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ABSTRACT

During an engineering system design, engineers usually encounter uncertainties 

that ubiquitously exist, such as material properties, dimensions of components, and random 

loads. Some of these parameters do not change with time or space and hence are time- and 

space-independent. However, in many engineering applications, the more general time- 

and space-dependent uncertainty is frequently encountered. Consequently, the system 

exhibits random time- and space-dependent behaviors, which may result in a higher 

probability of failure, lower average lifetime, and/or worse robustness. Therefore, it is 

critical to quantify uncertainty and predict how the system behaves under time- and space- 

dependent uncertainty. The objective of this study is to develop accurate and efficient 

methods for uncertainty analysis. This study contains five works. In the first work, an 

accurate method based on the series expansion, Gauss-Hermite quadrature, and saddle 

point approximation is developed to calculate high-dimensional normal probabilities. Then 

the method is applied to estimate time-dependent reliability. In the second work, we 

develop an adaptive Kriging method to estimate product average lifetime. In the third work, 

a time- and space-dependent reliability analysis method based on the first-order and 

second-order methods is proposed. In the fourth work, we extend the existing robustness 

analysis to time- and space-dependent problems and develop an adaptive Kriging method 

to evaluate the time- and space-dependent robustness. In the fifth work, we develop an 

adaptive Kriging method to efficiently estimate the lower and upper bounds of the electric 

potentials of the photoelectron sheaths near the lunar surface.
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SECTION

1. INTRODUCTION

1.1. BACKGROUND

Uncertainties widely exist in practical engineering. For example, there are 

uncertainties in material properties, dimensions of components, and random loads. 

Uncertainties can be roughly grouped into three categories: (a) static uncertainties, (b) 

time-dependent (TD) uncertainties, and (c) time- and space-dependent (TSD) uncertainties. 

Static uncertainties do not vary with time or space and are usually modeled as random 

variables. An example of static uncertainty is the manufacturing variation in dimensions. 

TD uncertainties vary with time and are usually modeled as random processes. Examples 

of TD uncertainties include wind loads and wave loads. TSD uncertainties vary with both 

time and space and are usually modeled as time-dependent random fields. An example is 

the river velocity. TSD uncertainties belong to the most general category since the other 

two categories are just special cases of the TSD category.

Subjected to the uncertain inputs, the output of a structure/product/system is 

generally also uncertain. Uncertainty analysis [1] is aimed at identifying the effect of 

uncertain inputs on the output. It is very important to do uncertainty analysis in a design 

stage to improve the design and avoid possible product failure as much as possible. 

Uncertainty analysis typically includes reliability analysis [2], robustness analysis [3], 

sensitivity analysis [4], and uncertainty propagation [5], etc. In this study, we mainly focus 

on reliability analysis and robustness analysis.
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1.1.1. Reliability Analysis. Reliability is defined as the probability that a product 

performs its intended function over a specified period of time and under specified service 

conditions [6]. According to the involved uncertainties, reliability problems can be roughly 

grouped into three categories: (a) static problems, (b) TD problems, and (c) TSD problems.

Static reliability problems only involve static uncertainties. Reliability methods for 

static problems include, but are not limited to, analytical methods, surrogate model 

methods, moment methods, and simulation methods. Typical analytical methods include 

the first-order reliability method (FORM) and the second-order reliability method (SORM) 

[7-12]. FORM and SORM simplify a limit-state function, which specifies a functional 

relationship between a response and random input variables, using the first and second- 

order Taylor series expansions, respectively, at the so-called most probable point (MPP)

[13]. FORM and SORM can obtain results with acceptable accuracy for many engineering 

problems and hence are widely used. However, when the limit-state functions are highly 

nonlinear, their accuracy may be poor. Surrogate model methods [14-16] use surrogate 

models, which are generally obtained from the design of experiments or variable screening 

using sensitivity analysis, to improve the computation efficiency. Surrogate model methods 

are generally efficient and if the surrogate models are well trained, accurate. Moment 

methods [13, 17] calculate the moments of the limit-state function and then approximate 

its distribution with the moments; and then the distribution is used to obtain the reliability. 

Usually, only the first four moments are used and poor accuracy may result if  higher-order 

moments are also important. Simulation methods include the direct Monte Carlo simulation 

(MCS) [18], quasi-Monte Carlo simulation [19], importance sampling [20], and subset
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simulation [21], etc. Usually, simulation methods are accurate but computationally 

expensive.

In TD problems, the limit-state function is a function of time and the inputs may or 

may not include TD uncertainties. For TD problems, many reliability methods are available, 

including upcrossing rate methods [22-24], surrogate model methods [25-28], simulation 

methods [29, 30], probability density evolution method [31], envelope function method

[32], failure process decomposition-based method [33], and extreme value moment method

[34]. Roughly speaking, upcrossing rate methods are the most dominant methods but the 

accuracy remains to be improved, surrogate methods can obtain accurate results if  the 

surrogate models are well trained, and simulation methods are also accurate but 

computationally expensive.

TSD problems are the most general. The limit-state function is a function of both 

time and space and the inputs may or may not include TSD uncertainties. For TSD 

problems, only a few methods are available in the literature. Hu and Mahadevan [35, 36] 

developed a method based on adaptive surrogate modeling. Shi et al. [37] proposed two 

strategies. One strategy is combing the sparse grid technique with the fourth-moment 

method. And the other is combining the dimension reduction and maximum entropy 

method. Shi et al. [38] developed a transferred limit-state function technique to transform 

the TSD problem into a TSI counterpart. These methods still have limitations for wider 

applications. Efficiently and accurately dealing with TSD problems remains challenging.

In addition to the probability definition of reliability, average lifetime (or mean time 

to failure, MTTF) [39] is also used to quantify the reliability of a product. Statistics-based 

methods [40, 41] are widely used to estimate the MTTF. The methods need lifetime testing
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on many products to obtain the lifetime samples, which are then used to estimate the 

average lifetime by statistical analysis. The methods are generally expensive and time

consuming since real products instead of numerical models are used for lifetime testing. 

Physics-based methods [18] then play an important role to deal with this problem. The 

methods use limit-state functions, which are computational models derived from physical 

principles, to predict the states of the components and subsystems of the product 

concerning potential failure modes [42]. With the computational models for the failure 

modes, physics-based methods are much more efficient than the statistics-based methods. 

They can predict reliability performance for a given design. However, efficient and 

accurate physics-based methods remain to be developed, when expensive limit-state 

functions are involved.

1.1.2. Robustness Analysis. Robust design optimization (RDO) [3] is an 

optimization design methodology for improving the quality of a product by minimizing the 

effect of the causes of variation without eliminating the causes [43]. It allows for the use 

of low-grade materials and reduces labor and material costs while improving reliability and 

reducing operating costs [43]. RDO has been used to improve product quality in industrial 

applications [44, 45]. Over the last three decades, it has gained much attention from many 

research fields, such as operations research [46-48], aerospace [49, 50], structural 

mechanics [51, 52], vibration control [53, 54], automobile [55-57], and fatigue analysis 

[58, 59]. Methods to solve RDO can be roughly grouped into three categories: probabilistic 

methods [60-62], deterministic methods [63-67], and metamodel-based methods [68-73]. 

Probabilistic methods perform robust optimization using the probability distributions of 

random variables. Deterministic methods incorporate a non-statistical index, such as the
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gradient of a response, into the optimization problem to obtain a robust optimum [73]. 

Metamodel-based methods employ computationally cheap surrogate models to improve 

the efficiency of RDO.

Robustness analysis, which evaluates and predicts the robustness of a design, is 

repeated many times during RDO. Many metrics that measure the robustness exist in 

literature. The most common metric is Taguchi’s quality loss function (QLF) [43]. This 

metric measures not only the distance between the average quality characteristics (QCs) 

and their targets but also the variation in the QCs [74]. There are also other robustness 

metrics, such as the signal-to-noise ratio [43], the percentile difference [75], and the worst- 

case QCs [76].

Most of the above robustness metrics are defined for static QCs that do not change 

over time and space. Some of the metrics could be used for dynamics problems, but they 

are only applicable for situations where the targets of QCs vary with signals [77, 78], 

instead of with time. To deal with problems involving time-dependent QCs, Goethals et al. 

[79] proposed to use the weighted sum of mean values of a QLF at discretized time 

instances to measure the robustness. The weighted-sum method, however, does not take 

into consideration of the autocorrelation of the time-dependent QLF, which is modeled as 

a stochastic process. To overcome this drawback, Du [74] proposed to use the maximum 

value of the time-dependent QLF to measure the time-dependent robustness and developed 

an MCS-based method to do time-dependent robustness analysis.

As for TSD problems, there is no method reported in the literature and there is a 

need to extend the static robustness and TD robustness to TSD robustness and develop 

corresponding methods to estimate the TSD robustness efficiently.
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1.2. RESEARCH OBJECTIVE

The objective of this dissertation is to develop uncertainty analysis methods for TD 

problems and TSD problems and then apply uncertainty analysis to lunar plasma 

environment modeling. To achieve this objective, five research works are performed. The 

first three works deal with reliability analysis, the fourth work evaluates TSD robustness, 

and the last one applies uncertainty analysis to lunar plasma environment modeling.

Research work 1 is aimed at estimating high-dimensional normal probabilities and 

then applying it in TD reliability analysis. When FORM is used for TD reliability analysis, 

the limit-state function is transformed into an equivalent Gaussian process, which is then 

discretized into a large number of correlated Gaussian variables. A high-dimensional 

normal integral is therefore needed to calculate the TD reliability. An accurate method 

based on the combination of series expansion [80], Gaussian quadrature [81], and 

saddlepoint approximation [82, 83] is developed. The development of this method results 

in Paper I.

Research work 2 focuses on evaluating the average product lifetime, which is also 

a reliability metric of products. Currently, statistics-based methods [40, 41] are widely used 

to estimate the MTTF. The methods need lifetime testing on many products to obtain the 

lifetime samples, which are then used to estimate the average lifetime by statistical analysis. 

The methods are generally expensive and time-consuming since real products instead of 

numerical models are used for lifetime testing. A physics-based method is developed in 

this work. It uses limit-state functions derived from physical principles, to predict the states 

of the components and subsystems of the product concerning potential failure modes [42].
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Without lifetime testing of real products, the proposed method is much more efficient. 

Details of this work are reported in Paper II.

Research work 3 is aimed at evaluating TSD reliability. For static and TD reliability 

problems, there are a lot of methods reported in the literature. However, for TSD problems, 

which are the most general, efficient, and accurate methods remain to be developed. In this 

work, a method based on FORM and SORM is developed to estimate TSD reliability 

efficiently. Details of this work are given in Paper III.

Research work 4 deals with TSD robustness analysis. For TSD robustness problems, 

few methods have been proposed so far. In this work, an adaptive training method based 

on the Kriging model [84] is proposed to estimate the TSD robustness accurately and 

efficiently. Details of this work are given in Paper IV.

Research work 5 applies the uncertainty analysis to lunar plasma environment 

modeling and is aimed at efficiently estimating the lower and upper bounds of the electric 

potentials of the photoelectron sheaths near the lunar surface [85]. To avoid evaluating the 

expensive black-box function for a large number of times, an adaptive training method 

based on the Kriging model is developed. Details of this work are given in Paper V.

This study is expected to help engineers better understand the effect of uncertainties 

on a product and then improve the reliability and/or robustness of the product at the design 

stage. If successful, it will contribute to higher product quality with reduced lifecycle costs.

1.3. ORGANIZATION OF THE DISSERTATION

The organization of this dissertation is shown in Figure 1.1. In the first paper, an 

accurate method based on the series expansion, Gauss-Hermite quadrature, and saddle
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point approximation is developed to calculate high-dimensional normal probability. Then 

the method is applied to estimate structural time-dependent reliability. In the second paper, 

we develop an adaptive Kriging method to estimate product average lifetime. In the third 

paper, a time- and space-dependent reliability analysis method based on the widely used 

first-order and second-order methods is proposed. In the fourth paper, we extend the 

existing robustness analysis to time- and space-dependent problems and develop an 

adaptive Kriging method to efficiently evaluate the time- and space-dependent robustness. 

In the fifth paper, we apply the uncertainty analysis to lunar plasma environment modeling 

and develop an adaptive Kriging method to efficiently estimate the lower and upper bounds 

of the electric potentials of the photoelectron sheaths near the lunar surface.

Static
Uncertainty

analysis

Uncertainty
analysis Uncertainty

analysis

TSD
Uncertainty

analysis

Paper 1
High-dimensional normal integral

and TD reliability

Paper II
Average product litetime

Paper III
TSD reliability analysis

Application
Paper IV

TSD robustness analysis

Paper V
Note:Uncertainty analysis tor electric
TD = time-dependentpotentials of the photoelectron
TSD = time- and space-dependentsheaths

Figure 1.1. Organization of the dissertation
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PAPER

I. APPROXIMATION TO MULTIVARIATE NORMAL INTEGRAL AND ITS 
APPLICATION IN TIME-DEPENDENT RELIABILITY ANALYSIS

ABSTRACT

It is common to evaluate high-dimensional normal probabilities in many 

uncertainty-related applications such as system and time-dependent reliability analysis. An 

accurate method is proposed to evaluate high-dimensional normal probabilities, especially 

when they reside in tail areas. The normal probability is at first converted into the 

cumulative distribution function of the extreme value of the involved normal variables. 

Then the series expansion method is employed to approximate the extreme value with 

respect to a smaller number of mutually independent standard normal variables. The 

moment generating function of the extreme value is obtained using the Gauss-Hermite 

quadrature method. The saddlepoint approximation method is finally used to estimate the 

cumulative distribution function of the extreme value, thereby the desired normal 

probability. The proposed method is then applied to time-dependent reliability analysis 

where a large number of dependent normal variables are involved with the use of the First 

Order Reliability Method. Examples show that the proposed method is generally more 

accurate and robust than the widely used randomized quasi Monte Carlo method and 

equivalent component method.
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1. INTRODUCTION

Many uncertainty-related applications require the evaluation of multivariate normal 

probabilities, for instance, the system reliability analysis [1-3] and time-dependent 

reliability analysis [4-26]. Both analyses predict the reliability by integrating a multivariate 

normal density in the safe region if the First Order Reliability Method (FORM) [27] is 

employed. Other areas requiring a multivariate normal probability include the extreme 

value distribution [28], multivariate probit model [29], multiple comparisons [30], and 

multiple ordinal response models [31].

No methods exist for the exact computation of the multivariate normal probability, 

and many numerical and sampling methods have been developed to produce 

approximations [32]. The existing methods can be roughly grouped into two categories: 

random methods and deterministic methods.

Random methods generate a large number of samples of the involved random 

variables and then calculate the probability based on the statistical information of the 

samples. The most straightforward method is the crude Monte Carlo simulation (MCS)

[33]. Other random methods are more or less based on the crude MCS. They include the 

quasi MCS [34, 35], the importance sampling method [36-38], the subset simulation 

method [39], and the Bayesian MCS [40]. The random methods are generally robust, easy 

to use, and accurate if the sample size is large enough. But they also have some 

shortcomings. First, samples are usually generated randomly and hence the result is not 

deterministic, resulting in unrepeatable results when different seed numbers, software, or 

computer platforms are used. Second, they are inefficient to estimate a small probability.
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This makes reliability analysis difficult since engineering applications usually require a 

low probability of failure or high reliability. Note that some advanced random methods, 

such as the importance sampling method [36-38] and the subset simulation method [39], 

can get over this shortcoming to some extent.

Deterministic methods do not need random sampling. The equivalent component 

methods [41-43] are widely used. They sequentially compound two components, i.e., two 

of the involved normal variables, into an equivalent one, and the multivariate normal 

probability is eventually estimated by a univariate normal probability. The methods differ 

from one another mainly in the way of evaluating the correlation coefficients between the 

equivalent component and the other components. The correlation coefficients are 

determined by the sensitivity equivalency and the finite difference method [41, 43]. The 

finite difference method is replaced by an analytical approach [42], resulting in better 

accuracy and efficiency. The correlation coefficients can also be evaluated by conditional 

probabilities [3]. Generally, the equivalent component methods are efficient, even for high

dimensional problems. They may not be accurate when solving high-dimensional problems 

with small probabilities. One reason is that the equivalent component is not necessarily a 

normal variable and the error accumulates with the increase of the dimensionality. Besides, 

other deterministic methods are also available, including the first-order methods [44, 45], 

the product of conditional marginal probabilities [46, 47], and conditioning approximation 

methods [32, 48]. Their accuracy still needs to be improved when solving high-dimensional 

problems with small probabilities.

Overall, evaluating a multivariate normal probability is challenging in terms of 

accuracy and efficiency when the dimension is large and the probability is small. The
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objective of this work is to develop a new method to improve both accuracy and efficiency. 

The proposed method involves the integration of dimension reduction, the expansion 

optimal linear estimation (EOLE) [49], the Gauss-Hermite quadrature method [50], and the 

saddlepoint approximation (SPA) [51, 52]. The proposed method is then applied to and 

evaluated by the time-dependent reliability analysis with a large number of dependent 

normal variables and small probabilities.

The remaining parts of the paper are organized as follows. Section 2 gives the 

problem statement. Section 3 reviews the existing methods. An overview of the proposed 

method is given in Section 4, followed by the detailed formulations in Section 5. Section 6 

gives the application to time-dependent reliability analysis. Four examples are given in 

Section 7 to demonstrate the proposed method. Section 8 provides conclusions.

2. PROBLEM STATEMENT

Suppose Y is a vector of N normal random variables with the mean vector n and 

the correlation matrix I . The joint probability density function (PDF) / Y(y) of Y is given 

by

/y (y; V, I )  =  ■ 1 exP ( -  i  (y -  ^ )Ti  1 (y -  ^
V (2 ^ )W|I |  V 2 y

The cumulative distribution function (CDF) FY(y; M-,1) of Y is given by

„y
FY(y; ^, I )  =  [  M y ; ^  2) dy

(1)

(2)

Note that Eq. (2) shows an N-dimensional integral.
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Without losing generality, we assume that y = 0 . We also assume that all 

components of Y have a variance of 1. Then we only focus on calculating the following 

integral

Fy(0; ^, C) =  I /y(y; ^, C)dy (3)
J — TO

where C is the correlation coefficient matrix of Y. A general problem can be solved by Eq.

(3) using the following transformation

Fy (9; V, I )  =  Fy(0; ( m- -  y )./a , C) (4)

where a  is the standard deviation vector of Y , and the operator ./ represents the 

elementwise division. Fy(0; (^ — y )./a , C) shares the same format with Fy(0;^, C) . 

Introducing the indicator function /(•) , Eq. (4) is written as

Fy(0; ^, C) = I / (y <  0) /Y(y; ^, C) dy (5)
J — TO

where , ( y < 0 ) = {o,'ot<e™ ise.

