

CORLEONE
Core Linguistic Entity Online Extraction

 Jakub Piskorski

EUR 23393 EN - 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by JRC Publications Repository

https://core.ac.uk/display/38619648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The mission of the IPSC is to provide research results and to support EU policy-makers in their
effort towards global security and towards protection of European citizens from accidents,
deliberate attacks, fraud and illegal actions against EU policies.

European Commission
Joint Research Centre
Institute for the Protection and Security of the Citizen

Contact information
Address: T.P. 267, Via Fermi 1, 21020 Ispra (VA), Italy
E-mail: Jakub.Piskorski@jrc.it
Tel.: +39 0332 78-6389
Fax: +39 0332 78-5154

http://ipsc.jrc.ec.europa.eu/
http://www.jrc.ec.europa.eu/

Legal Notice
Neither the European Commission nor any person acting on behalf of the Commission is
responsible for the use which might be made of this publication.

Europe Direct is a service to help you find answers
to your questions about the European Union

Freephone number (*):

00 800 6 7 8 9 10 11

(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet.
It can be accessed through the Europa server http://europa.eu/

JRC45952

EUR 23393 EN
ISSN 1018-5593

Luxembourg: Office for Official Publications of the European Communities

© European Communities, 2008

Reproduction is authorised provided the source is acknowledged

Printed in Italy

mailto:Jakub.Piskorski@jrc.it
http://europa.eu.int/citizensrights/signpost/about/index_en.htm#note1#note1

CORLEONE
Core Linguistic Entity Online Extraction

Jakub Piskorski
Joint Research Centre of the European Commission

Web Mining and Intelligence Action
Support to External Security Unit

Institute for the Protection and Security of the Citizen
T.P. 267, 21027 Ispra (VA), Italy

Email: Jakub.Piskorski@jrc.it∗

Abstract

This report presents CORLEONE (Core Linguistic Entity Online Extraction) – a pool of loosely
coupled general-purpose basic lightweight linguistic processing resources, which can be independently
used to identify core linguistic entities and their features in free texts. Currently, CORLEONE consists
of five processing resources: (a) a basic tokenizer, (b) a tokenizer which performs fine-grained token
classification, (c) a component for performing morphological analysis, and (d) a memory-efficient
database-like dictionary look-up component, and (e) sentence splitter. Linguistic resources for several
languages are provided. Additionally, CORLEONE includes a comprehensive library of string distance
metrics relevant for the task of name variant matching. CORLEONE has been developed in the Java
programming language and heavily deploys state-of-the-art finite-state techniques.

Noteworthy, CORLEONE components are used as basic linguistic processing resources in Ex-
PRESS, a pattern matching engine based on regular expressions over feature structures [1] and in the
real-time news event extraction system [2], which were developed by the Web Mining and Intelligence
Group of the Support to External Security Unit of IPSC.

This report constitutes an end-user guide for COLREONE and provides scientifically interesting
details of how it was implemented.

1 Overview
The European Commission monitors media reports concerning EU policies and potential threats on a
daily basis. In order to facilitate and automate this endeavour the Europe Media Monitor (EMM) [3] was
developed at the Joint Research Center of the European Commission in Ispra. Its major task is to scan
hundreds of web sites in different languages (focusing mainly on news agencies) and to detect breaking
news stories which constitute essential information for European Policy Makers. Some of the current ac-
tivities on EMM enhancements focus on the development of tools and techniques for automatic extraction
of structured information on events mentioned in the news stories, i.e., deriving information on events in
the form of templates which record who did what to whom where when and with what consequences [4, 2].
Such structured information can be utilized for country conflict assessment studies, terrorism knowledge
bases and general situation monitoring. A crucial prerequisite to tackle the problem of information ex-
traction from large document collections is to have some natural language processing (NLP) components
which robustly and efficiently perform basic linguistic operations. These include among others splitting
a text into word-like units and classifying them in a fine-grained manner, recognition of domain-relevant
named-entities, keywords and phrases based on large and exhaustive lists thereof (also associating the

∗Alternatively, the author can be contacted via the following email: jpiskorski@gmail.com

1

recognized entities with some additional information present in the background knowledge base), per-
forming morphological analysis, i.e., associating words with the corresponding part-of-speech, base form,
and other morphological information, identifying sentence boundaries, and name variant matching.

In this report, we present CORLEONE (Core Linguistic Entity Online Extraction) - a pool of loosely
coupled general-purpose basic lightweight linguistic processing resources, which can be independently used
to identify core linguistic entities and their features (e.g., tokens, morphologically analyzed tokens, named-
entities, etc.) in free texts. They provide essential information indispensable for higher-level processing,
e.g. relation extraction, event extraction, etc. The main motivation behind developing CORLEONE was
to have core NLP tools that: (a) efficiently and robustly process vast amount of textual data, (b) are
easily adaptable to new domains and support multilinguality, (c) allow full-control over their resources,
i.e., do not exhibit black-box characteristics, (d) do not rely on any third-party software, and (e) are easily
portable among different operating platforms. In order to meet the aforesaid requirements CORLEONE
was developed in the Java programming language and state-of-the art finite-state technology has been
heavily exploited [5] since finite-state machines guarantee efficient processing and have an expressive
power to model many interesting language phenomena in the context of processing online news texts.
The resources used by all components may be easily manipulated and parameterized by the users in many
ways. In particular the latter feature is of major importance in the context of the enhancements of the
EMM system. Currently, CORLEONE consists of five processing resources: (a) a basic tokenizer, (b) a
tokenizer which performs fine-grained token classification, (c) a component for performing morphological
analysis, and (d) a memory-efficient database-like dictionary look-up component, and (e) sentence splitter.
Further, CORLEONE includes also a comprehensive library of string distance metrics relevant for the
task of name variant matching. The ideas and techniques utilized to implement CORLEONE are based
on author’s prior work in the years 1998-2005 on the development of the shallow processing engines
SPPC [6, 7] and SProUT [8, 9, 10] and work on core finite-state technology [11, 12, 13, 14].

The rest of this report is organized as follows. First, in section 2 some instructions on how to install the
tools is given. Next, in section 3, compilation and deployment of CORLEONE components is described.
Subsequently, sections 4, 5, 6, 7 and 8 describe in detail the five core modules, namely the basic tokenizer,
the classifying tokenizer, the morphological analyzer, the dictionary look-up component and the sentence
splitter. The string distance metrics library is briefly presented in section 9. Finally, a summary and an
outlook on future work is given in section 10. A comprehensive reference list is provided at the end of
this report.

This report is intended for both end-users of CORLEONE and those, who are interested in details
about the implementation of the tool. In particular, end-users may wish to skip the sections on imple-
mentation.

2 Installation and System Requirements
In order to be able to use any of CORLEONE components extract the archive CORLEONE_DUE.zip into
a directory of your choice. Please note that the directory structure of the archive must be preserved.
The top directory includes some scripts for running and compiling CORLEONE components (resources),
which are described in detail in section 3. Further, there are five subdirectories:

• lib contains Java libraries required for running the programs

• java_doc contains Java API documentation for all higher-level classes

• data contains raw and compiled linguistic resources accompanied with compilation and application
configuration scripts (more details in subsequent sections). For each component and language there
is a specific subdirectory with all resources

• test contains some sample English texts to play with

• documentation contains CORLEONE documentation

Finally, make sure that a Java Virtual Machine (JVM) version 1.5.0. or higher is installed on your ma-
chine. This is a prerequisite for running the software. It can be downloaded from the http://java.sun.com
web page. The CORLEONE itself is just a single jar file. There are two versions provided, one compiled
with Java 1.5 and one compiled with Java 1.6.

2

component alias
basic tokenizer ‘basicTokenizer’
classifying tokenizer ‘classifyingTokenizer’
morphological analyser ‘multextMorphology’
domain-specific lexicon look-up tool ‘basicGazetteer’
sentence splitter ‘sentenceSplitter’

Figure 1: Available processing components and their aliases

The amount of memory required while running any of the CORLEONE components strongly depends
on the amount of data involved. Nevertheless, processing a single MB-sized documents is done within
seconds.

CORLEONE uses log4j - a logging service for printing log output to different local and remote
destinations. Logging behavior can be controlled by editing a configuration file (log4j.properties)1,
without touching the application binary. By default all messages are sent to standard output. Please
refer to the log4j manual available at http://logging.apache.org/log4j/docs/ for more details on
the log4j properties (configuration).

Finally, it is important to note that CORLEONE 2.0 API is not compatible with version 1.0. In
particular, some of the features of CORLEONE 1.0 are no longer provided. Additionally, version 2.0 is
now thread safe, except the compilation of linguistic resources, which is usually done off line.

3 Compilation and Deployment of Corleone Components
The table in Figure 1 gives a list of available processing components and their aliases. Please use these
aliases when compiling/deploying CORLEONE components using the scripts described in this section.
Raw and compiled linguistic resources for English, for each of the processing components listed in the
table can be found in various subdirectories under \data. Additionally, tokenizer and morphological
resources for German and Italian are provided too.2 For instructions on using string distance metrics
library please see section 9 directly.

All CORLEONE components can either be used as stand-alone modules or easily integrated within
other frameworks via utilization of Java API. Please refer to Java API documentation for further details.

3.1 Compilation
For the compilation of the resources for any of the CORLEONE components please use the following
script, where <compilation configuration file> refers to the component’s specific compilation con-
figuration file. The syntax of the latter ones is described in detail in the subsequent sections.

compileComp <component alias> <compilation configuration file>

Compilation configuration files can be found in appropriate subdirectories under \data and they have
an extension cfg. For instance, in order to compile domain-specific lexicon with the compilation-
configuration file comp.cfg, run:

compileComp basicGazetteer comp.cfg

In case of successful compilation, a message ‘Compilation Successful’ should be displayed, otherwise error
messages will be sent to the appenders specified in the logger properties file (by default: standard output).

3.2 Deployment
If one is not a programmer or does not need or wish to use CORLEONE Java API, he/she can use the
following script for toying with the component, where <application configuration file> refers to
the component’s specific application configuration file. The syntax of the application configuration file
for each single component is presented in detail in the subsequent sections resp.

1Note that this file has to be located in the root directory for the binaries
2The resources for various new languages are being added continuously

3

applyComp <component alias> <application configuration file>

Sample application configuration files can be found in appropriate subdirectories of \data and they have
an extension cfg and include the string application in their name. For instance, in order to apply the
classifying tokenizer with the application-configuration file appl.cfg, run:

applyComp classifyingTokenizer appl.cfg

In case of encountered problems or errors, messages will be sent to the appenders specified in the logger
properties file (by default: standard output).

4 Basic Tokenizer

4.1 Introduction to Tokenization
Tokenization is commonly seen as an independent process of linguistic analysis, in which the input
stream of characters is segmented into an ordered sequence of word-like units, usually called tokens,
which function as input items for subsequent steps of linguistic processing. Tokens may correspond to
words, numbers, punctuation marks, or even proper names. The recognized tokens are usually classified
according to their syntax, but the way in which such classification is done may vary. Since the notion of
tokenization seems to have different meanings to different people, some tokenization tools fulfill additional
tasks, like for instance isolation of sentences, handling of end-line hyphenations or conjoined clitics and
contractions [15]. Some software systems for performing tokenization are presented in [15, 16], and [17].
The famous general-purpose character stream scanners lex and flex are described in [18].

Performing tokenization is a prerequisite in order to perform any IE task. In particular, fine-grained
token classification (e.g., differentiating between numbers, lowercase words, words containing apostrophe
or hyphens, all-capital words etc.) might come in handy on later processing stages [6]. Splitting a text
into tokens and performing their classification can be done very efficiently via application of finite-state
devices. CORLEONE provides two tokenizers, which extensively utilizes this formalism. A simple one
just segments the text into word-like units based on a list of whitespaces and token separators. The
more sophisticated one performs additionally fine-grained classification of tokens. In the remaining part
of this section we describe the basic tokenizer, whereas the classifying tokenizer is described in detail in
section 5.

