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Foreword

This report is a completely revised and re-organized edition of the research results that were prelimi-

narily presented in reference [1]. The spatial partitioning algorithms are given here in full detail and

with extreme precision, but in a much more condensed form than in [1], since all unnecessary imple-

mentation details and preliminary tests have been removed.

Readers interested in an even more compact presentation should consult the papers [2] and [3],

which have been submitted for publication in a leading scientific journal in the field, or the confer-

ence paper [4].
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Abstract

This report presents a technique for spatial partitioning of the time increment in the explicit central-

difference time integration scheme commonly used for finite-element modeling of fast transient

dynamic phenomena. The time increment varies not only in time, as is usual to account for mesh dis-

tortion and evolution of material properties, but also in space—at the finite element level—following

local stability limitations rather than global ones.

This may lead to substantial savings of computer time whenever the material properties that govern

wave propagation speed and/or the mesh size are largely non-uniform in the numerical model, as is

typical of many large industrial applications, especially in 3D, and even more so in the presence of

fluid-structure interactions.

The proposed partitioning algorithm, which is completely automatic and does not require any spe-

cific input data, may be applied in principle to all types of elements and material models. As shown

by several numerical examples, it preserves the outstanding numerical properties—i.e. the renowned

accuracy and robustness—of the classical uniform-step explicit time integration scheme, of which it

may be considered a powerful generalization.

Once fully implemented and validated in a general explicit computer code, the present technique has

the potential for freeing the engineer from the main limitation of explicit analysis, usually related

through stability requirements to the size of the smallest element. In fact, the computational mesh

may be locally refined virtually at will without the usual prohibitive effects on computational costs.

This might open the way to applications which are simply out of reach with the classical algorithms.

The present document is subdivided in 2 Parts. Part I introduces the basic spatial partitioning tech-

nique within a Lagrangian formulation, with some simple academic examples. Part II presents the

treatment of boundary conditions, the extension to fluids via an Arbitrary Lagrangian Eulerian for-

mulation and some more realistic applications.
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Spatial Time Step Partitioning
in Explicit Fast Transient Dynamics —

Part I - Basics
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1.  Introduction
Explicit finite element codes have been developed, validated and used over more than three decades

to model fast transient dynamic phenomena, ranging from explosions to impacts and to crashes.

They are now routinely applied for simulations in such broad areas as nuclear safety, transportation,

pipelines, marine and offshore, or building vulnerability under terrorist attacks, to name just a few.

Typically the numerical models employed are strongly nonlinear both in the geometry (large dis-

placements, large rotations, large strains, contacts) and in material behavior (plasticity, viscoplastic-

ity, damage, failure, etc). Explicit time integration algorithms such as the well-known central

difference scheme have been traditionally preferred by fast dynamics code developers with respect to

implicit methods, because they are comparatively much simpler to implement. They do not require

numerical iterations—with the associated convergence problems—and at the same time they exhibit

good accuracy and outstanding robustness.

The main—and perhaps the only—drawback of these methods is their conditional stability. Very

small time increments  must be used to obtain stable solutions, and the number of time steps for a

typical simulation is often huge (numbers up to the order of millions are not unusual) despite the

short duration of the fast transient phenomena of interest, a few milliseconds to a fraction of a sec-

ond.

Common practice in explicit codes is to use a time increment  variable in time—this is in fact

quite simple to implement—but uniform in space. In other words, all elements in the numerical

model use the same time increment, which is the global minimum value over the entire mesh, i.e. the

value dictated by the so-called “critical” element.

In large industrial applications the numerical models tend to contain a broad spectrum of finite ele-

ment sizes, since the mesh is typically refined locally in zones of special interest to the engineer, or

where sharp non-linear phenomena are expected. As a consequence, the critical stability step which

drives the explicit time integration scheme used in the code may vary by orders of magnitude over

the model, when passing from the finer-meshed to the coarser-meshed zones.

Using the same time increment—although variable in time—for the whole mesh may therefore be

relatively inefficient, since the smallest element drives the entire computation. Elements which are

much larger than the critical one, and which often represent the majority of the model, are in fact

integrated in time with an increment which is sometimes orders of magnitude smaller than the value

that would be allowed by local stability. This results in a waste of computer time for a given simula-

tion.

Δt

Δt t( )
2



A remedy to this situation consists therefore in building up a so-called spatial time step partitioning

algorithm, i.e. a generalization of the basic time integration scheme using a time step  vari-

able not only in time ( ), but also in space ( ). This means that a different time increment is used in

general when dealing with each finite element—and with each node—of the discrete numerical

model. Clearly the interest of such a technique is exclusively related to optimizing the computational

efficiency of the numerical simulations.

Techniques of this kind have been proposed in the literature since FE pioneering times, see e.g. [2-3],

under the name of mixed methods for time integration, of (spatial) partitioning, or of sub-cycling

techniques. The latter term originates from the fact that, roughly speaking, these techniques compute

several “cycles” of time integration over the smaller elements for each integration step over the

larger ones. One could say that smaller (or more critical) elements are time-integrated “more often”

than larger (or less critical) ones.

More recently a variety of computational strategies have appeared in the literature under the name of

domain decomposition methods, see e.g. the work of Combescure et al. [4-6]. The numerical model

is subdivided into a (usually small) number of sub-domains in order to optimize the calculation

speed and/or accuracy. A different time step  is then typically used in each sub-domain —

although the increment is usually uniform in space for the whole sub-domain—and therefore these

techniques might perhaps be viewed as a sort of (coarse-grain) partitioning. However, there are some

important differences:

• On one hand, domain decomposition methods are more general than spatial partitioning, e.g. 

because they allow non-conforming meshes along the interfaces between sub-domains, the use of 

different time integration schemes as appropriate for each sub-domain (e.g. explicit/implicit cou-

pling), and even specialized treatments of some sub-domains, for example by local modal reduc-

tion techniques where appropriate in order to further improve efficiency, see e.g. Faucher and 

Combescure, references [7-8].

• On the other hand, domain decomposition methods are more complicated to use than spatial parti-

tioning. The subdivision into sub-domains is typically left to the code user, who must also define 

the interfaces between sub-domains. The spatial partitioning process, instead, may be completely 

automatized, as will be explained in the description of the algorithm proposed in this paper. Also 

from the informatics viewpoint, the implementation of partitioning in a standard explicit code 

architecture requires far less modifications than implementing domain decomposition.

From the historical viewpoint, it is noteworthy that the basic spatial partitioning technique to be

described below was formulated and implemented as a prototype in an explicit finite element code

Δt x t,( )
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(PLEXIS-3C, see reference [9]) by the first author of this paper as early as in 1985. The prototype

proved to be quite performing on some academic problems, but the absence at that time of an ade-

quate and full treatment of what could be called “accessories”, notably the large variety of boundary

conditions (links) which may occur in fast transient applications made that speed ups which could

effectively be gained in realistic industrial simulations were often very modest if not irrelevant.

In fact, the original formulation and prototype implementation dealt with boundary conditions in a

straightforward but potentially inefficient way. Simply, any nodes subjected to boundary conditions

were associated with the lowest partition level—see below for a precise definition of these terms.

Such a simplified treatment may indeed be sufficient for academic-like examples such as the ones

presented at the end of this paper, but in applications involving a lot of specific boundary conditions

the benefits of partitioning were lost.

However, recent work on the treatment of the boundary condition models in the explicit code

EUROPLEXUS (a direct descendent of PLEXIS-3C) and the introduction of a more modern infor-

matics data structure has opened the way to an improved version of the partitioning technique, to be

described below, which takes into account boundary conditions in a less conservative manner than

previously, and which almost avoids the associated efficiency degradation.

EUROPLEXUS is a general finite-element computer program for the fast transient analysis of fluid-

structure systems subjected to transient dynamic loading, which is being jointly developed by the

French Commissariat à l’Energie Atomique (CEA Saclay) and by the Joint Research Centre of the

European Commission (JRC Ispra).

This paper is organized as follows. Section 2 recalls the standard, non-partitioned explicit time inte-

gration scheme which is at the base of the proposed method. Section 3 describes the partitioning

technique, considering for simplicity a Lagrangian description suitable for the treatment of purely

structural applications and using a simplified, direct treatment of boundary conditions of trivial

(uncoupled) types, namely those involving just one node at a time, such as blockages. Finally, sec-

tion 4 presents some preliminary test examples of academic nature that illustrate the potential of the

proposed method in terms of CPU efficiency gains.

Part II of this report describes the full treatment of (coupled) boundary conditions by a Lagrange

multipliers method in the algorithm with partitioning, including both permanent and non-permanent

conditions, such as contacts. Then it shows the extension of the partition to an Arbitrary Lagrangian

Eulerian (ALE) formulation, suitable for the treatment of fluid and fluid-structure interaction prob-

lems. Part II also presents some more realistic applications.
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All the calculations presented in this work were performed by the EUROPLEXUS code on a Pen-

tium 4 PC with a 3.0 GHz processor and 1GB of RAM.

2.  Explicit time integration
We briefly recall the governing equations which are at the base of the transient explicit formulation

by assuming for simplicity a Lagrangian description, which is suitable for the treatment of purely

structural applications. The interested reader may find further details in references [10-11].

2.1  Governing equation
For the structural domain, the governing equation is the conservation of momentum. By expressing

equilibrium in the current configuration and by introducing a spatial semi-discretization based on

Finite Elements, the following set of discrete differential equations in time may be obtained:

, (1)
where  is the mass matrix,  is the vector of nodal accelerations,  are the external forces and

 are the internal forces, which may be evaluated by spatial integration over the elements as:

. (2)

In (2) the summation symbol represents the ordinary assembly operator over all the Finite Elements

 of the mesh,  is the volume of the element in the current configuration,  is the matrix of shape

function derivatives, of which a superposed  indicates the transpose, and  is the Cauchy or “true”

stress tensor.

The nodal accelerations are formally obtained from (1) as:

. (3)
However, since the mass matrix  may be lumped (i.e., reduced to diagonal form), see e.g. [12], no

matrix inversion or system solution is actually required and (3) may be simply treated by considering

each degree of freedom  separately:

. (4)
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2.2  Central difference scheme
Time integration of (1) under the form (4) is achieved via the so-called central difference scheme,

which is usually written as:

, (5)

where  are the nodal velocities,  the nodal displacements, the upper suffix  denotes a quantity at

time  and  denotes a quantity at time ,  being the time increment or time

step used in the discretization process.

The time integration scheme (5) is implemented as follows in a typical explicit code. Assume that a

complete solution, i.e. all discretized quantities, are known at time . First, an intermediate or mid-

step velocity is introduced (sometimes called also “velocity precursor” since it depends only upon

quantities at ):

. (6)

This is the constant velocity that would transform configuration  into  over a time interval 

in the discretization process. In fact, from the second of eqs. (5) the new displacements are given by:

. (7)

On the new (i.e., the current) configuration induced by these displacements:

, (8)

the internal forces can be evaluated via eq. (2) by applying the material constitutive relations. Then,

the new accelerations  can be directly computed via the discretized equilibrium equations (1)

under the form (4), and finally the new velocities  are obtained from the first of eqs. (5).

It is important to note that in the time integration process the new configuration , induced by

the displacements , is obtained first (except at the initial time, when the configuration  is

known by definition); then, equilibrium (in a dynamic sense) is solved on the current configuration,

resulting in the current accelerations ; finally, the velocities  corresponding to the current

configuration are obtained as the last result of the time stepping procedure.

Note that this time integration scheme is explicit in that all quantities in the right-hand-side terms are

known when the equations are applied, thus no system solver is needed. This greatly simplifies the

vn 1+ vn Δt
2
----- an an 1++( )+=

dn 1+ dn Δt vn Δt
2
-----an+⎝ ⎠
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⎪
⎪
⎨
⎪
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⎧
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vn 1 2⁄+ vn Δt
2
-----an+=

n n 1+ Δt
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an 1+

vn 1+

xn 1+

dn 1+ x0

an 1+ vn 1+
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practical implementation of the method and facilitates the treatment of non-linearities such as those

arising from geometrical effects (large displacements, large strains) or from material effects (e.g.,

plasticity).

It is well-known that the above scheme is second-order accurate in time and introduces no numerical

damping. Furthermore, spectral analysis (see [12] for details) shows that it tends to produce oscilla-

tion frequencies slightly higher than physical ones so that, when combined with the use of a lumped

mass matrix —which on the contrary tends to reduce frequency values—it produces a remarkably

accurate and fully explicit method. There are thus no matrices to assemble and there is no need for

system solvers, except for the treatment of coupled boundary conditions (see Part II).

2.2.1  Stability
As a counterpart to these remarkable advantages, however, the explicit method (6-7) is only condi-

tionally stable. The so-called Courant stability condition must be satisfied:

, (9)
where  indicates a critical value of the time increment, beyond which the scheme becomes

numerically unstable.

A value of  for each finite element  in the mesh may be estimated according to relationships of

the form:

, (10)

where  is some characteristic length of the element (e.g. the minimum distance among its nodes)

and  is the speed of sound in the material. Thus,  corresponds physically to the time interval

necessary for a stress wave to traverse the element, and suggests the following qualitative justifica-

tion for eq. (9).

A direct, explicit time integration method such as the one considered above may only work as long

as mechanical waves in the discrete system travel over at most one element during each time step.

Otherwise, the numerical scheme has no chance of transmitting the information from an element to

the neighbor ones in time to follow the physical propagation of waves. In fact, since the scheme basi-

cally considers each element and each node separately (recall eq. 4: no system solving) any “pertur-

bation”—here in the sense of a mechanical stress or pressure wave—occurring at an element or node

is only transmitted numerically to its neighbors (i.e., over the distance of one element) during each

time step. These considerations, though qualitative in nature, are at the base of the spatial partition-

ing strategy that will be described in the next Sections.

Δt Δtcrit≤
Δtcrit

Δtcrit i

Δti
crit ΔLi

ci
--------≈

ΔLi
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crit
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The standard approach (i.e., without spatial partitioning) to explicit time integration consists in eval-

uating “the” critical time step for the whole discrete system as:

, (11)

i.e. in taking the global minimum value among those of all elements  in the computational mesh.

Then, eqs. (4-7) are repeatedly applied, until the final time is reached, by using for prudence a some-

what reduced time increment:

, (12)

where  is a stability safety factor:

. (13)

Typically, one assumes  in the range between 0.5 and 0.8, to account for the fact that relations of

the type (10) represent just an estimation of the real stability limit for all but the simplest finite ele-

ment types.

2.2.2  Variable time increment in time
Thus, normally the same time increment  as given by (12) and (11) is used for all elements and for

all nodes in the discrete system. Actually, the time step is changed over time, since stability condi-

tions (10) may vary locally in time due to large deformations ( ) or to changes in the material prop-

erties ( ). The scheme (4-7) is easily generalized to a variable  in time (see e.g. [10-11]) and the

impact of this generalization on its implementation effort is negligible.

By indicating with  the time step that has led to the current configuration :

, (14)
and by  the next time step:

, (15)
the final non-partitioned scheme reads (by letting appear only the mid-step velocities and not the

full-step ones):

. (16)

Δtcrit mini Δti
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i
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A simplified version (but containing all the essential ingredients) of the actual time integration flow-

chart is given in Table 1, where the symbol  is used to indicate the assignment statement. Time

indexes ,  etc. appearing e.g. in the form (16) of the equations are intentionally dropped to

underline the fact that it is possible to write down the algorithm in a very compact way, by using a

single instance of all variables. In other words, if each variable (velocity, stress, etc.) is updated at the

right moment, there is no need to “remember” its old value, because it is no longer used.

Included in the chart are also the calculations needed to carry on the so-called energy balance check:

, (17)
where , ,  are the total internal energy, external work and kinetic energy of the mod-

elled system, respectively. Since the numerical integration scheme is undamped, energy must be con-

served. Eq. (17) must therefore hold a posteriori with good approximation for an accurate and stable

solution. A degradation in this balance usually indicates the onset of a numerical instability, e.g. due

to overestimation of the critical step by means of (10).

Typically, when such an instability occurs, the numerical solution blows up within a small number of

steps, so the problem is easily detected, unless by chance the instability starts very close to the final

time of the simulation.

2.2.3  Drawbacks of the explicit method
Thanks to its simplicity and to its outstanding numerical properties, the explicit approach outlined in

the previous Section is characterized by an exceptional robustness with respect to e.g. implicit meth-

ods, but it also has some drawbacks.

The first and most important drawback is related to computational efficiency. The calculation is

driven by the smallest element, i.e., the most critical element in the sense of eq. (10). There may be

applications where high refinement of the mesh is required locally to reach the desired precision,

while most of the remaining mesh is made of relatively large elements. In such cases, the large ele-

ments are integrated in time tens, hundreds or even thousands of times more frequently than strictly

necessary, thus leading to a substantial waste of CPU time.

But there is also a second drawback which comes from the fact that, as is well known (see e.g. [12]),

the numerical accuracy of explicit time integration schemes such as the one introduced above in eqs.

(5) is best for values near to (or even exactly at) the stability limit. Thus, using too small increments

may introduce some (usually very small, but not vanishing) degradation of the numerical precision.

The goal—and the challenge—of the spatial partitioning technique to be introduced in the next Sec-

tions is precisely to overcome these two drawbacks, but without at the same introducing any negative

←

n n 1+

Wext Wint Wkin+≈
Wint Wext Wkin
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effects upon the exceptionally good properties in terms of robustness and precision of the basic

explicit method outlined above, which were demonstrated by decades of applications.

In addition, we shall see that this result may be obtained at the price of only very limited and local-

ized modifications in the implementation of a normal, i.e. non-partitioned, explicit time integration

strategy. This, of course, provided the partitioning strategy is accurately chosen and designed, fully

understood in all its (sometimes subtle) implications, and carefully implemented.

3.  Spatial partitioning
This Section describes in some detail the proposed spatial partitioning technique, by assuming again

for simplicity a Lagrangian formulation and by neglecting for the moment the treatment of boundary

conditions in their most general (coupled) form (see Part II for such extensions).

In Section 3.1 an attempt is made to provide a rationale for the proposed partitioning strategy, based

upon qualitative considerations about the nature of fast transient dynamic equations and about the

way of functioning of the chosen numerical time integration scheme. Section 3.2 introduces the

resulting data structure. A very simple but hopefully clarifying example of how the partitioning algo-

rithm behaves in practice is offered in Section 3.3. Finally, the complete time integration algorithm

with spatial partitioning is formally detailed in Section 3.4.

3.1  Fundamentals of partitioning
The basic idea behind the partitioning mechanism is to integrate in time each finite element by using

“its own” stable time step—or nearly so, on the “safe” side of course—instead of a value common to

all elements, dictated by the most critical one and therefore far too small for most of the elements in

the mesh of a realistic 3D case.

To this end, the elements of the computational mesh regardless of their location in the model are

automatically sorted over a number of “levels”, according to their intrinsic stability time step, thus

forming in practice a spatial partition of the mesh.

As is easily understood, and since elements are generally not isolated but connected to one another,

this process will of course have implications also on the treatment of the nodes belonging to each

element and connecting the element with its neighbors.

3.1.1  The case of unconnected elements
It is interesting to consider first the trivial case of a mesh composed by a set of unconnected ele-

ments, i.e. each element  is completely disjoint from the others, there are no common nodes (each

node belongs to one and only one element) and there are no boundary conditions, i.e. no constraints

i
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on the nodal degrees of freedom. An example with four simple 2-noded bar-like elements is sketched

in Figure 1.

In this situation, it is clear that each element (and all its associated nodes) may be integrated in time

according to the element’s own (or “intrinsic”) stability time step , so that this quantity is suffi-

cient to completely determine the partition. Therefore, in this case the only task for a partition algo-

rithm would be a practical one: simply that of synchronizing from time to time the solutions obtained

for the various elements, so that a consistent (synchronized) solution would be computed at some

“macro” time instants, e.g. where output is required by the user.

This clarifies the fact that most of the conceptual complexity of partitioning algorithms arises from

the connections between elements—be they of topological nature, i.e. the presence of common

nodes—or be they dictated by coupled boundary conditions (coupled links), i.e. by user-imposed

constraints between the degrees of freedom of different nodes.

3.1.2  Redundant vs. necessary updates
In setting up a spatial partitioning scheme one must aim, for optimal efficiency, at minimizing the

number of updates of elemental and nodal quantities performed, by skipping any redundant or

unneeded operations, that is by retaining all and only those which are mandatory to preserve the cor-

rectness, the robustness, the accuracy and the stability of the corresponding non-partitioned integra-

tion algorithm.

The whole point of the game consists therefore in identifying and separating the redundant from the

necessary update operations. To this end, one possible approach is to further elaborate on the inher-

ent way of functioning of the explicit scheme which has been already outlined in Section 2.2.1 when

dealing with stability issues.

3.1.3  The role of wave propagation
As is well known, from the mathematical viewpoint the governing equations of fast transient dynam-

ics (1) have a hyperbolic character, which means that the status of the modelled system, and its evo-

lution in time, are mainly ruled by wave propagation phenomena, i.e. by the motion of mechanical

stress or pressure waves throughout the system. For example, an external load suddenly applied at

one end of a bar is not “felt” at the opposite end until the stress wave which is generated at the loaded

extremity has propagated along the whole bar.

Thus, investigating the overall equilibrium of the whole, global system like it would be the case in

the equivalent static problem makes no sense and is not necessary in fast transient dynamics. Equi-

librium has, of course, to be satisfied, but only at a local scale: in the discrete model, each (spatially

i

Δti
crit
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discrete) element must, at each chosen time instant (time discretization) be in equilibrium (in a

dynamic sense) with its neighbors, and only with them. This may qualitatively justify why eqs. (1)

may be fully decoupled into (4) and may be treated explicitly without solving any full algebraic sys-

tem.

