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1. INTRODUCTION 

Computational toxicology is defined (U.S. EPA, 2003) as “the integration of modern computing and 

information technology with the technology of molecular biology and chemistry to improve risk 

assessment for toxic chemicals”. Therefore, Computational toxicology should consider several 

computational disciplines including:  

- Computational chemistry: physical-chemical modeling at the molecular level (quantum and 

molecular mechanics simulations) and chemo-informatics, e.g. QSAR. 

- Computational Biology or Bioinformatics, which refers to development of molecular biology 

databases as well as processing, storage, distribution, analysis and interpretation. 

- Systems biology: application of mathematical modeling and reasoning to the understanding of 

biological systems and the explanation of biological phenomena. 

The objectives of Computational Toxicology are (U.S. EPA, 2003):  

- to improve our understanding of the linkages between a chemical and its adverse effects from a 

continuum prospective, i.e. molecular to ecosystem level, see Fig. 1;  

- to provide predictive models for chemical prioritization, screening and testing, able to reduce animal 

testing; and  

- to provide quantitative risk assessment methodologies able to integrate human and ecological risk 

assessment. 

 

 

 

 

 

 

 

 

Figure 1. Sequential order of contaminant effects and cause-effect continuum and Computational 

Toxicology approaches (modified from van der Oost et al., 2003 and U.S. EPA, 2003). (Note: the term 

ecosystem is used in the broader sense, including humans; BBDR: Biology-based dose response; 

PBPK: Physiologically based pharmacokinetic). 

 

Therefore, the final objective of Systems Toxicology is to be able to describe the response of a 

functioning organism to toxicants at all levels of biological organization and complexity by combining 

the information from several sources to gain a deeper understanding on the mechanisms of toxic action 

and by developing approaches allowing a more sensitive and earlier detection of adverse effects in 
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toxicity studies. This constitutes a big challenge since it requires to study interactions between genes, 

proteins and metabolites, and to integrate the results from different theoretical and experimental set-

ups. However, a better understanding of the molecular mechanisms of toxicity may contribute to the 

extrapolation between experimental conditions, from low to high doses, from short term to chronic 

exposures, etc; thus, reducing the need for animal testing as well as the dose levels needed for toxicity 

elucidation. Systems Toxicology may be able to support in vitro experiments by discovering the 

underlying molecular mechanisms of toxicity better linking in vitro models to in vivo studies. Finally, 

Systems Toxicology may improve human health risk assessment, but it will require considerable 

standardization work, regulations and guidelines. 

 
Figure 2. A model of KaiC phosphorilation oscillations with the role of KaiA and KaiB on the process 

and the effects of solar radiation (modified from Dong and Golden, 2008). 

 

To analyze toxic effects from molecular level to population level, we have coupled a model of the 

circadian clock of cyanobacterium (Rust et al., 2007) with a bioenergetic growth model of 

phytoplankton (Dueri et al., 2009), see Fig. 2. Contaminants’ effects are modelled by modifying the 

amount of proteins available in the circadian oscillator. This propagates in the ability of cyanobacteria 

to deal with solar radiation and their variation over a yearly cycle and subsequently in the growth of 

the population, assuming the the circadian oscillator is synchronized with the external light-dark 

cycles. Based on these assumptions, dose-response relationships have been also modelled. 
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2. METHODS AND APPROACH 

 

2.1. CIRCADIAN OSCILLATION MODEL 

Studies on the cyanobacterium Synechoccus elongatus have shown that it has an internal biological 

clock for measuring circadian time. Tomita et al. (2005) and Nakajima et al. (2005) showed that 

circadian oscillations in the cyanobacterium Synechoccus elongatus could be reproduced in vitro using 

three proteins: KaiA, KaiB and KaiC plus ATP. KaiA is a dimeric enzyme that enhances the 

autophosphorylation of KaiC, whereas KaiB antagonizes the activity of KaiA. KaiC (U-Kaic) is a 

hexameric enzyme that can phosphorylate and dephosphorylate at two positions: serine 431 (S-KaiC) 

and threonine 432 (T-KaiC, and on both ST-KaiC), see Fig. 2. 

