Hydrol. Earth Syst. Sci., 13, 50847, 2009 Dy -K

www.hydrol-earth-syst-sci.net/13/503/2009/ Hydrology and
© Author(s) 2009. This work is distributed under Earth S_YStem
the Creative Commons Attribution 3.0 License. Sciences

Sensitivity analysis and parameter estimation for distributed
hydrological modeling: potential of variational methods

W. Castaings~?4, D. Dartus?, F.-X. Le Dimet?, and G.-M. Saulnier®

1IMFT UMR 5502 (CNRS, INP, UPS), Universitde Toulouse, 31400 Toulouse Cedex, France

2LJK UMR 5224 (CNRS, INPG, UJF, INRIA), Grenoble Univetsit 38041 Grenoble Cedex 9, France

SEDYTEM, UMR 5204, Universi de Savoie, 73376 Le Bourget du Lac Cedex, France

4European Commission, Directorate-General Joint Research Centre, Institute for the Protection and Security of the Citizen,
Econometrics and Applied Statistics Unit, T.P. 361, 21020 Ispra (VA), Italy

Received: 17 January 2007 — Published in Hydrol. Earth Syst. Sci. Discuss.: 22 February 2007
Revised: 31 March 2009 — Accepted: 31 March 2009 — Published: 24 April 2009

Abstract. Variational methods are widely used for the anal-  Furthermore, the sensitivity analysis results suggest that
ysis and control of computationally intensive spatially dis- most of the variability in this high-dimensional parameter
tributed systems. In particular, the adjoint state method enspace can be captured with a few orthogonal directions.
ables a very efficient calculation of the derivatives of an ob-A parametrization based on the SVD leading singular vec-
jective function (response function to be analysed or costors was found very promising but should be combined with
function to be optimised) with respect to model inputs. another regularization strategy in order to prevent overfitting.
In this contribution, it is shown that the potential of vari-
ational methods for distributed catchment scale hydrology
should be considered. A distributed flash flood model, cou-
pling kinematic wave overland flow and Green Ampt infil-
tration, is applied to a small catchment of the Thdmasin  The distributed modelling of catchment hydrology is now
and used as a relatively simple (synthetic observations) bugecognised as a valuable approach in order to understand, re-
didactic application case. produce and predict the behavior of hydrological systems.
It is shown that forward and adjoint sensitivity analysis However, distributed hydrological models remain a simpli-
provide a local but extensive insight on the relation betweenﬁed and imperfect representation of the physica| processes
the assigned model parameters and the simulated hydrologjising uncertain observation data for the estimation of the
cal response. Spatially distributed parameter sensitivities cafodel inputs to be prescribed (parameters, initial condition
be obtained for a very modest calculation efferbtimes the  and rainfall forcing). Analyzing and reducing uncertainty
computing time of a single model run) and the singular valuejs therefore essential but issues such as sensitivity and un-
decomposition (SVD) of the Jacobian matrix provides an in-certainty analysis, parameter estimation and state-updating
teresting perspective for the analysis of the rainfall-runoff re- gre challenging given the dimensionality of the system. Al-
lation. though the approach adopted in this paper is not restricted to
For the estimation of model parameters, adjoint-basedy specific type of model input, the focus will be on model pa-
derivatives were found exceedingly efficient in driving a rameters to be assigned on the basis of indirect observations
bound-constrained quasi-Newton algorithm. The referencgj.e. model calibration).
parameter set is retrieved independently from the optimiza- For both sensitivity analysis and parameter estimation,
tion initial condition when the very common dimension re- many of the approaches which are now adopted for dis-
duction strategy (i.e. scalar multipliers) is adopted. tributed hydrological models where originally developed for
parsimonious hydrological models (e.g. simplified bucket
models, models based on the concept of hydrological sim-
ilarity). These models are very often characterised by a very
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Experiences in the calibration of such models revealednon-linear systems) but can be limited in handling distributed
that the corresponding response surface often contains separameter systems (i.e. curse of dimensionality).
eral regions of attraction, discontinuous derivatives and In the deterministic framework, both sensitivity analy-
other geometrical properties compromising the use of locakis and parameter estimation can be addressed using varia-
methods, especially those using derivative informatid ( tional methods. The adjoint state method enables an effi-
bit and O’Donnell 1971, Johnston and Pilgrinl976 Duan cient calculation of the derivatives of an objective function
etal, 1992. with respect to all model inputs. This technique is particu-
Therefore, many recent applications and methodologi-larly suited when the dimension of the response function to
cal developments for model calibration involve a stochas-be analysed or cost function to be optimized is small when
tic exploration of the parameter space using computationcompared to the number of inputs to be prescridddns,
ally intensive Monte Carlo methods and/or evolutionary al- 1968 Cacucj 19813 Le Dimet and Talagrandl986. It
gorithms. These techniques enable the global optimizatiorhas contributed to numerous applications related to the anal-
of single or multiple objectives and very often characteriseysis and forecasting of meteorological and oceanographic
the uncertainty affecting model parameteBgyen and Bin-  systems lie Dimet and Talagrandl986 Hall and Cacugi
ley, 1992 Duan et al.1992 Kuczera and Parent998 Yapo 1983 Navon 1998 Ghil and Malanotte-Rizzoli1991, Ben-
et al, 1997 Vrugt et al, 2003ab). nett 1992. Early applications of the adjoint state method
Differential sensitivity analysidlcCuen 1973ab), which to hydrological systems have been carried out in groundwa-
was very often the only approach computationally afford-ter hydrology Chavent 1974 Carrera and Neumari986
able, is now gradually replaced by assessments carried o@un and Yeh1990. The resolution of inverse problems (pa-
in the statistical framework. The Regional Sensitivity Analy- rameter, state and boundary condition estimation), local sen-
sis (RSA) ofHornberger and Spe#t981) inspired numer-  sitivity analysis, where also addressed in this framework in
ous applications and developments for the analysis of hyland surface hydrologyMahfouf, 1991, Callies et al. 1998
drological systems including the contribution Béven and  Calvet et al, 1998 Bouyssel et a).1999 Margulis and En-
Binley (1992. The combination with recursive estimation tekhabj 2001 Reichle et al.2001), vadose zone hydrology
techniques Yrugt et al, 2002 Wagener et al.2003 or (Ngnepieba et al2002), river and floodplain hydraulic{-
the extension to multiple objectiveB84stidas et al.1999 asecki and Katopoded4997 Belanger and Vincent2005
can provide an interesting insight into the behaviour of hy-Honnorat et a].2006 and catchment hydrology\(hite et al,
drological models. The use of variance decomposition ap-2003 Seo et al.20033.
proaches which are based on unambiguous importance mea- The previously mentioned applications involve non-linear
sures Cukier et al, 1978 Sobol’, 1993 Homma and Saltelli  models and the underlying inverse problems (i.e. parameter
1996 is now emerging in the hydrological communifiahg  estimation and state updating) are ill-posed. For example,
et al, 2007ab; Yatheendradas et ak008 Van Werkhoven equifinality is inherent in the estimation of a distributed hy-
et al, 20083. Using these global sensitivity analysis tech- draulic conductivity in groundwater hydrology or in the esti-
niques, it is possible to assess how uncertainty in the modeination of an initial state for the atmosphere in meteorology.
outputs can be apportioned to different sources of uncertaintyrhe estimation of model inputs require an appropriate com-
in the model inputsRaltelli et al, 2000). bination of prior information (e.g. derived from land cover
When parameter estimation and sensitivity analysis areand soil type) and observations of the model diagnostic vari-
carried out in the statistical framework, it is necessary toables (e.g. streamflow observations). The variational frame-
sample the space of uncertain inputs. However, in distributedvork is suitable for the combination of the different sources
hydrological models, parameters are discretized according tof information (including statistical information) trough the
the spatial discretization of the model state variables. Ap-resolution of a regularized inverse problem.
proaches developed for parsimonious hydrological models The use of parsimonious parametrizations (i.e. scalar mul-
are frequently transferred to distributed hydrological mod-tipliers or parameter zonation) can be seen as a regulariza-
els by means of an empirical dimension reduction of the pation approach leading to well-posed inverse problems. Us-
rameter space. For parameter estimation, scalar multipliersng Tikhonov regularizationTikhononv and Arseninl977),
are used in order to adjust spatially distributed parametergrior values are specified though a penalization term in the
featuring a variability which is fixed using prior information objective function. Therefore, deviations from prior values
(Refsgaard1997 Madsen2003. The same strategy can be are allowed only when strongly supported by the calibration
adopted for probabilistic sensitivity analysiéatheendradas data. Whatever the strategy adopted for the regularization of
et al, 2008. In some cases, spatially distributed impor- the inverse problem, the adjoint state method enable a pre-
tance measures are estimated for a very coarse grid resolaise and efficient estimation of the gradient driving efficient
tion or few zones of constant valueldll et al, 2005 Tang  optimization algorithms. Adjoint-based sensitivities can also
et al, 20073 Van Werkhoven et §120081. Sampling based provide an extensive insight on the way the values specified
approaches to sensitivity analysis and parameter estimatioat the different grid elements influence the simulated hydro-
enable an exploration of the parameter space (essential fdogical response. The assessment is only local (i.e. outcomes
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valid for a specific point of the parameter space) but providedent from the dimension of the control space. It is precisely

