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1 General introduction 
 
Chikungunya fever (CHIK) is a crippling arthritic disease of sudden onset, first recorded in 1952 in 
Tanzania. The responsible virus (CHIKV) was isolated in 1953 (Ross 1956). The virus cycles between 
insect vectors (mosquitoes from the genera Aedes and Culex) and vertebrate reservoir species, 
principally non-human primates (Diallo et al. 1999). CHIKV causes epidemics in India, Southeast 
Asia, Indonesia, the Philippines and in most of sub-Saharan Africa. In African rural areas the disease is 
endemic with a small number of cases every year, whereas in urban areas outbreaks are sporadic and 
explosive. After an epidemic, large portions of the population have become immune and the disease 
typically vanishes from the affected area for years. 
 

CHIK has developed into a major public health concern for a number of reasons. 
 

1) one important vector, the aggressive mosquito Aedes albopictus, has in the past decades 
successfully invaded many parts of the world, including the United States and several 
European countries.  

 
2) an outbreak in Eastern Africa, the West Indian Ocean islands (including the French 

overseas territory of La Réunion), India and Indonesia between 2004 and 2007 affected 
approximately 3 million people (Pialoux et al. 2007) and infected travelers from these 
regions showed up in considerable numbers in Europe.  

 
If infected persons and competent vectors in sufficient density come together in a susceptible 
population an outbreak can conceivably occur anywhere; these factors came in fact together in the 
summer of 2007 in the Italian region of Emilia Romagna causing the first certain self-sustaining 
outbreak of CHIK in Europe with 301 confirmed cases so far. 
 
The behavioural, physiological and ecological factors determining the vectorial capacity of European 
populations of Aedes albopictus, the mosquito vector responsible for the outbreak in Italy are not well-
known. Host preference and host range, preference for indoor or outdoor feeding, incubation period of 
the virus in the vector, longevity, length of the gonotrophic cycle, vector density etc. all co-determine 
the capability of the vector to cause a self-sustaining epidemic. Given the current lack of reliable 
empirical knowledge concerning these factors, but having at hand the epidemic curve of the Italian 
outbreak, modelling allows us a preliminary exploration of different scenarios and parameter 
combinations and even control measures. 
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2 The outbreak and basic descriptive statistics of symptoms 
The list of all the cases has been obtained by the Italian Health Ministry in collaboration with the 
Istituto Superiore di Sanità and the Regione Emilia Romagna Health Authority and JRC is very 
grateful1.  
 
The first case of chikungunya fever occurred on June 23, 2007 and the disease then slowly spread 
through the two villages of Castiglione di Cervia and Castiglione di Ravenna; the outbreak lasted 
approximately 3 months. On days 56 and 60 aggressive mosquito control measures were undertaken in 
the affected area.  
 
Figure 1 shows the daily number of new cases (i.e. daily incidence) in the two villages, while Figure 2 
is the cumulative curve (the integral of Figure 1. It will be later explained that for comparison purposes 
the integral better shows the behaviour. 
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Figure 1. Daily incidence of chikungunya cases in Castiglione di Cervia and Castiglione di Romagna,. Day 0 is 

considered 23/6/2007 

 

                                                 
1 The database that we have received is dated 15 October 2007. An updated version of this database exists. A revision of 
this document will be performed when the new (and final) version of the database will be provided. 
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Figure 2. – Temporal distribution of the Chickungunya cases 

 
Chikungunya virus infection can cause a debilitating illness, most often characterized by fever, limb 
and muscle pain and a range of other symptoms. It is likely that also asymptomatic infections occur, 
but how commonly that happens is not yet known. Table 1 shows a summary of the major symptoms 
and the proportion of persons affected. 
 

Table 1. Summary of symptoms 

Symptoms Yes No 

Fever 181 (92%) 16 (8%) 
Joint pain 182 (92%) 15 (7%) 
Skin rush 98 (50%) 99 (50%) 
Myalgia 92 (47%) 105 (53%) 
Asthenia 183 (93%) 14 (7%) 
Haemor. symptoms 3 (2%) 194 (98%) 
Headache 100 (51%) 97 (41%) 
Pruritus 36 (18%) 161 (82%) 
Nausea 6 (3%) 191 (97%) 
Vomiting 32 (16%) 165 (84%) 
Diarrhoea 38 (19%) 159 (81%) 
Photophobia 27 (14%) 170 (86%) 
Conjunctivitis 6 (3%) 191 (97%) 
Meningoencephalitis 1 (1%) 196 (99%) 

 
Figure 3a-e shows the age distribution of cases and the distribution of the duration of some major 
symptoms (table 2 gives a summary of the data).  
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Figure 3a Age distribution   Figure 3b: Fever duration 

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

 

0 1 2 3 4 5 6 7 8 9 10 11

 
 
Figure 3c: Limb pain duration   Figure 3d: Asthenia duration 
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Figure 3e: Muscle pain duration 
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Table 2. Summary statistics for symptoms. 

