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1. Abstract 
 

There is now near undisputed scientific consensus that the rise in atmospheric 

concentration of greenhouse gases causes warming at the Earth’s surface. Global 

warming will also have impacts on human health. We focus here on vector-borne 

infectious diseases because climatic variables are major determinants of the 

geographical distribution of the cold-blooded insect and tick species that can transmit 

viruses, bacteria and other microparasites to humans. The distribution of vectors is 

thus one important component of infection risk. We review the methods that have 

been developed in the past few years to determine and to model the distribution of 

species under actual and hypothetical environmental conditions and show how 

mathematical models have been used in this context. 

Remote sensing technology offers progressively better environmental and climatic 

data which can be employed in conjunction with Geographic Information Systems 

(GIS) and spatial statistical techniques to determine the distribution of vector species 

under different scenarios. Mathematical models can help to elucidate many aspects of 

infectious disease dynamics. The available studies lead to the expectation that 

climate change affects the transmission dynamics of vector-borne infectious diseases. 

However, the details and the degree of these effects are very uncertain. In order to 

predict more reliably the effects of extreme climate variability or climate change on 

infectious disease dynamics more data on the interaction between ecological, 

epidemiological, economical and social processes are needed. 
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2. Risk mapping 
 

2.2. Climate Change and Health 
 

There is now near undisputed scientific consensus that the rise in atmospheric 

concentration of greenhouse gases causes warming at the Earth’s surface. These 

changes will become progressively more apparent through increases in extremes of 

temperature and precipitation, loss of seasonal and permanent snow and ice cover 

and sea level rise. Weather and climate directly affect human physiology and thus 

human well-being, especially in extreme weather situations which fall outside of the 

range to which individuals in a region are adapted to. The effects of heat waves are 

the most obvious demonstration of this fact. Health outcomes of extreme climate 

variability or even climate change do, however, not exclusively depend on the direct 

exposure to weather- or climate-related hazards, but also on indirect effects through 

ecological, demographic and social factors.  

Infectious diseases involve humans in a “mini-ecosystem” consisting of a few 

components: host, pathogen, environmental factors and in some systems vectors and 

non-human reservoir species as well. Vector-borne diseases offer a very good 

opportunity to study the potential impact of climate change on infectious diseases; 

this is because methods that have been developed to predict the distribution of 

species under new climatic conditions can be applied in a relative straightforward 

manner to insect and tick vectors of important infectious diseases.  
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2.3. Climate Change and Vector-Borne Infectious Diseases 
 

The dynamics of most infectious diseases, if transmitted through blood eating vectors 

or not, are affected by climatic factors. In temperate latitudes, influenza mainly 

occurs in winters and outbreaks of cholera in India are apparently affected by the El 

Niño Southern Oscillation (ENSO). However, the mechanisms behind the climate-

sensitivity of such diseases not relying on vectors for transmission are still 

hypothetical and are not yet supported by robust empirical evidence. For example, 

the strong seasonality of influenza in temperate latitudes could be caused by the 

effects of environmental factors on the virus during transmission (Lowen et al., 2008) 

or by seasonal changes in the susceptibility of the host (Dowell and Ho, 2004). It is, 

therefore, not feasible at the moment to try to predict with any confidence the 

consequences of climate change on, for example, influenza. 

The situation is very different for vector-borne diseases. Survival and reproduction 

rates of the cold-blooded insect and tick vectors of human pathogens are sensitive to 

variation in temperature and moisture. Furthermore, the development of the 

infectious agent within the vectors (extrinsic incubation) is also temperature-

dependent. It is not only these direct links between biological and climatic 

parameters which make vector-borne diseases of special interest in the context of 

environmental and climate change. Until the early 20th century, vector-borne diseases 

were responsible for more deaths in humans than all other causes combined. These 

diseases prevented the settlement and development of large areas in the tropics, but 

also held back European countries like Italy. In the course of the 20th century, 

malaria was controlled in many areas of the world, but the ambitious goal of 

eradication failed and malaria still causes one million deaths and 300 million acute 
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illnesses per year worldwide. In many countries, especially in Sub-Saharan Africa, 

malaria was never under control and the situation is worsening. The continued 

presence, emergence and re-emergence of vector-borne diseases, the geographic 

spread of vector species such as the tiger mosquito Aedes albopictus and concerns 

about climate change have brought vector-borne diseases back into the limelight.  

The dependence of biological parameters of vectors and pathogens on single 

climatic factors like temperature and moisture is often relatively straightforward, but 

to predict the outcome of complex climate change on the web of interactions between 

vector, pathogen and host – a web that is embedded into a social and economic system 

that co-determines health risks and outcomes – is certainly far from easy. Using new 

technologies of data acquisition and analysis, certain aspects can, however, be 

investigated. For most vector-borne diseases (some like plague and tularemia also do 

have non-vector-borne transmission pathways) there can be no transmission without 

vectors. The distribution of vectors thus is one measure of risk. In the context of 

climate change and biodiversity research new methods to determine and to model the 

distribution of species under actual and hypothetical conditions have been developed 

in the past few years and these methods are increasingly used to study the 

epidemiology of vector-borne diseases. 

