

EUR 23506 EN - 2008

MAlSim Deployment

Installation, setup and the use of MAlSim - Mobile Agent Malware Simulator

Rafał Leszczyna, Marcelo Masera, Igor Nai Fovino

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by JRC Publications Repository

https://core.ac.uk/display/38619493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Institute for the Protection and Security of the Citizen provides research-based,
systems-oriented support to EU policies so as to protect the citizen against economic and
technological risk. The Institute maintains and develops its expertise and networks in
information, communication, space and engineering technologies in support of its mission. The
strong cross-fertilisation between its nuclear and non-nuclear activities strengthens the
expertise it can bring to the benefit of customers in both domains.

European Commission
Joint Research Centre
Institute for the Protection and Security of the Citizen

Contact information
Address: Rafal Leszczyna TP 210; Via Enrico Fermi 2749; 21027 Ispra (VA); ITALY
E-mail: rafal.leszczyna@jrc.it
Tel.: +39 0332 786715
Fax: +39 0332 789576

http://ipsc.jrc.ec.europa.eu/
http://www.jrc.ec.europa.eu/

Legal Notice
Neither the European Commission nor any person acting on behalf of the Commission is

responsible for the use which might be made of this publication.

Europe Direct is a service to help you find answers
to your questions about the European Union

Freephone number (*):

00 800 6 7 8 9 10 11

(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet.
It can be accessed through the Europa server http://europa.eu/

JRC 47167

EUR 23506 EN
ISSN 1018-5593

Luxembourg: Office for Official Publications of the European Communities

© European Communities, 2008

Reproduction is authorised provided the source is acknowledged

Printed in Luxemburg

http://europa.eu.int/citizensrights/signpost/about/index_en.htm#note1#note1

1. Introduction

This report describes the deployment issues related to MAlSim - Mobile
Agent Malware Simulator - a mobile agent framework which aims at simulation
of malware – malicious software that run on a computer and make the system
behaving in a way wanted by an attacker [1].

MAlSim was introduced in our previous report [2] in which we described
its composition and functions, and provided the details of the simulation
environment in which MAlSim is deployed and the auxiliary parts which
support the experiments performed with MAlSim. We also presented the case
study where MAlSim was applied to the verification of the security of an
existent fully operative combined cycle electric power plant.

In this report we are providing more technical details related to the
installation and use of the framework.

Our Action: Security of Critical Networked Infrastructures (SCNI) aims at
facilitating the description, assessment and governance from the security point
of view of critical networked infrastructures1, including information systems,
communication networks, electricity and other energy networks and water
networks. The main interest is in cross-border and European-wide issues.

The action concentrates on the cybersecurity and topological aspects of
infrastructures and their interdependencies, and studies their vulnerabilities (at
the technological and system levels), the potential malicious threats that might
affect them, the related detrimental attacks, and the countermeasures that can
be put in place for securing those systems. It also studies the conditions and
potential means for making decisions on security matters, estimating the
impact of these decision, and facilitating the interaction among the
stakeholders.

The focus is on providing policy makers and the stakeholders of critical
infrastructures with information and instruments for a better understanding of
the risks, for the qualitative and quantitative evaluation of the security issues,
for the determination of the security condition of systems. From the
technological perspective, the action studies the security of industrial control
systems (e.g. SCADA, protection and defence systems, monitoring systems),
of communication infrastructures (e.g. Internet protocols and WAN), and their
application in concrete industrial environments (e.g. electric power).

One of our studies concentrates on developing a systematic approach for
the identification and assessment of security risk threats to information
systems. The approach is based on the systematic planning, performance and
description of experiments with simulations of attacks affecting control and
supervision systems. We analyse the network of a critical infrastructure and on

1 Critical Infrastructures are defined as organisations or facilities of key importance

to public interest whose failure or impairment could result in detrimental supply
shortages, substantial disturbance to public order or similar dramatic impact [3]. Today
most of critical infrastructures depend highly on the underlying communication
networks.

the basis of our observations we reconstruct it in our laboratory. In this
configuration we implement attack scenarios. Then analyse results in order to
evaluate impact of the attack, test robustness and identify countermeasures.
The description, preparation, execution and results of the experiments will
constitute the information source for trust cases i.e. documented bodies of
evidence that provide demonstrable and valid arguments that a critical
infrastructure is adequately safe and secure.

