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ABSTRACT 
 

 

 

This document presents a perspective of how computational approaches could potentially be used in 

the grouping and assessment of chemicals, and especially in the application of read-across and the 

development of chemical categories. The perspective is based on experience gained by the authors 

during 2006 and 2007, when the Joint Research Centre’s European Chemicals Bureau was directly 

involved in the drafting of technical guidance on the applicability of computational methods under 

REACH. Some of the experience gained and ideas developed resulted from a number of research-

based case studies conducted in-house during 2006 and the first half of 2007. The case studies were 

performed to explore the possible applications of computational methods in the assessment of 

chemicals and to contribute to the development of technical guidance. Not all of the methods 

explored and ideas developed are explicitly included in the final guidance documentation for 

REACH. Many of the methods are novel, and are still being refined and assessed by the scientific 

community. At present, many of the methods have not been tried and tested in the regulatory 

context. The authors therefore hope that the perspective and case studies compiled in this document, 

whilst not intended to serve as guidance, will nevertheless provide an input to further research 

efforts aimed at developing computational methods, and at exploring their potential applicability in 

regulatory assessment of chemicals.  
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1. Introduction 

 

This document presents a perspective of how computational approaches could potentially be used in 

the development of chemical categories and in the application of read-across. It also contains a 

compilation of case studies that were developed by the ECB during 2006 and the first half of 2007. 

The case studies were performed to explore the possible applications of computational methods in 

the assessment of chemicals and to contribute to the development of technical guidance on the 

regulatory use of such methods, especially in the framework of REACH, which entered into force 

on 1 June 2007 (EC, 2006).  

 

1.1 Basic concepts of non-testing methods  

 

This section explains the various types of non-testing, and in particular in silico, methods that can 

be used to provide information about the basic physicochemical and fate properties of chemicals, as 

well as their ecological and human health effects. Computer-aided toxicity prediction makes use of 

the relationship between chemical structure and biological activity to compute such properties, thus 

generating non-testing data on the effects of the chemicals on humans and the environment. The 

different types of non-testing methods include qualitative and quantitative Structure Activity 

Relationship models (i.e. SARs and QSARs) (Cronin, 2004); Activity-Activity Relationships 

(AARs) and Quantitative Structure-Activity-Activity Relationships (QSAARs) (Lessigiarska et al, 

2006); and expert systems (Dearden et al, 1997). Non-testing data can also be generated by less 

formalised chemical grouping approaches, referred to as the analogue and chemical category 

approaches. All of these non-testing methods are based on the premise that the properties (including 

biological activities) of the chemical depend on its intrinsic nature and can be directly predicted 

from its molecular structure and inferred from the properties of similar compounds whose activities 

are known. 

 

1.1.1 (Q)SARs  

A (Q)SAR is an umbrella term referring to both SARs and QSARs, and is often used to refer to any 

theoretical model that can be used to predict the physicochemical, biological (e.g., toxicological) 

and fate properties of molecules from knowledge of chemical structure.   

 

More specifically, a SAR is a qualitative relationship (i.e. association) between a molecular 

(sub)structure and the presence or absence of a given biological activity, or the capacity to modulate 
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a biological activity imparted by another substructure. The term substructure refers to an atom, or 

group of adjacently connected atoms, in a molecule. A substructure associated with the presence of 

a biological activity is also called a structural alert. A SAR can also be based on the ensemble of 

steric and electronic features considered necessary to ensure the intermolecular interaction with a 

specific biological target molecule, which results in the manifestation of a specific biological effect. 

In this case, the SAR is sometimes called a 3D SAR or pharmacophore.  

 

A Quantitative Structure-Activity Relationship (QSAR) is a quantitative relationship between a 

biological activity (e.g., toxicity) and one or more molecular descriptors that are used to predict the 

activity. A molecular descriptor is a structural or physicochemical property of a molecule, or part of 

a molecule, which specifies a particular characteristic of the molecule and is used as an independent 

variable in a QSAR. 

 

Similar to a QSAR, a Quantitative Activity-Activity Relationship (QAAR) is a mathematical 

relationship between two biological endpoints, which can be in the same or different species. 

QAARs are based on the assumption that knowledge about the mechanism or mode of action, 

obtained for one endpoint, is applicable to the same endpoint in a different species, or to a similar 

endpoint in the same species, since the main underlying processes are the same (e.g. partitioning, 

reactivity, enzyme inhibition).  

 

1.1.2 Expert systems  

An expert system refers broadly to any formalised system, generally computer-based, which enables 

a user to obtain rational predictions about the properties or biological activity of chemicals. Expert 

systems may be classified as knowledge-based (when the rules are based on expert knowledge), 

induction rule-based (when statistical methods are used to automatically derive the rules) or hybrid 

(when both approaches are present). One or more databases may additionally be integrated in the 

system. 

 

1.1.3 Read-across  

Read-across is a non-formalised approach in which endpoint information for one chemical (called a 

“source chemical”) is used to make a prediction of the endpoint for another chemical (called a 

“target chemical”), which is considered to be similar in some way (usually on the basis of structural 

similarity). In principle, read-across can be applied to characterise physicochemical properties, fate, 

human health effects and ecotoxicity, and it may be performed in a qualitative or quantitative 
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manner. Read-across can either be qualitative or quantitative, depending on the whether the data 

being used is categorical or numerical in nature. 

 

To estimate the properties of a given substance, read-across can be performed in a one-to-one 

manner (one analogue used to make an estimation) or in a many-to-one manner (two or more 

analogues used). Within the context of a chemical category, the read-across can also be performed 

in a one-to-many manner or in a many-to many manner.  

 

1.1.4 Chemical category  

Chemical category formation is another non-formalised approach. The assessment of a group of 

chemicals as a category represents a departure from the traditional approach to property/hazard 

assessment in which chemicals are assessed on a substance-by-substance basis to an approach in 

which the category is assessed as a whole. 

 

By definition, a chemical category is a group of chemicals whose physicochemical and human 

health and/or environmental toxicological and/or environmental fate properties are likely to be 

similar or follow a regular pattern as a result of structural similarity (or other similarity 

characteristic).  

 

Accordingly, a chemical category is selected based on the hypothesis that the properties of a series 

of chemicals with common (structural) features will show coherent trends in their physicochemical 

properties, and more importantly, in their toxicological (human health/ecotoxicity) effects or 

environmental fate properties. The presence of common behaviour or coherent trends is generally 

associated with a common underlying mechanism of action.  

 

The use of the category approach means that it is possible to identify properties which are common 

to at least some members of the category. The approach also provides a basis on which to identify 

possible trends in properties across the category. As a result, it is possible to extend the use of 

measured data to similar untested chemicals, and generate estimates that may be adequate for 

regulatory purposes (e.g. classification and labelling and/or risk assessment) without further testing. 

In addition, knowledge of the expected effects of the category together with information on use and 

exposure helps to decide not only whether additional testing is needed, but also the nature and scope 

of any testing that needs to be carried out. 
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The trend analysis may involve the development of an “internal” model, i.e. a computational model 

such as a QSAR that is based entirely on the data in the category. This term is used in distinction to 

“external” model, which refers to a computational model developed using a different or more 

extensive dataset. In principle, a (Quantitative) Activity-Activity Relationship ([Q]AAR) could also 

provide a means of performing trend analysis and filling data gaps, although at present experience 

in the regulatory use of these models is limited. 

 

Within a chemical category, data gaps can therefore be filled by using several approaches, namely: 

a) read-across; b) trend analysis and use of computational methods based on internal models; and c) 

use of computational methods based on external models. In this context, the term “model” refers to 

any formalised method for estimating the properties of chemicals, such as a (Q)SAR, a (Q)AAR or 

an expert system. 

 

1.1.5 Analogue and category approaches  

Ideally, there should be sufficient members in a chemical category to enable the detection of trends 

across endpoints. As the number of chemicals being grouped into a category increases, the potential 

for developing hypotheses and making generalisations about the trends will also increase. This 

increases the robustness of the evaluation. However, in the case of a limited number of analogues 

being identified, there might be insufficient data to establish a trend. In the REACH guidance 

documentation (ECB, 2007), grouping approaches reflecting these two extremes referred to as the 

“category approach” and the “analogue approach”, respectively. 

 

Thus, the analogue approach is used when the grouping is based on a very limited number of 

chemicals, such that trends in properties are not apparent. In such cases, data gaps can be filled by 

read-across. The category approach is used when there is a more extensive dataset that allows the 

detection of one or more trends. In such cases, data gaps can be filled by read-across but also by 

trend analysis and the development of an internal model. An external model could also be used to 

fill data gaps in a category, but this possibility remains irrespective of whether an analogue or 

category approach is being followed. 

 

In this document, the term grouping is used in the broadest sense to refer to the formation of any 

group of (structurally) related chemicals, irrespective of size. The focus here is on the usefulness of 

computational methods in developing such groups. The key point is that result of this computer-

based grouping can often provide support for applying the analogue approach (i.e. performing and 
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documenting a read-across assessment) or for applying the category approach (i.e. assessing the 

properties of a group of related chemicals in a chemical category).  

 

1.2 The application of grouping approaches under REACH 

 

Under REACH (EC, 2006), testing requirements for individual substances are largely tonnage-

dependent and based on the specific information requirements shown in Annexes VI to X. As an 

alternative approach, Annex XI opens the possibility of evaluating chemicals not on a one-by-one 

basis, but in groups.  

 

Annex XI contains the following wording for the use of grouping methods (read-across and 

chemical categories): 

 

“Substances whose physico-chemical, toxicological and ecotoxicological properties are likely to 

be similar or follow a regular pattern as a result of structural similarity may be considered as a 

group, or ‘category’ of substances. Application of the group concept requires that physico-

chemical properties, human health effects and environmental effects or environmental fate may 

be predicted from data for reference substance(s) within the group by interpolation to other 

substances in the group (read-across approach). This avoids the need to test every substance for 

every endpoint. The Agency, after consulting with relevant stakeholders and other interested 

parties, shall issue guidance on technically and scientifically justified methodology for the 

grouping of substances sufficiently in advance of the first registration deadline for phase-in 

substances. 

 

The similarities may be based on: 

 

(1) a common functional group,  

(2) the common precursors and/or the likelihood of common breakdown products via 

 physical and biological processes, which result in structurally similar chemicals, or 

(3) a constant pattern in the changing of the potency of the properties across the category. 

 

If the group concept is applied, substances shall be classified and labelled on this basis.  

 

In all cases results should: 

 

• be adequate for the purpose of classification and labelling and/or risk assessment, 

• have adequate and reliable coverage of the key parameters addressed in the corresponding 

test method referred to in Article 13(3) 

• cover an exposure duration comparable to or longer than the corresponding test method 

referred to in Article 13(3) if exposure duration is a relevant parameter, and 

• adequate and reliable documentation of the applied method shall be provided.” 
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1.3 Technical guidance on the analogue and category approaches 

 

Guidance on the application of the analogue and category approaches for the assessment of 

chemicals under REACH has been developed in the context of one of the REACH Implementation 

Projects (RIPs), namely RIP 3.3 (ECB, 2007). With the exception of the REACH-specific 

considerations, essentially the same guidance has also been adopted by the Organisation for 

Economic Cooperation and Development (OECD) so there is harmonisation between the guidance 

at the EU and international levels (OECD, 2007b). In addition, a compilation of case studies that are 

referenced in the REACH (and OECD) guidance is available from the ECB website (Worth & 

Patlewicz, 2007). This includes a summary of how grouping approaches have been used in the EU 

in support of classification and labelling (Gallegos Saliner et al, 2007a) and risk assessment 

(Tsakovska et al, 2007). 

 

The REACH (and OECD) guidance provide stepwise schemes for applying the analogue and 

category approaches, considerations for assessing their adequacy, and reporting formats for 

documenting their results. The guidance also gives examples of read-across assessments and 

chemical categories that have been accepted for different regulatory purposes under various 

regulatory programmes, such as the risk assessment and classification and labelling in the EU, the 

assessment of high production existing chemicals in the OECD High Production Volume (HPV) 

Chemicals Programme, as well as the assessment of chemicals by the US Environmental Protection 

Agency (EPA). 

 

The ECB was actively involved in the developing the REACH (and OECD) guidance. The case 

studies published here were part of the work carried out in-house to explore the possibilities offered 

by computational methods in the grouping and assessment of chemicals. Not all of the methods and 

ideas developed on the basis of these case studies are explicitly included in the REACH/OECD 

guidance. Many of the methods are novel, and are still being explored in the scientific community. 

At present, many of these methods have not been tried and tested in the regulatory context. The 

authors therefore hope that this compilation will provide an input to further efforts aimed at 

developing computational methods, and at exploring their potential applicability in regulatory 

assessment of chemicals.  
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2. The use of computational methods in the assessment of chemicals  

 

For the purposes of this document, the term “computational method” is a general term to cover the 

following types of models: a) SARs and QSARs; b) AARs and QAARs; and c) expert systems. 

Numerous models based on these approaches have been published in the scientific literature or are 

currently the subject of research investigations, but few are accessible for end-users in the form of 

commercially or publicly available software tools. Therefore, some of the main software tools that 

may be useful to non-specialist end-users who need to develop or assess chemical categories are 

briefly outlined, including both existing tools and tools under development. 

 

2.1 Regulatory applications of computational methods  

 

In principle, computational methods can be used in the following ways for hazard and risk 

assessment: 

 

a) to identify groups of similar chemicals and express this similarity in qualitative and/or 

quantitative terms, thereby supporting the formation of chemical categories and the 

application of read-across 

b) to provide mechanistic information, thereby supporting the interpretation of experimental 

data 

c) to fill data gaps, thereby replacing the need for (animal) testing 

d) to supplement available test data, thereby supporting a weight-of-evidence (WoE) assessment 

e) to identify chemicals of potential concern, in order to guide or prioritise testing  

 

Some of these applications are illustrated in the case studies appended to this report. For example, 

the case studies in Appendices 1 and 4 illustrate how a range of different QSAR methods can be 

used to support the grouping the chemicals into categories (application a). The case study in 

Appendix 2 explores approaches to data gap filling by focusing on some human health endpoints of 

the existing category of ethylene glycols (application c). The case study in Appendix 3 explores the 

use of ranking approaches in the grouping (application a) and sorting of chemicals (application e). 
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2.2 Use of computational methods for grouping and expressing chemical similarity 

 

Chemical similarity is a widely used concept in toxicology, and is based on the hypothesis that 

similar compounds should have similar biological activities. This forms the underlying basis for 

performing read-across, developing chemical categories and (Q)SARs.  

 

It is beyond the scope of this document to provide a detailed review of different methods that can be 

used for the grouping of chemicals and/or for providing measures of chemical similarity. Therefore, 

a few basic concepts are explained, and the reader is referred to other literature. 

 

Chemical similarity is often thought of as structural similarity. However chemical similarity can 

also be assessed by comparing numerical chemical information generated from a structure. The 

usual starting point in any computational approach to grouping and the assessment of similarity is to 

obtain a quantitative description of molecular structure. In general, the representation of a chemical 

can be considered in terms of its constitution, configuration, and conformation. Descriptors have 

been developed to capture all levels of molecular description, and the development of new 

descriptors is an ongoing field of research. Constitution refers to information about the types and 

numbers of atoms present (zero-dimensional descriptors), the types and numbers of substructural 

fragments (one-dimensional descriptors), the sequence of their bonding and the two-dimensional 

structure of the molecule (two-dimensional descriptors). Configuration is defined by the three-

dimensional spatial arrangement of atoms (three-dimensional descriptors), whereas conformations 

represent thermodynamically stable spatial arrangements of the atoms in three dimensions. It has 

been estimated that more than 3000 descriptors have been proposed (Karelson, 2000). Most of these 

can be generated by software packages, such as Molconn-Z (eduSoft, LC, USA), DRAGON 

(TALETE srl, Italy), TSAR (Accelrys, USA), Cerius2 (Accelrys, USA), MDL
®

 QSAR (MDL, 

USA), Adriana.Code (Molecular Networks, Germany), ADAPT (PennState University, USA), 

OASIS (LMC, Bulgaria), and CODESSA (MolCode Ltd, Estonia). 

 

Having obtained a quantitative description of molecular structure for the chemical of interest, a 

comparison of one or more of the attributes with those of other chemicals can be performed either 

to identify a set of analogues or to determine the similarity between the identified analogues. To 

enable such comparisons, a variety of similarity indices have been developed, as described 

elsewhere (Gallegos et al, 2005; Gallegos-Saliner, 2006). These indices may be based on both 

physicochemical properties and/or fragment information. The development of new descriptors and 

similarity metrics is a field of ongoing research. Examples that have been investigated for their 
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similarity searching capabilities include Euclidean distance measures, correlation type indices (e.g. 

Hodgkin – Richards (Hodgkin and Richards, 1987), Tanimoto (Tou and González, 1974), Carbó 

(Carbó et al, 1996), Maximum Common Substructures (Raymond & Willett, 2002) and atom-

environment descriptors (Bender et al, 2004).   

 

More detailed accounts of methods for chemical similarity assessment can be found in the following 

reviews (Rouvray, 1995; Gillet et al, 1998; Martin et al, 2002; Nikolova & Jaworska, 2003; Bender 

& Glen, 2004; Sheridan et al, 2004; Jaworska et al, 2005; Gallegos Saliner, 2006; Jaworska & 

Nikolova-Jeliazkova, 2007).  

 

An important notion that is expressed in many of these papers is that similarity is context-

dependent. Thus, there is no absolute measure of similarity - it is only meaningful to say that 

chemical X is similar to chemical Y with respect to activity Z. This implies the need to explore the 

use of different measures of chemical similarity in the context of defined endpoints and/or 

modes/mechanisms of action. 

 

Standard exploratory data analysis methods available in statistical software packages provide a 

convenient means of visualising relationships between chemicals to explore their similarities as well 

as to identify possible outliers. Some of the commonly used approaches include principal 

components analysis (PCA), cluster analysis and k-Nearest Neighbours. 

 

2.3 Use of computational methods for providing mechanistic information 

 

In combination with experimental data, mechanistically-based QSAR models can be used to 

provide information on the mechanism of action. For example, when risk assessments have been 

carried out in the EU under the Existing Substances Regulation (ESR), QSAR estimates for aquatic 

toxicity have sometimes been compared with experimental data to conclude whether a substance 

acts via non-polar narcosis. An example has been 2-methoxy-2-methylbutane (TAME). Other 

examples are given in Tsakovska et al (2007). 

 

2.4 Use of computational methods for filling data gaps 

 

If a computational method is used to fill a data gap, i.e. to directly replace a test result, the validity 

of the model used should firstly be established. The justification for selecting and applying a 
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particular model needs to be clearly reported. The OECD Guidance Document on the Validation of 

(Quantitative) Structure Activity Relationship Models (OECD, 2007a) provides guidance on how to 

evaluate specific models with respect to the OECD principles for the validation, for regulatory 

purposes, of (Q)SAR models. The justification should be documented by using an appropriate 

QSAR Model Reporting Format (QMRF). The OECD guidance on (Q)SAR validation is based 

almost entirely on guidance developed earlier by the ECB (Worth et al, 2005). 

 

AARs and QAARs are not strictly covered by the OECD validation principles. However, similar 

considerations could be applied, especially in relation to the characterisation of such models in 

terms of their applicability domain, statistical properties, and mechanistic plausibility. 

 

It is not generally recommended to use computational methods for predicting physicochemical 

properties, since these are key properties used within the risk assessment process and reliable 

experimental data are normally available (or easily obtainable). Some physicochemical properties, 

such as the octanol-water partition coefficient, can be predicted with some confidence for a wide 

range of chemicals, but other physicochemical properties (for example, the boiling point or 

explosive properties) often cannot.  

 

Within the ESR, QSARs have been used routinely for key environmental fate parameters of organic 

substances. For example, QSARs have been used to estimate the adsorption of chemicals to soil 

(Koc), abiotic degradation by hydrolysis and photooxidation, partitioning between air and water 

(Henry constant), and the partitioning between octanol and water (Kow). Examples are given in 

Tsakovska et al (2007). 

 

2.5 Use of computational methods for supplementing experimental data 

 

Computational methods can be used to supplement the available experimental data for a particular 

substance, or to supplement the available data for a series of related substances. 

 

The result of one or more computational models can be used to increase the confidence in an 

experimental measurement for a single substance. For example, within the ESR, estimated results 

obtained with two QSAR models for biodegradation were used to support an experimental 

observation of ready biodegradability for acrylaldehyde. 
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If multiple experimental data are available for a single substance, the result of a computational 

model can be helpful in choosing a valid data point. 

 

For a series of related substances, experimental data may be available for some but not all members 

in the series. In such a case, a QSAR model developed specifically for the series of substances 

could be used to scale the results of a quantitative read-across. In other words, the coefficients of 

the QSAR model can be used as proportionality factors in the interpolation between two 

experimental values. In the REACH guidance documentation, this type of QSAR is called an 

“internal” QSAR, in contrast to an “external” QSAR which is developed for a different or wider set 

of substances. 

2.6 Use of computational methods to guide or prioritise testing 

 

Since computational methods can be used to predict trends across a series, they could be used to 

identify which chemicals are expected to show the highest and lowest toxicities, which can then be 

tested on the grounds that the endpoint values for the remaining members of the series can be 

interpolated. 

 

Computational methods may additionally indicate possible outliers to a predicted trend (e.g. due to 

metabolism), in which case testing may be performed to check whether or not the potential outlier is 

actually an outlier. Similarly, such methods may help to rationalise actual outliers to an observed 

trend. 

 

Ranking methods can also be used to characterise trends. Within the EU, the EURAM method has 

been used to set priorities for the assessment of HPV chemicals in the context of the Existing 

Substances Regulation (Hansen et al, 1999; van Haelst & Hansen, 2000). For the purposes of 

REACH, guidance on the application of such methods in the Evaluation and Authorisation 

procedures is being developed within RIPs 4.3 and 4.5. The development of ranking methods is an 

active area of research. Since a review of such methods is outside the scope of this document, the 

reader is referred to the scientific literature (e.g. Pavan, 2003). An illustration of the application of 

ranking methods to a data set of phthalate esters is given in Appendix 3. 
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3. Possible applications of computational methods in the grouping of 

chemicals 

 

Traditionally, the development of chemical categories has made little or no use of computational 

methods. The key message of this document is that computational methods have the potential to 

facilitate the grouping of chemicals into categories by complementing more traditional approaches. 

This chapter explains how computational methods can be used to propose and support the grouping 

of certain types of chemicals (particularly organic chemicals). In the REACH guidance 

documentation, a stepwise approach to category formation is proposed (ECB, 2007). Computational 

methods could be useful at several of these steps, as proposed in the following sections. 

 

3.1 Assessing membership of existing categories 

 

In the case of existing categories, computer based approaches could be used to identify which 

category (or categories) a chemical (not already included in the category definition) belongs to (if 

any). In particular, chemical similarity tools could be used to help determine whether or not a new 

chemical is sufficiently similar to the members of an existing category. Such tools may provide 

qualitative or quantitative measures of similarity, and may also predict reactivity and modes (or 

mechanisms) of chemical action. Tools that can be helpful in this regard include those described in 

Chapter 4. 