 

 

2.4. Remote Sensing and GIS 
 

Remote sensing with satellites has transformed the study of the environment. 

Remote sensing satellites provide continuous and synoptic measurements of the 

terrestrial and atmospheric environment. This ability to monitor the Earth’s surface 
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at large spatial scales is particularly important in a situation where human-caused 

environmental change spans the entire globe. Earth-observing satellites like Ikonos, 

Landsat or SPOT provide images with resolutions between 1 and 120 m on 4 or 7 

multispectral channels and 1 panchromatic channel. These satellites have a low 

repeat frequency (i.e. the frequency with which the same area is visited) with a period 

of 11-26 days. Orbiting oceanographic or atmospheric satellites have lower spatial 

resolution, as low as 1.1 km, but they produce 2 images per day of the entire Earth’s 

surface. The NOAA-AVHRR (Advanced Very High Resolution Radiometer) series of 

satellites has produced more than 20 years of continuous observations. A new 

generation includes the Terra and Aqua satellites. Geostationary weather satellites, 

such as GOES and the Meteosat series, give spatial resolutions of 1-5 km and two 

images of the entire Earth half-disk each hour. There are, however, many potential 

complications, limitations and causes of error associated with satellite data that add 

noise to the data – sensor calibration, ground and atmospheric conditions or orbital 

and sensor degradation – and that require careful quality control and specific 

statistical techniques in the processing of data. 

Well-documented and quality-controlled data provided by satellites can be used in 

several different ways that are pertinent for ecology and epidemiology. Remote 

sensing data are routinely employed to estimate the variety, type and extent of land 

cover in a region. Such land cover data describe the physiographical characteristics of 

the surface environment, which can range from bare rocks to lush tropical forests. 

Land cover classifications are usually derived by applying statistical clustering 

methods to multispectral remote sensing data. Land cover data and bioclimatic 

variables can be combined to predict the presence and absence of species (e.g. 

Cumming 2000). Ecosystem function over wide areas can also be estimated through 
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remote sensing data; net primary productivity (NPP, the production of organic 

compounds from carbon dioxide) is represented by the normalized difference 

vegetation index (NDVI). The properties of NDVI time-series can be summarized in a 

variety of ecologically relevant indices: the Integrated NDVI (INDVI, a measure of 

overall productivity), measures of variability and a range of phenological measures 

(for example dates of the beginning and the end of the growing season). 

Measurements of NDVI have proved to be helpful in studies that attempt to 

differentiate between natural variation in ecosystem function and variation arising 

from human activities (Pettorelli et al., 2005). Remote sensing data have also 

provided convincing evidence that climate has changed rapidly: time series AVHRR 

data demonstrate that vegetation structure, primary productivity and growing season 

length have changed in the past 25 years (Zhou et al. 2001). The use of NDVI is not 

restricted to studies of plants. Various studies have coupled vegetation dynamics with 

biodiversity, animal species distributions, movement patterns of animals (e.g. 

migratory birds) and the performance of animal populations (reproduction or 

survival).  

The vast amount of complex data that can be gained by remote (and ground-based) 

sensing requires special methods of data analysis and evaluation. Geographic 

Information Systems (GIS) are systems of hardware, software and procedures to 

make possible the management, manipulation, analysis, modeling, representation 

and display of georeferenced data. Originally, GIS were developed to solve complex 

problems regarding planning and management of resources. GIS have the capacity to 

store, retrieve, analyze, model and map large areas with huge volumes of spatial 

data. In a GIS, data are organized into layers or coverages of related data that can be 

analyzed and visualized thematically. Three general types of spatial analysis tasks 
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can be performed in GIS: visualization, exploratory data analysis, and model 

building. With its extensive data management and display capabilities, GIS offers 

much more than simple mapping as a means for visualization. Map overlay 

operations allow, for example, computing new values for locations based on multiple 

attributes or data “layers” and to identify and display locations that meet specific 

criteria. Exploratory spatial analysis allows the investigator to sift meaningfully 

through spatial data, identify “unusual” spatial patterns, and formulate hypotheses 

to guide future research. The quantity and diversity of spatial data in GIS can be 

overwhelming: exploratory methods help to make sense of data and address “what if” 

questions. Modeling, the final class of spatial analysis methods, includes procedures 

for testing hypotheses about the causes of disease and the nature and processes of 

disease transmission. Modeling involves the integration of GIS with standard 

statistical and epidemiologic methods. GIS can assist in generating data for input to 

epidemiologic models, displaying the results of statistical analysis, and modeling 

processes that occur over space. 