Let us consider a generic element either embedded in a mesh and completely surrounded by neigh-

bors, or located on a free boundary, thus neglecting for the moment the case of elements with nodes

subjected to any boundary conditions. The element’s internal state, e.g. its stress, may be altered in

only one way: by a “perturbation” of at least one of its nodes, in the sense already introduced in Sec-

tion 2.2.1. That is, basically, by a stress wave traveling throughout the system and reaching the ele-

ment through its neighbor elements via the common nodes.

More precisely, stress variations are typically caused by changes in the relative distances between

nodes of the element. In fact, as long as the element moves like a rigid body—i.e. by a combination

of rigid translation and rigid rotation motions, which keep inter-nodal distances constant—its stress

does not change and therefore it needs not be updated.

Let us now focus on the way in which such waves are propagated. Physically, they move across the

system at a speed which is typically the speed of sound in the material and which may be computed

or at least estimated in most situations. In the numerical model, however, the explicit method out-

lined in Section 2.2 propagates any stress wave at a rate of exactly one element per time step.

This may be simply visualized as follows, see Figure 2. Consider a mesh at rest or moving as a rigid

body and imagine that an external action (e.g. an applied load) suddenly perturbs a node P of the

mesh by changing its velocity, i.e. by producing a local acceleration (Figure 2a). During the first time

step, the only affected elements will be the neighbor ones, i.e. the first layer of elements around the

node (Figure 2b). These elements and only these will undergo variations in their stresses.

At the next (second) step, the above stress variations will perturb (i.e., accelerate) all nodes belong-

ing to the neighbor elements (i.e., the neighbor nodes, Figure 2c), and consequently the stresses in

the second layer of elements around the initially perturbed node will also be altered, Figure 2d.

At the yet subsequent (third) step, one will then see accelerations in the second layer of nodes and

stress changes in the third layer of elements, and so on. Thus, the “numerical” perturbation propa-

gates by exactly one element per time step in all space directions.

3.1.4  Numerical vs. physical propagation
This almost self-evident property of the numerical scheme may be surprising at first sight and one

may wonder how can such a scheme at all work, since the numerical propagation apparently occurs
12



at a a completely arbitrary speed , that has nothing to do with the physical one, being only dictated

by the combination of the chosen mesh size  and of the chosen time integration increment :

. (18)

Indeed, we have already seen in Section 2.2.1 that in reality one of the parameters of eq. (18), the

time increment , is not at all arbitrary. An upper limit on  is dictated by stability according to

eqs. (9-10) and this establishes a lower limit for the acceptable values of , namely (by combining

eqs. 18, 10 and 9):

. (19)

As already discussed in Section 2.2.1, we see therefore that the numerical propagation of perturba-

tions must occur at a speed ( ) at least as large as the physical one ( ), else the scheme has no

chance to work—and in fact it becomes unstable.

But what now about the other end of the scale, i.e. is there an upper limit for , or a lower limit

for ? The answer seems to be no, at least within a reasonable range of values. As mentioned in

Section 2.2.3, a slight degradation of the scheme accuracy is observed as  becomes much (i.e.,

orders of magnitude) smaller than the critical value, but this effect is really very small compared with

other sources of inaccuracy that may affect real computations.

What happens in practice when  is that the perturbation is indeed propagated “too fast” in the

numerical model with respect to physical reality, but at the same time the amplitude of that part of

the propagated signal which overtakes the physical wave decreases very rapidly. The overall effect is

that of generating a so-called “numerical precursor” which has a characteristic negative exponential

shape and which is typically damped out in space to completely negligible values over just a few ele-

ment layers. An illustration of this phenomenon may be observed e.g. in the first numerical examples

of Section 4, see Figure 12.

3.1.5  “Rules” for partitioning
From all these considerations, one may tentatively deduce a set of qualitative “rules” for the updating

of elemental and nodal quantities, that must be satisfied in order to set up a partitioned version of the

explicit time integration algorithm. Note that in the non-partitioned version such rules are automati-

cally satisfied by definition, so there is no need to consider them or—a fortiori—to enforce them.

Element-related quantities to be updated are typically the stresses and any constitutive law internal

variables, while node-related quantities to be updated are the accelerations, the velocities and the dis-

placements (and hence the configuration). Note that, as concerns nodal updating, the arguments

detailed below will lead us to separate acceleration/velocity updating from displacement/configura-
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tion updating, since in general the latter is needed more frequently than the former, and never less

frequently.

In formulating the rules, use is made of the notion of “neighbor elements” to a given element, which

are simply defined as all the elements that share at least one node with the element under consider-

ation. Similarly, by “neighbor elements” to a given node we will indicate all the elements that con-

tain that node. Furthermore, we will denote as “intrinsic” stability time increment of an element  the

quantity  defined by eq. (10), because it depends exclusively upon properties of the element

under consideration, and not upon its neighbor elements. This is the basic quantity upon which the

partitioning strategy is built up, and from which the actual rules for updating element and nodal

quantities are derived.

The observations about stability and perturbations made in the previous Sections may be summa-

rized as follows:

• Observation 1: to update an element one must respect its intrinsic stability. Each element’s ( ) 

internal state (stress) should be updated by a time increment  as close as possible (on the safe 

side) to the element’s intrinsic critical value , see Section 2.2.1. This results in:

. (20)

To preserve stability the increment must clearly not exceed the intrinsic critical value but at the 

same time, to enhance efficiency, the increment should be as large as possible, compatibly with 

correct propagation of perturbations in the discrete model. 

• Observation 2: updating acceleration/velocity of a node immediately perturbs all its neighbor ele-

ments. This is explained in Section 3.1.3 and illustrated in Figure 2b.

• Observation 3: updating acceleration/velocity of a node must respect the intrinsic stability of all 

its neighbor elements. As a consequence of Observations 2 and 1, to ensure that the perturbation 

resulting from the updating in acceleration/velocity of a node  is correctly transmitted—in a 

numerical sense—across its neighbor elements, the time increment  used to update the accel-

eration/velocity of the node must respect the intrinsic stability of all its neighbor elements . 

Thus one may write:

. (21)

• Observation 4: updating an element requires prior updating of all its nodal configurations. Just 

before an element is updated the positions—i.e. the displacements/configurations—of all its 

nodes must be updated because stress variations in the element are caused by changes in the rela-
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tive distances between the element’s nodes, see Section 3.1.3. Therefore, the time increment  

used to update the acceleration/velocity of a node  must be smaller than or equal to the time 

increments actually used to update its neighbor elements . One may write then:

. (22)

From these observations, the following three Rules are derived, which are then actually used for the

updating of elemental and nodal quantities:

• Rule 1: node updating in acceleration/velocity. As a direct consequence of Observation 3, each 

node must be updated in acceleration/velocity by using the smallest intrinsic stability time incre-

ment of all its neighbor elements. Symbolically one may write:

. (23)

• Rule 2: element updating. As a direct consequence of Observation 2, each element  must be 

updated by using the smallest time increment among those used to update in acceleration/velocity 

any of its nodes :

. (24)

Note that this condition is stricter than the condition that would result from direct application of 

Observation 1, i.e. than eq. (20).

• Rule 3: node updating in displacement/configuration. As a direct consequence of Observation 4, 

each node must be updated in displacement/configuration by using the smallest time increment 

among those that are actually used to update all its neighbor elements:

(25)

Note that these time increments are not the elements’ intrinsic stability ones ( ), but rather 

those defined by Rule 2 ( ).

3.2  Data structure for partitioning
We may now proceed to a detailed description of the partitioning strategy and of the associated data

structure which, as we will see, is simply a translation into informatics terms of Rules 1, 2 and 3.

For a series of practical reasons that will be presented in the following, it is convenient to adopt a

binary partitioning scheme. Thus, the various time increments used to advance the solution are not

completely arbitrary, unlike in other methods such as domain decomposition. By taking as reference
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one of the elements, e.g. the element with the largest intrinsic stability step, all others will use incre-

ments whose ratios to the reference are integer (negative) powers of 2, namely 1, 1/2, 1/4, 1/8 etc.

3.2.1  Frequency of sub-cycling
It seems natural to store this information as integer numbers (1, 2, 4, 8 etc.) and therefore, instead of

dealing directly with time increments like in the Rules introduced in Section 3.1.5, we will rather

introduce the term “frequency (of sub-cycling)”—not to be confused with frequency of mechanical

or numerical oscillations—which is inversely proportional to the time increment. For example, an

element or node with an associated frequency of 4 will be integrated (updated) 4 times more often

than the reference one and thus it will use a time increment 4 times smaller. As a consequence of this

choice, all the minimization processes that appear in the Rules and that deal with time increments are

converted into maximization processes in the data structure, which instead uses the notion of fre-

quency.

The terminology adopted in the description of the partition is clarified in Figure 3 and, as concerns

the notation, most of the symbols and variable names used in this work are summarized in Table 2

for ease of reference. To help the reader, the same variable is indicated in upper-case when referred

to a partition level, in lower-case when it refers to a particular element or node. For example, time

will be denoted as  in the first case,  in the second one. Furthermore, variations relative to a level

or an element are indicated by , while those relative to a nodal quantity are denoted by .

3.2.2  Partition levels
A binary partition of arbitrary depth  ( ) is built up, whereby each element  ( ),

 being the total number of elements, is assigned to a level  ( ) according to its intrin-

sic stability time increment . The smaller , the lower is the level to which element  is

assigned, i.e. the larger is .

Each element thus belongs to one and only one level, while each level contains zero or more ele-

ments, except for the first and the last levels (  and , respectively), which must contain at

least one element.

A time increment  is associated with each level  according to a binary rule (and hence we qual-

ify the partition as binary), i.e. such that:

. (26)

This implies also:

. (27)
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An element  is associated with level  if and only if its intrinsic stability time increment  satis-

fies the following inequalities:

. (28)

If we indicate with  (or simply with ) the largest time increment in the partition, i.e. the

“macro” step, which is also the time increment associated with the first level:

, (29)

then in view of (26) or (27) the time increment of the generic level  is given by:

. (30)

If we denote as level frequency  the (integer) quantity appearing at the denominator in eqn. (30):

, (31)

then this equation becomes:

. (32)

Note that  for levels , respectively.

The level frequency  represents the number of “micro” steps (or sub-cycles) that have to be per-

formed on the elements belonging to level , for each single macro step, i.e. for each step performed

on the elements belonging to the first level. In other words,  is the frequency of sub-cycling of the

generic level  with respect to the first level.

From eqn. (31) one may compute the level  from its level frequency , by:

. (33)

A property of the binary partition which is very important in practice is that the time integration

instants associated with elements in a certain level  coincide every second step with those of ele-

ments in the previous level ( ) and, more generally, they coincide every  steps with those

of elements in level  (with ).

In particular, the integration times of elements in the first level ( ), which we denote as macro

times, are guaranteed to coincide with some of the integration times of elements in any subsequent

level  (and this every  steps for the elements in that particular level). Thus, in the chosen par-

tition strategy synchronization of the integration times is guaranteed by construction, unlike in other

techniques such as e.g. domain decomposition which in principle allow completely arbitrary time
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steps, but then require an explicit synchronization mechanism to obtain a complete solution at a

series of chosen macro time instants.

The use of a binary partition is also very convenient from the implementation viewpoint, since the

time marching algorithm can be built up by using exclusively integer quantities. In particular, alge-

braic or comparison operations involving real numbers, which are necessary when using arbitrary

time steps like in domain decomposition techniques and require the definition of suitable tolerances

(with all the associated potential numerical problems), are completely avoided.

An example of partition with a depth  is illustrated in Figure 3, which defines also the nomen-

clature associated with the partition algorithm and used throughout this work. The figure shows two

consecutive macro time steps ,  for the elements in the first level, and the associated sub-

cycles for the other levels. Note that time increment varies not only in space but also in time, since it

is assumed that  for full generality.

The above equations (26-33) define the basic ingredients of the element partitioning technique, but a

couple of questions of great practical importance remain open at this point:

• The assignment of an element to a certain level and consequently also the partition depth varies in 

general from a macro step to the following one. But may they also vary within a macro step? In 

the present implementation, the answer to this question is yes: to achieve full generality in large 

deformation simulations the partition is checked and, if necessary, it is updated at every

(sub-)cycle of the time integration process. More on this in Section 3.4.7.

• Eqn. (28) does not indicate how to precisely determine the partition levels. In particular, a certain 

freedom remains on how to choose the time increment of the first level, all others resulting 

uniquely from this one. A technique is presented in Section 3.4.8, but alternative strategies could 

perhaps be more convenient depending on circumstances, as will be shortly mentioned at the end 

of Section 4.2.2.

The level frequency ,  introduced above by eqn. (31) is the primary information for

the spatial partitioning process, but it is not sufficient to completely define the partitioned time inte-

gration algorithm. Other quantities, derived from it and necessary to enforce the Rules detailed in

Section 3.1.5, must be built up according to the following procedures. Their precise meaning and uti-

lization will be detailed in Section 3.4 that presents the complete time integration algorithm.
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3.2.3  Intrinsic element frequency
First of all, the “intrinsic element frequency”  for each element  in the mesh is computed, accord-

ing to eqn. (28):

. (34)

The term intrinsic refers to the fact that this is the frequency of sub-cycling of the element per se, as

resulting from local stability, i.e. by disregarding any connections of the element with its neighbors.

3.2.4  Intrinsic node frequency
Next, we compute the frequency associated with each node in the mesh. We consider first the case of

“free” nodes, i.e. nodes not subjected to any constraints (denoted “links” in the following). The case

of linked nodes will be treated in Section 3.2.5.

The intrinsic node frequency  for a free node , (  where  represents the total

number of nodes in the mesh) is defined as the maximum intrinsic element frequency of its neighbor

elements:

. (35)

This quantity is related to the enforcement of Rule 1 of Section 3.1.5, i.e. it will be used to drive the

updates of nodal accelerations and velocities.

3.2.5  Nodal link indicator
As already mentioned in the Introduction, the original implementation of the partitioning technique

dealt with boundary conditions in a simplistic way. In order to avoid the complications arising from

the links between different nodes, the intrinsic node frequency  for any node  subjected to a link

condition, no matter whether coupled or uncoupled (like e.g. in the case of a simple blockage of one

dof), is set to the maximum value of the partition:

. (36)

To do this efficiently, a nodal link indicator  is built up once (thereby implicitly considering only

the permanent links, i.e. those which hold over the whole transient of interest for the calculation) and

is then used during the first calculation or during the updating of the partition:

. (37)

A node is considered subjected to a link if at least one of its degrees of freedom (dof) appears in any

expression imposing a link. Obviously, this treatment is penalizing especially in the case of uncou-

pled links, for which it is totally unnecessary. However, recognizing whether a given link is effec-
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tively coupled or uncoupled is a relatively expensive operation and therefore it is avoided here for

maximum simplicity.

3.2.6  Neighboring element frequency
Next, the neighboring element frequency  is also computed and stored for each element  in the

mesh. This quantity is defined as the maximum of the intrinsic node frequencies of all nodes belong-

ing to the element  itself:

, (38)

and is related to the enforcement of Rule 2 of Section 3.1.5, i.e. it will be used to drive the updates of

element quantities.

By this definition and by the definitions of intrinsic nodal frequency (35) and (36), one may see that

the neighboring element frequency is always greater than or equal to the intrinsic element frequency:

. (39)

3.2.7  Neighboring node frequency
Finally, in analogy with (38) we define the neighboring node frequency  for each node  in the

mesh, as the maximum neighboring element frequency of its neighbor elements:

. (40)

This quantity is related to the enforcement of Rule 3 of Section 3.1.5, i.e. it will be used to drive the

updates of nodal displacements and configurations.

In analogy with (39), we may note that:

. (41)

3.2.8  Nodal time increment
A final quantity related to mesh nodes is used in the original partitioning algorithm: the nodal time

increment , for each node of the mesh ( ). This quantity is defined as the time incre-

ment that is being currently used to advance in time the acceleration/velocity related to node . It is

stored and continuously updated by the partitioning algorithm as part of the time integration process

(see the complete description of the algorithm in Section 3.4 below for further details).

3.3  The partitioning mechanism at work
We now describe by means of a simple example how spatial partitioning may be achieved in practice

by making an appropriate use of the quantities introduced in the previous Section. The scope is to

give readers with a pragmatic attitude a glimpse into the inner workings of the partitioning mecha-

nism in a very simple yet representative practical case. The theoretically oriented readers may safely
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skip this Section since a more formal and fully detailed presentation of the partitioning algorithm

will be given in Section 3.4.

3.3.1  The case of unconnected elements
Before considering the practical example, however, it is instructive to see what would be the behav-

ior of the partition in the trivial case of completely unconnected elements already discussed in Sec-

tion 3.1.1 and sketched in Figure 1.

In that situation, it is clear that each element (and the associated nodes) may be integrated in time

according to the element’s own stability time step, so that the intrinsic element frequency  as given

by (34) is sufficient to completely determine the partition. In fact, from (35), (38) and (40) one sees

that all frequencies are equal and depend only upon the element considered: ,  and

, where  are the nodes of element .

3.3.2  A connected mesh
Let us consider again the same mesh as in the previous example, but now with the elements con-

nected to one another to form a one-dimensional bar, as shown in Figure 4. There are now only 5

nodes instead of 8, because of topological connections. Assume that the stability time increment for

element 1 be one half that of element 2, which in turn is one half of those of elements 3 and 4.

From (34) we obtain:

. (42)

From (35):

. (43)

From (38):

. (44)

Finally, from (40):

. (45)

The arrows in Figure 4 indicate how the most critical (highest) intrinsic element frequencies  are

successively “spreading” towards the neighboring nodes and elements during the calculation of the

other (derived) frequencies ,  and . Solid arrows indicate values that are larger than—and

therefore become predominant with respect to—those indicated by dotted arrows.

Note incidentally how, due to the “non-recursive” nature of frequencies definitions (e.g.,  depend

only upon , and not upon  themselves) given in the previous Section, the value associated with

the critical element (e.g. element 1 in the example: ) spreads out to the neighbors ( ),

i.e. only over one single layer of elements. In fact, if this spreading mechanism would be recursive,
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then the most critical value would uniformly affect the whole mesh (assuming this is fully con-

nected), thus rendering the partitioning completely useless: all elements and nodes would simply end

up in the lowest partition level.

Criterion for elements updating

During the time integration process, elements are integrated (i.e., as we will see in detail below, their

internal state of stress and their contributions to internal forces are updated) with different frequen-

cies depending upon each element’s critical step, thanks to the partitioning process.

One might at first sight expect that the quantity used to decide whether or not a certain element 

should be integrated at a given cycle would be the intrinsic element frequency . However, this is

not the case and one should use the neighboring element frequency  instead, in accordance with

Rule 2 of Section 3.1.5 and as will be tentatively justified based upon the example under consider-

ation.

In fact, consider element 2 in the example of Figure 4. It should be integrated with a frequency of 4

( ) and not of 2 ( ) because it is connected through node 2 to element 1, which has an intrinsic

frequency of 4 ( ).

A rationale for this could be as follows (see also Section 3.1): imagine the bar is currently at rest or

moving as a rigid body and suddenly a perturbation (a stress wave) enters the bar from the left end

and propagates right wards, and assume that at the current time it produces an acceleration (change

of velocity) of node 2. In the time and space discretization assumed above, this perturbation will

“instantaneously” affect both elements sharing the perturbed node, i.e. elements 1 and 2. Conse-

quently, both elements will have to be time integrated at the current time in order to update their sta-

tus: integrating only element 1 (according to ) would in fact overlook the perturbation in

element 2.

However, the same perturbation will not affect (neither physically nor numerically) the following

element (element 3) until it has completely traversed element 2, thus producing a perturbation of

node 3. But in the assumed numerical scheme this may happen only at the next cycle, as a conse-

quence of the stress change in element 2. Therefore there is no need to update element 3 at the cur-

rent time, since it belongs to a higher partition level (lower frequency) than element 1: its internal

status would not change anyway.

Partitioned time integration

The spatial partition for the mesh of Figure 4 is illustrated in Figure 5. This is similar to the generic

partition of Figure 3, except for the following details:
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• Only one macro step has been represented for simplicity.

• The neighboring element frequency  has been depicted instead of the level frequency .

• The partition depth is 3 instead of 4.

For each integration in time of element 4 (macro step), element 3 is integrated twice while elements

1 and 2 are integrated four times. Thus there are 4 cycles within the macro step.

Initialization of the macro step

Let us assume that all quantities, i.e. for all elements and all nodes, are known at the beginning of the

macro step ( ): for simplicity let the system be initially stress-free ( ) and at rest except at

node 2, where an arbitrary perturbation is introduced (velocities  for , ).

Note that all variables are indicated here as scalars (  instead of ,  instead of , etc.), for nota-

tional simplicity, because the present example is one-dimensional. The first subscript indicates the

element or node, the second one (separated by a comma) indicates the time station according to the

normalized time scale shown in Figure 5.

To advance in time the numerical solution for the discrete system, use is made of the central differ-

ence time integration scheme which has been shortly recalled in Section 2.2. The internal forces in

all elements are computed and assembled onto the corresponding nodes. They will be denoted as 

instead of , for simplicity, throughout this Section. Since there is no initial stress, these forces are

null. Then, the nodal accelerations are computed: they are also zero since we assume no external

forces throughout the whole transient of interest:

. (46)

Next, we start advancing the numerical solution in time. The nodal accelerations are used to compute

the so-called mid-step velocities  at each node  in the mesh ( ). These are the (con-

stant) velocities that would move each node  to the next (computed) configuration over its own

time increment , and result from (see eq. 6):

. (47)

Note the factor , due to the fact that we are at the beginning of a macro step, thus we start from

the known full-step velocities . Note also that, since the nodal time increment  varies from node

to node, these velocities  are in general expressed at different times.