The development of MAlSim resulted from the lack of software and
methodology for simulation of malware, while malware attacks are the most
frequent in the Internet and they pose a serious threat against critical
networked infrastructures.

The paper is organised as follows: in Section 2 we recall (with a slight
update) from the previous report the brief overview of the related works. In
Section 3 we shortly explain what MAlSim is and what its main aims are.
MAlSim was developed using the Mobile Agents technology. Section 4
provides a short overview of it. In Section 5 we describe JADE – the agent
platform used for the development of MAlSim. The components of the
framework and the environment in which it was deployed during our
experiments are presented in Sections 6 and 7. Finally, Sections 8-12 bring in
the information on the deployment, setup and use of MAlSim.

2. Related Work

We haven’t been able to identify any compound frameworks for
performing simulations of diverse types of malware. However there are
documented studies on simulation of particular malware families such as
computer viruses and worms.

The studies on virus simulation tools span between:

• Educational simulators i.e. programs demonstrating the effect of virus
infection [4]. This group of programs include Virus Simulation Suite
written in 1990 by Joe Hirst, which is a collection of executables that
‘simulate the visual and aural effects of some of the PC viruses’ [5].
Another example is Virlab [6] from 1993, which simulates the spread
of DOS computer viruses, and provides a course on virus prevention.
(As it can be noticed, the programs are quite out of date, and today
they would rather serve just as a historical reference.)

• Anti-virus testing simulators i.e. programs which are supposed to
simulate viral activity, in order to test anti-virus programs without
having to use real, potentially dangerous, viruses. Unfortunately, it
seams that only one solution of this type was developed, namely
Rosenthal Virus Simulator [7]. The simulator is a set of programs
which provide ‘safe and sterile, controlled test suites of sample virus
programs’, developed for ‘evaluating anti-virus security measures
without harm or contamination of the system’ [7]. Again the
applicability of the suite is limited since it was written ten years ago.

Concerning the simulation of worms, the prevalent work was done on
developing mathematical models of worm propagation [8][9][10][11], which
base on epidemiological equations that describe spread of real-world
diseases. The empirical approaches concentrated mainly on single-node
worm spread simulators [12][13][14][15], which are dedicated to run on one
machine. Only few distributed worm simulations were implemented
[16][17][18][19]. However, in all of these approaches, also the network, over
which the simulated worm spreads, is simulated. Still there is a need for a
simulation tool allowing simulations of malware in an arbitrary, real, physical
network of computers.

Also Trojan Simulator [20] has limited applicability in our studies. It was
developed for evaluating effectiveness of anti-Trojan software, and as such
fulfils its purpose. However from the point of view of our experiments, it lacks
the behavioural part, since the Trojan malicious activities (e.g. stealthy task
execution which consumes processor time or sending packets over network)
are not simulated.

3. MAlSim Framework

MAlSim – (Mobile Agent Malware Simulator) Framework is a software
toolkit which aims at simulation of malicious software in computer network of
an arbitrary information system. The framework aims at reflecting the
behaviours of various families of malware (worms, viruses, malicious mobile
code etc.) and various species of malware belonging to the same family (e.g.
macro viruses, metamorphic and polymorphic viruses etc.). The simulated
software can refer to well-known malware (e.g. Code Red, Nimda, SQL
Slammer) but also it can simulate generic behaviours (file sharing
propagation, e-mail propagation) and non-existent configurations (which
supports the experiments aiming at predicting the system behaviour in the
face of new malware).

MAlSim Framework was developed using the technology of mobile
agents.

4. Mobile Agents

Mobile agents are the software agents able to roam network freely, to
spontaneously relocate themselves from one device to another.