In practical applications, high dimensions are commonly encountered. For example, 

in system reliability analysis, dimensionality may be dozens or hundreds. Many existing 

methods require C to be full-rank. However, a non-full-rank C is also frequently 

encountered in engineering problems. The objective of the study is to calculate the high

dimensional normal probabilities with a C being full-rank or not.
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3. REVIEW OF EXISTING METHODS

In this section, we briefly review four commonly used methods: the crude MCS, 

the sequential conditioned importance sampling method (SCIS) [38], the randomized quasi 

MCS method [35], and the equivalent component method [42]. The first three are random 

methods while the last one is a deterministic method.

3.1. CRUDE MCS

Crude MCS is the origin of other random methods. It first randomly generates ns 

samples of Y using / Y(y; p., C) and then approximates Eq. (5) by

ns
Fy (0; v, C) *  F = -  V  I(yk < 0) (6)

ns Z_is k=1

where F represents the approximation, and y k is the k th sample of Y. F itself is a random 

variable. Therefore, different runs of crudes MCS lead to different realizations of F . This 

is known as a random error. The variation coefficient UMCS of F is used to measure the 

random error and is given by

| l - F
^MCS = I ~~ (7)

It shows that the convergence rate of crude MCS is 0 ( l / J n S )  [35], which is independent 

of N. With this feature, crude MCS does not suffer from the curse of dimensionality. The 

convergence rate, however, is thought to be low. For example, if  the exact value of 

Fy(0; ^, C) is 10 5 and UMCS is required to be no more than 10 2, then according to Eq.

(7), the sample size ns must be at least about 109.
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Despite its low convergence rate, MCS is widely used and is specially treated as a 

benchmark method for an accuracy comparison study when an exact solution is not 

available.

3.2. SEQUENTIAL CONDITIONED IMPORTANCE SAMPLING (SCIS) 
METHOD

SCIS is based on the importance sampling method and makes use of the property 

that conditioned on given values of arbitrary components of Y, the remaining components 

also follow (univariate or multivariate) normal distribution [38].

Figure 1. Flowchart of SCIS
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The flowchart of SCIS is shown in Figure 1, where Pr{-} represents probability. 

Because of the property of multivariate normal variables, derivations of the conditional 

PDF and of Dk (in Figure 1) are obtained easily. More details are given in Ref. [38]. Similar

Compared to Eq. (7), Eq. (8) shows that the convergence rate of SCIS is significantly 

better than that of crude MCS.

3.3. RANDOMIZED QUASI MCS

An effective way to improve the convergence rate of MCS is to replace the 

randomly generated samples by carefully selected, deterministic sequences of samples [35]. 

This approach is known as quasi MCS, and those samples are called low-discrepancy 

samples. Figure 2 shows 103 random samples and 103 low-discrepancy samples of Y,

given n  =  [°] and C =  I1 ° ] . The low-discrepancy samples are generated by Halton

sequences [53]. The low discrepancy samples are regularly even while the random samples 

have irregular clusters. The evenness improves the convergence rate of the quasi MCS.

to crude MCS, the approximation F calculated by SCIS is also a random variable, with its

variation coefficient FSCIS given by

(8)

A drawback of quasi MCS is that it is hard to estimate the error. To estimate the 

error with the way similar to crude MCS, the deterministic low-discrepancy samples are 

randomized and the randomized quasi MCS was developed [35, 54]. It is worth mentioning
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that the quasi MCS developed by Genz and Bretz [35] is commonly used. This method has 

been coded intopmvnorm(), an R [55] function in R package mvtnorm.

Figure 2. Random samples (left) and low-discrepancy samples (right)

3.4. EQUIVALENT COMPONENT METHODS

The equivalent component methods compound a pair of component normal 

variables into an equivalent normal variable sequentially so that the multivariate normal 

probability is finally estimated by a univariate normal probability. Figure 3 shows the 

compounding procedure. Yf2 is the equivalent component obtained by compounding Yx 

and Y2. Then yle2 and Y3 are compounded into yle23. This process continues until N normal 

variables have been compounded into one equivalent normal variable Ŷ 23_N. Eq. (3) is 

then approximated by

Fy (0; ,̂ C) = f
— TO

fe(y;Pe,^2)dy = O (9)

where fe(y;pe, G2), Re and a£ are the PDF, mean, and variance of f 1e23_w, respectively, 

and O(-) is the CDF of the standard normal variable.
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The latest equivalent component method [42] has been proven to be effective for 

many problems. Assuming all the equivalent components to be normal variables, however, 

may introduce an unmeasurable error and hence compromise the accuracy of the method.

Figure 3. Compounding procedures of the equivalent component method [42]

4. OVERVIEW OF THE PROPOSED METHOD

The main idea of the proposed method is to convert the multidimensional 

probability into an equivalent extreme value probability. Eq. ( is equivalent to

Fy(0; ^  C) =  P r { P  Yt < o} =  Pr{max(Y) <  0} =  Pr(Z <  0} =  Fz (0) (10)

where Z = max(Y) is the maximum value of Y. Note that Z itself is a random variable, and 

we denote it by Z(Y) since it is a function of Y.

The distribution of Z can be determined from its PDF / z(z) , CDF Fz(z) , moment 

generating function (MGF) Mz(s) , cumulant generating function (CGF) Fz(s) , or 

characteristic function (CF) Cz(s) . The relationships among those functions are shown in
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Figure 4. A solid line means a theoretically rigorous transformation between the two 

functions connected by the line, while a dotted line means an approximate transformation. 

Theoretically, once any of the five functions is obtained, the other four can also be obtained 

using the transformation indicated above or below a line.

Figure 4. Functions that fully define the distribution of Z

The easiest starting point is the MGF given by

+to +to
Mz (s) = I exp(sz)fz (z) dz = I exp[sz(y)]/y(y; ^, C)dy (11)

— TO —TO

Although Eq. (11) is also a high-dimensional integral similar to Eq. (5)(, it is much easier 

to calculate. The reason is that the integrand exp[sz(y)] is generally a continuous function, 

which can be calculated effectively using quadrature methods, while the integrand
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/(y  < 0) in Eq. (5) is not. This is also the reason why we convert the multidimensional 

probability in Eq. (5) into the extreme value probability in Eq. (10).

Once Mz (s) is obtained, there are at least two ways to get Fz (z) or Eq. (10). As 

shown in Figure 4, the first way is Mz (s) ^  Cz (s) ^  fz(z) ^  Fz (z) and the second way 

is Mz (s) ^  Kz (s) ^  Fz (z). The first way, however, is not practical, and there are two 

reasons. First, Mz (s) calculated by the quadrature method is not exact, and neither is Cz (s), 

which generally has complex output values and may suffer from large errors. Second, 

currently, there are no robust and effective methods to transform Cz (s) into f z (z) using 

the inverse Fourier transform, especially when Cz (s) is not exact. In contrast, the second 

way is effective. The reason is that a simple logarithm is needed to obtain Kz (s) from 

Mz (s), and SPA is an accurate and efficient method to approximate Fz (z) from Kz (s), 

especially at the tails of Fz (z). Therefore, we use the latter way to calculate Fz (z).

Calculating Eq. (11), however, needs a heavy computational effort, since it may be 

a high-dimensional integral. To solve this problem, we propose two approaches to reduce 

the dimension of the integral. The first approach is to screen the random variables in Y and 

remove the ones that barely contribute to the desired FY(0; n, C). The second approach is 

to transform the integral from the Y space, or physical space, into the eigenspace, using a 

truncated series expansion of Y . With the latter approach, we can further reduce the 

dimension of the integral. This approach can usually reduce the dimension significantly 

because C is a low-rank matrix in many engineering problems.

An abstract flowchart of the proposed method is given in Figure 5. Step 1 screens 

random variables in Y. (See Subsection 5.1.) Note that after the screening step, we still use 

Y for the remaining random variables for the convenience of presentation. In Step 2, we
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use EOLE to expand Y and then truncate the expansion to N'  orders. This step transforms 

the integral in Eq. (11) from the Y space into the U space (the eigenspace). (See Subsection

5.2.) In Step 3, the Gauss-Hermite quadrature is used to calculate the MGF of Z in the 

eigenspace. (See Subsection 5.3.) In Step 4, SPA is employed to transform the MGF into 

CDF of Z, and finally the desired FY(0; n, C) is obtained through Eq. (18). (See Subsection 

5.4)

Figure 5. Abstract flowchart of the proposed method

There are four advantages of the proposed method. First, it can calculate 

multidimensional normal probabilities with arbitrary dimension N , as long as the 

dimension N'  of the truncated eigenspace is not large. This is practical for dealing with 

engineering problems where the number of basic random variables is not large. Second,
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the method is accurate even when calculating very small probabilities because SPA can 

recover CDF from MGF with sufficient accuracy, especially at tails of CDF. Third, it is 

generally more efficient than the abovementioned random methods, when FY(0; n, C) is 

small, such as 10-5 and smaller. The reason is that random methods need a large sample 

size to guarantee accuracy when calculating small probabilities. Fourth, the result 

calculated by the proposed method is deterministic, instead of random by a random method.

5. FORMULATION OF THE PROPOSED METHOD

In this section, we give all details involved in the steps shown in Figure 5.

5.1. STEP 1: SCREENING RANDOM VARIABLES

The screening procedure is aimed at reducing the dimension by removing those 

components of Y that are not important to FY(0; n, C). If Pr{Y <  0} is almost equal to 1, 

or equivalently if Pr{Y > 0} is sufficiently small, then removing Yt will not significantly 

affect the accuracy.

Since Pr{Y >  0} measures the importance of Yt to FY(0; n, C), the most important 

component Y is determined by

Y =  argm axPr{Y  >  0} ( 1 2 )

and Pr{Y > 0} is used as a benchmark to screen the other components of Y. The screening 

criterion is given by
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Pr[Yi >  0} <  cPr[Y* >  0} (13)

where c is a hyperparameter taking a small value, such as 10-4 . Theoretically, the smaller 

is c, the higher accuracy will we have. However, if  c is too small, the screening step will 

not effectively screen out unimportant normal random variables. If Yt meets the criterion, 

it will be removed. Since Y are normal variables, Eq. (13) is equivalent to

$Guj) <  c$Gu*) (14)

where is the mean value of Y*. Note that we have assumed in Section 2 that all 

components of Y have a variance of 1, so Eq. (14) does not involve the variance of Y. 

Figure 6 shows an example of the screening of Y. Initially, there are N = 300 components 

in Y. Only 68 components shown by the circles, however, do not satisfy the criterion in Eq.

(13). Therefore, only 68 components are kept and the other 232 ones are removed, 

reducing the dimensionality from N = 300 to N = 68. Note that after the screening step, 

we also use Y to denote the remaining random variables for convenience.

Figure 6. An example of the screening step
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5.2. STEP 2: SERIES EXPANSION WITH EOLE

The purpose of EOLE [49] is to transform the integral in Eq. (11) from the Y space 

into the eigenspace. A key step of EOLE is the eigendecomposition [56] of C. In linear 

algebra, eigendecomposition, or spectral decomposition, is the factorization of a matrix 

into a canonical form. With the decomposition, a square matrix C is represented in terms 

of its eigenvalues and eigenvectors. A (non-zero) vector V is an eigenvector of C if it 

satisfies the linear equation

CV = AV (15)

where A is the eigenvalue corresponding to V. The eigenvalues are obtained though solving 

the following equation

d e t(C -A I)  =  0 (16)

where det(-) represents determinant, and I is an identity matrix with the same size as C. 

The number of eigenvalues obtained by solving Eq. (16) is Nrank, the rank of C. Once an 

eigenvalue is obtained, we can calculate its corresponding eigenvector by substituting it 

into Eq. (15).

With the eigendecomposition, we obtain Nrank eigenvalues A and Nrank 

eigenvectors Vy,_/ =  1,2,..., Nrank. Note that the eigenvalues are sorted from the largest to 

the smallest. Then the EOLE expansion of Y is given by

^rank

^i(U) =Mi +  ^  -^ = V /C (:,y ) ,i =  1,2......N (17)
/=! vN
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where U =  \U1, U2, ..., Uj, ... t/WranJ  are Nrank mutually independent standard normal

measures how sensitive Y is to Uj.

For a full-rank C, Nrank =  N, and hence there are N + 1 terms in the expansion. 

For a non-full-rank C, with Nrank <  N , there are only Nrank non-zero eigenvalues, and 

therefore there are less than N + 1 terms in the expansion. In practical engineering, 

however, not all the Nrank eigenvalues are at the same level of magnitude. Excluding the 

Pi term, we only keep the first N'  terms that have large eigenvalues, because they 

contribute most to the expansion. Hereafter, we let U denote [Uv U2, ..., Uj, ... UN>]. The 

uncertainty of Y is mainly propagated from the uncertainty of U, and hence we call U 

significant basic random variables.

Specifically, N'  is determined as the smallest integer that meets the criterion as

follows

where ^ is a hyperparameter determining the accuracy of the expansion. It takes a value 

close to, but not larger than, 1. The smaller is ^, the less accurate is the expansion. If  ̂  = 

1, the expansion is exact. Typically, ^ is set to 0.9999. When N'  has been determined by 

Eq. (18), the truncated EOLE expansion is given by

variables. Ay is the j th eigenvalue, and C(: ,j) is the j th column of C. The j th eigenvalue Ay

(18)

n’

J=i

(19)
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With the truncated EOLE expansion, each Yt is a function of U, and hence Z(Y) = 

max(Y) is also a function of U. Then Eq. (11) is converted into

r+m
Mz (s) = I exp[s z (u )]/ u (u ) du (20)

J  —  00

where f u(u) is the PDF of U , i.e., the PDF of N ' -dimensional mutually independent 

standard normal variables.

Eq. (20) shows an N'  -dimensional integral. Compared to Eq. (11) for an N - 

dimensional integral, Eq. (20) is more efficient because of the dimension reduction. With 

the dimension reduction, the efficiency of the proposed method mainly depends on N' 

instead of N. Intuitively, a larger N will lead to a larger N ' . However, there is no direct 

relationship between N'  and N . It is the number of significant eigenvalues of C that 

directly determines N ' . A C with a dimension of 1,000 by 1,000 may have only two 

significant eigenvalues and hence N' = 2, while another C with a dimension of 5 by 5 

may have up to 5 significant eigenvalues and hence N' = 5.

5.3. STEP 3: CALCULATE MGF WITH GAUSS-HERMITE QUADRATURE

The purpose of this step is to calculate the multidimensional integral in Eq. (20) 

efficiently. Gauss-Hermite quadrature is a form of Gaussian quadrature for approximating 

the integrals with the following format

r+m
I = I g (u )exp (-u2)du (21)

—m

where / is the integral result, g(u)  is a smooth and continuous function of u , and 

e x p ( -u2) is called a weight function. With the Gauss-Hermite quadrature, Eq. (21) is 

approximated by



27

I = ^  w (q)g [u (q)] (22)
q=1

Q

where Q, the quadrature order, is the number of quadrature points used, w (q) is the qth 

weight, and u (q) is the qth quadrature point. Table 1 shows the quadrature points and 

weights for some quadrature orders.

When the weight function is the PDF of the standard normal variable, i.e.,

■ ^ = e x p (-  y )  , instead of e x p ( -u 2) , the quadrature weights and points should be

modified accordingly. The modification rule is simply multiplying the weights by and

the points by V2. For example, the weights and points in Table 1 are modified to that in 

Table 2.

Table 1. Gauss-Hermite quadrature points and weights

Quadrature order Q Quadrature point u (q) Quadrature weight wa
1 0 1.772453
2 ±0.707107 0.886227

3 0 1.81635
±1.22474 0.295409

4 ±0.524648 0.804914
±1.65068 0.081312

The integral in Eq. (20) is N' -dimensional, and the unidimensional formulation in 

Eq. (22) is extended to its multidimensional counterpart using the tensor product rule. The 

W-dimensional Gauss-Hermite quadrature formulation is given by
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Qi Q2 ®n'

Z.,.(9iL,(?2) W1 w2

4l = 1 42 = 1 4n' = 1
N'

, . (4i) , i(42), t^ 2  , ,u ( v )_
n' (23)

where Qy is the quadrature order in the j th dimension. Therefore, Eq. (20) is approximated 

by

Q i  Q2

m^(s) = 1 1  -  1 1
4 1 = 1 4 2 = 1  4 N ' =  1

(4i\,X42)W-2 . W
N'

^  exp {sz u ( 4 i )  „X%2)u.2 ,uK0
N'

(24)
Q N

1

Note that the weight function / u(u) in Eq. (20) is the PDF of N'  mutually independent 

standard normal variables and Eq. (24) should use the modified quadrature weights and 

points. The total number Nq of quadrature points is equal to ny=1 Qj.

Table 2. Modified Gauss-Hermite quadrature weights and points 

Quadrature order Q Quadrature point u (q) Quadrature weight wq
1 0 1.772453/Vn
2 ±0.707107^2 0.886227/Vn

3
0 1.81635/Vn

±1.22474-^2 0.295409/Vn

4 ±0.524648^2 0.804914/^n
±1.65068^2 0.081312/Jn

Generally, the higher are the quadrature orders Qj,j = 1,2, ...,N ' , the higher is the 

accuracy. Higher quadrature orders, however, mean lower efficiency. Therefore, a good 

tradeoff is needed. Since the j th eigenvalue Aj of C measures how sensitive Y is to Uj, as 

mentioned in Subsection 5.2, Aj also measures how sensitive Z is to Uj. Hence, we assign 

values to Qj,j = 1,2, ...,N', according to the corresponding eigenvalues.
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To determine Qj ,j  = 1,2, ...,N', we need the maximum and minimum allowable 

values Qmax and Qmin. Since A1 is the largest eigenvalue, we set Q1 to Qmax. Qj , j  = 

2,3,..., N' , are determined by

Qj = max {round Q^), Qmin} (25)

where round(^) rounds its input value to the nearest integer. Eq. (25) shows that the larger

is y , the larger is Qj, but Qj cannot be smaller than Qmin. The specific values of the two

hyperparameters Qmax and Qmin are dependent on the requirement of calculation accuracy 

and efficiency.

5.4. STEP 4: TRANSFORM MGF TO CDF USING SPA

SPA is a powerful tool to transform MGF to CDF as well as to PDF. Although the 

theory behind SPA is complicated, its implementation is straightforward.