The quantity used to determine the time increment for each node  is the intrinsic nodal frequency

, according to:

, (48)
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where  is the “macro” time step, i.e. the largest (level 1) time increment in the partition, see also

eq. (29). Alternatively,  may be expressed in terms of the smallest (level ) time increment in the

partition,  (that will be indicated by  in the rest of this Section for brevity):

, (49)

since, according to (32):

, (50)

where  is the level frequency of the deepest partition level.

In the chosen example, we obtain for the nodal time increments the following values:

. (51)

Hence, the mid-step velocities are:

. (52)

This situation is illustrated graphically in Figure 6(a). In this figure and in the following ones within

this Section, solid arrows and circled symbols indicate the most recently updated quantities. In the

color version of this paper, velocities are indicated in red, configurations in green and accelerations

in blue.

Cycle 1

Next, we start the sub-cycling process, whereby time is repeatedly advanced by the smallest time

increment in the partition, , until the macro step is completed. At each time station, only some of

the nodes and elements are “active” and are therefore computed (i.e., their variables are updated),

while the others are simply skipped (i.e., the values of the associated variables do not change).

Cycle 1 in the above example corresponds to time  in Figure 6(a). The first quantity to be deter-

mined in the central difference time integration process is the configuration at the current time, and

this must be done for all active nodes at this time.

Criterion for updating nodal configurations

One might at first sight expect that the quantity used to decide whether or not the displacement/con-

figuration of a certain node  should be updated at a given cycle would be the intrinsic nodal fre-

quency , and indeed this is the quantity that has been used above in eqs. (49) and (47) to update

the mid-step velocities.

However, similarly to what happens for elements (see the discussion at the beginning of Section

3.3.2) this is not the case and one should use the neighboring node frequency  instead, in accor-

dance with Rule 3 of Section 3.1.5. Again, the justification for this may be deduced by closer inspec-

tion of the example under consideration.
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As a matter of fact, the purpose of updating the nodal configuration is, ultimately, that of updating

the elements by computing the new stresses resulting from the new configuration and the internal

forces that these stresses generate.

Now, the elements which are active at the current time  are, as explained above, those having

, i.e. elements 1 and 2. All nodes belonging to these elements should be updated (in configu-

ration/displacement) before recomputing the elements themselves, and these include not only nodes

1 and 2 (which indeed have ), but also node 3 (which has ). Thus, one sees that the

quantity to be used here is , and not : in fact  for nodes 1, 2 and 3 (and only for these).

Therefore, cycle 1 starts by computing the following displacement increments:

, (53)

or (since  and ):

. (54)

Correspondingly, the new configurations at  are:

. (55)

Note that, for nodes 1 and 2 (which actually belong to the lowest partition level, see Figure 6a) these

configurations are the actual “end of (sub-)step” ones corresponding to the intrinsic time increment

for these nodes, while for node 3 the obtained configuration may be thought of as an intermediate (or

interpolated) one, which is obtained with the only purpose of being able to compute element 2 at the

current time. The situation is graphically summarized in Figure 6(b).

On the basis of the updated nodal configurations and of the associated displacement increments, the

elements 1 and 2 (which are the only ones with ) may now be updated. One may symbolically

write for the stresses:

, (56)

and for the internal forces:

. (57)

Contributions from the various elements to internal nodal forces are assembled at nodes by the stan-

dard Finite Element process. At the current time, the assembled forces at nodes 1 and 2 as given by

eqs. (57) are complete, while the force at node 3 is not, since it includes only the contribution from

element 2. For this reason it has been indicated by a superposed  in those equations. This is not a
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problem, however, since at the current time node 3 is not going to be updated, as far as accelerations

and velocities are concerned (see hereafter).

Criterion for updating nodal accelerations and velocities

In order to complete the current (first) cycle, the other nodal quantities (accelerations and velocities)

must be updated for the currently active nodes. Here the choice is done based upon  (and not ),

in accordance with Rule 1 of Section 3.1.5, and results into nodes 1 and 2. For the accelerations we

obtain:

. (58)

To update the (mid-step) velocities, we use the relationship:

, (59)

which is analogous to eq. (47) except for the lack of the factor . This is due to the fact that we

now start from the previous mid-step values  and not from the full-step ones like in eq. (47).

We thus obtain (since ):

, (60)

One should stress the fact that these velocities are not expressed at the current time, but are already

the mid-step values for the subsequent cycle and for each node at the appropriate time. In fact, recall

(see e.g. [10]) that the “end-of (sub-)step” velocities are used only for printout purposes and for the

calculation of kinetic energies, since the velocities values used for time integration are the mid-step

ones.

This terminates the first cycle ( ) of the time integration procedure, see Figure 5. The situation at

this moment is graphically summarized in Figure 6(c): a complete solution has been obtained at the

current time  for the deepest (third) level of the partition, i.e. for nodes 1 and 2 (configurations

, accelerations ) and for elements 1 and 2 (stress ). The nodal velocities for all nodes already

have the mid-step values appropriate, on a node-by-node basis, for the next nodal integration step.

Furthermore, the configurations of nodes in the first non-active level ( ) has also been updated and

finds itself in a sort of intermediate status referred to the time scale of that node, as noted before.

Cycle 2

We may now start the second cycle, whereby time is advanced from  to . From Figure 5 it

appears that the active levels at the current time  are levels 3 and 2.

Like in the previous cycle, we start by computing the current configurations for all active nodes

(based upon ). These are now nodes 1, 2, 3 and 4. The configuration of the latter node is updated
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only in order to be able to advance element 3, which is active at the current time based upon its 

( ).

By noting that , , the displacement increments are:

. (61)

The new configurations are therefore:

. (62)

The situation is graphically summarized in Figure 7(a).

On the basis of the updated nodal configurations and of the associated displacement increments, the

elements 1, 2 and 3 (i.e. the only ones with either  or ) may now be updated. For the

stresses, we get:

, (63)

and for the internal forces:

. (64)

Note that the force in node 3 ( ) is computed anew as a function of current ( ) stresses in

elements 2 and 3, so that the partial value ( ) that had been computed in the previous cycle is

discarded. Now it is the internal force of node 4 ( ) that is incomplete.

To complete the cycle, the nodal accelerations and velocities must be updated for the currently active

nodes (based upon ), i.e. nodes 1, 2 and 3. The accelerations are:

, (65)

and since , , the new mid-step velocities are:

. (66)

This terminates the second cycle ( ) of the time integration procedure, see Figure 5. The situation

is depicted in Figure 7(b).
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Cycle 3

In the third cycle, time is advanced from  to . From Figure 5 it appears that the only active

level at  is level 3 (like in the first cycle). We start by computing the configurations of all active

nodes based upon , i.e. nodes 1, 2 and 3. Since , the displacement incre-

ments are:

. (67)

Correspondingly, the new configurations are:

. (68)

The situation is depicted in Figure 8(a).

On the basis of the updated nodal configurations and of the associated displacement increments, the

elements 1, and 2 (i.e. the only ones with ) may now be updated. For the stresses, we obtain:

, (69)

and for the internal forces:

. (70)

Again, note that the internal force in node 3 is incomplete.

To complete the cycle, the nodal accelerations and velocities must be updated for the currently active

nodes (based upon ), i.e. nodes 1, and 2. The accelerations are:

, (71)

and the velocities (since ):

. (72)

This terminates the third cycle ( ) of the time integration procedure, see Figure 5. The situation is

depicted in Figure 8(b).
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Cycle 4

In the fourth and last cycle of the macro step, time is advanced from  to . Since this is the last

cycle (end of the macro step), all elements and all nodes are active. Since ,

, , the displacement increments are:

. (73)

Correspondingly, the new configurations at  are:

. (74)

The situation is depicted in Figure 9(a).

On the basis of the updated nodal configurations and of the associated displacement increments, all

elements may now be updated. For the stresses, we get:

, (75)

and for the internal forces:

. (76)

To complete the cycle (and the step), the nodal accelerations and velocities must be updated for all

nodes. The accelerations are:

. (77)

Since we are at the end of the macro step, it is convenient to express the new velocities at the same

time as the other quantities, i.e. at . In other words, they are full-step values and not mid-step val-

ues (so that e.g. the kinetic energy may be evaluated); they will again be updated to mid-step values

at the beginning of the next macro step (see eq. 47). Since , , ,
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we obtain (note again the factors  like in eq. 47 for the step initialization, and unlike eq. 59,

which is the one used during the intermediate cycles 1, 2 and 3):

, (78)

This terminates the fourth and last cycle ( ) of the time integration procedure, see Figure 5. The

final situation is depicted in Figure 9(b).

As a final remark, it should be noted that the algorithm as detailed above is slightly simplified with

respect to the actual procedure implemented in the code. The main simplification lies in the fact that

for simplicity the partition has been tacitly considered constant during the macro step (“static” parti-

tion), while in reality it should be re-evaluated at each cycle because, due to large deformations, an

element may jump from a level to another one (upper or lower) not only at the end of each macro

step but within the macro step itself, i.e. at the end of each cycle (“dynamic” partition). More details

on the full (dynamic) partitioning algorithm are given in the next Section.

3.4  Partitioned time integration algorithm
In this Section a detailed description of the time integration algorithm with spatial partitioning is

given.

3.4.1  Nomenclature
To help the reader, the various quantities used in the time integration algorithm are summarized in

Table 2. The following conventions have been followed:

• A quantity related to a partition level uses an upper-case symbol (e.g. ) while the same quantity 

related to an element or a node uses the corresponding lower-case symbol ( ).

• Variations are indicated by an upper-case delta ( ) when referred to a partition level or to an ele-

ment, while they use a lower-case delta ( ) when referred to a node.

• Subscript  indicates the generic element ( ).

• Subscript  indicates the generic node ( ).
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• Subscript  indicates the partition level ( ).

• Subscript  indicates the deepest partition level.

3.4.2  Activity function
During the time integration process that will be detailed below, use is made of two integer quantities

that will be denoted  and , whose precise meaning is defined hereafter. The  quantity is sim-

ply the current maximum level frequency of the partition:

, (79)

where  is the current partition depth. The quantity  will be denoted as activity function and is

defined as the minimum level frequency that is currently active. Its meaning and relevance are best

explained by an example.

Consider one “macro” step of the time integration procedure with a partition of depth , as

shown in Figure 10. Assume for simplicity that the partition depth  is constant over this macro step,

so that  is also constant and has the value . This means that the elements

in the lowest partition level will have to perform 16 “cycles” or micro steps within the macro step,

i.e. while the elements in the highest level perform just one step. Correspondingly, the elements in

intermediate levels 2 to 4 will perform 2, 4, or 8 cycles, respectively.

Let us introduce a micro-step (or cycle) counter , which will go from 1 to 16 (i.e. from 1 to ) over

the macro step. At each cycle, only some of the partition levels are “active” (i.e. the corresponding

elemental or nodal quantities must be updated), while the others are not active. For example, and

with reference to Figure 10, when  the levels 3, 4 and 5 are active while the levels 1 and 2 are

not. The  variable indicates the level frequency of the first active partition level encountered from

the top, i.e. the level with the minimum index among the currently active ones. All levels below and

including this one are active, while all levels above this one are not active.

One may easily verify (see also the table contained in Figure 10) that  can be computed as:

, (80)

where  is the highest power of 2 ‘contained’ as a factor in . Consequently, for odd values of ,

it is simply , i.e. the first and only active level is the deepest one. For even values of  it is

 and in particular for  (and only for this value) it is .

The activity function  exhibits the characteristic pattern shown in Figure 10. The dashed zone

highlights the partition levels that are active at any given cycle.
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3.4.3  Time loop algorithm
We are now in a position to give a formal outline of the time integration process with spatial parti-

tioning. This is denoted below as Algorithm P. For completeness the algorithm assumes an ALE for-

mulation, of which the Lagrangian case—which is the only one considered in the present paper—

may be seen as a subset. The parts relative to an Eulerian or to a full ALE description are discussed

in Part II.

Algorithm P

0. Initialization: set the time  (initial time), macro step counter , , , 

;  for ; the initial velocities  for , 

, , , the initial displacements  for  (for sim-

plicity), and the initial configuration  for .

1. GO TO point 8 below.

2. Increment the macro-step counter: . 

3. Update the velocities: , where . The operation is performed for 

all nodes, since we are at the beginning of a macro step. Velocities are now expressed at the mid-

step (i.e., at time instants that vary in general from node to node).

4. Increment time by a cycle: ; increment the cycle counter: . Note, how-

ever, that  is not updated until point 7 below. Thus, the  used at points 5 and 6 is the one 

relative to the previous cycle, i.e. the cycle that led to the current time .

5. If an Arbitrary Lagrangian Eulerian (ALE) formulation has been chosen, then update the grid 

velocity  of all nodes  in an active partition level during the previous cycle, i.e. such that 

. In general  is a function of the current configuration  and of the current velocity , 

see Part II for details.

6. For all nodes  in an active partition level during the previous cycle, i.e. such that : A) 

update the Lagrangian displacement increments  where 

; B) in an ALE or Eulerian calculation, update also the relative 

displacement increments  (note that in the Eulerian case it is simply 

); C) compute the displacement increments: in the Lagrangian case it is 

, while in the Eulerian or ALE cases ; D) update the total 

displacements: ; E) update the current configuration: .

7. Update  by eq. (80), i.e. , where  is the highest power of 2 ‘con-

tained’ as a factor in .
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8. Initialize the internal forces and the external forces: , . Compute and assemble 

the internal forces at the current time by updating all currently active elements. See details in 

Section 3.4.4.

9. If we are at the end of a macro step ( ), then: A) check the minimum and maximum ele-

mental time increments  and  that were computed at the end of the elements update 

process (see point 8. above and Section 3.4.4), against any restraints (on ) that might be 

imposed by the user or that might result from the chosen results printout and storage times; B) 

check whether it is worthwhile to partition: if  then set , thus 

de-activating de facto the partition, as may be verified by inspecting the partition updating algo-

rithm, see Section 3.4.8 below (point 3 of Algorithm P.10). Note that, since both  and  are 

initialized at 0, these checks are performed also at step 0 (i.e. at the initial time of the calcula-

tion).

10. Compute the data structure relative to the partition, as detailed below in Section 3.4.8. This 

includes, among other things, the calculation of level frequencies: , ,  and . If we are at 

the end of a macro step ( ), then reset  and re-compute .

11. For all nodes  in a currently active partition level, i.e. such that , evaluate the pre-

scribed external forces at the current time.

12. For all nodes  in a currently active partition level, i.e. such that , compute the accel-

erations at the current time: .

13. For all nodes  in a currently active partition level, i.e. such that : A) update the 

velocities: , where  if we are starting a macro step (i.e. when 

), or else , with . Note that at 

the initial time of the calculation  because of the initializations performed in step 0 

above. This update may be safely applied even at the initial time, since it will not modify the ini-

tial velocities; B) keep track of the time increment by which the nodal velocity is being updated, 

by setting .

14. If , then GO TO point 4 above (next cycle).

15. The macro step is complete. Compute the kinetic energy (for the energy balance). Print results if 

so requested.

16. If the final time has not been reached, then GO TO point 2 above (next macro step).

17. End of the calculation.

In the next Sections the various points of the algorithm are further detailed.
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3.4.4  Calculation of internal forces
We consider in more detail the calculation of element internal forces, corresponding to point 8 of the

Algorithm P presented in Section 3.4.3.

Algorithm P.8

0. Initialization: if we are at the end of a macro step ( ), then initialize a local version of the 

minimum and maximum elemental time increments:  and . Note 

that, since both  and  are initialized at 0, this calculation is performed also at step 0 (i.e. at the 

initial time of the calculation).

1. Perform a loop over all the (currently active) elements in the mesh, see Section 3.4.5 for details. 

Within the loop, the relevant subroutine for each element is called, according to its type. This 

element-specific subroutine computes the element’s contribution to internal forces and estimates 

the element’s stability time step ( ). Then it computes the “safe” step for the element, , as 

 (the former being the element’s stability time step and the latter being the safety 

factor). If we are at the end of a macro step ( ), then the value of  is stored in a table  

and is used to update the value of  and . Otherwise (i.e. within the macro step), a 

check is done to see whether the assignment of the element to the current partition level is still 

valid and, if necessary, it is changed (see details in Section 3.4.7).

2. Set the current value of the stability step: .

3. If we are at the end of a macro step ( ), then update the values of the minimum and maxi-

mum elemental time increments:  and , respectively.

4. End of the calculation of internal forces.

3.4.5  Update of an element
We consider now in detail the updating of a generic element, corresponding to point 1 of Algorithm

P8 that was presented in Section 3.4.4.

Algorithm P.8.1

0. Initialization: set  to a very large value . Let the index of the current ele-

ment be .

1. If we are at the beginning of the calculation ( ), set  (this initialization is neces-

sary for the subsequent filling of local arrays of nodal variables at step 0, see Section 3.4.6 below 

for details) and continue, i.e. go to the next point; otherwise, check . If , then the cur-

rent element is inactive at the present cycle, so we skip its calculation altogether (GO TO 

point 7).
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2. Fill in local (element-specific) arrays of nodal variables to be passed to the element subroutine 

(see Section 3.4.6 below for details).

3. Call the element-specific subroutine, according to the current element’s type. This subroutine 

computes the element’s contribution to internal forces and estimates the element’s stability step 

.

4. Set .

5. If we are at the end of a macro step ( ), then store the element’s time increment: ; 

and use the value of  to update  and :  and 

.

6. Otherwise (i.e. within a macro step), check whether the current element (with its newly calcu-

lated ) still “fits” into the partition level to which it belongs and, if necessary, modify the par-

tition (see details in Section 3.4.7 below).

7. End of calculation for the current element.

3.4.6  Filling in local arrays of an element’s nodal variables
As pointed out in step 2 of Algorithm P.8.1 above, the code prepares local (element-specific) arrays

of the most relevant nodal variables before calling the element-specific subroutine, basically by

copying the values from the corresponding global arrays. The concerned variables include fluxes,

coordinates, displacements, forces, relative displacements, nodal masses, velocities, relative veloci-

ties and total displacements. This preparatory work is done in a dedicated subroutine and the result-

ing arrays are then passed to the element-specific subroutine, which may thus treat the element’s

node numbering as if it were local rather than global. This considerably simplifies the programming

of the element subroutine.

Hereafter we examine in some detail the variables that are related to partitioning (i.e., only the dis-

placement increments and the relative displacement increments).

Algorithm P.8.1.2

0. Initialization: compute the element’s time increment to be used for displacement/configuration 

update as: .

1. Compute the array of local displacement increments as:  where  is the global 

node index corresponding to local node index .

Δts
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2. If the chosen formulation is Eulerian or ALE, then a similar operation is performed also for the 

relative displacement increments: compute the array of local relative displacement increments 

as:  where  is the global node index corresponding to local node index .

3. End of filling local arrays.

By examining point 0 of the above algorithm, it becomes clear why one has to set  at point 1

of Algorithm P.8.1 in Section 3.4.5 above. This is only to avoid a division by zero when computing

 at step 0. The actual value chosen to initialize  (here 1 is chosen for convenience) does not

matter, provided it is not zero. In fact, since at step 0 both  and  are initialized at zero, the

result is .

This produces the desired effect in points 1 and 2 of the algorithm, i.e. at step 0 both the displace-

ment increments and the relative displacement increments are zero.

3.4.7  Checking the partition
As pointed out in step 6 of Algorithm P.8.1 above, during the sub-cycling process within each macro

step, the stability time increment of elements will in general change. Therefore, it is necessary to

continuously check that each element “fits” within the partition level to which it currently belongs

and, if necessary, move it to a different level (or even update the whole partition).

This is accomplished by the following algorithm.

Algorithm P.8.1.6

0. If , then we skip this check altogether (GO TO point 6).

1. If  where  is a small tolerance (typically ), then the element’s time 

increment is not decreasing (or at least, not significantly), so we may skip this check (GO TO 

point 6).

2. Here we are within a macro step and the current element’s time increment has decreased with 

respect to the value it had previously. We compute the time increment associated with the level 

to which the element currently belongs: . If , then the element still 

fits in the current partition level, so we may skip this check (GO TO point 6).

3. We set a flag . This means that the partition has been modified and needs being re-com-

puted as detailed below in Section 3.4.8.

4. We set ,  and ; if  then a new (lowest) level of 

the partition needs to be created, so the depth of the partition is increased by 1, both  and  are 

δul' Δtiδuk'← k l
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doubled (by the way, this guarantees that they are even) and  is halved: , 

, .

5. If , then the element still doesn’t fit in the level, so GO TO point 4.

6. End of the partition check.

3.4.8  Updating the partition
Let us finally see in detail how the partition data structure is updated. This is done in a dedicated sub-

routine which is called at every cycle of the time integration process (see point P.10 in Section 3.4.3).

Algorithm P.10

0. Initialization: set a small tolerance .

1. If , then GO TO point 8.

2. Increment the counter of the total number of cycles , set ,  and 

, the latter meaning that the partition needs to be updated.

3. If  then compute the partition depth  and the maximum level frequency 

 by expressions (29), (30), (31) and (79): start by setting  and , then 

repeatedly do , ,  until , and when 

this is verified set .

4. Initialize all intrinsic element frequencies to the maximum value just found: , for 

.

5. Initialize all element frequencies to one: , for .

6. If , i.e. if there is just one level in the partition, then GO TO point 8.

7. Compute the intrinsic element frequencies  and the element-specific time increments . For 

each element : start by setting , then repeatedly do  until either the 

iteration counter reaches the partition depth or . As long as neither of the two 

above conditions is verified, do . When one of the conditions is verified, terminate by 

setting .