Software agents are software components that are [21]:

• Autonomous – able to exercise control over their own actions.

• Proactive (or goal-oriented or purposeful) – goal oriented and able to
accomplish goals without prompting from a user, and reacting to
changes in an environment.

• Social (or socially able or communicative) – able to communicate both
with humans and other agents.

Software agents operate on agent platforms. Agent platform is an
execution environment for agents, which supplies the agents with various
functionalities characteristic for the agent paradigm (such as agent
intercommunication, agent autonomy, yellow pages, mobility etc.).

Agent platforms are deployed horizontally over multiple hardware devices
through containers. On each device at least one container may be set up.
Each container is an instance of a virtual machine and it forms a virtual agent
network node. Containers make agent platform independent from underlying
operating systems. Mobile agents are able to migrate from one container to
another. Consequently, when containers are deployed on different devices,
mobile agents can migrate between different devices.

Agent platforms can be imagined as agent communities where agents are
managed and are given the means to interact (communicate and exchange
services). Many agent communities may coexist at the same time. Depending
on the implementation of the platform, agents may be able to leave one
community (platform) and join another2.

Mobile Agent approach was chosen for the development of MAlSim
because it particularly fits this purpose. Agents have much in common with
malicious programs. Similarly to worms and viruses, they have the ability of
relocating themselves from one computer to another. They are also
autonomous as the worms are. At the same time they operate on agent
platform which forms a type of sandbox facilitating their control.

5. JADE

MAlSim is dedicated for the JADE (Java Agent DEvelopment Framework)
agent platform.

JADE is a fully Java based agent platform which complies with the FIPA3
specifications. It is provided by means of:

• Software framework which facilitates the implementation of multi-agent
systems through a middleware which supports agent execution and
offers various additional features (such as a Yellow Pages service or
support for agents’ mobility).

• Set of graphical tools that support the debugging and deployment
phases.

JADE is licensed under Lesser General Public License (LGPL), meaning
that users can unlimitedly use both binaries and code of the platform. During
over seven years of its development JADE has become very popular among
the members of agent community and now it is probably the most often used
agent platform. JADE is continuously developed, improved and maintained,
not only by the developers from the Telecom Italia Lab (Tilab), where it was
originated, but also by contributing JADE community members [31][32].

2 Further information on software agents an interested reader can find in

[23][24][25][26][27][28][29][30][30].
3 www.fipa.org

www.fipa.org

Further details on the choice of JADE for our works can be found in [33].

6. MAlSim Components

MAlSim Toolkit provides:

• Multiple classes of MAlSim agent (extensions of JADE Agent class).

• Various behavioural patterns implemented as agent behaviours4
(extensions of Behaviour class).

• Diverse migration/replication patterns implemented as agent
behaviours (extensions of Behaviour class).

The MAlSim agent class is the basic agent code which implements the
standard agent functionalities related to its management on the agent
platform, its communication skills and the characteristics related to the nature
of simulated malicious software. This code will be propagated across the
attacked machines.

To render it operative, the code must be extended with instances of the
behaviour classes and the migration/replication patterns. Depending on the
chosen behaviour(s) and the migration/replication patterns, the instances of
the same agent class will be created on the attacked host, or instances of
another agent class from the toolkit.

The behavioural patterns comprise definitions of agent behaviours aiming
at imitating malicious activities of malware (such as scanning for vulnerabilities
of operating system, sending and receiving packets, verifying if certain
conditions are met etc.) but without their harmful influence on the system.
They are implemented in Java as extensions of the Behaviour class
provided by JADE framework. The patterns include operations such as
disabling network adapter, enabling a local firewall to operate in all-block
mode or starting a highly processor time consuming task etc. They facilitate
showing detrimental effects of malware activities but in contrary to their
prototypes they are fully controlled. They demonstrate, for example, that after
malware infection, it is no longer possible to connect to the host, or that the
host's performance is affected etc. To support the demonstrative aspect of
experiments also some patterns with audio-visual effects were developed. For
example, to facilitate the observation of malware diffusion in the network, a
sound can be played by the agent after it arrived to a new container5.