4.2 Tokenizer
The CORLEONE basic tokenizer splits a stream of input characters into word-like units based on a list
of whitespaces and token separators. An output of the basic tokenizer is a sequence of feature structures
representing the tokens. These structures include three attributes, i.e., start/end attributes encode the
positional information, whereas the type attribute can be either set to whitespace or non-whitespace.
Further, the tokenizer is Unicode-aware, i.e., any Unicode input stream can be used as an input to the
tokenizer. Further, there is an option to return or not to return tokens representing whitespaces or
sequences thereof.

4.3 Preparation of Resources for the Basic Tokenizer
The resources needed for compiling a basic tokenizer consist of solely a compilation configuration file,
which defines the following properties:

• Name: specifies the name of the tokenizer (arbitrary string)

• TokenSeparators: a list of token separators, where each entry in the list is a Unicode character in
the format \uxxxx (xxxx are four hexadecimal digits)

• WhiteSpaces: a list of whitespaces, where each entry in the list is a Unicode character in the format
\uxxxx (xxxx are four hexadecimal digits)

• OutputFile: a path to the output file, i.e., compiled version

4

The properties specifying token separators and whitespaces are not obligatory. If they are missing,
the default whitespace list and token separator list is used. The default whitespaces are: \t\n\r\f and
the standard space symbol. The default token separators include among other the following symbols (the
complete list can be found in Java API):

. ,/ \ -: ; % ! ? ~ # ^ & * + = | @)] } > ([{ < $ " ’ ~

The following example gives an idea of how a compilation configuration file looks like.

Name=myTokenizer
WhiteSpaces=\u0009,\u0020,\u000A,\u000D
TokenSeparators=\u02bd,\u02ca,\u02cb,\u02ba,\u02dc,\u02dd
OutputFile=compiled_tokenizer.tok

4.4 Tokenizer Deployment
The application configuration file for the basic tokenizer specifies the following properties:

• ResourceFile: a path to the compiled basic tokenizer resources

• Input: a path to the input file or input directory

• Output: a path to the output directory

• Whitespaces: is set to ‘true’ if whitespace tokens should be returned, or to ‘false’ otherwise (default
setting)

• CharacterSet: the name of the character set used for decoding input file(s)

A sample application configuration file looks as follows.

ResourceFile=compiled_tokenizer.tok
CharacterSet=ISO-8859-1
Input=./test/input/sample_file.txt
Output=./test/output
Whitespaces=false

CharacterSet attribute can be set for instance to US-ASCII, ISO-8859-1, UTF-8, or UTF-16BE. For
the details please read the documentation of the class java.nio.charset.Charset in the Java API
documentation available at http://www.java.sun.com

In order to directly integrate the tokenizer in other application the following piece of code could be
used. It corresponds more or less to the above application configuration file (in a simplified form). Please
see the Java API documentation for further details.

import java.util.ArrayList;
import it.jrc.lt.core.component.tokenizer.*;
import it.jrc.lt.core.component.*;
import piskorski.util.functions.*; // needed for the Files class
...

// Create an instance of a basic tokenizer
AbstractTokenizer tokenizer = AbstractTokenizer.createInstance("basicTokenizer");

// Read tokenizer resource from file
tokenizer.readFromFile("compiled_tokenizer.tok");

// Set options (no whitespace tokens)
tokenizer.ignoreWhitespaceTokens()

// Read text from file
String input = Files.FileToString("sample_file.txt","ISO-8859-1");

5

// tokenizer
ArrayList<AbstractTokenItem> tokens = tokenizer.tokenize(input);

// iterate over the tokens
for(AbstractTokenItem t : tokens)
System.out.println(t.getStart() + " " + t.getEnd() + " "

+ t.getText(input) + ":"
+ t.getTypeAsString());

5 Classifying Tokenizer

5.1 Introduction
The CORLEONE basic tokenizer splits a stream of input characters into word-like units. The classifying
tokenizer does the same job using somewhat more sophisticated algorithm and performs additionally
fine-grained token classification. In contrast to other approaches, the context information is disregarded
during token classification, since our goal is to define tokenization as a clear-cut step of linguistic analysis.
We believe that strong decomposition of linguistic processing into independent components allows for
preserving a high degree of flexibility. As a consequence, and unlike common tokenizers, neither multi
word tokens nor simple named entities (such as date and time expressions) are recognized or classified
at this stage of processing. Sentences are not isolated, since lexical knowledge might be required to do
this effectively. Analogously, hyphenated words are not rejoined since the decision for such additional
work is not always straightforward and might require more information than just simple lexicon lookup.
Consider as an example German compound coordination, where the common part of the compound may
be missing, e.g., Audio- und Videoprodukten (audio and video products).

An output of the classifying tokenizer is a sequence of feature structures representing the tokens. For
instance, for the text fragment well-oiled business the tokenizer could potentially return the following
structures.

start:0		start:11
end:9		end:18
type:word_with_hyphen_first_lower		type:lowercase_word

The start and end attributes encode the positional information. The definition of token classes can be
specified by the user in order to meet their particular needs. The tokenizer comes with a predefined set
of default token classes which are listed with corresponding examples in the table in Figure 2.

Theses token classes are in general language-independent and cover well all languages spoken within
the European zone. However, one would define some of the classes in a bit different way for each
particular language. For instance, in English, the classes word_with_apostrophe_first_capital and
word_with_apostrophe_first_lower should exclude recognition of clitics (constructions like it’s) which
are more likely to be recognized as two tokens (it and ’s) or eventually three tokens (it, ’ and s).

The splitting of the text into tokens and their classification is done simultaneously by iterating over
the characters from left to right according to the following algorithm.

1. Segmentation: Identify the next token candidate via scanning characters from the current position
and by using a list of predefined whitespaces (e.g., blanks, tabs, etc.), where the latter can be
parameterized by the user

2. Classification: classify the token candidate based on the user-specified token class definitions. If
a class can be assigned (a maximum one token class may be assigned to a given token) we are done
- go to 1, otherwise go to 3.

3. Word-boundary Trimming: Check if the current token candidate has an initial or trailing
separator (e.g., a comma or period; a user-defined list of such token separators can be used for this
purpose) and detach them (isolate) temporarily from the token. Try to classify the remaining part.
Now, if a token class can be assigned to a trimmed token we are done (i.e., two tokens are generated
out of the candidate token) - go to 1, otherwise go to 4.

6

class example
any_natural_number 123
dot .
comma ,
slash /
back_slash \
hyphen -
colon :
semicolon ;
apostrophe ’
quotation "
exclamation_sign !
percentage %
question_mark ?
currency_sign £
opening_bracket ([{
closing_bracket)] }
other_symbol # + @
all_capital_word EU
lower_case_word commission
first_capital_word Ispra
mixed_word_first_lower aBB
mixed_word_first_capital GmbH
word_with_hyphen_first_capital Siemens-Sun-Microsoft
word_with_hyphen_first_lower well-oiled
word_with_apostrophe_first_capital O’Neil
word_with_apostrophe_first_lower don’t
email_address jakub.piskorsk@jrc.it
url http://www.onet.pl
number_word_first_capital 2MB
number_word_first_lower 200kg
word_number_first_capital Windows2000
word_number_first_lower mk2

Figure 2: Default token classes

4. Postsegmentation: try to split the token candidate T into a concatenation of token separators
and character sequences which do not include token separators, i.e., T = S0T1S1 . . . TnSn, where
Si is a token separator and Ti is a sequence of non token-separator symbols (for i ∈ {1, . . . , n}). If
all Ti can be assigned some token class, we simply post segment token T adequately. Otherwise we
assign token T an undefined label and do not post segment it. Note that S0 and Sn in T can be
empty. Go to step 1.

For the sake of clarity, we explain the word-boundary trimming step (3) and the postsegmentation (4) in
more detail. First of all, the word-boundary trimming is optional (by default word-boundary trimming
is on) and can be deactivated only on demand. Nevertheless, this step seems to come in handy when
handling tokens near sentence boundaries. Consider for instance, an URL address being the last part of
the sentence, e.g., http://www.jrc.it which is directly followed by a dot. Obviously, the text fragment
http://www.jrc.it. (with the final dot) is not a valid URL, but via switching the word-boundary trimming
on, the trailing dot would be isolated, so that an URL and the following dot are recognized as two separate
tokens, which is intuitively exactly what we want to achieve.

To better understand postsegmentation, consider the character sequence (token candidate) (1,2,0).
Since there is no default token class covering such tokens (see 2) we eventually reach step three and
trim the opening and closing bracket (if they are defined as token separators). However, the remaining
part 1,2,0 does not match any token class neither. As a consequence step 4, i.e., postsegmentation is
triggered. Assuming that brackets and commas are defined as token separators, the postsegmentation
of the sequence (1,2,0) yields seven tokens: (1 , 2 , 0) since 1, 2, and 0 are of type
any_natural_number.

Although, experiments proved that the set of default whitespaces, token separators and token classes
might handle most English news texts correctly with respect to splitting them into word-like units, some
slight changes might be necessary to process texts of a specific type and in a different language. However,
the default definitions provide a good starting point for domain-specific fine-tuning of the tokenizer.

Please note also, that the classifying tokenizer is Unicode-aware, i.e., any character set can be used
for encoding the raw resources (token classes and separators) and any Unicode input stream can be used
as an input to the tokenizer. Further, whitespaces can be returned as tokens as well.

7

5.2 Implementation
At first glance an implementation of a tokenizer might seem a straightforward task. However, the token
classification should be designed with care in order to allow for having a large number of token classes and
remain efficient. The token classification, in the presented tokenize, is implemented as an application of
a single finite-state automaton, which eventually returns the ’token class’. This automaton is created as
follows. Firstly, for each token class i (for i ∈ {1, . . . , n}) we define a regular expression Ri. Subsequently,
for each Ri we construct an equivalent automaton which accepts the language Ri ◦#i, where the symbol
#i represents the ID of the i-th token class and does not appear in R1 ∪ . . . ∪ Rn. In other words, the
transitions labeled with token class IDs can be seen as a kind of final emissions, i.e., they produce an
output (token class ID) without reading anything. Next, all the elementary automata are merged into
a single automaton via a subsequent application of standard finite-state operations of union, ε-removal,
determinization and minimization [19]. Please note at this stage that if more than one token class match
a given token, the one with the lowest ID will be assigned (has the highest priority). Therefore, if for a
given state in the final automaton there is more than one transition labeled with a token class ID, we
trim all such transition except the one with the lowest ID. In this way, the automaton will return at most
one token class for a given token. The same effect could also be obtained by using weighted finite-state
devices, so that the ambiguity problem is solved during determinization [7] and no additional trimming
is necessary. The compressed transition matrix memory model [20, 21, 19] was used for implementing
the the tokenizer. It seemed to outperform others in terms of time efficiency.

In order to allow for using any general-purpose finite-state tools, e.g., AT&T FSM Toolkit [22], for
creating the automaton which performs the classification, the definition of this automaton has to be
provided in a textual format. The current version of the default token classes were created and converted
into a single finite-state automaton via using the general-purpose regular expression compiler provided
with SProUT [12] which comes with a user-friendly graphical interface, supports Unicode and provides a
wide range of operations for manipulating and optimizing finite-state devices [11].

5.3 Preparation of the Resources for the Classifying Tokenizer
The resources needed for compiling a tokenizer consist of three files, a token classifier file (classifying
automaton definition), token names file and a tokenizer compilation configuration file. They will be
described one by one in the next subsections.

5.3.1 Classifier File (Automaton File)

This file contains a definition in a textual format of a deterministic automaton which will be used for
classifying tokens. The details on what language it accepts are explained in section 5.2. The format of
this file should be as follows.

• The first line contains the number of states in the automaton (states must be numbered from 0 to
n − 1, where n is the number of states and 0 always denotes the initial state

• Subsequently, for each state in the automaton there is a line containing a state number and a 0 or
1 (space separated) depending on whether the state is non-final (0) or final (1).