 

It is stressed that the application of such tools would need to be supplemented with expert 

judgement. For example, the user would need to make a number of choices, including: a) the 

properties according to which the chemicals should be compared; b) the choice of similarity 

measure(s); and c) criteria (cut-off points) for similarity. Furthermore, expert knowledge of 

mechanisms of action should also be taken into account where possible. 

 

Since QSARs (and certain expert systems) provide quantitative estimates of endpoints, they can be 

used to investigate trends in one or more endpoints across category members, thereby identifying 

possible outliers (i.e. members that might need to be excluded), as well as possible breakpoints and 

boundaries in the trends.   
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3.2 Developing a category hypothesis and category definition 

 

In the case of new category proposals, computational methods can help to develop the category 

hypothesis (rationale) and to define the category in terms of its endpoints and members. The choice 

of computational method(s) is likely to depend on the starting point of the investigation. For 

example, the user may start from a single chemical or a small group of chemicals, with the intention 

of building up a category by drawing on data from multiple sources (bottom-up approach). 

Alternatively, the user may start from a predefined group of chemicals (e.g. an inventory or subset 

of an inventory whose members have been decided on a particular basis), with the intention of 

grouping some or all of the members into one or more categories (top-down approach). The 

identification of analogues by the bottom-up approach is illustrated in Appendix 1 (in this case 

study, an initial dataset of seven phthalate esters is used to identify a total of 341 analogues). The 

application of the top-down approach is also illustrated in Appendix 3 (application of ranking 

methods to a data set of phthalate esters) and Appendix 4 (subgrouping of the EINECS inventory 

into seven mechanistic domains considered to underlie skin sensitisation potential). These two 

approaches reflect different starting points in the development of a category. Of course, a 

combination of bottom-up and top-down approaches could also be used; for example, the bottom-up 

approach could be used to expand a dataset of analogues, after which the top-down approach could 

be used to identify subgroups. Alternatively, the top-down approach could be used to identify 

subgroups within a dataset/inventory after which the bottom-up approach could be used to identify 

additional analogues and refine the subgroups. 

 

Irrespective of the approach followed, the computational methods used in developing the category 

hypothesis and definition are likely to fall into one of the following classes: knowledge-based, 

analogue-based, unsupervised, and supervised.  

 

Knowledge-based approaches typically encompass “human experience about mechanism” encoded 

as structural alerts. Some of these structural alerts are available as SARs, QSARs or have been built 

into expert systems. An example of a knowledge based approach is the Cramer Threshold of 

Toxicological Concern (TTC) approach which has been encoded into Toxtree (see Chapter 4). 

These mechanistic insights can be used as the basis for developing a category hypothesis. For 

example, a SAR or expert rule could provide the grouping rationale in terms of a common 

substructure or mechanism of action, and the applicability domain of the SAR or rule (if known) 

could help to define the applicability domain (potential membership) of the category. In addition, 

such structural rules may also be used as seeds to form larger groupings from a starting inventory 
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(or part inventory) of chemicals. Thus knowledge-based approaches can be useful in both bottom-

up and top-down category development. 

 

Analogue-based methods are useful in the case of a bottom-up approach, to identify candidate 

analogues and to provide quantitative measures of chemical similarity that could be used to identify 

the “closest” analogues. Many of the tools described in Chapter 4 have analogue searching 

capabilities. 

 

A top-down approach comprises either unsupervised or supervised methods. Unsupervised 

approaches involve the use of statistical techniques to split a dataset/inventory of chemicals into 

smaller groupings. The approach relies on a starting dataset/inventory of chemicals and computing 

different numerical parameters for those chemicals or characterising them through the use of 

fingerprints/structural features. No assumptions are made about which parameters are relevant so a 

grouping can be performed on the basis of as much information as possible or only parameters that 

are thought to be influential for a given endpoint. The sorts of statistical approaches that can be used 

to split the dataset vary. Common techniques include principal components analysis (PCA), 

clustering methods and self organising maps (SOMs). 

 

Supervised learning approaches are similar to unsupervised ones except that information about the 

activity/toxicity of chemicals is taken into account in addition to the structural/descriptor 

information. For example clustering techniques may still be employed but the criterion is that the 

clusters are extracted to discriminate for the toxicity present. Other techniques might include 

recursive partitioning where the aim is to find active or statistically correlated subsets based on the 

presence or absence of a particular combination of substructural features/fingerprints.  

 

Ranking methods are also useful for the identification of subgroups incorporating activity profiles 

(see Appendix 3). Ranking methods provide a powerful means of sorting and grouping chemicals 

on the basis of multiple properties (e.g persistence, bioaccumulation and toxicity). As illustrated in 

Appendix 3, ranking methods are useful not only for sorting chemicals according to their relative 

level of “concern” (i.e. for identifying trends and defining subgroups based on different levels of 

concern), but also for identifying different profiles of toxicological behaviour (which can also be 

regarded as subgroups). Thus, ranking methods provide a means of comparing chemicals in terms 

of both the quantitative and qualitative differences in their toxicity profiles, and consequently 

provide a means of performing trend analysis and subgrouping. 
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In the case of a top-down approach, computer-based approaches could be used to explore different 

substructures within the dataset, some of which may reflect different mechanisms or modes of 

action. 

 

Having identified the category rationale, QSARs, ranking methods (and some expert systems) could 

be used to highlight trends (increasing, decreasing or constant), to identify the “safe” boundaries of 

an endpoint, as well as possible trend breakers and subcategories.  

 

3.3 Gathering data for the analogues 

 

The data gathered for analogues may include estimated data as well as experimental data. 

Computational methods may be used to obtain estimates in cases where experimental data are 

missing (direct replacement of test data) or to supplement available experimental data. 

 

To facilitate the data gathering process, computational methods could be used to identify analogues 

(and corresponding data) that are included in or more databases. In addition, combinatorial methods 

exist for identifying, a priori, the possible permutations of the substituents on a given substructure. 

Examples of tools capable of this include TSAR or Cerius2. Having identified a range of possible 

chemicals, one or more databases could then be searched to identify those chemicals for which data 

are available. 

 

3.4 Evaluation of data adequacy 

 

In general, experimental data are used in preference to estimated data. The adequacy of 

experimental data can be evaluated with reference to Klimisch codes (Klimisch et al, 1997) or the 

OECD Guidance for Determining the Quality of Data, which is given in section 3.1 of the OECD 

Manual for Investigation of HPV Chemicals (OECD, 2005). 

 

In cases where computer-generated estimates are available in addition to experimental data, they 

can add to the weight of evidence in making a decision based on the experimental data point. For 

example, the estimated data may be used to increase the level of confidence in the experimental 

data. Alternatively, a reliable QSAR estimate could be used to select an experimental value when a 

range of test data are available and of uncertain quality. 
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Reliable (Q)SAR predictions can contribute to the evaluation of data adequacy by providing 

supplementary information. For example, the deviation of a chemical from an experimentally 

observed trend could be attributable to a change in the mechanism of toxic action, as reflected by 

the presence of a structural alert. Alternatively, the chemical could have a different toxicokinetic 

behaviour, which might be predicted by a QSAR method. In other cases, the deviation of a chemical 

from an experimentally observed trend that cannot be rationalised in terms of mechanism or 

experimental artefact could simply be a reflection of an unreliable measurement.  

 

3.5 Assessing the adequacy of the read-across or category 

 

The results generated by one or more computational methods could be used to support a read-across 

argument. An important proviso is that the same methods should not have been used to develop the 

hypothesis or identify the analogue(s). In such a case, the argument would be a self-fulfilling 

circular argument. 

 

Similarly, computational methods could be used to support the robustness of a category provided 

that the same methods have not already been used to develop the hypothesis or define the category 

in terms of its endpoints and members. 

 

3.6 Guiding further testing 

 

Computational methods can be used to guide strategic testing. For example, following a preliminary 

assessment of a category, if a need for additional experimental data is determined, QSARs or 

ranking methods can help to identify which chemicals should be tested. Ranking methods are 

especially useful when it is important to assess multiple properties in combination (e.g. Persistence, 

Bioaccumulation and Toxicity; Appendix 3).  
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4. Useful software tools and databases  

4.1 Grouping of chemicals 

 

This section provides a brief review of various software tools that are either publicly or 

commercially available. Guidance on the use and interpretation of these tools is outside the scope of 

this document. Some of the tools have been developed by the ECB in order to make computational 

tools for the regulatory assessment of chemicals freely available (Worth et al, 2007). 

 

4.1.1 Analog Identification Methodology (AIM) 

The Analog Identification Methodology (AIM) has been developed by the US EPA to facilitate 

read-across and chemical grouping by identifying chemical analogues that have existing test data 

publicly available. AIM is a web-based, computerized tool that identifies chemical analogues based 

on structure. The tool also provides the user with pointers or links to publicly available 

experimental data on the closely related chemical(s).   

 

AIM identifies chemical analogues from a default database that currently contains 31,031 

compounds that have some type of toxicity data publicly available. AIM employs a fragment-based 

search method to identify analogous compounds using a set of 645 pre-defined fragments and 

correction factors, and a “three-pass” searching strategy to locate structures through defined rules 

and allowable substitution patterns for different types of structural features. AIM can be searched 

on the basis of structure, SMILES or CAS number, though it cannot be searched by chemical name. 

 

The tool provides a simple means of identifying analogues that have some kind of toxicity data 

available, but it does not categorise or rank the analogues returned. This approach leaves it to 

individual users need to determine when a specific analogue is suitable for a specific assessment, as 

the determination of what structure is ‘appropriate’ can vary depending on the endpoint being 

assessed.   

 

The available test data is accessed in the form of hyperlink pointers. The data is not structured in 

any way and cannot be downloaded into Excel or other tools for analyses. Some hyperlinks point to 

a general webpage, e.g. IUCLID homepage or RTECS homepage, so the user will need the 

appropriate licenses to be able to extract available information.  Other links take the user directly to 
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the data source. Thus, the pointer informs that a record exists for the chemical, but does not always 

indicate the specific type of data available.   

 

AIM allows users to rapidly categorise multiple chemicals, focus available resources, facilitate 

read-across, and streamline assessment exercises. 

 

4.1.2 Leadscope  

Leadscope is a software tool developed and commercialised by Leadscope Inc. 

(http://www.leadscope.com). It possesses a unique chemical hierarchy containing over 27,000 

chemical fingerprints which represent functional groups, chemical groupings and pharmacophores. 

The software can be purchased with a toxicity database and/or known drugs database. The toxicity 

database contains integrated information on over 160,000 chemical structures from multiple 

sources. The database covers a range of endpoints including acute and multiple dose studies, such 

as subchronic liver, carcinogenicity, genetic toxicity, reproductive and irritation. The database can 

be searched by structure (such as substructure or similarity), type of study, toxic effect, species, sex, 

dosage, duration and route of exposure. Results can be viewed and exported in convenient formats, 

such as Excel files. 

 

4.1.3 Ambit 

Ambit is freely available software for data management and QSAR applications, including 

databases and tools for searching and applicability domain assessment. It was developed by 

Ideaconsult Ltd (Sofia, Bulgaria) with funding from the CEFIC LRI project, and is available from 

(http://ambit.acad.bg). Search options include searching by name, CAS number, SMILES, 

substructures and structure-based similarity, and by descriptor ranges. It can also apply grouping 

approaches based on mechanistic understanding, such as the Verhaar classification scheme. The 

suite of software tools includes a module for QSAR applicability domain assessment, Ambit 

Discovery. 

 

4.1.4 Toxtree 

Toxtree, developed by Ideaconsult Ltd for the ECB, is a freely available application downloadable 

from the ECB website (http://ecb.jrc.it/QSAR) which is able to estimate different types of toxic 

hazard by applying structural rules. The development of Toxtree was a follow-up to an ECB 

workshop on chemical similarity and TTC approaches (Patlewicz et al, 2007). At the time of 
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writing (September 2007), Toxtree includes options for applying the Cramer decision tree, the 

Verhaar scheme as well as the BfR and SICRET rules for skin irritation/corrosion. Additional 

rulebases can be added in a flexible manner. 

 

The Cramer classification scheme (tree) is probably the best known approach for structuring 

chemicals in order to make estimations of the TTC (Cramer et al, 1978). The tree relies primarily 

on chemical structures and estimates of total human intake to establish priorities for testing. The 

procedure uses recognised pathways for metabolic deactivation and activation, toxicity data and the 

presence of a substance as a component of traditional foods or as an endogenous metabolite. 

Substances are classified into one of three classes:  

  

• Class 1 contains substances of simple chemical structure with known metabolic 

pathways and innocuous end products which suggest a low order of oral toxicity; 

• Class 2 contains substances that are intermediate. They possess structures that are less 

innocuous than those in Class 1 but they do not contain structural features that are 

suggestive of toxicity like those in Class 3; 

• Class 3 contains substances with structures that permit no strong initial impression of 

safety and may even suggest a significant toxicity.  

 

The Verhaar scheme is a widely used scheme for determining the mode of action of chemicals that 

display aquatic toxicity. It divides chemicals into four groups: non-polar narcotics, polar narcotics, 

reactive chemicals and specifically-acting chemicals (Verhaar et al, 1992, 1995).  

 

The BfR and SICRET rules predict skin irritation and corrosion on the basis of physicochemical 

exclusion rules and structural alert inclusion rules (Walker et al, 2005; Gallegos Saliner et al, 

2007b).  

 

4.1.5 Danish QSAR database  

The Danish Environmental Protection Agency (DK EPA) constructed a database of (Q)SAR 

predictions made by some 70 models for about 166,000 organic chemicals for a wide range of 

different endpoints. An internet-accessible version of this database is available from the ECB 

website (http://ecb.jrc.it/QSAR). Different types of searching are possible including structure 

(substructure/exact match) searching, ID (CAS number, name) searching and parameter (endpoint) 

searching. The (Q)SAR models encompass endpoints for physicochemical properties, fate, eco-

toxicity, absorption, metabolism and toxicity. 
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4.1.6 OECD QSAR Application Toolbox  

The OECD QSAR Application Toolbox, for which a pilot version is under development during 

2006-2007, is an application linking a number of existing tools as well as a library of existing 

(Q)SAR models which will allow a user to:  

 

a) Make estimations for single chemicals, and receive the results of all the (Q)SAR estimates 

for all the models covering the appropriate domain, for the relevant endpoints that the user 

wishes to estimate. 

b) Receive summary information on the validation results of the model according to the OECD 

validation principles so that the user can decide for which regulatory purpose the estimate 

can be used. The (Q)SAR models would be incorporated into the toolbox as they come 

forward from member countries with the information on their validation according to the 

OECD Principles. 

c) Receive a list of analogues, together with their (Q)SAR estimates. 

d) Receive estimates for metabolite activation/detoxification information. 

 

4.1.7 ECB QSAR Inventory 

The ECB QSAR Inventory, which is currently under development, will be a searchable tool for 

linking chemicals of interest to a collection of robust summaries of (Q)SAR models. The summaries 

are being compiled by using a standard (Q)SAR Model Reporting Format (QMRF). A database 

with a web-based interface will be implemented to allow on-line access to the inventory via the 

ECB website. The inventory will be integrated with ECB’s European chemical Substances 

Information System (ESIS). Different search options will be possible, such as by chemical (CAS or 

EC number, structure), endpoint, descriptors, and model author. 

 

4.1.8 Toxmatch  

Toxmatch, developed by Ideaconsult Ltd for the ECB, is a freely available application 

downloadable from the ECB website (http://ecb.jrc.it/QSAR) which can be used to facilitate the 

development of generic and endpoint-specific categories. The tool includes a functionality to 

facilitate read-across, as well as to compare chemicals of interest with existing categories. The first  

public release (version 1.05) uses several endpoint datasets as examples including those for skin 

sensitisation, skin irritation, aquatic toxicity and bioaccumulation. 
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4.1.9 TOXNET 

TOXNET (http://toxnet.nlm.nih.gov) which is managed by the Toxicology and Environmental 

Health Information Program (TEHIP) in the Division of Specialized Information Services (SIS) of 

the National Library of Medicine (NLM). This is a free web-based system of integrated databases 

on toxicology, hazardous chemicals, environmental health and related areas. Several databases can 

be queried through TOXNET: HSDB, IRIS, ITER, GENE-TOX, CCRIS, HazMap, Household 

Product Database, TOXMAP, TOXLINE, DART, TRI, ChemIDPlus. 

 

ChemIDPlus (http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?CHEM) has the facility to perform 

structural, substructural and similarity based searches to retrieve analogues and their associated 

data. The database contains over 368,000 chemical records, of which 200,000 include chemical 

structures.  

 

4.1.10 Chemfinder 

ChemFinder (http://www.chemfinder.com) is a free chemical searching tool that has been on-line 

since 1995. The index provides chemical structures, physical properties, and hyperlinks to other 

data sources such as RTECS
®

 and TOXNET. Searching can be done by (sub)structure using a free 

plug in as well as on the basis of Tanimoto similarity.  

 

4.1.11 Pipeline Pilot 

Scitegic's Pipeline Pilot is a sophisticated data mining application that comprises a set of tools to 

analyse and visualise data, build workflows to manipulate structures and data, as well as a host of 

other QSAR related algorithms. The software's key feature is in automating data manipulation. 

Pipeline Pilot can retrieve or join data from independent databases, files, or other applications. It 

can be used directly to read chemistry, sequence, text, and numeric data from all popular formats 

and analyse data from multiple sources in real-time, without the need to first create a centralised 

database. Data can be easily manipulated through building up workflows from available 

components. These provide functionality for chemical processing, statistics, modelling, clustering, 

and reporting. The components allow structures to be modified, molecular properties and 

fingerprints to be calculated, QSAR models to be derived, compounds to be clustered and maximal 

common substructures to be extracted. Appendix 4 highlights some aspects of this functionality in 

more detail. 
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4.1.12 ECOSAR 

ECOSAR (http://www.epa.gov/oppt/exposure/docs/episuitedl.htm) uses a number of class-specific 

log Kow-based QSARs in order to predict the toxicity of chemicals to aquatic organisms (fish, 

daphnids, and green algae). The QSARs are based on measured test data that have been submitted 

by industry to the US EPA. The ECOSAR Class Program separates inorganics, organometallics, 

polymers, dyes, and surfactants as special classes (user defined). The "all others" class contains 55 

chemical classes than can be identified from SMILES.  

 

4.1.13 TOPKAT 

TOPKAT (http://www.accelrys.com/products/topkat) is commercial product of Accelrys Inc. that 

assesses the toxicity of chemicals from 2D molecular structure. (Q)SAR models (so called 

submodels) are available for different chemical classes and the program automatically selects the 

equation from the structural input. TOPKAT also makes visible experimental test data for similar 

analogues if available (presumably taken from the (Q)SAR training set). For each model, a model-

specific similarity distance between a query structure and a database compound can be calculated.  

 

4.2 Assessment of metabolism 

Metabolic transformations may form the basis for a category definition, if a series of structurally 

related chemicals are involved. However, it is more often the case that metabolism accounts for 

chemicals being outliers to an expected trend. A variety of databases and software tools have been 

developed to help in the assessment of metabolism. Some of these are highlighted in the following 

paragraphs. For more detailed information, literature reviews are available (Payne, 2004). Guidance 

on the use and interpretation of these tools is outside the scope of this document. 

 

4.2.1 COMPACT 

The computer-optimized molecular parametric analysis of chemical toxicity (COMPACT) system 

was developed at the University of Surrey (UK) by Lewis and co-workers (Lewis, 2001, 2003). 

COMPACT has modules that assess the ability of xenobiotics to form enzyme substrates complexes 

and undergo metabolic activation by the CYP1A and CYP2E subfamilies of cytochrome P450s. 

The system is used mainly in-house by the group at Surrey University, and is not commercially or 

publicly available. 
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4.2.2 META 

The META system is a commercially available tool developed by Klopman and co-workers 

(Klopman & Tu, 1999) at Case Western Reserve University (OH, USA). It is an expert system 

capable of predicting the sites of potential enzymatic attack and the nature of the chemicals formed 

by such metabolic transformations. The program uses dictionaries of biotransformation operators 

which are created by experts in the field of xenobiotic metabolism to represent known metabolic 

pathways. A query structure is entered and the program applies biotransformation operators 

according to the functional groups detected. After each biotransformation a stability check is 

performed on the reaction product by using quantum mechanical calculations to detect unstable 

atom arrangements. The program then evaluates the stable metabolites formed and attempts to 

transform them further until water soluble metabolites that are deemed to be excretable are formed. 

 

4.2.3 MetabolExpert 

MetabolExpert is a commercially available software product composed of a database, a knowledge 

base and several prediction tools (Darvas, 1987). The basic biotransformation database contains 179 

biotransformations, developed as “if-then” rules derived from the literature by experts. 

 

4.2.3 METEOR 

Meteor is a commercially available tool that uses a knowledge-base of structure-metabolism rules to 

predict the metabolic fate of a query chemical structure. The system is developed and marketed by 

Lhasa Ltd (Leeds, UK) and evolved from the Derek system for toxicity prediction (Greene et al, 

1999). Meteor’s biotransformation rules are generic reaction descriptors rather than simple entries 

in a reaction database. To limit over prediction, Meteor has an integrated reasoning engine based on 

a system of non-numerical argumentation, which uses a repository of higher level reasoning rules. 

The reasoning model allows the system to evaluate the likelihood of biotransformation taking place 

and to make comparisons between potentially competing biotransformations. The user can choose 

to analyse queries at a number of available search levels. At the “high likelihood” level, only the 

more likely biotransformations are requested for display. The system is also supplied with a 

knowledge base editor so that users can add their own (proprietary) rules. The metabolic tree can be 

searched and metabolites of specific molecular mass and or molecular formula highlighted. The 

generated tree is also structure-searchable. Individual biotransformations can be viewed with 

generalised graphical descriptions of their scope. It is possible to generate sequences automatically 

and to generate metabolites from an individually chosen biotransformation. It is possible to search 
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for either phase I or phase II biotransformations only. Additionally, Meteor is provided with a link 

to ClogP to identify biotransformations that are not likely to occur, due to very low lipophilicity.  

 

4.2.4 TIMES  

The Tissue MEtabolism Simulator (TIMES) is a commercially available system that aims to 

produce plausible biotransformation pathways from a query molecule by using rules developed 

from a comprehensive library of biotransformations (Mekenyan et al, 2004). The system is 

developed by the Laboratory of Mathematical Chemistry (LMC; Bourgas, Bulgaria). The 

generation of metabolites by TIMES can be limited to the most likely ones or can be extended to 

include less likely ones. The developers have also integrated reactivity models for various 

macromolecular interactions, for example for mutagenicity and sensitisation, to simulate the 

generation of reactive metabolites by specific metabolising systems, such as S9.   

 

4.2.5 MDL Metabolite 

MDL Metabolite (http://www.mdli.com) is a commercial database containing a browsing interface. 

The database is the uses information from multiple studies to assemble structural metabolic 

database entries for particular parent compounds. The focus is on xenobiotic compounds and 

biotransformations of medicinal drugs. Experimental data is abstracted from in vitro and in vivo 

studies.. In addition to structural information, the database contains enzyme information, species 

information, physiological activity, parent compound toxicity, bioavailability, analytical 

methodology, route of administration, excretion routes, quantitative and qualitative yield, CAS 

number of parent compound and references to the original literature. 