First, the MGF Mz (s) is transformed to CGF Kz (s) through

Kz (s) = ln [Mz (s)] (26)

Then the first derivative Kz (s) of Kz (s) is given by

Mz (s)
Kz (s) = Mz (s)

where Mz (s) is the first derivative of Mz (s) and is given by

®1 Q2

^ = Z  Z  Z  w1'
W - W  „{q N')r

N

„ . „  . 2 )  \ l N ,w, 1 W2 ... W_Y z

^1 =  1 ^2 =  1 q N' =  1

..........u ( q ^
1 2 N

* exp {sz{sz u1 1\ u2 2\ . . . , u£ in'  ̂ }

(27)

(28)

The second derivative Kz (s) of Kz (s) is given by
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K M  ^ (s) | ™Z{S)
z ( )  M f ( s ) + Mz (s)

where Mz (s) is the second derivative of Mz (s) and is given by

@1 2̂

=  £  I  ... I  " 1
v - w v 2) V'w y 2w , 1 Wt 2 ...w v  z2 2 w

1̂=1 2̂ = 1 V  = 1

(?l) (?2)u) ,U~ , ...,U ,1 2 N

* exp {sz ..teO , - f a wO
 ̂ u -2   ̂ ■ b b  ̂ i t N'

Daniels [57] derived the SPA to the PDF / z (z) of Z as

(29)

(30)

/ z (z) =
1

exp[tfz (s*) - s * z ] (31)
2n:Fz (s*)

where s*, known as the saddlepoint, is the solution to the equation given by

K (s) =  z (32)

The bisection method [58] is employed to solve Eq. (32). Apart from / z (z), the CDF Fz (z) 

is given by

1 1
FZ(Z) =  0 [W(Z)] +  0 [W(Z)] -  - ) (33)

where 0 (0  is the PDF of the standard normal variable,

w (z) =  sign(s*){2[s*z -  Fz (s*)]}2 (34)

and

1
2

1

1
V =  S*[tfz (s*)]2 (35)

Since we only need to calculate Fz (0), we can simply set z =  0 in Eqs. (32), (33) and (34). 

Once Fz (0) is obtained, we also obtain the desired multivariate normal probability 

Fy(0;^,C) = F z(0).



31

An important property of SPA is that it can convert MGF to CDF with sufficient 

accuracy, especially at the tails of CDF [51, 57]. Some studies showed that in some cases, 

SPA has tail exactness [59]. This property makes the proposed method able to calculate 

very small probabilities with high accuracy.

6. APPLICATION IN TIME-DEPENDENT RELIABILITY ANALYSIS

Time-dependent reliability measures the probability that a component or system 

does not fail within a given period of time. With different theories, existing methods to 

time-dependent reliability analysis are roughly grouped into simulation methods [16, 17, 

21, 33], surrogate model methods [6, 11, 12, 18-20], extreme value methods [13, 22, 23, 

25], outcrossing rate methods [4, 7, 10, 15], and equivalent Gaussian process methods [5, 

8, 14], etc.

Simulation methods are straightforward. A large number of samples of Y are 

generated first, whose statistic information is then used to estimate the reliability or the 

probability of failure. This group of methods is generally accurate as long as the sample 

size is sufficiently large. Generating a large number of samples, however, is usually 

expensive or even unaffordable, especially when the limit-state function is an expensive 

black-box function. To deal with this problem, surrogate model methods train a 

computationally cheap surrogate model to replace the original expensive limit-state 

function. Once the surrogate model is well trained, the time-dependent reliability may be 

estimated accurately and efficiently. This group of methods, however, introduce some
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additional issues, such as the design of experiment, training scheme, learning function, and 

convergence criteria, etc.

Extreme value methods convert the time-dependent problems into static ones by 

calculating the extreme values of the limit-state function with respect to time. Generally, 

the calculation of extreme values needs global optimization with respect to time. It limits 

the application of this group of methods since global optimization may not be efficient.

Outcrossing rate methods are traditional methods for time-dependent reliability 

analysis and are widely used. The methods are efficient if  they are used with FORM. Their 

accuracy may not be good for problems with low reliability because the dependence among 

crossing events is neglected. On the contrary, the autocorrelation of the limit-state function 

is considered in equivalent Gaussian process methods, and hence more accurate results can 

be obtained. The procedures of equivalent Gaussian process methods are straightforward. 

FORM is first employed to convert the limit-state function into a Gaussian process whose 

discretization is a vector of correlated normal variables, and then a high-dimensional 

normal integral is used to calculate the reliability.

The existing equivalent Gaussian process methods mainly differ in the way the 

high-dimensional normal integral is estimated. Hu and Du [5] employed the crude MCS. 

Jiang et al. [14] employed the randomized quasi MCS [35]. Gong and Frangopol [8] 

employed the equivalent component method. In this study, we apply the proposed method 

to improve the accuracy of equivalent Gaussian process methods without a random 

sampling method.
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The reliability is predicted by a limit-state function given by

Y = G ( \P ( t ) , t )  (36)

where X are the basic input random variables, P ( t)  are the input random processes, and t 

is time. Generally, Y is a random process. The time-dependent reliability R over the time 

interval [t, t] is given by

R = Pr{Y <  0,Vt  G [t,t]} (37)

To calculate R numerically, we need to discrete [t , t ] into N points t t,i =

1,2, . . . ,N, where =  t and tN = t . Then the random process Y is discretized into N 

random variables Yt = G(X/P(ti),ti),i = 1,2, ...,N. With the discretization, Eq. (37) is 

rewritten as

^  =  P r { ^ / i < 0 }  (38)

Although Yt is in general, not a normal variable, we can use FORM to transform it into an 

equivalent normal variable with a unit variance [5]. Therefore, we always assume that Yt is 

normally distributed with a unit variance without losing generality. Then Eq. (38) is 

equivalent to

R = Fy(0; ^, C) (39)

The details of how to calculate C using FORM is given in [5]. The time-dependent 

probability of failure Pf = 1 — R.

For general time-dependent reliability problems, N can be hundreds. Although N 

is large, the number of significant basic random variables, i.e., N', is not necessarily large. 

If there are no random processes in Eq. (36), Arank will be exactly equal to the dimension 

of X, i.e., the number of basic random variables. N'  is no larger than Nrank. N' = Nrank
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only if Y is sensitive to all the basic random variables. N' < Nrank when Y is not sensitive 

to at least one basic random variable. If there are input random processes, Nrank is 

dependent on not only the number of basic random variables and random processes but 

also the autocorrelation functions of the input random processes.

From response Y, N'  is generally determined by the correlation length lY of Y and

the length lt = ( t  — t)  of time interval \t/t\. More specifically, the larger y  is, the smaller 

N'  will we have. For problems with small l-f, N'  is large and hence the proposed methodit

may not be efficient or may even fail.

7. NUMERICAL EXPERIMENTS

In this section, we demonstrate the effectiveness of the proposed method using four 

time-dependent reliability analysis examples. The first example has the exact solution and 

hence we can easily test the accuracy of the proposed method. In the second example, the 

limit-state function is given as a Gaussian random process. The third example involves a 

mechanism whose inputs only contain several random variables without a random process. 

The last example has an implicit limit-state function, which is a black-box model evaluated 

by the finite element method (FEM) [60]. Exact solutions are not available for the last three 

examples, and hence we employ the crude MCS, using sufficiently large sample size, to 

obtain accurate results, which are treated as benchmarks. In all the examples, the 

hyperparameters c, ^, Qmax, and Qmax are set to 10-4 , 0.9999, 35, and 5, respectively. 

Note that there are no criteria for selecting specific values for those hyperparameters. We
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set those values based on our experience from many experiments. Note that all the reported 

results and errors are about the calculation of the multinormal probabilities, so the error 

due to FORM approximation is not included.

The proposed method is also compared with two widely used methods. The first 

one is the latest version of the equivalent component method [42], which is a deterministic 

method. For convenience, we denote this method by IECA (improved equivalent 

component method). The second one is the randomized quasi MCS developed by Genz and 

Bretz [35], which has been implemented in the R programming language and has been 

widely used to calculate the high-dimensional normal probabilities. We can simply call the 

R function pmvnorm() to calculate the desired probability. Since it is a random method 

whose result is dependent on the seed of the random number generator, we will run this 

method three times to see the differences. For convenience, we denote the three solutions 

from the method by RQ1, RQ2, and RQ3.

7.1. EXAMPLE 1: A MATH EXAMPLE WITH EXACT SOLUTION

The limit-state function Y(t) is a stationary Gaussian process with mean value 

p(t) = b and standard deviation a(t) = 1 . Its autocorrelation coefficient function 

p( t1, t2) is given by

P(ti, t2) = cos(ti -  t-2) (40)

The time interval [t, t] =  [0, 2n] s. Y(t) is a function of U =  [U1, U2] given by

Y(t) = b + U1cos(t) + U2sin(t) =  b + U2 + U2s\n t + tan 1 ( j j 1) (41)

Therefore, the maximum value Z of Y(t) is given by
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Z = b +  J u ?  + Ul (42)

Since U? + U? is a chi-square variable with freedom 2, the exact R is given by

R = Pr(Z < 0} =  Prob(y? + E22 < b2} =  ¥ ( b 2, 2) (43)

where V(- ,2) represents the chi-square CDF with the degree of freedom being 2.

[t,t] =  [0,2 n] is evenly discretized into N = 500 points, hence a 500

dimensional normal probability is to be calculated. With Eq. (40), we get the correlation 

coefficient matrix C whose dimension is 500 X 500 . Since Y(t) is a stationary Gaussian 

process, after discretization, Y = (Y\,Y2, — ,Ysoo) share the same mean value b and 

standard deviation 1. As a result, no components in Y are removed during the variable 

screening procedure.

Since there are only two input random variables in Eq. (41), Nrank = 2 . The 

corresponding two eigenvalues of C are 250.5 and 249.5 , both of which are significant, 

and therefore there are A ' = 2 significant basic random variables. Since Qmax = 35 and 

Qmin = 5 , we use = 35 and Q2 = 35 quadrature points for and t/2, respectively, 

and hence there are in total Aq =  Qi Q2 = 1225 quadrature points. To test how the 

proposed method performs at different levels of P̂ , we vary b . The values of Pf calculated 

by the proposed method, IECA, and RQ are given in Table 3. Note that the values in the 

parentheses under P̂  are relative errors with respect to the accurate solutions and that the 

values in the square brackets are the estimated absolute errors (EAE) given by the RQ 

method.

When b takes - 2 , - 4 , - 6 , and - 8 , all the relative errors of the proposed method 

are less than 1%. It shows that the proposed method is accurate even when we calculate an
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extremely small Pf, such as 1.27 X 10 14. The reason for the high accuracy is that there 

are only two significant basic random variables, and hence the Gauss-Hermite quadrature 

can obtain accurate MGF using Eq. (24). SPA can also produce an accurate CDF, and hence 

accurate Pf. Besides, this example shows that although N = 500, N'  is only 2.

Compared to the proposed method, IECA is less accurate. When b takes - 2 ,  - 4 ,  

- 6 ,  and - 8 ,  the relative errors of IECA are 57.3%, 34.7%, 15.4%, and 4.4%, respectively. 

When b =  - 2 ,  RQ gets stable and accurate results. However, when calculating small 

probabilities ( b = - 4 ,  - 6 ,  o r -  8 ), RQ1, RQ2, and RQ3 produce different results, 

showing instability. It is a typical feature of a random method.

Table 3. Results for Example 1

b ^ - 2 - 4 - 6 - 8Methods i

Proposed 1.35 X 10-1 3.34 X 10-4 1.52 X 10-8 1.27 X 10-14
(0.0%) (-0 .5 % ) (-0 .2 % ) (0.0%)

IECA
2.13 X 10-1 4.52 X 10-4 1.76 X 10-8 1.32 X 10-14

(57.3% ) (34.7%) (15.4% ) (4.4%)
1.35 X 10-1 4.31 X 10-4 1.60 X 10-8 1.48 X 10-14

RQ1 (0.0%) (28.5%) (5.1%) (16.7%)
[7.80 X 10-6 ] [2.92 X 10-4] [1.84 X 10-8] [1.18 X 10-14]
1.35 X 10-1 3.39 X 10-4 8.78 X 10-9 9.66 X 10-15

RQ2 (0.0%) (1.1%) (-4 2 .4 % ) (-2 3 .7 % )
[6.77 X 10-6 ] [1.93 X 10-4] [3.48 X 10-9] [3.83 X 10-15]
1.35 X 10-1 2.84 X 10-4 7.77 X 10-9 9.66 X 10-15

RQ3 (0.0%) (-1 5 .3 % ) (-4 9 .0 % ) (-2 3 .7 % )
[5.40 X 10-6 ] [5.29 X 10-5] [9.98 X 10-10] [1.94 X 10-15]

Exact 1.35 X 10-1 3.35 X 10-4 1.52 X 10-8 1.27 X 10-14
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7.2. EXAMPLE 2: A MATH EXAMPLE WITHOUT AN EXACT SOLUTION

The limit-state function Y(t) is a nonstationary Gaussian process. The standard 

deviation is a ( t )  =  1 and the mean p ( t)  is given by

p ( t)  =  —6 — tcos(t) (44)

where t e[ t , t]  = [0, 5] s. We consider three different correlation coefficient functions, 

given by Eq. (45), Eq. (46), and Eq. (47).

Case 1: p(G , t 2) = s in (^ |t i  — t 2 |) /( rc |t i  — t 2 |) (45)

Case 2: p ( t1, t2) =  exp[—0.25(t1 — t2) 2] (46)

Case 3: p ( t1, t2) =  exp(—0 .2 5 |t1 — t2|)(1  +  0 .2 5 |t1 — t2|) (47)

Figure 7. Variable screening for Example 2

For numerical calculation, [t, t] is evenly discretized into N =  300 points, and 

hence the dimension is 300. Figure 7 shows the variable screening. 157 points among the
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300 points do not contribute to Pf significantly and hence are removed. N is updated to 

143. Note that the physical meaning of O(Uj) in Eq. (14) is the instantaneous probability 

of failure, and the variable screening procedure removes those time points with low 

instantaneous probabilities of failure.

In Case 1, there are N' = 5 significant basic random variables. The numbers of 

quadrature points for them are 35, 31, 15, 5, and 5, and hence there are in total 406,875 

quadrature points. The results are given in Table 4, where e represents the relative error 

with respect to MCS. The sample size of MCS is 8 x  106.

Pf calculated by the proposed method is 6.42 x  10-3 with a relative error of 

-0 .1 % , while IECA yields a Pj- value of 6.93 x  10-3 with a relative error of 7.9%. The 

proposed method is more accurate than IECA. RQ is more accurate than IECA, but not 

stable due to randomness.

Table 4. Results for Case 1 of Example 2

Methods Proposed IECA RQ1 RQ2 RQ3 MCS
Pr (x  10-3) 6.42 6.93 6.76 5.94 6.54 6.42

£(%) -0 .1 7.9 5.3 -7 .5 1.8 -
EAE - - 6.37 x  10-4 5.90 x  10-4 3.40 x  10-4 -

In Case 2, there are W  =  4 significant basic random variables. The numbers of 

quadrature points for them are 35, 7, 5, and 5, respectively, and hence there are in total 

6125 quadrature points. The results are given in Table 5. The sample size of MCS is 

1.2 x  107. Again, the proposed method is more accurate than both IECA and RQ.
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In Case 3, there are N'  =  4 significant basic random variables. The numbers of 

quadrature points for them are 35, 5, 5, and 5, and hence there are in total 4,375 

quadrature points. The results are given in Table 6. The sample size of MCS is 1.2 x  107. 

All three methods are accurate, and the proposed method is slightly more accurate.

Table 5. Results for Case 2 of Example 2

Methods Proposed IECA RQ1 RQ2 RQ3 MCS
Pr (x  10-3) 3.96 3.60 3.76 4.17 4.17 3.99

£(%) -0 .8 -9 .7 -5 .8 4.6 4.5 -
EAE - - 4.49 x  10-4 5.81 x  10-4 4.69 x  10-4 -

Table 6. Results for Case 3 of Example 2

Methods Proposed IECA RQ1 RQ2 RQ3 MCS
Pr (x  10-3) 3.42 3.35 3.48 3.35 3.48 3.43

£(%) -0 .2 -2 .3 1.6 -2 .3 1.7 -
EAE - - 2.31 x  10-4 8.54 x  10-7 2.34 x  10-4 -

7.3. EXAMPLE 3: A SLIDER-CRANK MECHANISM

Shown in Figure 8 is a slider-crank mechanism [5]. The link with lengths P 1 and 

R3 rotates with an angular velocity of m = n  rad/s. The motion output is the difference 

between the displacements of two sliders A and B. The mechanism is supposed to work 

with small motion errors during the time period [t,t]  =  [0,2] seconds. The motion error 

is defined as the difference between the desired motion output and the actual motion output. 

A failure occurs when the motion error is larger than 0.94 mm. The actual motion output

^actual is given by
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Figure 8. A slider-crank mechanism [5]

^ actual =  Ri cos(0 — 0o) + -  fl^sin2^  -  0q)

— R3cos(01 + d0 — 0 — S0) 

- j R 2 - R 2sin2(01 + 0o - 0 - 8 o)

where 0 =  mt. The desired motion output Asdesired is given by

Asdesired =  1O8cos(0 — 0o) +  ^ 2112 — 1O82sin2(0 — 0o)

— 1OOcos(01 + 0O — 0 — S0)

— V2132 — 1OO2sin2(0! + 0Q — 0 — S0) 

Then the limit-state function Y(t)  is given by

^ (0  =  (A^desired — A^actuaO — O.94

(48)

(49)

(50)

Table 7 shows the random variables and other parameters.
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Table 7. Variables and parameters of Example 3

Variable Mean Standard deviation Distribution
Ri 108 mm 0.05 mm Gaussian
R2 211 mm 0.2 mm Gaussian
Rs 100 mm 0.05 mm Gaussian
r4 213 mm 0.2 mm Gaussian
00 45° 0 Deterministic
0i

oo

0 Deterministic
So 10° 0 Deterministic
w n  rad/s 0 Deterministic

The time interval [t, t] is evenly discretized into N = 300 points. Since Y(t) is not 

a Gaussian random process, we need to transform it into an equivalent Gaussian process 

by applying FORM at each time point. After that, we need to calculate a 300-dimensional 

normal probability to obtain Pf. Figure 9 shows the variable screening step. No points 

among the 300 points are removed because the instantaneous probabilities of failure at all 

the 300 points contribute to Pf significantly.

Figure 9. Variable screening for Example 3



43

There are four significant basic random variables in U after the dimension reduction 

is performed. The numbers of quadrature points for U are 35, 5, 5, and 5, and hence there 

are in total 4,375 quadrature points. The results are given in Table 8. The sample size of 

MCS is 1.8 x  107.

Pf calculated by the proposed method is 2.38 x  10-3 with a relative error of 0.1%, 

while Pf calculated by IECA is 2.11 x  10-3 with a relative error of -11 .4% . RQ is more 

accurate than IECA but less accurate than the proposed method.

