the model Y =
∏k

i=1 Xi, with Xi ∼
U(0, MAXi). Is there a clever way to map this function synthetically?

Perform the regression/smoothing analysis with the Haar wavelet and spline smoothing
for the output Y and for the ‘clever’ transformation of Y , for k = 3, 4, assigning values to
MAXi.

Exercise 3.3.5. Compute the HDMR expansion of the model Y =
∏k

i=1 Xi, with Xi ∼
N(0, σi). Is there a clever mapping in this case as well?

Perform the regression/smoothing analysis with the Haar wavelet and spline smoothing for
the output Y and for the ‘clever’ transformation of Y , for k = 3, 4, assigning values to σi.

3.4 Solutions

Exercise 3.3.1 First we compute the unconditional mean

f0 = E(Y ) = µ1 + µ2 + µ3.

Then the first-order terms fi = E(Y |Xi) − f0:

f1 = X1 + µ2 + µ3 − f0 = X1 − µ1

f2 = X2 + µ1 + µ3 − f0 = X2 − µ2

f3 = X3 + µ1 + µ2 − f0 = X3 − µ3

It is easy to verify that any other term of order higher than one is null.
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Exercise 3.3.2) Looking at the analytic form of the Ishigami function one can say that the
decomposition will have the following terms

Y = f0 + f1(X1) + f2(X2) + f3(X3) + f13(X1, X3)

Given the uniform probability density of Xi, we have that p(Xi) = 1/2π if −π < Xi < π
and p(Xi) = 0 elsewhere. The unconditional mean is therefore

f0 = E(Y ) =

∫∫∫ π

−π
Y dX1dX2dX3/8π3

=

∫ π

−π
sinX1dX1/2π +

∫ π

−π
A sin2 X2dX2/2π +

∫∫ π

−π
BX4

3 sinX1dX1dX3/4π2

= 0 + A/2 + 0

The first-order terms are:

f1 = E(Y |X1) − f0 =

∫∫ π

−π
Y dX2dX3/4π2 − A/2

= sinX1 +

∫ π

−π
A sin2 X2dX2/2π + sinX1

∫ π

−π
B · X4

3dx3/2π − A/2

= sinX1(1 + B · 2π5/5/(2π)) + A/2 − A/2

= sinX1(1 + Bπ4/5)

f2 = E(Y |X2) − f0 =

∫∫ π

−π
Y dX1dX3/4π2 − A/2

=

∫ π

−π
sinX1dX1/2π + A sin2 X2 +

∫∫ π

−π
BX4

3 sinX1dX1dX3/4π2 − A/2

= 0 + A sin2 X2 + 0 − A/2

= A(sin2 X2 − 1/2)

f3 = E(Y |X3) − f0 =

∫∫ π

−π
Y dX1dX2/4π2 − A/2

= (1 + BX4
3 ) ·

∫ π

−π
sinX1dX1/2π +

∫ π

−π
A sin2 X2dX2/2π − A/2

= 0 + A/2 − A/2 = 0

It is easy to verify that all second-order terms are null except:

f13 = E(Y |X1, X3) − f1 − f3 − f0

= sinX1 + BX4
3 sinX1 +

∫ π

−π
A sin2 X2dX2/2π − sin X1(1 + Bπ4/5) − 0 − A/2

= sinX1 − sin X1 + BX4
3 sinX1 − Bπ4/5 sinX1 + A/2 − A/2

= B(X4
3 − π4/5) sin X1

Exercise 3.3.3 In order to compute the HDMR expansion of the Sobol’ g-function,

f =
k
∏

i=1

gi(Xi) =
k
∏

i=1

|4Xi − 2| + ai

1 + ai
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with Xi ∼ U(0, 1), it is useful to recall that:
∫ 1

0
gi(Xi)dXi =

∫ 1

0

|4Xi − 2| + ai

1 + ai
dXi = 1

valid for any Xi and any ai.