GIS has been used in epidemiological research in all these three ways. The most 

basic application involves mapping the incidence/prevalence of a disease over some 

geographic area and to perform descriptive spatial statistics (Kleinschmidt et al., 

2000; Pfeiffer et al., 2008). Procedures for weighing and overlaying maps have been 

used to model the risk of Lyme disease (Glass et al., 1995). The goal of other studies 

is to investigate if any relationship exists between disease incidence/prevalence and a 

range of environmental or demographic data; such studies are focused on past trends 

and present situation. A number of studies are future-oriented and focus on 

predicting prospective risk (Schröder et al., 2007) and the production of risk maps is a 

central goal of such studies. 
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2.4. Risk Maps 
 

For both infectious and non-infectious diseases, spatial and spatio-temporal proximity 

to some “source” are relevant for the understanding of epidemiological patterns. The 

transmission of viruses or bacteria between a susceptible and an infectious person is 

generally far more likely if they are close to each other. This is also true for most 

vector-borne diseases as the vectors usually do not move over large distances. In the 

case of non-communicable diseases, the proximity to environmental risk factors may 

be important. 

The construction of reliable risk maps is a fundamental objective of epidemiology. 

Mapping of diseases to stimulate the formulation of causal hypotheses has a long 

history. Dot maps were already used in the 18th century to show the spatial 

distribution of cases; later, diffusion maps were employed to illustrate the spread of 

epidemics. Increasing knowledge on the exposure status of individuals allowed more 

quantitative estimates of risk and its spatial variation. The increased availability of 

epidemiological and environmental data and the advent of Geographic Information 

Systems have turned risk maps into an important tool for early warning, for planning 

efficient control measures, for subsequent evaluation and for optimizing the 

allocation of limited resources.  

The combination of spatially referenced environmental parameters and geo-

referenced records of vector occurrence can be turned into risk maps by using several 

different techniques. Spline and kriging are two methods for interpolating and 

predicting spatial data and these techniques have been used in spatial epidemiology 
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(e.g. Kleinschmidt et al., 2000). The past few years have also witnessed the increased 

use of ecological niche modeling (ENM) in the context of particularly biodiversity and 

climate change research, but also in epidemiology (Guisan and Thuiller, 2005; 

Peterson, 2006; Moffett et al., 2007; Benedict et al., 2007). The ecological niche of a 

species is the set of conditions under which the species can maintain populations 

without immigration of individuals from other areas; the fundamental niche describes 

under which conditions a species can potentially occur, whereas the realized niche 

describes the actual habitat types in which the species occurs. Based on geo-

referenced presence data, bioclimatic parameters and other ecologically relevant data 

it is possible to construct an “environmental envelope” for a species. Several 

computational techniques are used to produce ENMs; the two most reliable and 

widely employed are genetic algorithms (GARP, Genetic Algorithm for Rule-Set 

Prediction) and maximum entropy modeling (Maxent). GARP predicts simple absence 

or presence of a species, whereas Maxent calculates relative probabilities of 

occurrence and thus allows a more nuanced risk assessment.  

Vector-borne diseases offer excellent case studies for the construction of risk maps. 

Without competent vectors there can be no disease transmission. Mapping the 

fundamental niche of vector species thus identifies the regions, where the conditions 

for the existence of the species in question currently prevail or will prevail in the 

future if a certain scenario of climate change will be realized. A number of studies 

have shown promising results. Moffett et al. (2007) have produced a global risk map 

for malaria using ENM. The methods to produce risk maps are computationally 

intensive. For example, Moffett et al. (2007) include the following 21 environmental 

parameters into their maximum entropy model: annual mean temperature, mean 

diurnal range, isothermality (mean diurnal range/temperature annual range), 
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temperature seasonality, maximum temperature of warmest month, minimum 

temperature of coldest month, temperature annual range, mean temperature of 

wettest quarter, mean temperature of driest quarter, mean temperature of warmest 

quarter, mean temperature of coldest quarter, annual precipitation, precipitation of 

wettest month, precipitation of driest month, precipitation seasonality, precipitation 

of wettest quarter, precipitation of driest quarter, precipitation of warmest quarter, 

precipitation of coldest quarter, altitude and land cover. Peterson et al. (2005) use 

seven GIS coverages (elevation, slope, aspect, topographic index and three NDVI-

based indices) and GARP to model the temporal dynamics of dengue mosquitoes in 

Mexico; their predictions of monthly mosquito activity coincide significantly with 

human cases of dengue. The study by Benedict et al. (2007) uses ecological niche 

modeling to evaluate the global risk of spread of the tiger mosquito Aedes albopictus. 