Migration and replication patterns describe the ways in which MAlSim
agent migrates across the attacked hosts. The patterns implement malware
propagation models as well as user-configured propagation schemas. The
latter allow defining such characteristics as: which subnetworks of the
evaluated system will be affected, in which order, at what relative time etc.

4 In agents terminology the agent’s behaviour is a set of actions performed in order

to achieve the goal. It represents a task that an agent can perform [34].
5 Interesting studies on using sound for network monitoring are described in [35].

A particular choice of one of MAlSim agent classes, extended with a
chosen behavioural and migration/replication patterns is called a malware
template - i.e. a template of malicious software. In other words, a malware
template indicates a selection and configuration of Java classes (MAlSim
agent, one or more behavioural patterns and one or more migration/replication
patterns) selected from MAlSim Toolkit in order to simulate a particular
instance of malware.

7. Simulation Environment

The simulations of attacks are performed in the simulation environment
whose main part - Mirrored Information System - aims at reconstructing the
information system of the evaluated infrastructure. This part is flexibly
configured depending on the particular needs. For example, for the
infrastructure of a power plant we mirror the process network (interconnecting
diverse subsystems of the energy production process), the field network
(interconnecting controllers and field devices), the corporate network etc (see
Figure 1).

Figure 1 Reconstructed information system of a power plant.

Additionally the environment comprises the auxiliary parts which support
the configuration, performance and observation of the experiments or provide
any other auxiliary functionality:

• Threat and Attack Simulator, which aims at providing conditions for
reconstructing attacks and threats that can jeopardise the analysed
information system. This is the part of the simulation environment
where the simulated attacks are configured and launched. Since there
are various and diverse attacks, when designing this part of the
simulation environment, we pay attention to assuring high flexibility
and easiness of configuration. The Threat and Attack Simulator allows
managing virtual subnetworks and creating multiple virtual network
nodes. These, together with the hosts, are easily configurable and
provided with diverse resources. Particularly they include various
software i.e. operating systems and the specialised programs for
developing attacker tools and for performing the attacks.

• Observer Terminal, which allows monitoring the traffic of the Mirrored
Information System in order to evaluate the effects caused by the
simulated attacks on the system. It tracks all the malicious or
anomalous events happening in the Mirrored Information System
during the tests and experiments, and stores them in the central
database.

• Vulnerabilities and Countermeasures Repository, where we store all
information about system vulnerabilities and the relative
countermeasures. It is composed of two sub-systems: the
Vulnerabilities and Countermeasures Database and the Binaries
Repository. In the former we store knowledge about existing and
known vulnerabilities, threats, attacks and countermeasures, while the
latter is devoted to storing and cataloguing attack tools, such as
packet generators, Trojan horses and root-kits, and other executable
code to be used in security experiments carried out in the simulation
environment. The Vulnerabilities and Countermeasures Repository is
implemented within the InSAW framework [36][37].

• Testbed Master Administrator, used to remotely manage both the
network and the experiments. It manages the operations related to the
initiation and termination of experiments and allows real time
observation of the behaviour of each system during simulations.

• Horizontal Services, responsible for providing services that are
needed for the efficient management of the simulation environment
such as backup services or file sharing services.

Further details about the simulation environment can be found in [1].

8. MAlSim Deployment and Setup

Figure 2: MAlSim deployment.

As shown in Figure 2 JADE has to be deployed over all hosts
participating in the experiments with MAlSim. In our configuration these are
the computers of Mirrored Information System and of the Attack and Threat
Simulator. Java-based JADE is flexibly installable on various operating
systems, and we deploy it on various distributions of Linux (Debian, Ubuntu,
CentOS) and Microsoft Windows.

MAlSim setup comprises the following steps:

1. An attack scenario should be taken from the repository. An attack
scenario is a sequence of steps taken during attack. It describes the
whole ‘script’ of an attack, written for all participants (the attacker, the
victims, the third parties).