• Next, for each transition there is a line containing a triple consisting of source state, target state and
a label. The labels are unicode characters in the format \uxxxx, where xxxx are four hexadecimal
digits. If the label encodes a token-class ID, use the following syntax: #ID.

A very simple example of an automaton encoded in such a format which accepts a single character A (a
single token class) is given below

3
0 0
1 0
2 1
0 1 \u0041
1 2 #1

8

The automaton has 3 states; state 2 is the final state and there are only two transitions: one from state
0 to state 1 labelled with \u0041 (A) and second one from state 1 to state 2 labelled with #1.

Defining such automata manually might be an error-prone task. Therefore it is recommended to use
any general-purpose software (currently the regular compiler described in [12]) which allows for converting
regular expressions into their corresponding finite-state representation. Most likely, there will not be any
need of changing the current version of the resources for classification. In such case, please use the already
compiled resources for the classifying tokenizer.

5.3.2 Token-class Name File

This file is a simple list of token-class IDs (in the range of 1-255) associated with their corresponding full
names. Each line represents a single token-class ID and its full name. The default token-class name file
for English delivered with CORLEONE is given below.

1 any_natural_number
2 dot
3 comma
4 slash
5 back_slash
6 hyphen
7 colon
8 semicolon
9 apostrophe
10 quotation
11 exclamation
12 percentage
13 question_mark
14 currency_sign
15 opening_bracket
16 closing_bracket
17 other_symbol
18 all_capital_word
19 lower_case_word
20 first_capital_word
21 mixed_word_first_lower
22 mixed_word_first_capital
24 word_with_hyphen_first_capital
25 word_with_hyphen_first_lower
26 word_with_apostrophe_first_capital
27 word_with_apostrophe_first_lower
28 email_address
29 url_address
30 number_word_first_capital
31 number_word_first_lower
32 word_number_first_capital
33 word_number_first_lower

The user can change the IDs arbitrarily, but they have to correspond to some final emissions in the
classifying automaton described in 5.3.1. The ID 0 is reserved and is used to denote unknown tokens,
i.e., tokens that do not match any of the predefined token classes.

5.3.3 Compilation Configuration File

Once a classifying automaton and token-name file are prepared, we can create a tokenizer compilation
configuration file, which defines the following properties:

• Name: specifies the name of the tokenizer (arbitrary string)

9

• TokenSeparators: a list of token separators, where each entry in the list is a Unicode character in
the format \uxxxx (xxxx are four hexadecimal digits)

• WhiteSpaces: a list of whitespaces, where each entry in the list is a Unicode character in the format
\uxxxx (xxxx are four hexadecimal digits)

• AutomatonFile: a path to the file with token classifier (automaton definition in textual format)

• TokenNames: a path to the file with token-class names

• CharacterSet: the name of the character set used for decoding automaton file and token names
file

• OutputFile: a path to the output file, i.e., compiled version of the tokenizer resources

The properties specifying token separators and whitespaces are not obligatory. If they are missing,
the default whitespace list and token separator list is used. The default whitespaces are the same as for
basic tokenizer (see 4.3). The following example gives an idea of how a compilation configuration file
might look like.

Name=myTokenizer
WhiteSpaces=\u0009,\u0020,\u000A,\u000D
TokenSeparators=\u02bd,\u02ca,\u02cb,\u02ba,\u02dc,\u02dd
TokenNames=sample_token_names.txt
AutomatonFile=sample_token_classifier.txt
CharacterSet=ISO-8859-1
OutputFile=sample_classifying_tokenizer.tok

5.4 Tokenizer Deployment
The application configuration file for classifying tokenizer specifies the following properties:

• ResourceFile: a path to the compiled classifying tokenizer resources

• Input: a path to the input file or input directory

• Output: a path to the output directory

• Whitespaces: is set to ‘true’ if whitespace tokens should be returned, or to ‘false’ otherwise (default
setting)

• CharacterSet: the name of the character set used for decoding input file(s)

• UseBorderSeparatorTrimming: is set to ‘true’ in case word-boundary trimming option is on or to
‘false’ otherwise (default setting is ‘true’)

A sample application configuration file looks as follows.

ResourceFile=compiled_tokenizer.tok
CharacterSet=ISO-8859-1
UseBorderSeparatorTrimming=true
Input=./test/input/sample_file.txt
Output=./test/output
Whitespaces=false

In order to directly integrate the tokenizer in other applications the following piece of code could be
used. It corresponds more or less to the above application configuration file (in a simplified form). Please
see the Java API documentation for further details.

10

import java.util.ArrayList;
import it.jrc.lt.core.component.tokenizer.*;
import it.jrc.lt.core.component.*;
import piskorski.util.functions.*; // needed for the Files class
...

// Create an instance of a classifying tokenizer
AbstractTokenizer tokenizer = AbstractTokenizer.createInstance("classifyingTokenizer");

// Read tokenizer resource from file
tokenizer.readFromFile("compiled_tokenizer.tok");

// Set options (no whitespace tokens, border trimming on)
//
// Note that instead of using for each option a specific function call,
// a configuration object (a set of properties) representing the settings
// can be constructed and passed to a function, which configures the tokenizer.
// This is illustrated below.
//
Configuration conf = new Configuration();
conf.add("WhitespaceTokens","false");
conf.add("UseBorderSeparatorTrimming","true");
tokenizer.applySettings(conf);

// Read text from file
String input = Files.FileToString("sample_file.txt","ISO-8859-1");

// Tokenize
ArrayList<AbstractTokenItem> tokens = tokenizer.tokenize(input);

// Iterate over the tokens
//
// Note that types can be also returned as byte objects (t.getType())
for(AbstractTokenItem t : tokens)

{ System.out.println(t.getStart() + " " + t.getEnd() + " " + t.getTypeAsString());
System.out.println("TEXT: " + t.getText(input)

}

5.5 Remarks
A worthwhile extension of the tokenizer would be to allow for assigning a single token multiple token
classes, e.g., natural numbers could be additionally subclassified according to the number of digits they
consist of (two-digit numbers, four-digit numbers). The early identification of such detailed and eventually
domain specific token classes might potentially further simplify the processing on subsequent levels like
morphological analysis or named-entity recognition.

Currently, the token classifier is represented in a low-level finite-state format. In the future, it would
be more convenient to provide the users with some tool for defining token classes on a somewhat more
abstract level.

6 Morphological Analysis

6.1 Introduction
Morphological analysis usually refers to the process of the identification of a base form (lemma), syntactic
category and other morphosyntactic features (e.g., case, gender, number, etc.) for a given word form. It
can also be seen as a process of mapping words into linguistically interesting properties. For instance,
an output of morphological analysis for the word running would be: base form:run cat:verb and
base:running cat:noun, i.e., running can be either a verb or a noun. The additional morphological
features strongly depend on the syntactic category, e.g., nouns have case, gender and number, whereas
verbs have tense and form. The process of disambiguating syntactic category of a given word is called

11

part-of-speech tagging and might be a part of the morphological analysis too. However, in this report the
term morphological analysis refers to the process of identifying all potential morphological readings of a
given word in a text (disregarding the context it appears in).

Morphological information, e.g., lemma or part-of-speech, is extensively used in information extraction
rules of all kinds, which makes morphological analyzer a core module in IE systems. For example, in
many applications it is desirable to abstract away from inflectional variation, so that attacked, attacks and
attack are all treated as the same word type. Conversely, it will sometimes come in handy to make use of
richer information than that available in the raw text, so that attacking can be identified as the present
participle of attack. The easiest and widely known method to implement a morphological analyzer is
to construct a finite-state device (automaton or transducer) which accepts possibly all word forms of a
given language and converts them into their corresponding base forms, part-of-speech tags, etc. [23, 24].
In such a case, morphological analysis consists of scanning a given text and performing an automaton
look-up, retrieving morphological information for each word found in the text. This section introduces the
morphological analyzer in CORLEONE, whose design follows this approach. First, a short overview of
the morphological analyzer and its implementation is given. Subsequent sections describe how to prepare
and compile morphological resources and how to perform morphological analysis on a given input text.

6.2 Morphological Analyzer
The CORLEONE morphological analyzer identifies for each word in a text: (a) its part-of-speech (syn-
tactic category), (b) its base form, and (c) a set of feature-value pairs appropriate for the given syntactic
category. If a word form is ambiguous, all interpretations are returned. For instance, the morphological
analyzer would return at least the following feature structures for the word attack.

start:0		start:0
end:5		end:5
pos:Noun		pos:Verb
type:common		type:main
gender:neuter		form:infinitive
number:singular		

The first structure represents the noun reading of this word (common neuter singular noun), whereas the
second represents a verb interpretation (infinitive form of a main verb).

In order to facilitate the problem of multilinguality, for encoding the morphosyntactic data we have
chosen the format specified in the MULTEXT project [25]. This project has developed a set of generally
usable software tools to manipulate and analyze text corpora, together with lexicons and multilingual cor-
pora in several European languages. In particular, harmonized specifications for encoding computational
lexicons have been established, i.e., same tagset and features are used for all languages, which makes it
particularly interesting in the context of EMM dealing with texts in different languages. In addition, the
outcome of MULTEXT are freely available full-form morphological lexica in several languages which we
benefit of. More details on encoding the lexica will be presented in section 6.4.

The morphological analyzer provides an option to switch between case-sensitive and case-insensitive
processing mode, where ’case-insensitive mode’ means that the input data is temporarily downcased
during processing. However, the entries in the lexicon themselves are not influenced, i.e., they are not
downcased at any time. Further, it is possible to specify whether output structures for unrecognized
words will be returned or not (for unknown words the additional tag - U has been introduced).

Before performing analysis on a given input text, the latter one has to be tokenized. The core
version of the morphological analyzer is not tailored to any particular tokenizer. In order to use a
specific tokenizer a ’piece of code’ for converting the results of such a tokenizer into a simple array
of generic tokens has to be provided – the method for applying the morphological analysis requires
passing an array of generic tokens as argument. Generic tokens consist solely of the start/end positions
of the tokens in the text and token type (which may be unspecified). For more details see the class
it.jrc.lt.core.component.tokenizer.AbstractTokenItem.

Finally, for some languages the morphological analyzer handles language-specific phenomena since
some words (e.g. German compounds) are not necessarily included in the full-form lexicon and therefore
somewhat more advanced technique is indispensable in order to identify their morphosyntactic features.
The language-specific component is fired when simple lexicon look-up fails and provided that: (a) such

12

component exists for a given language and (b) the classifying tokenizer is being used. Currently, we have
developed a language-specific component for English and Italian.

The component for English: (a) tries to morphologically analyze hyphenated words (they can not be
simply lexicalized since the process of constructing such words is very productive), and (b) joins some
tokens in order to treat clitics properly (e.g., He’s is recognized as two tokens: He and ’s since there is
an entry for ’s in the MULTEXT lexicon). The first task is done via application of semi-automatically
created patterns (ca. 500) which map combinations of part-of-speech information of single elements of
hyphenated words into a part-of-speech information of the whole hyphenated word, e.g., U-V -> A means
that hyphenated word consisting of an unknown word and a verb is an adjective. Shiite-dominated is an
example of a word which would be matched by this pattern. The second task is done via utilization of a
list of most frequent clitics in English.

As for Italian, the major problem to be solved are clitics and words, which include apostrophes.
The former ones are not handled at the moment, whereas the words with apostrophes are processed as
follows. First, the token classes for words with apostrophes are defined in such a way that all such words
are matched without any constraints. Secondly, tokens representing words with apostrophes are split
into two subtokens. Both subtokens are morphologically analyzed, i.e., a dictionary look-up is performed.
Finally, in case one of the subtokens is ’still’ unknown a bunch of part-of-speech based heuristics is applied
on these morphologically annotated subtokens in order to guess the missing information. For instance,
the rule A(#gen,#num) U --> A(#gen,#num) N(#gen,#num) represents the following heuristic: if the
unknown subtoken (U) is preceded by an apostrophized subtoken, which is an adjective (A), then it is
tagged as a noun N. Further, the gender and number information (#gen, #num) assigned to the noun is
copied from the subtoken representing the adjective.