Risk maps based on arthropod vector data are a first important step, but they 

need to be complemented with more detailed information on vector species and with 

epidemiological data on hosts (Eisen and Eisen, 2008). Risk maps are often based on 

records of vector presence; however, for maintenance or spread of a pathogen, 

abundance of infected vectors has to be above a threshold and distribution models do 

not provide this kind of information. Modeling therefore becomes an important aspect 

in the construction of reliable risk maps; models cannot easily predict vector 

abundance either, but in the interplay of predictions on occurrence and observed data 

on abundance, models can help to deliver a more reliable risk assessment. A further 

potential limit on the predictive capacity of risk maps are complex interactions with 

resident competitors and potential microevolutionary, genetic responses of vectors 

when invading new habitats that never are exactly alike the original habitats. For 

example, larval competition from invaders can increase the vectorial capacity of the 
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adults of resident mosquito species (Bevins 2008). In mosquitoes and many other 

organisms, genetic change with respect to changing photoperiod – and not changing 

temperature – when invading new habitats has been demonstrated (Bradshaw and 

Holzapfel 2006). 

However, risk maps still can play an important role. It will be difficult to estimate 

absolute risks unless very good information on vector abundance and habitat 

structure is already available; estimation of relative risks in different regions 

appears, though, to be a realistic outlook for a number of vector-borne diseases. 

 

 

 

3. Mathematical Modelling 

 
In recent years, there has been a growing awareness of the risks to human health 

posed by anthropogenic global environmental change. Changes in the pattern of 

infectious diseases may be one of the most noticeable risks (IPCC 2007). Numerous 

research challenges are associated with exploring the impact of temporal and spatial 

variations of climate as well as that of global climate change on the transmission 

dynamics of infectious diseases.  

Public health scientists face the task of estimating via interdisciplinary 

collaborations, the future health impacts of projected scenarios of climatic-

environmental conditions. Mathematical models have been used to exploring the 

potential effects of climate and ecological changes on the dynamics of diseases. For 

example, models have been employed to estimate how climatic changes would affect 

the potential geographic range of vector-borne infectious diseases. 
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3.1. Climate Change  
 

Climate is the average weather, described in terms of the mean and other statistical 

quantities that measure the variability over a period of time and possibly over a 

certain geographical region (IPCC 1996). Climate factors that are usually measured 

are long-term averages and natural variability in meteorological variables such as 

temperature, precipitation, humidity. Climate change is defined as a statistically 

significant variation in either the mean state of the climate or in its variability, 

persisting for an extended period (IPCC, 2001). Climate change may occur due to 

natural internal processes or external forces. The latter include the anthropogenic 

components of climate change.  

Computerized General Circulation Models (GCMs) have been used to estimate and 

quantify the magnitude and extent of climate change on global and regional levels. 

The results, however, from different GCMs with respect to changes at more detailed 

levels than global temperature are highly divergent and debatable.  

Depending on how changes of a few degrees in global average temperature are 

realized they appear to produce dramatic effects. Because of the enormous 

uncertainties about regional and local effects regarding the amount and the direction 

of change, it is difficult to predict the effects of human-induced climate change. But 

by exploring the health implications of hypothesized climate changes one can gain 

useful insights also with respect to how these effects might be avoided. 
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3.2. Tools for exploring the climate-disease linkage  
 

There is a wide range of possible approaches which can be used to understand the 

association between climate and infectious diseases. Epigrammatically, they include 

observational and experimental studies, mathematical modelling, risk mapping and 

assessment and surveillance. We focus here on the mathematical modelling 

approaches. 

Several models have been developed to capture the complex dynamics that govern 

the interaction of vector species transmission and meteorological factors. The purpose 

of these models was to link the presence of the vector with a number of climate 

parameters and then to project the effects of extreme climate variability or even 

climate change on vector distribution. Within this context a distinction between so 

called biological process-based versus so called statistical data-based models has been 

suggested and used.  

Models of biological processes are models by which certain parameters, e.g., 

temperature affects mosquito development, feeding frequency and longevity and the 

incubation period of the malarial parasite in the mosquito. Models of processes have 

in cases with insufficient surveillance data enormous heuristic value. 

Some biological modelling of the potential impact of climate variables, primarily 

temperature increases, e.g., on malaria as done on a global scale projected net 

increases in the geographic area and season for potential malaria transmission 

(Martens et al. 1999). It is possible that small increases in minimum temperature in 

cooler regions may disproportionately increase malaria transmission (Lindsay and 

Birley 1996; McMichael et al. 2001). It is difficult to extrapolate the data from these 

global malaria-climate models (Lindsay and Birley 1996) from the situation in Africa 
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(Lindsay and Martens 1998) or from El Nino-malaria studies conducted in South 

America, where a relationship between the incidence of malaria in Colombia and the 

occurrence of the El Nino Southern Oscillation was shown (Bouma et al. 1997), to 

other places.  