  Mean 95%CI 
mean 

SD Median 

Age N =197 57 54 - 60 21 60 
Symptoms duration in days     

Fever N=148 3.0 2.7 - 3.3 1.5 3.0 
Joint pain N=156 5.8 4.8 - 6.9 6.5 4.0 

Asthenia N=45 8.4 6.9 - 9.8 8.0 5.5 
Myalgia N=66 6.6 4.8 – 8..4 7.4 4.0 
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The median age of the diseased persons is close to the mean value, indicating a rather normal 
distribution of the age. The mean duration of symptoms is, as shown in table 2, in the range of 6.5 - 8.5 
days and agrees well with the value of 7 days for the infectious period assumed by Bacaër (2007) for 
the La Réunion outbreak, although even the La Réunion data show high variability for infectious 
period in humans and incubation period in vectors.  
 
The distributions of symptom durations are all left-skewed; a few individuals show some symptoms 
for more than 30 days. An estimation of the infectivity period based on symptoms is thus not 
straightforward. Some long-lasting symptoms such as joint pain will most likely not correlate with 
infectiousness. Parameter estimates for models (i.e. the infectious period) should, however, possibly 
still be based on median values, not means.  
 
The median values for the main symptoms are in the range of 3 - 5 days. 
 
The list of the cases in the database contained several fields, including the home address of the affected 
persons, from which it has been possible to derive the geo-location of the cases, as described in 
Appendix A. 

 
Figure 4 – Geographical distribution of the cases. The red dot represents the index case location 
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2.1 Estimation of the time evolution of the epidemic 

2.1.1 The basic reproduction number R0 
 
In epidemiology, the basic reproduction number of an infection is the mean number of secondary 
cases a typical single infected case will cause in a population with no immunity to the disease in the 
absence of interventions to control the infection. It is often denoted R0. This metric is useful because it 
helps determine whether or not an 
infectious disease will spread 
through a population (Anderson & 
May 1991). It was originally used 
by George MacDonald in 1952, 
who constructed population models 
of the spread of malaria. 
 
When R0 < 1 the infection will die 
out in the long run (provided 
infection rates are constant). But if 
R0 > 1 the infection will be able to 
spread in a population.  
 
Large values of R0 may indicate the 
possibility of a major epidemic. 
 
There are several ways to estimate 
R0. A formula to estimate R0 for 
vector born diseases derived from 
the above modelling approach and being ‘classic’ is:  
 

2

0
'qq pR

P
β

αµ
=  

 
where  

β is the biting rate of the vector,  
q, q’ are the transmission probabilities per bite from vector to human and from human to vector 
p is the vector population  
P is the human population 
1/α is the average infectious period in humans  
1/µ is the life expectation of adult vectors 

 
R0 is proportional to the vector population p. A straightforward calculation of R0 based on the above 
formula would lead to an overestimate of R0. The reason for that is that there are parameters of which 
the values are unknown, such as the population of the vector and the transmission probability from 
vector to human und vice versa. Thus, rough estimates and missing information on essential 
components of the epidemic don’t allow a straightforward estimation of the R0 base on the above 
formula. A different approach is needed (work in progress). 
 
If surveillance followed the evolution of vector density before and during the epidemic R0 could be 
estimated more reliably from the above formula  
 

Values of R0 of well-known infectious diseases 
Disease Transmission R0 
HIV/AIDS Sexual contact 2-5 
Diphtheria Saliva 6-7 
Influenza 
(1918 pandemic strain) Airborne droplet 2-3 

Measles Airborne 12-18 
Mumps Airborne droplet 4-7 
Pertussis Airborne droplet 12-17 
Polio Faecal-oral route 5-7 
Rubella Airborne droplet 5-7 
SARS Airborne droplet 2-5 
Smallpox Social contact 6-7 
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2.1.2  Estimation for the doubling time of human cases 
 
A preliminary evaluation based on the information about the incidence of the human cases can be done 
by estimating the increase of the number of case over time before any intervention. The only available 
information for that purpose is the times of symptom onset. A first approximation uses the assumption 
of an exponential increase in the number of case over time. The doubling time (Td) is the time needed 
to double the number of cases during an epidemic. Doubling times are a measure of the rate of spread 
of disease and also indicate the magnitude of control efforts required to curtail spread.  
 