Other languages are not supported yet with respect to component performing specific treatment like
the one described above. Noteworthy, language specific components are hardcoded, i.e., they can not be
modified or manipulated by CORLEONE users.

Please note also, that the morphological analyzer is Unicode-aware, i.e., any character set can be used
for encoding the raw resources and any Unicode input stream can be used as an input to the morphological
analyzer.

6.3 Implementation
The CORLEONE morphology is implemented as a single finite-state automaton which encodes all lexicon
entries. One of the common techniques for squeezing finite-state devices in the context of implementing
dictionaries is an appropriate coding of the input data and turning it into a minimal acyclic deterministic
finite-state automaton [24]. If the dictionary contains solely contemporary word forms, a very good com-
pression rate can be expected, since many words share prefixes and suffixes, which leads to a high degree
of transition sharing in the corresponding automaton. If the keywords are associated with additional
annotations (tags) representing certain categories, attribute-value pairs, then an adequate encoding of
such information is necessary in order to keep the corresponding automaton small. A simple solution
is to reorder the tags from the most specific to the most general ones or to precompute all possible
tag sequences for all entries and to replace them with a numerical index [26, 24]. Both aforementioned
techniques work well in case of compressing morphological data. Consider now, an entry for the word
striking in the morphological lexicon consisting of an inflected word form, a lemma and a morphosyntactic
tag, i.e., striking-strike-Vmpp, where Vmpp stands for main verb and present participle. Obviously,
the sequence striking-strike is unique. Through the exploitation of the word-specific information
the inflected form and its base form share, one can introduce patterns describing how the lexeme can
be reconstructed from the inflected form, e.g., 3+e - delete three terminal characters and append an e
(striking -> strik + e), which would result in better suffix sharing, i.e., the suffix 3+e Vmpp is more
frequently shared than strike Vmpp. We apply a bag of such patterns in order to achieve high degree
of suffix sharing. Once the raw lexicon entries are converted into a new format via application of these
patterns, we subsequently compile them into a single minimal deterministic automaton by applying the
novel incremental algorithm for converting a list of strings into a minimal deterministic acyclic automa-
ton, which runs in nearly linear time [27]. The aforementioned algorithm outperforms the traditional
method of splitting the whole process into two steps, namely constructing an automaton and performing
minimization thereof. The major bottleneck of the classical approach is that in the first phase an au-
tomaton is constructed which is not optimized in terms of space complexity and might not necessarily fit
into a main memory before performing the minimization step, whereas in the novel incremental algorithm

13

the intermediate automaton is always minimal with respect to the entries already being included in the
automaton. A detailed description of this novel and particularly useful algorithm is given in [19].

6.4 Preparation of Morphological Resources
The resources needed for compiling a morphological analyzer consist of two files, an entry file and a
morphology compilation configuration file. They will be described in the next subsections.

6.4.1 Entry File

The entry file contains a list of full word forms encoded in MULTEXT format [28]. For each entry there
is a separate line of the following form:

word-form <TAB> lemma <TAB> morphosyntactic-description

If a word form is ambiguous, for each reading a separate line has to be added. For the sake of clarity, we
briefly describe the format of morphosyntactic-description. It is just a sequence of characters, where
each single character encodes a value of certain morphosyntactic feature for a given word form. The first
character always denotes the part of speech information. In MULTEXT there are 14 part-of-speech tags
for all languages. They are listed below.

Noun N Adposition S
Verb V Conjunction C
Adjective A Numeral N
Pronoun P Interjection I
Determiner D Residual X
Article T Abbreviation Y
Adverb R Particle Q

Each character at position 1, 2, . . . , n encodes a value of some attribute appropriate for the part-of-speech
tag at position 0. For instance, appropriate attributes for nouns are among others: gender, number and
case. If an attribute does not apply (e.g., is not applicable to a particular language or is not applicable to a
particular combination of feature-values), the corresponding position in the morphosyntactic description
contains a hyphen, i.e., -. It is important to note that trailing hyphens are usually omitted in the
morphosyntactic description (it is not harmful to include them, but not necessary). The following example
of encoding the word attack gives an idea of the MULTEXT format.

attack attack Ncns
attack attack Vmn
attack attack Vmip-p
attack attack Vmip1s
attack attack Vmip2s

The first line corresponds to a noun reading (N), where cns stands for: common, neuter and singular
respectively. The remaining lines refer to a verb reading (V), where mn stands for main verb in infinitive,
mip-p stands for an indicative form of a main verb in present tense in plural (person feature is set to -
since any person is valid), and the two last morphosyntactic tags mip1s and mip2s denote the singular
version for the first and second person of the same kind of verb as the latter one.

Below we give a list of attributes appropriate for each syntactical category. Please note that for nouns
and verbs we have added two additional attributes, namely SEM_1 and SEM_2 for encoding additional
domain-specific information. These attributes are not part of the original MULTEXT tagset.

14

Noun N Pronoun P Adverb R Interjection I
----------------- ----------------- ----------------- -----------------
0 Type 0 Type 0 Type 0 Type
1 Gender 1 Person 1 Degree 1 Formation
2 Number 2 Gender 2 Clitic
3 Case 3 Number 3 Number Abbreviation Y
4 Definiteness 4 Case 4 Person -----------------
5 Clitic 5 Owner_Number 5 Wh_Type 0 Syntactic_Type
6 Animate 6 Owner_Gender 1 Gender
7 Owner_number 7 Clitic Adposition S 2 Number
8 Owner_Person 8 Referent_Type ----------------- 3 Case
9 Owned_Number 9 Syntactic_Type 0 Type 4 Definiteness
10 Sem_1 10 Definiteness 1 Formation
11 Sem_2 11 Animate 2 Case Particle Q

12 Clitic_s 3 Clitic -----------------
Verb V 13 Pronoun_Form 4 Gender 0 Type
----------------- 14 Owner_Person 5 Number 1 Formation
0 Type 15 Owned_Number 2 Clitic
1 VForm 16 Wh_Type Conjunction C
2 Tense ----------------- Residual X
3 Person Determiner D 0 Type -----------------
4 Number ----------------- 1 Formation = no attributes =
5 Gender 0 Type 2 Coord_Type
6 Voice 1 Person 3 Sub_Type
7 Negative 2 Gender 4 Clitic
8 Definiteness 3 Number 5 Number
9 Clitic 4 Case 6 Person
10 Case 5 Owner_Number
11 Animate 6 Owner_Gender Numeral M
12 Clitic_s 7 Clitic -----------------
13 Aspect 8 Modific_Type 0 Type
14 Courtesy 9 Wh_Type 1 Gender
15 Sem_1 2 Number
16 Sem_2 Article 3 Case

----------------- 4 Form
Adjective A 0 Type 5 Definiteness
----------------- 1 Gender 6 Clitic
0 Type 2 Number 7 Class
1 Degree 3 Case 8 Animate
2 Gender 4 Clitic 9 Owner_Number
3 Number 5 Animate 10 Owner_Person
4 Case 11 Owned_Number
5 Definiteness
7 Clitic
8 Animate
9 Formation
10 Owner_Number
11 Owner_Person
12 Owned_Number

For a more comprehensive description of appropriate attributes for each single part-of-speech category
please refer to the MULTEXT tagset specifications [28]. Note also that there are some subtle differences
with the respect to the order of attributes in original MULTEXT resources. We have transformed the
original resources in such a way that attribute order is identical for all languages.

Please note once more that in case of unknown words the morphological analyzer returns a feature
structure with a part-of-speech value set to U.

15

6.4.2 Compilation Configuration File

Once the entry file is provided, we can create a morphology compilation configuration file, which defines
the following properties:

• Name: the name of the morphology

• EntryFile: a path to the entry file

• CharacterSet: the name of the character set used for decoding the entry file

• LanguageCode: a language code

• OutputFile: a path to the output file, which constitutes the only resource needed for applying the
morphology

The example given below illustrates how a configuration file should look.

Name=myMorphology
EntryFile=sample_entries.txt
CharacterSet=UTF-8
LanguageCode=1
OutputFile=sample_morphology_compiled.mor

The language code is mainly used to fire the appropriate language-specific component in order to handle
words not found in the full form lexicon that might constitute valid word forms, etc. Currently following
language codes are available:

1 - ENGLISH 13 - ICELANDIC 25 - SLOVENE 37 - BOSNIAN
2 - FRENCH 14 - RUSSIAN 26 - TURKISH 38 - BYELORUSSIAN
3 - GERMAN 15 - ESTONIAN 27 - GREEK 39 - MOLDOVIAN
4 - POLISH 16 - LATVIAN 28 - ALBANIAN
5 - ITALIAN 17 - LITHUANIAN 29 - PORTUGUESE
6 - DUTCH 18 - CZECH 30 - ARABIC
7 - SPANISH 19 - UKRAINIAN 31 - PERSIAN
8 - BULGARIAN 20 - HUNGARIAN 32 - SLOVAK
9 - FINNISH 21 - ROMANIAN 33 - CATALAN
10 - SWEDISH 22 - MACEDONIAN 34 - MALTESE
11 - NORWEGIAN 23 - SERBIAN 35 - CHINESE
12 - DANISH 24 - CROATIAN 36 - INDONESIAN

6.5 Deploying Morphological Analyzer
The application configuration file for the morphological analyzer specifies the following properties:

• ResourceFile: a path to the compiled morphological resource

• Input: a path to the input file or input directory

• Output: a path to the output directory

• CaseSensitive is set to ‘true’ if the morphological analyzer will be applied in case-sensitive mode
or to ‘false’ otherwise (default setting is ’false’)

• CharacterSet: the name of the character set used for decoding input files

• OutputForUnknownWords: is set to ‘true’ if output structures for unknown words should be returned
or to ‘false’ otherwise (default setting is ‘true’)

• TokenizerResourceFile: a path to the file containing compiled resources for the classifying tok-
enizer (please note that in practice any tokenizer can be used with the morphology - see the JAVA
API documentation)

16

A sample application configuration file looks as follows.

ResourceFile=sample_morphology_compiled.mor
TokenizerResourceFile=sample_classifying_tokenizer.tok
Input=./test/input/sample_file.txt
Output=./test/output
CharacterSet=UTF-8
CaseSensitive=false
OutputForUnknownWords=true

In order to directly integrate the morphological analyzer in other application the following piece of code
could be used. It corresponds more or less to the above application configuration file (in a simplified
form). Please see the Java API documentation and the source code for further details.

import java.util.ArrayList;
import it.jrc.lt.core.component.morphology.*;
import it.jrc.lt.core.component.tokenizer.*;
import piskorski.util.functions.*; // needed for the Files class

// Create an instance of a MULTEXT morphology
AbstractMorphology morphology = AbstractMorphology.createInstance("multextMorphology");

// Read morphology resource from file
morphology.readFromFile("sample_morphology_compiled.mor");

// Create an instance of a classifying tokenizer
AbstractTokenizer tokenizer = AbstractTokenizer.createInstance("classifyingTokenizer");

// Read tokenizer resource from file
tokenizer.readFromFile("sample_classifying_tokenizer.tok");

// Set options
morphology.returnOutputForUnknownWords();
morphology.swithOffCaseSensitiveMode()

// Read the input file
String input = Files.FileToString("sample_file.txt","UTF-8");

// Apply the tokenizer
ArrayList<AbstractTokenItem> tokens = tokenizer.tokenize(input);

// Apply the morphology
ArrayList<AbstractDisjunctionOfMorphologyItems> morphologyItems

= morphology.findMatch(tokens, input);

// Iterate over disjunctions of morphology items
for(AbstractDisjunctionOfMorphologyItems it : morphologyItems)
{ int numItems = it.getNumberOfItems();

for(int k=0;k<numItems;k++)
{ AbstractMorphologyItem nextItem = it.getItem(k);

System.out.println("Analysis for: " + nextItem.getText(input));
System.out.println(nextItem.toString());

}
}

6.6 Remarks
Currently, CORLEONE comes only with morphological resources for English, German and Italian. How-
ever, compiling resources for other languages, provided that they are encoded according to MULTEXT
conventions, is a straightforward task. Envisaged future extensions to the morphology component en-
compass additional language-specific components for languages other than English and Italian and some
mechanism for performing some partial morphosyntactic disambiguation.