 

4.2.6 The Accelrys Biotransformation database  

This database, commercially available as a CD ROM from Accelrys (http://www.accelrys.com), 

comprises biotransformations of chemical entities, including pharmaceuticals, agrochemicals, food 

additives and environmental and industrial chemicals. The database is indexed with original 

citations, test systems and a variety of keywords for generic searching and is fully cross referenced 

to a series of books (Hawkins, 1996). 

 

4.2.7 KEGG  

The Kyoto Encyclopaedia of Genes and Genomes (KEGG) is a freely available bioinformatics 

resource being developed by Kyoto University and the University of Tokyo 
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(http://www.genome.jp/kegg). The KEGG project was initiated in May 1995, with a view to 

providing a tool that helps to understand the basic principles and practical applications of the 

relationships between genomic information and higher order functional information. 

 

KEGG consists of: a) the PATHWAY database providing information on molecular interaction 

networks such as pathways and complexes; b) the GENES database providing information about 

genes and proteins generated by genome sequencing projects; c) the LIGAND database providing 

information about chemical compounds and metabolic pathway information; d) limited amounts of 

experimental gene expression data in the EXPRESSION and BRITE databases; and e) the SSDB 

database, containing information about amino acid sequence similarities among all protein-coding 

genes in the complete genomes. 

 

4.2.8 SciFinder  

SciFinder is a commercially available research tool providing access the world's largest collection 

of biochemical, chemical, chemical engineering, medical, and other related information 

(http://www.cas.org/SCIFINDER). It provides a means of using a single source to obtain scientific 

information in journals and patent literature from around the world. It is possible to explore the 

database by chemical name, structure, substructure, biological sequence and reaction, as well as by 

research topic, author, and company. 

 

4.2.9 University of Minnesota Biocatalysis/Biodegradation Database 

The University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD, 

http://umbbd.ahc.umn.edu/) contains compound, enzyme, reaction and pathway information for 

microbial catabolism. It is a growing database comprising >160 pathways and >1100 reactions of 

>1000 compounds catalyzed by >700 enzymes. Along with pathway data, Biochemical Periodic 

Tables (http://umbbd.ahc.umn.edu/periodic) and a Biodegradation Pathway Prediction System 

(PPS) (http://umbbd.ahc.umn.edu/predict) are also available.  
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1 Possible application of QSAR methods to organic chemicals 

 

 

1.1 Summary  

 

This appendix aims to summarise and illustrate some of the different ways in which QSAR methods 

can be used in developing chemical categories. In the context of this document, the term QSAR 

method is interpreted in the broadest sense to incorporate analogue-searching methods, statistical 

methods for exploratory data analysis and model development, as well as existing computational 

prediction methods based on SARs and/or QSARs. 

 

A more detailed description of one aspect of this ECB investigation (including methods, materials 

and detailed results) has been published separately (1). 

 

There are a number of steps in the development and assessment of a chemical category as described 

below. In principle, QSAR methods can be used in any one or more of these stages.  

 

1) Assessing membership of existing categories 

2) Developing a category hypothesis and category definition 

3) Gathering data for the analogues 

4) Evaluation of data adequacy 

5) Assessing the adequacy of the read-across or category  

6) Guiding further testing 

 

The findings from this limited investigation demonstrate that QSAR methods can provide a useful 

supplement to non-formalised approaches, especially when developing the category hypothesis and 

defining the category in terms of its members and endpoints (stage 2).   

 

1.2 Background information on regulatory assessments 

 

We emphasise that the main aim of this investigation was to explore and illustrate how different 

QSAR methods could be used in the formation of chemical categories, using a dataset of phthalate 

esters as an example of a category of organic chemicals. The purpose was not to re-evaluate any 

substance-specific data nor the conclusions made in the above-mentioned regulatory assessments of 

specific phthalate esters. 

 

Solely for completeness and as background information, it is noted that various regulatory 

assessments have been conducted on phthalate esters: 

 

a) an OECD SIAM category on a set of seven high-molecular weight phthalate ester 

(HMWPE) mixtures has been developed (2) 

b) EU risk assessments have been completed for two higher molecular weight esters (3,4) 

c) EU harmonised classifications have been agreed for seven phthalate esters (5)  

d) A total of 14 phthalate esters were considered during an initial screening exercise by the EU 

PBT Working Group (6).  
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1.3 Assessing membership of existing categories 

A question that is likely to arise under REACH is whether a new substance is sufficiently similar to 

the existing members of a category to be reasonably regarded as a member of that category and 

consequently to be evaluated in the same or similar way. This question can be addressed, to some 

extent, by using computational approaches. However, in order to apply QSAR modelling 

approaches, it is first necessary to characterise the existing members of the category in terms of 

their chemical identities.  

 

In this investigation, the SIAM category of HMWPEs (2) was examined to determine membership 

and scope (Table 1). The seven members of this category are all multi-component substances, 

which makes it more complicated to characterise them for modelling purposes. In the case of 

complex multi-component substances, the computational toxicologist has several options for the 

representation of each substance: 

 

a) to consider all possible components in the mixture (if they are known or suspected, and if 

the composition indicates approximately equal proportions of the components); 

b) to consider the dominant component in the mixture, i.e. to select a representative structure 

on a basis of the relative (molecular) weight; 

c) to select a representative structure that reflects the chain length and the branching of the 

components. 

 

Furthermore, since the substances belong to a category, and the question being asked is whether a 

chemical is a reasonable member of that category, an additional consideration might be to include in 

the selection structures that represent the boundaries of the category (and possibly any 

subcategories). The inclusion of such structures needs to be judged on the basis of the available 

information on the applicability domain (and subdomains) of the category. This is not necessarily 

straightforward because, for administrative reasons, chemical categories tend to be defined in terms 

of the actual members (of commercial interest and subject to the requirements of a particular 

regulatory programme), rather than all possible members that can be conceived by applying the 

considerations of combinatorial chemistry, irrespective of whether such members are actually 

produced or marketed. For example, in addition to listing its seven members, the HMWPE category 

is defined as “esters with an alkyl carbon backbone with 7 carbon atoms or greater”. This provides 

no indication of the upper limit of the carbon atoms in the side chains nor for the degree of 

branching that might result in similar physicochemical and toxicological profiles. This adds to the 

arbitrary nature of selecting representative structures for the category. 

 

For the purposes of this study, and in the absence of composition information, the selection of a 

single representative structure for each mixture was carried out for simplicity. CAS numbers and 

other information on chemical identity provided in the OECD report (2) were therefore used to 

draw a representative 2D chemical structure for each ester (Table 2). These 2D structures were then 

used as seeds to illustrate hypothesis development and analogue identification (section 1.4). The 

QSAR predictions subsequently made for these chemicals apply to individual chemicals and do not 

aim to re-evaluate the SIAM HMWPE category, which is based on mixtures of isomers.1  

                                                 

 
1 If it were the intention to evaluate and further develop the existing SIAM category, it would be desirable to 

obtain data on the composition of the HMWPE mixtures, both in terms of the discrete chemical structures 

and their mass distribution. 
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1.4 Developing a category hypothesis and category definition 

 

Our starting hypothesis was that phthalate esters as individual chemicals show common properties 

and trends on account of the phthalate moiety. Clearly, on the basis of existing knowledge, we 

know this generalisation to be flawed, but for the purposes of exploring how different 

computational (and other) methods can be used to define suitable applicability domains for different 

endpoints, it was a convenient starting point. It also should be emphasised that this investigation 

aimed to simulate a situation where no category already existed within any regulatory programme. 

 

1.4.1 Strategy for analogue searching  

An early step in performing read-across, in developing a new category, or extending an existing 

one, is to search for possible analogues for which experimental data might be available. In this 

investigation, we used seven analogues (Table 2) which were considered representative structures 

of the seven mixtures in the SIAM category2. These analogues were used to help search for both 

higher and lower molecular weight phthalate esters.  

 

The following publicly available and commercial tools were used to identify analogues: 

 

a) US EPA Analog Identification Method (AIM): http://esc.syrres.com/analog  

b) AMBIT (IDEA Ltd): http://ambit.acad.bg 

c) Danish (Q)SAR Database: http://ecbqsar.jrc.it 

d) Chemfinder: http://www.chemfinder.com 

e) ChemID plus: http://chem.sis.nlm.nih.gov/chemidplus 

f) Leadscope: http://www.leadscope.com 

 

The main searching methods included substructural searches and the use of fingerprints or 

fragments in combination with the Tanimoto or modified Tanimoto coefficient as the similarity 

metric (Figure 1). A total of 558 analogues were retrieved, including replicates of the same 

chemicals. Removal of these replicates gave rise to a unique set of 341 chemicals. 

 

The set of 341 chemicals had the following characteristics: 

 

a) The total number of carbons varied between 8 and 58 (the simplest molecular formula was 

C8H6O6 and the most complex wasC58H84O12S3Sn);  

b) Molecular weights varied between 164.2 and 1188.2;  

c) Log Kow values varied between -1.38 and 18.36. 

 

Figure 2 gives the distributions of molecular weight and hydrophobicity within the compiled set of 

phthalate esters and within the set of representative HMWPE structures. The figure illustrates the 

potential to extend the original HMWPE category with additional chemicals, both in terms of MW 

and hydrophobicity. Chemicals with molecular weight higher than approximately 600 tend to break 

the normal distribution of this property, and are statistical outliers in the distribution. The inclusion 

of such chemicals in a new or extended category should be considered with caution, since they are 

                                                 

 
2
 The appropriate treatment of mixtures, for example by choosing representative structures, depends on the 

purpose of the investigation. Representative could mean most prevalent in the mixture or most typical in 

terms of physicochemical, environmental and/or toxicological properties. In this study, there was no attempt 

to analyse the structural variation within each mixture, because it was not the purpose to produce 

assessments for the SIAM chemicals. 
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atypical of the majority of chemicals in the distribution. The distribution of hydrophobicity 

(logKow) is further examined in Figure 3, which is suggestive of two overlapping distributions, 

with median values around logKow values of 3.5 and 9.0. 

 

Figure 2 also shows that the representative HMWPE structures occupy a physicochemical domain 

above the mean MW of the larger, compiled distribution (which is consistent with the name of the 

SIAM category). A large number of phthalate structures with lower molecular weights were also 

identified. 

  

As a result of the analogue searching, it was found that: 

 

a) analogue searching can be performed in multiple ways, depending on the specific search 

engine used. The databases underpinning these search engines differ in size and scope. In 

addition the search options offered can vary e.g. use of more or less detailed substructures 

and different similarity measures; 

b) due to the lack of a unique correspondence between chemical name and CAS number, 

searching by chemical name can result in multiple CAS numbers being retrieved. Similarly, 

searching by CAS number can give rise to multiple names (and different structures). Thus, it 

is necessary to check the results obtained. 

 

1.4.2 Exploratory analysis: identifying similarities, differences and outliers  

In the absence of any experimental data, various exploratory data analysis methods were applied to 

the data set of 341 analogues. Such methods provide a convenient means of visualising 

relationships between chemicals to explore their similarities as well as to identify possible outliers.  

 

In addition to visualising possible outliers in a single descriptor space (as shown in Figures 2 and 

3), a common statistical method for exploratory data analysis is principal components analysis 

(PCA). This can be used to visualise the chemical space of a dataset. PCA is a method that 

manipulates a multi-dimensional dataset to provide two-dimensional or three-dimensional cross-

sections that capture as much of the variance in the data set as possible.  

 

Before applying PCA, a large number of descriptors were generated by using the following 

commercial programs: Accord for Excel (Accelrys Inc), TSAR (Version 3.3, Accelrys Inc) and 

DRAGON (Talete srl). Descriptors were computed for 323 of the 341 phthalates. For the remaining 

18 chemicals either the SMILES code (which is the input to the software) was unavailable or could 

not be processed by one of above-mentioned software programs (e.g. in the case of salts or 

polymers). The following types of descriptors were calculated: 

 

a) constitutional descriptors (40 descriptors), which are zero-dimensional counts of atomic 

features within a molecule  

b) topological descriptors (89 descriptors), which capture 2D information including structural 

features such as shape, symmetry, branching and cyclicity 

c) molecular connectivity indices and information indices (80 indices), which account for bond 

accessibility within intermolecular interactions (connectivity indices) and total information 

content (descriptors based on the application of information theory to chemical graphs) 

d) geometrical descriptors, which capture 3D information (295 descriptors) 

e) physicochemical properties (12 properties), i.e. descriptors that estimate experimental 

properties such as logKow and boiling point.  
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PCA plots were generated for different combinations of these descriptors, as well as for all 

descriptors (to capture as much chemical information as possible). As an example, Figure 4 shows a 

PCA plot based on the combined use of connectivity and information indices. The plot captures 

71.6% of the total variance in the data and reveals a number of statistical outliers (data points 

outside the ellipse). It can also be seen that the seven representative members of the SIAM category 

(red points) are within the ellipse and surrounded by many other analogues. In other words, the 

representative HMWPE chemicals are similar to the many of the analogues on the basis of the 

chosen descriptors. 

 

The PCA plots are useful in two ways: 

 

a) they help to identify statistical outliers, i.e. chemicals that are likely to behave differently, 

and hence are candidates for exclusion from a category.  

b) they illustrate how the analogues are clustered together, hence which analogues are similar 

with respect to the chemical information computed (i.e. the connectivity and information 

indices). 

 

Figure 4 indicates that there are four significant statistical outliers in the lower left corner, which are 

illustrated in Figure 5. These are chemicals that responded to some of the analogue search criteria 

but are in fact different from the others for some other reason. Therefore, if experimental data were 

available for these outliers, it would not be advisable to read-across these data to the other 

candidates and vice versa. The analysis of these outliers emphasises the point that when an 

automatic search of analogues is performed, the identified candidates might not all be suitable for 

the selection purpose (i.e. they might not be suitable candidates for the category) and should 

therefore be analysed critically. Figure 4 illustrates the other useful feature of the PCA plots, 

namely their utility in identifying chemicals that are grouped closely together with very similar 

structures. Read-across between such chemicals is more likely to be adequate (but this should still 

be analysed critically). 

 

1.4.3 Exploratory analysis: building a matrix of estimated endpoints 

In the absence (or paucity) of experimental data (as was the case with the data set here), existing 

QSAR models can be used to: a) identify chemicals with common hazards; b) predict trends in the 

potencies of such hazards; and c) identify possible breakpoints in trends, therefore possible 

subcategories.3 

 

To illustrate this approach, the data set of analogues was extended to include predictions for a 

number of endpoints. The result was a large data matrix in which the phthalates were represented by 

different rows and the following human health and environmental endpoints were represented by 

different columns: 

  

1) skin sensitisation, calculated with TOPKAT 

2) skin irritation, calculated with TOPKAT 

3) acute oral mammalian toxicity, calculated with TOPKAT 

4) developmental toxicity, calculated with TOPKAT 

5) persistence, calculated with BIOWIN3 (ultimate biodegradation model) 

                                                 

 
3
 If sufficient reliable experimental data are available, it should also be possible to develop new QSARs that 

reflect the observed trends. In such a case, new QSAR model development is an integral part of the 

formation of the category. 
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6) bioaccumulation, calculated with BCFWIN  

7) acute fish toxicity (96h fathead minnow), calculated with ECOSAR and TOPKAT 

 

These endpoints were chosen to cover a variety of endpoints that might normally be of interest in 

the development of a category. The choice was not intended to be comprehensive, nor were the 

endpoints chosen considered to be of any particular importance for the assessment of phthalate 

esters, since the exercise was based on the assumption of little or empirical knowledge.4 

 

The different software packages used were chosen simply for convenience (available in-house and 

capable of running in batch mode). BIOWIN3, BCFWIN and ECOSAR are available as free-ware 

from the US EPA (http://www.epa.gov/oppt/exposure/docs/episuitedl.htm). TOPKAT (Version 6.2) 

is developed and commercialised by Accelrys Inc (San Diego, CA, USA). 

 

The data matrix generated is the usual starting point for any (Q)SAR modelling or chemometric 

ranking exercises. In fact, the data for persistence (P), bioaccumulation (B), and fish toxicity (T) 

were used to explore the applicability of ranking methods as a means of evaluating chemicals 

according to their PBT properties (see Appendix 3). 

 

A major effort in constructing the data matrix was in obtaining the identities of the chemicals and, 

as far as possible, the structural representations, (e.g. SMILES codes). This process can involve 

some arbitrary decisions. For example, as mentioned above, in the case of the seven SIAM 

phthalates, each member is defined by a CAS number but this actually refers to a mixture of 

isomers, with varying lengths of the side chains and branching patterns. In such a case, it is either 

necessary to identify a “representative” structure for each isomeric mixture, or to analyse the 

structural variation within the mixture, depending on the purpose of the investigation.  

 

On the basis of such a matrix of estimated endpoints, it should be possible to gain an impression of 

whether the group of analogues is likely to form a robust category, or whether it needs to be 

redefined by removal and/or addition of analogues. It should also be possible to identify subgroups 

containing different trends that might form the basis for subcategories. 

 

In the matrix of 323 phthalate esters generated in this study, different trends were observed for 

different endpoints (which is not surprising given the size of the matrix). These trends are not 

discussed at length here. However, two examples are provided in an attempt to illustrate how 

phthalate esters could be grouped (in an endpoint-specific manner) for aquatic toxicity and skin 

sensitisation. 

  

1.4.3.1. Exploratory analysis: identifying possible subcategories for aquatic toxicity 

The availability of QSAR estimates for the members of a potential category enables trends to be 

identified in the absence of experimental data, as well as possible breakpoints in those trends. This 

allows a preliminary identification not only of possible category boundaries but also possible 

divisions into subcategories, some of which may be endpoint-specific. 

 

                                                 

 
4
 In reality, evidence from regulatory assessments points to concerns for developmental toxicity and aquatic 

toxicity, at least for certain phthalate esters. However, this was not directly relevant to this exercise exploring 

the possible uses of QSAR methods. 
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Under the current EU classification and labelling system, the following risk phrases are used for 

environmental hazard classification on the basis of aquatic toxicity:5 

 

- R50 (Very toxic to aquatic organisms) 

96h LC50 (fish)     < 1 mg/L  

- R51 (Toxic to aquatic organisms) 

96h LC50 (fish)     > 1 and < 10 mg/L  

- R52 (Harmful to aquatic organisms) 

96h LC50 (fish)     > 10 and < 100 mg/L  

 

The same cut-off values also apply if 48h EC50 to Daphnia or other crustaceans, and 72 or 96h 

EC50 for algae or other aquatic plants, are used. If the LC50 (EC50) value is above 100 mg/L, it is 

considered that there is no concern (NC) for acute toxicity to aquatic organisms.  

 

For the purposes of the illustration in this section, it is assumed that a category is a chemical group 

in which a trend (e.g. increasing toxicity with increasing hydrophobicity) can be observed while a 

subcategory is a smaller group, in which the toxicity varies within a narrower range due to subtle 

structure modifications (but where the mechanism of action does not change). The assumption of a 

common mechanism of action is the “unifying feature” between the category members but the 

category as a whole does not provide a suitable basis for read-across unless subcategories are also 

defined. Thus, a read-across between members of the same category should be allowed because the 

result will not change the classification result (classification categories and cut-offs being preferably 

defined in formal way). However, read-across between members of different subcategories might 

produce predictions that are as unreliable as from members of different categories.  

 

To explore the trends in acute toxicity to fish, ECOSAR was used to predict the LC50 values for 

toxicity to fathead minnow6. The predicted LC50 values generated by ECOSAR were compared 

with those generated by TOPKAT (only predictions in the TOPKAT optimum prediction space 

were considered). Figure 6 shows how the two models correlate with each other (r
2
 = 0.8). Two 

additional observations can be made from Figure 6: 

 

a) TOPKAT makes more conservative predictions than ECOSAR (i.e. predicts higher toxicity 

– lower concentrations, for the same chemicals,) for a large number of chemicals. This is 

particularly evident for the higher predicted values. Systematic differences in the results 

obtained by different QSAR models should be taken into account if the model estimates on 

their own are to be relied upon for classification and labelling and/or risk assessment 

purposes. 

b) A large number of phthalates are predicted as very toxic by both programs. The reasons for 

this observation was analysed further and is further discussed below. 

 

ECOSAR has multiple models, each of which is applicable to a specific chemical class. The model 

for esters (Equation 1) was used, unless one of the other models gave a more conservative value 

(lower LC50). 

 

Log LC50 = -0.535 logKow + 0.25      [1] 

 

                                                 

 
5
 In addition, R53 may be assigned if there is potential for long-term adverse effects in the environment. The 

prediction of R53 was not considered in this investigation. 
6
 The ECOSAR and EPIWIN programs were able to process 324 smiles codes and therefore make 

predictions for 324 phthalate esters. 
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ECOSAR produces warnings relating to the applicability of the estimates (e.g. when the water 

solubility is very low, or when the prediction is outside the range of logKow values in the model 

training set).  

 

If used alone, Equation 1 assumes that toxicity increases in a linear fashion as hydrophobicity 

increases (i.e. a monotonic increasing linear trend), yet numerous studies (e.g. Hermens et al, 7) 

have shown that a parabolic (i.e. non-monotonic) relationship between logLC50 and logKow is 

more realistic and better predicts toxicity at higher values of logKow (Figure 7). Therefore, to take 

this into account, a simple bilinear relationship was derived (Figure 8). 

 

This relationship was used to develop a decision rule approach, i.e. rules-of-thumb for classifying 

chemicals for acute fish toxicity on the basis of estimated logKow values (Table 3). The rules do 

not take into account possible metabolism of the esters the possible effects of metabolism on the 

toxicity. 

 

In developing the decision rules, the relationship between the solubility limit and LC50 was also 

taken into account. If the solubility is less than the predicted LC50, then the solubility is limiting. 

On this basis, it was assumed that if the water solubility of a phthalate ester, calculated with 

WSKOWWIN, was less than 0.002 mg/L, then the chemical was not sufficiently soluble to be 

classified as toxic. This solubility value corresponds to a logKow of approximately 8 and places a 

large number of the category candidates in the NC group (Figure 8). However, this does not exclude 

the possibility of long-term chronic toxicity effects.  

 

At the border line of the solubility limit, more data should be compiled to define it better, especially 

for the toxicity of di-C6-C7 (and even C8) analogues, for which little or no data were found in this 

study. It is possible that around the limit of aqueous solubility, the branching of the side chains 

plays a significant role, but this hypothesis needs to be studied further. 

 

Application of these rules to the seven SIAM phthalate representative structures led to predictions 

of NC, which corresponds with available experimental data (Table 4).  

 

We emphasise that these decision rules are based on a preliminary investigation, and are presented 

to illustrate the application of a QSAR approach for defining possible subcategories based on 

structural and/or physicochemical rules. A larger set of experimental data would be needed to 

validate (and most likely refine) these decision rules. Validation of the decision rules would be 

especially important if they were used as the basis for (or to support) classification and labelling. 

Furthermore, it is anticipated that in regulatory practise, such rules would be used as “rules of 

thumb” rather than as prescriptive rules. In particular, expert judgement would be especially 

important for those chemical lying on or close to classification boundaries. 