The model to simulate circadian oscillations was developed by Rust et al. (2007) and it was developed 

as an interlinked positive and negative feedback loop, see fig.2. Even though a simple negative loop is 

able to generate sustained oscillations, Tsai et al. (2008) demonstrated that to have a more robust 

system able to generate constant amplitude oscillations over a wide range of frequencies positive and 

negative loops were necessary. Following Rust et al. (2007), the model equations can be written as: 

TkTkDkUk
dt

dT
TDTUDTUT ⋅−⋅−⋅+⋅=  (1) 

DkDkSkTk
dt

dD
DSDTSDTD ⋅−⋅−⋅+⋅=  (2) 

SkSkDkUk
dt

dS
SDSUDSUS ⋅−⋅−⋅+⋅=  (3) 

where T, D and S denote T-KaiC, ST-KaiC and S-KaiC, respectively, and the rate constants kXY are 

defined as: 

AK

Ak
kk

A

XY

XYXY
+

⋅
+=

2/1

0
 (4) 

with 0

XYk  the rate constant when KaiA is not present and A

XYk  the influence of KaiA on this rate 

constant, i.e. positive promotion, negative inhibition; and A the active monomers of KaiA which are 

inhibited via S through KaiB, { }SKaiAA 2][,0max −= . The total concentration of KaiC can be 

expressed as: 

][][][][][][][ KaiCSTKaiCTKaiCSKaiCUKaiCKaiCUKaiC ptotal −+−+−+−=+−=  (5) 

The original values of the model obtained by Rust et al. (2007) are summarized in Table 1. 

 

2.2. MODELLING THE EFFECTS OF CONTAMINANTS AT MOLECULAR LEVEL 

To simplify the case study let us assume that there are three generic types of contaminants that 
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separately affect each protein, i.e. KaiA, KaiB and KaiC. Therefore the effects will be modeled by 

reducing the concentrations of KaiA and KaiC or by modifying the constant A

DSk  for the case of KaiB. 

It is assumed that the contaminant interacts with each protein reducing their “effective” concentration 

in the organisms. There are several other possibilities to introduce contaminant effects such as the 

inhibition of S or T dephosphorylation, but a more detailed/realistic model would require experimental 

work on the real interactions as well as theoretical work to analyze the contaminant-docking site 

interactions. 

 

Table 1. Parameters used in the model (Rust et al., 2007) 

Parameter Value Units 
0

UTk  0 h
-1

 

0

TDk  0 h
-1 

0

SDk  0 h
-1 

0

USk  0 h
-1 

0

TUk  0.21 h
-1 

0

DTk  0 h
-1 

0

DSk  0.31 h
-1 

0

SUk  0.11 h
-1 

A

UTk  0.479 h
-1 

A

TDk  0.213 h
-1 

A

SDk  0.506 h
-1

 

A

USk  0.0532 h
-1 

A

TUk  0.0798 h
-1 

A

DTk  0.173 h
-1 

A

DSk  -0.319 h
-1 

A

SUk  -0.133 h
-1 

K1/2 0.43 µM 

 

2.3. CYANOBACTERIA GROWTH MODEL 

Let us assume a simple model without zooplankton grazing. Therefore, the variations of the 

phytoplankton, P (mmol N m
-3

), is described in terms of growth (h
-1

) and mortality m (h
-1

), 

PmPgrowth
dt

dP
PdPd ⋅−⋅=  (6) 

Phytoplankton growth is modelled as the product of the maximum specific growth rate µmax multiplied 

with an overall limitation function, representing light limitation f(I), temperature limitation f(T) and 

nutrient limitation f(NO3
-
, NH4

+
), as: 

)],(),(),(min[ 43321max

+−⋅= NHNOfTfIfgrowth
Px

Px µ  (7) 
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The light limitation is parameterized according to Jassby and Platt (1976) by 

)],(tanh[)(1 tzIaIf p ⋅=  (8) 

]])[(exp[),( zPdPfkkItzI phywaters ⋅++−⋅=  (9) 

where ap (m
2
 W

-1
)denotes the photosynthetic quantum efficiency parameter controlling the slope of f(I) 

versus the irradiance curve and Is denotes the surface intensity of the PAR (photosynthetically active 

irradiance) taken as half of the incoming solar radiation. kwater (m
-1

) is the extinction coefficient of the 

sea water and kphy (m
2
 mmol N

-1
) is the phytoplankton self-shading coefficient.  

The temperature limitation function for phytoplankton is based on Lancelot et al. (2002) 






















 −
−=

2

2 exp)(
width

opt

T

TT
Tf  (10) 

with Topt and Twidth being the optimal temperature in ºC and the range of suitable temperatures 

respectively. 