Table 8. Results of Example 3

Methods Proposed IECA RQ1 RQ2 RQ3 MCS
Pr (x  10-3) 2.38 2.11 2.48 2.39 2.48 2.38

£(%) 0.1 -1 1 .4 4.1 0.5 4.1 -
EAE - - 3.24 x  10-4 3.82 x  10-4 4.62 x  10-4 -

Note that there is no input random process in this example and hence the number 

N ' of significant basic random variables is at most the number of input random variables. 

If y ( t)  was not sensitive to some input random variables, N ' would be less than the 

number of input random variables.

7.4. EXAMPLE 4: A 52-BAR SPACE TRUSS

This example is modified from an example in [61]. Shown in Figure 10 is a 52-bar 

space truss with 21 nodes. All the nodes are located on the surface of an imaginary 

hemisphere whose radius is r  =  240 in. The cross-sectional areas of Bars 1~8 and 29~36 

are 2 in2. The cross-sectional areas of Bars 9~16  and other bars are 1.2 in2 and 0.6 in2,
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respectively. The Young’s modulus of all bars is E. To distinguish the node numbers and 

the bar numbers, we add a decimal point after all node numbers in Figure 13. Nodes 1~13 

are subjected to external loads F1~F13, all in the — z  direction. F1 is a stationary Gaussian 

process whose autocorrelation coefficient function is given by

p ( ti ,  t 2) =  exp[—0.25(tx — t 2)2] (51)

E and F2~F13 are random variables, and their distributions are given in Table 9.

(a) Top view (b) Left view

Figure 10. A 52-bar space truss [61]

Table 9. Variables and parameters of Example 4

Variable Mean Standard
deviation Distribution Autocorrelation

E 2.5 x  104 ksi 2.5 x  102 ksi Gaussian N/A

Fi(t) 40 kip 4 kip Nonstationary 
Gaussian process Eq. (51)

F2~Fs 50 kip 5 kip Lognormal N/A
F«~Fi3 60 kip 6 kip Lognormal N/A
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A failure occurs when the displacement S of Node 1 along — z  direction exceeds 

the threshold S0 = 1.3 in at any instant of time in the period [t, t] =  [0, 5] years. The limit- 

state function is given by

Y ( t ) = S 0 — S (£ ,F ) (52)

where F =  [F1(t),F2,F3, ...,F13 ] is the vector of all the loads. 5(E,F) is calculated by 

FEM. The linear bar element is used.

The time interval [t, t] is evenly discretized into N = 500 points. Since Y(t) is not 

a Gaussian random process, we need to transform it into an equivalent Gaussian process 

by applying FORM at each time point. After that, we need to calculate a 500-dimensional 

normal probability to obtain Pf. Since Y(t) becomes a stationary Gaussian process after 

the transformation, Y =  (Yv Y2, ..., Ysqq) share the same mean value and standard deviation. 

As a result, no components in Y are removed during the variable screening procedure.

There are only N' = 7 significant basic random variables after the dimension 

reduction. The numbers of quadrature points for them are 35, 18, 6, 5 5, 5, and 5, and 

hence there are in total 2,362,500 quadrature points. The sample size of MCS is 1.2 x  108. 

The results are given in Table 10. The proposed method is significantly more accurate than 

both RQ and IECA.

Table 10. Results for Example 4

Methods Proposed IECA RQ1 RQ2 RQ3 MCS
Pf (x  10-4) 3.35 4.07 4.11 4.25 2.72 3.36

E(%) —0.6 21.0 22.3 26.4 — 19.1 -
EAE - - 2.51 x  10-4 4.72 x  10-4 2.13 x  10-4 -
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The four examples have demonstrated the high accuracy and robustness of the 

proposed method. IECA is accurate for some examples but less accurate for others, and 

RQ is not robust for some problems because of large randomness in the solutions with 

different sampling seeds. The proposed method works particularly well for a time- 

dependent reliability analysis for which the limit-state function has been approximated by 

a Gaussian process.

8. CONCLUSIONS

Evaluating a multivariate normal probability is widely encountered in many 

engineering problems. It is a challenging task when the dimension is high and the 

probability is low. The proposed method addresses the problem by using the extreme value 

of all the normal variables. Its moment generating function (MGF) is obtained by the 

Gauss-Hermite quadrature method, and the dimension is also reduced by screening out 

variables in both the physical space and the eigenspace. The saddlepoint approximation is 

used to recover the multivariate normal probability from MGF.

The main computational effort is the calculation of MGF by a multidimensional 

quadrature method. The efficiency depends on the dimension of the integral or the reduced 

dimension. Therefore, the efficiency of the proposed method mainly depends on the 

number of the significant basic random variables after the dimension reduction, instead of 

the dimension of the original normal variables. This is a good feature for many engineering 

problems where the dimension can be reduced significantly because not all normal
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variables contribute significantly to the multivariate normal probability and the 

multivariate normal probability is not sensitive to all coordinates of the eigenspace.

Another advantage of the proposed method is its ability to calculate extremely small 

probabilities. The accuracy is achieved by the accurate generation of MGF, as well as 

saddlepoint approximation with its well-known accuracy for small probabilities. This 

feature makes the proposed method suitable for reliability applications where the 

probability of failure is inevitably small. The proposed method is also numerically stable, 

and the result is repeatable.

The method, however, may not work well if  the reduced dimension is still high. For 

example, in time-dependent reliability problems, if the correlation length of the limit-state 

function is short and/or the time interval of interest is long, the reduced dimension will be 

high and the proposed method may not work well or may even fail. Our future work will 

focus on accommodating a larger dimension in the reduced space.
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II. PHYSICS-BASED GAUSSIAN PROCESS METHOD FOR PREDICTING 
AVERAGE PRODUCT LIFETIME IN DESIGN STAGE

ABSTRACT

The average lifetime or the mean time to failure (MTTF) of a product is an 

important metric to measure product reliability. Current methods of evaluating MTTF are 

mainly based on statistics or data. They need lifetime testing on many products to get the 

lifetime samples, which are then used to estimate the MTTF. The lifetime testing, however, 

is expensive in terms of both time and cost. The efficiency is also low because it cannot be 

effectively incorporated in the early design stage where many physics-based models are 

available. We propose to predict the MTTF in the design stage using a physics-based 

Gaussian process method. Since the physics-based models are usually computationally 

demanding, we face a problem with both big data (on the model input side) and small data 

(on the model output side). The proposed adaptive supervised training method with the 

Gaussian process regression can quickly predict the MTTF with a minimized number of 

calling the physical models. The proposed method can enable the design to be continually 

improved by changing design variables until reliability measures, including the MTTF, are 

satisfied. The effectiveness of the method is demonstrated by three examples.

1. INTRODUCTION

In reliability engineering [1-5], the average lifetime, or the mean time to failure 

(MTTF), is an important metric of product reliability [1, 6]. Statistics-based methods [7, 8]
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are widely used to estimate the MTTF. The methods need lifetime testing on many products 

to obtain the lifetime samples, which are then used to estimate the average lifetime by 

statistical analysis. The methods are generally expensive in three aspects. First, lifetime 

testing is time-consuming when the actual product lifetime is very long such as years. 

Although accelerated life testing [9] can reduce the testing time, the results may not reflect 

the reliability of the product in normal use conditions. Second, the cost of testing is usually 

high. Third, the testing is performed, and lifetime data are collected after the product was 

made. It is too late and more costly to fix reliability issues if the MTTF is shorter than 

expected. It is desirable to predict the MTTF during the early design stage.

Direct lifetime data, however, are rarely available during the design stage. Physics- 

based methods [10] then play an important role to deal with this problem. The methods use 

limit-state functions, which are computational models derived from physical principles, to 

predict the states of the components and subsystems of the product with respect to potential 

failure modes [11]. With the computational models for the failure modes, physics-based 

methods are much more efficient than the statistics-based methods. They can predict 

reliability performance for a given design. If the reliability measures, including the MTTF, 

do not meet the design requirements, design variables will be changed until the reliability 

requirements are met. Physics-based methods are therefore a powerful tool to support 

design for reliability [12-16].

Physics-based methods were originally developed for structural reliability analysis 

[10]. In the last decades, many new physics-based reliability methods have been developed. 

These methods cover a wide range of applications, from component reliability to system
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reliability [10], and from time-independent reliability to time-dependent reliability [17-19] 

and time- and space-dependent reliability [2 0 ].

Computational models, such as a finite element analysis model [21], are usually 

computationally expensive. We usually know distributions of random input variables, and 

we can generate many random samples for the input variables. In this sense, we have big 

data. On the other hand, we can afford to run the computational models only a limited 

number of times, and then we have small data for the responses. For this reason, machine 

learning (ML) methodologies have been increasingly used for reliability analysis. For 

example, the Gaussian process (GP) method for quantifying model structure uncertainty 

[22, 23]; the support vector machine (SVM) method for estimating rare event probabilities 

[11], and other methods for predicting component and system reliability [24].

In this study, we extend the physics-based methods to predict the MTTF of a 

product. Since this task needs more calls of the computational model than a regular 

reliability analysis, we also rely on ML to maintain computational efficiency. Specifically, 

we employ the supervised machine learning method [25] and adaptively train a GP [26] to 

approximate the computational function with respect to the basic random input variables. 

A learning function is developed to guide adding training points. Once the learning is 

finished, the MTTF of the product is obtained.

The problem statement is given in Section 2. A brief introduction to GP is given in 

Section 3. The proposed method is discussed in Section 4. In Section 5, we extend the 

proposed method to deal with problems involving random processes. Three examples are 

provided in Section 6, followed by conclusions in Section 7.
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The computational function for reliability analysis is called a limit-state function, 

which is given by

Y = G(X,t) (1)

where X =  (Xx, X2 ...,XN)T are N basic input random variables and t is time. Note that the 

input of G( 0  may also include random processes, which can be transformed into functions 

with respect to random variables and t . Thus Eq. (1) does not lose generality. Y is in 

general a random process. The product fails once its response Y takes a negative value.

2. PROBLEM STATEMENT

Figure 1 shows a sample of Y when X is fixed to a realization x . When t =  r (x ) , Y 

takes a negative value for the first time, and hence r(x ) is called the first time to failure. If 

the product is non-repairable, r(x ) is the lifetime (given that X =  x ), and afterward 

Y(x, t ) , t  > t has no physical meaning. Since r(X) is dependent on the input random 

variables X, it is also a random variable. The product’s MTTF f  is given by
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f= E [ r ( X ) ]  (2)

where E(-) represents an expectation.

The task of this study is to predict f  efficiently and accurately. Mathematically, 

t(X) is the first (or minimum) root of the following equation

G(X,t) = 0 (3)

Finding the minimum root of Eq. (3), however, may be computationally expensive when 

the limit-state function G(X, t) is an expensive black-box function. Therefore, developing 

an accurate and efficient first-root finder is a challenge.

3. INTRODUCTION TO GAUSSIAN PROCESS M ODEL AND THE LEARNING
FUNCTION U

Before presenting the proposed method, we briefly introduce GP [26] (or Kriging 

model [27]) and the learning function U [28], on which the proposed method is based.

A GP makes regression to a function F(X) from a training sample set, or a design of 

experiment (DoE). The main idea of GP is to treat F(X) as a realization of a Gaussian 

process F(X). The mean value function ^ ( X ) ,  standard deviation function op(X), and 

correlation coefficient function of F(X) are determined by using the maximum likelihood 

method [29]. Generally, ^p(X) is used as the deterministic prediction to F(X), and op(X) 

is used to measure the prediction uncertainty or prediction error. The prediction uncertainty 

comes from the fact that only a limit number of training points, and hence only part of the 

information in F(X), are used to build F(X) and infer ^p(X).  The missing information
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leads to prediction uncertainty. The ability to measure the prediction error makes GP 

outweigh many other surrogate models. More details about GP are available in [26].

For a given specific point x of input variables X, the GP predicts F(x) to be a

normal variable N (u/?(x), o |(x ) ) .  In engineering problems where only the sign of F(x)

is of interest, such as reliability analysis where only the sign of the limit-state function is 

important, we need to measure how certain the sign of F(x) has been predicted by 

s ig n [ ^ ( x ) ] , the sign of ^p(x) . If ^p(x) > 0 , then the probability that F(x) > 0  is

O ), where O Q  is the cumulative distribution function of a standard normal variable.
\ 0>(x)/

Similarly, if  ̂ p(x) < 0, then the probability that F(x) < 0  is O ( _  ). Combining the

two cases, the probability that the sign of F(x) has been correctly predicted by sign[u/?(x)]

is O ( ^ x̂ ) . , which is monotonous to O and known as the learning

function U [28], is widely used to determine how correctly sign[F(x)] has been predicted. 

In the following Section 4, we will show how GP and learning function U are used in the 

proposed method.

4. THE PROPOSED METHOD

4.1. OVERVIEW OF THE PROPOSED METHOD

The main idea of the proposed method is to adaptively train a GP G(X, t) for 

G(X, t). With G(X, t), we can obtain the surrogate model t(X ) of r(X) at the same time.
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Since i(X)  is computationally cheap, we can calculate t using Monte Carlo simulation 

(MCS) [30].

Figure 2. Brief flowchart of the proposed method

Training G(X,t) should be task-oriented to improve efficiency. We develop a 

learning function and a stopping criterion to fulfill task-oriented training. Figure 2 shows 

a brief flowchart of the proposed method. There are mainly three steps. Step 1 is the design 

of experiments. It generates the initial training points for G(X,t). In Step 2, G(X,t) is 

adaptively refined by adding new training points. A learning function and a stopping
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criterion are developed to find the new training points and determine when to terminate the 

training. In Step 3, the sample size of X, and hence of t(X ) , is adaptively enlarged until f  

is estimated with sufficiently high fidelity. The three steps are discussed in detail in 

Subsections 4.2 through 4.4.

4.2. DESIGN OF EXPERIM ENTS FO R INITIAL SURROGATE MODEL

The principle of the design of experiments for building a GP is to spread the initial 

training points evenly. Commonly used sampling methods include random sampling, Latin 

hypercube sampling, and Hammersley sampling [31]. In this study, we employ the 

Hammersley sampling method because it has better uniformity properties over a 

multidimensional space [32]. Since the dimension of the entire input vector (X, t) is N + 

1 , the Hammersley sampling method generates initial training points in a hypercube 

[0,1]w+x. To get initial training points of X, we can simply use the inverse probability 

method to transform the training points from the hypercube space to the X-space. As for 

the initial training points of t , we treat t as if  it was a uniform random variable and could 

also be transformed from the interval [0,1] to the time interval [0, T]. We assume that T is 

sufficiently large so that Eq. (3) has at least a root in [0, T]. The initial training points x in 

of X =  (X1,X2 ...,Xn)t are

■ x (1) T(1)
a2

r (i) i

Xin =
x (2) y (2)

a2
r (2)

(4)

x (nin) .r (nin)
a2

,v.(nin)• J

where n in is the total number of initial training points. With x in and the initial training 

points t in of t , we then obtain initial training points y in of Y by evaluating Eq. (1) nin
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times. Finally, we get the initial training set (x trn, t trn, y trn) =  (x in, t in,y in), where the 

superscript trn and in represents the general training points and initial training points, 

respectively.

4.3. ADAPTIVE TRAINING

With the initial training points (x in, t in, y in), we can build an initial GP G (X, t)  to 

approximate G(X, t). The initial G(X, t) is generally not accurate. The task of adaptive 

training is to add training points to refine G(X, t) sequentially and adaptively. Specifically, 

a task-oriented learning function and stopping criterion are developed.

For numerical computation, [0, T] is evenly discretized into m  points t  = 

(tj_, t 2, ..., tm ) T. Then r(x ) is approximated by

f(x ) =  m in(t e  t|^,«(x, t)  <  0} (5)

To estimate f, we first randomly generate n s samples Xs of X. Then f  is approximated by

™S
f  =  — £ f ( x (0 ) (6)

™s 1=1

where x (t) is the ith random sample of X. Eq. (6) can yield accurate f  when two conditions 

are satisfied. First, the sample size n s is sufficiently large. How to determine n s will be 

given in Subsection 4.3. Second, the model t(X ) is accurate at all the samples Xs. How to 

add training samples to refine G(x, t)  so that the second condition is satisfied is the key to 

the adaptive training.

Intuitively, t(X ) is accurate as long as ^ ( X ,  t) approximates G(X, t) accurately. 

However, training G (X, t) in this way is not efficient and it disobeys the task-oriented rule. 

In fact, t* e  t  is an accurate solution to Eq. (5) as long as the signs of
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(G (x ,t) |, t G t , t  <t*  } are predicted accurately. For example, if  G(x, t) can accurately 

predict the signs of G(x,tj),j  = 1,2,3,4,5 as ( + , + , + , + , - ) ,  then t5 is the accurate 

solution to Eq. (5). We do not need to care if G(x,t) predicts the specific values of 

G(x, tj),j  = 1,2,3,4,5 or the signs of G(x, tj),j  > 6 accurately. Note that in this example 

the exact solution to Eq. (5) should be in the interval [t4, t 5], but we can all the same select 

t5 as the solution without losing significant accuracy as long as m  is sufficiently large.

The well-known learning function U [28] is used to measure how accurate the sign 

at a point is predicted. It is given by

U(x,t) =
Img(x,O I
as (x , t ) (7)

To refine G(X, t), we should add training points where the accuracy is poor or U is small 

since a small U means that the chance of correctly predicting the sign of G(x, t) is small. 

If X is fixed to x, the next training point (x, t next) is determined by

(x, t next) = arg min U(x, t) (8)
tGt,t<f(x) V '

Since there are ns samples of X, Eq. (8) determines ns points. Among them, the point with 

minimal U is finally selected as the next training point (xnext, t next), which is determined 

by

(xnext, t next) = arg min U(x,t) (9)

With the learning function given in Eq. (9), we can add training points to update 

(x trn, t trn,y trn) and G(X, t) sequentially until a stopping criterion is satisfied.

The direct use of U(x, t) and hence Eq. (9), however, may result in duplicate 

training points. In other words, the next training point determined by Eq. (9) may be the
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one among (x trn, t trn, y trn) . Once this happens, the adaptive training fails. Theoretically, 

because GP is an exact interpolator, if  a point (x*,t*,y*) is among the training set 

(x trn, t trn, y trn) , G(X,t) will predict G(x*,t*) exactly as y* , i.e., ^c(x*,t*) = y* and 

oq(x *, t*) =  0 . As a result, U(x*, t*) = +ro , (x *, t*) will never be selected by Eq. (9) as 

the next training point, and the duplicate training points will never be encountered. 