Although this is not the same as the basic reproduction number, since the infectivity period of 
mosquitoes and humans aren’t included, it provides a first estimate for the increase of the human cases 
of time. If r is the rate of increase then the number of cases will increase according to the function 
 
 

( ) rt
oN t N e= . 

 
If N0 is the initial number of cases at time t = 0 then the doubling time is  
 

ln2
dT

r
=  

 
In the case of the CHIK epidemic the presentation of the number of cases under a semi logarithmic 
scale shows clearly a very good approximation of the initial increase as an exponential curve (thus the 
cases follow a straight line). 
 
The best fit of the cumulative incidence function yields a value of 0.0869, which corresponds to a 
doubling time of the number of cases Td = ln(2)/0.0869 = 7.97 days, or about 8 days. 
 
 
. 
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Figure 5 – Semilogaritmic axis representation of the epidemic cases 
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3 A simple deterministic compartmental model for chikungunya 

3.1 Model assumptions 
Deterministic compartmental models are a well-established means to reduce the biological complexity 
of epidemics to the key characteristics that are relevant to the infectious disease under consideration. 
For this exploratory examination of the Italian outbreak we made use of the framework developed by 
Bacaër (2007, p. 1082) for describing the outbreak in La Réunion, which uses the following 
compartments: S(t), the susceptible human population; E(t), the infected, but not infectious human 
population; I(t), the infected human population; R(t), the immune human population; s(t), the 
susceptible vector population; e(t), the infected, but not infectious vector population and i(t), the 
infected vector population. The model reads: 
 

( )( ) ( )

( )( ) ( ) ( )

( ) ( )

( )( )

( )( ) ( )

( ) ( )

( )

ds I ts t s t
dt P
de I ts t e t
dt P
di e t i t
dt
dS S ti t
dt P
dE S ti t E t
dt P
dI E t I t
dt
dR I t
dt

λ β µ

β γ µ

γ µ

β

β δ

δ α

α

= − −

= − +

= −

= −

= −

= −

=

 

.  
In order to simulate an outbreak estimates for a number of parameters are needed that describe the 
development of the disease in humans and vectors and transition rates between the different 
compartments. The best and most recent information on most of these parameters relies on the 
outbreak in La Réunion. Therefore the following assumptions were made in the calculations:  

 
• Incubation period in vectors, 7 days (rate γ=0.14) 
• Life expectation of vectors, 30 days (rate µ=0.03) 
• Incubation period in humans, 4 days (rate δ=0.25) 
• Infectious period in humans, 7 days (rate α=0.14) 
• Period between bites, 4 days (rate β’=0.25) 
• Probability of transmission from vector to human (q’) 0.70 and from human to vector (q) 0.70. 

Note that the transmission rate β=β’q’ and β=β’q for vector-to-human and human-to-vector 
transmission respectively. The values for the above probabilities are reasonable guesses. 

• Initial susceptible population P, 3000 (approximately the population of the two villages) 
• Assumed initial population of vectors 8000. This yields a value of λ=264 for the constant 

migration rate of mosquitoes before the epidemic starts and is obtained as Number of 
mosquitoes divided by the Life expectation (Nm  µ) 

.  
Since the population of mosquitoes is totally unknown we estimated its value based on the total 
number of symptomatic infected cases and the duration of the outbreak.  
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3.2 Model results 
Figure 6 shows the cumulative number Y of confirmed cases (red) and the model prediction (blue), 
assuming that the mosquito control interventions on days 56 and 60 reduced the transmission 
probability 10-fold on each occasion.  
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Figure 6 – Comparison of the real cases (red) with the model prediction (blue) 
 
 The simulated final number of cases (195) agrees well with the actual number (201), and the course of 
the epidemic. This calculation is based on an infectious period of 7 days. The doubling time of the 
human cases during the period before the intervention is 7.5 days, consistent with the value estimated 
in the previous chapter.  
 

 
 
Decreasing the infective period leads to a much smaller number of cases. 
 
The total number of mosquitoes that have humans as the preferred host is an important parameter and 
one of our major uknowns. The results in Figure 6 are based on the assumptions that the ratio of 
mosquitoes to humans is 2.8:1. Figure 7 show the cumulative number of cases if the mosquito 
population is halved. 
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Figure 7 – Results of the simulation with mosquitoes population halved 
 
The total number of cases is now only 48. 
 