8. If , then GO TO point 14.

9. Complete the updating of the partition: since the  have been recomputed, the other level fre-

quencies must be re-computed as well. Initialize by setting , ,  for 

.

10. If , i.e. if there is just one level in the partition, then GO TO point 14.
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11. Take into account the effect of links (see eqn. 37): for each node  subjected to a link, i.e. such 

that , set .

12. Compute the intrinsic nodal frequencies: loop over all the elements , and for each 

element loop over its nodes  by setting  according to

eqn. (35).

13. Compute the neighboring element frequencies and the neighboring node frequencies: loop over 

all the elements , and for each element: A) loop over its nodes  by 

setting  according to eqn. (38); then B) loop again over the element’s nodes 

 by setting  according to eqn. (40).

14. End of partition update.

This completes the description of the spatial partitioning algorithm. This algorithm is indeed some-

what more complicated (but only conceptually!) than the version with spatially uniform time incre-

ment described in Section 2, see Table 1. However, it is important to underline that it may be

implemented in an extremely compact way and without compromising in any way the full generality

of the basic explicit formulation. In fact, the spatial partitioning does not inherently modify the infor-

matic data structure and data flow as far as a standard finite element explicit code is concerned.

The only potential pitfall lies in the correct estimate of limiting time steps for the various element

types, which must typically be improved with respect to the case with uniform time increment. In

fact, in the presence of partitioning all elements in the model, and not only a small minority, are

updated by time increments which are close to their local stability values, so that a precise estimate

of these values becomes critical.

4.  Simple numerical examples
The numerical examples presented in this Section are intentionally very simple. They aim primarily

at validating the partitioning technique by showing that it preserves the robustness and quality of

results obtained with the non-partitioned version of the explicit time integration scheme.

The first example is one-dimensional and involves only small deformations, so that an analytical

solution may be obtained for comparison. The second example is the well-known Taylor bar impact

and involves very large deformations in a 2-D axisymmetric geometry. More complex and realistic

examples will be presented in Part II.
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4.1  1-D wave propagation
The first test problem concerns the propagation of elastic longitudinal waves in a one-dimensional

bar, see Figure 11. The whole bar is initially moving at a velocity  m/s and, starting at the

initial time, its right extremity P2 is blocked so that a compression wave develops and then propa-

gates along the bar towards the left extremity P1.

The initial length of the bar is 1.0 m and the cross-section is assumed to be uniform. The material is

linear elastic, with density  kg/m3, Young’s modulus  Pa and Poisson’s

coefficient .

The bar model is discretized by means of two-noded bar-like elements. In order to compare with the

purely one-dimensional analytical solution, special options are activated in the code that remove the

non-linear effects which would be included by default in the numerical solution:

• a small-strain formulation is adopted, whereby strain increments are referred to the initial—and 

not to the current—element length;

• element cross-sections are kept constant and the initial element length rather than the current one 

is used to compute the element’s intrinsic time increment, which therefore stays constant.

The analytical solution of this problem in terms of stress consists of a step-like compression wave:

, (81)

which propagates at the speed of sound  in the material:

. (82)

With the assumed values of the parameters, we obtain  Pa and  m/s. The

step wave therefore reaches the mid-point of the bar P3 at time:

 s. (83)

The wave reaches the left extremity P1 at time , reflects as a traction wave which cancels out the

incoming compression wave, reaches again P3 at  and returns to the right extremity at . This

is assumed as the final time of the simulation because after this time the bar would rebound as a rigid

body at velocity , in the assumption that the rigid obstacle is unilateral, while here for simplicity

a bi-lateral constraint (full blockage) is assumed at the right extremity.

To further simplify, in this example the blockage condition is modelled by using a specific, “direct”

method, instead of using the much more general boundary condition model (the so-called “links”
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formulation) based upon Lagrange multipliers that will be described in Part II. This simplification is

possible since the constraint is uncoupled, i.e. it involves degrees of freedom (dofs) of only one

node—actually, just one dof in this case. Roughly speaking, it consists in evaluating the internal

force  at the concerned node, and in imposing an external force (reaction) with the same value

( ), so that from Eq. (1) the resulting acceleration is null and, if the node is initially at rest,

it stays blocked during the whole transient.

When a calculation with partitioning is performed, any nodes subjected to these particular blocking

conditions are treated as “free” nodes, i.e. Eq. (35) is applied instead of Eq. (36). This technique,

which is only applicable to extremely simple test cases such as the ones treated in the present paper,

almost completely avoids any overhead in the treatment of boundary conditions and therefore allows

to measure more precisely the efficiency of the “core” partitioning algorithm.

4.1.1  Uniform-mesh solutions without partitioning
The first numerical solution obtained for this test problem uses a uniform discretization with

 elements of length 0.01 m each and a constant time increment of  s. This corre-

sponds to a safety factor  over the stability value

.

The computed stress and velocity at point P3 (dashed lines) are compared in Figure 12 with the cor-

responding analytical solutions (solid lines). Two numerical stress curves are shown, corresponding

to the elements immediately before and immediately after P3 (and sharing P3 as a common node),

while for the velocity the numerical result at node P3 is available and is shown alone. As expected,

the agreement with the analytical solution is very good. Characteristic of these explicit solutions are

the numerical precursor (as already mentioned in Section 3.1.4) and the oscillations behind the step,

which rapidly converge onto the analytical value. The latter phenomenon is related to spatial and

time discretization and is typical of linear elastic solutions, as will be discussed below.

The next solution uses a much finer uniform mesh of 800 elements of length  m each and

a constant time increment of  s, corresponding to the same safety factor  over the

stability value as in the previous case. Results in term of velocity are shown in Figure 13a. It may be

observed that, as expected, the wave front is steeper, the oscillations have a much higher frequency

and the solution converges more rapidly onto the analytical value than in the coarse-mesh case.

These effects may be better appreciated in Figure 13b, which shows a zoom-in of the first step region

for the two solutions obtained so far.
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4.1.2  Gradual-mesh solution without partitioning
For the third solution, we take a progressively refined mesh consisting (from left to right) of 97 ele-

ments of length 0.01 like in the first solution, followed by 2 elements of length 0.005, then by 4 ele-

ments of length 0.0025 and finally by 8 elements of length  like in the second solution.

Altogether, there are 111 elements. This case simulates localized mesh refinement in the vicinity of

the impacting end, which is typical of many realistic applications.

The solution is obtained by using a constant time increment of  s, corresponding to the

same safety factor  over the stability value as in the previous case, if referred to the small-

est elements in the mesh (i.e. the last 8 elements), but to a safety factor of only 0.1 for the first 97 ele-

ments, i.e. the largest ones, which are by far the majority.

The computed velocity is shown in Figure 14 compared with the previous solutions. The result is

more similar to the coarse-mesh solution than to the fine-mesh one, as might perhaps be expected

since the majority of elements in the gradual mesh are coarse. However, perhaps surprisingly at first

sight, the third solution does not lie “between” the first two solutions, but exhibits oscillations with a

frequency even slightly lower than that of the coarse mesh solution.

Influence of stability safety factor

This apparent discrepancy may be explained by the fact that, while the first two solutions are

obtained by using the same value for the stability safety factor , the third one in practice

uses different safety factors in the same calculation, ranging from 0.8 down to 0.1 depending upon

the elements. To study the effect of the safety factor on numerical solutions, a series of calculations

are performed, all using the same mesh as the coarse solution (100 elements) and values of  rang-

ing from 1.000 to 0.010. Results are presented in Figure 15a and raise several remarks.

First of all, the solution with , i.e. using the theoretical stability limit, is indeed stable

and, quite remarkably, coincides exactly with the analytical solution, i.e. there are no oscillations.

The step in the velocity curve appears less steep than the perfectly vertical analytical curve in the

drawing, but this is simply due to the time discretization in the numerical solution: only one value at

each given time is available. The fact that a “perfect” numerical solution like this one may be

obtained by simply using a unit safety factor is well known. However, this result has only an aca-

demic interest since in realistic cases meshes are not uniform, so it is impossible to use 

everywhere in non-partitioned solutions. However, one may note incidentally that in solutions with

partitioning the effective safety factor is much closer to one on all the elements than in uniform-step

calculations, so that the quality of the ideal solution is better approximated.
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Returning to the parametric study shown in Figure 15a, one sees that, as the safety factor decreases

from the limit value, numerical oscillations of increasing amplitude (the so-called elastic “over-

shoot”) and of decreasing frequency appear. The effect is relatively pronounced for  between

1.000 and 0.500, but for values of  below 0.250 it almost disappears and all solutions are practi-

cally identical.

By considering the curves for  and for  in Figure 15a we see exactly the

same difference observed in Figure 14b between the coarse-mesh solution and the gradual-mesh

solution. This indicates that the above-mentioned apparent discrepancy is simply due to the fact that

in the gradual-mesh case the “average” effective stability safety factor is (much) closer to 0.100 than

to 0.800. Evidently, the presence of many large elements which are integrated with a rather low

effective safety factor is preponderant with respect to the few small elements which use a large effec-

tive safety factor.

Influence of mesh size

In order to complete this parametric study, it is also interesting to investigate the effect of mesh size

on numerical solutions. To this end, a series of solutions are obtained with uniform meshes of 10, 20,

50, 100, 200 and 1000 elements, all using the same safety factor . A low value of  is

assumed so as to be in a zone where its influence is almost irrelevant, as shown from the previous

parametric study.

Results are presented in Figure 15b, where it may be seen that, as the mesh gets finer and finer, the

numerical velocity step becomes steeper, the frequency of numerical oscillations behind it increases,

and the amplitude of the elastic overshoot increases as well. This behavior is consistent with the fact

that a spatially discrete model may only represent a finite range of frequencies, while the perfectly

vertical, analytical step solution contains infinite frequencies. Only in the limit of a vanishing mesh

size (i.e. of an infinite number of elements) can the discrete system approach the analytical solution.

4.1.3  Gradual-mesh solution with partitioning
For the fourth and final solution, we consider again the gradual mesh with 111 elements used in the

third solution, but we activate the spatial partitioning algorithm, by using a stability safety factor

, i.e. the same value used in the first two solutions.

There are four levels in the partition and the intrinsic element frequencies  are in this case: 1 for

the first 97 elements, 2 for the following two elements, 4 for the following four elements and 8 for

the last eight elements. As a consequence of the options activated to linearize the solution, which

have been already mentioned at the beginning of Section 4.1, the intrinsic time increments of the ele-
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ments do not change and therefore the partition is “static” in the present example: all frequencies are

constant in time and elements and nodes always belong to the same level during the whole transient.

The obtained stress and velocity curves are shown in Figure 16. The solution is stable and presents

the same overall characteristics already observed in the solutions with spatially uniform time step,

thus indicating that the good qualities of the basic explicit time integration algorithm are indeed pre-

served by the proposed spatial partitioning technique. For a finer comparison, the partitioned and

non-partitioned solutions obtained with the same gradual mesh are plotted together in Figure 17a. In

the light of the previous parametric studies we may observe that, as it might be expected, the parti-

tioning process shifts the solution towards larger “equivalent” stability safety factors: steeper wave

front, smaller overshoot, larger oscillations frequency.

To conclude, it is interesting to compare the above two solutions against the coarse uniform mesh

(100 elements) solution with the same stability safety factor , see Figure 17b. The result

with gradual mesh and partitioning is in fact very close to the coarse mesh without partitioning, if

one only neglects the fact that the partitioned solution appears somewhat jaggier because results are

plotted only at “macro” time instants. This agreement is again very reassuring about the quality of

the partitioning technique. In fact, there is no reason why the two numerical solutions should be dif-

ferent since, on one hand, we consider results at a point (P3) relatively far from the refined mesh

zone and, on the other hand, the “equivalent” stability safety factor is as already observed almost the

same in the two cases.

The reader might be curious about the comparison of non-partitioned and partitioned calculations in

terms of CPU time. While the partitioned solution is indeed (much) faster than the non-partitioned

one, the total CPU time needed to solve this first test problem is so small that a quantification of

speed-up would be at best very inaccurate. This exercise is therefore left for the next numerical

example, which is slightly more time-consuming although still of an academic nature, and even bet-

ter for the examples in Part II.

The four numerical solutions described above are summarized in Table 3. The following additional

remarks may be raised:

• As expected, solutions (2) and (3) need 8 times more steps (2000 instead of 250) than solution (1) 

to reach the final time of the calculation, because in both cases the shortest element is 8 time 

smaller.

• The solution with partitioning (4) performs roughly the same number of macro steps as the 

coarse-mesh solution (1), and roughly the same number of (sub-)cycles as the fine-mesh solutions 

(2) and (3).
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• By letting the code record the total number of “ ”, i.e. the total number of ele-

ment update operations performed (see the fore last column of Table 3), one obtains a first-

approximation indicator of the (relative) cost of calculations and thus of the “theoretical” speed-

up, defined here as the cost of the uniform-step solution divided by the cost of the partitioned 

solution. The actual speed-up, however, is usually smaller than the theoretical one because of the 

overhead necessary to manage the partitioned itself.

• The CPU times, although reported in Table 3 for completeness, are not indicative of relative per-

formance because of the shortness of these calculations.

4.2  Taylor bar impact
The second test problem is the well-known Taylor bar impact, see Figure 18, frequently used (with

many variations) in the literature to assess numerical models, see e.g. Hallquist and Benson [13].

Apparently G.I. Taylor was the first to recognize, in 1948, that the final length and shape of a cylin-

der impacting against a rigid surface (anvil) are quite sensitive to the constitutive behavior of the

material [14].

Although no analytical solution exists for such problems—and experimental results may be affected

by complex phenomena such as friction between the cylinder and the anvil—an extremely accurate

numerical solution for the idealized problem (i.e. without friction) can be obtained, at a high CPU

cost indeed, with the Lagrangian formulation and a very fine mesh, and can then be used to assess

the quality of other solutions.

The data of the problem considered here are taken from reference [13]: a cylindrical bar of radius 3.2

mm and length 32.4 mm impacts a rigid, frictionless wall, at an initial velocity of 227 m/s. The mate-

rial is assumed elastoplastic with isotropic hardening, with Young’s modulus  GPa, Pois-

son’s ratio , yield stress  MPa, density  Kg/m3 and plastic modulus

 MPa. The final time of the simulation is μs.

In 1987, the authors presented in reference [15] a 2D axisymmetric solution of this problem,

obtained by a 9-node parabolic element and the Lagrangian description with a mesh of  ele-

ments. The final height ( ) and radius ( ) of the projectile were in very good

agreement with the values found by Hallquist and Benson in [13] using various 2D and 3D, finite-

difference and finite-element codes. More recently, the solution was repeated using a slightly more

precise implementation of the constitutive law, and resulted in a slightly different final height

( ) and radius ( ).
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In order to find an even more precise reference solution, the Lagrangian solution with the quadratic

element was repeated by using finer meshes, until a satisfactory convergence (stabilization) of the

results was obtained, see [16]. A calculation with  elements yielded  and

, while a model with an extremely fine mesh of  elements resulted in

 and . The latter was considered an extremely precise solution and was

adopted as a reference for the calibration of Arbitrary Lagrangian Eulerian methods in solid mechan-

ics presented in the same reference [16].

4.2.1  Solution without partitioning
For the scope of the present paper, a relatively coarse initially regular mesh of  4-noded quad-

rilateral elements is assumed. Only one half of the geometry (i.e. the region to the right of the sym-

metry axis in Figure 18) is modelled, as is usual in 2D axisymmetric calculations.

Although it is not particularly relevant for the present paper, one may note incidentally that two ver-

sions of the quadrilateral element are actually used: a reduced-integrated version, with just one inte-

gration point, and a fully integrated version, with a  Gauss integration rule. Using only

reduced-integrated elements would lead to spurious mechanisms in the solution, while using only

fully-integrated elements would produce some numerical locking. A mixture of the two elements (1

fully-integrated element every 11 reduced-integrated ones) seems to avoid both problems and yields

a good solution.

First, a solution with spatially uniform time increment is obtained, which is then used as a reference

to validate the solution with partitioning. All solutions are summarized in Table 4. They all adopt the

same stability safety factor . For simplicity, the boundary conditions are modelled as

follows: all nodes along the base of the projectile, which at the initial time  come into contact

with the rigid target, are blocked in the axial direction. Thus, the calculation simulates a friction-less

contact without rebound (like in the first numerical example). Furthermore, all nodes on the axis of

symmetry are blocked in the radial direction. All blockages are imposed by the same direct (uncou-

pled) method already used in the first test case and described in Section 4.1.

In this test the elements close to the projectile tip become heavily distorted and the overall stability

time step decreases drastically during the transient calculation. This penalizes the solution with spa-

tially uniform time increment, which needs to perform almost 60000 steps in order to arrive at the

final physical time, see Table 4. Therefore, despite the fact that the mesh is initially uniform and all

the elements have the same initial time increment, this test case lends itself well to partitioning.
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4.2.2  Solution with partitioning
The second solution assumes the same data as the first one, but the spatial partitioning mechanism is

activated. In this case the code performs only 1162 macro steps (but 85537 cycles) to arrive at the

final time. The partition reaches a maximum depth  in the final part of the calculation, corre-

sponding to a maximum level frequency , as seen in Table 4. This allows a substantial

saving of CPU time. The listed CPU times do not include the CPU needed for post-processing, but

contain the time used for producing normal output (listing, log file, results storage files).

A warning is necessary: the speed-up factors listed in the Table are only indicative, firstly because all

the test cases considered in this Section are quite short and secondly because the run time for the

same calculation may undergo relatively large variations (up to, say, 10%) depending on the machine

load at the time of execution.

The results obtained in this calculation are virtually identical to those of the corresponding case with-

out partitioning. See e.g. Figure 19 which represents the final distribution of yield stress in the two

cases (for the chosen material law, this quantity is directly related to the equivalent plastic strain),

and Figure 20 which compares the displacements and the velocities at points P1 and P2 of the projec-

tile, which are indicated in Figure 18. In Figure 20 the curves for the two solutions are almost per-

fectly superposed (including the wiggles), so that they may be hardly distinguished in the drawing.

One sees therefore that, as soon as the numerical simulation contains some dissipative phenomena

such as the material plasticity of the present example (and also of the vast majority of practical appli-

cations), the solutions with and without spatial partitioning should be practically identical. The dif-

ferences observed in the first test problem—which, recall, affected only the numerical oscillations,

and not on the “engineering” result, as discussed in Section 4.1—are due only to the fact that the cen-

tral difference time integration scheme, both in its non-partitioned and in its partitioned form, intro-

duces no damping in the solution, so that when the material is purely elastic one gets different

numerical oscillations.

A comparison of time steps in the two solutions is shown in Figure 21a. As may be seen, in the case

with partitioning the “micro” time step (or sub-cycle) is always smaller than or equal to the time step

in the solution without partitioning, but the “macro” time step remains practically constant in this

case (except at the very beginning of the calculation), since some elements do not deform at all. The

same drawing is repeated in Figure 21b by using a logarithmic scale for the ordinates, which allows

to better observe the range of very small time increments.

The initial decrease of the macro time step during the first 4 s of the transient deserves some expla-

nation. The reason is simply that initially all elements have the same size, so that the time increment

d 7=

Φd 128=

μ
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is spatially uniform. In these conditions, the partitioning algorithm is automatically disabled (see

point 9 of Algorithm P in Section 3.4.3) since it would most probably produce a CPU overhead

instead of a benefit. However, as soon as a reasonably large ratio (of the order of 1.7) between the

largest and the smallest elemental time increments is reached, the partitioning “wakes up” and starts

to operate. In the present case this happens at about 4 s (see point P in Figure 21), where one

observes a sudden bifurcation of the minimum and maximum time increments (  and ) in

the partition. The “spikes” visible in Figure 21a and more clearly in Figure 21b in the curves relative

to the solution without partitioning are due to the adaptation of the automatic time step to precisely

fit the chosen output times, which have been set to occur every 10 s.

To conclude, Figure 22 shows the final distributions of the various frequencies ( , ,  and )

which determine the spatial partition. The figure represents the logarithm in base 2 of the frequencies

rather than the frequencies themselves, i.e. in practice the corresponding partition level minus 1,

according to Eq. (33). Note that these distributions are drawn over the initial, underformed geometry

of the model rather than on the final geometry. In fact, the impacting end of the projectile becomes so

distorted that the single elements would not be visible otherwise. In the element frequency plots (

and ), each element is painted in a different color according to its own frequency value so that tran-

sitions between elements are sharp, while in the node frequency plots ( , and ) the values vary

rather from node to node so transitions appear smoother due to interpolation over the elements in the

graphical representation.

In this picture one observes very clearly the “spreading out” mechanism of the most critical frequen-

cies onto the neighbor elements and nodes described in Section 3.3.2. For example, the largest intrin-

sic element frequency  (level 8) affects just one element, marked as “hot spot” in Figure 22,

whereas the largest  affects that element and all its neighbors (6 elements altogether).

Similarly, the smallest intrinsic element frequency  (level 1) also applies to just one element,

marked as “cold spot” in Figure 22. Incidentally, in this example most of the elements belong to

level 2 of the partition during practically the whole computation (except during the initial 4 s when

all elements belong to the same level). One might wonder whether in such a case there would be

room for some extra benefit by slightly changing the partitioning strategy. In fact, it might be conve-

nient to base the partition on a slightly smaller value than the maximum one (say 90% or so). In the

present example, this would have the effect of placing most of the elements in level 1, instead of

level 2. Although the macro time increment would be smaller (90%), the overall effect might perhaps

be favorable. Such alternative partitioning strategies will be tested in the near future.