However, due to the numerical error, Ofi(x*, t*) is not exactly zero but a small positive 

number. In this case, if  ̂ g(x*, t*) is smaller than ag(x*, t*), we will have U(x*, t*) < 1, 

and Eq. (9) may select (x*,t*) as the next training point, leading to duplicate training 

points.

Another problem caused by U is that added training points may cluster together 

[19]. It will make the correlation matrix of GP ill-conditioned. If this happens, some of the 

clustered training points will have a negligible effect on the refinement of G(X,t), and 

adaptive training may not converge. Hu and Mahadevan [19] proposed to disqualify those 

points to be candidate training points if they are highly correlated with any one of the 

existing training points. Specifically, the candidate training points are shrunk from the

point set Xs x t  to {(x, t) E Xs x t , , max p [(x, t ) ,(x ' , t ' ) ] <r](x',t')E(xtrn\ trn) where p (y )  is

the correlation coefficient used in GP to describe the correlation of two points, and ^ is a 

hyperparameter. It guarantees that the candidate training points are sufficiently far away 

from the current training points, and thereby that the newly selected training point will not 

overlap or cluster with any one of the current training points.

We employ this method and then the learning function proposed in Eq. (9) is

updated to
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(x next, t next) =  arg min U(x,t) ( 10 )

where C = (x, t)  e  Xs x  t , , ,m a x  tm ,P[ (x ,t ) , ( x ', t ' ) ](x',t')e(xtrn,ttrn)

In addition to the learning function, the other important component of adaptive 

training is the stopping criterion. Since the learning function can add training points 

iteratively to update G(X, t), and hence f  (x) in Eq. (5), a stopping criterion is necessary to 

terminate the iteration. Once the model f  (X) is accurate on all the samples Xs, we no longer 

add new training points. Therefore, the iteration ends if the following condition is satisfied

W >  w ( 1 1 )

where W =  min U(x, t), and w is a hyperparameter and is recommended to set tot<t(x),(x,t)ec F

2. Generally, the larger is w, the more accurate will f  be. Larger w, however, will lower 

the efficiency, so the selection of w needs a tradeoff. There is no rigorous theory to 

determine the best w , and we recommend 2  based on both our experience from many 

experiments and [28].

4.4. ADAPTIVE SAMPLE SIZE

Since the random sampling method is used to estimate f  through Eq. (6), it is 

desirable to select a good sample size n s . We use an initial sample size n 0 and then 

adaptively increase the sample size until f  is obtained with sufficiently high fidelity [33].

Since r(X) is a random variable, the sample size needed to estimate its mean value 

f  is dependent on its standard deviation aT. With the sample size n s , the deviation 

coefficient E of f  is given by
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r  =
Or

xjn, ( 1 2 )

where t is estimated by Eq. (6) and aT is estimated by

- ^ [f (x (i)) -  r ]2

i=i
n<

(13)

Eq. (12) shows that the larger is ns, the smaller T will we have. A smaller T means that f  

is more accurately estimated by Eq. (6). f  is said to be accurate if the following condition 

is satisfied

n

=

r  < y  (14)

where y is a threshold, which usually takes a small positive number, such as 0.005.

If the current ns cannot satisfy Eq. (14), we should increase it. Combining Eq. (12) 

and Eq. (14), we have

ns > 0 (15)

2
It means that at least a sample size of ( r1) is necessary to guarantee Eq. (14). Let n1 =

ceil , where ceil(-) represents the operation to get the nearest larger integer. Then

the number n add by which ns should be increased is given by

™add = n i - n s  (16)

However, when G(X, t) is too rough at the first several adaptive training iterations, both f  

and aT may have poor accuracy, and n add given in Eq. (16) may be misleading. To deal 

with this issue, we set a threshold nadd for nadd. Then Eq. (16) is updated to
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^•add'i f ^ 1 ns > Ĵ add 
add ( n1 — ns, otherwise

Since it is cheap to compute samples of f  (X), nadd is not 

proposed method, and generally, it is good to set nadd 

experience from many experiments.

a key hyperparameter of the 

to 1 ,0 0 0 , according to our

(17)

4.5. IMPLEMENTATION

In this subsection, we give a detailed procedure of the proposed method. The full 

flowchart is shown in Figure 3. The total number ne of function evaluations of G(X, t) is 

used to measure the main computational cost of the proposed method.

Generate n 0 random samples x

Generate n itl initial training points ( x , t trn )
and compute y trn with Eq, (1); n

Build G(X, t) using (xtrn, t trn,y trn)

Compute t(X) a tx  with Eq. (5)

Compute r  with Eq. (6)
Find (xnext, t nexC)

with Eq. (10),Compute W
Generate nadd nextcompute y

random  samples of X, with Eq. (1),
add them into Xs, update n e = +  1,

and update and add
ns = ns + nadd ^ n e x t  jn e x t  y n e x t^

intoCompute f
(x , t  , y trn)

[ Compute n add Return t

Figure 3. Detailed flowchart of the proposed method
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5. EXTENSION TO PROBLEMS WITH INPUT RANDOM PROCESSES

When the limit-state function G()  has input random processes, it is straightforward 

to employ the series expansion methods of the random processes so that the above 

implementation of the proposed method can still work.

Let H (t) represents a vector of random processes, then the limit-state function is 

given by

Y = G( \H( t ) , t )  (18)

To easily present the idea, we assume there is only one random process H(t). Widely used 

series expansions for random fields include the Karhunen-Loeve series expansion (K-L), 

the orthogonal series expansion (OSE), and the expansion optimal linear estimation method 

(EOLE) [34]. Since t is discretized into t, the autocorrelation coefficient function of H(t} 

is discretized into the autocorrelation coefficient matrix with dimension m X m .  Then 

the EOLE expansion H(%, t) of H(t) is given by

Z m Zk—  VfcMH(:,fe) , t 6 t  (19)
k=i jA^  V '

where y.H(t) is the mean value function of H(t), aH(t) is the standard deviation function 

of H(t), %k,k = 1,2, ...,m are m  independent standard Gaussian variables, Ak is the k-th 

eigenvalue of MH, Vk is the k -th (row) eigenvector of MH, and MH(:,k)  is the k -th 

column of MH. Note that the eigenvalues are sorted from the largest to the smallest. Usually 

only the first m' (m' < m)  eigenvalues are significant. Therefore, Eq. (19) is practically 

truncated, and only the first m'  orders are kept:
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Z "1' Zk- j = V kMH(: , k ) , t  £ t
k=1jAu

With the truncated expansion in Eq. (20), Eq. (18) is rewritten as

Y = G(X,H(%,t),t)

or equivalently as

Y = G(X,t)

(2 0 )

(2 1 )

(2 2 )

where X = (^,X) . Eq. (22) shares the same format with Eq. (1) and hence the 

implementation given in Subsection 4.5 also works.

The direct implementation this way, however, may suffer from the curse of 

dimensionality. Since there are many random variables, i.e. %, in the series expansion 

H(%, t), the dimension of % and hence that of G(X, t) is high. As a result, the dimension of 

G(X, t) is also high. The high dimensionality has as least two drawbacks. First, it is not 

computationally cheap anymore, losing its expected advantages. Second, more training 

points are needed to train the GP. To overcome the drawbacks, we build a GP G(X, H, t) 

with respect to X, H, and t [19, 33]. Note that the entire random process H is treated as 

only one variable for G(X, H, t). Then the surrogate model G(X, t)  with respect to X and t 

is obtained through

6 (X ,t)  =  6 [ X ,H a t ) , t ]  (23)

Since the truncated series expansion H(%, Z) in Eq. (20) has a simple closed-form 

expression, if  G(X, H, t) is accurate and efficient, so will be G(X, t)  in Eq. (23). Since the 

dimension of G(X, H, t) is (m' — 1) lower than that of G(X, t), it is more efficient to train 

G (X, H,t).  To build G (X, H, t), we need the training points h trn of H. h trn can be obtained
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simply by substituting (^trn, t trn) into Eq. (20). Similarly, when (x (next), f (next)) js 

determined by Eq. (10), the next training point h (next) of H is obtained by substituting 

(^(next), z (next)) into Eq. (20). Note that x (next) =  (^(next), x (next)) . When multiple input 

random processes are involved, the procedure of building and updating the surrogate model 

G is similar.

6. EXAMPLES

In this section, we use three examples to illustrate the proposed method. The first 

one is a math example with only one input random variable. It is designed to graphically 

show the procedure of the proposed method. The second one is an engineering example 

with both input random variables and a random process. The third one is an engineering 

example where the limit-state function is a black box using the finite element method (FEM) 

and where there are five input random processes.

All the three examples share the same values of the following parameters: m  = 

100, w =  2, ^ =  0.95, y =  0.005, and n add =  1,000. MCS is also used to evaluate 

MTTF; it calls the original limit-state function in Eq. (1) directly to get samples of t (X), 

and hence the mean lifetime f. The sample size n MCS of MCS is set to 105. The results of 

MCS are treated as accurate solutions for the accuracy comparison. Both the proposed 

method and MCS share the same discretization of t  G [0 ,f |.
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6.1. EXAMPLE 1: A MATH EXAMPLE

The limit-state function is given by

Y = ex p (-0 .0 5 t)co s(0 .2 5 t +  X), t e  [0,40] (24)

where X is a standard uniform variable. With the Hammersley sampling method, we get

nin = 5 initial training points in [0,1]2. They are assembled in a matrix M

0 0.5
0.2 0.25

M = 0.4 0.75
0.6 0.125
0.8 0.625

(25)

The first column of M is mapped to the interval [0, T] of t, and then we get the initial 

training points t in =  (0, 8 ,1 6 ,24,32)r . The second column is mapped to the interval [0,1] 

of X , and then we get the initial training points x in =  (0 .5 ,0 .25 ,0 .75 ,0.125,0.625)r . 

Substituting the five training points (x in, t in) into Eq. (1), we get five training points y in = 

(0.8776, -0 .4211 , 0.0169,0.2974, -0 .1 4 0 7 )7 of E.

Eq. (1) has been evaluated 5 times so far, and therefore currently n e =  5. With the 

training points (x trn, t trn, y trn) =  (x in, t in,y m) , G(X, t) is built. Then more and more 

training points determined by the learning function in Eq. (10) are added one by one into 

the training set (x trn, t trn, y trn) to refine G(X, t). The sample size n s is also increased 

adaptively from the initial value n 0 =  1,000. After the algorithm converges, eight training 

points are added, and n e is finally updated to 5 +  6 =  11. n s is finally increased to 2,632.

Figure 4 shows the actual contours of the limit-state function, as well as the training 

points. Three contours are indicating Y =  0. For each value of X, Eq. (3) has three roots. 

However, we need only the first root. In other words, we need the GP to accurately predict 

only the first contour. With the proposed learning function in Eq. (10), almost all adaptive
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training points are added near the first contour. It helps the GP efficiently find the first root, 

i.e., t(X), without putting unnecessary computational effort in improving the GP in the 

unimportant area. This is an expected good property of the proposed task-oriented adaptive 

training.

CC~:g: Actual contours
COO O  O  o Initial training pointsro  <35

Added training points

hird ContourSecond Contour

o o o
ro

Figure 4. Contours and training points

The results are given in Table 1. The MTTF estimated by the proposed method is 

4.48, and that estimated by MCS is 4.49. The relative error is -0 .2 % , showing the high 

accuracy of the proposed method. Besides, the proposed method only evaluates the limit- 

state function 11 times, far less than 107 times by MCS, showing the high efficiency of the

proposed method.
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Table 1. Results of Example 1

Methods Proposed MCS

T 4.48 4.49

Relative error - 0 .2 % -

ne 1 1 1 0 7

6.2. EXAMPLE 2: A SIMPLY SUPPORTED BEAM

This example is modified from an example in [35]. Shown in Figure 5 is a simply 

supported beam subjected to two random loads. The cross-section A-A is rectangular with 

width a and height b. Due to corrosion, both a and b decrease with time t and are given 

by

a = a 0e x p ( - 0 .0 2 t)  (26)

and

b = b0exp(-0.02t)  (27)

where a0 and b0 are their initial values.

Figure 5. A simply supported beam [35]
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A stationary random process load F (t) acts at the midpoint o f the beam. The beam 

is also subjected to a constant weight load and a load q , which is uniformly distributed on 

the top surface o f the beam. The autocorrelation coefficient functions o f F ( t )  is given by

Pit 1, t 2) =  exp
- ( ^ ) 2

(28)

A failure occurs once the stress exceeds the ultimate strength. The limit-state 

function is given by

Y = -0 .2 5 F(t)L -  0.125qL2 -  0.125pa0b0L2 + 0.25(a0 -  2k t ) (a0 -  2k t ) 2a (29)

where a  is the ultimate strength, p  = 78.5 k g /m 3 is the density o f the beam, L =  5 m is 

the length o f the beam, and t e  [0 ,20  ] yr. Table 2 gives all random variables. n in and n 0 

are set to 10 and 1,000, respectively. We use six random variables for the EOLE expansion 

of F(t) .

Table 2. Variables o f Example 2

Variable Mean Standard
deviation Distribution Autocorrelation

a 0 0.2 m 0.002 m Gaussian N/A
b0 0.04 m 0.004 m Gaussian N/A
a 0.24 GPa 0.0024 GPa Gaussian N/A

F(t ) 5,000 N 500 N Stationary Gaussian 
process Eq. (28)

____ 1_____ 450 N /m 50 N /m Gaussian N/A

The results are given in Table 3. The MTTF evaluated by the proposed method is 

11.61 years, with a relative error o f -0 .4% . Besides, the proposed method only cost 23 

limit-state function evaluations, which is much cheaper than MCS.
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Table 3. Results of Example 2

Methods Proposed MCS

T 11.61 yr 1 1 .6 6  yr

Relative error —0.4% -

ne 23 1 0 7

6.3. EXAMPLE 3: A 52-BAR SPACE TRUSS

This example is modified from an example in [36]. Shown in Figure 6 is a 52-bar 

space truss with 21 nodes. To distinguish the node numbers and the bar numbers, we add 

a decimal point after all node numbers in Figure 6 . All the nodes are located on the surface 

of an imaginary hemisphere whose radius is r = 240 in. The cross-sectional areas of Bars 

1~8 and 29~36 are 2 in2. The cross-sectional areas of Bars 9~16 and other bars are 1.2 in2 

and 0.6 in2, respectively. The Young’s modulus of all bars is E , which is a lognormal 

random variable with mean and standard deviation being 25,000 ksi and 25 k s i , 

respectively. Nodes 1~5 are subjected to external loads F1(t)~F5(t) , all in the — z 

direction. The five loads are Gaussian processes. They are independent of each other with 

the following autocorrelation coefficient function:

p ( t i , t 2) =  exp [—( ^ ^ (30)

where t 1, t 2 G [0,10] y r . F2 ( t)~ F 5(t)  are all stationary processes whose mean and 

standard deviation are 50 kip and 1 kip , respectively. F1 (t)  is nonstationary, with 

standard deviation being 1  kip, and mean value ^ 1 (t)  given by

^ 1 (t)  =  50exp(0.02t) kip (31)

where t  G [0,10] yr.
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A failure occurs when the displacement S of Node 1 in — z  direction exceeds a 

threshold S0 = 1.3 in. The limit-state function is given by

Y ( t ) = S 0 — S(F ,F) (32)

where F =  [Fj_, F2, F3, ..., F5 ] is the vector of all loads. S(E, F) is calculated by FEM, and 

the linear bar element is used.

nin and n0 are set to 10 and 1,000, respectively. We use six random variables in 

the EOLE expansion of each random load. The results are given in Table 4. The mean 

lifetime evaluated by the proposed method is 4.79 years with a relative error of 0.8%. 

Besides, the proposed method costs 56 limit-state function evaluations and is much more 

efficient than MCS.

(a) Top view (b) Left view

Figure 6 . A 52-bar truss [36]
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Table 4. Results of Example 3

Methods Proposed MCS

T 4.79 yr 4.75 yr

Relative error 0 .8 % -

ne 56 1 0 7

7. CONCLUSIONS

The mean time to failure (MTTF) is an important measure of product reliability. 

This study demonstrates that MTTF can be predicted computationally by a physics-based 

method. If a failure mode of the product is well understood and can be modeled 

mathematically, a limit-state function is available, and the physics-based method can then 

be used. It is in general much more efficient and cheaper than statistics-based methods.

This study also demonstrates that ML is a powerful tool to assist the prediction of 

the MTTF, which requires a large number of calls of the limit-state function. The results 

indicate that the proposed Gaussian process-based adaptive training is effective to predict 

the MTTF. The key to the learning algorithm is the learning function that is specially 

designed for adaptive training. Three examples have shown the high accuracy and 

efficiency of the proposed method.

The proposed method can only accommodate one failure mode. If there are multiple 

failure modes, the MTTF will depend on the limit-state functions of the failure modes and 

their relationships, for instance, whether they are in parallel or series, and this will involve 

time-dependent system reliability analysis, where ML can play a more significant role. Our
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future work will include developing physics-based ML algorithms for multiple Gaussian 

process responses so that multiple limit-state functions can be handled.
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III. UNCERTAINTY ANALYSIS FOR TIME- AND SPACE-DEPENDENT 
RESPONSES WITH RANDOM VARIABLES

ABSTRACT

The performance of a product varies with respect to time and space if the associated 

limit-state function involves time and space. This study develops an uncertainty analysis 

method that quantifies the effect of random input variables on the performance (response) 

over time and space. The combination of the first-order reliability method (FORM) and the 

second-order reliability method (SORM) is used to approximate the extreme value of the 

response with respect to space at discretized instants of time. Then the response becomes 

a Gaussian stochastic process that is fully defined by the mean, variance, and 

autocorrelation functions obtained from FORM and SORM, and a sequential single-loop 

procedure is performed for spatial and random variables. The method is successfully 

applied to the reliability analysis of a crank-slider mechanism, which operates in a specified 

period of time and space.

1. INTRODUCTION

Uncertainty, which is a gap between the present state of knowledge and the 

complete knowledge [1 ], exists in all stages of product development and operation [2 ]. 

Examples of uncertainty include random material properties, random loading, random 

operation conditions; they also include random manufacturing imprecision, as well as the 

lack of knowledge, such as ignorance, assumptions, and simplifications [1 ]. Numerous



81

applications and studies have shown that not considering uncertainty properly during the 

design stage can lead to serious problems, such as low reliability, low robustness, low  

customer satisfaction, high risk, and high lifecycle cost [1, 3-5].

Reliability methods provide useful tools for uncertainty quantification and 

management. This is because reliability is not only an important quality characteristic o f a 

product, but also related to other characteristics such as robustness, risk, safety, 

maintainability, and cost. Reliability is usually quantified by the probability that a product 

performs its intended function over a specified period o f time and under specified service 

conditions [6]. Reliability problems can be roughly grouped into four categories: (a) time- 

and space-independent (TSI) problems, (b) space-dependent (SD) problems, (c) time- 

dependent (TD) problems, and (d) time- and space-dependent (TSD) problems. TSD 

problems belong to the most general category since the other three types are just special 

cases o f the TSD category.