The following figure illustrates the effects of control measures. This simulation assumes that already 
on day 36 control measures were implemented. The final number of cases is then only 31. 
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Figure 8 – Results of the simulation showing the effect when control measures are applied at day 36 
 
These simulations show the importance of some essential parameters of which we have extremely 
limited information and of which improvement in relevant data generation should be pursued.  
In the case that no intervention is applied (Fig. 6) the outbreak would have continued for more than a 
month with a dramatic increase in cases. In fact almost everybody would have been infected. This is 
unlikely though and shows the weakness of more reasonable predictions due to lack of data for crucial 
parameter values.  
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Figure 9 - Theoretical course of the outbreak without any intervetnion 
 
These simulations show the importance of some essential parameters of which we have extremely 
limited information and of which improvement in relevant data generation should be pursued. 
 

3.3 Concluding remarks 
This exercise using a simple compartmental model shows that using parameter values derived from the 
La Réunion-outbreak does lead to an extremely good fit between the model output and the Italian 
outbreak data (Figure 6).  
 
 It should be pointed out though that in that case crucial unknown parameters such as the number of 
mosquitoes and the probability of transmission (and only those) were chosen in such a way that the 
model could fit the data based on the duration and the number of cases showing symptoms. 
 
Thus the fit should be taken with caution. It is possible that the behaviour and physiological ecology of 
the vector differs between Italy and La Réunion which implies differences in the fixed parameters too.. 
Differences in temperature may, for example, affect the incubation period of the virus in the mosquito 
and other ecological factors may influence the life expectancy of the vector Aedes albopictus. 
Quantitative predictions also depend on the preference of the vector for outdoor vs. indoor feeding and 
its use of alternative hosts (dogs, cats, and cows). This shows that significant effort needs to be spent 
on collecting fundamental entomological information on the vector. Even if this information is still not 
available, modelling can help to identify sensitive parameters and thus perhaps assist in focusing 
monitoring efforts. 
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4 An agent-based approach 

4.1 Introduction to Agent Based models 
The contact structure in a population is important for the spread of an infectious disease. For diseases 
like influenza or smallpox, transmission is most likely when persons are at the same place at the same 
time. Homogeneous-mixing models, such as the compartmental model presented above, assume that 
all hosts have identical rates of disease-causing contacts. Agent-based models (ABM) are a type of 
model which has the ability to represent complex systems through the local interactions between 
individual entities in a spatially explicit environment. The behaviour of agents is determined by a set 
of individual and collective decision rules. This type of model can thus more easily represent 
heterogeneities in the mechanisms of disease propagation. 

 
Figure 10. Agents move interact an environment and can have individual behaviour. 

Agent-based approaches have been used in epidemiology to model the spread and control of infectious 
diseases in a spatially-explicit manner. Ferguson et al. (2006) present a large-scale, individual based 
model to estimate the consequences of control measures such as border and travel restrictions, school 
closures, case isolation, household quarantine and anti-viral treatment on an influenza pandemic in the 
US and the UK. For the case of smallpox, Halloran et al. (2002) present an individual-based, 
stochastic, spatially explicit and socially heterogeneous model to calculate the consequences of mass 
vs. targeted vaccination.  
ABMs have so far not been used extensively to model the propagation of vector-borne diseases, so that 
their strength and weaknesses concerning this type of diseases are still not clear. 
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Figure 11. Spatially explicit modelling: for instance human agents are located in houses, while mosquitoes are more 
randomly located and follow Brownian motion, with a expected daily range. The initial infection can be put in the 
centre of a populated area or on the outskirts, with different behaviour of the disease propagation. 

 
One important feature of ABMs is that they are stochastic. Every model run has different results 
because agents interact in a stochastic manner with each other. Unlike deterministic models, many 
model runs are necessary to understand the macro-behaviour of the modelled system. 
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Figure 12. Influence of daily travel range of mosquitoes. While some runs with daily range of 200m yield less 

infected people than runs with daily range of 20m, this is not so on average.  

Since many runs are needed to understand the macro-behaviour, this can also be used to determine 
parameter values following the Monte Carlo method. For instance, in each run one parameter value 
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can be varied. Comparing the model outcomes with known values, the best parameter value can be 
estimated.  
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Figure 13. Optimal value for daily range is between 25 and 30 m. Note that when the daily range exceeds a given 

value (80m in this case) the outcome is influenced strongly by the size of the world and associated boundary effects. 