μ

Δtmin Δtmax

μ

ϕ ψ ϕ ψ

ϕ

ϕ

ψ ψ

ϕ

ϕ

ϕ

μ
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4.2.3  Solutions with domain decomposition and ALE
To conclude the analysis of the Taylor bar impact test case, it is perhaps interesting to briefly con-

sider other improved-efficiency solutions obtained with alternative methods to the spatial partition-

ing presented in this paper, which are available in the EUROPLEXUS code.

Two such solutions are shown, see Table 4 (solutions 3 and 4): the first one uses the domain decom-

position technique [4-6] which has already been mentioned in the Introduction, while the second one

uses an Arbitrary Lagrangian Eulerian (ALE) formulation for solid materials presented in

reference [16].

The calculation with domain decomposition uses 6 sub-domains, as shown in Figure 23, and yields

results practically identical to those obtained previously, at a CPU cost comparable with the one

required by spatial partitioning. However, it should be noted that, while in the EUROPLEXUS code

the spatial partitioning technique is completely automatic—it is activated by a simple option in the

input data set—the decomposition into sub-domains must be entirely specified by the user and is

therefore more demanding in terms of human time. The particular decomposition presented here,

which seems to yield the best speed-up obtainable for this example, was in fact chosen among a

series of other decompositions which were tested out and were found to be slightly less efficient.

The final calculation uses an ALE formulation for solid materials which allows to keep the computa-

tional mesh almost uniform during the whole transient. By avoiding excessive squeezing of the ele-

ments at the impacting bar end, the overall critical time step of the calculation (which is spatially

uniform, like in solution 1) is much larger than with the Lagrangian formulation. Consequently, the

total number of time steps required is 30 times less, and the total CPU cost 15 times less, than for the

Lagrangian solution. This solution is even more efficient than those with partitioning and with

domain decomposition, which have a speed-up of “only” about 10. However, using ALE introduces

approximations in the solution, due to the treatment of transport terms, so that this solution is proba-

bly slightly less accurate than the purely Lagrangian ones. In fact, small differences may be appreci-

ated by comparing the right drawing of Figure 24 with the left drawing of the same Figure and with

both drawings in Figure 19 (the latter three being practically identical). However, in engineering

terms the ALE solution is practically equivalent to the others, as may be seen by comparing the dis-

placements and velocities of all four solutions, see Figure 25.

5.  Conclusions
The numerical examples of Section 4 seem to confirm that the “core” spatial partitioning technique

proposed in this paper has the potential for obtaining significative reductions of CPU time in tran-
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sient explicit analyses, without at the same time losing any of the good properties of the classical uni-

form-step time integration algorithm.

Since the partitioning mechanism is fully automatic, explicit code users may activate it without any

effort, simply by specifying an option in the input data file. The actual speed-up obtained with

respect to a uniform-step solution depends of course upon the degree of non-uniformity of the time

step in the chosen numerical model.

Partitioned solutions are by construction as reliable and accurate as uniform-step solutions because,

according to Section 3.1, the proposed partitioning technique introduces no (additional) approxima-

tions in the time integration algorithm. In special cases of concern, e.g. when using for the first time

a specific model never tested before with partitioning, there is always the possibility of obtaining

also the corresponding non-partitioned solution for comparison. As shown in the examples, the two

solutions should be identical except for irrelevant effects—in particular irrelevant from the engineer-

ing viewpoint—such as e.g. higher-frequency numerical oscillations in purely elastic cases.

It is important to underline that, besides allowing solution of existing test cases in less CPU time, the

partitioning technique has the potential for opening the way to simulations that are simply out of

reach with the uniform-step algorithm. A significative change of mentality becomes possible. Expe-

rienced users of explicit codes are traditionally quite concerned by mesh size because they know that

the cost of a calculation is, roughly speaking, inversely proportional to the size of the smallest ele-

ment in the model. With spatial partitioning this constraint almost disappears and, at least potentially,

one becomes free to refine the mesh locally almost at will to reach the desired precision, by paying

only modest CPU overheads.

Of course, in order to actually obtain all these benefits in realistically complex applications, the core

spatial partitioning technique presented above is not sufficient. The method must be “industrialized”

and several technical aspects of great practical importance must be dealt with. Part II addresses two

such aspects, namely the treatment of general fully coupled boundary conditions by a Lagrange mul-

tipliers method, including both permanent and non-permanent conditions such as contacts, and the

extension to an Arbitrary Lagrangian Eulerian (ALE) formulation suitable for the treatment of fluid

and fluid-structure interaction problems.

Another important extension—the application of partitioning to Finite Volume rather than Finite Ele-

ment formulations—has not been attempted yet but, at least conceptually, it should not present any

overwhelming difficulties.
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Table 1 - Non-partitioned explicit time integration scheme for a Lagrangian description

0. Set initial conditions: , , , , , 

, ; (  is the step counter);

1. GO TO 4;

2. Update velocities to half-step value:  (loop over nodes);

Set: ,  and ;

3. Update displacements and configuration:
 (loop over nodes),
 (loop over nodes);

4. Compute internal forces:  (loop over elements);

 and  are evaluated on the current configuration;
If , then  (constitutive law);

While computing element internal forces, evaluate , the time 
increment for the next step, and add the internal energy increment

to ;

5. Assemble internal forces; evaluate and assemble external forces ; 
these include both:
5.1 applied loads;
5.2 reaction forces due to essential boundary conditions (see Part II);

Add external work increment to ;

6. Compute accelerations and update velocities to full-step value (for post-
processing only):

 (loop over nodes);

If , then  (loop over nodes);

7. If no output is required at this time, then GO TO 2;

8. Compute kinetic energy and check energy balance: ;
Print requested output;

9. If final time not reached, then GO TO 2.

n 0← t t0← x x0← σ σ0← v v0←

Wint 0← Wext Wkin← n

v v Δtnew

2
-------------a+←

n n 1+← Δt Δtnew← t t Δt+←

d d Δtv+←
x x Δtv+←

Fint BTσ Vd
Ve∫e∑←

Ve BT

n 0> σ σ Δσ+←

Δtnew

Wint

Fext

Wext

a M 1– Fext Fint–( )←

n 0> v v Δt
2
-----a+←

Wext Wint Wkin+≈
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Table 2 - List of quantities used in the time integration algorithm with partitioning

Symbol Description Symbol Description
Nodal accelerations Neighbouring node frequency
Stability safety factor , Time
Depth of the partition Time increment (for the current element)
Internal forces (assembled) Time increment dictated by all elements
External forces (assembled) Elemental time increment
Intrinsic element frequency Elemental time increment for configurations
Neighbouring element frequency Stability time step of current element
Level frequency associated with level Nodal time increment
Maximum level frequency Minimum time step in the partition
Index of current element Maximum time step in the partition
Cycle counter within a macro step Macro time step
Index of current node Time increment of deepest level
Highest power of 2 contained in Level’s time increment
Index of current level Time increment (for the current element)
Minimum active level frequency Minimum time step (in element update)
Nodal masses (assembled) Maximum time step (in element update)
Maximum level frequency Total displacements
Total number of cycles Lagrangian displacement increments
Flag for partition update Relative displacement increments (ALE)
Total number of elements Nodal velocities
Total number of nodes Nodal grid velocities (ALE)
Macro step counter Current configuration
Intrinsic node frequency Displacement increments

ak ψk

Cs T t

d Δt

Fk
int Δte

Fk
ext Δti

ϕi Δti

ϕi Δts

Φl l δtk

Φd Δtmin

i Δtmax

I ΔT

k ΔTd

κ I ΔTl

l Δτ

m Δτmin

mk Δτmax

M uk

Ms δuk

μ δuk′

Ne vk

Nn wk

Np xk

ψk δxk
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Solution Mesh Time
step

Steps
( )

Cycles
( )

Max level
frequency

( )

Elements

cycles
CPU (s)

1
(bipcp2)

Uniform,
100 elements

Uniform, 250 — — 25100 0.22

2
(bipcp3)

Uniform,
800 elements

Uniform, 2000 — — 1600800 3.37

3
(bipcp0)

Gradual,
111 elements

Uniform, 2000 — — 222111 1.80

4
(bipcp1)

Gradual,
111 elements

Partition, 252 2016 8 47487 0.28

Table 3 - Numerical solutions for the first numerical example

Np Ms Φd

×

Cs 0.8=

Cs 0.8=

Cs 0.8=

Cs 0.8=
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Solution Description Steps
( )

Cycles
( )

Max level
frequency

( )

Elements

cycles
CPU (s)

Speed-up
(theor)/
actual

1
(bamd01)

Lagrangian, uniform step 59886 — — 14971750 61.89 —/—

2
(bamd03)

Lagrangian, spatial partitioning 1162 85537 128 1296171 6.75 11.6/9.2

3
(bamd05)

Lagrangian, domain
decomposition

1152 — — — 6.05 —/10.2

4
(bamdal)

ALE, uniform step 1950 — — 487750 4.34 30.7/14.3

Table 4 - Numerical solutions for the second numerical example

Np Ms Φd

×

55



Figure 1 - A simple mesh made of unconnected elements
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Figure 2 - Propagation of perturbations
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.

Figure 3 - Example of two consecutive macro steps in a binary partition with 4 levels
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Figure 4 - A simple mesh of connected elements
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Figure 5 - Partition for the mesh shown in the previous Figure
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Figure 6 - First cycle
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Figure 7 - Second cycle
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Figure 8 - Third cycle
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b) Situation at the end of the third cycle
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Figure 9 - Fourth cycle
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Figure 10 - Illustration of the activity function
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Figure 11 - First test problem: one-dimensional wave propagation in a bar
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Figure 12 - First test problem: solution with coarse uniform mesh, no partitioning
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Figure 13 - First test problem: solution with fine uniform mesh, no partitioning
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Figure 14 - First test problem: solution with gradual mesh, no partitioning
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Figure 15 - First test problem: further solutions without partitioning
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Figure 16 - First test problem: solution with gradual mesh and spatial partitioning
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Figure 17 - First test problem: solution with gradual mesh and spatial partitioning
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Figure 18 - Second test problem: Taylor bar impact
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Figure 19 - Second test problem: final yield stress without and with spatial partitioning
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Figure 20 - Second test problem: relevant displacements and velocities
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Figure 21 - Second test problem: time increments
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Figure 22 - Second test problem: logarithm in base 2 of partition frequencies at the final time
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Figure 23 - Domain decomposition used for the Taylor bar impact test
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Figure 24 - Second test problem: final yield stress with domain decomposition and with ALE
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Figure 25 - Second test problem: relevant displacements and velocities (all solutions)
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Spatial Time Step Partitioning
in Explicit Fast Transient Dynamics —

Part II - Treatment of Boundary Conditions and
Extension to ALE
1



1.  Introduction
Part I of the present work (see the first part of this report) has presented the basic aspects of an algo-

rithm to achieve spatial partitioning of the time increment in the explicit central-difference time inte-

gration scheme commonly used for finite-element modeling of fast transient dynamic phenomena.

Simple numerical examples have shown that the proposed technique has the potential for obtaining

significative reductions of CPU time in transient explicit analyses, without at the same time losing

any of the good properties—accuracy, robustness etc.—of the classical uniform-step time integration

algorithm.

However, the sample partitioned calculations considered in Part I were limited to purely structural

applications with a Lagrangian description and required only the simplest type of boundary condi-

tions—node blockages—which were imposed via a direct, uncoupled method.

Of course, in order to actually obtain significant benefits in realistically complex applications, the

core spatial partitioning technique of Part I is not sufficient. The method must be “industrialized”

and several technical aspects of great practical importance must be dealt with. Work in this sense is

ongoing within the EUROPLEXUS code, a general finite-element computer program for the fast

transient analysis of fluid-structure systems subjected to transient dynamic loading, which is being

jointly developed by the French Commissariat à l’Energie Atomique (CEA Saclay) and by the Joint

Research Centre of the European Commission (JRC Ispra).

The present paper addresses two such aspects which have been chosen among the most representa-

tive and is organized as follows. Section 2 presents the treatment of general fully coupled boundary

conditions by a Lagrange multipliers method, including both permanent and non-permanent condi-

tions such as contacts. Section 3 shows the extension to an Arbitrary Lagrangian Eulerian (ALE) for-

mulation suitable for the treatment of fluid and fluid-structure interaction problems. Finally, Section

4 contains some close-to-realistic applications.

For the sake of brevity, the formulas, bibliography, tables and figures contained in Part I of the

present report are not repeated here. When necessary, they are simply referenced by indicating them

with the prefix “I-”. For example, Figure I-7 is Figure 7 of Part I, equation (I-12) is equation (12) of

Part I, etc. Furthermore, mathematical symbols already introduced in Part I are used without being

re-defined.

2.  Treatment of boundary conditions
A robust and efficient treatment of boundary conditions is a fundamental ingredient of any numerical

formulation which aims at the modeling of complex engineering applications. The variety of condi-
2



tions that may be encountered in realistic cases—especially in 3D—is almost endless, ranging from

simple blockages, to symmetry conditions, to fluid-structure interactions, or to unilateral contacts, to

name just a few.

The EUROPLEXUS code offers a very general method for dealing with nearly all types of coupled

boundary conditions (see Section 2.1 for a precise definition of coupling), called the “links” formula-

tion and based upon the method of Lagrange multipliers. The main advantage of this method is its

robustness. In fact, it allows users to combine several types of conditions in the same calculation

without having to check a priori for their mutual compatibility. If the conditions are indeed compati-

ble, then a solution is found, otherwise a clear error message is issued. Another characteristic of

practical importance is that the reaction forces are obtained as an outcome of the method. This infor-

mation is often quite interesting for engineers.

The main drawback of the method is that it requires an implicit solution, i.e. it leads to a system of

linear algebraic equations to be solved numerically. Note incidentally that this is the only implicit

component in the whole strategy for fast transient analysis described in Part I of this work, i.e. for a

Lagrangian formulation. As a consequence of implicit treatment, the method may in some cases

require a slightly larger computational effort than other techniques based upon a direct (uncoupled)

treatment of constraints, such as e.g. penalty methods.

This Section starts by a short description of the “direct” treatment of uncoupled boundary conditions

within the spatial partitioning algorithm, which has been used in the examples presented in Part I.

Then we pass to the more general case of links, i.e. of coupled boundary conditions. Similarly to

what has been done in Section I-2 for the time integration algorithm, we first give a short description

of the basic non-partitioned formulation, i.e. of the Lagrange multipliers method, see Section 2.2,

and then present two alternative strategies for the case with spatial partitioning. The first technique,

given in Section 2.3, is straightforward but reduces or even potentially vanifies the benefits of parti-

tioning in calculations with many links. The second technique, presented in Section 2.4, is more

complicated to implement but preserves much better the advantages of the spatial partition in large

realistic applications of industrial size.

2.1  Treatment of uncoupled boundary conditions with partitioning
In this paper the term “boundary condition” is used to indicate a linear constraint, i.e. a relationship

of the form:

, (1)c1υ1 c2υ2 … cnυn+ + + b=
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where  and  are known coefficients, possibly function of time, while  are degrees of freedom

or dofs (typically the velocity components) of the discrete computational model.

Furthermore, in the following a boundary condition (1) will be referred to as “uncoupled” if it satis-

fies the following two properties: 1) the  degrees of freedom appearing in the constraint belong all

to the same node of the model, and 2) there are no other constraints acting on the concerned dofs of

the node under consideration. In other words, if one imposes several constraints of the form (1) in the

same calculation, they are uncoupled only provided each of them involves a single and a different

node.

Perhaps the simplest possible example of boundary condition is the perfect (bi-lateral) blockage of a

node along one of the global directions, say the -axis, which reads:

. (2)

Typically, when using simple models which assume uncoupled constraints the responsibility of

ensuring that the imposed conditions are actually uncoupled, i.e. that they satisfy both properties

stated above, is left with the user. To maximize efficiency, computer codes usually do not perform

extensive checks and the user must be aware that applying the simplified models to conditions which

are not strictly uncoupled may produce unpredictable (and usually wrong) results—hence the inter-

est of a more robust and general method such as the Lagrange multipliers.

The extension of this class of uncoupled models to spatial partitioning presents no particular diffi-

culty. The only difference with respect to the case without partitioning is that, at each cycle of the

computation (see [1] for a definition of this terminology) the prescribed constraints must be applied

only to the currently active nodes. More precisely, with reference to Section I-3.4.3, direct treatment

of uncoupled boundary conditions is performed at point 11 of algorithm P, which may be further

detailed as follows:

P.11 For all nodes  in a currently active partition level, i.e. such that , evaluate the

prescribed external forces at the current time. If such a node is subjected to an uncoupled

boundary condition, then apply direct treatment of the condition, i.e. direct calculation of

the reaction. This reaction is then treated like if it were a user-imposed external force, i.e.

it is assembled in the normal way within the vector of external forces .

For example, direct treatment of a blockage such as (2) would simply consist in computing:

, (3)

ci b υi

n

x

υx 0=
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i.e. the reaction is equal to the current internal force, which is a known quantity at this point of the

time integration algorithm. When the acceleration of the node is computed via eq. (I-4), see point

P.12 of the above-mentioned algorithm, one obtains:

, (4)

so that, if the node is initially blocked (i.e. if the user has set its initial velocity and displacement to

zero) it stays blocked during the whole transient.

Finally, it should be noted that any node  subjected to directly-treated uncoupled boundary condi-

tions is effectively considered as a free node as far as concerns the calculation of “intrinsic node fre-

quency”  of Section I-3.2.4 (recall from Part I that this is the frequency of sub-cycling in the

explicit time integration process). In particular, eq. (I-35) rather than eq. (I-36) holds for this node

and according to eq. (I-37) it is . The node is therefore totally ignored in point P.10.11 of the

partitioning algorithm, described in Section I-3.4.8.

2.2  Non-partitioned treatment of coupled conditions (links)
Consider now the more general case of coupled boundary conditions, i.e. of constraints that, at least

potentially, violate one of the two assumptions made in Section 2.1. In other words, either a con-

straint involves the degrees of freedom of more than one node, or more than one constraint is set on

the same degrees of freedom. These conditions are denoted as “links” in the following for brevity.

Most types of links may be formulated under the form of constraints on the velocities, which may be

represented by a set of linear relationships:

, (5)

where  is a matrix of known coefficients,  is the vector (subset) of linked dofs (typically, the

velocities) and  is a vector of known values. In general, both  and  may be function of time. It is

usually considered preferable to express constraints upon the velocities rather than, e.g., upon the

displacements or the accelerations, since the velocity—more precisely, the mid-step velocity—is the

fundamental variable upon which the whole central difference time integration scheme described in

Part I is based.

A quite general and powerful technique to enforce such constraints is the method of Lagrange multi-

pliers, whose advantages in the context of a standard transient dynamic solution strategy were first

recognized at CEA [1]. By following e.g. references [I-10] and [I-11], suppose that a configuration

 at  has been reached. The velocity and acceleration corresponding to this configura-

tion are not known yet. The internal forces and the externally applied loads (natural boundary condi-

tions), however, are known, since they depend only upon the current configuration and upon time.

ax Fx
ext Fx

int–( ) mx⁄ 0= =

k

ψk

λk 0=

Cυ b=

C υ

b C b

n 1+ t tn 1+=
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Consider the subset of degrees of freedom for which essential boundary conditions are imposed. The

equilibrium equations for this subset can be written, in analogy with eq. (I-1):

, (6)

where  is the mass matrix,  is the vector of accelerations,  and  are the vectors of exter-

nally applied loads and of internal forces, respectively, and  indicates the vector of unknown reac-

tion forces produced by the essential boundary conditions. Note that similar, but distinct, symbols

have been used here with respect to eq. (I-1)—e.g.  instead of  for the mass matrix,  instead of

 for the vector of accelerations, etc.—to stress the fact that these equations involve only a (usually

small) subset of the degrees of freedom which appear in eq. (I-1).

Now assume that the imposed essential boundary conditions be expressed by a linear set of con-

straints on the velocities of the form (5), i.e:

. (7)

The case of constraints imposed on displacements rather than on velocities can be treated in a similar

way and will not be considered here for brevity.

Note that constraints are imposed on the next mid-step velocities ( ), and not on the full-step

ones ( ). This choice has been discussed in reference [I-10]. An easily understandable reason in

support of it, is the observation that at the initial time  the velocities  are given (they must of

course satisfy any imposed essential conditions at that time) and may not be altered: the first values

upon which constraints may be imposed are therefore the mid-step ones: .

For simplicity, all quantities expressed at time , corresponding to the current configuration, are

indicated without the superscript  in the following discussion. With this convention, and by

posing:

, (8)

the equilibrium equation (6) may be re-written more compactly as:

. (9)

In order to solve this equation for the accelerations , one should first determine the unknown reac-

tion forces . To this end, use is made of Lagrange multipliers associated with the constraint (7).

Without loss of generality, the unknown reactions can in fact be expressed as:

, (10)

where  is the vector of Lagrange multipliers. Substituting into (9) yields:

. (11)

μn 1+ αn 1+ φext
n 1+ φint

n 1+– rn 1++=
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In order to actually introduce into this equation the constraint (7), which is based upon the velocities,

one should first transform (7) into the equivalent form expressed on the accelerations. This is

achieved by exploiting the time integration scheme described in Part I.

The central difference integration scheme for the velocity, see the last of eqs. (I-16), can be written

as:

, (12)

where again a different symbol  instead of  is used for the subset of linked dofs and, as usual,

superscript  indicates the (known) value at the middle of the current step , which spans

from the previous configuration  to the current configuration  (see eqs. I-14 and I-15). By

indicating with  the (known) coefficient:

, (13)

this equation may be re-written in more compact form as:

. (14)

By using (14) the constraint (7) becomes:

, (15)

and hence:

. (16)

Equations (15) or (16) may be interpreted as equivalent forms of the constraint (7), expressed on the

accelerations rather than on the velocities. Note in fact that the old velocities  are known and

therefore the right-hand side of (16) is a known vector.