tremendous information which would require a prohibitive this feature which makes the approach very attractive for the

computational cost if it is was to be obtained using samplinganalysis and control of spatially distributed systems.

based approaches. Although any control variable can be analysed, the focus
In rainfall-runoff modelling, deterministic sensitivity anal- of this paper is parametric uncertainty. The use of deriva-

ysis and gradient-based parameter estimation have been ustdes for local sensitivity analysis and parameter estimation

in the past and the contributions bfcCuen(1973ab) and  is addressed in Sec#sand5. In this section, the calculation

Gupta and Sorooshiafi985 are directly in line with the strategy is briefly described using a simplified mathematical

current research endeavor. The explicit but piecewise differformalism and the practical implementation of the approach

entiation (i.e. analytic derivatives rather than classical finiteis discussed.

difference approximation) carried out tycCuen (19733 For a didactic presentation of the approach, let us consider

andGupta and Sorooshigh989 corresponds to the strategy that the behavior of the system between timgand:; is

adopted for the forward mode of algorithmic differentiation described by a generic model of the form:

(Rall, 1981). By making the computational cost indepen-

dent from the dimension of the input space the adjoint state ax = M(x, )

method (implemented with the reverse mode of algorithmic | 9¢ ’ (1)

differentiation) represents a significant improvement for the | *(0) =0

analysis and control of spatially distributed hydrological SYS-\vherer is the state variable of dimension, M a nonlinear

tems. The contributions Mvhite et al.(2003 andSeo et al. f . . f
(20034ab) address the use of this approach for parameter es(_)perator (a ter space discretization) and vector o param-
timation and state updating eters of dimensiow,. When the model parameters are fixed

. . . . loa=a, x the corresponding nominal value for the state vari-
The objective of this paper is to demonstrate the potential o= x P 9

L : . ablex is obtained by solving the system given b .
of variational methods, briefly presented in Settfor the x y 9 Y gr y ED). (

. o : . In order to analyse or control the behaviour of the system,
analysis of distributed rainfall-runoff models. A very simple : . o i )