 
 
The outcome of ABM models is determined by the contact model between agents. 
 Different ABMs model contact in different ways. However, since an agent can only be infected by 
having contact with another agent, the contact model is critical. Typically, ABMs first consider an 
arbitrary area (called contact area) within which agents can interact in each time step. Further, 
interaction of agents within the contact area is governed by statistical rules (such as “all mosquitoes 
bite all humans with 75% probability”). Finally, at each time step agents move whereby some agents 
move into another (neighbouring) contact area. 
 
The contact rates, the bite probability and the movement variables need to be set-up properly because 
the same behaviour may be obtained by increasing one and decreasing the other parameter. 
 
In fact, within each contact area, a deterministic model holds, similar to what was previously described 
by 

. 
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=  

However, the vector and people populations in each cell change at each step by movement, resulting in 
an open world model instead of a closed world model (at the scale of a contact area). If contact areas 
increase in size, more agents are in the contact area and the number of possible interactions changes 
with l2, where l is the dimension of the contact area (radius of circle or side of square). In order to keep 
a constant number of interactions, the bite rate β needs to be modified. Therefore, equivalent models 
must have: β.l2  = constant. Similarly for models with different time steps, equivalent models have: 
β/∆t  = constant. 
 
ABMs are able to model a very important aspect of disease propagation: when a single infected 
individual (mosquito or person) is introduced in a healthy population, the susceptible population is 
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restricted to the neighbourhood of the infected individual. Indeed, initially only the agents in the same 
contact area as the infected agent are at risk. 
 
Only when infected agents move outside of the initial contact area, other agents in neighbouring 
contact areas become susceptible. In other words, the susceptible population grows with time, based on 
the movement of mosquitoes and people. For instance, if an infected person lives in the centre of a 
village with radius 300m and mosquitoes have an average daily range of 30m it takes around 10 days 
for a person living at the edge of the village to be at risk. 
 

4.2 Application to chikungunya 
We use the chikungunya outbreak in the two villages of Castiglione di Cervia and Castiglione di 
Romagna for the following reasons: 

 
• the greater cluster of cases was in these two locations 
• the initiating case (index case) was here 

 
The information we could use is as follows 

• Population data from “Comuni Italiani”:  
o 1284 Castiglione di Cervia 
o 1660 Castiglione di Romagna 
 

• High Resolution Image from Virtual Earth 
 
In order to position the human agents we decided to use the satellite image and a technique developed 
at JRC to obtain the built-up area. Census data would have certainly be more accurate but they are not 
publicly available. In addition this procedure may be used also for areas where census data are not 
present at all. 
 
In order to define the built-area in the affected area, a procedure for the calculation of a “built-up 
presence index” has been used (Pesaresi, 2007).  
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Figure 14. – The two villages in an aerial image from Virtual Earth 

The methodology allowed deriving a dataset containing the geographical coordinates of each 
inhabitant of the two villages and which was respecting the actual population density and the actual 
overall population. This information was used as a basis for the agent based modelling. Details about 
the procedure are described in Appendix A. 
 
 

 

 
Figure 15 – Population distribution in the two villages 

 
 
Two agents have then to be defined: the mosquitoes and the humans. 
 

4.2.1 Mosquito model 
An arbitrary number of mosquitoes has been defined (3000); the mosquitoes are characterized by the 
following behaviour: 
 

• Their initial position coincides, initially, with one of the humans, on a random basis. 
• They can move in any direction within a maximum radius (we tested 200 m and 500 m) 
• The probability of contact between a mosquito and a human is defined as follows: when the 

distance between the mosquitoes and one human is lower than 10 m, there is a probability of 
10% of having a contact 

• 3 states are possible for mosquitoes: 
o Susceptible  
o Infected (if a mosquito bites an infectious human can become infected in 75% of the 

cases)) 
o Infectious, after 4 days of incubation period 

• The average lifespan is 30 days2 
 

                                                 
2 A lifespan of 30 days is based on laboratory studies. It is safe to assume that the life expectancy in the wild is much 
shorter 
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Figure 16 – Scheme for mosquitoes states 

4.2.2 Human model 
A number of humans that respect the population of the two villages is distributed over the built-up area 
(2944 individuals). They are characterized by the following behaviour: 
 

• Humans do not move. It is intended that since most of the bites are occurring in the night, it is 
“as if” they don’t move. In reality the literature on the biology of Aedes albopictus states that 
the mosquito is mostly active during the day. However the human movements would cause a 
change in the macro-spreading (transfer to other cities) but not at village level. 