Multiplying both members of the equilibrium equation in the form (11) by  gives:

, (17)

and the Lagrange multipliers can be symbolically obtained from:

. (18)

In conclusion, expression (16) substituted into (18) allows to find the Lagrange multipliers , from

which the reactions are then obtained with expression (10). Finally, the accelerations  along the

constrained dofs are explicitly obtained from (6)—in fact recall from Part I that the mass matrix  is

lumped—and the time integration procedure may go on.

υn 3 2⁄+ υn 1 2⁄+ Δtn Δtn 1++( )
2

----------------------------------α+=

υ v

n 1 2⁄+ Δtn

n n 1+

γ

γ Δtn Δtn 1++
2

-----------------------------≡

υn 3 2⁄+ υn 1 2⁄+ γα+=

Cυn 1 2⁄+ Cγα+ b=

Cγα b Cυn 1 2⁄+–=

υn 1 2⁄+

Cγμ 1–

Cγα Cγμ 1– φ Cγμ 1– CTλ+=
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In the framework of the present formulation, the method outlined above is implemented as follows.

By posing:

, (19)

Eq. (18) becomes:

, (20)

where  is a matrix, called the matrix of connections, and  a vector. Both  and  are known, as

it appears from the definitions (19).

The code computes both  and  at each step, since the coefficients  and  usually vary with

time, due e.g. to large geometrical distortions, in all but the most trivial cases (such as, for example,

clamped edges). Thus, the problem reduces to the solution of the linear system of equations (20) in

order to find the Lagrange multipliers. Symbolically one may indicate the solution by:

. (21)

Any standard method for the solution of linear algebraic systems can be used for this purpose. It may

be useful to note, to this end, that  is a square symmetric matrix. This results from the definition of

 (first of eqs. 19), and from the fact that  is a square non-singular symmetric matrix, hence 

is also symmetric.

This completes the description of the Lagrange multipliers method in the case of spatially uniform

time step. Next, two alternative strategies for extending the method to the case with spatial partition-

ing are presented.

2.3  Simplified treatment of links in the partition
A straightforward method to deal with links in the presence of spatial partitioning consists in setting

the intrinsic nodal level factor  for any node  subjected to a link to the maximum level (i.e. to

the smallest time increment) in the partition, see eq. (I-36) and point 11 of Algorithm P.10 in Section

I-3.4.8. This technique was indeed used in the prototype implementation of spatial partitioning men-

tioned in Part I.

While, as already stated in Part I of this paper (see Section I-3.2.5), this very simple approach of

course preserves all properties of the proposed partitioned integration scheme, it is inherently ineffi-

cient since it unnecessarily restrains the local time step, and thus reduces or even potentially vanifies

the benefits of the partition. In the limit, if (nearly) all nodes are subjected to links one recovers in

practice the case without partitioning, in which the same time increment is used (almost) every-

where.

D Cγμ 1– CT= ; s Cγα b Cυn 1 2⁄+– ;= = w s Cγμ 1– φ–=

Dλ w=

D w D w

D w C b

λ D 1– w=

D
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Although penalizing as far as concerns computational efficiency—and unfortunately this becomes

especially true in calculations with many links, like is typical of most industrial simulations—such

an approach dramatically simplifies the implementation of the model since it guarantees that all

nodes subjected to any link belong to the same partition level (the deepest one) and therefore they are

updated together (i.e. they stay “synchronized”) during the whole calculation.

Thanks to this inherent synchronization process of the linked nodes, the method of Lagrange multi-

pliers described in the previous Section may be applied also in the case of partitioning without any

changes, except for the fact that in this case the time increments  and  appearing (also

through the coefficient ) in eqs. (12) to (19) should be replaced by the old and new values, respec-

tively, of the smallest time increment in the partition . Thus the terms  and  appearing in eqs.

(13) to (19) become in this case:

, (22)

where  represent the old mid-step (or rather mid-cycle in this case) velocities of the linked

nodes. The fact that  may vary during the calculation (both at the end of each macro step and

within a macro step, i.e. from cycle to cycle) is not a problem. It is properly accounted for, thanks to

the presence of both  and  in the expression (22). In other words, this is the partitioned

counterpart of the algorithm for variable time step (in time) detailed in Section 2.2 for the non-parti-

tioned case.

However, a further limitation of this very simple approach (in addition to the loss of efficiency) is

that the linked nodes must remain linked over the whole computed transient. In other words, the

method deals only with permanent links. This limitation stems from the fact that eq. (22) uses the

same value  for all the linked nodes. Note in fact that, while  is guaranteed to be the same

for all nodes (since they are indeed linked at the current cycle), the same might not be true for the

previous cycle, if one would also admit non-permanent links.

2.3.1  Numerical example
As a first numerical example, it is interesting to consider again the Taylor bar impact problem

already solved in four different ways within Part I of this paper, see Section I-4.2 and Table I-4. Two

additional solutions (labelled 5 and 6) are obtained here and are summarized in Table 1 together with

the four solutions obtained in Part I, which are listed again for ease of comparison.

The new solutions 5 and 6 are repetitions of solutions 1 and 2, respectively, but are obtained via the

algorithm making use of the simplified coupled treatment of links described in Section 2.3 instead of

the direct uncoupled treatment of Section 2.1, indeed a licit approach in the current case. The

Δtn Δtn 1+

γ

Δtmin γ s

γ
Δtmin

old Δtmin
new+

2
--------------------------------;≡ s Cγα b Cυold–= =

υold

Δtmin
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old Δtmin
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Δtmin
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obtained results are, as expected, identical as can be verified by comparing Figure 1 with Figure I-19

for the final yield stresses, and Figure 2 with Figure I-20 for the displacements and the velocities.

Also the maximum depth of the partition ( , corresponding to ), which is reached

towards the end of the calculation, is the same in both cases.

However, one may observe, as can indeed be expected, that the speed-up obtained in the partitioned

solution 6 with respect to the non-partitioned solution 5 is much lower than previously. In fact from

Table 1 one sees that the cost of solution 5 is identical to that of solution 1—within the accuracy of

CPU measurements for such short calculations—while solution 6 is about two times more expensive

than solution 2. Consequently, the speed up drops from about 9 to “only” about 4.

This efficiency degradation of the partitioned solution may be precisely understood by comparing

the “ ”, i.e. the total number of element updates, listed in the sixth column of Table

1. Solution 6 performs many more updates than solution 2, although the two calculations use roughly

the same number of macro time steps  and the same number of cycles  to reach the final time.

The difference in performance is due to the fact that the distribution of elements and nodes among

the various partition levels is very different in the two cases. This may be observed graphically by

comparing the partitioning frequencies (i.e., frequencies of sub-cycling) in Figure 3 with those in

Figure I-22. The intrinsic element frequencies  are exactly the same in both cases, as is normal, but

the derived frequencies ,  and  (which are those actually used in the update operations) are

quite different: there are many more elements and nodes in the lowest partition levels than in the pre-

vious case. This is simply because all nodes subjected to blockages, i.e. those at the impacting end

and on the axis of symmetry of the bar, are put in the lowest partition level in solution 6, while they

are treated as free nodes in solution 2.

2.4  Full treatment of links in the partition
In order to avoid the degradation of performance in partitioned calculations caused by the simplified

treatment of links shown in Section 2.3 it is of course sufficient, rather than associating a node 

subjected to link(s) with the minimum level of the partition (absolute minimum), to associate it with

the minimum level among those of the linked-together nodes (relative minimum).

The former strategy—while unfortunately too “conservative”, as shown in the example of Section

2.3.1—is of course much simpler to implement, since the absolute minimum is known and readily

available. The latter strategy is potentially much more efficient, but only if the cost for searching the

relative minimum can be kept low enough. Various algorithms for an efficient search are being

tested, which take into account and try to exploit the different situations that may be encountered in

d 8= Φd 128=
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practice, e.g. presence or not of non-permanent links (such as unilateral contacts) etc. Their precise

description is beyond the scope of the present paper, though.

2.4.1  Treatment of a single link
Consider first for simplicity just one link condition between dofs, represented by the generic ( -th)

row of the system (5):

, (23)

where the summation convention over the repeated index  has been assumed. This relationship

involves dofs from a certain set of  nodes , for . Because of the imposed link,

clearly all these nodes must be updated together during the current cycle in the space partitioning

procedure, exactly like if they would belong to the same finite element—i.e. exactly like if they were

topologically connected. Therefore, for the determination of partitioning frequencies in the presence

of a link, one may proceed as follows:

• Compute the intrinsic element frequencies  for all elements, as described in Section I-3.2.3 (see 

eq. I-34).

• Compute the intrinsic node frequencies  for all nodes like if they were free of any links, as 

described in Section I-3.2.4 (see eq. I-35).

• Find out the nodes  affected by the link.

• Evaluate the relative maximum intrinsic frequency:

. (24)

• Set the intrinsic nodal frequencies of all nodes affected by the link to the relative maximum value:

. (25)

Consequently, all the nodes affected by the link will be synchronous, i.e. they will be integrated in 

time by the same increment , given by:

. (26)

• Compute the neighboring element frequencies  and the neighboring node frequencies  as 

described in Sections I-3.2.6 and I-3.2.7, respectively (eqs. I-38 and I-40).

Similarly to what already mentioned in Section 2.3, the method of Lagrange multipliers described in

Section 2.2 may be applied also in the case of partitioning without any changes, except for the fact

that in this case the time increments  and  appearing (also through the coefficient ) in

i
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eqs. (12) to (19) should be replaced by the old and new values, respectively, of the time increment

 defined by eq. (26). Thus the terms  and  appearing in eqs. (13) to (19) become in this case:

, (27)

where  represent the old mid-step (or rather mid-cycle in this case) velocities of the linked

nodes.

As already noted in the previous Section, the form (27) is valid only for permanent links, due to the

fact that it uses the same value of  for all the linked nodes. The case of non-permanent links is

more general and will be treated in Section 2.4.3.

2.4.2  Presence of multiple links
Since constraints come seldom alone in practice, consider now what happens when there are several

links, i.e. a full set of conditions (5), applied to the numerical model. In this case, examining each

condition separately and applying eqs. (24) and (25) independently to each relationship might not be

sufficient, because the conditions are in general coupled with one another if some of the dofs (and

therefore some of the nodes) appear in more than one condition.

In such circumstances, it is clear that the maximization process (24) and (25) must be applied to the

union of all nodes which are linked to one another, in principle by examining all relationships

together. This may be relatively expensive computationally and it is worthwhile to note, incidentally,

that the simplified treatment of links of Section 2.3 completely by-passes this issue by simply setting

all linked nodes in the deepest partition level (with no attempt to find the actual maximum).

Going too far in implementation details is out of scope in this paper, but it is worthwhile to give at

least an outline of the strategies that may be adopted for the relative maximization process. Several

alternatives are being tested at the moment.

A promising technique relies upon splitting of the “monolithic” system of constraints (20) into a

number of sub-systems, independent from one another. In fact one may observe that in many practi-

cal cases the matrix of constraints  has a rather narrow bandwidth. For example, if only bilateral

blockages are imposed, like in all numerical examples considered so far, the matrix is diagonal so

that each constraint could effectively be considered separately from the others and there is no need

for a system solution.

In more complex cases, one may still decompose (20) into a (usually large) number of sub-systems,

each containing just one or a few constraints involving a relatively small group of nodes, and satisfy-

ing the following conditions:

δtL γ s
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• All nodes in a group are actually linked with one another, i.e. groups may not be further decom-

posed.

• Each linked node appears in one, and only one, of the groups, i.e. groups are disjoint.

Such a decomposition has been implemented as an option in the code because it greatly facilitates

the manipulation and re-arrangement of constraints in the case of non-permanent links such as con-

tacts, whereby new links continuously appear and disappear during the transient calculation. It seems

therefore natural to exploit the decomposition also for the relative maximization process. In fact, in

this case it is sufficient to find the maximum nodal frequency for each group (not for the whole set of

constrained nodes) and to apply it to all nodes in the group. In other words, the  nodes appearing in

eqs. (24) and (25) are simply the nodes belonging to the group under consideration.

2.4.3  The case of non-permanent links
As anticipated in the previous Sections, the treatment of non-permanent links—such as e.g.

Lagrangian contacts between impacting bodies—within a space partitioning formulation introduces

an additional difficulty. This is related to the fact that nodes that at a certain time suddenly become

subjected to a new (thus by definition non-permanent) link, and which are necessarily synchronous

at the current cycle in virtue of eq. (25) or (26), might have been asynchronous during their respec-

tive previous sub-cycles.

The situation is schematically illustrated in Figure 5. Two nodes  and  become linked at the cur-

rent time , while they were not linked during the previous respective cycles. The link ensures,

via eq. (25) or (26), synchronization for the current cycle, indicated by the fact that  is the same

for both nodes. However, the new link may of course have no retro-active effect on the previous

cycle, i.e. on the one that has led to the current configuration. In fact in the example the two nodes

had two different time increments in the previous cycle, . Clearly, eqs. of the form (22)

or (27) may not be applied in such a case, since they assume a single, common value of the “old”

time increment , valid for all the linked nodes.

In order to obtain a more general expression that allows the treatment of asynchronous links, the

method of Lagrange multipliers introduced in Section 2.2 is reconsidered and eq. (14), expressing

the advancement in time of velocities (valid only for the synchronous case), is replaced by the more

general (asynchronous) expression:

, (28)
where, with reference to Figure 5:

•  are the new mid-step velocities (all expressed at the same time , i.e. synchro-

nous).
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•  are the old mid-step velocities, each one expressed at the old mid-step time of the correspond-

ing node (this time is different in general from node to node). The symbol  is used instead of  

to stress the fact that the nodes were not linked at the previous time.

•  are the current accelerations (all expressed at the current time ).

•  is a matrix of coefficients which replaces the scalar coefficient  of eq. (14).

The matrix  is a diagonal matrix (hence square and symmetric) that has the following structure:

, (29)

where  is the total number of linked degrees of freedom, and the scalars  are defined as:

. (30)

For example, in the case illustrated in Figure 5 one would have:

, (31)

where it is tacitly assumed that the link involves one dof of node  and one of node  (in fact, if the

two dofs would belong to the same node, they would be synchronous by definition, the expression

for the synchronous case would suffice and the matrix  would be replaced by the scalar ).

By following the application of the Lagrange multipliers method of Section 2.2 one sees that eqs. (6)

to (11) are still valid. The constraint (eq. 7) is re-written as:

(32)

for consistency with the notation used in the present Section.

Multiplying both members of the equilibrium equation in the form (11) by  (instead of

 like in the synchronous case), one obtains instead of (17):

, (33)

and the Lagrange multipliers can be symbolically obtained from (instead of 18):

. (34)

In order to actually obtain , the term  (instead of ) has to be determined. To this end, the

constraint (in the form 32) can be used together with the time integration scheme, represented by eq.

(28) in place of (14). By replacing (28) into (32) one obtains, instead of (15):

, (35)
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and hence, in place of (16):

. (36)

Note the subtle difference between the right-hand-side terms of eqs. (16) and (36): the former con-

tains the vector of synchronous old velocities  while the latter contains the vector of asyn-

chronous old velocities  (i.e., each velocity is expressed at a different time, in general).

In conclusion, expression (36) substituted into (34) allows to find the Lagrange multipliers , from

which the reactions are then obtained with expression (10).

Therefore, in the asynchronous case, the definitions (19) must be replaced by:

, (37)

where  is the asynchronous form of the matrix of connections, i.e. the one valid also for asynchro-

nous cases. The formal system to be solved (20) becomes:

. (38)

It is well known (see e.g. references [1], [I-10] or [I-11]) that the matrix of connections as defined by

the first of eqs. (19) for the synchronous case is symmetric (always) and positive definite (at least

when the imposed constraints are consistent). These properties are important because they affect the

numerical methods that may be adopted for the solution of the system of equations (20). It is easily

verified, although it is not detailed here for brevity, that the same properties are retained also in the

asynchronous form of the matrix of connections, as given by the first of eqs. (37).

To conclude this Section, it is useful to investigate what is the difference in the practical implementa-

tion of the Lagrange multipliers method between the general asynchronous case and the synchronous

case, which was the only one that had been considered prior to the present work. Only the case of a

lumped mass matrix is considered, because it is the type most frequently used in explicit transient

analyses. In other words, in the present Section it is assumed that:

, (39)

where  is the total number of linked degrees of freedom.

Then, the inverse mass matrix is simply:

, (40)

and the term  which appears in the synchronous expressions (19) of the matrix of connections

 and of the right-hand-side vector  is:

. (41)
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From the definition (29) of the  matrix, one obtains for the term  which appears in the asyn-

chronous expressions (37) of the matrix of connections  and of the right-hand-side vector :

. (42)

It may be concluded that, in order to pass from the synchronous to the asynchronous case in the pres-

ence of a lumped mass matrix (and for a set of velocity-based links), it is sufficient to introduce the

following modification: in the calculation of  and of , replace  by  to obtain  and 

instead.

2.4.4  Numerical example
A further solution of the Taylor bar impact problem, indicated as number 7 in Table 1, is obtained

with the full treatment of partitioned links described in this Section. The obtained results are, as

expected, practically identical to those of solutions 5 and 6, as can be observed in Figures 1 and 2 for

the final yield stress distribution and for the displacements and velocities, respectively.

This calculation is roughly as efficient as that of solution I-2, which used spatial partitioning and

uncoupled constraints. The total number of steps, the total number of cycles and the maximum parti-

tion depth are identical and almost the same speed-up is achieved (8.4 instead of 9.2). Thus, the deg-

radation of performance that was observed with the simplified treatment of links in the partition

(solution 6) is almost completely avoided. By comparing Figure 4 with Figure I-22, one sees in fact

that the pattern of partitioning frequencies is identical to that obtained in solution I-2, instead of the

much less favorable one of Figure 3.

3.  Extension of spatial partitioning to ALE
The previous Sections have shown the space partitioning algorithm applied to a standard, Lagrangian

description in the finite element method. This is adequate and sufficient to cover purely structural

problems. However, an important class of problems—namely those involving fluid-structure interac-

tion—requires in addition the modeling of a fluid domain and is usually treated by the more general

Arbitrary Lagrangian Eulerian (ALE) formulation.

In ALE, the governing relationships are so-called Euler equations, which express the conservation of

mass, momentum (equilibrium) and energy. They are more complex than in the Lagrangian formula-

tion—where only the momentum equation is necessary—since they contain so-called transport terms

depending upon the relative velocity between the particles ( ) and the mesh or grid ( ). The grid

velocity  is in principle completely arbitrary, as indicated in the method’s acronym. It is usually

chosen (by suitable automatic algorithms) so as to limit excessive fluid mesh distortions.
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A detailed description of the ALE formulation is out of scope here, but the interested reader may e.g.

consult the publications of J. Donea and co-workers [2-4]. Following these references, time integra-

tion of Euler equations may not be achieved as simply as in the Lagrangian description, and is per-

formed by resorting to a fractional step method: each time step is ideally subdivided into three

“phases”:

• A “Lagrangian” phase, where motion is assumed to be Lagrangian (by ideally setting ), so 

that all transport terms vanish out.

• An implicit phase whereby the obtained pressure value is iterated (just one time in practice) to sta-

bilize the numerical solution.

• A transport phase, where the actual value of the grid velocity  is used, as dictated by mesh regu-

larization considerations, to compute the transport terms.

The first two phases do not present any difficulty as concerns space partitioning, compared with a

standard Lagrangian calculation. In fact, all calculations in these phases involve just one element at a

time, so it is sufficient to perform them just for the “active” elements at each time cycle, as has been

seen in Part I.

However, the third phase is more delicate because transport occurs (at least for the mass and energy

equations, see below) between couples of adjacent elements and special care must of course be used

to make it compatible with the space partitioning procedure. The actual adaptations may depend

upon the specific way in which the treatment of transport is implemented. In the following, we con-

sider as an example a specific technique chosen among those most commonly used in explicit codes.

3.1  Transport of mass and energy
Consider for simplicity the mass conservation equation, which contains only the transport term (and

in fact it is identically satisfied in a Lagrangian description). The equation reads:

, (43)

where  is the total mass contained in a closed control volume (typically a finite element )

embedded in the fluid and bounded by a surface  of unit outward normal ,  is the fluid density

while  and  are, as previously defined, the mesh and material velocities, respectively. This equa-

tion states simply that the mass variation within the control volume equals the net flux of matter

across its surface. A similar transport term occur also in the energy equation.

Upon spatial discretization of the problem, the control volume coincides with a finite element. The

velocities and other kinematic quantities are discretized at the element nodes and are interpolated by
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linear shape functions over the element volume. Only linear elements are employed for the fluid.

Material-related quantities such as the density , the specific internal energy  and the pressure 

are element-wise uniform, i.e. they assume just one value for each element. The pressure results

from the former two quantities via the fluid’s equation of state, assumed to be of the form:

. (44)
Transport is treated in the third phase of the fractional step time integration procedure, according to

the strategy outlined in Figure 6 and described hereafter.

3.1.1  Case without spatial partitioning
Transport between adjacent finite elements is computed side-by-side in 2D or face-by-face in 3D.

This means that each finite element  performs transport only with its direct neighbor elements,

namely elements  in Figure 6a. These are defined as the elements that have a full side (i.e. two

successive nodes) in 2D or a full face in 3D, in common with the element  under consideration.

Note that the other elements appearing in the Figure, which have only one node in common with ele-

ment , do not exchange mass and energy with . This assumption introduces a certain approxima-

tion, but it allows to greatly simplify the calculations.

Phases 1 and 2 of the time step are performed in a loop over all finite elements in the model, so that

the (intermediate) “Lagrangian” state is computed for all fluid elements. Next, another loop over all

elements is performed, whereby each element is inspected in turn to compute the transport terms

(Phase 3).