2. According to the chosen scenario an appropriate malware template
should be selected from the repository and configured. If none of
existing templates fits the attack scenario, a new MAlSim template is
developed.

3. Creating a live instance of malware template involves extending a
MAlSim agent with a migration schema (through adding agent
behaviours from the repository) and a malicious behaviour.

Figure 3: MAlSim Framework takes advantage of JADE GUI for control and
observation of experiments.

The experiments are controlled through the graphical interface of the
JADE main container installed on a PC of Attack and Threat Simulator. As
shown in Figure 3 the graphical console allows also observation of the
diffusion of the simulated malware.

9. Windows Installation

To deploy MAlSim on Widows platforms the following steps should be
followed:

1. Java installation. We recommend to download and to set up Java
Platform, Standard Edition (Java SE) from
http://java.sun.com/.

2. JADE download. JADE is available for download at
http://jade.tilab.com/. At the first visit to the site a user is
required to register to it. The registration is free. In the download
section, after accepting the terms of licence, users are provided with
the choice of ZIP files containing elements of JADE environment. We
recommend downloading the full bundle which comprises all JADE
components.

http://java.sun.com/
http://jade.tilab.com/

3. JADE unpacking. We recommend unzipping the contents of the JADE
installation ZIP file to Program Files. As a result the folder
c:\Program Files\jade\ with its subfolders will be created.

4. Setting system variables. In the Control Panel, the System icon
should be double-clicked. When the “System Properties” window
appears, the “Advanced” tab should be selected. There the
“Environment Variables” button should be pressed. The CLASSPATH
variable to system variables should be added6 and assigned with the
following value7:

.;%jadePath%\jade.jar;%jadePath%\jadeTools.jar;%jadePa

th%\iiop.jar;%jadePath%\http.jar

A user can either substitute %jadePath% in the string with the path

where JADE is installed, for example c:\Program Files\jade or
he/she can add another variable – jadePath with the path to JADE given
as a value.

10. Linux Installation

When deploying MAlSim on Linux platforms a user follows the following
steps:

1. Java installation. We recommend to download and to set up Java
Platform, Standard Edition (Java SE) from
http://java.sun.com/.

2. JADE download. JADE is available for download at
http://jade.tilab.com/. At the first visit to the site a user is
required to register to it. The registration is free. In the download
section, after accepting the terms of licence, users are provided with
the choice of ZIP files containing elements of JADE environment. We
recommend downloading the full bundle which comprises all JADE
components.

3. JADE unpacking. The ZIP file(s) of JADE should be unzipped to one
of user directories, for example to /usr/local/lib/jade/.

4. Setting system variables. The following lines should be added8 to
.bashrc9 (in the user’s /home directory):

JAVA_HOME=".:/usr/java/jdkX.X.X_XX/"

6 Or modify the current if it already exists
7 Attention should be paid to the primary dot character of the string.
8 Attention should be paid to the primary dot character of the string.
9 Assuming that Java was installed to /usr/java/jdkX.X.X_XX/ directory and

that JADE was unzipped to /usr/local/lib/jade/.

http://java.sun.com/
http://jade.tilab.com/

export JAVA_HOME

PATH=$PATH:/usr/java/jdkX.X.X_XX/bin
export PATH

CLASSPATH=".:/usr/local/lib/jade/lib/jade.jar:/usr/l
ocal/lib/jade/lib/http.jar:/usr/local/lib/jade/lib/i
iop.jar:/usr/local/lib/jade/lib/jadeTools.jar"
export CLASSPATH

11. Setting up MAlSim

Setting up MAlSim environment includes:
1. Launching the main container of JADE. A user applies the following

command in the command line:

java jade.Boot –gui

10)

2. Adding new containers (new PCs to the environment).

Java jade.Boot –container –container-name
<container-name> -host <host-IP-or-name>

where:
<container-name> - the name of the new container which will be
added to the JADE platform. Other words – the name by which the new
PC will be represented in the JADE platform (and on in the interface).
<host-IP-or-name> - the IP (or the name) of the host where the
main container of JADE was launched