The nutrient limitation is the sum of ammonium and nitrate limitation: 

)()(),( 43433

+−+− += NHfNOfNHNOf ba  (11) 

where the limitations are expressed by the Michaelis-Menten uptake formulation: 

])[exp(
][

][
)( 4

3

3
3

=

−

−

−
−⋅

+
= NH

NOK

NO
NOf

no

a ψ  (12) 

][

][
)(

4

4
4 +

+
+

+
=

NHK

NH
NHf

nh

b  (13) 

where Kno and Knh are half saturation constants (mmol N m
-3

) for nitrate and ammonium uptake, 

respectively, and the exponent in Eq. (12) represents the inhibiting effect of ammonium concentration 

on nitrate uptake with ψ=3 m
3
 mmol N

-1
 (Wrobleski, 1977). 

The mortality of phytoplankton is expressed as a linear function of its biomass. 

 

Table 2. Parameters used for the simulation of the phytoplankton model (Dueri et al., 2009). 

Parameter Definition Value Unit 

ap Photosynthetis efficiency   0.01 m2 W-1 

kwater Light extinction coefficient in water  0.08 m
-1

 

kphy Phytoplankton self shading coefficient 0.07 mmol N
-1

 

µmax  Maximum growth rate 0.030 h
-1

 

Topt, Optimal temperature 15.0 ºC 

Twidth Range of temperatures for cyanobacterium 7.0 ºC 

Kno Half saturation for nitrate uptake 0.5 mmol N m
-3

 

Knh Half saturation for ammonium uptake  0.2 mmol N m-3 

ψ Ammonium inhibition parameter 3.0 m3 mmol N-1 

mP mortality rate 0.0057 h
-1
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In all the runs, the model is forced by imposing temperature and solar radiation sinusoidal forcing, 

which have the following form: 

3.12
365

74.114
2sin76.9 +















 −
⋅⋅=

t
T π  (14) 

0.201
365

120
2sin0.140 +








+














 −
⋅⋅=

t
I π  (15) 

These functions are typical of shallow systems in Europe. Furthermore, we have also included the 

duration of light during the year and the mean duration value using also two sinusoidal functions that 

gives the number of light minutes per day during the year (obtained also for European latitude). 

1.729
365

89.81
2sin7.70 +















 −
⋅⋅=

t
L π  (16) 

With Lh=L/60. The mean value for this duration, normally between  11.7 and 12.3 h is given by: 

96.11
25.91

21.3
2sin02.0

5.182

068.6
2sin16.0

365

12.3
2sin15.0 +















 −
⋅⋅+















 +
⋅⋅+















 +
⋅⋅=

ttt
L πππµ  (17) 

Then Is in Eq.(8) is calculated as: 
























⋅

−
−⋅=

2

5.0
exp

h

Lday

s
L

t
II

µ
 (18) 

This produces a function that takes into account, when calculating the growth, the day and night cycles 

as well as their changing duration during the year. 

An analysis of the variability of these functions on the effects of competition between phytoplankton, 

floating macroalgae and rooted macrophytes has been studied in Zaldívar et al. (2009) using a similar 

model, but it is outside the scope in this work to consider these aspects. 

 

2.4. COUPLING CIRCADIAN CLOCK WITH THE GROWTH MODEL 

According to the latest results by Dong and Golden (2008), it seems that Synechoccus elongatus clock 

senses the cellular redox state rather than the light intensity. However, the exact mechanism is not 

clear. What is know is that LdpA and CikA sense the cellular redox state and that both repress KaiA. 

In addition, Arita et al. (2007) and Kutsuna et al. (2007) have shown that Pex, a transcriptional 

repressor of KaiA, increases during the dark period having abundance sensitive to light, but the exact 

pathway is not clear. Furthermore, Smith and Williams (2006) have shown that KaiC is responsible for 

the slow compactation of Synechoccus elongatus chromosome during day and decompactation during 

night which seems to suggest that the circadian clock controls the global transcription rhythm by 

modifying the DNA topology. 
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Experiments by inactivation of the cikA (circadian input kinase) gene performed by Schmitz et al. 

(2000) have shown that the circadian period was shortened by two hours with changes in the phasing 

of several rhythms, and abolishes resetting of phase due to a pulse of several hours of darkness. 