 

1.4.3.2. Exploratory analysis: identifying possible subcategories for skin sensitisation 

A qualitative read-across can be regarded as equivalent to the use of a SAR based on the common 

substructure. In developing a SAR, the greater the number of analogues identified, the greater the 

possibility of understanding the consequences of structural variation, i.e. the greater the possibility 

of defining an applicability domain (AD) for the SAR. Ideally, the AD should be defined by using 

experimental data to identify the known consequences of structural variation. However, such data is 

not always available, especially in the case of large homogeneous datasets (e.g. the dataset of 341 

phthalate esters). However, in such cases, an exploratory analysis can be performed on the basis of 

predicted data, to identify the possible consequences of structural variation.  

 



 40 

As an example, a substructure-based clustering method within Leadscope (Leadscope Inc, 

Columbus, OH, US) was applied to 79 predicted non-sensitising phthalates and 29 predicted 

sensitising phthalates. This identified two main “substructural signatures” that were representative 

of non-sensitisers and sensitisers, respectively (Figure 9). The signatures themselves do not 

represent any single chemical in the group; instead they sum up the overall features of that group. 

This analysis indicated that phthalate esters containing a single ester group, or containing an 

additional functionality on the benzene ring (e.g. a nitro or chloro group), or containing branching 

on the acyl chain, were more likely to form a different subcategory to the typical SIAM diesters (i.e. 

these structural variants were more likely to be sensitising rather than non-sensitising). 

1.5 Gathering data – filling data gaps with estimated values  

 

Under REACH, in the absence of reliable experimental data, it is possible to fill data gaps by using 

valid QSAR models. Models used should be validated in accordance with the OECD principles for 

QSAR validation. As far as possible, the predictions and trends established by QSAR methods 

should be verified by comparison with experimental data. This should be feasible for category 

approaches, since experimental data should be available for at least some of the category members. 

 

It may be the case that a QSAR predicts the trend correctly, but the numerical values of the 

predictions are consistently high or low. In such cases, the QSAR could be used to support the 

trend, but the experimental data should be relied upon when performing an interpolation (or even 

extrapolation).  

 

In this study, the predictions made by the above-mentioned models for the seven representative 

structures were compared with experimental data for the seven SIAM phthalates. Table 4 

summarises the experimental data for the seven endpoints, to the extent it was provided in the SIDS 

Initial Assessment Report (SIAR; 3), and Table 5 provides the corresponding QSAR predictions.  

 

Irrespective of the endpoint predicted, TOPKAT predictions are associated with an indication of 

their reliability, according to whether the chemical of interest lies within the AD of the model. This 

is an assessment of whether the chemical lies within the structural and physicochemical descriptor 

space of the training set. However it is up to the end-user to decide how to interpret this 

information. For the purposes of this study, a strict criterion was adopted – a prediction was only 

considered to be reliable if the chemical was found to be within the structural and descriptor space. 

 

For developmental toxicity and acute fish toxicity, none of the TOPKAT predictions was reliable 

since all HMWPE were outside the optimum prediction space of TOPKAT models. For skin 

sensitisation, four phthalates were correctly predicted to be non-sensitisers, while the other three 

were outside the AD. In the case of skin irritation, six predictions of non-irritancy were made, of 

which four were correct and two could not be evaluated, due to lack of experimental data in the 

SIDS Initial Assessment Report (SIAR). For eye irritation, TOPKAT made six predictions, 

including three correct predictions of known non-irritants, a prediction of non-irritancy for a 

phthalate with no experimental data, a prediction of mild irritancy for a phthalate with no 

experimental data, and a prediction of mild irritancy for a non-irritant.  

 

For bioconcentration, there was full concordance between the seven BCFWIN predictions of no 

bioaccumulation potential and the experimental data reported in the SIAR. 

 

For biodegradation, there was a good concordance between the BIOWIN predictions by 

experimental data reported in the SIAR (where data were available). Experimentally it was 

observed that lower molecular weight ranges are expected to biodegrade to a high extent (greater 
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than 60% after 28 days), while higher molecular weight members are expected to biodegrade to an 

extent less than 60%. BIOWIN predictions are in agreement with these results, with Di-phC10 PE 

(53306-54-0) and Di-C11 PE (3648-20-2) being predicted to biodegrade within weeks, and Di-C13 

PE (68515-47-9) and Di-C13 PE (119-06-2) in months. 

 

The TOPKAT model for acute oral toxicity (rat oral LD50) predicted all seven phthalates to be non-

toxic, but five of these predictions were out of the domain. 

1.6 Assessing the adequacy of experimental data  

 

In the case of test data for aquatic toxicity, comparison of predicted and experimental results can 

explain “unreliable” test results. For example, a measured LC50 for acute fish toxicity that lies 

above the theoretical minimum LC50 predicted by a baseline log Kow QSAR model could indicate 

that adsorption or volatilisation has occurred in the test system. Another pitfall may be caused by 

low water solubility of the chemicals, which is relevant to the HMWPE category. 

 

1.7 Assessing the adequacy of read-across (impact of structural variation)  

 

One of the difficulties in applying read-across is the uncertainty of whether a small structural 

difference between the source and target chemicals could invalidate the read-across. 

 

QSAR analysis can help to establish the adequacy of the read-across in cases where the (Q)SAR 

captures the factor(s) responsible for driving the (eco)toxicological effect. For example acute 

aquatic toxicity is typically modelled with logKow. For illustrative purposes, it can be assumed that 

data for this endpoint is missing for diethyl phthalate (Figure 10), but there are several choices of 

analogue for the read-across. Assuming the same mechanism of action holds, read-across from 1,2-

benzenedicarboxylic acid, bis(2-hydroxyethyl) ester is likely to lead to an underestimation of the 

acute aquatic hazard, whereas read-across from diethyl 3,4,5,6-tetrachlorophthalate is likely to lead 

to overestimation. In other words, neither read-across would be adequate, even though the three 

example chemicals have two carbon atoms in the ester side chains. This is because introduction of 

hydrophilic groups (in the 1,2-benzenedicarboxylic acid, bis(2-hydroxyethyl) ester) reduces the 

logKow (hydrophobicity) to 0.12, whereas introduction of halogen atoms in the benzene ring 

increases the logKow to 5.22 (the latter chemical, however, might show a deviation from the 

predicted toxicity due to the possible effect of the halogen atoms on the hydrolysis rate). 

Conversely, another analogue (1,2-Benzenedicarboxylic acid, bis(2-ethoxyethyl) ester) has a similar 

logKow of 2.10. Thus, read-across from this analogue is therefore likely lead to the correct hazard 

classification (harmful), although looking at the side chain, it looks more dissimilar to diethyl 

phthalate than the other two analogues. Thus, the use of a valid QSAR can help to choose an 

appropriate analogue and support the adequacy of the read-across. 

 

The general assumption that all chemicals sharing a common substructural fragment show similar 

(eco)toxicological profiles fails when the structural analogues are able to act via different (or 

multiple) mechanisms of action (see Figure 10). For example, allyl 2,3-epoxypropyl phthalate can 

act as an alkylating agent towards proteins and DNA, dimethyl 3,6-dihydroxyphthalate can easily 

transform to a strong electrophile (quinine form), and 1,2-benzenedicarboxylic acid, 2-hydroxyethyl 

2-[(1-oxo-2-propenyl)oxy]ethyl ester can be a strong electrophile itself due to the presence of an 

acrylate moiety in the molecule. Such chemicals should not normally be predicted by the same 

QSAR (unless the QSAR is developed specifically to capture more than one mechanism). 

Furthermore, such chemicals should either be excluded from a category based on a narcotic mode of 

action, or they should be included as a subcategory. 
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In other words, a category should be developed with mechanistic considerations in mind, to enable 

adequate read-across to be carried out within the same category or subcategory. The scientific 

challenge is to define appropriate structural rules and/or physicochemical cut-off values for defining 

these subcategories. 

 

1.8 Conclusions  

 

The investigation described here, which used the existing SIAM category of phthalate esters as a 

starting point, aimed to explore and illustrate some of the ways in which QSAR methods can be 

applied in the development of chemical categories. It was not the aim of this investigation to further 

justify the SIAM category itself, to develop an alternative and extended category of phthalate esters, 

or to make proposals for the classification and labelling of specific chemicals. It was rather intended 

to simulate some of the questions that arise in de novo category development, and explore how 

computational toxicology can help.  

 

In particular, the investigation resulted in the following learnings: 

 

a) There are a number of search engines available for the identification of analogues for read-

across. These provide different analogues on account of the database covered and the 

similarity measure used. The different approaches vary in terms of their ease-of-use and 

their capacity for data-mining. Errors were discovered which propagated between different 

databases, which highlighted the importance of checking any results obtained.  

b) Data exploration tools, such as PCA and clustering, are useful to enable visualisation (in 2D 

or 3D) of the chemical domain of a set of compounds to look for obvious groups of “like” 

compounds. These approaches rely on a starting dataset of chemicals and computing 

different numerical parameters (such as geometrical, topological, structural, 

physicochemical, electronic descriptors) for those chemicals or characterising them through 

the use of structural fingerprints. 

c) The use of predictions from existing QSARs can be useful to explore trends within groups 

of chemicals or help in the assessment of data adequacy. Structural fingerprints and cut-off 

values along descriptors (e.g. physicochemical properties) can be useful to gain insights 

about the scope and boundaries of a category (and subcategories).  

d) QSARs that encode the descriptor(s) driving an endpoint can be helpful in assessing the 

adequacy of a read-across (i.e. assessing how similar an analogue is to the chemical of 

interest with respect to a given endpoint). 

 

Finally, QSAR methods should be seen as supplementary tools that are useful in the development of 

categories of certain kinds of chemicals, rather than as an automated substitute for more 

conventional approaches to category formation. 
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Table 1. Membership of the SIAM category of High Molecular Weight Phthalate Esters 

 

O

O

O

O

R

R

 
 

CAS Name Formula 

53306-54-0 1,2-benzenedicarboxilic acid, di-2-

propylheptyl ester 

R = C10H21 (propyl branched) 

[100% branched] 

68515-41-3 

1,2-benzenedicarboxilic acid, di-C7-9-

branched and linear alkyl esters 

R = C7H15 to C9H19 (branched and linear) 

[>80% linear] 

85507-79-5 

1,2-benzenedicarboxilic acid, di-C11-

branched and linear alkyl esters 

R = C11H23 (branched, essentially methyl, and 

linear) 

68515-43-5  

1,2-benzenedicarboxilic acid, di-C9-

11-branched and linear alkyl esters 

R = C9H19 to C11H23 (branched and linear) 

[>80% linear] 

3648-20-20  

1,2-benzenedicarboxilic acid, di-C11-

alkyl ester 

R = C11H23 (branched) 

685151-47-9  

1,2-benzenedicarboxilic acid, di-C11-

14-branched alkyl esters, C13 rich 

R = C11H23 (branched, essentially methyl) 

119-06-2 1,2-benzenedicarboxilic acid, di-C13-

alkyl ester 

R = C11H23 (branched) 
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Table 2. Representative structures for the seven SIAM phthalate esters 

 

CAS number Structure CAS number Structure 

1) 85507-79-5 

 

CH3
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CH3

CH3

CH3
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5) 53306-54-0 
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CH3

CH3

O

CH3

 
2) 68515-47-9 
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CH3

CH3

O

O

O

O

CH3

CH3
CH3  

6) 3648-20-2 
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O

O
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3) 68515-43-5 
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CH3
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CH3

O

O CH3

 

7) 119-06-2 

 
O

O

O
CH3

O

CH3  
4) 68515-41-3 
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O

O

CH3

O

CH3

CH3

 

 

 

 
[1] 1,2-Benzenedicarboxylic acid, di-C11-branched and linear alkyl esters (Di-C11 PE) 

[2] 1,2-Benzenedicarboxylic acid, di-C11-14-branched alkyl esters, C13-rich (Di-C13 PE) 

[3] 1,2-Benzenedicarboxylic acid, di-C9-11-branched and linear alkyl esters (Di-C9-11 PE) 

[4] 1,2-Benzenedicarboxylic acid, di-C7-9-branched and linear alkyl esters (Di-C7-9 PE) 

[5] 1,2-Benzenedicarboxylic acid, di-2-propylheptyl ester (Di-phC10 PE)   

[6] 1,2-Benzenedicarboxylic acid, di-C11-alkyl ester (Di-C11 PE) 

[7] 1,2-Benzenedicarboxylic acid, di-C13-alkyl ester (Di-C13 PE) 
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Table 3. Rules-of-thumb for the classification of phthalates on the basis of estimated logKow 

 

 

 

 

 

 

 

 

 
R1, R2 Log Kow range Toxicity group Example Chemical Acute fish 

toxicity value 

from IUCLID
a
 

(mg/L) 

- log Kow < 1.5 No concern   

R1 = R2 = CH3 

R1 = R2 = C2H5 

 1.5 < log Kow < 3.2 Harmful Diethyl phthalate 

(CAS 84-66-2) 

29.60; 17.00; 

17.00; 16.80; 

31.80 

R1 = R2 = C3H7 

R1 = R2 = C4H9 

3.2 < log Kow < 5.0 Toxic Dibutyl phthalate 

(CAS 84-74-2) 

2.60; 0.71; 1.00; 

1.30 

R1 = R2 = C5H11 

R1 = R2 = C6H13 

5.0 < log Kow < 7.0 Very toxic Dipentyl phthalate 

(CAS 131180) 

Dihexyl phthalate 

(CAS 68515-50-4) 

N
b
; R50

c
 

 

0.82
d
 

R1 = R2 = C7H15 7.0 < log Kow < 8.0 Toxic   Data not found 

R1 = R2 = C8H17 

R1 = R2 => C8H17 

log Kow > 8.0 No concern Di-sec-octyl 

phthalate          

(CAS 117-81-7) 

NTBLAS
d,e

 

 
a
 Due to a large number of values available and for simplicity, only LC50 to fathead minnow is shown 

b
 N: Classified in Annex I of Directive 67/548/EEC as “Dangerous for the environment” 

c
 Classified in Annex I of Directive 67/548/EEC as “Very toxic to aquatic organisms” 

d
 Collected from http://www.epa.gov/opptintr/chemtest/pubs/alkpht.pdf 

e
 Not toxic below the limit of water solubility

H 

H 

H 

H 

O 

O 

O 

O 
R2 

 

R1 
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Table 4. Experimental data for the seven SIAM phthalates 

 

CAS  

number 

Abbreviation Developmental 

Toxicity  

Acute fish 

toxicity 
 

Skin  

Irritation 

Eye  

Irritation 

BCF Biodegradation 

Non-

acclimated 

Inoculum  

Biodegradation 

Acclimated 

Inoculum 

Rat Oral 

LD50, 

g/kg 

Skin 

Sensitisation 

85507-79-5 
Di-C11 PE 

No
a 

NT
b 

No data No data Not B No data No data >60 (NT) NEG 

68515-47-9 
Di-C13 PE 

No
a
 NT

b
 NI NI / mild Not B 12.80% No data >10 (NT) NEG 

68515-43-5 
Di-C9-11 PE 

No
a
 NT

b
 NI NI Not B No data No data 

>19.7 

(NT) 
NEG 

68515-41-3 
Di-C7-9 PE 

No
a
 NT

b
 NI NI Not B No data No data 

>19.3 

(NT) 
NEG 

53306-54-0 
 

Di-phC10 PE  
No

a
 NT

b
 NI NI Not B 67 to 75% No data >5 (NT) No data 

3648-20-2 
Di-C11 PE 

No
a
 NT

b
 NI NI Not B 57.40% 76.00% >60 (NT) NEG 

119-06-2 
Di-C13 PE 

No
a
 NT

b
 No data No data Not B 42.00% 37.00% >2 (NT) NEG 

 

 

 

 
a 
No developmental toxicity signs are observed below maternotoxic doses 

 
b 

Data were provided in the SIAR for several different species of fish (but not fathead minnow), invertebrates, and algae. All valid studies show that 

members of the HMWPE Category do not produce acute toxicity to fish and invertebrates or toxicity to algae at their maximum solubility in the 

various media
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Table 5. Predicted endpoints for the seven (representative structures of) SIAM phthalates 

 

CAS  

number 

Abbreviation TOPKAT 

Developme

ntal 

Toxicity  

TOPKAT 

Acute fish 

toxicity 
(96h LC50 to 

P. promelas) 

Acute fish 

toxicity 
(96h LC50 to 

P. promelas)
a
 

 

TOPKAT 

Skin  

Irritation 

TOPKAT  

Eye  

Irritation 

BCFWIN 

BCF 

BIOWIN 3 

Ultimate 

degradatio

n 

TOPKAT 

Rat Oral 

LD50, g/kg 

TOPKAT 

Skin 

Sensitisatio

n 

85507-79-5 
Di-C11 PE  NA NA NTBLAS NEG NEG 3.16 2.7288 ≥10, NT 

(NA) 

NA 

68515-47-9 
Di-C13 PE NA  

 

NA 
 

NTBLAS NA NA 3.16 1.9443 ≥10, NT 

(NA) 

NA 

68515-43-5 
Di-C9-11 PE NA 

 

NA  NTBLAS NEG NEG 20.07 2.5787 ≥10, NT 

(NA) 

NEG 

68515-41-3 
Di-C7-9 PE NA 

 

NA 
 

NTBLAS NEG NEG 3.16 2.9148 6.8, NT NEG 

53306-54-0 
Di-phC10 PE  NA 

 

NA 
 

NTBLAS NEG NEG 3.16 3.0892 ≥10, NT NA 

3648-20-2 
Di-C11 PE NA 

 

NA 
 

NTBLAS NEG MILD 3.16 
3.0272 

≥10, NT 

(NA) 

NEG 

119-06-2 
Di-C13 PE NA  NA  NTBLAS NEG MILD 3.16 2.9032 ≥10, NT 

(NA) 

NEG 

 
a
The acute fish toxicity (96-h LC50 to P. promelas) in this column was judged on a basis of octanol-water partition coefficient (log Kow) and water 

solubility (WS, mg/L), calculated by WSKOWIN v. 1.41. All representative chemicals had calculated log Kow ≥ 8.5 and calculated water solubility 

below 0.001 mg/L. Therefore, they were considered not (acutely) toxic because they are below the limit of aqueous solubility (NTBLAS). This does 

not exclude possible concern for prolonged/chronic toxicity. 

 

NA = not applicable (out of domain) 

NT= non-toxic 
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Figure 1. Multiple ways of analogue searching for seven phthalate esters 
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Figure 2. Plots of molecular weight (top) and hydrophobicity (bottom) for the compilation of 

phthalates (first column) and representative structures for the HMWPE category (second column). 

Mean symbol and median line are shown along with the min/max box and statistical outliers indicated 

with an asterisk. 
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Figure 3. Distribution of logKow values for 324 phthalate esters 

 

 
Figure 4. Plot of the first two principal components calculated from connectivity and information 

indices. 
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Figure 5. Examples of structures that have substantially different chemical features compared to the 

rest of selected chemicals (outliers), and of very similar structures that are clustered together (very 

close analogues). 

 

 

 

Examples of outliers in the PCA plot (chemicals outside the ellipse in the lower left corner) 
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Figure 6. Correlation between log toxicity values to fathead minnow predicted by ECOSAR and 

TOPKAT. The lines are drawn according to regulatory cut-offs: 1 mg/L (solid line), 10 mg/L (dashed 

line), and 100 mg/L (dotted line). The chemicals in the lower left corner are predicted to be very toxic 

by both programs and the chemicals in the upper right corner are predicted to of no concern. Only 

chemicals predicted within the TOPKAT optimum prediction space were used. 
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Figure 7. Parabolic relationship between logKow and toxicity. The function, observed by Hermens et 

al. (8), was determined until log Kow of approximately 6. It was prolonged in this plot until 10 as a 

maximum upper limit for measuring of log Kow. 
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Figure 8. Bilinear relationship between logKow and toxicity. The three reference lines indicate the 

regions of the four toxicity categories: very toxic (VT) below 0; toxic (T) between 0 and 1; harmful (H) 

between 1 and 2, and no concern (NC) above 2. The dashed line represents the logKow value, which 

corresponds to the solubility limit of the phthalate esters. The circled chemicals are possible outliers 

due to the possibility of acting by a more reactive mechanism. 
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Cluster Signature 

1) 79 predicted non-

sensitisers 

 
2) 27 predicted sensitisers 

 
 

Figure 9. Substructural fingerprints for discriminating between sensitising and non-sensitising 

phthalate esters 
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Figure 10. Modifications in chemical structure can change the toxicity classification  
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2 Data gap filling in chemical categories: Case study using human health 

endpoints of the ethylene glycols category 

 

2.1 Summary 

In the absence of sufficient relevant and reliable experimental data for a chemical, one or more data 

gaps can be filled by non-testing methods to finalise the hazard and/or risk assessment. The 

following approaches for filling data gaps in chemical categories can be applied: 

 

a) Read-across 

b) Trend analysis and use of computational methods based on internal models (internal 

QSARs) 

c) Use of computational methods based on external models (external QSARs) 

 

The data obtained by applying these methods has to be suitable for classification and labelling 

and/or risk assessment. Therefore it has to be suitable also for derivation of reference doses, such as 

the Derived No Effect Level (DNEL), in cases where the respective testing protocol allows the 

derivation of a dose descriptor value (NOAEL/LOAEL/BMDL). 

 

When applying these methods for filling data gaps there is always some uncertainty on the accuracy 

of the predicted value, as there is when applying any model. The level of uncertainty depends in this 

case on the robustness of the category, which depends on various factors. In risk assessment, when, 

a dose descriptor such as the Lowest-Observed-Adverse-Effect Level (LOAEL), the No-Observed-

Adverse-Effect Level (NOAEL) or Benchmark Dose (BMD) is derived by application of read-

across or computational methods is used as the quantitative basis for deriving DNELs, the question 

arises as to whether an additional assessment factor is necessary to account for the uncertainty in the 

application of these methods.  

 

The aim of this case study was to illustrate the application of the three approaches for filling data 

gaps in the category approach, and to test the use of category reporting format included in the 

REACH guidance documentation (1). In addition, the treatment of uncertainty in read-across 

estimates was considered. The case study is largely based on a category that was established and 

assessed in the OECD HPV Chemicals Programme at SIAM 18 in April 2004. The information 

used to build the case study was provided from the SIDS Initial Assessment Report for this category 

(2). It is emphasised that the study was not intended to be an evaluation of the OECD category, nor 

was it intended to derive "no-effect levels" for risk assessment. 

 

 

2.2 Methods 

2.2.1 Generation of QSAR predictions using TOPKAT 

TOPKAT is a statistical system developed by Accelrys, Inc (3) consisting of a suite of QSAR 

models for a range of different endpoints. There are currently 16 modules for the following 

endpoints: aerobic biodegradability, Ames mutagenicity, Daphnia magna EC50, developmental 

toxicity, fathead minnow LC50, FDA rodent carcinogenicity, NTP rodent carcinogenicity ocular 

irritancy, logKow, rabbit skin irritancy, rat chronic LOAEL, rat inhalation toxicity LC50, rat 

Maximum Tolerated Dose (MTD), rat oral LD50, skin sensitisation, and weight-of-evidence rodent 

carcinogenicity (3).  
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TOPKAT models are typically based on the analysis of large datasets of toxicological information 

derived from the literature. The molecular descriptors used include structural (e.g. molecular bulk, 

shape, symmetry), topological and electrotopological indices. The QSARs are developed by 

regression analysis for continuous endpoints and by discriminant analysis for categorical data. 