For example:

java jade.Boot -container -container-name pc-l-100 -
host 139.166.10.11

10 Using the classpath argument can be handy e.g.
 java -classpath

"%CLASSPATH%":/usr/local/lib/j.jar:/usr/local/lib/jade/lib/http
.jar:/usr/local/lib/jade/lib/iiop.jar:/usr/local/lib/jade/lib/j
adeTools.jar jade.Boot -container -container-name pc-l-100 -
host 139.166.10.11

12. Beginning with the Experiments

After the whole environment is set up, a user can begin with the
experiments. Usually the experiments are started from the main container,
where an appropriate MAlSim agent is launched. This is done by clicking on
the icon with the round smiling face which symbolises an agent, or by
choosing action "Start new agent" from menu. When the window for the new
agent appears, user provides the name of the Java class of the appropriate
MAlSim agent, for example - MalwareSimAgent3 and the name of the agent.
The former can be arbitrary, for example – malsim3.

References

[1] Ed Skoudis and Lenny Zeltser. Malware: Fighting Malicious Code.
Prentice Hall Professional Technical Reference, Upper Saddle River, New
Jersey, USA, November 2003.

[2] Leszczyna R., Fovino I. N., Masera M.. MAlSim - Mobile Agent Malware
Simulator. JRC Scientific and Technical Report, EUR 23026 EN.
Luxembourg: Office for Official Publications of the European Communities,
2007.

[3] Federal Office for Information Security (BSI). BSI annual report 2003.
Internet, 2003. Available at
http://www.bsi.bund.de/english/publications/annualrepor
t/index.htm (last access: October 30, 2007).

[4] Sarah Gordon. Are good virus simulators still a bad idea? Network
Security, 1996(9):7–13, September 1996.

[5] Joe Hirst. Virus simulation suite. Internet, 1990.

[6] Thomas Faistenhammer, Martin Klöck, Karlhorst Klotz, Thomas Krüger,
Peter Reinisch, and Jenny Wagner. Virlab 2.1. Internet, October 1993.
Available at http://kklotz.de/html/virlab.html (last access:
October 29, 2007).

[7] Rosenthal Engineering. Rosenthal virus simulator. Internet, 1997.

[8] Monirul I. Sharif, George F. Riley, and Wenke Lee. Comparative study
between analytical models and packet-level worm simulations. In PADS
’05: Proceedings of the 19th Workshop on Principles of Advanced
and Distributed Simulation, pages 88–98, Washington, DC, USA, 2005.
IEEE Computer Society.

[9] Symantec Research Labs. Symantec worm simulator. Internet, 2005.

[10] Dan Ellis. Worm anatomy and model. In WORM ’03: Proceedings of
the 2003 ACM workshop on Rapid malcode, pages 42–50, New York,
NY, USA, 2003. ACM.

[11] Cliff Changchun Zou, Weibo Gong, and Don Towsley. Worm
propagation modeling and analysis under dynamic quarantine defense. In
WORM ’03: Proceedings of the 2003 ACM workshop on Rapid
malcode, pages 51–60, New York, NY, USA, 2003. ACM.

[12] Michael Liljenstam, Yougu Yuan, BJ Premore, and David Nicol. A
mixed abstraction level simulation model of large-scale internet worm

http://www.bsi.bund.de/english/publications/annualreport/index.htm
http://www.bsi.bund.de/english/publications/annualreport/index.htm
http://kklotz.de/html/virlab.html

infestations. In MASCOTS ’02: Proceedings of the 10th IEEE
International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems (MASCOTS’02), page
109, Washington, DC, USA, 2002. IEEE Computer Society.

[13] Michael Liljenstam, David M. Nicol, Vincent H. Berk, and Robert S.
Gray. Simulating realistic network worm traffic for worm warning system
design and testing. In WORM ’03: Proceedings of the 2003 ACM
workshop on Rapid malcode, pages 24–33, 2003.