Let us formulate the following hypothesis: the correct functioning of Synechoccus elongatus requires 

that the organism synchronizes with the external light-dark conditions to optimize their growth and 

that this synchronization is carried out by a control mechanism that changes the KaiA concentration, 

between certain limits. Therefore, we will base our approach on the case of unidirectional coupling 

between two oscillators (Chen and Dong, 1998). 

The hypothesis is in agreement with the origin of the internal biological clock that some prokaryotes 

posses for measuring daily time. According to Dong and Golden (2008), this constitutes an evolutive 

advantage for the organisms since they can anticipate and adjust for the dark-light effects in terms of 

temperature and light intensity rather that respond each time during the whole life cycle. In addition, 

spontaneous synchronization is a well-known characteristic of circadian oscillators in other species 

such as mammals (Gonze et al, 2005). 

Therefore, we will assume that the concentration of KaiA can be expressed as: 
























⋅

−
−⋅+=

2

5.0
exp][][

h

Lday

syncitotal
L

t
kKaiAKaiA

µ
 (19) 

where [KaiA]i is the initial concentration of KaiA in the simulation, ksync in the coupling strength 

coefficient and the light-dark cycle given by Eqs. (16)-(17). 

To scale up the toxic effects from molecular level to population level, we will assume a baseline 

scenario and compare the differences with increasing doses of contaminants. We assume that for the 

correct functioning of the organism, external and internal clocks should be synchronized and the 

departure from this situation will, negatively, affect the growth of the organism. Therefore, we will 

measure the response, ri, to a certain dose, di, as: 

( )

)max(

][][

1

365

1

2

i

i

baseline

pp

i
r

KaiCKaiC

r

∑
=

−

−=  (20) 

As before, this is an assumption that should be experimentally validated in vivo when the other 

hypothesis has been assessed in vitro or using molecular modelling approaches. In addition, the 

baseline scenario has been chosen as the one close to the modelling parameters used in the literature, 

but that it produces cycles of ~24 hours, i.e. [KaiC]total=3.9 µM, [KaiA]= 1.26 µM; A

DSk =-0.32 h
-1

 and 

ksync=0.5 (however, the approach and methodology will not change if the baseline scenario is 

modified). 
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3. RESULTS AND DISCUSSION 

 

3.1. UNSTRESSED AND STRESSED CIRCADIAN OSCILLATION MODEL  

The numerical integration of the model given by Eqs. (1)-(4) using the parameters provided in Table 1 

reproduces the circadian oscillation of KaiC phosphorylation, see Figs. 3-4. In Fig.3 the concentrations 

of the three phosphorylated species and the sum of all phosphorylated species are displayed versus 

time, whereas in Fig. 4 the state space is shown. As can be seen, the system converges to a limit cycle 

with a period of about 21 hours. 

 

Figure 3. Simulation of the circadian oscillator with the parameters provided in Table 1 with initial 

conditions: [T-KaiC]= 20%[KaiC]total; [ST-KaiC]= 40%[KaiC]total; [S-KaiC]=;10%[KaiC]total. 

 

To analyze the effects of contaminants in the circadian oscillator we have changed, as discussed in 

Section 2, the concentrations of KaiA, the total concentration of KaiC and the constant A

DSk  related to 

the inhibition from KaiB on KaiA. The simulation results, in terms of oscillations amplitude and 

period are summarized in Figs. 5-6. As it can be observed, there exists a region in parameter space 

where there is a continuous change in the amplitude and period of the oscillations. In this region, the 

system converges to a limit cycle. However, for certain parameter’s values, the oscillations stop and 

the system then converges to a fixed point. Between these two types of attractors there is a bifurcation 

point. To gain a better insight on the nonlinear dynamics of this system, a bifurcation analysis study, 

similar to the one carried out in Bacelar et al. (2009), is being conducted. 
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Figure 4. Limit cycle in the circadian oscillator. Parameters as in Table 1. 

 

 

 a/ b/ 

Figure 5.a/Amplitude and b/ period (hours, limit cycle) of the phosphorylated KaiC oscillations 

([KaiC]p=[T-KaiC]+[S-KaiC]+[ST-KaiC]) as a function of the total concentrations of KaiA and total 

concentration of KaiC. 
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 a/ b/ 

Figure 6. a/ Amplitude and b/ period (hours, limit cycle) of the phosphorylated KaiC oscillations 

([KaiC]p=[T-KaiC]+[S-KaiC]+[ST-KaiC]) as a function of the total concentrations of KaiA and A

DSk  

which measures the effect of KaiB. 