• The probability of contact between a mosquito and a human is defined as follows: when the 
distance between the mosquitoes and one human is lower than 10 mt, there is a probability of 
10% of having a contact 

• 4 states are possible for humans: 
o Susceptible  
o Infected (if an infected mosquito bites a susceptible human, the human can become 

infected in 75% of the cases)) 
o Infectious, after 7 days of incubation period 
o Immune, after 14 days from the bite 

 

 
Figure 17 – Scheme for human states 
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4.2.3 Initial condition 
The initial condition is modelled as one infected human (at the beginning of his infectious period) 
located in a certain position in the village. We tested 4 initial locations in order to check which is the 
effect of the index case location, when located in areas at different population density. 
 
Positions 1 and 2 (see Figure 18) are characterised by a local medium population density in Castiglione 
di Cervia (1010 and 1169 persons per km2) and the difference is the distance from the river and thus 
from Castiglione di Romagna (position 1 closer to Castiglione di Romagna). Position 3 is in a low 
density area (358 persons per km2) and position 4 in a high density area (2800 persons per km2). It 
should be noted that the position (1) was the one closest to the real case. 
 

 
Figure 18 – Initial position of the index case 

 
The calculations were performed by letting time run and having the mosquitoes move and interact 
according to their rules. The results are presented in terms of location of affected humans (pink if 
infected, red if infectious, gray if immune) and time behaviours. For all the cases 4 calculations have 
been done because each one, due to the random nature of the process, behaves differently. 
 
Time 0 is represented by 23/6/2007, when the index case visited his cousin in Castiglione di Cervia, 
during his second fever episode. The cousin was the second case and became ill after about 12 days.  
 

4.2.4 Actual cases 
 
 

4.3 Calculations results 

4.3.1 Initial case in position (1) 
Starting from position 1 the trend is the one indicated in Figure 19. It should be noted that the results 
from an agent based model are not depicted by a single curve. In the figure the red curve represents the 
actual cases while all the other curves have been obtained starting from the same initial condition. Due 
to the random process in some cases (the upper curve) the infection reaches the village on the other 
side of the river and the number of cases is very high, in other cases (the lower curve) the infections 
remain mostly in the village of Castiglione di Cervia. The actual case is in the middle and is well 
represented by a couple of our calculations. It is interesting to note the same type of start/stop of the 
cases in coincidence with the various generations of mosquitoes. 
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It should be noted that the cases can be compared only until the 56th day, when the disinfection starts. 
The disinfection has not been accounted for in these calculations.  It could be possible to repeat the 
calculations considering the disinfection, as done for the global case, but it would be necessary to 
guess an efficienty rate, which at the moment is not well known.  
 
 

  
Figure 19 – Results of the agent base model starting from position (1) 

 
 

4.3.2 Initial case in position (2) 
The results of this case are very close to the previous case with lower values for all the curves because 
the initial position is further from the river and thus from the other village at higher population density. 
 

4.3.3 Initial case in position (3) 
The results of the calculations starting from position (3), where a very low population density is 
present show that the number of cases is much lower than in the previous simulations. It should be 
noted that in some of the simulations no secondary case have been created because the infection did 
not propagate and extend. 
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Figure 20 – Calculations results starting from the north position 

4.3.4 Initial case in position (4) 
The results of the calculations starting from position (4), a location with a higher population density , 
show that the number of cases is much higher than in the previous ones. In this case it is even more 
evident the 3 generations of mosquitoes which cause quite evident periods of cases increase along the 
time. 

 
Figure 21 – Calculations results starting from the higher density position (4) 
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4.3.5 Effective population concept 
When the epidemic starts (i.e. the index case in a certain position), the number of susceptible persons 
are not the whole village but only the persons that are in the area of activity of the mosquitoes (i.e. 200 
m circle in the assumption of constant radius migration).  
 
As the infection progresses the number of susceptible persons increase because the radius of the more 
distant infected person increase and allows other mosquitoes to infect other persons. 
 