17

7 Gazetteer Look-up Tool

7.1 Introduction
The term gazetteer usually refers to a dictionary that includes geographically related information on
given places, e.g., data concerning the makeup of a country, region or location. In the NLP community,
it has a broader meaning. It refers to a list of not only geographical references, but also names of various
types of entities and named expressions, e.g., people, organizations, months of the year, currency units,
company designators and other similar keywords. Gazetteer look-up3 is usually seen as an autonomous
process of linguistic analysis and plays a crucial role in the process of named-entity recognition and is
heavily deployed for solving other information extraction tasks.

There are several well-established techniques and data structures that can be used to implement a
gazetteer, e.g., hashing, tries and finite-state automata. Some studies on real-world data revealed that
finite-state automata seem to be a good choice, since they require less memory than alternative techniques
and at the same time guarantee efficient access to the data [29, 26, 23, 24]. This section introduces the
CORLEONE gazetteer look-up component based on finite-state technology. The rest of this section is
organized as follows. First, a short overview of the gazetteer component and its implementation is given.
Subsequently, the process of preparing and compiling raw gazetteer resources is described. Next, the
application of the gazetteer look-up component on a given input data is addressed. Finally, some current
issues and ideas concerning future developments are pinpointed.

7.2 Gazetteer Look-up Component
The CORLEONE gazetteer look-up (dictionary look-up) component matches an input stream of charac-
ters or tokens against a gazetteer (dictionary) list, and produces an adequate annotation for the matched
text fragment. It allows for associating each entry in the gazetteer with a list of arbitrary flat attribute-
value pairs. Further, ambiguous entries are allowed too. For example, the entry New York’s could be
associated with the following attribute-value pairs:

concept:new york
type:city
continent:north america
case:genitive

Matching an occurrence of the phrase New York’s would yield a feature structure which looks as follows:

| start:23 |
| end:30 |
| concept:new york |
| type:city |
| continent:north america |
| case:genitive |

The values of the attributes start and end correspond to the start and end positions of the matched
text fragment. These values may either refer to character positions in the text or token IDs (i.e., first
and last token of the matched text fragment). One can switch between these two options while using the
component. Furthermore, the user is free to use any attributes and naming conventions he likes. Please
note also, that the gazetteer is Unicode-aware, i.e., any character set can be used for encoding the raw
resources and any Unicode input stream can be used as an input to the gazetteer. In order to avoid
potential clashes in the file for encoding resources, the specific symbols used as separators can be chosen
arbitrarily too.

The gazetteer provides an option (deployment option) to switch between case-sensitive and case-
insensitive processing mode, where ’case-insensitive mode’ means that the input data is temporarily
downcased during processing. However, the gazetteer entries themselves are not influenced, i.e., they
are not downcased at any time. On the other hand, there is a compilation option, which allows for
downcasing all keywords in the gazetteer at compile-time.

3Some use the term dictionary look-up instead

18

Before applying the gazetteer to a given input text, the input has to be tokenized. The gazetteer is
not tailored to any particular tokenizer. Similarly to morphology component, in order to use a specific
tokenizer a method for converting the results of such a tokenizer into a simple array list of generic tokens
has to be provided.

There are two processing styles in which gazetteer can be applied: (a) longest matching – only the
longest character sequence at a given position in the text that is covered by the gazetteer is matched
and no overlapping matches with different starting positions are allowed4, and (b) full matching – all
character sequences that are covered by the gazetteer at any position, which is the beginning of a token,
are matched.

7.3 Implementation
This subsection elaborates on the implementation aspects of the gazetteer, which has been developed via
utilization of state-of-the-art finite-state technology.

As already mentioned in 6.3 a common technique for implementing dictionaries is an appropriate
coding of the input data which allows for turning it into a minimal acyclic deterministic finite-state
automaton [24], so that the morphological analysis boils down to a simple automaton look-up. Unfortu-
nately, in case of gazetteers, this strategy can not be applied in a straightforward manner like described
in 6.3, since the attribute values often do not share any prefixes or suffixes with the keyword, i.e., the
major part of a string that encodes a single gazetteer entry and its tags might be unique and this could
potentially blow up the corresponding automaton enormously.

Before, we present our encoding technique, let us first mention that the raw gazetteer resources are
represented simply by a text file, where each line represents a single gazetteer entry in the following
format: keyword (attribute:value)+. For each reading of an ambiguous keyword, a separate line is
introduced. For the word Washington the gazetteer could potentially include the following entries:

Washington | type:city | variant:WASHINGTON | location:USA
| full-name:Washington D.C. | subtype:cap_city

Washington | type:person | gender:m_f | surname:Washington
| language:english

Washington | type:organization | subtype:commercial
| full-name:Washington Ltd. | location:Canada

Washington | type:region | variant:WASHINGTON | location:USA
| abbreviation: W.A. | subtype:state

For the sake of explaining the compression strategy, we differentiate between open-class and closed-class
attributes, depending on their range of values, e.g., full-name is intuitively an open-class attribute,
whereas gender is a closed-class attribute. In practice, we use a more fuzzy definition, i.e., all attributes
whose corresponding value set contains more than 512 elements is always considered to be an open-class
attribute, whereas other attributes may be either defined as open-class or closed-class attributes by the
user. The choice between open-class and closed-class attributes has an impact on the compression method
and as a consequence on the compression rate.

Our main idea behind transforming a gazetteer into a single automaton is to split each gazetteer
entry into a disjunction of subentries, each representing some partial information. For each open-class
attribute-value pair present in an entry a single subentry is created, whereas closed-class attribute-value
pairs (or a subset of them) are merged into a single subentry and rearranged in order to fulfill the first
most specific, last most general criterion. In our example, the entry for the word Washington (city) yields
the following partition into subentries:

Washington #1 NAME(subtype) VAL(cap_city) NAME(type) VAL(city)
Washington #1 NAME(variant) WASHINGTON
Washington #1 NAME(location) USA
Washington #1 NAME(full-name) Washington D.C.

where NAME maps attribute names to single univocal characters not appearing elsewhere in the original
gazetteer and VAL denotes a mapping which converts the values of the closed-class attributes into single
characters representing them. The string #1, where # is again a unique symbol, denotes the reading

4With the restriction that a match can neither start nor end in the middle of a token

19

index of the entry (first reading for the word Washington). Gazetteer resources converted in this manner
are subsequently compiled into a single automaton via the application of the incremental algorithm for
converting a list of strings into a minimal acyclic DFSA in linear time [27], which was mentioned earlier.

In order to gain better compression rate we utilized formation patterns for a subset of attribute values
appearing in the gazetteer entries, i.e., patterns which describe how attribute values can be constructed
from the keywords. For instance, frequently, attribute values are just the capitalized form or the lowercase
version of the corresponding keywords, as can be seen in our example. Such a pattern can be represented
by a single character. Further, keywords and some attribute values often share prefixes or suffixes,
e.g., Washington vs. Washington D.C. Next, there are clearly several patterns for forming acronyms or
abbreviations from the full form, e.g., ACL can be derived from Association of Computational Linguistics,
by simply concatenating all capitals in the full name. We benefit from such formation rules and deploy
other related patterns in a similar way in order to further reduce the space requirements. Nevertheless,
some part of the attribute values can not be replaced by patterns. Applying formation patterns to our
sample entry would result in:

Washington #1 NAME(subtype) VAL(cap_city) NAME(type) VAL(city)
Washington #1 NAME(variant) PATTERN(AllCapital)
Washington #1 NAME(location) USA
Washington #1 NAME(full-name) PATTERN(Identity) D.C.

where PATTERN maps pattern names to unique characters not appearing elsewhere in the gazetteer.
The outlined method of representing a gazetteer is an elegant solution and exhibits two major assets:

(a) we do not need any external table for storing/accessing attribute values, since all data is encoded
in the automaton, which means faster access time, and (b) as a consequence of the encoding strategy,
there is only one single final state in the automaton. The states having outgoing transitions labeled with
the unique symbols in the range of NAME are implicit final states (there is no need for explicit distinction
between accepting and non-accepting states). The right languages of these states represent attribute-value
pairs attached to the gazetteer entries.

For implementing finite-state automata themselves, we deploy the highly compact transition-list model
described in [30]. In this model states are not stored explicitly and each transition is represented solely
as quintuple consisting of a transition label, three bits marking: (a) whether the transition is final, (b)
whether it is the last transition of the current state and (c) whether the first transition of the target state
is the next one in the transition list, and a (possibly empty) pointer to the first outgoing transition of the
target state of the transition. This representation is easy to implement and constitutes a good trade-off
between space and time complexity [30].

Further details of the encoding approach outlined in this section as well as other more advanced
gazetteer compression techniques, e.g., transition jamming, utilization of numbered finite-state automata,
Ziv-Lempel style-like gazetteer substructure recognition etc., are described in more detail in [13, 14].

7.4 Compilation of Gazetteer Resources
The resources needed for compiling a gazetteer consist of three files, an attribute file, an entry file and a
gazetteer compilation configuration file. They will be described one by one in the next subsections.

7.4.1 Attribute File

The attribute file simply lists all attribute names, where each line stands for a single attribute name. In
order to define an attribute as an open-class attribute (see 7.3 for definition) its name has to be preceded
by an asterisk. The following example gives an impression of what an attribute file would look like.

*concept
type
continent
case

The attributes type, continent and case are closed-class attributes, whereas the attribute full-name
is an open-class attribute. Differentiating between these two types of attributes does not impact the
output of the gazetteer, but it plays an important role in the process of compilation and compression
of gazetteer resources. Specifying an attribute as an open-class (even if it intuitively seems to be a

20

closed-classed attribute) might result in a different size of the compiled gazetteer resource. In particular,
open-class attribute values undergo an inspection whether any of the formation patterns is applicable. In
order to explicitly skip such inspections, add second asterisk in front of the attribute name. Our sample
attribute file would then look like follows.

**concept
type
continent
case

Using this option makes sense if it is intuitively clear that formation patterns will not be applicable (e.g.
numerical attributes). At this stage, please note once more that defining an attribute as closed-class
attribute which has more than 512 possible values will result in a run-time compilation error.

7.4.2 Entry File

The entry file contains the proper gazetteer entries. Each line in this file includes an entry and a list
of associated attribute-value pairs. Each attribute-value pair is separated by a symbol which does not
occur elsewhere in this file. Similarly, attributes and values are separated by other unique symbol also
not appearing elsewhere in this file. The aforementioned symbols can be defined arbitrarily by the user.
The example below illustrates an entry file which corresponds to the example of an attribute file given
in 7.4.1. The two separator symbols are | and : respectively.

Afghanistan’s | type:country | case:genitive | concept:afghanistan

Entry files may include comments and empty lines. A comment line is preceded with a # symbol.

7.4.3 Compilation Configuration File

Once the entry file and attribute file are provided, we can create a gazetteer configuration file, which
define the following properties:

• Name: a name of the gazetteer

• AttributeFile: a path to the attribute file

• EntryFile: a path to the entry file

• CharacterSet: the name of the character set used for decoding input files

• InputSeparator: a special symbol for separating attribute-value pairs

• AttributeValueSeparator: a special symbol for separating attribute names from the correspond-
ing values

• DownCaseEntries: is set to ‘true’ in case the entries in the entry file should be downcased during
the compilation process, or to ‘false’ otherwise (default setting is ‘false’)

• OutputFile: a path to the output file, which constitutes the only resource needed for applying the
gazetteer

The example given below illustrates how a configuration file should look like.