 

From this preliminary analysis we can conclude that the effects of contaminants able to interact with 

the three proteins that compose the system will change the amplitude and period of the circadian 

oscillator; being able, for certain values, to stop completely the oscillations. Of course, this is only a 

modelling hypothesis that should be confirmed with experiments and assumes that the model works 

properly outside of the domain in which was validated by Rust et al. (2007). However, similar effects – 

short circadian periods- have already been observed in vivo (Schmitz el al., 2000) by inactivation of 

the gene cikA (circadian input kinase) 

Figures 7- 10 illustrate some particular cases of the dynamic behaviour of the circadian oscillator when 

[KaiA] is changed.  

 
Figure 7. Simulation of the circadian oscillator with the parameters provided in Table 1, but with 

[KaiA]= 0.9 µM. 
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Figure 8. Simulation of the circadian oscillator with the parameters provided in Table 1, but with 

[KaiA]= 1.2 µM. 

 
Figure 9. Simulation of the circadian oscillator with the parameters provided in Table 1, but with 

[KaiA]= 1.6 µM. 
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Figure 10. Simulation of the circadian oscillator with the parameters provided in Table 1, but with 

[KaiA]= 1.7 µM. 

 

3.2. CYANOBACTERIA GROWTH MODEL  

The cyanobacteria model was run under constant nutrient conditions using the temperature, light 

intensity, light-dark and duration, Eqs. (14)-(18), as forcing functions. An annual cycle of the 

cyanobacteria model is shown in Fig. 11a whereas a detail of the daily oscillations in phytoplankton 

mass due to the light-dark cycle are shown in Fig. 11b. The model results show the spring bloom 

biomass in spring and the decrease in autumn and winter. The shape of the curve is also typical of 

models where zooplankton grazing is not considered. In real situations, a phytoplankton bloom is 

followed by a zooplankton bloom that depletes phytoplankton biomass. The phytoplankton oscillations 

are in agreement with more detailed models that use meteorological data as forcing (Marinov et al., 

2009). However, in that case, the oscillations are less evident since cloud coverage is also taken into 

account. 

The fact that phytoplankton growth depends on light intensity and duration provides the coupling 

condition with the circadian oscillator model.  
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 a/ b/ 

Figure 11.a/ One year simulation of phytoplankton growth with forcing conditions provided by Eqs. 

(14)-(18) and constant nutrient concentrations –[NO3
-
]= 0.8, [NH4

+
] = 0.3 mmol m

-3
-; b/ detail from a/ 

showing the daily oscillations of phytoplankton biomass. 

 

3.3. SYNCHRONIZATION OF THE COUPLED MODEL 

As a first step, we introduced Eq. (19) in the circadian oscillator model and tested the values of ksync 

assuming that during darkness the concentration of KaiA decreases, i.e. ksync>0 (Kutsuna et al., 2007). 

Depending on the coupling strength the system synchronizes to the light-dark oscillations. Figure 12 

shows an example of one year simulation of the circadian oscillator when coupling is acting. It is also 

possible to observe the annual modulation of [ST-KaiC] and [S-KaiC] in the daily oscillations. In this 

case the system dynamics in phase space is not a limit cycle but changes as the light-dark conditions 

change, see Fig. 13. The coupling takes place approximately after the first eighteen days, Fig 14a; 

examples of the coupling at two different periods during the year are shown in Figs.14b and 14c. 

Similar behaviour can be observed with different initial parameters and coupling strengths, but several 

types of synchronization behaviour may occur. For example, Fig. 15 shows a 48 h synchronization for 

ksync=0.1 and [KaiC]total=3.9 and [KaiA]=1.26 µM, respectively. A detailed analysis of 

synchronization mechanisms is outside the scope of this theoretical work, since it would require in vivo 

experiments and a metabolomic approach to measure the change in concentrations of several 

compounds responsible for the functioning of the system. 
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Figure 12. One year simulation of the forced circadian oscillator with the parameters provided in Table 

1 with and ksync=1. 

 
Figure 13. State-space representation of the circadian oscillator when forced with dark-light conditions 

during one year, ksync=1. 
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Figure 14. Simulated phosphorylated KaiC concentration, [KaiC]p=[S-KaiC]+[T-KaiC]+[ST-KaiC] - 

green line- and light-dark cycles for two periods of the year – blue line-. Parameters: [KaiC]total=3.4 

µM, [KaiA]=1.3 µM and ksync=1. 