Bradley (1993) estimated temperature sensitivity of factors driving R0 the basic 

reproduction number, which is defined as the number of new cases of a disease that 

will arise from one current case when introduced into a non-immune host population 

during a single transmission cycle (Anderson and May 1992). He found that changes 

in the extrinsic cycle of the Plasmodium protozoan could raise R0 in many currently 

non-malarious areas to a point where malaria might take hold. In another approach 

Jetten and co-workers (Jetten and Takken 1994; Jetten et al. 1996) predicted that 

infections in southern Europe could increase dramatically, using a simulation model 

which included anopheline physiology and climate-change scenarios. A study by 

Sellers et al. (1990) analysed wind trajectories as a weather parameter and 

investigated their impact on eastern equine encephalitis in the USA. Their study 

indicated that mosquitoes potentially infected with eastern equine encephalitis virus 

could be carried by storm fronts from North Carolina northeast-ward as far as 

upstate New York from western Kentucky to Michigan. Using a dengue fever 

simulation model, Jetten and Focks (1997) projected that increasing temperature 

would increase the length of transmission season in temperate regions. They 

examined the critical mosquito density for dengue fever and related it to temperature 

change to quantify the influence of global warming on the intensity and distribution 

of dengue. Patz et al. (1998) applied the same simulation model to future climate 

scenarios generated from general circulation models (GCMs). Fock et al. (1993, 1995) 

developed a weather-driven model to simulate life-table information for Aedes aegypti 
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and a dengue simulation model. Both approaches focused on vector dynamics and 

have been parameterised with field data with a view toward informing the design of 

vector control strategies. They validated the dengue model in some places, where the 

model accurately predicted actual disease incidence.  

Several studies focused on the impact of future climate change on the 

transmission dynamics of malaria (Haile 1989; Martin and Lefebvre 1995; Martens et 

al. 1995; Lindsay and Martens 1998; Martens 1998; Martens et al. 1999). Some 

climate change scenarios presented in those studies and run specifically for the USA 

showed little change in malarial transmission risk in the USA (Haile 1989). However, 

in general most of their scenarios predict that spread of malaria into northern 

latitudes such as central and northern Europe and North America, where there is no 

acquired immunity, would be detrimental (Martin and Lefebvre 1995; Martens et al. 

1995; Lindsay 1998; Martens 1998; Martens et al.1999). Martens et al. (1995) 

considered mosquito survival probabilities, biting frequency, and extrinsic incubation 

period, and developed a model for the epidemic potential for Plasmodium vivax and 

Plasmodium falciparum as a function of temperature. They utilized this information 

in conjunction with temperature projections from a GCM to estimate how worldwide 

malaria distributions might change. Martin and Lefebvre (1995) developed a Malaria-

Potential-Occurrence-Zone (MOZ) model. This model was combined with 5 GCMs 

(General Circulation Models) to estimate the changes in malaria risk based on 

moisture and minimum and maximum temperatures required for parasite 

development. This model corresponded fairly well with the distribution of malaria in 

the past, after allowing for areas where malaria had been eradicated. An important 

conclusion of this modelling exercise was that all simulation runs showed an increase 

 18



in seasonal (unstable) malaria transmission, under climate change, at the expense of 

perennial (stable) transmission. 

Both studies predicted that the strongest increases in malaria would be at the 

borders of endemic areas and at higher altitudes. In another study Martens (1995) 

attempted to quantify mitigation efforts by developing an index to measure the 

sustainability of malaria spread. This index incorporated as major components, rate 

of temperature change, change in the disease burden on human populations, and 

economic factors, measured by the ratio of the gross national product growth to the 

rate of population growth. Although the areas of low endemicity showed the greatest 

increase in disability-adjusted life-years lost per year, the greatest disease burden 

still lay in poor tropical countries where Plasmodium falciparum is most prevalent 

and mitigation efforts are mostly inadequate. These studies concluded that even a 

slow rise in temperature could cause permanent malaria to expand to higher 

altitudes in the tropics and subtropics. Moreover, they predict that seasonal malaria 

could be found in some temperate regions as far as north as northern Europe.  

 

An integrated, process-based model to estimate climate change impacts on 

malaria (that is part of the MIASMA modelling framework) has been developed by 

Martens and colleagues (Martens et al. 1995). This model differs from the others in 

that it takes a broad approach in linking GCM-based climate change scenarios with a 

module that uses the formula for the basic reproduction number (R0) to calculate the 

‘transmission or epidemic potential’ of a malaria mosquito population. That goes back 

to classical epidemiological models of infectious disease. Model variables within R0 

which are sensitive to temperature include: mosquito density, feeding frequency, 

survival, and extrinsic incubation period. The extrinsic incubation period (i.e., the 
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development of the parasite in the mosquito) is particularly important. The minimum 

temperature for parasite development is the limiting factor for malaria transmission 

in many areas.  

A global model for malaria transmission was used by van Lieshout et al. (2004) to 

estimate the population at risk in areas where climate conditions are suitable for 

malaria transmission. The model provides a way to describe vulnerability to the 

potential impacts of climate change. Simulations are driven by the IPCC scenarios. 