TSI problems are the most traditional problems. They involve only time- and space- 

independent random variables, such as the geometry or material properties o f a structure 

and applied loads. The responses are also random variables. Reliability methods for TSI 

problems include, but are not limited to, analytical methods, surrogate model methods, 

moment methods, and simulation methods. Typical analytical methods include the first- 

order reliability method (FORM) and the second-order reliability method (SORM) [7-12]. 

FORM and SORM simplify a limit-state function, which specifies a functional relationship 

between a response and random input variables, using the first and second-order Taylor 

series expansions, respectively, at the so-called most probable point (MPP) [13]. Surrogate 

model methods [14-16] use simplified models, which are generally obtained from the
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design o f experiments or variable screening using sensitivity analysis, to improve the 

computation efficiency. Moment methods [13, 17] calculate the moments o f the limit-state 

function and then approximate its distribution with the moments; and then the distribution 

is used to obtain the reliability. Simulation methods include the direct Monte Carlo 

simulation (MCS) [18], quasi-Monte Carlo simulation [19], importance sampling [20], and 

subset simulation [21]. Usually, simulation methods are accurate but computationally 

expensive.

SD problems have responses that are space dependent. This happens when either 

input variables are spatially distributed with random fields [22] or the response is a function 

of spatial variables. Structural reliability analysis for this kind o f problem usually requires 

stochastic finite element methods [22, 23].

Another dimension on which the uncertainty may depend is time. This happens 

when the response is a function o f time or input variables, such as material properties and 

loads, which are time-variant stochastic processes. For these TD problems, many 

methodologies are available, including upcrossing rate methods [24-26], surrogate model 

methods [27-30], simulation methods [31, 32], probability density evolution method [33], 

envelope function method [34], failure process decomposition-based method [35], and 

extreme value moment method [36]. Generally speaking, upcrossing rate methods are the 

most dominant methods, surrogate methods can obtain accurate results if  the surrogate 

models are well trained, and simulation methods are also accurate but computationally 

expensive.

The combination o f an SD problem and a TD problem leads to a TSD problem 

where the response is dependent on both space and time. For TSD problems, only a few
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methods are available in the literature. Hu and Mahadevan [37, 38] developed a method 

based on adaptive surrogate modeling. Shi et al. [39] proposed two strategies. One strategy 

is combing the sparse grid technique with the fourth-moment method. And the other is 

combining the dimension reduction and maximum entropy method. Shi et al. [40] 

developed a transferred limit-state function technique to transform the TSD problem into 

a TSI counterpart. These methods still have limitations for wider applications. Efficiently 

and accurately dealing with TSD problems remains a challenging issue. There is a need to 

develop efficient, accurate, and robust methods for TSD problems.

In this work, we aim at developing an efficient and accurate method for a special 

TSD problem where the response is a function o f temporal and spatial variables, as well as 

random variables. As a result, the response is a time-dependent random field. The main 

idea is to approximate the extreme value o f the response with respect to space at discretized 

instants o f time using the combination o f FORM and SORM, thus transforming the TSD 

response into an equivalent Gaussian stochastic process. The transformation is performed 

by a sequential single-loop procedure [7, 41-43] so that high efficiency is maintained. The 

Kriging model method [44] is also employed. Then MCS is employed to estimate the 

reliability by sampling the Gaussian process.

The rest o f the paper is organized as follows: Section 2 discusses the problem 

addressed in this study, and Section 3 provides an overview o f the proposed method 

followed by the extreme value analysis and the general process in Sections 4 and 5, 

respectively. Two examples are given in Section 6, and conclusions are made in Section 7.
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2. PROBLEM STATEMENT

In this work, we focus on a response that is a function of temporal variables, spatial 

variables, and random variables. The limit-state function is defined by

Y = g  (X ,S ,t) ( 1 )

where Y is the response, X = [X , X 2,...,X m ]T is an m-dimensional input random vector,

S =
-T _

S1, S2,..., S is an n-dimensional spatial variable vector bounded on [ s , S ] , and

is the time bounded on [ t_, t ].

When Y < 0 , a failure occurs. The reliability in space [ S, S] and time span [ t_, t ] 

is then defined by

R = Pr {g (X, S, t )>  0, VS e S, S V t  e l t , t[ l  . t  ]} (2)

t

where V means “for all” .

Since the response is a function of random variables and time, Y is a stochastic 

process, and it is also a random field because it is a function of random variables and space. 

As a result, Y is a general time-dependent random field. This kind of TSD problem is 

commonly encountered in engineering applications. For example, the performance of a 

mechanism, such as the motion error, is a stochastic process due to random mechanism 

dimensions and joint clearances. The mechanism may also operate in different locations, 

and the mechanism performance is also space dependent.
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This kind o f reliability problem is usually more complicated than TSI, SD, and TD 

problems since it involves both spatial and temporal variables. In this work, we develop a 

method to effectively perform uncertainty analysis for TSD problems.

3. OVERVIEW

As mentioned in Section 1, the main idea o f the proposed method is to approximate 

the extreme value o f the response with respect to space at discretized instants o f time using 

FORM and SORM, thus transforming the TSD response into an equivalent Gaussian 

stochastic process. Eq. (2) is converted into

R  = Pr {7min (X  t )=  min g (X  S, t )>  a  v _ e [  t_, T ]J (3)

where Tmin (X, t) is the minimum value o f g  (X, S, t ) with respect to S . Tmin (X, t ) is a 

general stochastic process, and Eq. (3) can be therefore regarded as the reliability o f a TD 

problem. Since it is nearly impossible to simulate the stochastic process Tmin ( X, t ) directly,

we need to convert it into an equivalent Gaussian process H  ( t ) such that [45]

R  = Pr {̂ min ( X  t) = ^  g  ( X  S  t) > 0  V t  G[L, L ] J 

« Pr {H  ( t ) > 0, Vt e  [t , t ]J

A possible way to convert Tmin ( X, t ) into H  ( t ) is to employ FORM at every 

instant o f time on [t ,  t ] as FORM is capable o f transforming a non-Gaussian random

variable into a Gaussian random variable [45]. However, FORM may result in poor
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accuracy when Fmin ( X. t ) is highly nonlinear. A better idea is to employ SORM to

improve the accuracy, but SORM does not transform a non-Gaussian random variable into 

a Gaussian one, as what FORM does. To address this problem, we inversely convert the 

instantaneous reliability obtained by SORM to its equivalent reliability index with which

balance the accuracy and efficiency, we use SORM only at time instants where the 

corresponding instantaneous reliability is relatively small because the accuracy o f the 

instantaneous reliability at those instants is more important.

Calculating Tmin ( X, t) and performing FORM and SORM at every instant o f time

is impractical. We, therefore, create surrogate models to reduce the number o f extreme 

value analyses and executions o f FORM and SORM. Details will be given in Section 5.

After H  ( t ) is numerically obtained, MCS will be implemented to estimate R or 

the corresponding probability o f failure

an equivalent Gaussian variable, which is needed for H  ( t ) , can be constructed. However,

SORM is less efficient than FORM, especially when the dimension o f X  is large. To

(5)

It is worth mentioning that Eq. (2) can also be rewritten as

(6)

which means that the TSD problem can also be transformed into a TSI one, with the

minimum value o f g  (X, S, t ) with respect to both spatial and temporal variables. But we

do not do so for two reasons. First, in many engineering problems, the response g  (X, S, t )
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fluctuates significantly with respect to t and may not be a convex function o f t . Thus, 

calculating the minimum value o f g  (X, S, t ) with respect to t will involve global 

optimization, which is in general less computationally efficient. Second, even if  

min _ g  (X, S, t ) can be obtained, the reliability function with respect to t may not be
Se [ s ,s ] , t e [ i  , t  ] v '

generated, and only the reliability at the end of the period of time under consideration can 

be obtained. The proposed method can easily produce the reliability function for the entire 

period o f time. Details will be given in Section 6.

4. EXTREM E VALUE ANALYSIS AT AN INSTANT OF TIME

In this section, we provide details about how to obtain H  (r) , r e [  t_ , t  ] . As 

mentioned in Section 3, to obtain H  ( r ) , we need to calculate Fmin (X, r) and perform

FORM and SORM. In Subsection 4.1, the extreme value analysis using FORM will be 

given and then in Subsection 4.2 details on how to adaptively update the analysis result 

using SORM will be described.

4.1. EXTREM E VALUE ANALYSIS USING FORM

The extreme value analysis at time instant r  using FORM can be modeled as the 

following optimization problem [7, 42, 43, 46]:

min

s
J. sSPJS] g  (T (U) ■S , r ) = 0

(7)
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where U  is the vector o f standard Gaussian variables transformed from X , and T  (•)

stands for the transformation. Eq. (7) indicates a two-layer optimization problem whose 

solution usually requires a double-loop optimization process. The outer loop is the FORM 

analysis, and the inner loop is the extreme value analysis. Usually, the double-loop 

optimization can lead to low efficiency. To improve the efficiency, Du et al. [7, 42, 43] 

developed a sequential single-loop (SSL) approach to decouple the two loops to a 

sequential single-loop process. The flow chart o f employing SSL to solve the optimization 

problem in Eq. (7) is shown in Figure 1.

Step 5 involves major equations for the MPP search. /5 and a  are the reliability 

index and sensitivity vector, respectively, and both are dependent on the specific instant of 

tim er . Once both /3(t) and a ( t ) ,t e [  t_, t ], are obtained, H  ( t ) is available and can then 

be used for the MCS process to estimate the reliability or the probability of failure.

Because ||a(t)|| = 1 and U  is a vector o f standard Gaussian variables, the mean o f

H  ( t ) is P (  t ) ,  the standard deviation o f H  ( t ) is constantly 1, and the autocorrelation of 

H  ( t ) is [26, 45]

P ^P  t2 ) = ^  ( t1 ) a ( t2 ) (8)

Note that although p (t1, t2) is an important statistical characteristic o f H  ( t ) , it is 

not necessary for a sampling o f H  ( t ) . What we need are only the samples o f U  , and the 

samples o f H  ( t ) can be easily obtained via the following equation

H  (t ) = 0 ( t  ) + a T (t) U (9)
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Figure 1. Flow chart o f SSL

4.2. EXTREM E VALUES ANALYSIS USING SORM

To improve the accuracy o f Eq. (9), we also use SORM to update P ( t) if  necessary.

Since it is impossible to perform extreme value analyses at all time instants on [ t_, t ], we 

only do so at N  instants o f time denoted by t = ( t1,t2,...t....,tN) ,  and hence what we need 

to update is P ( t ) = (p( t1) ,P(t2),...P(t . ) ,...,P(tN)) . However, SORM is more

computationally expensive than FORM, especially when the number o f dimensions o f X  

is large. Therefore, we propose to update only some key elements o f P (t ) that influence
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the target reliability R more than other elements. It is reasonable that those key elements 

have smaller values than others because a smaller instantaneous reliability index P (  tt) 

contributes more to the failure event than a larger one.

Updated /? ( t)

Yes

-  Step 3 K'(>

...if A O  < A.,,

Yes Y
S te p  4

Calculatep f (t ) based on 

U ' ( f )  and a ( f ; ) 

using SORM

__5, P , { 0
S te p  5

Update P { t i ):

Step 1

Get S*(t),U *(t),a(t) and p i t )  
from the SSL procedure; set i ~ 1

Figure 2. The procedure o f updating P (  t ) using SORM

Figure 2 shows the procedures to select the key elements o f P  (t ) and update them 

using SORM. In Step 1, S*( t ) = ( s *( t ), S*(t2) ,...S * (t)..., S*(a  )) ,

U *(t ) = (u * (t1) , U*(t2) ,...U*(t;) ..., U* ( tN) ) ,  and a (t ) = (a ( t1) , a ( t2) ,...a( tI) ..., a ( tN)) .
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In Step 3, represents the p  -th percentile o f (t ). For example, if  p  = 30, at 30% of 

the time instants SORM will be performed. Generally speaking, the larger is the value of 

p , the more accurate will R be, but with lower efficiency. In Step 4, since S* ( t. ) ,  U* ( t.) ,

and a ( t. ) are already available from FORM in the SSL procedure, it is quite 

straightforward to calculate the corresponding instantaneous probability o f failure p f  ( t.)  

using SORM without searching for the MPP U* ( tt) .

5. PROCEDURE

In this section, the complete procedure o f the proposed method is detailed. Overall, 

there are three main stages in the procedure. Stage 1 is the SSL procedure discussed in 

Subsection 4.1. Stage 2 updates f i ( t ) using SORM, as detailed in Subsection 4.2. Stage 3

calculates f i ( t) and a ( t ) , t e [  t,  t ] with the employment o f Kriging models. In the last

stage, MCS is implemented to sample H  ( t ) and then estimate the probability o f failure.

The flow chart is shown in Figure 3, and explanations are given in Table 1. In Figure 

3, Steps 1, 2, and 6 are grouped into Stage 1; Steps 3, 8, and 9 are grouped into Stage 2; 

Stage 3 contains Steps 4 and 5; Stage 4 involves only Step 10. Since Stages 1 and 2 have 

been discussed in Section 4, and Stage 4 (i.e. the MCS procedure) is straightforward, herein 

we discuss mainly Stage 3, or the use o f the Kriging model to approximate f i ( t ) and

a ( t ) ,t e [  t , t  ].
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The Kriging model can provide not only predictions but also probabilistic error a 2 

(or the mean square error) of the predictions [44, 45]. Therefore, we can judge if the model 

is well trained with the error information. For a to-be-approximated function F  (v ) , the 

Kriging model is expressed as

F  ( v ) = f  ( v ) + £ ( v ) ( 10 )

where f  (v ) includes polynomial terms with unknown coefficients, and s (  v ) is the error 

term assumed to be a Gaussian stochastic process with mean zero and variance a 2 [44]. 

For the problem in this work, F (v ) may be a ( t ) or f ( t), and v is t . This means that

we build Kriging surrogate models for a ( t) and f ( t ) with respect to time. The Kriging

models are denoted by f (t) and a ( t ) . We do not provide details about how to create the 

models, and interested readers can refer to reference [44].

Some initial samples of f  (t ) and a (  t ) are generated after the SSL procedure has

been performed at instants t = ( t_, t2,...,tN_t, t ) .  Then the samples of f  (t) and a ( t ) are 

used to train Kriging models, which are then used to approximate or predict a T (t) and 

f  (t ) at t p = ( t_,h ,...,t^_j, t ) . Since the dimension of ( a T (t), f ( t )) is m +1, with the

Kriging prediction, a prediction matrix ^  and prediction error matrix a 2 , whose 

dimensions are both Nt x (m +1), can be obtained. Then the prediction error coefficients 

y are calculated by

Y = a -/ ̂  ( 1 1 )

where “ . / ” denotes an elementwise vector division.
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Table 1. Explanations for the complete procedure

Steps Explanations
1 t1 = L, tN = t .
2 The detailed procedure of SSL for a given instant of time is shown in Figure1. 

Note that after U* (tt) has been obtained, it will be treated as the initial point

when searching for U*( t +1). The reason is that usually U*( t +1) is to some 

extent close to U* (tt) and that taking U* (tt) as the initial point of U* (ti+1) 

may reduce the cost of searching for U* (ti+1). Similarly, S* ( t ) is also treated 

as the initial point of S* ( tj+1) .

3 Details of this step are given in Figure 2.
4 Kriging models P (t) and a  (t ) are built. Additionally, the maximum

prediction error coefficient ymax, and the instant tnew of time corresponding to 
y^x are also obtained.

5 If y^x is larger than the allowable value ydlm:able, the Kriging model is not 
well trained, and then a new training point at tHew is added. There is no rigorous 

method to determine the value of y^ , able, but experiments show that 10 -4 is 
a good one.

6 Details are given in Figure 1.
7 The set of training points is updated.
10 Ns samples of U are generated first, and then Ns samples of H  (t) are 

obtained with H (t) = P  (t) + a r ( t) U . During the process, [ t,, t ] is evenly 

discretized into Nt points (t ,  t2,...,tNt_j, t ) .

To make sure the Kriging models are well trained, the maximum ymx o f y should

be smaller than the allowable value y a llo w a b le  . If ^ m a x  >  ^ a l l o w a b le  , a new instant t n ew  of time is

selected through

t new =  arg max y ( t p = L  t N  _U 1 ) (12)
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and (3( tnew) and a (  tnew) are added to the training point set to refine the Kriging models. 

Usually, a smaller / aUowable leads to higher accuracy of p f , but more training points are 

needed, thus resulting in lower efficiency.

new

new

y,allowable

Step 1
Evenly generate N samples ot t :

Step 2
N times of SSL procedure

Step 3
Update P { i )  using SORM

n w ) . Step 9/?(t) ,a(t )Step 4
Update P)tne \  using

Kriging prediction
SORM
Yes

Step 7

/?(*) = (/?(*),A O ) , a <t)= a (‘) . a ( u )
Update p

\  new  /  ’  \  new )

Step 6
SSL procedureYes

H(t) = p(t) + a1 (f)U

Step 10
MCS

Figure 3. Flow chart of the complete procedure



95

In this section, two examples are used to demonstrate the proposed method. MCS 

is employed to provide accurate solutions for accuracy comparison.

6.1. A M ATH EXAMPLE

In this mathematical example, the limit-state function is defined by

g  (X, S, t) = 8 +10 x  +12 x2 + x x  + 0 .1x^x 2 

-  0.2x1 cos(t + n  / 2 ) + sin(t)

where X = (x1, x2)T is the vector o f two independent random variables 

X ~ jV(0,0 .22), / = 1,2, S = (51,52)7’ , where si e[1 .5 ,2 .5 ], / = 1,2, is the spatial variable 

vector, and t e  [0,2n] rad is the temporal variable.

The probability o f failure is computed over different time intervals with both MCS 

and the proposed method. In this example, the 50th percentile (i.e. p  = 50) o f f3( t ) is used

to determine which f 3 ( t ) should be updated using SORM, the allowable maximum 

prediction error coefficient is 7allowable = 10-4 , the initial value o f A  is 5 (for Kriging 

models), the number o f simulations for H  ( t ) is N s = 106 , and the number o f discretized 

instants o f time is N t = 126, which gives a step size o f the time 0.05. The number of 

simulations o f MCS N MCS is set to 106, which is the same as Ns .

Theoretically, in MCS, for every given realization s o f S , we need to generate 

N mcs samples o f stochastic process g  (X, s, t ) ,  leading to a heavy computational burden.