[14] Arno Wagner, Thomas Dübendorfer, Bernhard Plattner, and Roman
Hiestand. Experiences with worm propagation simulations. In WORM ’03:
Proceedings of the 2003 ACM workshop on Rapid malcode, pages
34–41, New York, NY, USA, 2003. ACM.

[15] David Moore, Colleen Shannon, Geoffrey M. Voelker, and Stefan
Savage. Internet quarantine: Requirements for containing self-propagating
code. In INFOCOM 2003. Twenty-Second Annual Joint Conference of the
IEEE Computer and Communications Societies. IEEE, volume 3, pages
1901–1910, April 2003.

[16] Kalyan S. Perumalla and Srikanth Sundaragopalan. High-fidelity
modeling of computer network worms. acsac, 00:126–135, 2004.

[17] Songjie Wei, Jelena Mirkovic, and Martin Swany. Distributed worm
simulation with a realistic internet model. In PADS ’05: Proceedings of
the 19th Workshop on Principles of Advanced and Distributed
Simulation, pages 71–79, Washington, DC, USA, 2005. IEEE Computer
Society.

[18] Songjie Wei and Jelena Mirkovic. A realistic simulation of internet-scale
events. In Valuetools ’06: Proceedings of the 1st international
conference on Performance evaluation methodologies and tools,
page 28, New York, NY, USA, 2006. ACM Press.

[19] Filiol Éric, Franc, E., Gubbioli, A., Moquet, B., & Roblot, G.
Combinatorial optimisation of worm propagation on an unknown network.
International Journal in Computer Science, 2 (2), pages 124 – 131, 2007.
Available at vx.netlux.org (last access: March 7, 2008).

[20] Mischel Internet Security. Trojan simulator. Internet, 2003. Available at
http://www.misec.net/trojansimulator/ (last access: October
29, 2007).

[21] Fabio Bellifemine, Giovanni Caire, Tiziana Trucco, and Giovanni
Rimassa. JADE -A White Paper, September 2003.

http://www.misec.net/trojansimulator/

[22] David Chess, Colin Harrison, and Aaron Kershenbaum. Mobile agents:
Are they a good idea? Technical Report RC 19887 (December 21, 1994
Declassified March 16, 1995), IBM Research, Yorktown Heights, New
York, 1994. Available at
http://citeseer.ist.psu.edu/chess95mobile.html.

[23] Davis Chess, Benjamin Grosof, Colin Harrison, David Levine, Colin
Parris, and Gene Tsudik. Itinerant agents for mobile computing. IEEE
Personal Communications, 2(5):34–49, 1995. Available at
http://citeseer.ist.psu.edu/article/chess95itinerant.ht
ml.

[24] S. Franklin and A. Graesser. Is it an agent, or just a program?: A
taxonomy for autonomous agents. In Intelligent Agents III. Agent
Theories, Architectures and Languages (ATAL’96), volume 1193,
Berlin, Germany, 1996. Springer-Verlag New York, Inc. Available at
http://citeseer.ist.psu.edu/franklin96is.html.

[25] Antonio Carzaniga, Gian Pietro Picco, and Giovanni Vigna. Designing
distributed applications with a mobile code paradigm. In Proceedings of
the 19th International Conference on Software Engineering, Boston,
MA, USA, 1997. Available at
http://citeseer.ist.psu.edu/carzaniga97designing.html.

[26] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna.
Understanding code mobility. IEEE Transactions on Software
Engineering, 24(5):342–361, 1998. Available at
http://citeseer.ist.psu.edu/
fuggetta98understanding.html.

[27] Dejan S. Milojicic. Trend wars: Mobile agent applications. IEEE
Concurrency, 7(3):80–90, 1999. Available at
http://dlib.computer.org/pd/books/pd1999/pdf/p3080.pdf.

[28] Bennet S. Yee. A sanctuary for mobile agents. In Proceedings of the
DARPA Workshop on Foundations for Secure Mobile Code,
Monterey, USA, March 1997. Available at
http://citeseer.ist.psu.edu/article/
yee97sanctuary.html (last access: May 08, 2006).

