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ABSTRACT

We propose a soft thresholding approach to the mini-

mum description length wavelet denoising. Our method

is based on combining two-part coding with normal-

ized maximum likelihood universal models to give a soft

thresholding denoising criterion. Experiments with the

proposed MDL soft thresholding method indicate that our

denoising criterion leads to fairly similar performance as

with the well-known VisuShrink method.

1. INTRODUCTION

Denoising, the task of removing or suppressing uninfor-

mative noise from signals, is an important part of many

signal or image processing applications. Wavelets are

common tools in the field of signal processing [1, 2]. The

popularity of wavelets in denoising is largely due to the

computationally efficient algorithms as well as to the spar-

sity of the wavelet representation of data. By sparsity we

mean that majority of the wavelet coefficients have very

small magnitudes whereas only a small subset of coeffi-

cients have large magnitudes [3]. We may informally state

that this small subset contains the interesting informative

part of the signal, whereas the rest of the coefficients de-

scribe noise and can be discarded to give a noise-free re-

construction.

The best known wavelet denoising methods are thresh-

olding approaches, see e.g. [4, 5]. In hard thresholding all

the coefficients with greater magnitudes than the thresh-

old are retained unmodified as they are thought to com-

prise the informative part of data, while the rest of the

coefficients are considered to represent noise and set to

zero. However, it is reasonable to assume that coefficients

are not purely either noise or informative but mixtures of

those. To cope with this soft thresholding approaches have

been proposed. In soft thresholding the coefficients with

magnitudes smaller than the threshold are set to zero, but

the retained coefficients are also shrunk towards zero by

the amount of the threshold value in order to decrease the

effect of noise assumed to corrupt all the wavelet coeffi-

cients.

Probably the most popular wavelet-based denois-

ing methods are thresholding approaches proposed by

Donoho and Johnstone aiming at minimizing the worst-

case risk, and they have been shown to be minimax opti-

mal over a large class of functions [4, 5, 6]. Another group

of popular methods in wavelet denoising are Bayesian ap-

proaches often based on minimizing the expected risk,

with the expectation taken over a postulated prior dis-

tribution supposedly governing the underlying true sig-

nal [7, 8, 9].

A different approach to wavelet denoising is based on

the minimum description length (MDL) principle [10, 11,

12, 13]. The MDL principle can be employed in denois-

ing problems by defining noise to be that part in the data

that cannot be compressed with the given model class. In

other words, noise is defined to be the part in the data in

which the given model class cannot find any regular fea-

tures. Ideally, this definition of noise does not include

any assumptions of the noise distribution, even though

a Gaussian noise model is usually assumed. Although

several different MDL denoising methods have been pro-

posed [14, 15, 16], this paper concentrates on the nor-

malized maximum likelihood (NML) approach originally

suggested by Rissanen [17] and further developed by Roos

et al. [18, 19]. The NML denoising method may be con-

sidered to be the most theoretically rigorous MDL denois-

ing approach.

The MDL denoising methods proposed this far have

been based on selecting a subset of wavelet coefficients

to represent the informative signal, which is equivalent to

hard thresholding. However, a theoretically sound MDL

soft thresholding method would be useful, because soft

thresholding has been found in some cases superior to

hard thresholding. Some soft thresholding ideas in MDL

denoising have been proposed in [19, 20]. In this paper we

propose a soft thresholding MDL method based on NML

and two-part coding generalizing the hard thresholding

approach. We also demonstrate that our soft threshold-
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ing approach gives results fairly similar to the VisuShrink

method of Donoho and Johnstone [4].

2. MDL PRINCIPLE

The general ideas of the MDL principle in model class

selection are introduced before describing MDL wavelet

denoising. Let xn = (x1, . . . , xn)T be a data sequence,

equivalently viewed as a column vector when necessary.

A model class

Mγ =
{

f(xn|θ, γ) : θ ∈ Θγ ⊂ Rk, γ ∈ Γ
}

(1)

is defined as the set of density functions f(xn|θ, γ) where

the structure index γ defines the dimensionality of the

real-valued parameter vector θ = (θγ(i), . . . , θγ(k))
T . For

example, in linear regression the structure index γ de-

fines which k input variables are included in the model

while θ defines the values of the regression coefficients.

In model class selection a model class indexed by γ is se-

lected among the set M =
⋃

γ Mγ .