6. EXAMPLES
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In this example, however, for every given realization x o f X , min g (x,S, t ) can
S e [ 1 . 5 , 2 . 5 ] V e [ 0 , 2 » ]

always be obtained analytically, and so we use g  (X ) =  min g  (X, S, t) to replace
S E [ 1 .5 ,2 .5 ] 2 , t E [ 0 , 2 * ]

the limit-state function shown in Eq. (2) and then perform MCS to get accurate results. 

Results from the proposed method and MCS are listed in Table 2 and plotted in Figure 4.

Table 2. Probability o f failure over different time intervals

[0, t ] pf (proposed)

(io-3)

Pff (MCS) 

(10-3)

Error
(%)

[0,3.0] 4.636 4.663 0.58
[0,3.5] 6.602 6.617 0.23
[0,4.0] 9.579 9.566 0.14
[0,4.5] 11.666 11.581 0.73
[0,2*] 11.902 11808 0.80

Figure 4. Probability o f failure over different time intervals

As Table 2 and Figure 4 show, the proposed method has good accuracy. The error 

is mainly caused by the nonlinearity o f the limit-state function. Besides, the number of
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limit-state function calls by the proposed method is 217, far less than 33x 1 0 6, which is 

the total number o f limit-state function calls by MCS, showing that the proposed method 

is quite efficient.

6.2. A SLIDER M ECHANISM

Figure 5. A slider mechanism

Shown in Figure 5 is a slider mechanism. It is used for difference applications 

(locations). The locations or spatial variables are the offset h and the initial angle 0O with

the following ranges: h e  [14.9,15.1] m and 90 e  [0 , 5 ]; the spatial variable vector is then 

S = (h,d0)T . The random variable vector is X = (L1,L2)T , which includes two independent 

random link lengths L  ~ N (15,0.152) m and L2 ~ N (35,0.352) m . The time span is 

t e  [0,0.2^]s . The limit-state function is defined by

g = 1 1  — (x  — x  )
a c tu a l requ ired (14)

in which the actual position x  and the required position xrequired of the slider are
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x actual = L1 cos(#0 + a t) + J L \  -  2  + 2  sin(^0 + a t ))2 (15)

xre9„ ^ = 15 co s(a t)+ V 352 - (15+ 15sin(at ))2 (16)

respectively, where a  = 1 rad / s is the angular velocity.

The probability o f failure is computed over different time intervals with both MCS 

and the proposed method. In this example, p  = 50 , Ya llo w a b le  = 1 0  , N s  = N M C S  = 10 , 

N t = 40 (i.e., the time step o f the discretization o f H  ( t ) is 0.005ft ), and the initial value 

of N  is 7.

Table 3. Probability o f failure over different time intervals

[0, t ]
(0.01ft1 s)

p (proposed)

(10-3)

pf (MCS)

(10-3)

Error
(%)

[0,5] 6.765 6.729 0.53
[0,10] 8.750 8.729 0.24
[0,15] 11.930 11.811 1.01
[0,20] 16.975 17.015 0.24

Figure 6. Probability o f failure over different time intervals
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Results from the proposed method and MCS are listed in Table 3 and are plotted in 

Figure 6. The proposed method obtains accurate results. As for the efficiency, the proposed 

method evaluates the limit-state function 214 times while MCS approximately 40.6 x106 . 

This indicates that the proposed method is much more efficient.

7. CONCLUSIONS

In this work, a combination o f the first-order and the second-order methods (FORM 

and SORM) is proposed to perform uncertainty analysis for a time- and space-dependent 

response with random input variables. With the employment o f FORM, SORM, and the 

sequential single-loop method, we firstly transform the time- and space-dependent 

response into an equivalent Gaussian stochastic process, thus converting the time- and 

space-dependent reliability problem into an equivalent time-dependent reliability problem. 

Then the equivalent Gaussian process is simulated to estimate the time- and space- 

dependent probability o f failure. To mitigate the computation burden, Kriging models are 

created to approximate the characteristics o f the equivalent Gaussian stochastic process.

Transforming the time- and space-dependent response into an equivalent Gaussian 

stochastic process can avoid the global optimization process which aims at obtaining the 

minimum value o f the limit-state function with respect to the temporal variable.

Numerical examples show that the proposed method has both good accuracy and 

efficiency. If the limit-state function, however, is a nonconvex function with respect to 

spatial variables, the true extreme value o f the response may not be easily found, and in 

this case, the proposed method may result in large errors, or low efficiency, or both. The



100

extreme value o f a limit-state function may not be differentiable, and in this case, the MPP 

search for both FORM and SORM may not converge if  a gradient-based MPP search 

algorithm is used.

Future research may focus on two directions. The first direction is to develop 

efficient global optimization methods for the minimum response with respect to both 

special and temporal variables, thus transforming the time- and space-dependent problem 

into a traditional time- and space-independent problem. And the second one is to 

investigate optimization-free methods to efficiently deal with general problems where the 

limit-state function is highly nonlinear with respect to input random variables and 

nonconvex with respect to both spatial and temporal variables.
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IV. ROBUSTNESS METRIC FOR ROBUST DESIGN OPTIM IZATION UNDER  
TIME- AND SPACE-DEPENDENT UNCERTAINTY THROUGH M ODELING

ABSTRACT

Product performance varies with respect to time and space in many engineering 

applications. This paper discusses how to measure and evaluate the robustness o f a product 

or component when its quality characteristics are functions o f random variables, random 

fields, temporal variables, and spatial variables. At first, the existing time-dependent 

robustness metric is extended to the present time- and space-dependent robustness metric. 

The robustness metric is derived using the extreme value o f the quality characteristics with 

respect to temporal and spatial variables for the nominal-the-better type quality 

characteristics. Then a metamodel-based numerical procedure is developed to evaluate the 

new robustness metric. The procedure employs a Gaussian Process regression method to 

estimate the expected quality loss that involves extreme quality characteristics. The 

expected quality loss is obtained directly during the regression model building process. 

Three examples are used to demonstrate the robustness analysis method. The proposed 

method can be used for robustness analysis during robust design optimization under time- 

and space-dependent uncertainty.

1. INTRODUCTION

Robust design optimization (RDO) [1] is an optimization design methodology for 

improving the quality o f a product by minimizing the effect o f the causes o f variation



106

without eliminating the causes [2]. It allows for the use o f low-grade materials and reduces 

labor and material costs while improving reliability and reducing operating costs [2]. RDO 

has been used to improve product quality in industrial applications [3, 4]. Over the last 

three decades, it has gained much attention from many research fields, such as operations 

research [5-7], aerospace [8, 9], structural mechanics [10, 11], vibration control [12, 13], 

automobile [14-16], and fatigue analysis [17, 18]. Methods to solve RDO can be roughly 

grouped into three categories: probabilistic methods [19-21], deterministic methods [22

26], and metamodel-based methods [27-32]. Probabilistic methods perform robust 

optimization using the probability distributions o f random variables. Deterministic 

methods incorporate a non-statistical index, such as the gradient o f a response, into the 

optimization problem to obtain a robust optimum [32]. Metamodel-based methods employ 

computationally cheap surrogate models to improve the efficiency o f RDO.

Robustness analysis, which evaluates and predicts the robustness o f a design, is 

repeated many times during RDO. Many metrics that measure the robustness exist in 

literature. The most common metric is Taguchi’s quality loss function (QLF) [2]. This 

metric measures not only the distance between the average quality characteristics (QCs) 

and their targets but also the variation in the QCs [33]. There are also other robustness 

metrics, such as the signal-to-noise ratio [2], the percentile difference [34], and the worst- 

case QCs [35].

Most o f the above robustness metrics are defined for static QCs that do not change 

over time and space. Some o f the metrics could be used for dynamics problems, but they 

are only applicable for situations where the targets o f QCs vary with signals [36, 37], 

instead o f with time. To deal with problems involving time-dependent QCs, Goethals et al.
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[38] proposed to use the weighted sum of mean values o f a QLF at discretized time 

instances to measure the robustness. The weighted-sum method, however, does not take 

into consideration o f the autocorrelation o f the time-dependent QLF, which is modeled as 

a stochastic process. To overcome this drawback, Du [33] proposed to use the maximum 

value o f the time-dependent QLF to measure the time-dependent robustness.

In addition to the above static and time-dependent problems, more general is the 

time- and space-dependent (TSD) problem [39]. In many engineering applications, QCs 

vary with both time and space. There are at least two reasons for the TSD QCs. (1) A QC 

is a function o f TSD variables, such as the wind load and road conditions. (2) The QC itself 

is a function o f temporal and spatial variables. A typical example is a wind turbine. Since 

the wind speed varies with time and location, it is usually modeled as a TSD random field, 

subjected to which, the QC of the turbine is hence TSD.

There is a need to define a new robustness metric for the optimization involving 

TSD problems. The object o f this work is to derive a robustness metric for TSD problems 

and develop a numerical method to evaluate it. We use the expectation o f the maximum 

value o f a TSD QLF to measure the robustness. For the former, we employ the same 

strategy in [33], and for the latter, we use a metamodeling method to manage the 

computational efficiency because o f the involvement o f the expensive multidimensional 

global optimization [40-43] with respect to temporal and spatial parameters. An efficient 

method based on the Gaussian process model [44-47] is then proposed. The contributions 

of this work are twofold. First, a TSD robustness metric is defined. It can take into 

consideration o f all information o f the TSD QLF, including its autocorrelation. Therefore,
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it is mathematically a rigorous metric for TSD problems. Second, a Gaussian process-based 

method is developed to effectively compute the TSD robustness metric.

The proposed TSD robustness metric is an extension o f the time-dependent 

robustness metric proposed in [33]. The similarity is that both the proposed TSD robustness 

metric and the time-dependent robustness metric use the maximum value o f the QLF to 

measure the robustness. However, this study deals with a more general and complicated 

problem because the time-dependent problem is only a special case o f the TSD problem. 

From the perspective o f mathematical models, the new robustness metric needs the 

multidimensional global optimization with respect to both temporal and spatial parameters, 

while the time-dependent one involves unidimensional global optimizations with respect 

to only a temporal parameter. Besides, the new QLF may include random fields in its input.

The paper is organized as follows. Section 2 briefly reviews the time-dependent 

robustness metric, whose extension to TSD problems is discussed with a new robustness 

metric in Section 3, followed by a meta-modeling numerical procedure for the new metric 

in Section 4. Four examples are given in Section 5, and conclusions are provided in Section

6.

2. REVIEW  OF STATIC AND TIM E-DEPENDENT ROBUSTNESS METRICS

Nominal-the-best, smaller-the-better, and larger-the-better are three types o f QCs 

[33]. In this work, we only focus on the nominal-the-best type. The discussions, however, 

can be extended to the other two types.
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2.1. STATIC ROBUSTNESS METRIC

The most common robustness metric is QLF. Let a QC be defined as

Y = g (X )  (1)

where X =  (X1, X 2 ..., X N) are N  input random variables. Then the QLF is

L = A ( Y -  m ) 2 (2)

where m  is the target value o f Y , and A is a constant determined by a monetary loss. The 

robustness is measured by the expectation or the mean EL o f L, which is calculated by

EL = A [(g Y - m ) 2 + a f ] (3)

where g Y and aY are the mean and standard deviation o f Y, respectively. The smaller is EL, 

the better is the robustness because g Y (the average QC) is closer to the target m  and aY 

(variation of the QC) is smaller.

2.2. TIM E-DEPENDENT ROBUSTNESS METRIC

A time-dependent QC is given by

Y = g ( X , t )  (4)

Note that the input o f gQ)  may also include random processes, which can be transformed 

into functions with respect to random variables and t  [48]. Thus Eq. (4) does not lose 

generality. At instant t, the QLF is given as

L ( t ) = A ( t )[Y -  m ( t )]2 = A ( t )[g (X , t ) -  m ( t )]2 (5)

L( t )  can measure only the quality loss at a specific time instant t  and is thus called point 

quality loss function (P-QLF). To measure the quality loss o f a product over a time interval 

[t, t], Du [33] proposed to use the extreme value or the worst-case value o f L ( t )  over [t, t ] . 

The worst-case quality loss is called interval quality loss function (I-QLF) and is given by
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L ( t , t )  =  max L( t )  = m a x [ A ( t ) [ g ( X , t )  - m ( t ) ] 2} (6)

Note that L(t ,  t )  is a random variable while L( t )  is a random process. Like static problems,

the expectation EL( t , t )  o f L ( t , t )  is also used as the time-dependent robustness metric

given by

EL( t , t )  = E [L (t,t)j (7)

where E(-) stands for expectation. Minimizing EL( t , t )  reduces both the deviation o f the 

QC from its target and the variation in the QC over the time interval [t, t ] . When X is fixed 

to a specific realization x, Eq. (6) shows a unidimensional global optimization problem. 

Multiple samples o f L ( t , t )  are necessary to calculate EL( t , t )  using Eq. (7), and hence 

multiple unidimensional global optimizations are required to obtain EL( t , t ) .

3. A NEW ROBUSTNESS METRIC FOR TIME- AND SPACE-DEPENDENT QCS

In TSD problems, in addition to random variables and random processes, static 

random fields and time-dependent random fields are also involved. For convenience, we 

do not distinguish random processes, static random fields, or time-dependent random fields. 

In this paper, we generally call them random fields. Let Z =  (Sx, S2, S3, t)  be the vector 

comprising the three spatial parameters (x-, y-,  and z-coordinates) and the time. Note that 

for problems in one-dimensional and two-dimensional space, Z =  (Sx, t )  and Z =  

(Sx, S2, t), respectively. Also note that random fields can be transformed into functions 

with respect to random variables and Z [48]. Without loss o f generality, a TSD QC is then

given by
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Y = g(X,  Z) (8)

With the TSD QC, the QLF is given by

L(X,Z) = A(Z)[Y  -  m ( Z ) ] 2 = A (Z )[g (X ,Z )  -  m ( Z ) ] 2 (9)

L(X,  Z) measures the quality loss at any specific point z £  Q, where Q is the domain o f Z, 

so it is also a P-QLF.

Before defining the TSD robustness metric, we propose some criteria o f robustness 

metrics for the TSD problems, inspired by the criteria o f the robustness metrics for time- 

dependent problems given in [33]. The criteria are as follows:

(a) The metric must represent the maximum quality loss over Q. This reflects the 

fact that the quality loss is not reversible. If a quality loss, including the maximum quality 

loss, has occurred, there is no way to turn back.

(b) The metric should increase or at least stay the same with the expansion o f Q, 

given that other conditions stay unchanged. The reason is that when a product involves a 

larger space and/or is put into service for a longer period o f time, the robustness should be 

worse or at least the same.

(c) The metric should capture the autocorrelation o f the P-QLF L(X/Z)  over Q. 

Since L(X, Z) is a random field, its autocorrelation is an important property. Two different 

random fields with the same marginal distribution at any point may have very different 

performances if  they do not share the same autocorrelation.

(d) Minimizing the metric will lead to optimizing the mean QCs and minimizing 

the variations o f the QCs over Q . This criterion comes from the purpose o f robust

optimization [49].
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Based on the above criteria, we define the TSD robustness metric EL(Q)  as

EL(Q) = E[Lmax(X, Q)] (10)

where

Lmax(X, Q) =  max L (X, z) ( 1 1 )

is the maximum value o f L(X, Z) and is called the domain quality loss function (D-QLF). 

The definition o f Lmax(X, Q)  ensures that EL(Q)  meet Criterion (a) naturally. Let Cl c  C, 

then it is obvious that

^max(^, Q ) — ^max(^, Q) (12)

and hence EL( Q ) — EL(Q). Therefore, EL(Q)  meets Criterion (b). Since Lmax(X,Q)  is the 

maximum value distribution [50, 51] o f L(X,  Z), the autocorrelation o f L(X,  Z) is necessary 

for computing Lmax(X, Q ) . Different autocorrelation functions o f L(X,Z)  will lead to 

different distributions o f Lmax(X ,Q), and hence EL(Q)  can capture the autocorrelation of 

L(X,  Z), indicating that EL(Q)  meets Criterion (c). Since L(X/Z),  and hence Lmax(X, Q)  

and El (Q),  are nonnegative, minimizing EL(Q)  requires that the QC g(X,  Z) gets close to 

its target m (Z )  as much as possible. Therefore, EL(Q)  also meets Criterion (d).

4. A M ETA-M ODELING APPROACH TO ROBUSTNESS ANALYSIS

The robustness metric defined in Eq. (10) involves the extreme value o f a general 

random field. It is not an easy task to evaluate the robustness metric for a given design. In 

this section, we discuss our proposal numerical method for the robustness analysis.
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4.1. OVERVIEW  OF THE PROPOSED ROBUSTNESS ANALYSIS

The main idea o f the proposed robustness analysis method is to train a Gaussian 

process model L(X, Z) for L(X, Z). Replacing L(X, Z) in Eq. (11) with L(X, Z), we can 

approximate Lmax(X, Q) with Lmax(X, Q) as follows:

Lmax(X, Q) =  max L(X, z) ( 1 3 )

Then the Monte Carlo simulation (MCS) [52] is used to compute £'i (Q) by

nMCS

£ t (n )  =  - ^  V  Imax(x(i), Q ) (14)
n MCS 4—1i = 1

where n MCS is the sample size, and x (t) is the z-th sample o f X . Since L(X, Z) is 

computationally much cheaper than L(X, Z ) , the proposed method can significantly 

improve efficiency. Generally, a larger number o f training points o f L(X, Z) is preferred to 

train L(X, Z) for higher accuracy, but the efficiency will decrease because L(X, Z) in 

engineering applications is often a black-box function whose evaluation needs expensive 

numerical procedures or simulations [53].

To balance accuracy and efficiency, we do not require L(X, Z) to be accurate 

globally. Instead, we only need it to be locally accurate at samples o f X in Eq. (14). To this 

end, we employ the efficient global optimization (EGO) [54, 55] to adaptively add training 

points to update L(X, Z).

To have a quick overview o f the proposed method, we give a simplified flowchart 

in Figure 1. There are in total eight steps in the proposed method. Details o f Step 2 will be 

given in Subsection 4.2. The EGO, which comprises Steps 3 through 5, will be detailed in 

Subsection 4.3. We propose two stopping criteria in Steps 4 and 7, respectively. Detailed 

information is given in Subsection 4.4. The implementation o f the algorithm and the
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detailed flowchart will be given in Subsection 4.5. In Subsection 4.6, we discuss how to 

deal with a more general problem that involves random fields.

If L has been 
..well trained/

Step 7X
If£,(Q ) 
is accurate.

Step 1
Randomly generate samples of X for MCS

Step 2
Generate initial training set

EGO
Step 3

Construct £(X ,Z) with the training set

Step 5
Add a sample to update
the training set.