So the unconditional mean is

f0 =
∏

i

∫ 1

0
gi(Xi)dXi = 1

The first-order terms are:

fi = E(Y |Xi) − f0

= gi(Xi)
∏

j 6=i

∫ 1

0
gj(Xj)dXj − f0

= gi(Xi) − 1

The second-order terms are:

fij = E(Y |Xi, Xj) − fi − fj − f0

= gi(Xi)gj(Xj)
∏

l 6=(i,j)

∫ 1

0
gl(Xl)dXl − fi − fj − f0

= gi(Xi)gj(Xj) − (gi(Xi) − 1) − (gj(Xj) − 1) − 1

= gi(Xi)gj(Xj) − gi(Xi) − gj(Xj) + 1

All higher-order HDMR terms are obtained recursively, considering that, for any group
of input factors indexed by I = (i1, . . . , il):

E(Y |XI) =
∏

i∈I

gi(Xi)

The Sobol’ g-function has non-zero interaction effects of any order.

Exercise 3.3.4 The unconditional mean is

f0 = E(Y ) =
k
∏

i=1

∫ MAXi

0
XidXi/MAXi

=
k
∏

i=1

MAXi/2

The first-order terms are:

fi = E(Y |Xi) − f0

= Xi

∏

j 6=i

∫ MAXj

0
XjdXj/MAXj − f0

= Xi

∏

j 6=i

MAXj/2 − f0

= (Xi − MAXi/2)
∏

j 6=i

MAXj/2
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The second-order terms are:

fij = E(Y |Xi, Xj) − fi − fj − f0

= Xi · Xj

∏

l 6=(i,j)

∫ MAXl

0
XldXl/MAXl − fi − fj − f0

= Xi · Xj

∏

l 6=(i,j)

MAXl/2 − fi − fj − f0

= (XiXj − XiMAXj/2 − XjMAXi/2 − MAXi · MAXj/4)
∏

l 6=(i,j)

MAXl/2

All higher-order terms are obtained recursively, remembering that

E(Y |XI) =
∏

i∈I

Xi

∏

j /∈I

MAXj/2

As with the g-function, this example also has non-null interaction effects of any order.

A clever way to map the function Y is to consider its log-transformed version. This is
allowed, since Xi > 0 for all Xi. This gives:

log(Y ) =
k
∑

i=1

log(Xi)

which has an easy HDMR expansion of only first-order terms that describes 100% of Y !

In general, trying to analyse the log-transformed version of a function can produce
interesting results. In particular, if the the log-transformation of Y is described up to
a large extent (e.g. 90% of the variance of log(Y )) by first-order HDMR terms, this
suggests that the mapping between Xi and Y can be factorized.

Exercise 3.3.5 All the HDMR terms of this model are null except for the highest, kth order
term:

f1,...,k =
k
∏

i=1

Xi = f

This is a very unattractive model. Even if the input factors had different σi values (i.e.
different uncertainties), neither variance-based sensitivity indices nor HDMR analysis
would be able to produce a ranking of the importance of input factors.

One possible way of analysing sensitivity for this kind of model is to apply MCF tech-
niques and, similarly to Example 6 of Section 2.4, to try to map quantiles of Y , e.g.
Y > 1 or Y < −1 (we leave this as an additional exercise for the reader) .

In metamodelling terms, however, one can still identify a clever transformation of Y ,
extracting useful hints about the effect of each input factor on the outcome Y .

The conditional expectation E(Y |XI) is null whatever the single input factor or group
of input factors. So, Y is a pure ‘noise’ process, without any shift in the mean, and
the effect of each input factor is simply to modulate the noise amplitude, similarly to
heteroscedastic processes.
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One could therefore conceive of trying to build a metamodel for the variance of Y .
In order to do this, one could consider the transformation log(Y 2). By doing so, the
function to be analysed becomes

log(Y 2) =

k
∑

i=1

log(X2
i )

which is a simple, additive mapping between the (log of the) squared input factors and
the (log of the) squared output. Remembering that any expectation of Y (unconditional
or not) is null, taking the square of Y is equivalent to taking its variance. Then, the
main effect fi = E

(

log(Y 2)| log(X2
i )
)

describes effect of Xi in modulating the variance
of Y , and the further Xi is from zero, the greater the variance of Y . So, the greatest
impact in modulating the variance of Y will come from the input factor with the highest
variance σ2

i . This allows for a nice ranking of the importance of input factors, which
will be proportional to the magnitude of the σi’s.