For countries with currently limited capacity to control the disease, the model 

estimates additional populations at risk by 2080. The model results are sensitive to 

the spatial distribution of precipitation projections and population growth in the 

areas where there is a new risk due to climate change. 

In another study El Nino events were linked to variability in malarial incidence in 

Colombia and Venezuela (Bouma et al. 1997). Craig et al. (1999) developed a simple 

climate-based distribution model of malaria transmission in Sub-Saharan Africa 

based on biological constraints of climate on parasite and vector development. This 

kind of initial approaches provide the numerical basis for further refinement and 

prediction of the impact of climate change on transmission.  

There have been similar modelling approaches in which the climate change impact 

on the transmission dynamics of tick-borne disease and rodent-borne disease were 

explored and demonstrated (Haile 1989; Amerasihge et al. 1993; Mount et al. 1993; 

Glass et al. 1994; Wilson 1998). They also indicate to, e.g., a correlation between 

Lyme disease tick density and rainfall and elevation (Amerasinghe et al. 1993) or tick 

abundance was predicted by land use, land cover, soil type, elevation, and the timing, 

duration, and rate of change in temperature and moisture [Mount et al 1993; Glass et 

al. 1994; Wilson 1998). 
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It should be pointed out that most of the above models, especially those dealing 

with malaria, are primarily driven by temperature. Temperature is certainly a major 

impact factor for the transmission of vector borne infectious diseases like malaria but 

not the only one. Nevertheless, the studies by Martens et al. (1995) and Martens 

(1995) point in the right direction of research and can be viewed as integrative 

studies. Besides that, many of the above studies mainly project potential epidemic 

malaria transmission and can be considered rather as sensitivity analyses than as 

modelling approaches. These models are not fully parameterised and therefore they 

cannot be used for regional prediction. 

 

Statistical data-based models: Another modelling approach within this context is 

the one suggested by Rogers and Randolph (2000). These authors explored the effects 

of global climate change on the future incidence of cerebral malaria using a two-step 

multivariate statistical approach. First, they used maximum-likelihood methods to 

map present day malaria distributions by determining the key climate variables 

associated with the presence or absence of disease. Then, these results were used to 

predict the worldwide distribution of cerebral malaria in the year 2050, based on a 

widely accepted GCM scenario. This predicted that changes in the distribution of 

Plasmodium falciparum will largely be restricted to the tropics and sub-tropics, with 

just as many people being freed of the risk of infection as being newly exposed. Based 

on the current distribution of malaria they could empirically establish how the 

disease is currently constrained by the means and covariances of meteorological 

factors, like temperature precipitation, and humidity. However, using current 

distribution limits in the estimate yields a biased estimation of the multivariate 

relationship between climatic variables and malaria occurrence since the lower 
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temperature range in temperate zones would have been treated as non-receptive to 

malaria.  

An example of another empirical statistical model is the CLIMEX model. This 

model, developed by Sutherst and co-workers (Sutherst et al. 1995; Sutherst 1998), 

maps the translocation of species between different areas as they respond to climate 

change. The assessment was based on an ‘ecoclimatic index’ governed largely by the 

temperature and moisture requirements of the malaria mosquito. CLIMEX analyses 

conducted in Australia indicate that the indigenous vector of malaria would be able to 

expand its range 330 km south under one typical scenario of climate change. 

However, these studies clearly cannot include all factors which affect species 

distributions. For example, local geographical barriers and interaction/competition 

between species are important factors which determine whether species colonise the 

full extent of suitable habitat (Davis et al. 1998). Assessments may also include 

additional dynamic population (process-based) models (e.g., DYMEX). 

In a model based on the mapping malaria risk in Africa project (MARA) Tanser et 

al. (2003) produces a spatiotemporally validated approach of Plasmodium falciparum 

in Africa. Using different climate scenarios they projected the potential effect of 

climate change on transmission patterns. Their results indicate that there will be an 

increase in person-months of exposure for stable malaria transmission as well as an 

increase in altitudinal distribution of malaria. Ebi and colleagues obtained similar 

results with respect to the malaria distribution due to climate change (Ebi et al. 

2005). However, using similar methods, results from other studies point to a much 

weaker impact of climate change on malaria distribution indicating that the issue if 

far from being resolved (Thomas et al. 2004). 
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All of the examples discussed above have their specific advantages and 

disadvantages. For example, the model developed by Rogers and Randolph 

incorporates information about the current social, economic, technological modulation 

of malaria transmission. It assumes that those contextual factors will apply in future 

in unchanged fashion. This adds an important, though speculative, element of 

multivariate realism to the modelling - but the model thereby addresses a 

qualitatively different question from the biological model. The biological model of e.g. 

Martens and colleagues (Martens 1998) assume that there are known and 

generalisable biologically-mediated relationships. Also, this modelling is only making 

a start to include the horizontal integration of social, economic and technical change. 