Each model class may be represented by a single

universal model. The normalized maximum likelihood

(NML) model is a universal model with minimax opti-

mality properties important enough to consider the code

length associated with the NML model, − ln fNML, to be

the stochastic complexity, the shortest achievable descrip-

tion of the data given the model class. The NML density

function fNML is defined for the data xn given the model

class Mγ as

fNML(xn|γ) =
f(xn|θ̂(xn), γ)

Cn,γ
, (2)

where the normalizing constant is given by

Cn,γ =

∫

zn

f(zn|θ̂(zn), γ)dzn . (3)

The normalizing integral (3), also known as the parametric

complexity, is problematic as it is unbounded for many

useful and realistic models such as the density functions

of the exponential family. In order to keep the parametric

complexity bounded typically either the range of data or

parameters is restricted.

The MDL principle tells us to select the model class

minimizing the total code length

min
γ

{− ln fNML(x
n|γ) + L(γ)} (4)

defined as a two part code length composed of the stochas-

tic complexity for the data given the model class and the

code length L(γ) for encoding the model class. In applica-

tions where the number of compared model classes is very

small related to the number of data points the code length

for the model class may be ignored and the model class se-

lection can be done according to the stochastic complexi-

ties of the model classes. However, in applications such as

denoising where the number of parameters may be close

to the number of data points the model class code length

may have significant impact on the results.

3. WAVELET DENOISING AND MDL

The denoising problem can be described formally in a lin-

ear regression setting. The observed data is represented

as a real-valued column vector xn. This signal model can

be easily extended, for example, into the two-dimensional

image data. We define an n × n wavelet regressor ma-

trix W, whose columns are basis vectors forming a com-

plete orthonormal basis. Due to orthonormality the in-

verse of the regressor matrix is given by its transpose,

W
−1 = W

T . The data xn can be written as a linear

combination of the basis vectors weighted with a coeffi-

cient vector β = (β1, . . . , βn)T and Gaussian noise,

xn = Wβ + ǫn , (5)

where the elements of ǫn are i.i.d. Gaussians, ǫi ∼
N(0, σ2), with a common variance σ2. Given the regres-

sion matrix W the discrete wavelet transform (DWT) of

the noisy data is given by

cn = W
T xn = β + W

T ǫn , (6)

where the noise in wavelet domain W
T ǫn is also a Gaus-

sian due to the orthonormality of the wavelet transform.

The aim in denoising is to obtain estimates for the noise-

free wavelet coefficients β̂ and to produce a denoised

signal x̂n with the inverse discrete wavelet transform

(IDWT): x̂n = Wβ̂. The conventional maximum like-

lihood method fails unless the number of parameters is

somehow restricted; using the ML solution β̂ = W
T xn

of the full model in the IDWT gives the observed noisy

data x̂n = WW
T xn = xn.

The most common wavelet denoising methods are

based on hard or soft thresholding. In hard thresholding

a subset of coefficients with magnitudes larger than the

threshold are retained,

ĉi = ciI{|ci|>λ}, i = 1, . . . , n , (7)

where λ denotes the threshold and I is an indicator func-

tion. In soft thresholding the retained coefficients are also

shrunk towards zero

ĉi = sign(ci)(|ci| − λ)I{|ci|>λ}, i = 1, . . . , n . (8)

A common choice for the threshold is the so-called uni-

versal threshold, λ = σ̂
√

2 lnn, where the noise standard

deviation estimate σ̂ is usually obtained as the median ab-

solute deviation (MAD) estimate from the wavelet coef-

ficients of the finest detail level [4]. Soft thresholding

with the universal threshold is known as the VisuShrink

method.

In MDL setting wavelet denoising is seen as a model

class selection task. We can rewrite the linear regression

model in (5) as a density function

f(xn|βγ , σ2, γ) =

1

(2πσ2)
n/2

exp

{

− 1

2σ2
||xn − Wβγ ||2

}

,
(9)



where the structure index γ defines which columns of the

regressor matrix are included in the model, or equiva-

lently, which elements of βγ are non-zero. We may now

define the NML density function (2), in which the maxi-

mum likelihood estimates for the parameters are the well-

known β̂i = ci for i ∈ γ and σ̂2 = 1
n ||xn − Wβ̂||2. Cal-

culating the NML density function requires restricting the

range of data to keep the parametric complexity bounded.

Rissanen [17] solves this by introducing hyperparameters

restricting the ML parameter estimates. Because the hy-

perparameters affect the resulting code length, they must

be removed by a second normalization over the hyperpa-

rameters, resulting in a criterion

k

2
ln





1

k

∑

i∈γ

c2
i



+
n − k

2
ln





1

n − k

∑

j /∈γ

c2
j





+
1

2
ln k(n − k) + L(γ)

(10)

approximating the stochastic complexity, which is shown

to be minimized by the k coefficients with largest magni-

tudes [17]. Therefore, instead of optimizing over γ it is

sufficient to find optimal k̂ minimizing (10). Terms con-

stant with respect to k or γ (for example, terms containing

the hyperparameters) have been discarded as they do not

affect the model class selection task. In fact, (10) deter-

mines a hard thresholding rule where the threshold value

is defined implicitly by minimizing the code length. For

the code length for the model class a code length function

L(γ) = ln
(

n
k

)

is recommended in [19].