Fig. 16 shows the number of persons involved in the maximum radius which is starting from 200 m 
and ends with about 600 m from the initial case. At 60 days the persons inside this radius is only 1200 
and not 2850 as the total number of persons. At the beginning only 153 persons are susceptible which 
are the ones included in the 200 m initial radius from the index case. 
 

y = 0.0049x3 + 0.0273x2 + 0.0883x + 153.01

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60 70

Number of persons

Ti
m

e 
(d

ay
s)

Series1
Series2
Poly. (Series1)

 
Figure 22 – Number of persons involved in a case 

 
This could be reflected also in the global model and consider a variable number of susceptible persons 
instead of a fixed number. In such a way the global model could also take into account the spatial 
propagation. 
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4.4 Discussion of the results 
The results of the agent based simulations lead to the following conclusions: 
 

• Altough the number of cases tested in this simulation is rather limited, they show a great 
variability even starting from the same initial condition (20-30 % of standard deviation) 

o This result may be due to the low assumed number of mosquitoes (3000). Maybe a 
much higher number of mosquitoes (and a corresponding lower bite rate) would have 
led to a more reduced variability.  

o It could however that the variability is inherent in the stochastic nature of the process 
• In several cases no secondary case is generated, in particular when population density is very 

low or when the mosquitoes density is very low 
o It would be interesting to show what happens in the other locations where there were 

some limited clusters, such as Cervia 
• The calculated trend show a clear relationship with the population density 

o This relation is valid for the assumed mosquitoes density; an increase or a decrease of 
the mosquitoes population would have a similar effect on the results, as already shown 
in 3.3. 

 
 

 
 
 
 
 

 
  Cast Rav EAST WEST NORTH 

Pop. Density (n/km2) 2800 1010 1169 358 
Case 1 597 185 198 37 
Case 2 907 353 228 33 
Case 3 781 120 162 1 
Case 4 532 377 294 10 

          
Average 704 259 221 20 
Standard Dev 148 126 56 18 

Table 4 – Agents based modeling results 
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Figure 23 – Relation between population density and Number of cases 
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5 Discussion on the two approaches 

5.1 Complementarity of the two approaches 
(May I note some of the problems I see with ABMs?) 
- ABMs rely on assumptions on individual behaviour that are not always easy to measure or validate; 
this applies to humans and mosquitoes 
- it has to be decided which behaviours are included and which are left out 
- there are computational and memory limitations to simulate outbreaks with more susceptible persons 
The ABM are however able to give information related to the time and special distribution, whereas 
the compartimental models assume an homogeneous distribution of the cases. 
 
Compartmental models are more austere in their assumptions and give precise, numerical answers. The 
low number of assumptions and the uncertainty of parameter estimates, however, only allow the 
exploration of fundamental, abstract processes. In order to better capture the complexity of acute 
epidemic threats, additional structure needs to be included, for instance stochasticity, heterogeneity 
and spatial structure. 
 
 

5.2 Simulation of a large city not possible with an ABM 
The simulation of a huge amount of humans (or vectors) makes the system difficult to manage and 
time consuming, thus for this type of evaluations global models are more easy to use. However there 
are examples and studies (University of Trento) of simulation of the whole Italian population with 
ABM; also in USA they prepared a large computational model using several parallel processors. 
Alternatively it could be possible to reduce the granularity: agents could be defined differently, with 
different behaviour. (e.g as blocks or groups of people) 
 
 
 

5.3 How is it possible to use the global method in real time modelling 
The real time modelling of an epidemic outbreak uses a 2-step method: fast data collection and 
estimation of parameters and then the use of these parameter estimates in predictive models. The 
deterministic compartmental model presented here could be used for such a purpose. However, real-
time modelling of a vector-borne disease faces some additional challenges. Any predictive model (if 
compartmental or agent-based) relies on parameters that describe the biology of the vector and these 
parameters have to be known beforehand. The incubation period of the virus in the vector or the 
lifespan of the vector cannot be measured in real-time. 
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6 Conclusions 
An analysis of the chickungunya outbreak which affected the region of Emilia Romagna, in Italy has 
been performed. The analysis was conducted using 3 approaches: a descriptive statistical method 
trying to identify common clinical characteristics among the cases; a deterministic compartmental 
modelling method for an almost closed population case; an agents based model to simulate the 
geographical progression of the epidemic. 
 
The main results are here reported for each of the approaches. 
 
The descriptive statistics of disease symptoms shows that the cases in Italy are similar to the symptoms 
reported for earlier outbreaks (e.g. Borgherini et al. 2007). The clinical; features of chikungunya fever 
are still poorly documented and such a documentation is important in order to facilitate rapid 
diagnosis. It was possible to identify and evaluate the doubling time (about 8 days) for the initial part 
of the epidemic before intervention Unfortunately the data we received aren’t final. New confirmed 
positive and negative case appeared later on. Thus the numbers of cases we used refer to a period of 90 
days after the initial case appeared and should be regarded as preliminary. The calculation of R0  
cannot be done through the classic formula but has to be provided through other methods in that case 
statistical methods (work in progress). 
 