S . : . let us define a generic objective functional:

application case is adopted for this prospective study. Other
investigations involving more complex configurations and ty
other model structures were carried out and will be reported/ (x, @)= | ¢ (t; x, a)dt (2)
in due course. A distributed flash flood model described in o
Sect.3 was applied to a small catchment of the Thbasin.  where¢ is a nonlinear function of the state variables and
The authors seek to illustrate what can be learned or corrobmodel parameters. The objective functiércan represent a
orated using forward and adjoint sensitivity analysis for un-specific aspect of the system behaviour (i.e. response func-
derstanding the mapping between the model parameters artibn) or quantify the misfit between the model diagnostic
the simulated hydrological response. Using synthetic observariables and the available observations (i.e. cost function).
vations, the ability of efficient adjoint-based optimization to  The gradient of the functional (real valued scalar func-
estimate reliable values for the model parameters is investition) with respect tex at the poinix is given by
gated. The results of sensitivity analysis and parameter es-

timation experiments are provided in Seegtand5 and the - - aJ aJ
. : . . Vo (X, 00)=| —, ..., ()
paper is concluded by a discussion of the main outcomes. daq day
r/a
o o _ The components of this vector quantify the rate of change
2 Variational methods for sensitivity analysis and of J along the vectors of the standard basis in the param-
parameter estimation eter space. After the application of a normalization proce-

o . S dure (discussed in Seel), importance measures can be esti-
Variational methods provide a deterministic framework for mated in order to compare the relative influence of the vari-

the analysis and control of physical systems. The mathematy ;s model parameters on the response of interest. \Wf@n
ical formalism, based on functional analysis and differential 5 cost function to be optimize®, J can drive very efficient

plines such as optimal control and optimization. Adopting for the estimation of model parameters.

the vocabulary of optimal control theory, model parameters,
initial and boundary conditions are referred as control vari-2.1  Problems underlying the approximation
ables living in a so-called control space. of derivatives

This differential approach enables the exact calculation of
the derivatives of a function of the model prognostic vari- Differential sensitivity analysis and gradient-based parame-
ables with respect to all control variables. Using the ad-ter estimation both rely on an efficient and accurate eval-
joint state method, the computational cost can be indepenuation of partial derivatives. The most common technique
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for the evaluation of the gradient components consists in re- However, in order to obtain all gradient components, the
peated model evaluations. For example, the first order finiteoperation should be repeated focorresponding to the dif-

difference approximation for thieth component is given by
J@1, ..., aite, ..., ay )—J(a
[a_J]_ - (o1 ojte ay,)—J (a) @
o

do; e
where ¢ refers to a perturbation applied to the nominal
value of ¢;. Using this approach, the model can be con-

ferent vectors of the canonical basis®f. This means that

the resolution of the TLM has to be carried out for each direc-
tion &. Therefore, the precision problem (i.e. approximation
error) is addressed but the overall computational cost is still
dependent on the dimension of the parameter space. This
difficulty can be overcome by using the adjoint state method.

sidered as a black box and the practical implementation is

straightforward. However, the precision and efficiency of

this technique are very limited. The accuracy of the ap-

proximation crucially depends on choice of the step size
In practice, there is a very difficult compromise to be
found. Large values of lead to truncation error, small
values may give rise to cancellation/round-off error. More-
over, for the approximation of all gradient components (i.e.
8J/0a; i=1,..., Np), perturbations should be applied
along all vectors of the canonical basis®¥». Using the
first order finite difference approximation given by E4.

2.3 Adjoint sensitivity analysis

The linearity ofJ (&, &) with respect ta is produced using
the introduction of an auxiliary variabje (of dimensionvy).
It can be shown@acucj 19813 Le Dimet and Talagrand
1986 that if p is governed by the following system

T

Np+1 model evaluations are necessary. This number is Othe gradient is given by

course larger for higher order approximations. Therefore

the dimension of the parameter space.

In order to avoid the use of a perturbation parameter
derivatives can be calculated analytically. A very general
and comprehensive mathematical formalism for differential
sensitivity analysis was proposed Bacuci(1981ab). It is
based on the concept ofaeaux derivative, a generalisation
of the concept of directional derivative in differential calcu-
lus.

2.2 Forward sensitivity analysis

The derivative of the objective functiah at the pointx in
the direction is given by:

d n

—¢] a) dt

s i (TapT .
J (e, u)—/to ([E} x+|:aa (%)

wherex refers to variations on the state variableesulting
from perturbations on the parameteri the directionx. It
is important to note thaf (a, @)=(VqJ, &) ((, ) standing
for the scalar product). Given thatis governed by Eq.1)),

it is necessary to derive this system in order to estinate
Therefore x is solution of the following system:

At

at dax da

*(10)=0
where[d M /dx] represents the Jacobian of the model with
respect to the state variables g/ /d«] the Jacobian of
the model with respect to the model parameters.

The system given by Eq6]) is the so-called tangent lin-
ear model (TLM). For a given perturbatiod, x is ob-
tained by the resolution of the TLM. The resulting varia-
tion of the objective function (e.g/ (&, &)) can be calcu-
lated from EqQ. §).

o

o

= o

(6)
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the overall computational cost is at least linearly related to

op [oM1"  [o¢
W[WL ‘H ™)
p(ty)=0
o ’f( ) ad
VaJ (x, a):/ |:—:| —|:—:| p|dt (8)
f0 oa |5 da |5

here[ ]7 stands for the transpose.

Itis important to note that anda do not appear in Eqs7)

and @). Therefore, onceg is known by integration (back-
ward in time) of the system described by Ef), @ll the com-
ponents of the gradient, J needed for sensitivity analysis
and parameter estimation can be calculated. In the math-
ematical optimization framework, the objective is to maxi-
mize/minimise the cost functior while x is subject to the
constraint given by Eql (i.e. x should verify the govern-
ing equations). In this case, the adjoint variables correspond
to the Lagrange multipliers of the constrained optimization
problem. The principal difficulty resides in the derivation
and transposition of complex operators.

w

2.4 Practical implementation

In principle, forward and adjoint sensitivity analysis can be
performed on the continuous or discrete formulation of the
model. Different implementation strategies can be adopted
depending if the derivation and transposition operations are
carried out on the continuous form of the direct model, on
its discretized form or directly on the computer code. Algo-
rithmic differentiation (AD) is usually preferred (s&ei and
Symes 1995o0r Sirkes and Tzipermari997for counterex-
amples) for reliable and accurate derivatives. The reader is
referred toGriewank(2000 for a comprehensive description

of AD.