In order to save CPU time, transport of mass and energy is computed only once for each couple of

neighbor elements, by using the following strategy. When computing transport for element , its

sides are inspected in turn. For each side, one considers the neighbor element, if any. Then, transport

is computed only if the index of the neighbor element is larger than the index of the current element,

and the computed term is added to one of the two elements (depending on the sign of flux) and sub-

tracted from the other one. For example, assume that  and , but . Then, mass and

energy transport between  and , and between  and , is evaluated when updating element ,

while transport between  and  is evaluated when updating element .

This strategy saves not only CPU time, since transport between each couple of neighbor elements is

computed only once, but also memory storage. In fact, it ensures that at the end of the transport cal-

culation of a generic element, its internal state may be safely updated from the intermediate,

“Lagrangian” value to the “true” end-of-step value, because the current element will not be consid-

ered any more when computing the following ones (i.e. the elements with larger indexes). Thus,

there is no need to keep the Lagrangian and final states in two separate memory locations: just one
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location is sufficient since the old values may be immediately replaced by the new ones at the end of

each element’s transport calculation. Note also that this algorithm does not depend upon the specific

numbering of the elements. This last property is of course of utmost importance.

To illustrate the process in a practical case, consider again the 10-element mesh of Figure 6a to

which an arbitrary numbering of the elements is added, from 1 to 10, see Figure 6b. There are 12

common sides, i.e. 12 couples of adjacent elements, and correspondingly 12 transport calculations to

be performed: these are labeled ‘a’ to ‘l’ in the Figure, in the order in which they occur according to

the above strategy. Considering again the central element (element 4), one can see that its transport is

the sum of three contributions (in the order):

• when updating element 2, the transport between 2 and 4 is computed (term “d”);

• when updating element 4, the transport between 4 and 8 is computed (term “g”);

• finally, when updating element 4, the transport between 4 and 5 is computed (term “h”).

Thus, at the end of transport calculations for element 4, all its transport terms have been evaluated

and the element may be definitely updated. This strategy is implemented according to the following

computational scheme.

Algorithm T (without space partitioning)

0. Initializations for the current time step: assume for simplicity that the calculation involves only 

fluid elements and that all elements have already been subjected to phases 1 and 2 of the frac-

tional step algorithm. Consequently, their internal variables represent the intermediate, so-called 

“Lagrangian” state. We are ready to compute the transport terms. Initialize to zero mass (  and 

internal energy ( ) transport arrays  for all elements . Set the 

element counter . 

1. Increment the element counter: .

2. If , then GO TO point 11 below (end of calculation).

3. Set the element’s side (or face) counter .

4. Increment the side counter: .

5. If , where  is the number of sides of element , then GO TO point 9 below.

6. Let  be the neighbor fluid element to the current side (  if there is no neighbor element). 

If , then GO TO point 4 above (next side).
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7. Compute transport of mass and energy between elements  and :  and add them 

(with appropriate sign, depending upon the flux orientation) to the transport arrays: 

,  and , .

8. GO TO point 4 above (next side).

9. Transport terms for element  have all been computed and cumulated in . Update the 

state of element  from the Lagrangian to the final value.

10. GO TO point 1 above (next element).

11. End of the calculation for the current time step (GO TO point 0 above for the next time step).

3.1.2  Case with spatial partitioning
In order to adapt the mass and energy transport strategy described above to the space partitioning

algorithm, special care is required, especially if one wants to retain the strategy of computing the

transport just once for each couple of adjacent elements—a technique which appears to be quite

attractive since it offers both CPU and memory savings.

A first observation is that, since at the generic cycle not all elements are active in general, and since

transport may occur between two elements that are integrated with different time steps, one may not

simply cumulate the transport terms over a cycle and then zero them out for the next one. The cumu-

lation process thus extends potentially over the whole macro step, in general (i.e. over several

cycles). At the end of each cycle, one must reset the cumulated values only for those elements which

have been actually updated during the cycle, i.e. the active elements in that cycle.

The strategy is illustrated by means of a simple example. Consider just one couple of adjacent ele-

ments  and , as depicted in Figure 7a. Assume that the element numbering is such that  so

that, according to the transport strategy outlined above for the normal case, transport is computed

when computing element  (and not when computing element ). One may distinguish two cases:

Case 1 (see Figure 7a): , say , so that element  is integrated twice as often

as element . A macro time step contains two cycles in this case. In the first cycle, only element 

is active, while in the second one (as always, at the end of a macro step), all elements are active.

At cycle 1 algorithm T considers only element , it computes (by considering just the mass transport

for simplicity and by assuming a rightward oriented flux)  and sets: ,

. Note that the term  is computed according to the time integration step of

element , thus corresponding to the flux occurring in the first half of the macro step. Finally, the

algorithm updates the state of element  at the end of cycle 1.
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At cycle 2, algorithm T considers first element , computes  and sets:

, . Note that, again, the term  is computed

according to the time integration step of element , thus corresponding to the flux occurring in the

second half of the macro step. The algorithm then updates the state of element  at the end of cycle

2. Next, it considers element , but it computes no more transport terms since . Finally, it

updates the state of element  at the end of cycle 2 by using the latest value of  obtained above,

namely .

This behavior is consistent, and requires just a small correction of the non-partitioned algorithm, see

point 0 of Algorithm T above:

Correction 1: when space partitioning is chosen, the transport values for an element are not reset sys-

tematically at the end of each cycle but only when the element is active, i.e. whenever it is actually

updated.

Case 2 (see Figure 7b): , say , so that element  is integrated twice as often

as element . Like in the previous case, a macro time step contains two cycles. However, in the first

cycle, only element  is active (not ), while in the second one all elements are active like before.

At cycle 1 algorithm T considers only element , and it does not compute any transport since 

(this is obviously wrong!). Finally, it updates the state of element  at the end of cycle 1, but by

using a wrong flux (zero in this specific case).

At cycle 2, algorithm T considers first element , it computes  and sets: ,

. Note that the term  is computed according to the time integration step of

element  which, unlike in the previous case, corresponds to the flux occurring over the whole

macro step. The algorithm then updates the state of element  at the end of cycle 2. Next, it consid-

ers element , but it computes no more transport terms since . Finally, it updates the state of

element  at the end of cycle 2 by using the latest value of  obtained above, namely

.

Thus it appears that, in order to cope correctly with situations like the one outlined in Case 2, one

must add further corrections to algorithm T:

Correction 2: when space partitioning is chosen, transport between the current element  and its

neighbor element  is computed not only when , but also in the case , provided  is not

active at the current cycle. In fact, if  is active, transport between  and  has already been com-

puted at the current cycle when updating element .
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Correction 3: when space partitioning is chosen, transport between the current element  and its

neighbor element  is computed (in any of the cases stated in Correction 2 above) by using the

smallest time increment between those of the two adjacent elements.

Thus the Algorithm T of the previous Section becomes, in the case with space partitioning:

Algorithm Tp (with space partitioning)

0. Initializations for the current time cycle: assume for simplicity that the calculation involves only 

fluid elements and that all elements which are active in the current time cycle have already been 

subjected to phases 1 and 2 of the fractional step algorithm. Consequently, their internal vari-

ables represent the intermediate, so-called “Lagrangian” state. We are ready to compute the 

transport terms. Initialize to zero mass and energy transport arrays  for all 

elements  that were active in the previous time cycle (if we are at the beginning of a “macro” 

time step, this applies therefore to all elements). Set the element counter . 

1. Increment the element counter: .

2. If , then GO TO point 12 below (end of calculation).

3. If element  is not active at the current time cycle, i.e. if , then skip it, i.e. GO TO point 1 

above.

4. Set the element’s side (or face) counter .

5. Increment the side counter: .

6. If , where  is the number of sides of element , then GO TO point 10 below.

7. Let  be the neighbor fluid element to the current side (  if there is no neighbor element). 

If  or if  and at the same time element  is active at the current cycle, then GO TO 

point 5 above (next side).

8. Compute transport of mass and energy between elements  and :  by using the 

smallest time increment between those of the two neighboring elements (see below for a more 

detailed description of this process) and add them (with appropriate sign, depending upon the 

flux orientation) to the transport arrays: ,  and 

, .

9. GO TO point 5 above (next side).

10. Transport terms for element  have all been computed and cumulated in . Update the 

state of element  from the Lagrangian to the final value.

11. GO TO point 1 above (next element).
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12. End of the calculation for the current time cycle (GO TO point 0 above for the next time cycle).

One may easily verify that by applying Algorithm Tp to both cases in Figure 7, correct results are

obtained. The proof is left to the reader for brevity.

The rule stated above in Correction 3 to algorithm T is somewhat subtle and perhaps deserves some

clarification on its actual implementation. Transport terms depend upon the relative velocity ,

as shown above in the time-continuous (i.e., semi-discrete) expressions such as (43). In the time dis-

cretization process, the surface integral term occurring both in the mass and in the energy equation

gets multiplied by the time increment , so that one typically obtains the velocity flux across a

generic side or face  (e.g. between elements  and ) in the form:

. (45)

Thus in the actual calculation use is not made of the relative velocity, but rather of the relative dis-

placement increment, defined as:

. (46)

The question is then: when space partitioning is active, what is the value of time increment  to be

used in expression (46)? Note in fact that when considering a generic couple of adjacent elements 

and , it may well be  and thus .

The answer to the above question is that, as stated by Correction 3 above, the smallest time incre-

ment of the two elements must be used to compute the relative displacement increments, so that eq.

(46) should be written more precisely as:

. (47)

3.2  Transport of momentum
Like mass and energy transport terms, transport of momentum is also depending upon the relative

velocity , but it assumes the following form (see e.g. references [2-4]):

, (48)

where  is the force contribution due to transport of momentum in element , component , at

node , and  are the element’s shape functions.

Note that, unlike expression (43) for the mass transport or the similar one holding for energy trans-

port, momentum transport results from an integral over the element’s volume rather than on the ele-

ment’s surface. For this reason, in the case of partitioning momentum transport is always computed
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for the current element (which must of course be active at the current time cycle) and does not

depend on the status of its neighbor elements. Thus, no special treatment of momentum transport

terms appears to be necessary when space partitioning is chosen.

3.3  Mesh rezoning algorithms
Besides the treatment of transport terms that has been detailed in the previous Sections, the ALE for-

mulation requires another ingredient which is present neither in Lagrangian, nor in Eulerian formula-

tions, namely the prescription of the grid (or mesh) velocity . As the name of the method indicates,

this velocity is arbitrary, and is usually prescribed via so-called “automatic rezoning” algorithms

which aim at minimizing distortions in the bulk fluid mesh.

The term rezoning should not be mis-understood. In fact, the mesh topology stays constant, and these

algorithms should not be confused with re-meshing or adaptive techniques. Only the motion of the

mesh is prescribed, but the number of nodes, the number of elements, and the topology (nodes) of

each element are not changed.

In the EUROPLEXUS code there are several “automatic” rezoning algorithms available. The ones

used most often are perhaps Giuliani’s algorithm (see [5]) and the so-called “mean value” algorithm.

In addition, there are also “manual” rezoning directives. This Section will present the modifications

in these algorithms which are necessary to cope with spatial time step partitioning.

3.3.1  The mean value algorithm
This algorithm is based upon simple averaging of nodal positions (or of nodal displacements). The

algorithm tries to keep each node in the mean position among its direct neighbors, so as to avoid

mesh entanglement. The rezoning expression is quite simple and requires only the knowledge of the

neighbor nodes (which are sought just once, since topology stays constant) and of their positions (or

displacements). No cumulated quantities across different elements are used, so the implementation is

quite simple.

To adapt this algorithm to the case of space partitioning, the following two simple modifications are

necessary:

• In the loop over nodes subjected to mean value rezoning, only the active nodes (with respect to 

velocities, i.e. based upon ) at the current cycle should be treated. In other words, currently 

inactive nodes should simply be skipped.

w
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• Once computed the optimal rezoning displacement  for a node, the algorithm needs to convert 

this into a corresponding value of mesh velocity . To this end, the following expression is used:

(49)

where  is the previous mesh velocity and  the current time increment. When space parti-

tioning is active,  is computed as follows:

(50)

where  is the intrinsic node frequency of the node  under consideration. Use is made of  

and not of  here because after all we are dealing with (grid) velocities, although these are com-

puted via displacements.

3.3.2  Giuliani’s algorithm
Giuliani’s algorithm [5] is more complicated but also more performing than the mean value algo-

rithm. It is based upon geometrical considerations leading to the minimization of the distortion of the

grid, and takes into account both the “shear” and the “stretch” of the elements.

The same two corrections listed above for the mean value algorithm must of course be applied also

to Giuliani’s algorithm. In addition, one should consider the fact that Giuliani’s algorithm makes use

of cumulated geometric quantities at nodes, obtained by assembling contributions from all neighbor-

ing elements, and stored in a dedicated array. Care should therefore be taken with the build-up and

the re-initialization of this array, similar to what has been described above when dealing with trans-

port terms.

As concerns the cumulation process, it may be noted that, when an element  is computed (based

upon ) its generic node  may or may not be active as concerns velocities and accelerations, based

upon  (in fact they are only guaranteed to be active with respect to configurations, based upon

). Therefore, a third correction is needed:

• In the cumulation process, values should be cumulated only for those nodes which are currently 

active (with respect to velocities, i.e. based upon ) at the current cycle. In other words, cur-

rently inactive nodes should simply be skipped.

As concerns the re-initialization of the dedicated array containing the cumulated values, no further

modification is needed since this was already done only for the nodes whose grid velocity is updated,

i.e. only for the nodes which are active (with respect to velocities, i.e. based upon ) at the current

cycle.
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3.4  Shock tube sample problem
A first set of numerical solutions involving fluid-only calculations is presented, by assuming an ALE

formulation, to illustrate the behavior of the space partitioning algorithm compared with calculations

without partitioning. The performed tests are based upon a classical shock tube problem, described

hereafter.

The chosen test is based upon Harlow and Amsden’s [6] analytical solution to the shock tube prob-

lem. Consider a rigid cylinder divided into two semi-infinite sections by a diaphragm, as shown in

Figure 8a. Initially, an ideal gas is considered to be at rest (particle velocity ) on both sides,

and the same temperature  is assumed all over. To the left of the diaphragm, the gas is initially at

higher density and pressure,  and , than those to the right,  and . The initial internal

energy is  on both sides.

For a polytropic gas the equation of state reads:

(51)
where  is a gas property,  and  are the specific heats at constant pressure and volume

and  is the gas constant. The problem is to determine the variation in time and space of the thermo-

dynamic quantities involved, once the diaphragm is removed at the initial time .

At any later time there is observed a shock S, moving to the right, a contact discontinuity C moving

to the right (this follows the motion of the particles that were initially at the diaphragm) and a rar-

efaction wave R, bounded by points  and , moving to the left, as shown in Figure 8b. There is no

significant length to the system: the appearance of the configuration at a later time is a magnification

of an earlier appearance.

Both the velocity  (since no gas passes over the discontinuity) and the pressure  (otherwise

there would be an infinite acceleration) are continuous across the contact discontinuity, but the den-

sity passes from  to . Through the equation of state (51), the internal energies ,  (and the

temperatures , ) may be determined if ,  and  are known. Thus, the four unknowns of

the problem are , ,  and .

To describe the solution in the rarefaction wave region, assume a normalized coordinate  that varies

from  to  between  and , as shown in Figure 8c. It may be found analytically that in this region

the density  is linear only when , but for  (as for many gases),  is concave

upwards. The specific set of parameter values assumed to solve the shock tube problem is summa-

rized in Table 2. 

u0 0=

T0

ρ1 p1 ρ2 p2

i0

p γ 1–( )ρi RρT= =
γ cp cv⁄= cp cv

R

t 0=

a b

uC pC

ρL ρR iL iR

TL TR pC ρL ρR

ρL ρR uC pC

ξ

0 1 b a

ρ γ 3= γ 3< ρ x( )
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3.4.1  Analytical results
The analytical solution is worked out in [6] and is not repeated here for brevity. As noted above, the

solution is self-similar, i.e. there is no significant length to the system. However, in order to compare

it with numerical solutions, one must assume a well-defined geometry and one or more reference

times at which solutions are compared. The problem is one-dimensional in nature. An initial length

of the tube of 50.0 units is assumed. The initial position of the diaphragm is at the middle of the tube

( ). The main reference time chosen is . The rarefaction wave region is

subdivided into 10 equally spaced zones, and the values of the variables of interest are computed at

each point. In Table 3 the main results of the analytical solution are listed. The sampled values in the

rarefaction zone are listed in Table 4.

3.4.2  Numerical solutions
The problem has been numerically solved several times by using either 2D or 3D meshes that simu-

late a 1D tube. The spatial discretization consists of 100 square elements (cubes in 3D) of side length

0.5 in a row, for a total length of 50.0 units. The boundary conditions simulate a rigid tube: all nodes

are blocked in the  direction (and also in the  direction, in 3D), and the nodes at the two extremi-

ties (  and ) are blocked in the  direction. This causes reflections of the pressure

waves at the extremities for times greater that the travel time to reach the ends. Since the analytical

solution does not take into account such reflections (an infinite tube is assumed) one may compare

solutions only up to that time. All these blockages are imposed by the uncoupled boundary condi-

tions technique described in Section 2.1.

Two of the obtained numerical solutions are summarized in Table 5. Solution 1 uses an ALE descrip-

tion whereby all nodes are treated as ALE except those initially placed on the diaphragm and at each

extremity of the tube, which are treated as Lagrangian. This choice forces the rezoning algorithm to

continuously regularize the mesh following the motion of the diaphragm, i.e. of the contact disconti-

nuity. In fact, treating the whole mesh as ALE would not be interesting since the mesh is initially

regular so the rezoning algorithms would have nothing to do in this specific case. This solution uses

uniform time step in space. Solution 2 is identical to solution 1, except for the fact that it uses spatial

partitioning.

Figure 9a compares the fluid pressure distribution along the tube at time  in the two numerical

solutions (solid curves) and against the analytical solution (dashed curve). Figure 9b shows the same

comparison for the density and Figure 10a for the specific internal energies. In all these diagrams,

the two numerical solutions obtained without and with partitioning are almost identical. Further-

xD0 25.0= t1 10. 3–×10=

y z

x 0.0= x 50.0= x

t1
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more, their agreement with the analytical solutions is quite good, especially as concerns the pressure,

which is the primary quantity of interest in fluid-structure interaction calculations.

Figure 10b illustrates the behavior of the mesh rezoning algorithm, which is practically identical in

the two solutions. The plotted curve represents the axial displacement of the mesh nodes. The high-

est point of the curve corresponds to the contact discontinuity, which is the point with the largest dis-

placement. Superposed to the diagram are also the deformed meshes obtained in the two solutions,

which are again identical. In these calculations Giuliani’s rezoning algorithm is used (see Section

3.3.2), but similar results are obtained also with the mean value algorithm of Section 3.3.1.

These results confirm that also in ALE the proposed spatial partitioning technique does not introduce

any degradation of the quality and accuracy of numerical results, while it may considerably reduce

the computational costs. This particular numerical example requires too little CPU time for an accu-

rate measurement of speed-up. However, from Table 5 one may see that, at least qualitatively, there

is a considerable reduction of cost (of the order of 3).

The numerical tests have highlighted the fact that a correct treatment of transport in the space parti-

tioning technique, as defined in Algorithm Tp of Section 3.1.2, is crucial. Even a small imprecision,

such as failing to implement any of the corrections illustrated in that Section, produces a severe deg-

radation of results with respect to the non-partitioned solution.

The reason for the considerable speed-ups obtained in these calculations becomes apparent by

inspecting the partitioning frequencies of sub-cycling. For example, Figure 11a shows the spatial dis-

tribution of element intrinsic frequencies along the tube at three times: ,  and

. Figure 11b shows the neighboring node frequencies. More precisely, the figures repre-

sent the logarithm in base 2 of the frequencies rather than the frequencies themselves, i.e. in practice

the corresponding partition level minus 1, according to eq. (I-33). One can see that at the beginning

of the calculation the same frequency holds over the whole mesh, so that the partition contains just

one level and is de facto inactive. This is because the mesh is initially uniform and the sound speed is

the same in both regions of the tube, despite the differences in initial density and pressure. Therefore,

the stability time increment is initially the same in all elements. However, as the calculation proceeds

the elements to the right of the shock front become relatively shorter (despite the regularizing action

of the automatic rezoning algorithm) and at the same time the sound speed varies locally so that the

spatial partitioning starts to operate and at the end of the transient quite an interesting overall speed-

up of the calculation is achieved.

Additional solutions of the shock tube problem have been obtained not only in ALE, but also with

either a Lagrangian or an Eulerian formulation. They are not illustrated here for brevity, but in all

t 0= t 10 ms=

t 20 ms=
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cases the solutions with partitioning are nearly identical to the corresponding ones with uniform time

step. Some very small discrepancies are indeed observed, but they are simply due to the fact that the

effective average stability safety factor is quite different (i.e. much larger) in partitioned solutions

than in non-partitioned ones, as illustrated in the purely structural 1-D wave propagation example

considered in Part I, see Section I-4.1.

It may be interesting to mention that in the shock tube problem a substantial speed-up is obtained

even in a purely Eulerian solution using a uniform mesh. In this case the benefit does not come from

the shortening of elements (since obviously the mesh stays completely fixed all the time), but from

the fact that the sound speed varies a lot in fluids depending on local physical conditions, which is

normally not the case in structural materials. Thus, in general one may expect even larger speed-ups

in fluid-structure calculations than in purely structural ones.