Name=myGazetteer
AttributeFile=sample_features.txt
EntryFile=sample_entries.txt
CharacterSet=UTF-8
InputSeparator=|
AttributreValueSeparator=:
DownCaseEntries=false
OutputFile=sample_gazetteer.gaz

21

7.5 Gazetteer Deployment
The application configuration file for the gazetteer specifies the following properties:

• ResourceFile: a path to the compiled gazetteer resources

• Input: a path to the input file or input directory

• Output: a path to the output directory

• CaseSensitive: is set to ‘true’ (default setting) if the gazetteer will be applied in case sensitive
node, or to ‘false’ otherwise

• CharacterSet: the name of the character set used for decoding input files

• OutputTokenPositions: is set to ‘true’ if token positions should be returned, or to ‘false’ (default
setting) in case character positions should be returned

• SearchStrategy: search strategy option; currently two options are available: longest-match which
is the default one, and all-matches, which means that all matches at a given positions are returned

Our sample application configuration file would look as follows (with the options: case-sensitive mode,
longest-match searching strategy and returning character positions)

ResourceFile=sample_gazetteer.gaz
Input=./test/input/sample_file.txt
Output=./test/output
CaseSensitive=true
CharacterSet=UTF-8
OutputTokenPositions=false
SearchStrategy=longest-match

In order to directly integrate the gazetteer in other application the following piece of code could be used.
It corresponds to the above application configuration file (in a simplified form).

import java.util.ArrayList;
import it.jrc.lt.core.component.*;
import it.jrc.lt.core.component.gazetteer.*;
import it.jrc.lt.core.component.tokenizer.*;
import piskorski.util.functions.*; // needed for the Files class

// Create an instance of a gazetteer
AbstractGazetteer gazetteer = AbstractGazetteer.createInstance("basicGazetteer");

// Read gazetteer resource from file
gazetteer.readFromFile("sample_gazetteer.gaz");

// Set gazetteer options
gazetteer.returnCharacterPositions();
gazetteer.caseSensitiveModeActive();
gazetteer.setSearchStrategy(SearchStrategy.LONGEST_MATCH);

// Create an instance of a basic tokenizer and read resources from file
AbstractTokenizer tokenizer = AbstractTokenizer.createInstance("basicTokenizer");
tokenizer.readFromFile("sample_tokenizer.tok");

// Read the input file
String input = Files.FileToString("sample_file.txt","UTF-8");

// Apply the tokenizer
ArrayList<AbstractTokenItem> tokens = tokenizer.tokenize(input);

// Apply the gazetteer

22

ArrayList<AbstractDisjunctionOfGazetteerItems> gazetteerItems
= gazetteer.findMatch(tokens, input);

// Iterate over disjunctions of gazetteer items
for(AbstractDisjunctionOfGazetteerItems disj : gazetteerItems)

{ int numItems = disj.getNumberOfItems();
// Iterate over gazetteer items
for(int k=0;k<numItems;k++)

{ AbstractGazetteerItem item = it.getItem(k);
// Note that character positions are returned (we can use getText() method)
System.out.println("FOUND: " + item.getText(input));
// iterate over attribute-value pairs in the current gazetteer item
int len = item.getSize();
for(int i=0;i<len;i++)
{ avPair = item.getAVPair(i)

System.out.println(avPair.getAttributeName() + "=" + avPair.getValue());
}

}
}

7.6 Remarks
There are still some improvements concerning time complexity, which can be addressed in the future.
Firstly, the current version of the gazetteer does not compress numerical data in an optimal way. It works
much better for string-valued attributes since the primary goal was to compress such kind of data. In
order to achieve better performance when dealing with numerical data the technique based on numbered
automata [13] could be potentially implemented to alleviate the problem. Further improvements with
respect to space complexity could be achieved via utilization of some additional advanced compression
techniques, e.g., transition jamming, relative addressing in data structure implementing FSAs, Ziv-Lempel
style-like substructure recognition in the gazetteers. They are described in more detail in [13, 14].

For some applications list-valued attributes might come in handy. Therefore, it would be worth
supporting such option in future versions of the software.

Compression rate and speed might depend on: (a) how the attributes are classified (open-class vs.
closed-class attributes) and (b) settings in the compilation configuration file. Experiment with both to
obtain the best results.

8 Sentence Splitter

8.1 Introduction
The segmentation of running input text into sentences or utterances is one of the crucial preprocessing
steps in the process of information extraction. Since punctuation marks are not used exclusively to mark
sentence breaks, sentence and utterance boundaries are ambiguous. Both knowledge-based and machine
learning approaches to sentence boundary detection have been widely studied and used. CORLEONE
sentence splitter follows the rule-based approach, and is based on a user-definable list of potential sentence
boundary markers, a list of non-final text items (e.g. non-final abbreviations), a list of non-initial text
items (e.g., some capitalized abbreviations which do not start a sentence), and a list of non-initial prefixes
(e.g., symbols like ’(’ or ’%’). For the sake of clarity, we give below an example of such resources for
English.

• Potential sentence boundary markers: . ! ? "

• Non-final text items: Prof., Mr., e.g.

• Non-initial text items: Ltd., Mln.

• Non-initial prefixes: ([{ <

23

Note that non-initial prefixes do not necessarily have to be followed by a whitespace, whereas non-initial
text items must be followed by a whitespace, i.e., they must constitute tokens, whereas non-initial prefixes
might be just a part of a token. For this reason we make the distinction between these two lists.

For the sake of clarity, we briefly sketch the sentence splitting algorithm. Firsty, the potential sentence
boundary markers are identified. Next, those of them, which constitute trailing symbols in non-final text
items found in the current text (e.g., abbreviations requiring an argument on the right), are excluded
from further processing. Finally, several heuristics are applied in order to disambiguate the role of the
remaining potential sentence boundary markers. These heuristics utilize the lists of non-initial items
and non-initial prefixes. Note, that each whitespace symbol sequence, which includes two consecutive
end-of-line symbols is automatically recognized as sentence/utterance boundary.

The sentence splitter applied to an input text returns an array list of sentence items, each consisting
of two attributes representing the start and end position of the sentence. There is an option of returning
either character positions or token-based positions, i.e., token IDs.

Before performing sentence splitting of a given input text, the latter one has to be tokenized. The
sentence splitter is not tailored to any particular tokenizer. Analogously to morphology and dictionary
look-up component, a method for converting the results of such a tokenizer into a simple array list of
generic tokens has to be provided.

The implementation of the sentence splitter exploits the dictionary look-up component described
previously. Therefore, we do not describe it here in more detail.

8.2 Compilation of Sentence Splitter Resources
The resources needed for compiling CORLEONE sentence boundary splitter consist of four files containing
respectively potential sentence boundary markers, non-final text items, non-initial text items, and non-
initial prefixes. Note that, each line in these files contains a single entry. When these four files are
provided, we also need a sentence boundary compilation configuration file, which defines the following
properties:

• Name: the name of the sentence splitter

• BoundaryMarkersFile: a path to the file containing the list of potential boundary markers

• NonFinalItemsFile: a path to the file containing the list of non-final items

• NonInitialItemsFile: a path to the file containing the list of non-initial items

• NonInitialPrefixFile: a path to the file containing the list of non-initial prefixes

• CharacterSet: the name of the character set used for decoding input files

• OutputFile: a path to the output file containing the binary compressed representation of the
resources for the sentence boundary splitter

The example given below illustrates a sample compilation configuration file for the sentence splitter.

Name = mySentenceSplitter
BoundaryMarkersFile=EN-BoundaryMarkers.txt
NonFinalItemsFile=EN-NonFinalItems.txt
NonInitialItemsFile=EN-NonInitialItems.txt
NonInitialPrefixFile=EN-NonInitialPrefix.txt
CharacterSet=UTF-8
OutputFile=sample_sentence_splitter.ssb

8.3 Sentence Splitter Deployment
The application configuration file for the sentence splitter specifies the following properties:

• ResourceFile: a path to the compiled sentence splitter resources

• Input: a path to the input file or input directory

24

• Output: a path to the output directory

• CharacterSet: the name of the character set used for decoding input files

• TokenPositions: is set to ‘true’ (default setting) if token positions should be returned in sentence
items or to ‘false’ in case character positions should be returned

Our sample application configuration file would look as follows (with the option: return character posi-
tions)

ResourceFile=sample_sentence_splitter.ssb
Input=./test/input/sample_file.txt
Output=./test/output
CharacterSet=UTF-8
TokenPositions=false

Noteworthy, there is no need of specifying the resources for the tokenizer since the script-based version
of the sentence splitter automatically uses the basic tokenizer described earlier in this report.

In order to directly integrate the sentence splitter in other application the following piece of code
could be used. It corresponds to the above application configuration file (in a simplified form).

import java.util.ArrayList;
import it.jrc.lt.core.component.*;
import it.jrc.lt.core.component.tokenizer.*;
import it.jrc.lt.core.component.sentencesplitter.*;
import piskorski.util.functions.*; // needed for the Files class

// Create an instance of a sentence splitter
AbstractSentenceSplitter splitter = AbstractSentenceSplitter.createInstance("sentenceSplitter");

// Read sentence splitter resources from a file
splitter.readFromFile("sample_sentence_splitter.ssb");

// Set sentence splitter options
splitter.switchOffReturningTokenPositions();

// Create an instance of a basic tokenizer and read resources from file
AbstractTokenizer tokenizer = AbstractTokenizer.createInstance("basicTokenizer");
tokenizer.readFromFile("sample_tokenizer.tok");

// Read the input file
String input = Files.FileToString("sample_file.txt","UTF-8");

// Apply the tokenizer
ArrayList<AbstractTokenItem> tokens = tokenizer.tokenize(input);

// Apply the sentence splitter
ArrayList<AbstractSentenceItem> sentenceItems = splitter.segment(input, tokens);

// Iterate over sentence items
for(AbstractSentenceItem it : sentenceItems)

// Note that character positions are returned (we can use getText() method)
System.out.println("Sentence: " + it.getText(input));

9 String Distance Metrics Library

9.1 Introduction
A frequently appearing problem in the context of text processing technologies involves making a decision
whether two distinct strings refer to the same real-world object. This problem is also referred to as
name matching. For instance, the text phrases Dr. Jan Kowalski, Kowalski and Kowalskiego Jana might

25

constitute different textual mentions of the same person. Clearly, it would be useful to identify all these
text fragments as references to the same person. One of the basic approaches to tackle the problem of
name matching in a ’software engineering’ manner is utilization of so called string distance metrics.

Distance metrics map a pair of strings s and t to a real number r, where a smaller value of r indicates
greater similarity. Frequently, the term ‘string similarity metrics’ is used as well. There is only one
slight difference to distance metrics, namely, that string similarity metrics maps pair of strings to a real
number, where a smaller number indicates greater dissimilarity. The CORLEONE string distance library
contains mainly metrics applied by the database community for record linkage [31, 32, 33, 34]. The next
subsections describe the metrics included in the library and some tools and code samples of how to use
them. It is important to note that for the sake of introducing some of the metrics in the remaining
subsections we define them as string similarity metrics since they have been defined in this way in the
literature. However, all metrics in CORLEONE are implemented as string distance metric.5

9.2 String Distance Metrics
The string distance metrics in CORLEONE are subdivided into five categories:

• edit-distance metrics

• Jaro and Jaro-Winkler metrics

• metrics based on character-level N-grams

• metrics based on common substrings

• recursive metrics, which are designed to cope with multi-token strings, and use other metrics as
subroutines

In the rest of this section each of them is briefly described. Some explorations of knowledge poor tech-
niques for lemmatization of proper names and name matching in highly inflective languages, which utilize
the CORLEONE library of distance metric is presented in [35, 36].