The source code implementing the model and objective
functional is a concatenated sequence of instructions. Each
statement contains elementary functions which can be eas-
ily derived (i.e. local Jacobians). Algorithmic differentia-
tion (AD) is based on a rigorous application of the chain
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rule (e.g. product of local Jacobians) in the forward or re-by the water depth (i.eR=h). The resulting equation gov-
verse direction. In order to use this discrete equivalent oferning the overland flow is given by:

forward and adjoint sensitivity analysis methods, the source 12

code of the model should be available. The availability of au- 94 SO/ dnS/3

tomatic differentiation engines (sa#p://www.autodiff.orgy ot n ox
provide a helpful and efficient support for the practical im- In the right hand side of Eq(), the infiltration ratei (1)

plementation of variational methods. It is important to em- . . . S
phasise that using this implementation strategy, the potentia'F’ estimated using the very common Green-Ampt infiltration
on-off switches characterising the representation of physi—mOdeI' . . .

cal processes (i.e. thresholds in model formulation) are sim;c Fpr an homo_geneous .SQ'I column cha}racter_lsed by its ef-
ply reported in the TLM and ADMZou et al, 1993. The ective hydraulic conductivityk, ¢ the soil suction at wet-

derivative provided by AD is therefore an element of the sub-1N9 front, the potential infiltration rate is given by

radient.
g i(=K (w—kl) with  A6=n(1-0) (12)

=r—i (12)

1(t)
whereé is the relative initial soil moisture (i.#.€[0, 1]), n

A , éhe soil porosity and (r) the cumulative infiltration at time
very simple and common model structure was adopted an t. After surface ponding, the cumulative infiltration at time
applied to a small catchment using synthetic observations,” P 9

An event-based distributed rainfall-runoff model is applied i+Ar can be calculated by the following equation

3 Flash flood model

to a small area in the upper part of the Thoatchment (Tarn Livar + VA
department, South West of France). Liyar = I = ¢ A6In [m} = KAt (13)
3.1 Model description which is solved by Newton’s method.

) ) In order to carry out the sensitivity analysis and parameter
The underlying physics of MARINE flash flood model ggimation experiments presented in Setnds, it is nec-

(Estupina-Borrell et 2] 2008 is adapted to events for which  ossary 10 implement the tangent linear and adjoint models for
infiltration excess dominates the generation of the flood. Athe hydrological model presented in this section.

simplified version of the model is used for this prospective
study. Rainfall abstractions are evaluated using the Grees 2 computer code differentiation
Ampt infiltration model and the resulting surface runoff is

transferred using the Kinematic wave approximation (KWA). As emphasised in Se@.4, the best representation of the op-
The complex geometry of the catchment is described by arator to be derived is the associated computer code. The
structured grid in which each cell receives water from its ups-algorithmic differentiation of the MARINE source code (in
lope neighbors and discharge to a single downslope neighbdrortran 90) was carried out with the support of an automatic
(steepest direction). differentiation engine. The TAPENADE automatic differ-
For a one dimensional flow of average veloaitand av-  entiation engineHascd@t and PascualR004, a source-to-
erage deptlr, the continuity equation can be expressed as: source transformation program, was adopted because of its
9h  duh flexibility and efficiency for both forward and reverse modes.
m + o r—i C)) Preliminary modifications of the source code were necessary
and the code produced by TAPENADE was optimized in or-

| L . - der to reduce the memory footprint and the computational
ing the KWA approximation, which has shown the ability to time. This leads to a computational time for the adjoint

represent channelized anq sheet oyerland fizingh 2003, ... model which is about 6times higher than the one observed
the momentum conservation equation reduces to an equilibg

rium between the bed sloig and the friction slope ;. The for a single model evaluation.
Manning equation (uniform flow on each grid cell) isusedto 3 3 ca5e study description
relate the flow velocity and the flow depth:

R2/3g1/2 P MARINE was applied to a very small catchment area

U= — 1  with R= w (10) (25km?) from the upper part of the Therbasin which
n 2h +w was affected by a catastrophic flood event in November

whereR is the hydraulic radiusy the Manning roughness 1999. During this event, the observed cumulative rainfall
coefficient andw the elemental flow width. In this simplified was 135 mm and the maximum intensity around 75 mrivh
version of the model, the flow width is constant (rectangularUsing the observed rainfall forcing (radar data frongtit
section) and given the ratio between the width (grid resolu-France) and prior values derived from published tables for
tion) and the flow depth the hydraulic radius is approximatedthe model parameters, synthetic observations are generated.

wherer is the rainfall intensity andthe infiltration rate. Us-
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Table 1. Model parameters values derived from soil type and land | i i ; i i‘:[:‘j
cover data.

Parameter Name Ref. value

Effective hydraulic conductivity (mm/h) K 3.

Porosity n 0.398

Suction (mm) v 218.5

Initial soil moisture (fraction of) 0 0.5

Manning roughness coefficient n 0.065

Using the values specified in Taklgspatially uniform val-

ues for model parameters), the resulting specific discharge
is typical for Mediterranean flash flood events. The two
sub-catchments contributing to the discharge in Labastide-
Rouairoux (outlet situated to the north on Flyare drained .
by the Thoé river (eastern part) and the Beson streamf9- 1.
(smaller sub-catchment in the western part). Rouairoux.

Ground elevation of the Thérbasin at Labastide-

distributed parametrization. In order to facilitate the inter-
pretation of the results, a spatially lumped rainfall forcing is
used for most of the experiments presented in this section.