The statistical model is based on socio-economically censored data. It derives its basic 

equation from the existing (constrained) distribution of malaria in today's world and 

climatic conditions, and foregoes much information on the malaria/climate 

relationship within the temperate-zone climatic range. Yet this range is likely to be 

considerably important in relation to the marginal spread of malaria under future 

climate change. 

Randolph and Rogers (2000) tried to predict the future distribution of tick-borne 

encephalitis virus in Europe. Both studies make predictions that run against the 

conventional wisdom. At the same time they use multivariate statistical methods that 

incorporate predicted changes not only in temperature, which is the main 

meteorological factor that has been used by biological models, but also rainfall, 

humidity, and their interactions. Thus, they appear to be able to capture more of the 

constraints on parasite transmission and development.  

But these models are far from being “perfect”. For instance, they do not allow the 

parasites to evolve in response to changing selection pressures. It is possible, for 
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example, that reduced opportunities for transmission of non-systemic infections of 

tick-borne encephalitis between co-feeding ticks might lead to the evolution of 

alternative transmission routes or to changes in virulence. In addition statistical 

models tell us nothing about the mechanisms involved in those dynamic processes of 

interaction between spread of disease and climate change and their features. 

However, models of this type will be useful in identifying areas where vector-borne 

diseases are likely to alter or expand their distributions. Therefore, as already 

mentioned above they have their fully justifiable use. Models of data in cases with 

limited understanding of the transmission biology but with the availability of data 

are very useful. 

In a statistical modelling approach based on vapour pressure as a measure for 

humidity Hales et al. (2002) assessed changes in the geographical limits of dengue 

fever transmission and the number of people at risk of dengue by incorporation future 

climate change and human population projections into the model. They found that 

climate change is likely to increase the area of land with climate suitable for dengue 

fever transmission and that a large proportion of the human population would be put 

at risk.  

Another approach dealing with the association of cholera dynamics and the El-

Nino-Southern oscillation used time series analysis due to lack of information that 

could be used to specify an appropriate model of process for the ENSO effect (Pasqual 

et al 2000). 

The current infectious disease models do not do well at predicting future incidence 

of disease because they lack an adequate characterization of the feedback effects 

between weather-related changes in the ecology and the spread of infected vectors 

and disease. Although no model can accurately simulate real life, models are useful in 
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conceptualising dynamic processes and their outcomes. Well-conceptualised models 

help identify key knowledge gaps and guide empirical studies that ultimately will 

lead to improved models. At present, long-term regional weather and ecologic 

predictions still remain major barriers to predicting future changes in vector borne 

disease risk.  

Both approaches are necessary and should be considered complementary. 

Combination of both provides higher predictive value. Although a good biological 

model is preferable to a statistical one, there are dangers in applying biological 

models before we understand the biology. Therefore, problems of this kind should be 

tackled by using all mathematical tools available and combine them to be able to 

extract the maximum information possible and make reliable predictions. 

 

 

3.3. The role of Geographic Information Systems and Remote Sensing 
 

The development of new technologies has helped to significantly improve surveillance 

and lead to the emergence of new modelling approaches. This type of modelling 

incorporates the effects of space, e.g., diffusion models or networks. Strongly linked to 

that is the employment of Geographic Information Systems (GIS). GIS are powerful 

automated systems for the capture, storage, retrieval, analysis, and display of spatial 

data. The enormous possibilities of the Geographic Information Systems should be 

exploited with respect to evaluating spatial data. It is obvious that besides the time 

component including the spatial component in a way offered by GIS opens new 

possibilities in evaluating epidemiological data. GIS can be used for identification of 

environmental factors that affect the patterns of disease risk and transmission. Using 
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remotely sensed data and GIS technologies one could develop predictive models of 

vector population dynamics and disease transmission.  

Modelling involves the integration of GIS with standard epidemiologic 

methods. GIS can assist in generating data for modelling processes that occur over 

space. GIS models, for example, can express relationships or flows between people 

and places. Spatial interaction and spatial diffusion models are of particular 

relevance to the study of emerging diseases.  

Spatial interaction models analyze and predict the movements of people, 

information, and goods from place to place. The flows of people between rural areas, 

villages, cities and countries are all forms of spatial interaction that are central to 

disease transmission. By accurately modelling these flows, it is possible to identify 

areas most at risk for disease transmission. Given actual flow data, one can estimate 

values that show the effects of distance and population size (or other factors) on 

interaction. The models can then be used to predict spatial interaction patterns 

elsewhere.  

Another important approach is spatial diffusion models, which analyze and 

predict the spread of phenomena over space and time and have been widely used in 

understanding spatial diffusion of disease. Such models are quite similar to spatial 

interaction models except that they have an explicit temporal dimension. By 

incorporating time and space, along with basic epidemiologic concepts, the models can 

predict how diseases spread, spatially and temporally, from infected to susceptible 

people in an area and aid in understanding the emergence of infectious diseases.  