This ‘extreme’ example shows that, in nasty cases where ’standard’ GSA tools seem to
fail in providing clear answers, functional transformations of Y can facilitate a better
explanation of the model properties.



Chapter 4

Conclusions

We have discussed different methods capable of greatly accelerating the computation of the
indices (in terms of reduced number of model executions), based on metamodelling. All
smoothing and metamodelling techniques are based on fitting a model approximation based
on a single Monte Carlo (or, better, quasi-Monte Carlo) sample. This is a major advantage
with respect to ‘classical’ variance-based techniques, which require some ad hoc sampling.
Moreover, metamodelling techniques usually converge much more quickly, i.e. they are more
efficient. This is possible since such techniques rely on assumptions of regularity and smooth-
ness in Y that allow us to infer the value of Y at untried points, based on the information
available from MC samples at nearby points. This also implies that, in contrast to ‘classic’
variance-based estimators which rely only on square-integrability of Y , smoothing methods are
not robust in the face of heavily discontinuous mappings, e.g. piecewise continuous functions,
in which the values of Y jump continuously in an apparently random fashion. In this regard,
the recursive approach of Ratto et al. (2006) provides elements of meaningful flexibility to
adjust the estimated model approximation to local jumps and spikes.

When to use what? The decision is evidently based on a trade off between model execution
cost and the analyst’s time.

• The method of Saltelli (2002) is straightforward to encode and comes at the cost of
N(k + 2) model executions, with N = 1000 or higher, to compute both the Si’s and the
ST i’s.

• The method of Tarantola et al. (2006) is also easy to encode and requires only a single
set of N runs to compute the whole of set of Si’s. However, any information about
interaction terms or total effects is missed.

• The approach of Ratto et al. (2004, 2006, 2007) herein discussed is, according to our
experience, the most advisable meta-modelling practice in terms of model executions,
robustness of estimation and flexibility of implementation. It can give a fairly precise es-
timate of all indices of the first order at the overall cost of 200–500 simulations, although
to obtain reliable estimates of second and third-order interaction terms, somewhat longer
samples are needed: e.g. 1000–2000. In its full formulation, it is considerably less simple
to encode, even if the HP-filter formulation allows a very easy and quick analysis, at
least at a preliminary stage of identification of the most relevant terms for explaining the
variability of Y . Other methods mentioned here applying polynomial bases to estimate
HDMR terms would also be very helpful at such a preliminary stage.
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• The total effect estimation is a weak element of metamodelling. Such an estimate re-
quires adding all the first-order and interaction terms associated with each input factor.
However, the precision of the mapping of the function f(·) is inversely proportional to the
order of interactions, while the maximum order of interactions that can be reliably esti-
mated with metamodelling techniques can hardly exceed the order of three, if one wants
to reduce to the minimum the number of model evaluations. This implies that some
relevant high-order interaction might always be missed in the metamodelling exercise.
In this case, performing an Elementary Effects (EE) analysis (see Saltelli et al. (2004)
Campolongo et al. (2007)) would allow for a cheap and quite comprehensive assessment
in terms of low-order ANOVA-HDMR terms and EE, which replaces variance-based
total effects.

Ideally a model-building environment should have software for both approaches at its
disposal, unless the model is truly inexpensive to run. Software developed for SDR modelling
is available at
http://sensitivity-analysis.jrc.cec.eu.int/.
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Abstract 
In this work we present some techniques, within the realm of Global Sensitivity Analysis, which 
permit to address fundamental questions in term of model’s understanding. 
In particular we are interested in developing tools which allow to determine which factor (or group 
of factors) are most responsible for producing model outputs Y within or outside specified bounds 
ranking the importance of the various input factors in terms of their influence on the variation of Y . 
On the other hand, we look for representing in a direct way (graphically, analytically, etc.) the 
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