4 Differential sensitivity analysis

In differential sensitivity analysis, first order importance
measures are calculated from the gradient when the response;  \umerical
is scalar (e.g. peak discharge). For a vectorial response (e.g.
entire flood hydrograph), the Jacobian matrix of the trans-

formation can be evaluated. It can be computed column by, s paragraph, a classical reduction of the control space
column using the forward mode of AD, line by line using the g 5qopted. The drainage network and the hillslopes are dis-

reverse mode. When the dimension of the parameter spacg,qished using a threshold on the drained area. It leads

is much larger than the dimension of the response to be anal the definition of basis vectors exclusively composed of 0

ysed, the adjoint technique (.g. reverse mode of AD) is theéyq 1 on the hillslopes or drainage network. The spatially
most efficient calculation method. distributed parameters are expressed in this basis (e.g. rather

However, using the rate of change along the vectors of thgp g, the canonical basis). In other words, for each parameter,
standard basis (components of the gradient), the parametetss aar multiplier is applied on the hillslopes and another in
cannot be ranked because the nominal values might be chajpq drainage network.

acterised by different units and therefore different orders of
magnitude. It is possible to normalize the partial derivatives4.1.1  Analysis of a scalar response
with the associated nominal values for the parameter and re-
sponse (e.gJ/dK.K /J). In this case, the importance mea- The relative importance of the scalar multipliers on two as-
sure corresponds to the effect on the response from perturlpects of the hydrological response (flood volume and flood
ing the parameter by a fixed fraction of its base value. Inpeak) is provided by Fig2 and3. The parameter8, v
order to take the uncertainty underlying the different param-and, appear as a product in the infiltration model (Eg).
eters into account, the associated standard deviations (or variherefore, given the adopted normalization procedure, they
ance) can be used for the normalization. The resulting imporhave exactly the same influence on the model response. If a
tance measure corresponds to the effect on the response frostatistical normalization procedure is adopted, the ranking of
perturbing the parameter by a fixed fraction of its standardthose parameters would be completely driven by the associ-
deviation Helton 1993. Although the approach is quite ap- ated statistical properties (variance or standard deviation).
pealing, this means that derivatives are used for ranking over It is important to note that for both flood volume and flood
the space of uncertain parameters. In this paper, the choicgeak, all sensitivities are negative. This means that increas-
was made to prefer a strictly local analysis in which the as-ing the nominal value for all the parameters reduces the mag-
sessment concerns the base point where derivatives are evalitude of the response. In fact, increasing the Green-Ampt
uated. model parameters leads to increased infiltration loses and
In the following paragraphs, forward sensitivity analysis therefore reduces the flood volume and flood peak. Increas-
will be carried out to a parametrization of reduced dimen-ing the friction parameters leads to a flatter flood hydrograph
sionality, adjoint sensitivity analysis will be used for the fully and therefore also reduces the flood peak.

experiments with network/hillslopes
parametrization

Hydrol. Earth Syst. Sci., 13, 50847, 2009 www.hydrol-earth-syst-sci.net/13/503/2009/
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The analysis of Fig2 confirms that the flood volume is 0 ] 1 network =
mainly driven by the infiltration parameters on the hillslopes |I I hillslopes mmm

(hydraulic conductivityk and initial soil moisture?). The -01
infiltration parameters assigned on the hillslopes also have a
significant influence on the flood peak but the effect of mod-
ifying the friction parameter in the drainage network is much
larger (see Fig3). 5
The results presented above are strictly local and the im-g
portance measures are affected by the nominal values as-
signed to the different parameters. However, given the re- ¢
duced computational cost of the analysis, it can be carried out
at different locations in the parameter space. Additional ex- -os
periments (not reported in this paper) where conducted along
a transect of the parameter spaée [0, 1]). The results 06
show that the wetter the soil at the beginning of the event,
the faSt?r_ the decay of the infiltration rate to the hydraullc Fig. 2. Sensitivity of flood volume to model parameters for net-
conductivity, and therefore the greater the relative mfluenchork/hi”SmpeS parametrization.
of K when compared to the initial soil moistuie

4.1.2 Analysis of the flood hydrograph ’ [ | = P
-0.1
In order to analyse of the effect of parameter variations on

-0.2

Sitivi

-0.3

!

.
K on.o n

the complete flood hydrograph, a vectorial response contain- -oz
ing the temporal evolution (80time steps) of the simulated
discharge was considered. Given to the ratio between input ™
and output space dimensions (i.e. 6/80), the Jacobian matri% oa
is computed using the tangent mode of TAPENADE (i.e. for- &
ward sensitivity analysis). -05
Each column of the Jacobian matrix represents the varia-
tions in discharges resulting from the perturbation of one of
the model parameters. After normalization, the physical in-
terpretation of the lines and/or columns of the Jacobian ma-
trix can provide an interesting insight (not reported in the -os - ™ -
present contribution). However, a very interesting perspec-
tive is provided by the singular value decomposition of this rig. 3. Sensitivity of flood peak to model parameters for net-
Jacobian matrix. work/hillslopes parametrization.
The singular value decomposition (SVD) of arxn ma-
trix A is a factorization of the form

-0.6

-0.7

or perturbations growth analysis in ensemble predictlan (
A =Usv’ (14)  etal, 2005 Doherty and RandalR008 Clement et a].2004
Marchand et a).2008 Durbianqg 200%, Buizza and Palmer
1995.
For the adopted network/hillslopes parametrization, the
singular spectrum is given by Tabfand the components

where S is a diagonal matrix containing the singular val-
ues ofA in the decreasing order whilg andV are orthog-
onal matrices (respectively of dimensienxm andnxn).
The set of entries composing the main diagonalSpfde-

noted {01, 2. .., Omin(m n)}, is referred as the singular of the first 2 singular vectors in the parameter space (right
spectrum ofA. The columns of) — {1, uz ) and singular vectors) are plotted in Fig. From Table2, it can
V = {v1, vs, ..., um) are the left and right singular vectors be seen that the decay of the singular values is very rapid.

in the input and output spaces of the transformation repre-'vIOSt of the variability (more than 97%) is captured by the

sented byA. The magpnitude of the singular valuesSnep- first two singular vectors. These vectors exhibit a clear dis-

resents the importance of the corresponding singular vectorinCtion between the production and transfer of runoff. This
in the columns ofJ andV. could have been expected because they represent orthogonal

This factorization is widely used for the analysis of linear directions in the parameter space.
ill-posed inverse problem$iansen1998. Its application to Given the components of the first singular vector and the
non-linear systems can serve many purposes such as sensiragnitude of the singular value associated, the scalar mul-
tivity or identifiability analysis, control variables estimation tiplier affecting the friction in the drainage network has an
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Table 2. Singular values of the Jacobian matrix for the net- 4.2.1 Analysis of a scalar response

work/hillslopes parametrization. . . . o
For a scalar response, a single integration of the adjoint

model yields to sensitivity indices for all parameters at all
spatial locations. In this paragraph, only the sensitivity to the

Sing. values % of variability

9.07 84.83 flood peak is reported. Within a single river reach, it is ob-

1.30 12.20 vious that increasing the friction will reduce the maximum

0.24 2.25 discharge (i.e. negative sensitivities at all spatial locations).
8-83 8"2‘2 The situation is more complex when dealing with overland
0:001 0..01 flow over the topography of a catchment.