4. MDL SOFT THRESHOLDING

Consider the observed wavelet coefficients cn and a fixed

threshold λ. Soft thresholding results in two coefficient

sequences,

ĉi =

{

sign(ci)(|ci| − λ) |ci| > λ

0 |ci| ≤ λ
(11)

defining the coefficients ĉn corresponding to the informa-

tive signal and

c̃i =

{

sign(ci)λ |ci| > λ

ci |ci| ≤ λ
(12)

defining c̃n describing noise. A reconstruction of the

noise-free signal is obtained through the IDWT, x̂n =
Wĉn.

MDL may be used to determine the optimal coeffi-

cient vector ĉn. A useful analogy is to think the process as

data transmission over a channel. The sender must trans-

mit enough information over a channel to the receiver so

that the receiver is capable of reconstructing the original

data from the transmitted signal. In this case we trans-

mit, with as short a code length as possible, enough coef-

ficients from both ĉn and c̃n so that when λ (which also

must be transmitted) is known the receiver is able to re-

construct the original data. In fact, we have to encode the

k non-zero coefficients from ĉn, because we cannot repli-

cate the original data from the respective k elements of

c̃n. Vice versa, the n − k remaining coefficients must be

taken from c̃n because the zeros in ĉn cannot be inverted

to give the original coefficients. In other words, fixing the

threshold λ also explicitly gives the division into two sub-

sets indexed by γ1 and γ2, ĉγ1
= (ĉγ1(1), . . . , ĉγ1(k)) and

c̃γ2
= (c̃γ2(1), . . . , c̃γ2(n−k)).
The code length for the wavelet coefficients is ob-

tained by encoding the subsets ĉγ1
and c̃γ2

with sepa-

rate NML codes LNML(ĉγ1
|γ1) and LNML(c̃γ2

|γ2), respec-

tively. The code length of the model class, L(γ1, γ2, λ),
is also required for describing the parameter of the shrink-

age function as well as the index sets γ1 and γ2. Finally,

the encoding is performed by a two-part encoding where

the total code length L is given by

L = LNML(ĉγ1
|γ1)+LNML(c̃γ2

|γ2)+L(γ1, γ2, λ) . (13)

A real valued sequence may be encoded using a nor-

malized maximum likelihood coding [13]. The required

NML code lengths for the coefficient sets are given by

LNML(ĉγ1
|γ1) =

k

2
ln (kπτ̂ (ĉγ1

)) − ln Γ

(

k

2

)

+ ln ln
τ̂max

τ̂min

(14)

and

LNML(c̃γ2
|γ2) =

n − k

2
ln ((n − k)πτ̂ (c̃γ2

))

− lnΓ

(

n − k

2

)

+ ln ln
τ̂max

τ̂min
,

(15)

where the maximum likelihood variance estimates are

given by τ̂ (ĉγ1
) = 1

k

∑k
j=1 ĉ2

γ1(j) and τ̂ (c̃γ2
) =

1
n−k

∑n−k
j=1 c̃2

γ2(j)
, respectively. Hyperparameters τ̂min

and τ̂max define the minimum and maximum of the ML

variance estimates. These hyperparameters must be in-

troduced to make the parametric complexity (3) bounded.

However, while the hyperparameters clearly affect the

code length, they are later seen to have no effect on the

model class selection.

The code length L(γ1, γ2, λ) is the cost of threshold-

ing the DWT coefficients and assigning them into two sub-

sets. The code length may be further divided into

L(γ1, γ2, λ) = L(γ1, γ2|λ) + L(λ) = ln

(

n

k

)

+ L(λ) ,

(16)

where L(γ1, γ2|λ) = ln
(

n
k

)

gives the code length for

choosing the k coefficients into γ1 out of a total of n co-

efficients when λ is fixed. L(λ) is required to describe the

threshold parameter value. However, L(λ) may be con-

sidered to be a constant that can be ignored in the final

criterion.