TOPKAT estimates the confidence in the prediction by applying the patented Optimal Predictive 

Space (OPS) validation method. The OPS is unique multivariate descriptor space in which the 

model is applicable. When a query is within the OPS for a given model, the probability of the 

prediction to be accurate is as good as the cross-validated statistical performance of the model. 

 

The rat oral LD50 module of the TOPKAT (v3.1) includes 19 QSAR regression models. The 

models are based on a number of structural, topological and electrotopological indices, and make 

predictions of the oral acute median lethal dose in the rat (LD50). The models report results in units 

of chemical weight/body weight. The TOPKAT rat oral LD50 models are based on experimental 

values of 4000 chemicals from the RTECS. 

 

The rat inhalation LC50 module contains five submodels related to different chemical classes. For 

the model development only exposure times in the range of 0.5 to 14 hours were accepted. In order 

to normalise the data from different durations of exposure, it was assumed that, within the range of 

adjustment, toxicity was proportional to duration. Thus, the units that were modeled were 

mg/m3/hour, and the predicted values are in the same units. 

 

The chronic rat LOAEL module comprises five QSAR models. For the model development 393 

uniform experimental LOAEL values were used. Each model predicts chronic LOAEL values in the 

rat in weight/body weight units, along with 95% confidence limits. Data for this TOPKAT module 

was derived from three sources: US EPA documents, National Cancer Institute/National Toxicology 

Program (NCI/NTP) Technical Reports, and the open scientific literature. All data were for oral rat 

chronic studies of at least 1year’s duration. 

 

The developmental toxicity potential module comprises three statistically significant and cross-

validated QSAR models. Each model applies to a specific class of chemicals. The discriminant 

models compute the probability of a submitted chemical structure being a developmental toxicant in 

the rat: a probability below 0.3 indicates no potential for developmental toxicity, and the probability 

above 0.7 signifies developmental toxicity potential. 

 

2.2.2 Generation of QSAR predictions using the BfR rulebase 

The BfR rulebase (4-10) is based on the combined use of two predictive approaches: a) 

physicochemical exclusion rules to identify chemicals with no skin irritation/corrosion or eye 

irritation/corrosion potential; and b) structural inclusion rules to identify chemicals with skin 

irritation/corrosion or eye irritation/corrosion potential. The current (2005) version of the DSS is 

based on a training set of 1358 chemicals with experimental data for skin and eye irritation and 

corrosion. Only pure substances were considered (95% purity). The training set was compiled from 

confidential data submitted under the EU New Chemicals Notification procedure, and contained 

within the New Chemicals Database (NCD). 
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2.3 Results: category reporting format 

 

1. Category definition and its members 

1.1. Category Definition 

1.1.a. Category Hypothesis 

The category includes ethylene glycol (EG) and higher glycols (di-, tri-, tetra-, and penta-), which 

are closely related in molecular structure and have similar physicochemical properties, that differ in 

a regular and expected way as a result of increasing molecular weight and consistent functionality 

of a relatively less stable hydroxyl moiety on each end of the molecule. The potential for 

toxicological effects is also expected to change consistently - as the molecular weight increases, the 

potential for systemic, reproductive and developmental effects/toxicity is expected to decrease. 

1.1.b. Applicability domain (AD) of the category 

The category applies to substances that can be represented by the following generic molecular 

structure: HO(CH2 CH2O)n H, where n= 1,2,3,4, or 5 for the category members. 

All category members are composed of two primary alcohol (hydroxy) groups and the members 

differ from each other only in the number of oxyethylene units. All category members except EG 

contain at least one ether linkage. 

1.1.c. List of endpoints covered 

The category approach was applied to mammalian toxicity endpoints (except for 

genotoxicity/mutagenicity and carcinogenicity which are not reported in this format)  

1.2. Category Members 

See Table 1. 

1.3. Purity / Impurities 

See Table 2. 

2. Category justification 

The category members are all liquid substances of low volatility and high water solubility. The 

physico-chemical properties such as melting point, boiling point and density increase as the number 

of oxyethylene units increases, while the vapour pressure, partition coefficient, and surface tension 

generally decrease as the number of oxyethylene units increases. 

Based on available data, it can be concluded that as the molecular weight increases (above DEG in 

a homologous series), the potential for systemic, reproductive, and developmental toxicity 

decreases. This pattern of toxicity is consistent with a likely decrease in absorption with increasing 

molecular weight, though available data to serve this basis for comparison are limited and 

inconclusive. All substances are expected to be well absorbed by the oral route. 

The normal synthesis of these compounds involves the hydrolysis of ethylene oxide (EO) to 

initially produce EG, which then reacts with subsequent molecules of EO to produce the higher 

glycols in increasing order. All category members can be represented by the following generic 

molecular structure: 

HO(CH2 CH2O)n H 

Where n = 1, 2, 3, 4, or 5 for the category members. All category members therefore possess two 

primary alcohol (hydroxy) groups and the members differ from each other only in the number of 

oxyethylene units.  

All category members except EG contain at least one ether linkage, but the ether functionality is 

extremely stable relative to the hydroxy functionality. Because of this and other similar chemistries, 

it is appropriate to classify EG and the higher glycols as a single group. The limits of this category 
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are fairly well defined since at n=6 to 8 the absorption from ingestion decreases significantly (He et 

al, 1998; 11) and the materials start to become solids. Above n=8, the physicochemical attributes 

change very little and are represented well by another category named poly(ethylene oxide). 

3. Data matrix 

A matrix on data availability was created for physico-chemical properties (Table 3) and mammalian 

toxicity endpoints (excluding genotoxicity/mutagenicity and carcinogenicity), Table 4. From the 

available data a clear trend in physicochemical properties and toxicity is observed. Toxicity seems 

to decrease with increasing chain length. 

4. Conclusions per endpoint for C&L, PBT/vPvB and dose descriptor 

 

 

2.4 Results: data gap filling for individual endpoints and category members  

 

Details of the data gap filling are given in Table 4. This is not intended to be a comprehensive 

evaluation of the category (e.g. evaluation of toxicity data) and derivation of the "critical" no-effect 

levels to be used in risk assessment, but more an illustration of possible methods/approaches that 

can be used for this purpose; this also in view of the very high doses used in most studies and very 

high LD(C)50s/NOAELs which are not of great relevance for risk management. 

 

2.4.1 Acute toxicity 

Experimental information from animal studies is available for all members of the category and all 

substances are of low acute oral toxicity. For this endpoint however, an example of a derivation of 

an internal QSAR that can be used for prediction of toxicity is given below. 

 

All substances appear to be also of low inhalation and dermal toxicity. For EG information from 

animal experiments is missing for both acute inhalation and dermal toxicity.  

 

These data gaps could be filled with: 

a) read-across from the closest analogue DEG, 

b) trend analysis (internal QSAR) 

c) an external model (e.g. TOPKAT 6.1 prediction).  

 

Rat oral LD50 

 

Prediction for the category: 

 

SMILES 

Compound 

ID 

Within 

OPS 

Compound 

in TOPKAT 

Database 

Reported 

Endpoint, mg/kg 

Computed Rat 

Oral LD50, 

mg/kg 

OCCO EG TRUE TRUE 4700 6500 

OCCOCCO DEG TRUE TRUE 12565 9900 

OCCOCCOCCO TEG TRUE TRUE 17000 >10000 

OCCOCCOCCOCCO tetraEG TRUE TRUE 29000 >10000 

OCCOCCOCCOCCOCCO pentaEG TRUE FALSE  >10000 
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Example of a derivation of an internal model (internal QSAR): 

Based on the experimental data for acute toxicity, internal QSAR modelling was applied. For this 

purpose the experimental acute toxicity values as reported in TOPKAT training set for four 

members of the category (EG, DEG, TEG and tetraEG) were used. A reasonable correlation was 

outlined between acute toxicity and log Kow. The following internal QSAR equation was derived: 

 

log(1/LD50) = -2.48 + 0.93 logKow (R
2
 = 0.703).  

 

A plot of the log (1/LD50) against the logKow is shown in Figure 1. 
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Figure 1. Internal QSAR for the rat oral LD50 for ethylene glycols 

 

On this basis the oral LD50 value for Pentaethylene Glycol (pentaEG) was predicted to be 41591 

mg/kg. However, a prediction based on a model derived by using such a low number of data is 

usually not considered to be very reliable. 

 

 

Acute dermal toxicity 

Given that EG seems to be the most toxic compound in this category and taking into account 

information on dermal absorption, performing a read-across from DEG could give an 

overestimation of the LD50 value for dermal toxicity (i.e. an underestimation of the dermal 

toxicity). Therefore, in this case and assessment factor might be considered, or the application of 

read-across might not be appropriate. No TOPKAT 6.1 prediction was possible and in view of the 

data available the application of trend analysis is also not possible for this endpoint. 

 

Acute inhalation toxicity 

Again, EG could be considered as being the most toxic within the category, so the application of 

read-across is questionable. An LC50 value was calculated by application of the TOPKAT 6.1 

model pointing to low acute inhalation toxicity, however due to the type of data available (very low 
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toxicity), this value can not be quantitatively compared to the values for other members of the 

category.  

 

Prediction for the category: 

SMILES 

Compound 

ID Within OPS 

Computed Rat 

Inhalational 

LC50, mg/m3/H 
OCCO EG TRUE 6800 

OCCOCCO DEG FALSE 254.8 

OCCOCCOCCO TEG FALSE 268.6 

OCCOCCOCCOCCO tetraEG FALSE 455 

OCCOCCOCCOCCOCCO pentaEG FALSE 825.1 

 

Only the prediction for EG is reliable. 

 

In order to fill the data gaps similarity search was performed. In TOPKAT similarity is measured 

between two molecules with reference to a specific property. For every model TOPKAT computes 

a model-specific similarity distance between a query structure and a database compound with the 

smaller the distance, the greater the similarity. A TOPKAT assessment of a query structure is based 

on the hypothesis that the model parameters present in the query structure are the determinants of its 

toxicity. Therefore this hypothesis can be tested against similar compounds in the model’s database. 

The similarity is scaled from 0– 1; the smaller the distance, the greater the similarity. 

 

Similarity search outlined 2-(2-ethoxyethoxy)ethanol (Figure 2) as substance “similar” to the 

substances with ID=2÷5 (difference estimated by TOPKAT ,0.3) and presented in the TOPKAT 

training set. The rat inhalation LC50 for this substance is 5240 mg/m3/4H. 

 

OCCOCCOCC 

OH

O

O

CH3

 
 
Figure2. Structure of 2-(2-ethoxyethoxy)ethanol 

 

2.4.2 Skin/eye irritation 

Some information on skin/eye irritation was available for all the members of the category and 

substances appear to be weakly irritating to skin and eye. These endpoints were also checked with 

the BfR rulebase and the findings direct to possible skin and eye irritation potential of these 

substances 

 
Category predictions: 

 

In the list of BfR structural alerts for presence of skin and eye irritation is the following alert: 
R1

R2

R OH

 R=aliphatic chain; R1,2=H or aliphatic chain 

 

The finding indicates possible skin and eye irritation potential of the substances. 
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2.4.3 Skin sensitisation 

Based on available data from animal studies (GPMT test) EG, DEG, TEG and tetraEG are not skin 

sensitizers. This information is missing for pentaEG but by applying read-across from the other 

members of the category, pentaEG could also be considered as non-sensitising. 

 

2.4.4 Repeated dose toxicity (oral) 

There is a rather large variability in the number and type of studies performed (in terms of duration 

and animal species used) among the different members of the category. This is an example which 

illustrates how diverse the available data can be within a category. In this case comparable studies 

in terms of duration with the same species are available for some of the members (EG and DEG) 

but not for others. From the available data, a clear trend of decreasing in toxicity with increasing 

molecular weight is observed, in particular for substances having higher molecular weight than 

DEG.  

 

For EG and DEG, information from animal studies is available for both sub-acute/sub-chronic and 

chronic toxicity, for TEG and tetraEG chronic toxicity data is missing, while for pentaEG no data 

on repeated dose toxicity is available.  

 

To fill in the data gaps, the possibility of applying trend analysis, computational methods based on 

internal models, analogue read-across and external models was explored. 

 

Trend analysis and computational methods based on internal models 

Given the small size of the category and high variability in the data, the relevance of performing a 

trend analysis or development of an internal QSAR is questionable.  

 

Concerning the NOAEL values, although the trend is seen, there is a big difference between the 

NOAEL values for DEG and TEG. For example, in case that the sub-chronic NOAEL would be 

estimated by interpolation from the available sub-chronic information from both EG and TEG (as 

for example the average of the two values) this would most probably be overestimated. Based on 

the available data, it might be appropriate in this case, to divide the category in two subcategories 

for repeated-dose toxicity endpoints and consider TEG as a breakpoint chemical. However, there 

are also some indications that kidney toxicity observed after exposure to EG might be a result of a 

different mode of action than the kidney toxicity caused by DEG. The renal toxicity of EG upon 

repeated dosing in rats appears to be due to crystal nephropathy caused by calcium oxalate crystals, 

indicating that kidney oxalic acid concentrations are key to EG renal effects. Oxalic acid has been 

shown to be a minor metabolite of DEG and TEG (low levels observed in urine) and this suggests 

that oxalic acid is probably not the cause of renal toxicity observed after repeated exposure to these 

compounds. 

 

Read-across  

Given the difficulty to perform trend analysis the data gaps for sub-acute/sub-chronic toxicity of 

pentaEG could be filled by: 

- read-across from EG, which is the most toxic; this approach can be considered as very 

conservative since a clear trend of decreasing toxicity with increasing molecular weight is 

observed in the category; 

- read-across from the closest analogue for which information is available, namely from 

tetraEG for sub-acute and from TEG for sub-chronic toxicity. Due to the trend of decreasing 

toxicity with increasing molecular weight, it is assumed that pentaEG would be less toxic 
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than the other two chemicals; therefore the values could also be considered conservative, 

resulting in no need for an additional assessment factor. 

 

Regarding chronic toxicity, information from chronic animal studies is available only for EG and 

DEG. The lowest (sub)-chronic NOAEL has been obtained in a 225 days feeding study with DEG 

in rats. Since DEG is the closest analogue with chronic toxicity data to TEG, tetraEG and pentaEG, 

the data gap for chronic toxicity could be filled by read-across from DEG. Due to the trend of 

decreasing toxicity with increasing molecular weight the NOAEL value from DEG could be 

considered conservative and result in no need for an additional assessment factor.  

 

Another approach could be to apply an assessment factor of e.g. 2 to the NOAEL from the sub-

chronic study with TEG (sub-chronic to chronic) and an assessment factor of 6 to the NOAEL of 

the sub-acute study for tetraTEG (sub-acute to chronic), to account for the differences in exposure 

duration in studies and to derive the chronic DNEL. However, in this case the question arises as to 

whether a trend analysis on these derived values provide a reliable means of filling the data gaps for 

substances without data. 

 

Use of computational methods based on external models  

A TOPKAT 6.1 prediction for chronic rat LOAEL was performed, resulting in an overestimation of 

the LOAEL for DEG if compared with the lowest experimental LOAEL available (Table 4) and an 

estimated LOAEL for TEG, which was higher than the one for DEG. TetraEG and pentaEG were 

outside the applicability domain of the model. 

 

Predictions for the category: 

 

SMILES 

Compound 

ID Within OPS 

Compound in 

TOPKAT 

training set 

Reported 

Endpoint 

Computed Chronic 

LOAEL, mg/kg 

OCCO EG TRUE TRUE 1000 mg/kg 828.6 

OCCOCCO DEG TRUE FALSE  1500 

OCCOCCOCCO TEG TRUE FALSE  3400 

OCCOCCOCCOCCO tetraEG FALSE FALSE  4900 

OCCOCCOCCOCCOCCO pentaEG FALSE FALSE  8600 

 
Substance 1 is presented in the TOPKAT training set and the reported LOAEL is 1000 mg/kg. 

Substances 4 and 5 are outside the applicability domain of the model. 

 

2.4.5 Reproductive toxicity 

Data from a two-generation study are available for EG and data from studies conducted by the 

Reproductive Assessment by Continuous Breeding (RACB) protocol are available for DEG and 

TEG. No information on reproductive toxicity is available for tetraEG and pentaEG. A trend of 

decreasing toxicity with increasing molecular weight is observed. The data gaps for tetraEG and 

pentaEG could be filled by: 

- read-across from EG which is the most toxic; this approach can be considered as very 

conservative as a clear trend of decreasing toxicity with increasing molecular weight is 

observed in the category; 

- read-across from TEG, the closest analogue with available data. Due to the observed trend 

within the category, it can be assumed that tetra and pentaEG are less toxic than TEG and 

therefore the NOAEL from TEG can be considered conservative for tetraEG and pentaEG 

so it should not be necessary to add an additional assessment factor. 
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2.4.6 Developmental toxicity 

Several developmental toxicity studies in mice and rat were available for EG, DEG and TEG while 

information on developmental toxicity was available for tetraEG and pentaEG. To fill in the data 

gaps, the possible application of trend analysis and computational methods based on internal 

models, analogue read-across and use of computational methods based on external models was 

explored. 

 

Trend analysis and computational methods based on internal models: 

Similarly as in case of repeated dose toxicity, given the small size of the category it appeared not 

appropriate to perform the trend analysis or to develop an internal QSAR. Taking into consideration 

only the lowest NOAELs observed in studies with mice, a clear trend of decreasing toxicity with 

increasing molecular weight cannot be observed. Based on NOAELs, EG appears to be the most 

toxic, followed by TEG and DEG. It appears that in this case the shape of the trend in the category 

is distorted due to the dose spacing used in different studies. However, when comparing the BMDs 

of these three substances, the trend of decreasing toxicity with increasing molecular weight is 

observed: EG shows the highest toxicity, followed by DEG and then TEG. The same trend is 

observed in the rat studies.  

 

 

Read-across  

Given the difficulty to perform trend analysis to fill the data gaps for developmental toxicity of 

tetraEG and pentaEG, the possibilities to fill these data gaps could be the following: 

- read-across from the substance that has the lowest NOAEL value – EG, which would be a 

very conservative approach and would indicate that tetraEG and pentaEG are potential 

developmental toxicants; 

- read-across from the substance that is considered to be the closest analogue for which 

information is available - TEG. In this case, if only information on NOAELs from mice 

were available (or considered), no apparent trend in toxicity within the category could be 

observed. The NOAEL value for TEG is considerably lower than the NOAEL value for 

DEG. In this case the NOAEL for tetraEG and pentaEG would be underestimated. To read 

across from TEG, BMD LCL  values (95% lower confidence limit on the benchmark dose) 

would give a better prediction. From the rat studies a clear trend of decreasing toxicity with 

increasing molecular weight is observed. Due to the observed trend within the category, it 

can be assumed that tetra and pentaEG are less toxic than TEG. Therefore the 

NOAEL/BMDL from TEG can be considered conservative for tetraEG and pentaEG and 

application of an additional assessment factor should not be necessary. 

 

Use of computational methods based on external models  

A TOPKAT 6.1 prediction for developmental toxicity was performed, resulting in a prediction of 

possible developmental toxicity for EG, DEG and TEG. However, a dose descriptor value was not 

calculated. TetraEG and pentaEG were outside the domain of applicability of the model. 

 

Predictions for the category: 
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SMILES 

Compound 

ID Within OPS 

Compound in 

TOPKAT training 

set 

Computed 

Probability of 

Developmental 

Toxicity 
OCCO EG TRUE FALSE 1 

OCCOCCO DEG TRUE FALSE 1 

OCCOCCOCCO TEG TRUE FALSE 0.997 

OCCOCCOCCOCCO tetraEG FALSE FALSE 0.965 

OCCOCCOCCOCCOCCO pentaEG FALSE FALSE 0.573 

 
The results point to possible developmental toxicity potential for the first three substances. 

Substances 4 and 5 are outside the applicability domain of the model. None of the substances is 

present in the TOPKAT training set. 

 

2.5 Discussion 

2.5.1 Read-across 

Within the context of a chemical category, read-across can be applied in the following ways: 

 

- one-to-one  (one source chemical, one target chemical) 

- many-to-one  (many source chemicals, one target chemical) 

- one-to-many  (one source chemical, many target chemicals) 

- many-to-many  (many source chemicals, many target chemicals) 

 

When read-across is applied from one-to-one chemical or one–to–many chemicals, the uncertainty 

is usually considered greater than in cases where there are multiple source chemicals. To address 

this uncertainty, the application of an assessment factor might be considered. However, the question 

arises as to what assessment factor should be used.  

 

The uncertainty in read-across is lower when a clear trend is observed and when a conservative 

value for the target chemical can be determined. This conservative value could for example be the 

lower 95
th

 confidence limit (i.e. the 5
th

 percentile) of the values of the analogues or, in a 

homologous series where a clear trend is observed, the value of the closest analogue that is 

considered to be of higher toxicity than the target chemical. In these cases this approach might be 

considered sufficiently conservative to account for the uncertainty without the need for an 

assessment factor.  

 

In cases where there is no apparent trend in toxicity within the category and the dose descriptor 

values for the relevant endpoint vary considerably among the members, it might be more 

appropriate not to apply the read-across at all, rather than apply an assessment factor.  

 

Cases in which the application of an assessment factor might also be considered are those where 

there is confidence that the two (or more) analogues are comparable, but there are reasons to 

suspect that the target chemical might be more potent than the source chemical(s). Again, in this 

case it might be more appropriate not to apply read-across, rather than to apply an assessment factor 

to account for the uncertainty.  

 

In some cases it might not be necessary to derive a specific value (number), but it might be 

sufficient to define a dose range within which a NOAEL (DNEL) resides.  
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2.5.2 Trend analysis and use of computational methods based on internal models 

 

The use of trend analysis and computational methods based on internal models will to a great extent 

depend on the quality, reliability, variability and the level of details available (e.g. availability of the 

confidence intervals of the NOAELs) of the experimental data. These methods have not yet been 

extensively used in human toxicology for regulatory purposes. No examples of application of these 

methods for evaluation of existing categories were found. This might be due to the fact that usually 

these approaches can be applied only to large categories, for which a trend is observed and for 

which suitable and comparable data are available for a sufficient number of category members.  

 

One of the problems in applying these methods in human toxicology and in particular in case of 

existing substances is that there usually is a large variability in the experimental data available (e.g. 

with respect to the type of study, duration, dose spacing, species used). So, for example for the 

repeated dose toxicity, there might be studies of different duration, species and very different dose 

spacing available for different members of the category (see Table 4). Furthermore, the NOAEL 

depends critically on study design, choice of doses, dose spacing and group size. Two studies using 

the same chemical that are performed according to a completely identical study design (except for 

the dose spacing) can identify very different NOAELs because dose-spacing is a major determinant 

of this value. This might distort the shape of the trend in the category (see example on 

developmental toxicity in mice in Table 4) and make the modelling difficult (less reliable) or not 

applicable. In this respect it would be better to use the benchmark dose (BMD) approach (if 

possible), as this approach makes use of all the dose-response data and is less dependent on the 

study design, dose spacing or group size, compared to the NOAEL approach (see example on 

developmental toxicity in mice in Table 4).  