The analysis of Fig5 reveals that positive and negative
sensitivities are encountered over the catchment. Negative
sensitivities are much larger than positive sensitivities in
magnitude but there are locations where increasing the fric-
Vo — tion coefficient lead to a slight increase of the maximum

discharge. While all sensitivities have the expected sign

Y
, - .
° I 'I I | l| 1 (i.e. negative) along the main stream (i.e. Tdver), some

0.2

positive sensitivities can counterbalance the overall effect in
some concomitant sub-basins (e.g. area drained by the Beson
stream and some hillslopes along the Téhaver).

Therefore, when applying a single scalar multiplier for the
entire catchment, compensation effects usually occur which
are very difficult to identify without such analysis. A simple
corroboration can be carried out using multiple model evalu-
ations. As an illustration, increasing the nominal by 10% for
all roughness coefficients leads t64.5% variation on the
‘ ‘ ‘ : ‘ peak discharge. This variation4s5.9% when only the cells
knil  knet  Phil  Nnet hil net featuring a negative sensitivities are modified and it becomes

+1.5% when the same operation is carried out on the cells
Fig. 4. Components of the first two singular vecto#g (and vV 2) featuring positive sensitivities.
of the Jacobian in the parameter space for the network/hillslopes

paramedtrization. 4.2.2 Analysis of the flood hydrograph

I
N}

o
kS

component va lues

o
o

0.8

When considering the entire flood hydrograph, the ratio be-

overwhelming influence on the flood hydrograph. The anal-tWeen the input and output space dimensions is now very

ysis of the second singular vector components indicates glose to 100 (i.e. 82582/80). Therefore, the Jacobian ma-

predominance of the hillslopes infiltration parameters and af”x is computed line by line using multiple integrations of

potential compensation with friction parameters. the adjoint mode] " L .
Using the adjoint state method (reverse mode of AD) the. In order to facilitate the_ physical mterpreta_tlon, the SVD
computational cost related to the evaluation of local sensitiv-'> performed orsub-JacobiansEachsub-Jacobiaraccounts

ities is not related to the dimension of the parameter spacef.or asingle parameter *?“tfor all spatial Iocatipns. For ag“’er.‘
Therefore a similar analysis was carried out without reduc_parameter, the analysis enables an extensive understanding
tion of the control space using scalar multipliers for the influence of the values specified over the entire catch-

ment.
4.2 Numerical experiments with fully distributed For this specific analysis, the singular vectors in the pa-
parameters rameter space can be mapped on the surface of the catch-

ment. They are provided for the parametersind K by

When no strategy is adopted for dimension reduction, theFigs.6 and7. The analysis of the previously cited figures
use of sampling based sensitivity analysis methods is noenables an extensive insight into the model behavior. The
tractable for distributed parameter systems. In this paragrapdrainage network is emphasized for the friction coefficient
the full potential of the adjoint method is exploited in order to (Fig. 6) and flow concentrations areas can be distinguished
analyse the effect on the hydrological response of variationgor the hydraulic conductivity (Fig7). Significant interac-

on the value assigned to each element of the computationalons between different regions of the catchment were al-
grid for the model parameters. The analysis is also carriedeady identified when analysing the variability of the sen-
out for a scalar response and for the entire flood hydrographsitivity to the flood peak (see Fi®). A similar behaviour is
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positive sensitivities

. 2995

02
negative sensitivities
0.08

encountered when analysing the entire flood hydrograph for
both friction coefficient and hydraulic conductivity.

The leading singular vector mainly corresponds to the
Thore river and drained area for bathand K (Figs.6a and
7a). However, the interacting regions are already charac-
terised by different signs. For the second singular vectors,
the catchment regions and signs are inverted (FBgsand
7b).

The interactions between the two sub-basins can be a|S(1L
analysed in the observation space. For the roughness coel
ficientr , the components af; andus (singular vectors in
the observation space) are plotted together with the outlet dis-
charge (see Fid). The analysis of this figure explains that
the slight disruptions of the hydrograph during both the ris- Fig. 5. Spatial variability for the sensitivity of the flood peak to the
ing limb and the recession are mainly due to the flood wavefriction coefficient.
coming from the Beson stream. For the imposed spatially
lumped rainfall, given that the smaller sub-basin (holdigg

is closer to the catchment outlet, the resulting smaller conysing the adjoint sensitivities, the algorithm estimates the

centration time leads to a quicker response perfectly charactive set by performing a Wolfe line search along the gradi-
acterised by. The correspondence between the singularent projection path.

vectors in the parameter and observation spaces is really in-
formative and meaningful. 5.1 Numerical experiments with network/hillslopes
In addition, the singular spectrum for all parameters and parametrization
different forcing conditions (lumped and spatially variable
rainfall) was also analysed. The analysis of Rigeveals  Synthetic observations are generated with the parametriza-
that the decay of singular values is faster for the roughnes§on described in the previous section wikipe=4mmh =1,
coefficient when compared to the infiltration parameters. Al- Knit=2mmh ™, nne=0.05, nyii=0.08 and9=0.5 (uniform
though the influence of friction is very important, less singu- over the catchment). The Nash criterion is used to measure
lar vectors are necessary to describe the sub-space producitige misfit between model simulations and the synthetic ob-
variability in simulated discharges. This is due to the fact thatservations. As shown in Fid.0, all control variables are re-
this subspace is mainly restricted to the drainage network fotrieved independently from the initial parameter values (ini-
friction parameters (see Fif). tial point for the optimization routine). The relative impor-
For a spatially distributed rainfall forcing the decay of sin- tance of the parameters inferred from the local sensitivity
gular values appears to be slower and the gap between fri@@nalysis results seems to be similar for the Nash efficiency
tion and infiltration parameters is reduced. The fact that moreover the bounded parameter space. The more sensitive is the
singular vectors are necessary to describe the sub-space prderformance measure to a parameter, the greater is the identi-
ducing important variations of the simulated discharges is diability of this parameter and therefore the faster the iterates
sign of increased information content. This increase in in-convergence to the reference value (e.g. parametgrand
formation content was expected when comparing the resultdnil)-
obtained with uniform rainfall forcing with those obtained It is important to emphasize that both adjoint (required
for spatially variable precipitations. to the estimation of the gradient) and direct model evalua-
It was shown in this section that the derivatives obtainedtions (required required for the line search) were reported in
with algorithmic differentiation provide a valuable introspec- Fig. 10. The total number of iterations (less than 50) is very
tion into the relation between the model parameters and thémall when compared to the number of model evaluations
simulated hydrological response. The availability of accurateequired by evolutionary algorithms like the very popular
adjoint-based sensitivities also enables the use of efficien®huffled Complex Evolution (SCE) fromuan et al(1992.