[29] Robert S. Gray, David Kotz, George Cybenko, and Daniela Rus.
Mobile agents: Motivations and state-of-the-art systems. Technical Report
TR2000-365, Dartmouth College, Hanover, NH, 2000. Available at
http://citeseer.ist.psu.edu/gray00mobile.html.

[30] W. Jansen and T. Karygiannis. Nist special publication 800-19 -mobile
agent security, 2000. Available at
http://citeseer.ist.psu.edu/jansen00nist.html.

http://dlib.computer.org/pd/books/pd1999/pdf/p3080.pdf
http://citeseer.ist.psu.edu/gray00mobile.html
http://citeseer.ist.psu.edu/jansen00nist.html

[31] Telecom Italia Lab. Java Agent DEvelopment Framework. Website.
http://jade.tilab.com/.

[32] Giovanni Caire. JADE tutorial: application-defined content
languages and ontologies, June 2002.

[33] Rafal Leszczyna. Evaluation of agent platforms. Technical report,
European Commission, Joint Research Centre, Institute for the Protection
and security of the Citizen, Ispra, Italy, June 2004.

[34] Fabio Bellifemine, Giovanni Caire, Tiziana Trucco, and Giovanni
Rimassa. Jade programmers guide, February 2003.

[35] Gilfix, M., and Couch, A. L. Peep (the network auralizer): Monitoring
your network with sound. In Lisa '00: Proceedings of the 14th USENIX
conference on system administration. Pages 109-118. Berkeley, CA, USA:
USENIX Association, 2000.

[36] Fovino I. N., Masera M., and Decian A., Integration of Cyber-Attack
within Fault Trees. In: 17th European Safety And Reliability Conference
(ESREL), Vol. 3, Pp. 2571-2578, June 2007.

[37] Masera M. and Fovino I. N., A Service Oriented Approach to the
Assessment of Infrastructure Security, Vol. 253 of IFIP International
Federation for Information Processing, Pp. 367 - 380. Springer, Eric Goetz
and Sujeet Shenoi Ed., 2008.

http://jade.tilab.com/

European Commission

EUR 23506 EN – Joint Research Centre – Institute for the Protection and Security of the Citizen
Title: MAlSim Deployment
Author(s): Rafał Leszczyna, Marcelo Masera, Igor Nai Fovino
Luxembourg: Office for Official Publications of the European Communities
2008 – 16 pp. – 21.0 x 29.7 cm
EUR – Scientific and Technical Research series – ISSN 1018-5593

Abstract

This report describes the deployment issues related to MAlSim - Mobile Agent Malware Simulator - a
mobile agent framework which aims at simulation of malware – malicious software that run on a
computer and make the system behaving in a way wanted by an attacker. MAlSim was introduced in
our previous report where we described its composition and functions, and provided the details of the
simulation environment in which MAlSim is deployed and the auxiliary parts which support the
experiments performed with MAlSim. In this report we are providing more technical details related to
the installation and use of the framework.

How to obtain EU publications

Our priced publications are available from EU Bookshop (http://bookshop.europa.eu), where you can

place an order with the sales agent of your choice.

The Publications Office has a worldwide network of sales agents. You can obtain their contact details

by sending a fax to (352) 29 29-42758.

The mission of the JRC is to provide customer-driven scientific and technical support for
the conception, development, implementation and monitoring of EU policies. As a service of
the European Commission, the JRC functions as a reference centre of science and
technology for the Union. Close to the policy-making process, it serves the common interest
of the Member States, while being independent of special interests, whether private or
national.

	1. Introduction
	2. Related Work
	3. MAlSim Framework
	4. Mobile Agents
	5. JADE
	6. MAlSim Components
	7. Simulation Environment
	8. MAlSim Deployment and Setup
	9. Windows Installation
	10. Linux Installation
	11. Setting up MAlSim
	12. Beginning with the Experiments
	 References