 

The use of trend analysis and computational methods based on internal model is expected to work 

best (and the predictions are likely be most reliable) for homologous series of chemicals, for which 

the parameter(s) associated with the change (trend) in toxicity (e.g. physicochemical properties) can 

easily be identified. Furthermore, the proportionality factor that links the structural differences and 

the change in toxicity between the source and the target chemical should be more or less constant 

within the category, for the prediction to be accurate. This is particularly true in cases where there 

are many data gaps within the category and the spacing between the target chemical and the 

chemical from which the value is interpolated/extrapolated is large. 

 

In general, if a trend analysis is performed, there should be sufficient confidence in the trend to 

make a correction (e.g. using the proportionality factor of an internal model) or a conservative 

estimations without the need to apply an additional assessment factor. In cases where the 

predictions are not considered accurate, it might be more appropriate not to apply trend analysis in 

the first place (and perhaps apply just the read-across), rather than apply an assessment factor to 

account for the uncertainty.  

 

In some cases it might not be necessary to derive a specific value (number), but to define a dose 

range within which the dose descriptor (e.g. NOAEL), and consequently the DNEL, resides could 

be sufficient. 

 

2.5.3 Use of computational methods based on external models 

If relevant internal (Q)SAR models cannot be obtained, external models can be sought in the 

literature, or in external databases and tools. The predictions of the external models will be suitable 

only if the query compound falls within the applicability domain of the model, meaning that the 

model is likely to generate a reliable prediction for the compound. The applicability domain 
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assessment is necessary since (Q)SAR models are based on empirical knowledge about specific 

chemicals and therefore they are associated with limitations in terms of chemical structures, 

physicochemical properties and the mechanisms of action for which the models can reliably be 

used. A thorough analysis of ways to formulate applicability domains for (Q)SAR models is given 

in (12-15). 

 

In cases where relevant and reliable external models are used, it should not be necessary to apply an 

assessment factor specifically to account for the uncertainty in the prediction. The (average) 

uncertainty (error) in the model predictions should be known from the statistical characteristics of 

the model. However, depending on the actual endpoint predicted and the endpoint of interest, some 

conversion may be necessary (e.g. from mol/L to g/L).  

 

2.6 Conclusions 

On the basis of the results of this study, it is concluded that: 

 

1. Read-across is likely to be the method most often used in category approach, as it appears 

that a reliable trend analysis and development of internal QSARs will be possible only in the 

case of larger categories, having reliable and comparable data.  

2. Wherever possible, the uncertainty in the read-across should be quantified (e.g. by providing 

confidence limits). 

3. If there is a clear trend or a fairly constant value within a category for the endpoint of 

interest (or for a related endpoint), it should be possible to obtain a reliable dose descriptor 

(e.g. a DNEL) by read-across without the need to apply an additional assessment factor to 

account specifically for the uncertainty of using this method. For example, the nearest 

conservative value of a source substance within the category could be used for the target 

substance, or a proportionality factor could be applied to correct the estimate.  

4. In cases where there is no trend in toxicity and there are differences in potency between 

members, or in cases in which the target substance is on the boundary of the category, it 

might be tempting to apply an assessment factor just to account for the uncertainty. In such a 

case, however, the question arises as to what assessment factor should be used, and how this 

should be decided. Case-by case decisions might lead to an inconsistent use of assessment 

factors. Thus, if there is insufficient data to assess the uncertainty in the read-across, or if the 

uncertainty is considered too high for the specific purpose of the read-across, it might be 

preferable not to apply the read-across.  
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Table 1. Members of the Ethylene Glycol Category 

 
Chemical Name IUPAC Name CAS No. Molecular  

Weight 

Molecular  

Formula 

Structural Formula 

(Smiles) 

Ethylene Glycol 

(EG) 

1,2-ethanediol 107-21-1 62.1 C2H6O2 HOCH2CH2OH 

(OCCO) 

HO

OH

 
Diethylene Glycol 

(DEG) 

2,2’-oxybisethanol 111-46-6 106.1 C4H10O3 HO(CH2CH2O)2H 

(OCCOCCO) 

O

OH

HO

 
Triethylene 

Glycol (TEG) 

2,2’-(1,2-

ethanedylbis(oxy)bis 

ethanol) 

112-27-6 150.2 C6H14O4 HO(CH2CH2O)3H 

(OCCOCCOCCO) 

O

O

OH

HO

 
Tetraethylene 

Glycol (tetraEG) 

2,2-(oxybis(1,2-

ethaneidyloxy)bis-)ethanol 

112-60-7 194.2 C8H18O5 HO(CH2CH2O)4H 

(OCCOCCOCCOCCO) 

O

O

O

OH

HO

 
Pentaethylene 

Glycol (pentaEG) 

-- 4792-15-8 234.3 C10H22O6 HO(CH2CH2O)5H 

(OCCOCCOCCOCCOCCO) 

O

O

O

O

OH

HO
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Table 2. Composition and impurity profile for the members of the Ethylene Glycol Category category 

 

Chemical Name CAS 

Number 
 

Composition 

Ethylene Glycol (EG) 107-21-1 ≥ 99 % pure 

Diethylene Glycol (DEG) 111-46-6 ≥ 99 percent pure (technical grade) 

High purity grade 

DEG ≥99.5 % 

EG ≤ 0.04 % 

TEG ≤ 0.1 % 

Water ≤ 0.1%  

Triethylene Glycol (TEG) 112-27-6 ≥ 99 % (technical grade) 

≥ 99.5 % (high purity grade) 

Tetraethylene Glycol (tetraEG) 112-60-7 TetraEG, ≥ 96.0 % 

DEG, ≤2 % 

TEG ≤3 % 

PentaEG ≤1 %  

Water ≤ 0.2 % 

Pentaethylene Glycol (pentaEG) 4792-15-8 Crude pentaEG (30-85 % pentaEG, 10-70% 

tetraEG, 2-15 % hexaethylene glycol, ≤ 5% TEG, 

≤1% DEG 

PentaEG, 98%  
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Table 3. Data matrix for physicochemical properties of the members of the category 

 

Category Member EG DEG TEG tetraEG pentaEG 

CAS No. 107-21-1 111-46-6 112-27-6 112-60-7 4792-15-8 
      

Physical state Liquid Liquid Liquid Liquid Liquid 

Melting point (oC) -13  -8  -5  -6.2  <0 

Boiling point (oC) 197.6  245 287  327  211-347 

Density (g/cm3) 1.1088  1.118  1.1274  1.1285  1.1372  

Vapour pressure 

(hPa)  

0.104  0.0104  0.00133 6.2 × 10-
5
 1.44-3.99 × 10-

7  
 

Partition coefficient  

(Log Kow) 

-1.36 

-1.20  

-1.98  

-1.47  

-1.7 -2.0 -2.3  

Water solubility 

(mg/l ) 

Miscible  Miscible  Miscible  Miscible  Miscible  

Henry’s Law 

Constant  

(atm-m3/mole) 

1.31 × 10-7 

(Epiwin, 2003) 

2.03 × 10-9 

(Epiwin, 2003) 

3.16 × 10-11 

(Epiwin, 2003) 

4.91 × 10-13 

(Epiwin, 2003) 

7.62 × 10-15 

(Epiwin, 2003) 

Surface Tension 

(dynes/cm) 

48.4  48.5  45.2  44  ND 

Flash point (oC) 111-116 

(closed cup) 

138-143 

(closed cup)  

117 (open cup)  182 (open cup)  >110  

Autoignition 

temperature (oC) 

398  229  375  358  ND 

Flammability Lower limit 

3.2%  

1.6-10.8%  0.9-9.2%  ND ND 
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Table 4. Data matrix for Mammalian toxicity endpoints (excluding mutagenicity and carcinogenicity) for the members of the category. Data reported in 

red were derived by applying read-across or QSAR estimation 

 

Category Member EG DEG TEG tetraEG pentaEG 
CAS No. 107-21-1 111-46-6 112-27-6 112-60-7 4792-15-8 

Acute oral toxicity 

(rat)  

LD50: 4000 – 13000 mg/kg LD50: 25300 mg/kg LD50 : 17000-22000 mg/kg LD50 : 34700 mg/kg  LD50 ::  > 16000 mg/kg 

LD50 ::  41591 mg/kg (estimation 

by an internal QSAR model) 

Acute inhalation 

toxicity (rat) 

LC50: 6800 mg/m3/h (TOPKAT 6.1 

prediction) 

0/10 deaths at substantially 

saturated vapour 

0/10 deaths at 50 mg/L (aerosol) 0/6 deaths  substantially 

saturated vapour 

0/12 deaths at 2516 mg/m3 

aerosol 

Acute dermal 

toxicity(rabbit) LD50  

Acute toxicity expected to be higher 

than for DEG. 

12500 mg/kg > 18000 mg/kg 22600 mg/kg > 18200 mg/kg 

Skin irritation 

(human) 

Some evidence of irritation (humans) Minimal irritation 

(humans) 
Minimal irritation (humans) Minimal irritation (humans) Minor irritation (rabbit) 

Eye irritation  Minimal irritation Minimal irritation Minimal irritation Minor transient irritation Minor  transient irritation 

Skin sensitization Non-sensitizing (GPMT) Non sensitizing   (GPMT) Non sensitizing (GPMT) Non-sensitizing (GPMT) Non sensitizing (read-across)  

Repeated dose toxicity 

(oral) 

16 weeks study (rat)*                

NOAEL: 71 mg/kg/d      LOAEL: 

180 mg/kg/d (kidney effects) 

16-weeks study (rat; feed): 0, 150, 

500, 1000 mg/kg/d           NOAEL: 

150  mg/kg/d      LOAEL: 500 

mg/kg/d (kidney effects) 

2 years study (rat; feed): 0, 40, 200, 

1000 mg/kg/d              

NOAEL: 200 mg/kg/d    

LOAEL:1000 mg/kg/d (several 

effects on urine parameters, urine 

calcium oxalate crystals, increased 

absolute and relative kidney weight 

etc.) 

2 years study (mice; feed): 0, 1500, 

3000, 6000, 12000 mg/kg/d                            

NOAEL:1500 mg/kg/d     

LOAEL: 3000 mg/kg/d 

32 days study (rat; feed): 0, 11 46, 

180, 850 mg/kg/d*                       

NOAEL: 150 mg/kg/d                     

LOAEL: 850 mg/kg/d (increased 

kidney weight) 

225 days study (rat, feed): 0, 51, 

105, 234 and 1194 mg/kg/d                                                  

NOAEL: 105 mg/kg/d         

LOAEL: 234 mg/kg/d (oxalate 

crystalluria and mild defects of 

renal function) 

2-years study (rat, feed): 0, 1200, 

2300 mg/kg/d                          

NOEL: 1200 mg/kg/d              

LOEL: 2300 mg/kg/d (few bladder 

stones one papilloma) 

Chronic LOAEL (rat): 1500 

mg/kg/d (TOPKAT 6.1 pred.) 

13 weeks study (rat; feed): 0, 

748, 1522, 3849 mg/kg/d                  

NOAEL: 1522 mg/kg/d           

LOAEL: 3849  mg/kg/d 

(decreased body weight gains, 

altered urine values, increases in 

kidney weights, hyperplasia, 

hypertrophy,..) 

 

Chronic DNEL derived by 

application of AF of 2 to the 

NOAEL of the sub-chronic 

study  

 
chronic NOAEL (rat): > 100 

mg/kg/d (read-across from 

DEG) 

 
chronic LOAEL (rat): 3400 

mg/kg/d (TOPKAT 6.1 

prediction) 

14 days study (rat; drinking 

water): 0, 92, 391, 2355, 6387 

mg/kg/d 

NOAEL:> 6387 mg/kg/d 

 

33 days study (rat; drinking 

water): 0, 220, 660, 2000 mg/kg/d 

NOAEL: > 2000 mg/kg/d 

 

Chronic DNEL derived by 

application of AF of 6 to the 

sub-chronic study  

 
chronic NOAEL (rat): > 100 

mg/kg/d (read-across from 

DEG) 

subacute NOAEL (rat): > 2000 

mg/kg/d (read-across from 

tetraEG) 

 

sub-chronic NOAEL (rat): > 1500 

mg/kg/d (read-across from TEG) 

 

chronic NOAEL (rat): > 100 

mg/kg/d (read-across from DEG) 
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Category Member EG DEG TEG tetraEG pentaEG 

CAS No. 107-21-1 111-46-6 112-27-6 112-60-7 4792-15-8 

Reproductive toxicity  

(oral) 

Two generation study (mice; drinking 

water): 0, 410, 840, 1640 mg/kg/d 

P(NOEL): 1640 mg/kg/d   

F1(NOAEL): 840 mg/kg/d;    

F1(LOEL): 1640 mg/kg/d (lower 

number of live pups/litter, unusual 

facial features, skeletal defects); 

RACB test (mice; drinking water): 

0, 610, 3060, 6130 mg/kg/d 

P (NOEL): 3060 mg/kg/d              

F1 (NOEL): 3060 mg/kg/d            

F1 (LOAEL): 6130 me/kg/d 

(decreased number of litters per 

fertile pair) 

RACB (mice; drinking water): 

0, 590, 3300, 6780 mg/kg/d 

 

P (NOAEL): > 6780 mg/kg/d           

F1 (NOAEL): > 6780 mg/kg/d 

 

NOAEL (mice): > 6000 

mg/kg/d (read-across from 

TEG) 

 

NOAEL (mice): >6000 mg/kg/d 

(read-across from TEG) 

Developmental 

toxicity (oral) 
Mice (gavage) GD 6-15: 0, 50, 150, 

500, 1500 mg/kg/d  

NOAEL: 500 mg/kg/d 

LOAEL: 1500 mg/kg/d (no apparent 

maternal toxicity, decreased pups bw, 

fused ribs and arches,  poor 

ossification)  

BMD LCL = 440 mg/kg/d    

 
Mice (gavage): GD 8-14 NOAEL:  

700 mg/kg/d  LOAEL: 2500 mg/kg/d 

(decrease in number of live implants, 

increase in number of dead implants;)                                        

NOAEL: (maternal): 2500 mg/kg/d. 

Mice (gavage): GD 6-15: LOAEL: 

750 mg/kg/d (decreased bw, 

increased number of malformations) 

NOAEL (maternal) 750 mg/kg/d 

Rat (gavage): GD 6-15:  NOAEL: 

500 mg/kg/d   LOAEL: 1000 mg/kg/d 

(decreased fetal bw) 

 

Possible developmental toxicity 

(TOPKAT 6.1 prediction) 

Mice (gavage) GD 6-15: 0, 590, 

2950, 11800 mg/kg/d  

NOAEL: 2950 mg/kg/d      

LOAEL: 11800 mg/kg/d (decreased 

fetal body weight)  

BMD LCL= 1652 mg/kg/d       

 
Rat (gavage) GD 6-15: 0, 1118, 

4472, 8944 mg/kg/d            

NOAEL: 1118  mg/kg/d      

LOAEL: 4472  mg/kg/d (reduced 

fetal weight and delayed  

ossification) 

 
Possible developmental toxicity 

(TOPKAT 6.1 prediction) 

Mice (gavage) GD 6-15: 0, 565, 

5650, 11300 mg/kg/d                        

NOAEL: 563 mg/kg/d            

LOAEL: 5630 mg/kg/d 

(decreased fetal bw) 

BMD LCL= 2373 mg/kg/d           

 
Rat (gavage) GD 6-15:              

NOAEL: 5630 mg/kg/d             

LOAEL: 11260  mg/kg/d 

(decreased fetal bw, increased 

bilobed thoracic centrum - 

skeletal variation) 

 
Rat (gavage) GD 1-21:             

NOAEL: > 4500 mg/kg/d 

 
Possible developmental toxicity 

(TOPKAT 6.1 prediction) 

NOAEL (mice): because there 

is no apparent trend in mice 

NOAELs, the value of the 

closest analogue could be used 

– read across from TEG 

 

BMD LCL (mice): > 2000 

mg/kg/d (extrapolation from 

TEG) 

 

NOAEL (rat): > 4500 mg/kg/d 

(read-across from TEG) 

NOAEL (mice): because there is 

no apparent trend in mice 

NOAELs, the value of the closest 

analogue could be used – read-

across from TEG 

 

BMD LCL (mice): > 

2000 mg/kg/d (read-

across from TEG) 

 

NOAEL (rat): > 4500 mg/kg/d 

(read-across from TEG) 

*BMD LCL = 95 % lower confidence limit on the benchmark dose
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3 Possible application of ranking methods to organic chemicals 

 

3.1 Summary 

This appendix aims to summarise and illustrate different ways in which chemometric ranking methods 

could be used in the development of chemical categories. To illustrate possible applications of ranking 

methods, a data set of phthalate esters was investigated. Ranking methods were applied to estimated 

data generated by QSARs, which reflects the worse-case scenario that insufficient or no suitable 

experimental data are available. When sufficient experimental data are available, ranking methods can 

be applied directly to the experimental data. In general, however, when applying the chemical category 

approach, a combination of experimental and estimated data is likely to be available. 

 

In chemical risk assessment, ranking methods are usually associated with the priority setting of large 

numbers of chemicals, since the trends established by these methods can be used to guide strategic 

testing. This application remains in the case of chemical categories, although large numbers of 

chemicals are rarely present, and simpler approaches could be used to guide the strategic testing. 

  

As an additional application, it is proposed that ranking methods also provide a useful means of 

developing the initial category hypothesis. In particular, the ability of these methods to sort and group 

chemicals on the basis of multiple endpoints means that it is possible to compare chemicals in terms of 

both the quantitative and qualitative differences in their toxicity profiles. In other words, ranking 

methods provide a means of: 

 

a) sorting chemicals according to their relative levels of concern, thereby providing the basis for 

analysing trends across multiple endpoints and defining subcategories in terms of different 

levels of concern. 

b) identifying different profiles of toxicological behaviour, which might also be regarded as 

different subcategories. 

 

3.2 Background information on regulatory assessments 

It is emphasised that the general purpose of this investigation was to explore and illustrate how ranking 

methods could be used in the formation of chemical categories, using a dataset of phthalate esters as an 

example of a category of organic chemicals. It was not the purpose to re-evaluate any substance-

specific data or conclusions made in existing regulatory assessments of specific phthalate esters. 

 

For completeness and for background information, it is noted that various regulatory assessments have 

been conducted on phthalate esters: 

 

a) an OECD SIAM category on a more restricted set of seven high-molecular weight phthalates 

has been developed (1) 

b) EU risk assessments have been completed for two higher molecular weight esters (2,3) 

c) EU harmonised classifications have been agreed for seven phthalate esters (4)  

d) A total of 14 phthalate esters were considered during an initial screening exercise by the EU 

PBT Working Group. However, as a result of further evaluation, none of these was considered 

as potential PBTs (5).  

 

3.3 Introduction to chemometric ranking methods 

In the scientific literature, “ranking” and “priority setting” are sometimes used synonymously. 

However, in the regulatory assessment of chemicals, it is useful to make a distinction between ranking 
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methods, which are mathematically based and which can be automated in the form of computer-based 

algorithms, and priority setting procedures, which include additional considerations, such as expert 

judgement and concerns by regulatory authorities. In the context of REACH, priority setting 

procedures are foreseen for the use in the Evaluation and Authorisation procedures. Technical work is 

being carried out in the context of RIPs 4.3 and 4.5, to develop proposals for ranking methods, taking 

into account the challenges and data requirements of the new legislation. 

 

From the scientific perspective, two main types of ranking methods are distinguished: total order and 

partial order methods (6). Methods for total and partial order ranking are described in detail elsewhere 

(7). 

 

3.3.1 Total order ranking 

 

Total order ranking (TOR) methods are scalar techniques that can be used to rank chemicals on the 

basis of more than one criterion. The different criteria values are combined into a global ranking index, 

and chemicals are ordered sequentially according to the numerical value of the ranking index. Since 

criteria are not always in agreement, i.e. can be conflicting, there is a need to find an overall optimum 

that can deviate from the optima of one or more of the single criteria. While a variety of TOR methods 

have been proposed in the literature, three commonly used methods are based on the desirability 

function, the utility function and the dominance function. Each of these methods was used in this 

investigation. 

 

The desirability function transforms each criterion (variable) independently into a desirability di by 

using an arbitrary function that transforms the actual value of each chemical into a value between 0 

and 1. The overall desirability D of each chemical is generated by combining all of the individual 

desirabilities (for that chemical) through a geometrical mean. The desirability function is very strict: if 

any desirability di is equal to 0, the overall desirability Di will be zero, whereas the Di will be equal to 

one if (and only if) all the individual desirabilities are equal to one. Once the overall desirability (Di) 

for each chemical has been calculated, the full set of chemicals can be ranked according to their D 

values. This type of ranking is useful for highlighting trends based on highly conservative 

assumptions. 

 

The utility function is similar to the desirability functions ur in that it transforms the actual value of 

each chemical into a value between 0 and 1. The overall utility U of each chemical is defined as 

combining all the utilities (for that chemical) through an arithmetic mean. The overall utility is less 

severe: the overall utility of a chemical can be high even if a single utility function is zero. 

 

The dominance function works differently: instead of transforming each criterion by a quantitative 

function, it is first established whether the best condition is satisfied by a minimum or maximum value 

of the selected criterion, and then all chemicals are compared with each other in a pairwise manner. 

For each pair of chemicals (i,j) the number of criteria where i dominates j, i.e. where i is better than j, 

is calculated. A Cij value equal to 1 means equivalence of the two chemicals; Cij > 1 means that the 

chemical i is, on the whole, superior to the chemical j, whereas Cij < 1 means that the chemical i is, on 

the whole, inferior to the chemical j. The obtained Cij values are normalised and a global score for each 

chemical is then calculated. 

 

3.3.2 Partial order ranking 

 

Partial order ranking (POR) methods are vectorial approaches that recognise that different criteria are 

not always in agreement, but can be conflicting, which means that not all chemicals can be directly 
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compared with others. The Hasse diagram is a means of illustrating partial order ranking. It was 

introduced by Halfon (8) and refined by Brüggemann (9). Each chemical is represented by a small 

circle. Comparable chemicals which belong to an ordered relation are linked, while incomparable 

chemicals are not connected. A typical Hasse diagram is shown in Figure 1. 