gradient-based optimization techniques for the estimation ofAS commented byavetski et al (2006, “5 min of Newton
model parameters. computing often replaces 24 h of SCE search and yield useful

additional information”.
In the parameter estimation experiments presented in this
5 Gradient-based parameter estimation section, a network/hillslopes parametrization was adopted in
order to ensure the identifiability of model parameters. How-
In this paper, a bound-constrained (inequality constraintskever, the sensitivity analysis results described in Se2t2
quasi-Newton (BFGS) optimization algorithnhgmarchal  have shown that the sub-space from the original parameter
and Panier2000 from the MODULOPT library was used. space driving the simulated discharges is spanned by the
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N2

@ (b)

Fig. 6. First singular vectors (i.ga) v1 and(b) vy) in the parameter space for the roughness coeffiaiefied color ramp for positive

components and gray for negative).

I 4

(a) (b)

Fig. 7. First singular vectors (i.e(a) v; and(b) vy) in the parameter space for the hydraulic conductiWtyred color ramp for positive
components and gray for negative).

leading singular vectors (i.e. in the parameter space) of thevariations of those orthogonal directions where not encoun-
Jacobian matrix. Given that a small number of singular val-tered when the Jacobian is evaluated at different locations in
ues are dominant, as illustrated in F&.most of the vari-  the parameter space. In order to compute the singular vec-
ability can be captured with very few orthogonal directions tors describing the relevant sub-space for parameter estima-
in the parameter space. In the following paragraph, the leadtion, the SVD was performed for the Jacobian calculated with
ing singular vectors of the Jacobian matrix are used in or-spatially uniform rainfall forcing. A more rigorous approach
der to reduce the dimensionality of the parameter estimatiorwould require the Jacobian to be computed with the response

problem. of the catchment for several rainfall events.
When compared to the parameter estimation experiments
5.2 Numerical experiments with TSVD carried out in the previous section, a more complex virtual
parametrization hydrological reality was adopted for the generation of the

synthetic flood hydrograph. A relatively meaningful spatial

Using the sensitivity analysis outcomes, it is possible to carryﬁ”aﬁ"('jty WI‘?‘S |mp:jose_d for Fh% different rr?_odel Ipargrrr]lel'flers.
out parameter estimation in a reduced basis taking the ob-. € hydrau ;:: Cr?nd UCt'V'tf_ IS ecrel?smé; rllnearyr\:wt the .
servations information content into account. The spatiallyf,'s,tance to the h%l rlograp_ Ic ngtword an td? roug nleszcoe )
distributed model parameters are therefore expressed in thélc'en,tff’ ont ?j s c(;pfes IS aséslzl%\_? aC(I:IQr Ing to aTahn ;gse
basis spanned by the Jacobian leading singular vectors. ~ ¢lassification derived from a satellite Image. The fric-
L ! o . tion coefficient is constant in the drainage network and the
The derivation was carried out at a specific point of the

. . initial soil moisturel constant over the catchment. The initial
parameter space. However, singular vectors in the param-

. . condition for the optimization consist in the values specified
eter space are mainly determined by the topography of thern Table1 uniformly applied on the catchment.
catchment and the spatial variability of rainfall. Important
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Fig. 8. Singular vector in the observation space for the roughnes

coefficients. %lg. 9. Singular values spectrum for lumped and spatially variable

rainfall.

Table 3. Complexity (label and number of degrees of freedom for
The calibration problem is then tackled using parametriza-the parameter&’, n and¢), Nash efficiency (with synthetic noise
tions of increasing dimensionality. The simpler parametriza-f.ree observations) and conditioning for the different parametriza-
tion P1 assigns a single scalar multiplier for each parame-tions-
ter over the entire catchment area (hg.=n,=ny=1in Ta-
ble 3). For P,, a scalar multiplier is applied to the hillslopes

ng np, ng Nash 1/«x(H)

and another one to the drainage network for the hydraulic P1 1 1 1 0.908 0.965E-08
conductivity and friction coefficient (i.e.x =n,=2). Py 2 2 1 0938 0.217E-11

Then, apart from the paramet@rthe number of degrees Psyzo 4 2 1 0.968 0.889E-08
of freedom is gradually increased by taking as a basis the Psygo 6 3 1 0978 0.947E-08
singular vectors driving % of the variability for parameters Psvoo 9 5 1 0986 0242E-16

K andn (parametrizationg’syyx in the table). As reported

during the sensitivity analysis (See.2.2, the number of

degrees of freedom required for the roughness coefficient is o . . .
much lower than that obtained for the hydraulic conductiv- conditioning is even better than the one obtained with
ity. The number of degrees of freedom for each parameterfP@rametrization?, (5 degrees of freedom). As emphasised

the Nash performance for the estimated parameter set arfy Tonkin and Doherty(2003, the subspace determined
the inverse of the condition number are given in Teblghe from the truncated singular value decomposition of the Ja-

condition number was calculated with an approximation of coPian (TSVD) is determined from the observations infor-

the hessian after the last BFGS update (i.e. at the optimumfnation content whereas the subspace constructed from a
of the quasi-newton algorithm. It is reminded that the largerPrior parsimony strategy is not. In the previously cited con-

the ratio Y« (H), the better is the conditioning of the opti- tribution, the Jacobian matrix was approximated using fi-
mization problem. nite differences and used in the linearized equations of the