9.2.1 Edit Distance Metrics

The first type of string distance metrics are so called edit-distance metrics. The point of departure consti-
tutes the well-known Levenshtein edit distance metric given by the minimum number of character-level
operations: insertion, deletion, or substitution, which are needed for transforming one string into the
other [37]. There are several extensions to this basic metric. The Needleman-Wunsch [38] metric modi-
fies the original one in that it allows for variable cost adjustment to the cost of a gap, i.e., insert/deletion
operation and variable cost of substitutions. Another variant is the Smith-Waterman metric [39], which
additionally uses an alphabet mapping to costs. There are several settings for this metric, e.g., the
Smith-Waterman score can be normalized with the length of the shorter string (default) or Dice coeffi-
cient, i.e., the average length of strings compared. A further extension of the Smith-Waterman metric
introduces two extra edit operations, open gap and end gap. The cost of extending the gap is usually
smaller than the cost of opening a gap, and this results in small cost penalties for gap mismatches
than the equivalent cost under the standard edit distance metrics. We will refer to the aforesaid metric
as Smith-Waterman with Affine Gaps. In general, the computation of most edit-distance metrics re-
quires O(|s| · |t|) time. The recently introduced bag distance metric [40], which is a good approximation
of the previously mentioned edit distance metrics, is also provided. It is calculated in linear time as
bagdist(s, t) = max(|M(s)\M(t)|, |M(t)\M(s)|), where M(x) denotes the multiset of the characters in x.

9.2.2 Jaro and Jaro-Winkler Metrics

Good results for name-matching tasks [31] have been reported using variants of the Jaro metric [41],
which is not based on the edit-distance model. It considers the number and the order of the common
characters between two strings. Given two strings s = a1 . . . aK and t = b1 . . . bL, we say that ai in s is
common with t if there is a bj = ai in t such that i − R ≤ j ≤ i + R, where R = bmax(|s|, |t|)/2c − 1.
Further, let s′ = a′1 . . . a′K be the characters in s which are common with t (with preserved order of

5It is usually straightforward to convert a string similarity metric into a string distance metric

26

appearance in s) and let t′ = b′1 . . . b′L be defined analogously. A transposition for s′ and t′ is defined as
the position i such that a′i 6= b′i. Let us denote the number of transposition for s′ and t′ as Ts′,t′ . The
Jaro similarity is then calculated as:

J(s, t) =
1
3
· (|s

′|
|s|

+
|t′|
|t|

+
|s′| − bTs′,t′/2c

|s′|
)

A Winkler variant thereof (JaroWinkler) boosts the Jaro similarity for strings with agreeing initial
characters. It is calculated as:

JW (s, t) = J(s, t) + δ · boostp(s, t) · (1 − J(s, t))

,where δ denotes the common prefix adjustment factor (default: 0.1) and boostp(s, t) = min(|lcp(s, t)|, p).
Here lcp(s, t) denotes the longest common prefix between s and t, whereas p stands for the maximum
length of a prefix to consider when computing longest common prefix for s and t, i.e., common prefixes,
which are longer than boostp(s, t) are not boosted more than a common prefix, whose length is exactly
boostp(s, t). For multi-token strings we extended boostp to boost∗p. Let s = s1 . . . sK and t = t1 . . . tL,
where si (ti) represent i-th token of s and t respectively, and let without loss of generality L ≤ K. boost∗p
is calculated as:

boost∗p(s, t) =
1
L
·

L−1∑
i=1

boostp(si, ti) +
boostp(sL, tL..tK)

L

The metric which uses boost∗p is denoted in the library as JaroWinkler2. The time complexity of ’Jaro’
metrics is O(|s| · |t|).

9.2.3 Character N-gram based Metrics

The q-gram metric [42] is based on the intuition that two strings are similar if they share a large number
of character-level q-grams. Let Gq(s) denote the multiset of all q-grams of a string s obtained by sliding
a window of length q over the characters of s. Since q-grams at the beginning and the end of the string
can have fewer than q characters, the strings are extended by adding q − 1 unique initial and trailing
characters to a string. The q-gram metric is calculated as:

q−grams(s, t) =
|Gq(s) ∩ Gq(t)|

max(|Gq(s)|, |Gq(t)|)

An extension to this metric is to add positional information, and to match only common q-grams that
occur within a maximum distance from each other (positional q-grams) [43]. Further, [44] introduced
skip-gram metric. It is based on the idea that in addition to forming bigrams of adjacent characters,
bigrams that skip characters are considered. Gram classes are defined that specify what kind of skip-
grams are created, e.g. {0, 1} class means that normal bigrams (0 class) are formed, and bigrams that
skip one character (1-class). The q-gram type metrics can be computed in O(max{|s|, |t|}).

9.2.4 Common Prefix/Substring-based Metrics

Considering the declension paradigm of many inflective languages a basic and time efficient metric based
on the longest common prefix information is provided. It is calculated as follows.

CPδ(s, t) =
(|lcp(s, t)|)2

|s| · |t|

It was mainly designed for matching single-token strings. For coping with multi-token strings a similar
metric is provided, namely, longest common substrings distance (LCS), which recursively finds and re-
moves the longest common substring in the two strings compared. Let lcs(s, t) denote the ’first’6 longest
common substring for s and t and let s−p denote a string obtained via removing from s the first occurrence
of p in s. The LCS metric is calculated as:

LCS(s, t) =

{
0 if |lcs(s, t)| ≤ φ

|lcs(s, t)| + LCS(s−lcs(s,t), t−lcs(s,t))

6Reading the strings from left to right.

27

The value of φ is usually set to 2 or 3. The time complexity of LCS is O(|s| · |t|). We extended LCS
by additional weighting of the |lcs(s, t)|. The main idea is to penalize longest common substrings which
do not match the beginning of a token in at least one of the compared strings. Let α be the maximum
number of non-whitespace characters, which precede the first occurrence of lcs(s, t) in s or t. Then,
lcs(s, t) is assigned the weight:

wlcs(s,t) =
|lcs(s, t)| + α − max(α, p)

|lcs(s, t)| + α

where p has been experimentally set to 4 (default). We denote this variant of LCS as Weighted Longest
Common Substrings (WLCS).

9.2.5 Recursive Metrics

Finally, for matching multi-token strings the recursive schema, known also as Monge-Elkan distance [45]
is provided in the library. Let us assume that the strings s and t are broken into substrings (tokens), i.e.,
s = s1 . . . sK and t = t1 . . . tL. The intuition behind Monge-Elkan measure is the assumption that si in s
corresponds to a tj with which it has highest similarity. The similarity between s and t equals the mean
of these maximum scores. Formally, the Monge-Elkan metric is defined as follows, where sim denotes
some secondary similarity function.

Monge−Elkan(s, t) =
1
K

·
K∑

i=1

max
j=1...L

sim(si, tj)

Inspired by the multi-token variants of the JaroWinkler metric presented in [33] two additional metrics
are provided. They are similar in spirit to the Monge-Elkan metric. The first one, Sorted-Tokens is
computed in two steps: (a) firstly the tokens constituting the full strings are sorted alphabetically, and
(b) an arbitrary metric is applied to compute the similarity of the ’sorted’ strings. The second metric,
Permuted-Tokens compares all possible permutations of tokens constituting the full strings and returns
the maximum calculated similarity value.

Further details and references to papers on string distance metrics can be found in [33, 34].

9.3 Tools
In order to experiment and play with the string distance metrics, one can use the following script, where
<configuration file> refers to the specific configuration file for the string metric being used.

applyDistanceMetric <configuration file>

The configuration file (properties file) specifies the following properties:

• METRIC: the name of the metric to be used (corresponds to the name of the class implementing the
metric, see JAVA API documentation)

• METRICCONF a configuration of the metric represented as a string of the format:

ATTRIBUTE-1:VALUE-1 | ATTRIBUTE-2:VALUE-2 | ATTRIBUTE-K:VALUE-K

• INPUTFILE1: a path to the first input file containing a list of strings to compare (each line contains
just a single string)

• INPUTFILE2: a path to the second input file containing a list of strings to compare with the strings
contained in the first file

• ENCODING: file encoding (characterset)

• OUTPUTFILE: a file to write the results to

28

• MINVAL: the upper bound for the distance between two strings, i.e., if the distance between two
strings is more than the value specified by this parameter, then they will not be included in the
output file

Please note that the description of all metric-specific settings and parameters can be found in the JAVA
API documentation. Therefore, they are not described here.

An example of a configuration file for using Smith-Waterman with affine gaps metric is given below.

METRIC=SmithWatermanWithAffineGaps
METRICCONF=WINDOWSIZE:100 | GAPCOSTFUNCTION:DefaultAffineGapCostSmithWaterman

| SUBSTCOSTFUNCTION:DefaultSubstCostSmithWatermanAffineGaps
INPUTFILE1=sample_person_names_1.txt
INPUTFILE2=sample_person_names_2.txt
ENCODING=UTF-8
OUTPUTFILE=myResult.txt
MINVAL=0.3

In this particular example, there are three parameters for the metric being used, namely, window size,
gap cost function and substitution cost function. The gap and cost function can be provided by the
user via implementing an appropriate programming interface. Please refer to the description of Smith-
Waterman with Affine gaps in the JAVA API documentation and standard literature cited previously for
more details concerning various parameters for different string distance metrics.

The following example demonstrates a piece of code, which uses a string distance metric. It corre-
sponds to the previous example with Smith-Waterman with Affine gaps metric.

// create an instance of a string distance metric
// IMPORTANT: the parameter to the method getInstance() is the name of the class,
// which implements the metric
AbstractDistanceMetric myMetric

= AbstractDistanceMetric.getInstance("SmithWatermanWithAffineGaps");

// configure settings
Properties settings = new Poperties();
settings.put("WINDOWSIZE":"100");
settings.put("GAPCOSTFUNCTION",:"DefaultAffineGapCostSmithWaterman");
settings.put("SUBSTCOSTFUNCTION","DefaultSubstCostSmithWatermanAffineGaps");
myMetric.setProperties(settings);

// one can check the configuration of the metric as follows
System.out.println(myMetric.getName() + " : " + myMetric.getConfiguration()

// apply the metric
float distance = myMetric.getDistance("Dawid", "David");

For the sake of completeness a list of all currently available string distance metrics given by the
corresponding class names is listed below.

BagDistance NeedlemanWunsch
CommonPrefixSq PermutedTokensDistance
CommonPrefixSq2 PositionalQgrams
Jaro MongeElkan
JaroWinkler Qgrams
JaroWinkler2 SkipGrams
Levenshtein SmithWatermanWithAffineGaps
LongestCommonSubstrings SortedTokensDistance
SmithWaterman WeightedLongestCommonSubstrings

10 Summary and Future Work
This report introduced CORLEONE - a set of general-purpose Unicode-aware components for performing
basic linguistic operations, which encompasses basic tokenization, fine-grained tokenization, morpholog-
ical analysis, gazetteer look-up, and sentence splitting. They can robustly and efficiently process vast

29

amount of textual data, which is essential in the context of the EMM system. In particular MB-sized
documents can be processed within seconds or in some cases in a fraction of a second. Further, the ad-
vanced compression techniques we applied allow for storing the compiled resources in a memory-efficient
way. Quick component initialization time was obtained via replacing the standard JAVA serialization
mechanism, known to be enormously slow, with our own procedure for fulfilling this task. Additionally,
CORLEONE comes equipped with a comprehensive library of string distance metrics, which are useful
for performing name matching tasks.

The presented tools are very flexible and can be easily adapted to new domains and languages.
Further, they do not rely on any third-party software and provide transparent interfaces so that their
integration can be done in a straightforward manner. In particular, CORLEONE components are used as
basic linguistic processing resources in ExPRESS, a pattern matching engine based on regular expressions
over feature structures [1]. Furthermore, CORLEONE is a subpart of the real-time news event extraction
system described in [2]. Some of CORLEONE components are used in other applications developed in
the JRC.

Future activities will focus on developing some more core NLP modules, e.g., partial reference matcher,
partial part-of-speech filtering and eventually a chunking component. Although the current version of the
tool is time and space efficient, there is still a lot of space for improvement. In particular, implementing
a space-efficient memory model for storing gazetteers with large amount of numerical data could be
addressed.

11 Acknowledgments
The work presented in this report was supported by the Europe Media Monitoring Project (EMM) carried
out by the Web Mining and Intelligence Action in the Joint Research Centre of the European Commission.