 

3.4 Identifying trends and different levels of concern 

 

In this ECB investigation, a chemically diverse set of 323 phthalate esters, including the seven 

members of the SIAM category on high molecular-weight phthalates esters, were investigated and 

ranked according to their predicted PBT behaviour. Total and partial ranking methods were applied to 

three main properties determining the PBT behaviour: persistence, the bioconcentration factor (BCF) 

and acute aquatic toxicity (96h fathead minnow), as calculated with BIOWIN, BCFWIN and 

ECOSAR, respectively. To simplify this illustration, additional types of toxic effect, such as chronic 

aquatic toxicity, chronic mammalian toxicity, carcinogenicity, mutagenicity and reproductive toxicity, 

were not taken into account.1  

 

The predictions generated by each model were coded into a scale of 1 to 4, corresponding to low 

(score=1), low/moderate (score=2), moderate/high (score=3) and high concern (score=4), as shown in 

Table 1. In the case of acute aquatic toxicity, the lowest level of concern was based not only on the 

predicted LC50 values, but also on the predicted aqueous solubility. If the aqueous solubility of a 

substance was estimated by WSKOWWIN to be less than 0.001 mg/L, the substance was considered to 

be of no concern due to insufficient concentration in the aqueous phase.2 The estimated value of 0.001 

mg/L corresponds with an experimental solubility limit of 0.01 mg/L (it was found that for this data 

set, the WSSKOWIN predictions tend to be lower than the experimental values by a factor of 10). 

 

3.4.1 Total order ranking of phthalates based on the desirability function  

 

Since the “best” condition for each property (P, B and T) is related to the minimum score, each 

property was independently transformed into a desirability (and utility) by an inverse linear 

transformation (Figure 2). Thus, the best condition, corresponding to the chemicals predicted to be 

safest, has a desirability equal to 1, whereas the worst condition, corresponding to the chemicals 

predicted to be the most hazardous, has a desirability of 0.  

 

The three properties were equally weighted in the ranking procedure and for each chemical the PBT 

hazard score was calculated as 1 - Di (Ui), where Di (Ui) is the overall desirability Di (or utility Ui) of 

the chemicals. Thus, the PBT hazard score ranges from 0, for chemicals with the least PBT concern, to 

a maximum of 1 for chemicals with the highest PBT concern (Figure 3). 

 

The ranking based on the desirability function is severe: it gave a PBT hazard score of 1 if any of the 

three properties (P, B and T) had a score of 4, and only gave a PBT hazard score of 0 if all of the three 

properties had scores of 0. As shown in Figure 3, one of the SIAM members (CAS 68515-47-9) 

received the maximal score of 1, whereas four of seven SIAM phthalates had a lower PBT hazard 

score (score of 0.306), and two others had an even lower ranking (score of 0.126).  

 

                                                 

 
1
 In the EU PBT assessment strategy, evidence of such effects would also be considered when deciding whether 

a substance meets the “T” criteria. 
2
 This is a simplification, because in principle, chronic toxicity could still arise even in the case of insoluble 

substances, and even acute toxicity could arise through the uptake of particles to which the insoluble chemical is 

adsorbed. 
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TOR based on the desirability function provides a means of sorting chemicals in a conservative 

manner. Thus, TOR based on the desirability function could be used to identify subcategories in cases 

where it is useful to define a subcategory reflecting a high level of concern for any endpoint or a low 

level of concern for all endpoints. 

 

3.4.2 Total order ranking of phthalates based on the utility function  

 

The application of the desirability function resulted in a large number of phthalate analogues appearing 

to be of high concern, which was considered unrealistic in view of the known properties of some of 

these chemicals. Therefore, the utility function was applied to rank the chemicals in a less severe 

manner.  

 

The ranking based on the utility function allows better discrimination between chemicals based on 

their overall PBT profile (Figure 4). It can be seen that four the seven SIAM phthalates are considered 

to have the same PBT hazard score (score of 0.223), whereas one of the SIAM members has a higher 

ranking (score of 0.334), and two have a lower ranking (score of 0.112). Thus, the utility function 

produced the same relative order between the SIAM phthalates as the desirability function, but the 

absolute differences were less exaggerated.  

 

The ranking based on the utility function gave a PBT hazard score of 1 if (and only if) all three 

properties (P, B and T) had a score of 4. This result was obtained for only two of the 323 chemicals: 

dipropyl 3,4,5,6-tetrachlorophthalate and tris(2-chloroethyl) 4,5,6-trichloro-1,2,3-

benzenetricarboxylate. Because the utility function assigns the highest ranking only when all three 

hazard scores have maximal values, it could in principle be exploited in the identification of potential 

PBTs. According to the EU PBT criteria, a substance is identified as a PBT if it meets all three criteria 

for P, B and T. In the case of this particular dataset, the two chemicals with the highest PBT hazard 

ranking of 1 (mentioned above) failed to meet EU criteria for PBT assignment. In fact, the chemical 

with the lowest predicted LC50 value in the dataset was dipropyl 3,4,5,6-tetrachlorophthalate 

(LC50=0.45 mg/L), which is above the EU criterion for T assignment of 0.1 mg/L.   

 

The utility function does not resolve whether the concern results from P, B or T. For example, if one of 

the three properties has a score of 4 (high concern for a single property), and the other two properties 

have scores of 1 (low concern), the PBT hazard score is the same, irrespective of whether the high 

concern results from P, B or T (Table 2).  

 

Thus, TOR based on the utility function could be used to identify subcategories if it is sufficient to 

distinguish between chemicals based on their “average” behaviour across several properties. 

 

3.5 Identifying and visualising different profiles of toxicological behaviour 

 

3.5.1 Total order ranking based on the dominance function  

 

To obtain a full discrimination between chemicals based on their individual P, B and T properties, i.e. 

to identify different profiles of PBT behaviour, TOR based on the dominance function can be used. For 

example, if a chemical has two properties with a score of 3, and one property with a score of 4, there 

are three possible combinations of the scores (Table 3). By applying the dominance function, each 

combination is distinguished by a different PBT hazard score (Table 3). 
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As illustrated in Figure 5, the use of the dominance function enables qualitative differences between 

the phthalates to be detected, resulting in the identification of 25 different PBT profiles. The different 

profiles could be regarded as different subcategories within the larger category of 323 phthalates.  

 

Thus, TOR based on the dominance function could be used to identify subcategories based on different 

profiles of behaviour. 

 

 

3.5.2 Partial order ranking  

 

Partial order ranking overcomes the main limitation of total order ranking that information on 

conflicting properties is lost. Partial order ranking encodes both quantitative and qualitative 

information of the trends analysed. As an illustration, the application of partial order ranking to the set 

of 323 phthalates identified nine levels of PBT hazard concern (Figures 6-7). In level 8, all 19 

chemicals have moderate/high concern for one of the three properties and high concern for the other 

two. However, the level contains two clusters, distinguishing between 17 chemicals with 

moderate/high concern for P and high concern for B and T, and two chemicals with high concern for P 

and B, and moderate/high concern for T (Figure 6). POR also provides an analysis of whether 

chemicals are comparable or incomparable 

 

Thus, POR could be used to identify subcategories based on different profiles of behaviour and to 

identify which subcategories are comparable and which are incomparable. 

 

3.5.3 Principal components analysis 

 

Another way of visualising the toxicological profile of a set of chemicals is to apply principal 

component analysis (PCA) to the different levels of concern (Table 1). This method provides an 

additional means of visualising similarities and dissimilarities in the PBT profiles of the phthalate 

analogues. 

 

PCA was applied to the predicted PBT data for the 323 phthalate analogues, to identify the orthogonal 

directions of maximum variance in the original data set and to project the data into a two-dimensional 

space formed by the two highest-variance components. Figure 8 shows the biplot of the first and 

second components. The cumulative explained variance of the first two principal components is 

84.3%. The Hotelling T2 ellipse (in red) indicates the distance of each chemical from the model 

hyperplane. The ellipse was computed with a 95% confidence level. 

 

It can be seen that the first principal component (PC1), explaining 49.7% of the total information, 

corresponds to a quantitative macrovariable, which can be interpreted as a PBT hazard score. High 

values of the first component are associated with compounds having a “safe” PBT profile, while low 

values of the first component are associated with compounds having a PBT profile of high concern. 

Thus, PC1 separates the safest compounds ones (right hand side of the plot) from the more hazardous 

ones (left hand side of the plot). 

 

The second principal component (PC2), explaining 34.7% of the total information, discriminates 

between different profiles of PBT behaviour. In particular, PC2 separates persistence and 

bioaccumulation from toxicity. High values of PC2 are associated with high persistence and 

bioconcentration but low toxicity, whereas low values correspond with high toxicity but low 

persistence and bioconcentration. Thus, the upper left part of the plot contains chemicals characterised 

by high persistence and bioconcentration, but relatively low or moderate toxicity, whereas the lower 
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left part of the plot contains compounds with high toxicity, but relatively low or moderate persistence 

and bioconcentration. 

 

3.6 Conclusions on the applicability of ranking methods 

 

Ranking methods allow chemicals to be sorted and sub-grouped according to their relative levels of 

concern and different profiles of toxicological behaviour. Ranking methods provide a means of 

combining data from multiple endpoints, and thus provide additional ways of ordering and 

subgrouping chemicals, which might be useful when applying the top-down approach to category 

formation. 

 

It should be noted that the numerical values of ranking scores have no absolute meaning, because if 

chemicals are added or deleted from the dataset, and the ranking algorithm is performed again, the 

scores will change. However, the ranking scores are meaningful with respect to each other, and can be 

used to sort the chemicals (according to their numerical values) and to define sub-groups of chemicals 

(having the same scores).  

 

Rankings based entirely on QSAR data can be used to predict chemicals with the highest level of 

concern as well as the lowest level of concern. Chemicals at the extremes of the predicted trend could 

be selected for strategic testing to confirm the boundaries of the trend. In addition, selected chemicals 

in the middle of the predicted trend could also be selected for testing, to check whether there are any 

deviations. 

 

The different levels of concern identified by ranking methods for subgroups could be used as the basis 

for identifying subcategories based on different levels of toxicity or concern. In particular, the ability 

of ranking methods to combine quantitative information from multiple properties could be exploited to 

define different subgroups based on multiple endpoints. For example, different levels of the PBT 

hazard ranking could be regarded as different subcategories. TOR based on the desirability function 

provides a means of sorting and sub-grouping chemicals in a conservative manner, reflecting a high 

level of concern for any single endpoint. In contrast, TOR based on the utility function provides a 

useful means of sorting and sub-grouping chemicals based on their “average” behaviour across 

multiple toxicological endpoints. 

 

Ranking methods can also be used to identify subgroups based on different toxicological profiles (e.g. 

high P & B & T at one extreme vs low P & B & T at the other extreme). TOR based on the dominance 

function could be useful in this respect. 

 

If it is desirable to compare chemicals both in terms of the quantitative differences in their hazard 

rankings and the qualitative differences in their hazard profiles, the method of choice is partial order 

ranking. The qualitative and quantitative differences can be visualised by using the Hasse diagram. 

 

In this investigation, only estimated properties were used as the input to the ranking algorithms. This 

demonstrates how ranking methods could be used in combination with QSAR methods in cases where 

there are insufficient experimental data to develop the initial category hypothesis (or proposal). While 

the investigation focussed on environmental properties, the same general approach could also be 

applied to combinations of human health endpoints (e.g. carcinogenicity, mutagenicity and 

reproductive toxicity).  

 

It is proposed that the trends, boundaries, and subcategories predicted by using QSARs and ranking 

methods could be used to help develop the initial category hypothesis, and to identify chemicals for 

strategic testing, in order to assess the robustness of the category.  
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Figure 1. The Hasse diagram for partial order ranking 

 

 

 
 

 
Figure 2. Inverse relationship between the ranking score for a property and its desirability or utility 
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Figure 3. Total order ranking of phthalates based on the desirability function 
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Figure 4. Total order ranking of phthalates based on the utility function 

 

 

PBT Hazard 
ranking

Hazard scale

N. observations

10

1

0.889

0.778

0.667

0.556

0.445

0.334

0.223

0.112

0.001

20 30 40 50 60 70 80 90 100

119-06-2

3648-20-2

53306-54-0

68515-41-3

68515-43-5

O

O

O

O

68515-47-9

O

O

O O

O

O

O O

O
O O

O

O

O

O O

O
O

O

O

O
O

O

O

85507-79-5

PBT Hazard 
ranking

Hazard scale

N. observations

10

1

0.889

0.778

0.667

0.556

0.445

0.334

0.223

0.112

0.001

20 30 40 50 60 70 80 90 100

119-06-2

3648-20-2

53306-54-0

68515-41-3

68515-43-5

O

O

O

O

68515-47-9

O

O

O O

O

O

O O

O
O O

O

O

O

O O

O
O

O

O

O
O

O

O

85507-79-5

 
 

 

Figure 5. Total order ranking of phthalates based on the dominance function 
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Figure 6. Partial order ranking of phthalates using the Hasse diagram 
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Figure 7. Distribution of phthalates across levels of concern defined by partial order ranking  
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Figure 8. Visualisation of PBT profile by Principal Components Analysis 
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Table 1. Conversion of P, B and T predictions in different levels of concern 

 

 

Ultimate persistence 

prediction
1 BCF Toxicity (LC50 (mg/L))

2 
Concern score 

P ≤  2 BCF > 2000 LC50 ≤  1 4 

2< P ≤  3 1000 < BCF ≤  2000 1 < LC50 ≤  10 3 

3< P ≤  3.5 1000 < BCF ≤  2000 10 < LC50 ≤  100 2 

P > 3.5 BCF ≤  1000 LC50 > 100 1 

 
1
 In the Biowin3 (ultimate biodegradation) model the ratings correspond to the following time units: 5 = hours; 

4 = days; 3 = weeks; 2 = months; 1 = longer. 
2
The toxicity bands are equivalent to the EU R-phrases R50 (LC50≤1), R51 (1<LC50≤10), R52 (10<LC50≤100) 

and unclassified (LC50>100).  

 
Table 2. Generation of a PBT hazard score by using the utility function 

 

 

Ultimate persistence 

concern score 

BCF  

concern score 

Toxicity 

concern score 
PBT Hazard score 

4 1 1 0.334 

1 1 4 0.334 

 

 
Table 3. Generation of a PBT hazard score by using the dominance function 

 

 

Ultimate persistence 

concern score 

BCF  

concern score 

Toxicity 

concern score 
PBT Hazard score 

3 4 3 0.870 

3 3 4 0.897 

4 3 3 0.917 
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4 An investigation into the feasibility of developing categories using the 

top-down approach using automated workflows 

  

4.1 Summary 

Grouping similar chemicals into categories is a focus that has gained much interest particularly with 

the advent of the new REACH legislation. This short study investigated the use of SciTegic’s Pipeline 

Pilot for grouping chemicals by applying the top-down approach to a large inventory of chemicals, the 

European Inventory of New and Existing Chemical Substances (EINECS). As a starting point, the 

study focused on a set of published skin sensitisation data in order to develop rules which characterised 

probable mechanistic pathways and models to predict the likely relative skin sensitisation potency. 

These models and rules were applied to EINECS as means of forming groups which were endpoint 

specific rather than merely structurally based. The findings, insights and some of the practical 

challenges encountered are described here. 

 

4.2 Introduction 

In the formation of chemical categories, the choice of computational method(s) is likely to depend on 

the starting point of the investigation. For example, it may start from a single chemical or a small 

group of chemicals, with the intention of building up a category by drawing on data from multiple 

sources (bottom-up approach). Alternatively, it may start from a predefined group of chemicals (e.g. an 

inventory or subset of an inventory whose members have been decided on a particular basis), with the 

intention of grouping some or all of the members into one or more categories (top-down approach).  

 

In this feasibility study, we focused on exploring the formation of endpoint specific groups from a top-

down approach, utilising the (European Inventory of New and Existing Chemical Substances) EINECS 

inventory together with available published skin sensitisation information. A secondary objective 

involved using the skin sensitisation information available to estimate the likely prevalence of skin 

sensitisers in the EINECS inventory. 

 

4.3 Methods 

Existing substances that comprise the EINECS inventory are limited in terms of their available toxicity 

data. If data exists, it has tended to have been generated for substances that have been manufactured or 

imported at high tonnage levels. In addition, the quality of any toxicity data can be quite variable, not 

always reported to a consistent standard and not systemically stored in a structured format. As a result, 

endpoint specific chemical groupings have not been readily developed as the toxicity data needed to 

derive them has been limited. The approach explored here investigated the feasibility of deriving 

endpoint specific chemical groups using predicted data. A collection of QSAR models were derived 

using a set of published skin sensitisation data (1). The data used, comprised a set of 210 chemicals 

that had been tested in the local lymph node assay (LLNA), the in vivo test of choice under REACH. 

The mechanisms underpinning skin sensitisation are sufficiently well understood and have resulted in 

the development of mechanistic QSAR models. Specifically, the rate determining step of skin 

sensitisation induction is believed to be the covalent binding that occurs between the chemical 

electrophiles and skin proteins (nucleophiles). These electrophilic-nucleophilic reactions can be 

conveniently described by standard organic reactions characterised by the following mechanistic 

domains; Michael addition, Schiff Base formation, SNAr, SN2, Acyl formation. These reaction 

mechanistic domains were first outlined in Aptula et al. (2) with respect to a dataset of 41 chemicals 

tested in the LLNA. The domains were subsequently described in more detail in Aptula and Roberts 

(3) culminating in a set of structural rules (somewhat akin to structural alerts). An approach for 



 

 94 

estimating the skin sensitisation potential and potency of new chemicals has also been described (3). 

The key step is to identify the appropriate mechanistic domain and hence apply a QSAR model that 

has been derived for that mechanistic domain. The predictions from such a model should be more 

robust and interpretable then than would be from a general model derived from a set of sensitisation 

data. The structural rules describing the mechanistic domains have been recently applied to the dataset 

of Gerberick et al. (1). Roberts et al. (4) summarised the reaction chemistry for the dataset, assigning 

each chemical to its likely mechanistic domain. In this study, the dataset in (4) was extracted as a 

training dataset. The data included LLNA outcomes such as the test concentrations, simulation indices, 

EC3 values (the effective concentration that gives rise to a simulation index of 3) and potency category 

information. The potency category is a measure of the relative sensitising potency as defined by bands 

of EC3 values. The potency categories were first proposed by Kimber et al. (5) and take the form of 

“extreme”, “strong”, “moderate” sensitisers etc. e.g. where <0.1% would imply an extreme sensitiser. 

 

The training dataset was exploited in two ways. Firstly a model to predict the most probable 

mechanistic domain for a given compound was derived. This was an attempt to see whether it was 

possible to translate the structural rules derived by human experts into structural features that could be 

routinely calculated by a QSAR program. A second set of models were then derived for each of the 

mechanistic domains to predict the likely sensitising potency of a chemical. It is important to note that 

robust mechanistic models for sensitisation that have been successfully developed recently rely on the 

hypothesis that sensitisation is a function of two parameters – reactivity and hydrophobicity (6). 

Understanding the likely mechanistic domain should identify the appropriate mechanistic model to 

apply, whereas the combination of hydrophobicity and reactivity information should discriminate the 

strength of sensitising potency. The models developed were then applied to the EINECS inventory to 

predict the likely mechanistic domains of the EINECS substances and their sensitising potency. 

Subsequent steps included breaking down the initial mechanistic domain chemical groups into smaller 

more manageable groups using clustering techniques. Maximal common substructures were also 

extracted for selected clusters to summarise the significant features characterising that cluster and to 

aide visualisation. All analysis steps were conducted using the datamining software tool PipelinePilot 

(SciTegic Inc, Accelrys Inc, San Diego, CA, USA). 

 

4.3.1 Development of a model to predict mechanistic domain 

 

The LLNA dataset with annotated mechanistic domains (Non-sensitisers, Michael acceptors, Schiff 

base formers, SN2 reactors, Acyl formers, SNAR reactors, and Special cases) was imported into 

PipelinePilot (SciTegic Inc). The component, “Learn Molecular Categories” was used to derive models 

that would predict the likelihood of a chemical to belong to a certain mechanistic domain. This 

Bayesian categorisation component uses probabilities to classify objects (in this case chemicals) into 

one of a set of categories (mechanistic domains). A set of models were built for each of the 

mechanistic domains using functional class fingerprints and other molecular properties such as Log P 

and molecular weight. A set of scores were then output, the highest of which determined which 

domain the chemical was most likely to be a member of.  

 

The descriptors used were ALogP, Molecular Weight, Number of Hydrogen Donors, Number of 

Hydrogen Acceptors, Number of Rotatable Bonds, Molecular Fractional Polar Surface Area and 

ECFP_12. ECFP signifies Extended Connectivity Fingerprints, where 12 refers to the maximum 

diameter of the fingerprint. Extended Connectivity Fingerprints (ECFP) form one class of fingerprints 

that are proprietary to SciTegic. Each feature represents the presence of a structural unit, i.e. an exact 

structure with limited, specified attachment points. ECFPs represent a much larger set of features than 

what is common for other fingerprints. The virtual size of the fingerprint is four billion different 

features. For a given molecule, only a small subset of those features is present. This means the 

fingerprints are usually stored as a list of features that are present, rather than as a binary bit array. The 



 

 95 

diameter represents the desired neighbourhood size, i.e. ECFP_12 generates features around each atom 

up in larger and larger structural neighbourhoods up to a diameter of 12. More information about the 

fingerprints can be found in the SciTegic Manual (7). 

 

The developed model (named RXNDOMAIN) was applied to the EINECS inventory (compiled by 

ECB, version March 2007) to assign each of the 68,993 chemicals into their respective mechanistic 

domains. This formed a set of initial chemical groups which were similar with respect to their 

predicted skin sensitisation mechanism. 

 

4.3.2 Development of a model to predict the prevalence of sensitisers  

A set of models were then derived to predict potency. A separate model was developed for each 

mechanistic domain. PipelinePilot’s workflow functionality was exploited to facilitate the automation 

of this process. The LLNA dataset was initially processed through the mechanistic class predictor 

model RXNDOMAIN to filter out all estimated non-sensitisers. The remaining chemicals were then 

processed through a set of filters to split the dataset into the training sets for the development of 

mechanistic domain specific models. Thus, first a filter identified predicted Michael acceptors so that a 

model to predict potency could be derived for these. A subsequent filter identified predicted Schiff 

Base formers to develop a potency model for these and so on. The resulting workflow assigned a 

chemical into one of the mechanistic domains using the RXNDOMAIN model and then predicted its 

likely sensitising potency using the mechanistic domain specific models. The resulting models were 

applied to the EINECS inventory to gain an overview of the distribution of predicted sensitisers and 

non-sensitisers. 

 

4.3.3 Development of clusters for each mechanistic domain  

The next stage was to take the EINECS chemicals that were assigned to a mechanistic domain and 

cluster each set on the basis of their fingerprint information and property information. A combination 

of the Euclidean distance and Tanimoto distance were used as the similarity index. The clustering 

method used was a relocation method based on maximal dissimilarity partitioning encoded within 

Pipeline Pilot. This begins by randomly choosing a data record as the first cluster centre. The record 

maximally distant from the first point is selected as the next cluster centre. The record maximally 

distant from both current points is selected after that. The process repeats itself until there are a 

sufficient number of cluster centres. The non-selected objects are then assigned to the nearest cluster 

centre to determine the cluster membership. The following parameters were used as quantitative 

representations of the chemicals in the clustering algorithm: FCFP_6, ALogP, Molecular Weight, 

Number of Hydrogen Bond Donors, Number of Hydrogen Bond Acceptors, Number of Rotatable 

Bonds, Number of Atoms, Number of Bonds, Number of Rings, and Number of Aromatic Rings. 