4.  Numerical examples
This Section presents a set of relatively complex numerical examples that allow to estimate the ben-

efits that may be expected from the spatial partitioning technique in close-to-real applications. All

the examples, including the ones presented in Part I, have been performed by means of the

EUROPLEXUS code running on a Pentium IV PC with a 3 GHz clock speed and 1 GB of RAM.

4.1  Explosion in an helicoidal tube
A helicoidal tube closed at both ends is filled with gas at uniform pressure, except at the larger

extremity where the same gas has an initially larger pressure, to simulate an explosion. Several cal-

culations are performed, assuming either 2 or 4 complete whorls of the helix (see Figure 12) and with

either rigid or deformable tube walls.

The overall size of the geometrical model is about 2.6 m. The high-pressure fluid is a perfect gas

with an initial density of 1.22 Kg/m3, an initial pressure of 10 bar and a ratio of specific heats

 of 1.269. The low-pressure fluid is the same gas at an initial density of 0.1237 Kg/m3

and at an initial pressure of 1 bar. In the calculations with deformable walls, these are assumed to

have a thickness of 1 mm and are made of an elastic material with density 8000 Kg/m3, Young’s

modulus  Pa and Poisson’s coefficient 0.3.

The computational mesh for the 4-whorls case consists of 12528 hexahedra and 4032 prisms in the

fluid region and 10772 triangles in the structure region, for a total number of 22778 nodes. In the cal-

culations with deformable walls a nodally conforming fluid-structure interface is assumed, i.e. the

structural nodes are located at the same positions as the fluid nodes on the surface of the tube.

γ cP cV⁄=

2 11×10
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The performed calculations are summarized in Table 6. In all solutions, the appropriate boundary

conditions along the tube surface are imposed in a fully coupled manner by means of the links mod-

els presented in Section 2.2, for the solutions with uniform step, and in Section 2.4 for the solutions

with spatial partitioning.

Four reference solutions (number 1, 3, 5 and 7) using a spatially uniform time step are obtained by

using the two geometries (2 whorls or 4 whorls) without and with deformable structural walls. These

solutions are then repeated with spatial partitioning (solutions 2, 4, 6 and 8). In the first two solu-

tions, which use the coarser mesh and rigid walls (fluid-only) a relatively modest speed-up of about

1.5 is obtained, despite the fact that there is a ratio of 16 between the time steps of the largest and of

the smallest element at the initial time (raising up to 32 at some instants during the transient calcula-

tions). This is due to the fact that in this example the mesh is gradually and smoothly refined passing

from the coarser to the finer region, see Figure 12. Therefore, the distribution of elements in the var-

ious partition levels is quite uniform. To obtain more favorable speed-ups one should refine the mesh

much more abruptly.

By passing to the 4-whorls mesh (solutions 3 and 4) the speed-up raises to 2.8, thanks to the

increased ratio between the maximum and minimum element sizes.

Further ameliorations of relative computational efficiency are obtained when the structural walls are

included in the model, see solutions 5 to 8, thus resulting in calculations with fluid-structure interac-

tion. The obtained speed-ups become 3.1 for the 2-whorls case and 4.9 for the 4-whorls case, thanks

to the fact that the structural elements used to model the tube walls are more rigid—and therefore

have smaller intrinsic critical time steps—than the corresponding fluid elements.

Some results of reference solution 1 (2-whorls, fluid-only mesh) are illustrated in Figure 13, which

shows the fluid pressures in the tube at regular intervals of 1 ms during the transient. The corre-

sponding solution with spatial partitioning yields results that may be considered identical from an

engineering viewpoint. For example, the fluid pressure levels at the centres of the initial and final

cross-sections of the tube obtained in solutions 1 (dashed lines) and 2 (solid lines) are compared in

Figure 14a. The curves are practically superposed to each other.

The corresponding pressure results in the case with 4-whorls mesh and deformable walls (solutions 7

and 8) are compared in Figure 14b. The pressure peak generated by the pressure wave reflection at

the narrow end of the tube is much higher and sharper than in the previous case, because the final

cross-section is smaller and thus the pressure amplification phenomenon is stronger. The difference

between the non-partitioned (dashed lines) and the partitioned solution (solid lines) appears larger

than in the previous case, but much of this apparent discrepancy is due to the fact that in the parti-
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tioned solutions results are stored (and plotted) only at the end of each “macro” step, so there are

many less data points in the curves.

This fact is confirmed by comparing the displacements of the tube walls, see Figure 15 (these curves

are much smoother than the pressure curves). One can see in fact that the two solutions are identical

from an engineering viewpoint. Much larger displacements occur at the large-diameter end of the

tube than at the small-diameter end, as is natural. Moreover, at the first end the motion occurs mainly

in the direction normal to the tube cross-section (Y-component) while at the second end the three

components of displacement have the same order of magnitude. This is due to the fact that the tube is

completely unrestrained in space. Upon propagation of the pressure wave the tube tends to

“straighten up” by slightly unfolding the whorls and the effect is proportionally larger at the small-

diameter end, which undergoes the largest pressure peak.

4.2  Explosion in a corridor
The second example, taken from reference [7], aims at showing that spatial partitioning may be com-

bined with other techniques that are useful to increase computational efficiency, such as the use of

non-conforming interfaces in fluid-structure interaction problems, see [7] for details. The model sim-

ulates an explosion in a narrow corridor, which is in communication at one extremity with a much

larger room, as sketched in Figure 16. The size of the room is  m. The structure is 0.01 m

thick, the structural material has density 8000 kg/m3, Young's modulus  Pa, yield limit

 Pa and plastic modulus  Pa. The low-pressure gas is air at an initial density 1 kg/m3,

the high-pressure gas has an initial density 10 kg/m3, and the ratio of specific heats for both gases is

1.4. Three walls of the square-shaped room are assumed as rigid, while the fourth one is deformable.

The two walls separating the corridor from the room are also deformable.

Because of the narrow and relatively complicated flow path from the corridor to the room, a fine

fluid mesh must be assumed in the corridor, while in the room the mesh may be much coarser. Two

meshes, A (conforming) and B (non-conforming), are tested, see Figure 17, and four solutions are

obtained, two with uniform time step (solutions 1 and 3, already obtained in [7]) and two with spatial

partitioning (solutions 2 and 4). All solutions are summarized in Table 7.

The first two solutions use a conforming fluid-structure interaction (FSI) model, with the mesh

shown in Figure 17a (5497 fluid elements and 74 structural elements). The structural elements in the

corridor walls are very small. The last two solutions use a nonconforming FSI model, which allows

to use a uniform, much coarser, structural mesh (3513 fluid elements and only 14 structural ele-

ments). Note that in this case not only the structural but also the fluid mesh may be kept coarser than

in the conforming case, as is shown in Figure 17b. The reason is that in the conforming model the

10 10×

2 11×10

4 8×10 2 9×10
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fluid on both sides of the deformable corridor walls must have the same size, and thus the fluid in the

room close to the corridor wall is forced to use an unnecessarily fine mesh, while this constraint does

not exist in the nonconforming model. In this way the number of fluid elements used in the noncon-

forming analysis may be reduced by 1/3 and a global speed-up factor of as much as 8.6 is obtained in

this case, as shown in Table 7, without sacrificing the quality of results. Compare for example the

fluid pressures obtained in the four calculations at regular intervals of 10 ms, shown in Figure 18.

By using spatial partitioning with the conforming mesh (solution 2) a speed-up factor of 2.8 is

achieved, while the combined effect of partitioning and a non-conforming mesh (solution 4) raises

the speed-up to a value of 11.2.

4.3  Building vulnerability study
The third and final numerical example is taken from building vulnerability studies which are ongo-

ing at JRC, in an attempt to show a quasi-realistic application. The purpose of these studies is to

assess the vulnerability of civil engineering buildings to possible explosive events of various origin.

The assumed geometrical model is a baptistery located in the Greek island of Kos. The choice of this

particular structure has no real relevance as far as explosions are concerned: it is taken because a

finite element mesh of this relatively complex building is readily available from seismic studies per-

formed in a previous project.

The overall geometry of the building is shown in Figures 19 (outside views), 20 (transparency views)

and 21 (inner views). The building has a relatively complex geometry, with a large central dome sup-

ported by 8 columns and surrounded by 8 smaller domes.

The numerical analysis presented below is not completely realistic since the used mesh is relatively

too coarse, and the material properties assumed for the explosive (modelled by a high-pressure per-

fect gas) and for the structure (assumed as homogeneous and elastic) are drastically simplified. How-

ever, this is consistent with the purpose of the present work, which is that of showing the potential

advantages of space partitioning.

The structural model consists of 6894 solid 4-node tetrahedra and 5378 solid 6-node prisms. To

model the explosion, the internal volume of the building is filled by a fluid finite-element mesh, rep-

resenting the air, by assuming for simplicity a conforming fluid-structure interface. An explosive

bubble with a 100 bar initial pressure and a volume of about 1.3 m3 is placed between the two col-

umns in front of the main entrance. To model the fluid outflow from the main door and from the win-

dow after the explosion, the fluid mesh is extended for a short distance to the outside of the structure.

The floor of the building and the surrounding ground are supposed rigid, while the external envelope
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of the fluid mesh is subjected to special absorbing conditions. The scope is to avoid any spurious

reflections of pressure waves along the external surface of the numerical model and thus to approxi-

mate the behavior of the real (ideally infinite) atmosphere. The fluid mesh consists of 72748 fluid 4-

node tetrahedra. The total number of nodes in the model is 22605 and the total number of elements is

90234, including 5214 special “boundary-condition elements” used to impose the above-mentioned

absorbing conditions. The simulation is performed for an overall time duration of 50 ms.

Two solutions are obtained for this problem, as reported in Table 8. The first solution uses a uniform

time step while the second one uses spatial partitioning. Some typical numerical results of this type

of calculations are presented in Figure 22: a) the pressure field and velocity vectors in the fluid at 25

ms, b) the same seen from below and c) the displacement norm (in the form of iso lines) and the

velocity vectors in the structure, at the same time.

As shown in Table 8, by partitioning the CPU time passes from about 12000 to 1600 s, yielding a

speed-up factor of about 7, despite the fact that the chosen mesh is relatively uniform.

Even larger speed-ups may be expected as the numerical simulation is made more and more realistic.

In fact, this typically requires, for example, to further refine the mesh locally in order to represent

more precisely the explosive charge or some critical parts of the structure.

5.  Conclusions
The final remarks presented in Section I-5 (see Part I) are repeated here for completeness and are

integrated with the conclusions relative to Part II.

The numerical examples of Sections I-4 and 4 indicate that the spatial partitioning technique pro-

posed in this paper has the potential for obtaining significative reductions of CPU time in transient

explicit analyses, without at the same time losing any of the good properties of the classical uniform-

step time integration algorithm.

Since the partitioning mechanism is fully automatic, explicit code users may activate it without any

effort, simply by specifying an option in the input data file. The actual speed-up obtained with

respect to a uniform-step solution depends of course upon the degree of non-uniformity of the time

step in the chosen numerical model.

Partitioned solutions are by construction as safe and as accurate as uniform-step solutions because,

according to Section I-3.1, the proposed partitioning technique introduces no (additional) approxi-

mations in the time integration algorithm. In special cases of concern, e.g. when using for the first

time a specific model never tested before with partitioning, there is always the possibility of obtain-

ing also the corresponding non-partitioned solution for comparison. As shown in the examples, the
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two solutions should be identical except for irrelevant effects—in particular irrelevant from the engi-

neering viewpoint—such as e.g. higher-frequency numerical oscillations in purely elastic cases.

It is important to underline that, besides allowing solution of existing test cases in less CPU time, the

partitioning technique has the potential for opening the way to simulations that are simply out of

reach with the uniform-step algorithm. A significative change of mentality becomes possible. Expe-

rienced users of explicit codes are traditionally quite concerned by mesh size because they know that

the cost of a calculation is, roughly speaking, inversely proportional to the size of the smallest ele-

ment in the model. With spatial partitioning this constraint almost disappears and, at least potentially,

one becomes free to refine the mesh locally almost at will to reach the desired precision, by paying

only modest CPU overheads.

Of course, in order to actually obtain all these benefits in realistically complex applications, the

“core” spatial partitioning technique presented in Part I is not sufficient. The method must be “indus-

trialized” and several technical aspects of great practical importance must be dealt with. The present

paper has addressed two such aspects, namely the treatment of general fully coupled boundary con-

ditions by a Lagrange multipliers method, including both permanent and non-permanent conditions

such as contacts, and the extension to an Arbitrary Lagrangian Eulerian (ALE) formulation suitable

for the treatment of fluid and fluid-structure interaction problems.

As shown in Sections 2 and 3, the modifications needed to implement spatial partitioning in a typical

explicit computer code with respect to the version for uniform time step involve mainly the routine

which drives the time integration loop (where most of the modifications are concentrated), plus a

small number of ancillary routines (which require comparatively few modifications). Indeed, most of

the models need no modification at all, at least provided they are written in a “clean” and rigorous

manner, i.e., for example, provided they do not make direct use of the notion of time increment inter-

nally. This systematic model validation work is ongoing within the EUROPLEXUS code and will

gradually open the way to more and more complex applications of partitioning, up to the solution of

realistic industrial problems.

Perhaps the most important extension still missing is the application of partitioning to Finite Volume

rather than to Finite Element formulations. This has not been attempted yet but, at least conceptually,

it should not present any overwhelming difficulties.
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Solution Description Steps
( )

Cycles
( )

Max level
frequency

( )

Elements

cycles

CPU 
(s)

Speed-up
(theor)/
actual

I-1
(bamd01)

Lagrangian, uniform step,
uncoupled constraints

59886 — — 14971750 61.89 —/—

I-2
(bamd03)

Lagrangian, spatial partitioning,
uncoupled constraints

1162 85537 128 1296171 6.75 11.6/9.2

I-3
(bamd05)

Lagrangian, domain decomposition,
uncoupled constraints

1152 — — — 6.05 —/10.2

I-4
(bamdal)

ALE, uniform step,
uncoupled constraints

1950 — — 487750 4.34 30.7/14.3

5
(baim01)

Lagrangian, uniform step,
links model

59886 — — 14971750 60.56 —/—

6
(baim03)

Lagrangian, spatial partitioning,
links model (simplified treatment)

1162 85473 128 5387250 15.22 2.8/4.0

7
(baim13)

Lagrangian, spatial partitioning,
links model (full treatment)

1162 85537 128 1296171 7.20 11.6/8.4

Table 1 - Numerical solutions for the Taylor bar impact example

Np Ms Φd

×
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Table 2 - Specifications assumed for the numerical solutions of the shock tube problem

ρ1 1.22

ρ2 0.1237

γ 1.269

p1 1.0 6×10

p2 1.013 5×10

i1 i2 i0= = 3.046 6×10
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Table 3 - Analytical solution of the shock tube problem

uC 925.4 vS 1672.

pC 2.927 5×10 va 30.12

ρR 0.2771 vb 1020.–

ρL 0.4635 c0 1020.

iR 3.928 6×10 ca 895.2

iL 2.348 6×10 cb 1020.
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.0 14.80 1.020E+03 1.220E+00 9.996E+05 3.046E+06

.1 15.85 1.007E+03 1.114E+00 8.903E+05 2.972E+06

.2 16.90 9.948E+02 1.015E+00 7.917E+05 2.899E+06

.3 17.95 9.824E+02 9.245E-01 7.031E+05 2.827E+06

.4 19.00 9.699E+02 8.409E-01 6.234E+05 2.756E+06

.5 20.05 9.575E+02 7.639E-01 5.519E+05 2.686E+06

.6 21.10 9.450E+02 6.930E-01 4.878E+05 2.616E+06

.7 22.15 9.326E+02 6.280E-01 4.304E+05 2.548E+06

.8 23.20 9.201E+02 5.683E-01 3.792E+05 2.480E+06

.9 24.25 9.077E+02 5.136E-01 3.334E+05 2.414E+06

1.0 25.30 8.952E+02 4.635E-01 2.927E+05 2.348E+06

Table 4 - Analytical solution in the rarefaction wave region for the shock tube problem

ξ x t1( ) c ρ p i
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Solution Description Steps
( )

Cycles
( )

Max level
frequency

( )

Elements

cycles

CPU 
(s)

Speed-up
(theor)/
actual

1
(shoa24)

ALE, uniform step,
uncoupled constraints

531 — — 53200 0.64 —/—

2
(shop24)

ALE, spatial partitioning,
uncoupled constraints

82 761 16 30774 0.22 1.73/2.91

Table 5 - Numerical solutions for the shock tube problem

Np Ms Φd

×

40



Solution Description Steps
( )

Cycles
( )

Max level
frequency

( )

Elements

cycles
CPU (s)

Speed-up
(theor)/
actual

1
(soli05)

2 whorls, EULE (fluid only),
uniform step

2437 — — 20186640 191.0 —/—

2
(soli07)

2 whorls, EULE (fluid only),
spatial partitioning

161 3532 32 12005774 131.9 1.68/1.45

3
(soli11)

4 whorls, EULE (fluid only),
uniform step

22376 — — 370563120 3309.9 —/—

4
(soli12)

4 whorls, EULE (fluid only),
spatial partitioning

106 32000 512 105456848 1200.1 3.51/2.76

5
(solt05)

2 whorls, ALE (fluid/structure),
uniform step

14219 — — 197202960 2116.8 —/—

6
(solt07)

2 whorls, ALE (fluid/structure)
spatial partitioning

174 24704 128 54788541 687.6 3.60/3.08

7
(solt15)

4 whorls, ALE (fluid/structure)
uniform step

146923 — — 4015726768 35191.4 —/—

8
(solt16)

4 whorls, ALE (fluid/structure),
spatial partitioning

104 209920 2048 496122799 7157.8 8.09/4.92

Table 6 - Numerical solutions for the helicoidal tube problem

Np Ms Φd

×
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Solution Description Steps
( )

Cycles
( )

Max level
frequency

( )

Elements

cycles
CPU (s)

Speed-up
(theor)/
actual

1
(dens01)

conforming mesh,
uniform step

8400 — — 46801971 313.6 —/—

2
(corr01)

conforming mesh,
spatial partitioning

52 12800 256 7800294 111.6 6.0/2.8

32
(dens02)

non-conforming mesh,
uniform step

1433 — — 5057718 36.4 9.3/8.6

4
(corr02)

non-conforming mesh,
spatial partitioning

50 2496 64 3154534 28.1 14.8/11.2

Table 7 - Numerical solutions for the explosion in the corridor problem

Np Ms Φd

×
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Solution Description Steps
( )

Cycles
( )

Max level
frequency

( )

Elements

cycles
CPU (s)

Speed-up
(theor)/
actual

1
(test14)

uniform step 16060 — — 1449248274 11648 —/—

2
(test13)

spatial partitioning 100 25600 256 112280998 1650 12.9/7.1

Table 8 - Numerical solutions for the explosion in the building

Np Ms Φd

×
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Figure 1 - Taylor bar impact solved by the links method: final yield stress
without and with spatial partitioning

Uniform time increment
Spatial partitioning (with links)(with links)

simplified treatment full treatment

Solution 5 Solution 6 Solution 7
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Figure 2 - Taylor bar impact solved by the links method: relevant displacements and velocities
without and with spatial partitioning

b) Comparison of velocities at points P1 and P2

P2 (solutions 5, 6, 7)

a) Comparison of displacements at points P1 and P2

P1 (solutions 5, 6, 7)

P1 (solutions 5, 6, 7)

P2 (solutions 5, 6, 7)
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ϕ

Figure 3 - Taylor bar impact: logarithm in base 2 of partition frequencies at the final time,
solution with simplified treatment of links
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Figure 4 - Taylor bar impact: logarithm in base 2 of partition frequencies at the final time,
solution with full treatment of links

ϕ ψ ϕ ψ“Hot”
spot

“Cold”
spot

Solution 7
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Figure 5 - Lack of synchronization in a non-permanent link
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Figure 6 - Mass and energy transport between adjacent fluid finite element
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Figure 7 - Mass and energy transport with space partitioning
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Figure 8 - Shock tube problem

a) Geometry and initial conditions

b) Density distribution after removal of the diaphragm
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Figure 9 - Shock tube problem: relevant fluid pressures and densities
without and with spatial partitioning
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Figure 10 - Shock tube problem: relevant internal energy and mesh displacements
without and with spatial partitioning
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Figure 11 - Shock tube problem: logarithm in base 2 of the intrinsic element frequency and
of the neighboring nodal frequency in the solution with partitioning

b) Neighboring nodal frequency
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Figure 12 - Explosion in an helicoidal tube: initial geometry

b) Four-whorls cochlea

a) Two-whorls cochlea
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Figure 13 - Explosion in an helicoidal tube: fluid pressure evolution in 2-whorls case with rigid walls

t = 0 1 ms 2 ms

3 ms 4 ms 5 ms

6 ms 7 ms

High
pressure

Low
pressure
56



Figure 14 - Explosion in an helicoidal tube: fluid pressures at the two tube ends
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Figure 15 - Explosion in an helicoidal tube: wall displacements
in 4-whorls case with deformable walls
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Figure 16 - Explosion in a corridor: geometry
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Figure 17 - Explosion in a corridor: computational meshes

a) conforming mesh
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zoom
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Figure 18 - Explosion in a corridor: fluid pressures

a) conforming mesh, uniform step b) non-conforming mesh, uniform step

c) conforming mesh, partition d) non-conforming mesh, partition
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Figure 19 - Building vulnerability study: geometry

b) Rear view with computational mesh

c) Front view
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Window
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Figure 20 - Building vulnerability study: geometry

b) Transparency view (from top)

c) Transparency view (from side)
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Figure 21 - Building vulnerability study: geometry

b) Sectioned view

c) Inside view (from main entrance)
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Figure 22 - Building vulnerability study: some simulation results
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