The author is greatly indebted to Delilah Al-Khudhairy, Jonathan Brett Crawley, Camelia Ignat,
Bruno Pouliquen, Ralf Steinberger, Hristo Tanev and Vanni Zavarella for some comments, inspiring
discussions and some ideas on how to improve CORLEONE and this report. The author would also like
to thank Martin Atkinson for the CORLEONE logo.

Some of the raw linguistic resources, e.g. MULTEXT resources etc., have been extended and fine-
tuned by Ralf Steinberger and Vanni Zavarella.

References
[1] Piskorski, J.: ExPRESS – Extraction Pattern Recognition Engine and Specification Suite. In:

Proceedings of the International Workshop Finite-State Methods and Natural language Processing
2007 (FSMNLP’2007), Potsdam, Germany. (2007)

[2] Tanev, H., Piskorski, J., Atkinson, M.: Real-Time News Event Extraction for Global Crisis Moni-
toring. In: Proceedings of the 13th International Conference on Applications of Natural Language
to Information Systems (NLDB 2008), London, UK, 24–27 June, 2008. Lecture Notes in Computer
Science Vol 5039, Springer Verlag Berlin Heidelberg. (2008) 207–218

[3] Best, C., Pouliquen, B., Steinberger, R., Van der Goot, E., Blackler, K., Fuart, F., Oellinger, T.,
Ignat, C.: Towards Automatic Event Tracking. In: Proceedings of IEEE International Conference
on Intelligence and Security Informatics – ISI 2006, San Diego, USA. (2006)

[4] Douglas, A.: Introduction to Information Extraction. AI Communications 12(3) (1999) 161–172

[5] Emmanuel Roche and Yves Schabes, ed.: Finite-state language processing. A Bradford Book, MIT
Press, Cambridge, MA (1997)

[6] Piskorski, J., Neumann, G.: An Intelligent Text Extraction and Navigation System. In: Proceedings
of the 6th International Conference on Computer-Assisted Information Retrieval (RIAO-2000), Paris.
(2000)

[7] Neumann, G., Piskorski, J.: A Shallow Text Processing Core Engine. Journal of Computational
Intelligence 18(3) (2002)

30

[8] Drożdżyński, W., Krieger, H.U., Piskorski, J., Schäfer, U., Xu, F.: Shallow Processing with Unifica-
tion and Typed Feature Structures — Foundations and Applications. Künstliche Intelligenz 2004(1)
(2004) 17–23

[9] Piskorski, J.: SproUT: An Integrated Set of Tools for Shallow Text Processing. In: Proceedings of
Business information Systems 2004, April 2004, Poznan, Poland (2004)

[10] Krieger, H.U., Drożdżyński, W., Piskorski, J., Schäfer, U., Xu, F.: A Bag of Useful Techniques
for Unification-Based Finite-State Transducers. In: Proceedings of of 7th KONVENS Conference,
Vienna, Austria. (2004)

[11] Piskorski, J.: Finite-State Machine Toolkit. Technical Report RR-02-04, DFKI, Saarbruecken (2002)

[12] Piskorski, J., Drożdżyński, W., Xu, F., Scherf, O.: A Flexible XML-based Regular Compiler for
Creation and Converting Linguistic Resources. In: Proceedings of the 3rd International Conference
on Language Resources an Evaluation (LREC’02), Las Palmas, Canary Islands, Spain (2002)

[13] Piskorski, J.: On Compact Storage Models for Gazetteers. In: Proceedings of the 5th International
Workshop on Finite-State Methods and Natural Language Processing, Helisnki, Finland, Springer,
Lecture Notes in Artificial Intelligence (2005)

[14] Daciuk, J., Piskorski, J.: Gazetteer Compression Technique Based on Substructure Recognition.
In: Proceedings of Intelligent Information Systems 2006 - New Trends in Intelligent Information
Processing and Web Mining, Springer Verlag series "Advances in Soft Computing" (2006)

[15] Greffenstette, G., Tapanainen, P.: What is a word, what is a sentence? Problems of tokenization.
In: Proceedings of the third International Conference on Computational Lexicography – Complex
94, Budapest, Hungary. (1994) 79–87

[16] Grover, C., Matheson, C., Mikheev, A., Moens, M.: LT TTT - A Flexible Tokenisation Tool. In:
Proceedings of the Second Language Resources and Evaluation Conference, Athens, Greece. (2000)

[17] Gillam, R.: Text Boundary Analysis in Java.
http://www.ibm.com/java/education/boundaries/boundaries.html (1999)

[18] Levine, J., Mason, T., Brown, D.: Lex & Yacc. O’Reilly & Associates Inc. (1992)

[19] Skut, W., Piskorski, J., Daciuk, J.: Finite-State Machines - Foundations and Applications to Text
Processing and Pattern Recognition. ESSLI 2005, Heriot-Watt University, Edinburgh, Scotland
(2005)

[20] Tarjan, R.E., Yao, A.C.C.: Storing a Sparse Table. Commun. ACM 22(11) (1979) 606–611

[21] Kiraz, G.: Compressed Storage of Sparse Finite-State Transducers. In: Proceedings of WIA 1999,
Potsdam, Germany (1999) 109–121

[22] Mohri, M., Pereira, F., Riley, M.: A Rational Design for a Weighted Finite-State Transducer Library.
In: Revised Papers from the Second International Workshop on Implementing Automata table of
contents, Lecture Notes In Computer Science; Vol. 1436. (1997) 144–158

[23] Kowaltowski, T., Lucchesi, C.: Applications of Finite Automata Representing Large Vocabularies.
Technical Report DCC-01/92, University of Campinas, Brazil (1992)

[24] Kowaltowski, T., Lucchesi, C., Stolfi, J.: Finite Automata and Efficient Lexicon Implementation.
Technical Report IC-98-02, University of Campinas, Brazil (1998)

[25] Ide, N., Tufis, D., Erjavec, T.: Development and Assesment of Common Lexical Specifications for
Six Central and Eastern European Languages. In: Proceedings of the first International Conference
on Language Resources and Evaluation, LREC 1998, Granada, Spain. (1998) 233–240

[26] Daciuk, J.: Incremental Construction of Finite-State Automata and Transducers. PhD Thesis.
Technical University Gdańsk. (1998)

31

[27] Daciuk, J., Mihov, S., Watson, B., Watson, R.: Incremental Construction of Minimal Acyclic Finite
State Automata. Computational Linguistics 26(1) (2000) 3–16

[28] Erjavec, T.: MULTEXT - East Morphosyntactic Specifications (2004)

[29] Ciura, M., Deorowicz, S.: How to Squeeze a Lexicon. Software - Practice and Experience 31(11)
(2001) 1077–1090

[30] Daciuk, J.: Experiments with Automata Compression. In: Proceedings of CIAA - Implementation
and Application of Automata, London, Ontario, Canada (2000) 105–112

[31] Cohen, W., Ravikumar, P., Fienberg, S.: A Comparison of String Distance Metrics for Name-
Matching Tasks. In: Proceedings of IJCAI-03 Workshop on Information Integration on the Web
(IIWeb-03), 2003, Acapulco, Mexico, Acapulco, Mexico (2003) 73–78

[32] Cohen, E., Ravikumar, P., Fienberg, S.: A Comparison of String Metrics for Matching Names and
Records. KDD Workshop on Data Cleaning and Object Consolidation (2003)

[33] Christen, P.: A Comparison of Personal Name Matching: Techniques and Practical Issues. Technical
report, TR-CS-06-02, Computer Science Laboratory, The Australian National University, Canberra,
Australia (2006)

[34] Elmagaramid, A., Ipeirotis, P., Verykios, V.: Duplicate Record Detection: A Survey. IEEE Trans-
actions on Knowledge and Data Engineering 19(1) (2007)

[35] Piskorski, J., Sydow, M., Kupść, A.: Lemmatization of Polish Person Names. In: Proceedings of the
ACL Workshop on Balto-Slavonic Natural Language Processing 2007 - Special Theme: Information
Extraction and Enabling Technologies (BSNLP’2007). Held at ACL’2007, Prague, Czech Republic,
2007, ACL Press (2007)

[36] Piskorski, J., Wieloch, K., Pikula, M., Sydow, M.: Towards Person Name Matching for Inflective
Languages. In: Proceedings of the WWW 2008 workshop on NLP Challenges in the Information
Explosion Era (NLPIX 2008), ACM (2008)

[37] Levenshtein, V.: Binary Codes for Correcting Deletions, Insertions, and Reversals. Doklady
Akademii Nauk SSSR 163(4) (1965) 845–848

[38] Needleman, S., Wunsch, C.: A General Method Applicable to Search for Similarities in the Amino
Acid Sequence of Two Proteins. Journal of Molecular Biology 48(3) (1970) 443–453

[39] Smith, T., Waterman, M.: Identification of Common Molecular Subsequences. Journal of Molecular
Biology 147 (1981) 195–197

[40] Bartolini, I., Ciacca, P., Patella, M.: String Matching with Metric Trees Using an Approximate
Distance. In: Proceedings of SPIRE, LNCS 2476, Lissbon, Portugal. (2002) 271–283

[41] Winkler, W.: The State of Record Linkage and Current Research Problems. Technical report,
Statistical Research Division, U.S. Bureau of the Census, Washington, DC (1999)

[42] Ukkonen, E.: Approximate String Matching with q-grams and Maximal Matches. Theoretical
Computer Science 92(1) (1992) 191–211

[43] Gravano, L., Ipeirotis, P., Jagadish, H., Koudas, N. Muthukrishnan, S., Pietarinen, L., Srivastava,
D.: Using q-grams in a DBMS for Approximate String Processing. IEEE Data Engineering Bulletin
24(4) (2001) 28–34

[44] Keskustalo, H., Pirkola, A., Visala, K., Leppanen, E., Jarvelin, K.: Non-adjacent bigrams Improve
Matching of Cross-lingual Spelling Variants. In: Proceedings of SPIRE, LNCS 22857, Manaus,
Brazil. (2003) 252–265

[45] Monge, A., Elkan, C.: The Field Matching Problem: Algorithms and Applications. In: Proceedings
of Knowledge Discovery and Data Mining 1996. (1996) 267–270

32

European Commission

EUR 23393 EN – Joint Research Centre – Institute for the Protection and Security of the Citizen
Title: CORLEONE (Core Linguistic Entity Online Extraction)
Author(s): Jakub Piskorski
Luxembourg: Office for Official Publications of the European Communities
2008 – 32 pages – 21 x 29,7 cm
EUR – Scientific and Technical Research series – ISSN 1018-5593

Abstract
This report presents CORLEONE (Core Linguistic Entity Online Extraction) - a pool of loosely coupled general-
purpose basic lightweight linguistic processing resources, which can be independently used to identify core
linguistic entities and their features in free texts. Currently, CORLEONE consists of five processing resources:
(a) a basic tokenizer, (b) a tokenizer which performs fine-grained token classification, (c) a component for
performing morphological analysis, and (d) a memory-efficient database-like dictionary look-up component, and
(e) sentence splitter. Linguistic resources for several languages are provided. Additionally, CORLEONE
includes a comprehensive library of string distance metrics relevant for the task of name variant matching.
CORLEONE has been developed in the Java programming language and heavily deploys state-of-the-art finite-
state techniques.

Noteworthy, CORLEONE components are used as basic linguistic processing resources in ExPRESS, a
pattern matching engine based on regular expressions over feature structures and in the real-time news event
extraction system developed in the JRC by the Web Mining and Intelligence Action of IPSC.

This report constitutes an end-user guide for COLREONE and provides some scientifically interesting
details of how it was implemented.

How to obtain EU publications

Our priced publications are available from EU Bookshop (http://bookshop.europa.eu), where you can place
an order with the sales agent of your choice.

The Publications Office has a worldwide network of sales agents. You can obtain their contact details by
sending a fax to (352) 29 29-42758.

The mission of the JRC is to provide customer-driven scientific and technical support
for the conception, development, implementation and monitoring of EU policies. As a
service of the European Commission, the JRC functions as a reference centre of
science and technology for the Union. Close to the policy-making process, it serves
the common interest of the Member States, while being independent of special
interests, whether private or national.