FCFP_6 represents the set of functional class fingerprints of maximum diameter 6. These are similar to 

the extended connected fingerprints except in their initial atom code assignment. The generation of an 

ECFP or FCFP fingerprint for a molecule begins with the assignment of an initial atom code for each 

heavy (non-hydrogen) atom in the molecule. For ECFPs, the initial atom code is derived from the 

number of connections to the atom, element type, charge and atom mass e.g. chlorine would be 

differentiated from bromine. For FCFPs, the initial atom code is based on the quick estimate of the 

functional role the atom plays thus chlorine and bromine are seen as equivalent instances of halogen 

atoms. 

 

Each predicted reaction domain subset of EINECS was clustered in this way and a frequency table 

showing the number of clusters produced for each reaction domain was then produced. 
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4.3.4 Development of Maximal Common Substructures for selected mechanistic clusters  

For a selection of clusters for at least two of the predicted reaction domains, the identification of 

maximal common substructures contained within a proportion of the input structures was performed 

using Pipeline Pilot. The Maximal Common Substructure Search (MCSS) is the process of finding the 

largest structure that is a substructure of all the molecules in a given set. This is a well-known method 

that is computationally intense. For a selection of clusters, the largest substructure common to at least 

20 percent of the input molecules was performed for several of the smaller clusters whereas a set of 

substructures were identified for the clusters containing larger numbers of chemicals. This was a useful 

means of visualising the common structural motifs (or scaffolds) in the set of chemicals. 

 

The MCSS within Pipeline Pilot accepts a number of input molecules, processes the data, and then 

outputs (generates) new molecules that represent the discovered maximal substructure or substructures. 

In the most common use, a single molecule is output (representing the largest substructure). Pipeline 

Pilot’s method is based on an extension of extended-connectivity fingerprints (ECFPs). An ECFP “bit” 

is a 32-bit number; the fingerprint has about 4 billion possible bit values. (For a given molecule, only a 

very small subset of this large number of bits is “on” or present in the molecule.) Each “bit” represents 

the presence of a specific substructure, centred on some atom, comprised of all atoms and bonds within 

some radius. As it iterates, the radius is increased by one bond, and a new substructure (and a new 

“bit”) is created. As large as the number of bits is, the space of bits is certainly smaller than the space 

of possible substructures, and so a single bit may be turned “on” by different substructural features. 

However, this collision rate is very low, and for most purposes, has an insignificant effect on most uses 

of the fingerprint. That the possibility of an occasional collision is not a problem can be seen by the 

use of explicit folding to reduce large fingerprints to a small, fixed-length space of, say, 2048 bits. 

These greatly shrunken fingerprints still performed admirably for the task of molecular comparisons 

(7). This suggests that the much smaller collision rate for ECFPs should not be important for most 

purposes. 

 

4.4 Results and Discussion 

 

4.4.1 Development of the RXNDOMAIN model 

The LLNA training dataset of 210 chemicals was processed through the RXNDOMAIN model to 

determine its performance. The results were promising with 93.81% (195/210) of chemicals being 

assigned to the correct mechanistic domain i.e. correct predictions. Table 1 lists the 13 chemicals 

which were misassigned. No investigation was undertaken to rationalise these mispredictions since the 

main purpose of the model was to provide a screen to assign chemicals into their mechanistic groups. 

Figure 1 shows the distribution of chemicals into their predicted and assigned domains. 

 

Applying the RXNDOMAIN model to the EINECS inventory provided a perspective of the domain 

distribution as shown in Figure 2. Obviously using a model developed on such a small dataset and 

applying it to a large inventory has limited value as no consideration of the applicability domain for 

each the different mechanistic domains was attempted. However it did provide a useful means of 

filtering a large inventory into smaller subsets that could be more readily evaluated whilst 

incorporating some aspect of endpoint similarity. Worth noting, is that the assignment of chemical to a 

specific domain does not equate to that chemical automatically being a sensitiser. A chemical could be 

assigned to the Michael acceptor domain but still fail to sensitise on account of its hydrophobicity and 

reactivity combination being insufficient to trigger induction. For this reason, the assignments 

predicted were further investigated to filter additional predicted non-sensitisers from each of the 

domain groups. The outcome would provide a better indicator of the prevalence of sensitisers within 

the EINECS inventory. 
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4.4.2 Development of a model to predict the prevalence of sensitisers 

Potency models were developed for each of the domains using the LLNA dataset with exception to the 

non-sensitiser category. Twenty two of the 26 chemicals in the acyl formers training set were correctly 

predicted i.e. 84.6% correctly predicted. Table 2 lists the set of 26 chemicals together with their actual 

and predicted potencies. Four chemicals were underpredicted including short chain Azlactones (C4, C6 

and C9) and phenyl benzoate.  

 

For the SNAR potency set, all potencies were correctly predicted though the reactivity domains were 

incorrect in two cases. Vinylidene dichloride (a potential Michael acceptor) and 4-Nitrobenzyl 

bromide (a potential SN2 reactor) were incorrectly assigned. 

 

For the non-sensitiser set, two chemicals Formaldehyde and Ethylenediamine were incorrectly 

assigned as non-sensitisers when their domains should have been Schiff Base formers. 

 

83% of the predicted Michael Acceptors had their potencies correctly estimated (47/56 chemicals). 

Three chemicals were misassigned to this group namely (Propiolactone [SN2], Benzaldehyde [Schiff 

Base former], Vanillin [Non-sensitiser]). In two of these cases, this did not affect the outcome of the 

sensitising potency but in the case of propiolactone, the prediction was overcautious (predicted 

extreme vs. predicted strong). In the 8 other cases, there was a discrepancy between the actual and 

predicted potency as shown in Table 3. 

 

All predicted Schiff Base formers were correctly assigned. 82% of Schiff Bases had their potencies 

corrected predicted (32/39). Seven compounds had their potencies under predicted. These are shown in 

Table 4.  

 

The worse performing model was that for SN2 reactors, here the correctly predicted potency was only 

47.6% (20/42). In addition, three compounds were misassigned as non-sensitisers. Table 5 lists the set 

of compounds that were predicted to be assigned to this group together with their predicted and actual 

potency scores. 

 

For the special case, only one chemical was misassigned (chlorobenzene [Non-sensitiser]). All potency 

calculations were however correctly predicted.  

 

The EINECS inventory was processed through these models in the same way. This provided a primary 

assignment of mechanistic domain together with an estimate of predicted potency. This enabled an 

estimate of the likely prevalence of sensitisers within the EINECS inventory to be made. Figure 3 

presents an overview of how the workflow was structured whereas Figure 4 presents a plot of the 

distribution of the different chemicals with respect to the overall sensitisation prediction and 

mechanistic domain. 

 

Using the workflow in Figure 3, the percentage of predicted sensitisers within EINECS was estimated 

as 54.74%. Table 6 provides the breakdown of numbers used to generate this percentage. This 

percentage seemed inordinately high. Further work using another dataset, a subset of European LIst of 

Notified Chemical Substances (ELINCS), was then conducted to investigate whether a more 

substantiated estimate could be derived. Structures for a subset of ELINCS (504) were generated and 

the models processed through this set to derive frequencies of estimated sensitisers. The results (not 

shown) revealed a 50:50 split between predicted sensitisers and non-sensitisers. For many of the 

substances, toxicity testing had been conducted to derive Risk labels, in this case R43 would classify a 

substance as a sensitiser. Reviewing the dataset on the basis of R43 labels found that 165 substances 

out of 504 were classed as R43 (i.e. a 32.7% prevalence of sensitisers). A prevalence of 32.7% is still 

quite high since those substances that did not have labels could either have not been tested due to their 

tonnage level or been tested for sensitisation and found to be negative. Further work to refine this 
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percentage would need to be carried out, specifically to consider the tonnage levels of each of the 

unlabelled substances to concretely identify whether they were in fact non-sensitisers or whether they 

had not been tested. In addition, the chemical space as characterised by this ELINCS data would need 

to be compared in more detail with that of the EINECS inventory and LLNA dataset to determine the 

extent to which they were chemically similar.   

  

4.4.3 Development of clusters for each mechanistic domain  

Figure 5 shows the workflow followed to assign EINECS chemicals within their respective domain 

using the RXNDOMAIN model and hence to perform the clustering. For convenience, plots depicting 

the frequency of chemicals within each set of clusters for each predicted mechanistic domain are 

shown to demonstrate the number, diversity and density of the clusters derived. 

 

Figure 6 shows that there were 100 clusters identified for predicted acyl formers. Seventy five different 

clusters were derived from the 18641 chemicals assigned to this category as shown in Figure 7. 264 

clusters were developed from the 13,191 predicted Michael acceptor category (Figure 8), 208 clusters 

were derived from 10,352 Schiff Base chemicals (Figure 9), 159 clusters from 7909 SN2chemicals 

(Figure 10), 114 clusters were derived from 5654 SNAR compounds (Figure 11) and 83 clusters from 

8247 Special case compounds (Figure 12). 

 

4.4.4 Development of Maximal Common Substructures (MCS) for selected mechanistic 

clusters  

For two of the subsets; Acyl and Non-sensitisers, the feasibility of deriving MCS was then investigated 

for at least two clusters within these two sets. 

 

Three clusters were selected from the clustering output of Non-sensitisers. One containing 33 

compounds (Cluster 2), one containing 400 compounds (Cluster 14) and the final one containing 2532 

compounds (Cluster 33). For the Cluster 2, the largest possible maximal subgraph was derived. For the 

Cluster 14 with 400 compounds, (up to 20) diverse maximal subgraphs were derived and for the 

Cluster 33 with 2532 compounds (up to 100) diverse maximal subgraphs were derived. 20 diverse 

maximal subgraphs were ultimately extracted for Cluster 14 and 7 MCS for Cluster 33 as query 

substructures. Figures 13-15 shows the subgraphs for each of these Clusters. 

 

For the Acyl domain, two clusters were selected and maximal subgraphs derived. Cluster 93 with 20 

compounds and Cluster 32 with 568 compounds. The largest maximal subgraph was derived for 

Cluster 93 and (up to 20) diverse maximal subgraphs for Cluster 32. In total, 11 MCS were derived for 

Cluster 32 as query substructures. Figures 16-17 shows the extracted subgraphs. 

 

These query substructure MCS are difficult to interpret without reference to the parent structures, the 

original LLNA dataset or indeed the structural rules (3) that were first derived. To evaluate whether 

the MCS derived were meaningful from a sensitisation perspective, clusters were also derived for each 

of the mechanistic domains (Table 7) and MCS were derived for those clusters containing the largest 

number of compounds. 4 MCS were extracted for both Acyl forming compounds and non-sensitisers 

(Figures 18-19).  

 

Comparison of the MCS for non-sensitisers and those extracted from the LLNA dataset showed how 

different they were. Inspection of the MCS from a chemistry perspective showed that in the majority 

of cases, the MCS extracted from the EINECS set were chemicals that contained an absence of 

electrophilic features. However there were some notable exceptions, including one of the MCS 

extracted for Cluster 14, an aliphatic aldehyde which could react by Schiff base formation. The MCS 

derived from Cluster 93 was of an azodye which is a highly reactive substance and capable of inducing 
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sensitisation. Presumably the absence of such analogues within the original LLNA data would explain 

why this particular MCS has been extracted incorrectly as a fragment indicative of non-sensitising 

behaviour. 

 

Inspection of the 11 MCS derived from Cluster 32 and those from the original LLNA (1) showed them 

to be markedly different too. The MCS substructures were also thought to be too generic to encode 

specific mechanistic information for the acyl mechanistic domain. Inspection of the parent MCS 

structures was more helpful in providing the neighbourhood context of the query fragment but 

comparison of these parent MCS (Figure 20) with the extracted MCS from the LLNA (Figure 18) or 

the original acyl formation rule (Figure 21) suggested significant uncertainty in the predicted 

mechanism. 

 

Whilst the query MCS derived from Cluster 93 was unlike any of the extracted acyl formers (Figure 

18), the similarity in mechanism as outlined in the original rules (Figure 21) did appear to be feasible. 

 

The MCS extraction is a potentially useful means of systemically characterising clusters of chemicals 

but these need to be interpreted with caution for the endpoint under consideration. The apparent 

inconsistencies observed here could be attributed in part to the fact that the chemistry domains had not 

been taken into account.  

 

4.5 Conclusions 

This short investigation highlights the means by which a large inventory such as EINECS can start to 

be broken down into more manageable groups for further evaluation, through using computational 

tools. Here, mechanistic information derived from a dataset of skin sensitisation was encoded into a 

predictive model and applied to the EINECS inventory to derive subsets of chemicals likely to favour 

different mechanistic pathways. The groups formed were then further split on the basis of predicted 

potency profile to gain a perspective of the likely potency profile of sensitisers within the EINECS list.  

Mechanistic domain subsets were also clustered to formulate smaller subsets of chemicals – each of 

which could then be potentially investigated further using experimental data to formulate trends and 

explore the robustness of the chemical groups.  

To visualise the sort of substructures that characterised these clusters, a maximal common 

substructural analysis was performed to extract out the typical substructures that dominated a handful 

of selected clusters. Each of these scaffolds could potentially serve as a means of building up a 

category (seeds) by identification of other analogues with associated experimental toxicity data. 

 

The investigative work highlights a few of the avenues available in exploiting computational 

approaches as encoded in the datamining tool Pipeline Pilot for the formation of chemical categories 

from top-down approaches.  

 

It highlights the problems of forming endpoint chemical groups without sufficient experimental data 

and the problems of applicability when using predicted toxicity data. It also flags the need to interpret 

any results with caution, making reference to expert mechanistic insights where feasible and noting the 

scope of derived models with respect to the inventories that they are applied to. Clearly there is a 

pressing need to characterise inventories such as EINECS to appreciate the extent to which existing 

QSAR models can be robustly applied. Determining the prevalence of sensitisation within the EINECS 

inventory is equally difficult to determine in the absence of experimental data and faces many of the 

same issues when using predicted data.  

 

Further work to explore how toxicological data can be better incorporated into refining the derived 

models such that they have greater predictive scope would help substantiate some of the proposed 

groupings. More efforts are also needed to explore the scope of existing QSAR models relative to 
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larger inventories in order to determine their applicability of use. This should be the subject of on-

going work. 
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Table 1. List of 13 chemicals whose mechanistic domain was incorrectly predicted 

 

Name Mechanistic 

Domain* 

Predicted 

Mechanistic Domain 

trans-2-Decenal MA SB 

Vinylidene dichloride MA SNAR 

4-Nitrobenzyl bromide SN2 SNAR 

Propiolactone SN2 MA 

Benzyl benzoate SN2 SB 

Formaldehyde SB Non 

Ethylenediamine free base SB Non 

Benzaldehyde SB MA 

Sodium lauryl sulphate Non SN2 

Isopropyl myristate Non SN2 

Chlorobenzene Non Spec 

Hexane Non SN2 

Vanillin Non MA 

 

*as assigned in reference (4) 

 



 

 102 

Table 2. List of assigned acyl formers 

 
Name Actual Potency Class Predicted Potency Class 

Oxazolone extreme extreme 

Tetrachlorosalicylanilide extreme extreme 

Fluorescein-5-isothiocyanate strong strong 

2-Methyl-4H,3,1-benzoxazin-4-one (Product 2040) strong strong 

C6-Azlactone* moderate weak 

2-Mercaptobenzothiazole moderate moderate 

Nonanoyl chloride moderate moderate 

C4-Azlactone* moderate weak 

Methyl 2-sulphophenyl octadecanoate moderate moderate 

Isononanoyl chloride moderate moderate 

3,5,5-Trimethylhexanoyl chloride moderate moderate 

C9-Azlactone* moderate weak 

3-Propylidenephthalide moderate moderate 

3,4-Dihydrocoumarin moderate moderate 

Sodium 3,5,5-trimethylhexanoyloxybenzenesulphonate moderate moderate 

Palmitoyl chloride moderate moderate 

1,2,4-Benzenetricarboxylic anhydride (Trimellitic 

anhydride) moderate moderate 

Pationic 138C (Sodium Lauroyl Lactylate) weak weak 

C11-Azlactone weak weak 

C15 Azlactone weak weak 

C17 Azlactone weak weak 

Phenyl benzoate* weak non-sensitiser 

Imidazolidinyl urea weak weak 

C19-Azlactone weak weak 

Penicillin G weak weak 

Saccharin non-sensitiser non-sensitiser 

 

Where * indicates incorrect prediction 
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Table 3. List of chemicals (predicted Michael Acceptors) whose potencies are incorrectly predicted 

 
Name Actual Potency 

Class 

Mechanistic 

Domain 

Predicted 

Mechanistic 

Domain 

Predicted 

Potency Class 

Isopropyl isoeugenol strong MA MA extreme 

2-Hydroxyethyl acrylate moderate MA MA extreme 

HC Red No3 moderate MA MA strong 

3-Aminophenol moderate MA MA strong 

a-Methyl cinnamic aldehyde moderate MA MA weak 

2-Methoxy-4-methyl-phenol moderate MA MA non-sensitiser 

Dihydroeugenol moderate MA MA weak 

Ethyl acrylate weak MA MA extreme 

Propiolactone strong SN2 MA extreme 

 

 
Table 4. Seven Schiff base formers whose potencies were underpredicted 

 
Name Actual Potency 

Class 

Predicted Potency 

Class 

2-Methylundecanal weak strong 

2,3-Butanedione weak strong 

1-Phenyloctane-1,3-dione weak non-sensitiser 

1-(2Æ,5Æ-Dimethylphenyl)butane-1,3-dione weak non-sensitiser 

cis-6-Nonenal weak strong 

2,2,6,6-Tetramethyl-heptane-3,5-dione weak strong 

3-Ethoxy-1-(2Æ,3Æ,4Æ,5Æ-

tetramethylphenyl)propane-1,3-dione weak non-sensitiser 
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Table 5. List of SN2 reactors 

 
Name Actual Potency Class Mechanistic 

Domain 

Predicted Potency Class 

1-Chloromethylpyrene extreme SN2 extreme 

Dimethyl sulfate strong SN2 strong 

Benzyl bromide strong SN2 strong 

Methyl dodecane sulphonate strong SN2 strong 

Methyl hexadecene sulphonate strong SN2 strong 

Bisphenol A-diglycidyl ether moderate SN2 moderate 

1-Bromohexadecane moderate SN2 non-sensitiser 

Diethyl sulfate moderate SN2 moderate 

2-Bromotetradecanoic acid moderate SN2 moderate 

1-Bromoheptadecane moderate SN2 non-sensitiser 

1-Bromopentadecane moderate SN2 non-sensitiser 

1-Bromoeicosane moderate SN2 non-sensitiser 

12-Bromo-1-dodecanol moderate SN2 moderate 

Methyl methanesulphonate moderate SN2 strong 

1-Bromodocosane moderate SN2 non-sensitiser 

Dodecyl methane sulphonate moderate SN2 moderate (false positive) 

1-Chlorohexadecane moderate SN2 non-sensitiser 

1-Bromotetradecane moderate SN2 non-sensitiser 

1-Bromohexane weak SN2 non-sensitiser 

1-Bromotridecane weak SN2 non-sensitiser 

1-Iodododecane weak SN2 non-sensitiser 

1-Iodotetradecane weak SN2 non-sensitiser 

1-Bromooctadecane weak SN2 non-sensitiser 

1-Chlorooctadecane weak SN2 non-sensitiser 

1-Bromododecane weak SN2 non-sensitiser 

12-Bromododecanoic acid weak SN2 weak 

1-Iodohexadecane weak SN2 non-sensitiser 

1-Bromoundecane weak SN2 non-sensitiser 

1-Chlorotetradecane weak SN2 non-sensitiser 

7-Bromotetradecane weak SN2 weak 

1-Iodononane weak SN2 non-sensitiser 

Oleyl methane sulphonate weak SN2 moderate (false positive) 

Butyl glycidyl ether weak SN2 weak 

1-Bromobutane non-sensitiser SN2 non-sensitiser 

1-Bromononane non-sensitiser SN2 non-sensitiser 

1-Chlorononane non-sensitiser SN2 non-sensitiser 

1-Iodohexane non-sensitiser SN2 non-sensitiser 

1-Iodooctadecane non-sensitiser SN2 non-sensitiser 

Methyl hexadecyl sulphonate non-sensitiser SN2 strong 

Sodium lauryl sulphate moderate (false positive) Non moderate (false positive) 

Isopropyl myristate weak Non weak 

Hexane non-sensitiser Non non-sensitiser 
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Table 6. Breakdown of EINECS chemicals by predicted sensitisation potential and mechanistic class 

 

 
Predicted Class and Potency # of Chemicals 

MA_weak 929 

MA_extreme 2790 

*MA_non 2900 

MA_strong 4303 

MA_mod 2269 

SB_weak 2059 

SB_mod 4026 

SB_strong 3212 

*SB_non 1055 

SN2_strong 1042 

SN2_weak 748 

SN2_extreme 71 

SN2_mod 738 

SN2_mod(fp) 3679 

*SN2_non 1631 

Acyl_mod 1867 

Acyl_weak 1251 

*Acyl_non 1146 

Acyl_extreme 328 

Acyl_strong 407 

*SNAR_non 1186 

SNAR_extreme 3842 

SNAR_weak 626 

SPEC_mod 1581 

*SPEC_non 4664 

SPEC_extreme 2002 

*Assigned Non-Sensitiser based on 

RXNDOMAIN model 18641 

Total 68,993 
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Table 7: Distribution of clusters for LLNA dataset 

 

 

Mechanistic domain Number of clusters 

Michael Addition 12 

Acyl formation 6 

Schiff Base 8 

SN2 9 

SNAr 1 

Special 3 

Non-sensitisers 6 
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Figure 1. Distribution of the LLNA dataset within the actual and predicted reaction domains 
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Figure 2. Predicted distribution of EINECS chemicals within the reaction domains 
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Figure 3. Pipeline Pilot workflow for assigning mechanistic domains and predicting potency 
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Figure 4. Distribution of EINECS chemicals by predicted sensitisation potential and mechanistic domain 
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Figure 5. Pipeline Pilot workflow for assigning EINECS chemicals into mechanistic domains  
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Figure 6. Cluster distribution for predicted acyl formers 
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Figure 7. Distribution of clusters for predicted non-sensitisers 
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Figure 8. Distribution of clusters for predicted Michael acceptors 
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Figure 9. Distribution of clusters for the predicted Schiff base formers 
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Figure 10. Distribution of clusters for the predicted SN2 reactors 
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Figure 11. Distribution of clusters for the predicted SNAR reactors 
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Figure 12. Distribution of clusters for the predicted special class 
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Figure 13. 20 Subgraphs for Cluster 14 (non-sensitisers) 
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Figure 14. 7 Subgraphs for Cluster 33 
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Figure 15. Subgraph for Cluster 2 

 

 
 
 

Figure 16. Subgraph for Cluster 93 
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Figure 17. 11 Subgraphs for Cluster 32 
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Figure 18. MCS for Non-sensitisers 

 

 

 

 

  
 

Figure 19. MCS for Acyl formers 
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Figure 20. Parent MCS structures extracted from Cluster 32 
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Figure 21. Rule taken from reference (3) for acylating agents 
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