From the results shown in TabR it seems that using Levenberg-Marquardt method. In order to prevent over-

this description of the parameter space the number of controflIttlng qnd pomblne the gdvantage; O.f TSVD and Tikhonov
egularizations an hybrid regularization methodology was

variables can be increased without altering the conditioningr 000s6d
of the optimization problem. The previous statement is validprlpfS ; ' hile the t tion level of the SVD is th |
as long as the vectors describing the kernel in the parameter n fact, whiie tne fruncation level of the IS the only
space (the specified degrees of freedom which do not signif[maCh"jm!Sm for preventing Qver-ﬁttmg, the pe.nallzano.n tgrm
icantly alter the hydrological response) are not introduced inOf the .T|khonov approach is also a way tp Insert prior In-
the parametrization. The results obtained withygo Show formation on the parameters. In the experiments carried out

that even with noise-free observations, the use of those di" this paper, the hydrological reality is known. The com-

rections for the description of the affordable sub-space lead@rson W'thtthfe esfumated pa.rartneters ?Eve s h(f)f\.Nr.] that;he
to instability in the inverse problem. improvement of performances in terms of Nash efficiency do

o . . . not necessarily come with parameters closer to the reference
However, it is interesting to note that with respectively y P

. lues.
7 and 10degrees of freedom (i.Bgy79 and Psyso), the values
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Fig. 10. Convergence of the model parameters to the reference values for various initial parameter sets using quasi-newton algorithm. The
displayed iterations contain both gradient calculations with the adjoint (marked with a square) and model evaluations for the line search.

6 Discussion and conclusions The fact that other techniques might offer a practical ad-

Using a relatively simple application case, it has been Showﬁ/antage (quick and easy implementation) when compared to

that the potential of variational methods for distributed catch-variational methods cannot be contested. However, the prac-

ment scale hydrology should be considered. Although fortic@! implementation of the adjoint state method is largely

this particular application many outcomes are limited to ev-facilitated by the advent of very efficient automatic differen-

idence retrieval, the adopted approach should be further exiiation engines such as the one adopted for this study. The

ploited. use of this approach is at best anticipated in the development
stage of hydrological models but remain affordable for exist-
ing computer models.
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It is important to emphasise that a single integration of algorithms to the reference values used to generate synthetic
the adjoint code, encompassing the forward integration ofobservations.
the direct model and the backward integration of the adjoint  Although the number of gradient/model evaluations is al-
model, yields all spatial and temporal sensitivitietall and  ready eloquent, the authors acknowledge that a comparison
Cacucj 1983. The key advantage of this technique is that the with global non-smooth optimization techniques such as the
computational cost is independent from the dimension of theshuffle Complex Evolution fronDuan et al.(1992 would
control space. The results provided in this paper show thattrengthen the argument of the paper. However, the math-
spatially distributed parameter sensitivities can be obtaine@&matical representation of hydrological processes in dis-
for a very modest calculation effort-g times the comput-  tributed models tend to produce smoother response surfaces.
ing time of a single model run). The analysis of an essentialalthough the presence of thresholds remains in the model
aspect of the simulated hydrograph such the maximum disformulations, they usually occur at the grid element level and
charge has shown that the influence of the friction coefficientdo not produce discontinuous derivatives for the cost func-
assigned at different spatial locations was characterised byon. In fact, as far a discharge is concerned, the cost func-
relatively complex sensitivity patterns. tions used for the calibration of model parameters involve an

For the analysis of a vectorial response such as the flooghtegration of the residuals over time for an integrated hydro-
hydrograph, the Jacobian of the transformation can be caltogical response (i.e. spatio-temporal smoothing).

cu[ated using .the adjoint technique. The physical interpre- ag advocated bMoore and Doherty(2006ab), empiri-
tation of the singular vectors in the parameter and observaga| dimension reduction do not allow all the information to
tions spaces brings out relevant features of the rainfall-runofiye extracted from observation data in order to reduce the pre-
transformation.  Furthermore, the analysis of the singulargictive model error. Parameters at different locations over the
spectrum can be used to apprehend the complexity of an akrface of the catchment are not equally constrained by the
fordable parametrization and compare the information con-gpservations of the hydrological response. The identifiable
tent. of dlfferent_ rainfall events. Sensitivity anglyas can be subspace can described using the truncated singular value
motwa}ed by different goals. For understandlng the moqeldecomposition of the Jacobian matrix (TSVDyherty and
behaviour for parameter values leading to an acceptable fit tRandall(2008 recently proposed statistics for evaluating pa-
the available observations, the analysis should be carried oygmeter identifiability and error reduction using this factor-
with posterior probability distribution functions (PDFs). Us- i, 4tion of the Jacobian matrix.

if‘g sampling based approgches, this is rarely the case in Prac- tpe experiments carried out with TSVD parametrization
tice, partly because posterior PDFs are often characterized byhow that this technique represents a promising regulariza-
dependence which can be difficult to represent and comprog, - strategy. However, as emphasisedToykin and Do-
mise the use of many existing global sensitivity analysis tech-herty (2009, it is essential to combine this approach with
hiques (se&anso et al.2006for one of the few attempts). gy qn0y regularization in order to account for prior infor-

For this specific setting, local sensitivity analysis at the bestmaticm and prevent overfitting. The appropriate calibration

estimate nght phrove v9r|3|/ |(rj1_forr.rt1)at|v§._ Many of the out- g)aradigm would therefore require a good compromise to be
comes, such as the spatially distributed iImportance measureg, 4 penyeen flexibility and stability. The objective would

are mainly driven by the topography of the catchment andtheoe to improve prior values rather than conducting a blind

spatial variability of the rainfall forcing rather than the spe- search over an arbitrarily reduced parameter space
cific point in the parameter space used for the analysis. '

For the estimation of model parameters, even when _ _
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