With respect to the impact of climate on the transmission dynamics of malaria 

the availability, for instance, of a complete geographical information system including 

a digitized topographic map with key ecological information such as the temporal-
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spatial pattern of surface water would be of major assistance. The ground map and 

the ground climate measurements are complemented with remote sensing data: 

temperature, moisture, normalized vegetation index. Using these GIS tools it is 

expected to receive high quality information about ecological factors.  

New technologies such as remote sensing via satellites could be also extremely 

useful in collecting data for detection of pathogens by indirect measurements that 

could help to understand the linkage between climate and infectious diseases. Remote 

sensing could be employed in gathering data needed to develop prediction models for 

several infectious diseases. An interesting example is presented by Lobitz et al. 

(2000). They used satellite data to monitor the timing and spread of cholera. Public 

domain remote sensing data like sea surface temperature and sea surface height 

were compared directly with cholera case data in Bangladesh. The data indicated 

that cholera epidemics are climate-linked. For instance, based on this data, sea 

surface temperature shows as annual cycle similar to the cholera case data. Using 

this kind of data, predictive models could provide early warning of conditions 

associated with cholera outbreaks.  

The spatial occurrence of vector-borne diseases can be predicted from 

environmental factors impacting the vector or pathogen and the risk of exposure (Gu 

and Novak 2006, Rotela et al. 2007). There are already several local or regional GIS-

based predictive spatial risk models in place in particular in the US (Estrada-Pena 

2002, Eisen et al. 2006, Eisen et al. 2006, 2007, Wimberly et al. 2008). Mapping 

spatial patterns of human risk of exposure to vector-borne disease agents is of major 

importance for understanding the disease distribution and for the implementation of 

control measures. Using epidemiological data one can model spatial risk of human 
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exposure to vector-borne pathogens and thus identify human contact with the disease 

pathogen (Rotela et al. 2007).  

 

 

4. Research needs 
 

Extreme climatic variability and climate change is very likely to affect the 

transmission dynamics of infectious diseases, in particular vector-borne diseases. We 

know very little about the interactions of weather variables and the diseases they 

affect. More information is essential on how zoonoses persist in nature and what 

triggers their amplification and initiation of secondary cycles that increase the risk of 

human infection. To determine the role of climate or weather and the long-term 

climate trends we need to understand more on pathogens persistence and what 

triggers amplification. Multi-disciplinary research on diseases in their natural 

habitats is important to identify better the effect of weather on the natural 

maintenance cycles, disease incidence and epidemic potential. Mathematical models 

could in a first approach investigate the direct effects of: 

 

1)  climate change on ecologic changes such as biodiversity loss, community 

relocation, nutrient cycle changes. 

2)  climate change on sociological changes such as migration, nutrition, 

sanitation, population/economy. 

3)  climate change on changes in transmission biology such as vector dynamics 

(migration, breeding, physiology, behaviour) or pathogen dynamics 

(reproduction, transmissibility, virulence). 
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4) indirect interactions between ecological, epidemiological and sociological 

changes 

 

To do so, more precise modelling data are necessary and therefore epidemiological 

surveillance at all levels of the health system is essential.  

Information to address the health impacts of extreme climate variability or even 

climate changes is almost non-existent. The little available information comes from 

epidemic studies where the researchers focus on one event and collect data for a short 

period of time. More complete, detailed, long-term data sets are necessary. The 

complicated associations between climate and infectious diseases make essential the 

identification of model systems or diseases, which would enable the collection of long-

term qualitatively valuable data sets. A sustained funding to ensure long term 

research on this issue is equally necessary. 

Until now the few approaches that have made use of global circulation models to 

assess the impact of climate change on infectious diseases indicate that it is likely 

that warming trends and other changes could affect vector borne diseases. However, 

the details and the degree of these effects are extremely uncertain. We also do not 

know how projected climate change would affect the complex ecosystems required to 

maintain disease. More research on the natural transmission cycles of these 

pathogens is necessary. Future assessments that incorporate climate change 

scenario-based analyses demand the integration of local demographic and 

environmental factors. They are essential in guiding comprehensive, long-term 

preventive public health interventions.  
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5. Conclusions 
 

Powerful empirical and theoretical methods are available to study the ecological 

consequences of extreme climate variability and climate change. Organisms that 

cause diseases of humans and animals are part of every ecosystem, but disease 

dynamics has mainly been studied using mathematical models that do not explicitly 

take complex and spatially explicit environmental information into account and focus 

on the temporal aspects of disease spread. Many lines of evidence suggest that 

climate change will have an impact on the geographical distribution of many insect 

and tick vectors of human diseases. There is therefore a strong need to overcome the 

traditional division between the spatial analysis of the environment and the temporal 

analysis of disease dynamics. Data derived from remote sensing technology, spatial 

statistics and numerical methods, mathematical models and also economic and social 

data need to be combined in order to provide more reliable predictions on infectious 

disease risks in new environmental circumstances. 
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