 
Figure 15. Simulated phosphorylated KaiC concentration, [KaiC]p=[S-KaiC]+[T-KaiC]+[ST-KaiC] - 

green line- and light-dark cycles at the end of the year- blue line-, notice the 48h synchronization 

period. Parameters: [KaiC]total=3.9 µM, [KaiA]=1.26 µM and ksync=0.1. 
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3.4. SIMULATED DOSE-RESPONSE CURVES IN THE COUPLED MODEL  

As discussed above, let us analyze the case of three contaminants that interact separately with the three 

proteins, KaiC, KaiA, KaiB, that form the circadian oscillator. Therefore we will measure the dose as 

the decrease of the amount of concentration with respect to our baseline, and the effect as the 

normalized distance from the baseline, represented by the oscillations in concentration of the 

phophorylated KaiC compounds, during one year. In this example, the baseline scenario has been 

defined as (see Section 2.4): [KaiC]total=3.9 µM, [KaiA]= 1.26 µM; and A

DSk =-0.32 h
-1

; ksync=0.5. 

Figures 16-18 represent the dose-response curve for three hypothetic contaminants that interact with 

the three proteins. Strikingly, the shape of the curves is quite similar to those obtained experimentally. 

In addition, even though all contaminants interact with the circadian oscillator, the shape of the dose-

response curves is also different depending on the mode of interaction. Similar results should be also 

hypothesized for other molecular machinery and, therefore, this seems a plausible explanation for the 

fact that different chemical compounds can act of the same system even if there are no structural 

similarities between them. 

 
Figure 16. Simulated dose-response curve for a contaminant that interacts with [KaiC]total. 
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Figure 17. Simulated dose-response curve for a contaminant that interacts with [KaiA]. 

 

 
Figure 18. Simulated dose-response curve for a contaminant that interacts with [KaiB] through A

DSk . 

 

Finally, as an example, Fig. 19 shows the dynamics of the cyanobacteria population exposed to 

constant doses of a contaminant that reduces its growth by 10, 20, 30 and 40% after the first year, 

respectively. The figure also illustrates the propagation of the effects from individual level to 

population level, the chronic effects of exposure and the response time of the system. 
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 a/ b/ 

 
 c/ d/ 

Figure 19. Simulated cyanobacteria model with a constant contaminant dose that reduces by a/ 10%; 

b/20%; c/30%; d/40% the growth after the first year. 

 

4. CONCLUSIONS 

A first attempt to analyze the possible toxic effects of several compounds, acting at molecular level, on 

the population lhas been carried out using a coupled modelling approach based on a circadian 

oscillators and a cyanobacteria growth model. To develop further this approach, several assumptions 

have been made on the linkage between the circadian clock functioning and the population growth as 

well as on the effects of contaminants at molecular level. Synchronization with light-dark conditions 

has been introduced as the coupling mechanism and its los as the influencing mechanism in the growth 

model. Then dose-response curves have been developed. The obtained curves show a striking 

resemblance to those obtained experimentally, even though no assumptions have been made in the 

model about their shape.  

The modelling results suggest new experimental approaches to validate the assumptions as well as to 

understand toxicity effects, the functioning and malfunctioning of molecular machinery and possible 

consequences. In addition, several modelling hypothesis could be refined when experimental data 

become available. 
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The results point to the need that to understand toxic effects we have to focus our study on the 

interactions that a certain compound may have with proteins, and/or DNA, since the result of these 

interactions will determine the final mode of action at macroscopic level. Therefore an intermediate 

step for assessing toxic effects, based on the type of interaction at molecular level, is proposed for 

developing a coherent toxicity framework analysis. This would explain why completely different 

compounds have the same mode of actions whereas similar ones at the level of structure have 

sometimes different mode of action. 

Since the molecular clock system is quite simple, experiments could be carried out in vitro to validate 

the model results as well as the concentration thresholds. In addition, the structures of the proteins 

KaiA, KaiB and KaiC are known, so it could be possible, in principle, to select the chemicals that dock 

(block the functioning) of one but not the others proteins, to compare experimental and modelling 

results. Finally, in vivo experiments with Synechoccus elongatus could be performed. 

Missing aspects in the model include the possible delays due to the kinetics of the proteing-ligand 

(contaminant) docking and due to the diffusion of the contaminant from the water to the organism, to 

take into account internal concentrations. 
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