We combine the code lengths (14), (15) and (16), ap-

ply the Stirling’s approximation to Gamma functions and

ignore all terms constant with respect to k (for example,

the terms containing the hyperparameters in (14) and (15)



are seen to have no effect on the criterion). The criterion

for choosing the optimal parameter λ is given by

min
λ

[

k

2
ln

(

1

k

k
∑

i=1

ĉ2
γ1(i)

)

+
n − k

2
ln

(

1

n − k

n−k
∑

i=1

c̃2
γ2(i)

)

+
1

2
ln k(n − k) − k ln k − (n − k) ln(n − k)

]

, (17)

where the two last terms come from the Stirling’s approxi-

mation to the model class code length ln
(

n
k

)

. The criterion

(17) is almost identical to the original MDL denoising cri-

terion (10): the difference is in the first term, where in the

soft thresholding criterion there are shrunk wavelet coef-

ficients instead of the originals. Furthermore, taking the

hard thresholding function and going through the equa-

tions leading to (17) gives exactly (10).

5. EXPERIMENTS

The performance of the proposed MDL soft thresholding

method was studied with a set of artificial 1-D signals [4]

scaled for the range of 200 and 8-bit grayscale natural im-

ages1 with a range of 255. The signals were corrupted

with Gaussian random noise with known variance and the

denoised signals were compared with the originals. The

error was measured with the peak-signal-to-noise ratio

(PSNR) defined as

PSNR = 10 log10

(

[max(xn) − min(xn)]
2

MSE

)

, (18)

where the squared range is calculated from the signal xn

and MSE is the mean squared error. Especially for the im-

ages visual quality of the results is also important. The

Daubechies ’db5’ wavelet basis was used in all experi-

ments with N = 5 decomposition levels in the multires-

olution wavelet transform. In practice, the approxima-

tion coefficients are often retained without shrinking. We

adopted this custom to keep the results comparable.

Compared to the original MDL denoising soft thresh-

olding seems to have only little effect on the number of

retained coefficients. Typically only a small number of ex-

tra coefficients are retained in soft thresholding approach,

so that the main difference in the denoising results comes

from the shrinkage effect. An example denoising result

for ’Lena’ image is shown in Figure 1, where the denois-

ing result for VisuShrink is also presented. Soft thresh-

olding results are typically somewhat oversmoothed com-

pared to hard thresholding, which is also seen in Figure 1.

Further comparisons with VisuShrink revealed that the

MDL soft thresholding approach gives similar results in

terms of error measures and visual quality. However, there

are differences in threshold values and therefore in the

1USC-SIPI image database, http://sipi.usc.edu/database/

(a) (b)

(c) (d)

Figure 1. Example denoising results. (a) Noisy ’Lena’ im-

age, 512×512, noise standard deviation σ = 15, PSNR =
24.6; (b) MDL hard thresholding, PSNR = 29.0; (c)

MDL soft thresholding, PSNR = 26.6; (d) VisuShrink,

PSNR = 26.4.

number of retained coefficients. With 1-D signals there

is some dispersion in the threshold values, but on the av-

erage the thresholds and therefore other properties of the

MDL soft thresholding results are fairly similar to Vis-

uShrink, as can be see in Figure 2. While the denoising

results with 2-D images also are similar, MDL method

consistently retains more coefficients than VisuShrink es-

pecially at higher noise levels. This is reflected in lower

thresholds, as can be seen in Figure 3. Despite these clear

differences, the effect on denoising results seems to be al-

most negligible.

6. CONCLUSIONS

We have proposed a method for employing soft threshold-

ing shrinkage in MDL wavelet denoising based on com-

bining two-part and NML coding. We have shown that

when our method is adapted to hard thresholding, we ob-

tain the criterion suggested in the original MDL denois-

ing approach [17]. We have also demonstrated that our

MDL soft thresholding approach has fairly similar denois-

ing performance as the well-known VisuShrink method.

The method described in this article can be extended

in several ways. Here we have discussed only global

denoising methods. However, many existing denoising

methods are level-dependent: they use the multiresolu-

tion properties of the wavelet transform by applying dif-

ferent thresholds at each DWT decomposition level in or-

der to obtain better separation of noise and underlying in-

formative signal. It is possible to extend our method to be

level-dependent by dividing the coefficients into subsets
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Figure 2. A comparison between MDL soft thresh-

old and VisuShrink. (a) Results (PSNR) for denoising

’Blocks’ [4] signal corrupted with Gaussian noise of vary-

ing standard deviation. The results at each noise standard

deviation are mean values of 10 independent simulations,

with the error bars drawn to show two times the standard

deviation of the results. (b) The average threshold values

of the same simulations.

according to their decomposition levels and encoding the

retained coefficients with NML codes. Also, a similar idea

could be used to include more than one informative com-

ponent in the data. In addition, other shrinkage functions

could be used instead of soft thresholding. An interest-

ing extension would be to consider other universal cod-

ing systems than NML, which is known to have problems

with the unbounded parametric complexity. For example,

conditional normalized maximum likelihood [21] coding

could be used to compute the code length for the Lapla-

cian distribution which then could be used as a model for

the wavelet coefficients.
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