The deterministic compartmental modelling approach shows that based on the estimates for the 
chikungunya outbreak in La Réunion a description of the outbreak in Italy is feasible, but some 
unknowns still remain. Some selected numerical calculations show how the results depend on different 
parameter values as well as how earlier intervention would change the dynamics of transmission.  
 
The Agents Base Model calculations show that it is possible to represent the spatial component 
distribution of the cases. However also in this case some important assumptions have been done in the 
model parameters which are not well known (i.e. biting rate or contact area). It is however possible to 
find a parameter combination which describes extremely well both the temporal and the spatial 
components. In addition the Agents Base Model results are stochastic in nature, thus a single 
calculation could not be significative of the real average behaviour and the analysis with ABM models 
can be very much time consuming. 
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Appendix A – Geolocalization procedure 
 
The list of 300 cases, as provided by the Ministry of Health, was geo-coded using an address matching 
algorithm into a GIS environment (Esri ArcMap) followed by a manual check (fig. 1); at the end of the 
procedure two new attributes was added to each geolocated record: the latitude and longitude. The 
reference data used to match the addresses was the Teleatlas MultiNet dataset.  
At the end of the procedure 298 out of 300 cases has been geolocated (fig. 2).  
 

 
Figure 24 - Semi-automatic geocoding procedure flow-chart 
 
 
Starting from the original address list a preliminary homogenization control was performed in order to 
correct eventual spelling errors and to rewrite all the addresses to match the adopted address style. 
 
After this, the data were automatically geo-coded using an address matching algorithm. This procedure 
located each address comparing it with the reference data, in our case the TeleAtlas Multinet dataset, 
and added to the original table four new fields:  

• the coordinates (lat/lon in decimal degrees),  
• the resulting code of the matching operation (EXACT, CANDIDATES, NOMATCH), 
• and an estimation of the accuracy (0-100%).  

This process produced 154 exactly matched records.  
The remaining 146 records underwent a secondary manual process aimed to: 

• check the results for records that were matched but still having a candidates status; 
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• geocode the records not matched or the candidates wrongly matched using different data 

sources and services. 
•  

Out of the 146 record not exactly matched during the first automatic process, 74 of the candidates were 
correctly matched while 70 were matched manually using different data sources and services such as 
Google Earth3, ViaMichelin4 maps and navigation services and local sources. 
 
At the end of the process only 2 records were not matched because of the lack of address information 
in one case and the impossibility to find the name street of the second one. 
 

Final results of geocoding procedure

74

154
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1

1

CANDIDATES
EXACT
MANUAL
NOMATCH
(blank)

 
Figure 25 – Final results of the geo-coding process. 
 
 

                                                 
3 http://earth.google.com/intl/it/ 
4 http://www.viamichelin.it 
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Appendix B – Description of the methodology used for retrieve 
population density in the affected area  
 
In order to define the built-area in the affected area, a procedure for the calculation of a “built-up 
presence index” has been used (Pesaresi, 20075). The index is based on fuzzy rule-based composition 
of anisotropic textural measures derived from the satellite data by the gray-level co-occurrence matrix 
(GLCM). Even if others methodologies could be used in order to retrieve built-up areas form the area 
in exam (digitalization, color pattern technique), the textural analysis is a very generic technique that 
has proved to work excellent in different conditions. 
As input, a snapshot from MS Virtual Earth, that covers the whole Italy with ortofoto from airborne 
(2002), has been done. The places cover an area of about 3x2 kilometers with a total surface of about 6 
square kilometers. 
As a result of the “built-up presence index” procedure, a polygon vector representing the built-up area 
has been obtained. 
The input image as well the polygon vector of built-up areas has been georeferenced. 
 

 
Figure 26: Row image from MS Virtual Earth 

 

 
Figure 27: The georeferenced image with the TeleAtlas 
street network 

 

 
Figure 28: The built-up area obtained from the “built-up 
index” 

 
Figure 29: The airborne image of the affected area with 
the built-up area obtained from the “built-up index” 

 
In order to calculate the population density in the area, the vector “built-up” layer has been converted 
to two raster of 10 meters of resolution, one for each place. Then for each output raster the total 
population of each place was divided by the total built-up area converted in 10 meters, and the value 
obtained was assigned to each pixel as population density. 

                                                 
5 M. Pesaresi A. Gerhardinger. F. Kayitakire, 2007: Monitoring settlement dynamics by anisotropic textural analysis by 
panchromatic VHR data. Proceeding of the Urban Remote Sensing Joint Event 2007, Paris, France, 11-13 April, 2007. 
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