Step 6
Compute £ 4 0 )  with MCS

Step 8
Add samples to the Return E, (O)
MCS sample set of X,

Figure 1. Simplified flowchart

4.2. INITIAL TRAINING SET

The principle of generating the initial training set for building a Gaussian process 

model is to spread the initial training points evenly. Commonly used sampling methods 

include random sampling, Latin hypercube sampling, and Hammersley sampling [56]. In
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this study, we employ the Hammersley sampling method because it has better uniformity 

properties over a multidimensional space [57].

Since the dimension o f the entire input vector (X, Z) is N  + NZ, where NZ is the 

dimension o f Z, the Hammersley sampling method generates initial training points in a 

hypercube [0,1]W+Wz. To get initial training points o f X, we can simply use the inverse 

probability method to transform the training points from the hypercube space to the X- 

space. As for the initial training points o f Z, we treat all components o f Z as if  they were 

independent uniform random variables and then also use the inverse probability method to 

transform the training points from the hypercube space to the Z-space.

Samples o f a row random vector are assembled into a matrix. For example, the 

initial training points x in o f X =  (X1, X 2 ..., X N) are

■ x (1) T(1)
a2

r (i) i

Xin =
x (2) y (2)

a2
r (2)

(15)

x (nin) .r (nin)
a2

,v.(nin)• J

where n in is the total number o f initial training points. With x in and the initial training 

points z in o f Z, we then obtain initial training points l in o f L(X,Z)  by calling Eq. (9). 

Finally, we get the initial training set (x trn, z trn, ltrn) =  (x in, z in, l in) , where the 

superscript trn represents training points.

4.3. EM PLOYM ENT OF EGO

EGO is based on the Gaussian process model. With the training set (x trn, z trn, ltrn) 

we can build L(X, Z). Because only a limit number o f training points are used, L(X, Z) has 

model uncertainty (or epistemic uncertainty), which is measured by o(X, Z).
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Practically, when L(X, Z) is available, we need to discretize Q to compute the 

maximum value Lmax(X, Q) with Eq. (13). If we discretize Zy, the j - th  element o f Z, into

m j  points, then Q will be discretized into n Q = n ^ i ^ y  points. For convenience, we 

denote the n Q points o f Z by z Q, whose dimension is n Q X NZ. Then Eq. (13) is rewritten 

as

'̂max(^, Q) maX_L(X, Z)zezQ (16)

Since Lmax(X, Q)  may not be the exact global maximum, we need to add training 

points o f (X/Z,L)  to update L(X, Z) so that the Lmax(X, Q)  will be more accurate. To 

determine how to add a new training point, we use the well-known expected improvement 

(EI) learning function [55] given by

EI(X, Z) =  ( t  -  L max)$ +  a(X, Z)<? o(x, z)
(17)

where L =  _h(x, z) and I max =  Lmax(x, Q); $ (•)  and ^ (-) are the cumulative distribution 

function and probability density function o f a standard Gaussian variable, respectively. 

EI(x, z) means that the exact Lmax(x, Q) is expected to be EI(x, z) larger than the current 

Lmax(x, Q). In other words, if  we add a training point at (x, z) to update L(X, Z), we expect 

to update current £ max(x, Q) to £ max(x, Q) +  EI(x, z ) . In principle, we should update 

Lmax(x, Q) by a step size as large as possible so that the algorithm converges quickly. 

Therefore, we determine the next training point (x (next), z (next)) by

(X(next), z (next)) =  arg max EI(x, z)v J * xexMcs, zezQ (18)

where x MCS represents the MCS population o f X . Eq. (18) indicates a double-layer 

optimization. The reason is that whenever we want to optimize Z in Eq. (18), we must fix
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X to a specific realization x so that Eq. (16) can be used to calculate Lmax. With Eq. (9), 

we can obtain the next training point l(next) of L(X, Z) . Then the training set 

(x trn, z trn, ltrn) is updated through

x trn =
■ x trn -
X(next)

z trn =
■ z trn -
z (next)

j trn _ jtrn
l(next)

(19)

The updated training set (x trn, z trn, ltrn) is used to refine L(X, Z) . Then 

Lmax(X, Q) in Eq. (16) and hence EL(Q) in Eq. (14) are also updated. With similar 

procedures, training points are iteratively added into the training set, and EL(Q ) is updated 

iteratively until stopping criteria are satisfied.

4.4. STOPPING CRITERIA

In this subsection, we discuss two stopping criteria in Steps 4 and 7 shown in Figure 

1. The purpose of the stopping criterion in Step 4 is to judge whether more training points 

are necessary to update L(X, Z). A straightforward stopping criterion is

sexM1?SJXzezo |EI(x' z ) / £ max(x,Q) |  <  C (2 0 )

where c is a threshold, which usually takes a small positive number, such as 0.005. This 

stopping criterion guarantees that for any x e  x MCS, the absolute value of the expected 

improvement rate of £ max(x, Q ) is small enough. In other words, this stopping criterion 

guarantees that the n MCS samples of Lmax(X, Q ) are all accurate enough so that EL(Q) is

accurate enough. The threshold c, however, does not directly measure the accuracy of 

El(Q). As a result, it is hard to determine the proper value for c. If we set a too-small value
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to c, it may result in unnecessary iterations and hence an unnecessary computational cost. 

To resolve this problem, we propose a new stopping criterion

W  =  f e e1! [ ™ xQ EI(X' Z)]} / £ l ( n ) l - W (21)

where w  is another threshold, which usually takes a small positive number, such as 0.005. 

Since m axEI(x ,z ) is the maximum expected improvement o f I max(x, Q) ,
zezQ

mean I max EI(x, z ) | is the expected maximum improvement o f EL(Q). Then, W  is the
X£XMCS Lz£zQ J

absolute value o f the expected improvement rate o f ^ ( Q ) . W  directly measures the 

accuracy o f  ̂ ( Q ) ,  and so we can set the value o f w  according to specific engineering 

requirements. For example, if  we set w  =  0.005, no more training points will be added if  

adding more training points can change current ^ ( Q )  by no more than 0.5%. As a result, 

if  n MCS is sufficiently large, the relative error o f the obtained ^ ( Q )  is expected to be 

between -0 .5 %  and 0.5%.

Step 7 mainly deals with the following question: How many samples o f Lmax(X, Q) 

are enough to obtain accurate £'i (Q)? Since Lmax(X, Q) is a random variable, the sample 

size needed to estimate its mean value ^ ( Q )  is dependent on the standard deviation o(Q ) 

of kmax(X, Q). Since the sample size is n MCS, the deviation coefficient T o f  ̂ ( Q )  is

o(Q )
r  = --------— = =

£'L(Q )V n MCS

where ^ ( Q )  is estimated by Eq. (14), and o(Q ) is estimated by

(2 2 )

o(Q ) =
nMCS

n MCS — 1  4—1i = 1

2
[Lmax(x® Q) -  £l(Q)] (23)
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Eq. (22) shows that the larger is n MCS, the smaller r  will we obtain. A smaller r  means 

that the estimated EL(Q) is more accurate. Therefore, we use the following stopping 

criterion in Step 7:

r  < y  (24)

where y  is a threshold, which usually takes a small positive number, such as 0.005.

If the stopping criterion in Eq. (24) is not satisfied, how many samples do we need 

to add to the current sample set x MCS? Combining Eq. (22) and Eq. (24), we have

n MCS ^
o(Q )

EL(Q )y
(25)

2

It means that to meet the stopping criterion in Eq. (24), we should use a sample size at least

[gg(Q)y] . For convenience, let n 0 = round { gg(Q)y] }, where round(-) represents the

operation to get the nearest integer. Then the number n add o f samples we should add to the 

current sample set x MCS is

n add =  n 0 — n MCS (26)

However, when L(X, Z) is too rough at the first several training iterations, both EL(Q) and 

o(Q ) may have very poor accuracy. As a result, n add determined by Eq. (26) may be 

misleading. To resolve this problem, we set a threshold n add for n add. Then n add is 

modified to

^ _  f^^add,if n 0 ^MCS >  -̂add
add =  { n 0 — n MCS, otherwise (27)
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4.5. IM PLEM ENTATION

In this subsection, we give a detailed procedure o f the proposed method. The 

detailed flowchart is shown in Figure 2. The total number n call o f function evaluations in 

Eq. (9) is used to measure the main computational cost o f the proposed method, since Eq. 

(9) usually involves the computation o f an expensive black-box function.

The strategy o f the extreme value in this study is similar to what the nested extreme 

response surface approach [58] employs because both methods use the same EGO to solve 

the global optimization problem. But the problem in the former method is the 

multidimensional global optimization with respect to time and space while the problem in 

the latter method is a unidimensional one with respect to time. As a result, the learning 

functions and stopping criteria o f the two methods are different.

4.6. EXTENSION TO PROBLEM S W ITH INPUT RANDOM  FIELDS

When the TSD QC gQ)  involves input random fields, it is straightforward to use 

the series expansion o f the random fields so that the above implementation o f the proposed 

method still holds. For example, a QC is given as

Y = g(X,  H(Z),Z) (28)

where H(Z) is a vector o f random fields. To easily present the idea, we assume there is 

only one random filed, given by H ( Z). Widely used series expansions for random fields 

include, but are not limited to, the Karhunen-Loeve series expansion (K-L), the orthogonal 

series expansion (OSE), and the expansion optimal linear estimation method (EOLE) [48]. 

Since H is discretized into z Q , the autocorrelation coefficient function o f H(Z)  is
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discretized into the autocorrelation coefficient matrix MH with dimension n n X n a . Then 

the EOLE expansion H(X, Z) o f H (Z ) is given by

Zna A
- = V k M H( : , k ) , z E z Q (29)

k = i J T k

where p H(z ) is the mean value function o f H ( Z), aH(z)  is the standard deviation function 

of H ( Z), %k, k  = 1,2, . . . ,nn are nn independent standard Gaussian variables, Ak is the k-  

th eigenvalue o f M H, Vk is the k -th (row) eigenvector o f MH, and MH( : , k )  is the k -th 

column of MH. Note that the eigenvalues are sorted from the largest to the smallest. Usually 

only the first p (p < n a ) eigenvalues are significant. Therefore, Eq. (29) is practically 

truncated, and only the first p orders are kept:

Zv u
- = V k M H( : , k ) , z E z Q (30)

k=l ^ I k

Then the dimension o f  ̂  is p. With the expansion, Eq. (28) is rewritten as

Y = g [ X , H & Z ) , Z ]  (31)

or equivalently as

Y = g ( % Z )  (32)

where X =  (^,X). Eq. (32) shares the same format with Eq. (8 ), and hence the above 

implementation in Subsection 4.5 is also applicable.

The direct implementation this way, however, may suffer from the curse of 

dimensionality. Since many random variables, i.e. ,̂ are in the series expansion H(%, Z), 

the dimension o f % and hence that o f g ( X , Z ) is high. As a result, the dimension o f the 

surrogate model L ( X , l )  is also high. The high-dimensional surrogate model has as least
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two drawbacks. First, it is not cheap anymore, losing its expected advantages. Second, 

more training points are needed for acceptable accuracy. To overcome the drawbacks, we 

build a surrogate model L(X, H, Z) with respect to X, H, and Z. Note that the entire random 

field H is treated as only one variable for L(X, H, Z). Then the surrogate model I(X , Z) 

with respect to X and Z is obtained through

L(X,Z) =  L [X ,tfa Z ),Z ] (33)

Since the truncated series expansion H(%, Z) in Eq. (30) has a simple closed-form 

expression, if  L(X, H, Z) is accurate and efficient, so will be I(X , Z) in Eq. (33). Since the 

dimension o f L(X, H, Z) is (p — 1) lower than that o f I(X , Z), it is more efficient to train 

L(X, H, Z) with higher accuracy. To build L(X, H, Z), we need the training points h trn of 

. h trn can be obtained simply by substituting (^trn, z trn) into Eq. (30). Similarly, when 

(x (next), z (next)) is determined by Eq. (18), the next training point h(next) o f H is obtained 

by substituting (^(next), z (next)) into Eq. (30). Note that x (next) =  (^(next), x (next)). When 

more than one input random fields are involved, the procedure o f building and updating 

the surrogate model L is similar.

However, it should be mentioned that Eq. (33) is not suitable for all problems 

involving input random fields. Roughly speaking, the problems involving input random 

fields, including random processes which are unidimensional random fields, can be 

grouped into two categories. To distinguish the two categories, we first need to make it 

clear that whenever Z in Eq. (28) is fixed to a specific realization z (t), H (z (t)) and 

p(X, H (z (t)), z (t)) are a random vector and a random variable, respectively. If the 

randomness, or uncertainty, o f the output random variable p(X, H (z (t)), z (t)) only comes
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from the input random variables X and H (z (t)), then the problem belongs to Category 1. If 

the randomness o f ^(X, H (z (t)), z (t)) comes from not only X and H (z (t)) but also 

H (z0 ) ) , j  ^  i, then the problem belongs to Category 2.

Randomly generate nxA samples of X 

and add them into sample set xMCS,

MMCS =  ^M CS +  Madd

Generate nMts random samples x

Generate mitial ( x'n l J using the

Hammersley sampling method

Compute 1 by substituting

(xtm,z 'ra) into Eq. (9), wrall = n

Construct Z.(X,Z)

using (xtr\ z tm,l,m)
through Eq. (19)

Compute Lmai(X ,n ) atx  through Eq. (16)

Compute E l (Q) through Eq. (14)

Compute W through Eq. (21)
Find x

through Eq. (18)

and compute ll“ ,

Compute /  tlirough Eq. (22)

Return (Q)

Compute «... through Eq. (27)

Figure 2 . Detailed flowchart
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Eq. (33) can only deal with problems in Category 1. When dealing with Category 

2  problems, we cannot treat the entire random field as a single input variable to L anymore. 

Instead, we must treat each component o f % as an input variable to L, resulting in a high- 

dimension Gaussian process model. Currently, the Gaussian process model cannot work 

well for high-dimensional problems. Therefore, we only consider Category 1 when input 

random fields are involved, and in the example section, both Example 3 and Example 4 

belong to Category 1.

5. NUM ERICAL EXAM PLES

In this section, we use four examples to test the proposed method. The first one is 

a mathematical example. With a low-dimension case in this example, we aim at clearly 

illustrating the detailed procedure o f the proposed method. Then we test the method by 

setting a higher dimensionality for this example. The second one is an engineering example 

involving only random variables while the third one, also an engineering example, involves 

both random variables and unidimensional random fields. The last engineering example 

involves multidimensional random fields.

The direct MCS is also used to compute the TSD robustness metric. MCS calls the 

original QLF model in Eq. (11) directly. The sample size o f MCS is set to 105. The results 

of MCS are treated as the exact ones for the accuracy comparison. For all examples, the 

convergence thresholds w,  y, and nin, are set to 0.005, 0.005, and 10, respectively. Both

methods share the same discretization o f Q.
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5.1. A M ATH PROBLEM

The QC is given by

N N

Y = ^  Z (2 +  0.1(Z1 +  Z 2 + 5 )2 sin(0.1 Z 2) ^
i=1 i=1

(34)

where (X1, X 2 . . . ,XN) are N  independent and identically distributed normal variables with 

mean and standard deviation being 1 and 0.02, respectively. The domain Q o f Z =  (Z1, Z 2) 

is [0,2] x  [0,5]. m ( Z) is given as

m(Z) =  0.1(Z1 +  Z 2 + 5 )2 sin(0.1 Z 2) (35)

and A(Z)  = $1000. Z1 and Z2 are discretized into 20 and 50 points, respectively; so there 

are nQ =  1 0 3 discretization points in z Q.

Table 1. Initial training points in hypercube space

Point number Data
1 0 .0 0 0 0 0.5000 0.3333 0 .2 0 0 0

2 0 .1 0 0 0 0.2500 0.6667 0.4000
3 0 .2 0 0 0 0.7500 0 .1 1 1 1 0.6000
4 0.3000 0.1250 0.4444 0.8000
5 0.4000 0.6250 0.7778 0.0400
6 0.5000 0.3750 0 .2 2 2 2 0.2400
7 0.6000 0.8750 0.5556 0.4400
8 0.7000 0.0625 0.8889 0.6400
9 0.8000 0.5625 0.0370 0.8400

10 0.9000 0.3125 0.3703 0.0800

For an easy demonstration, we first consider a low-dimension case and set N  = 2. 

Using the Hammersley sampling, we generate 10 initial training points in the hypercube
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[0,1]W+Wz =  [0,1]4. The initial training points are given in Table 1. Then we transform the 

first two data columns into Z-space, using the inverse probability method mentioned in 

Subsection 4.2, to get the initial training points z in. Note that each training point in z in is 

rounded to the nearest one in zQ. The last two data columns are transformed into X-space 

to generate x in. Substituting those points in (x in, z in) one by one into Eq. (9), we obtain 

10 initial training points lin of £. z in, x in and lin are given in Table 2. Since Eq. (9) is 

called 10 times, n call =  10. Initially, we set n MCS =  400.

Table 2. Initial training points in X-space and Z-space

Point number z in Xin lin
1 0 .0 0 0 0 2.5000 0.9914 0.9832 3664.4
2 0 .2 0 0 0 1.2500 1.0086 0.9949 4036.1
3 0.4000 30.07050000 08.59475546 16.70507551 36611483.25

4 00.06000000 00.06020500 01.49594752 13.30015678 43 112289.10

5 0.8000 300.00100200500 198.870511995133 096.369796425820 36637586784.743

6 0 .0 0 0 0 100.00800700500 00 .5293178904547 03.2694228725248 312643349967.798
7 0 .2 0 0 0 400.00300700500 109.240210932638 086.6791429477680 39496297030.188

8 0.4000 00.003001002005 104 .5705382704364 157.730490497582 42627732735.78

9 10.06000000 200.008001002005 095.4292346204753 178.04036111959 344781271275.713
10 1.8000 100.005006002005 091.72978960364 066.99107071659 319511801632.065

With the initial training points, we build the initial £(X, Z). Then using Eq. (14) and 

Eq. (21) we obtain £ ^ (0 )  =  $ 4044.5 and W =  1.41%, respectively. W =  1.41% means 

that if we add more training points to update £(X, Z), we expect to improve the current 

£ ^ (0 )  by 1.41%. Since 1.41% is larger than the threshold value 0.5%, more training 

points are needed. The learning function in Eq. (18) locates the next training point 

( z (next),x (next)) at (0 ,0 ,0 .9263,0 .9630). Substituting (z (next),x (next)) into Eq. (9), we
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obtain l(next) =  3188.0 and then update n call = n call +  1 =  11. The new training point is 

added to the current training set to update L(X, Z). With the process going on, more and 

more training points are added. In total 7 training points are added one by one, which are 

given in Table 3. n call becomes 10 +  7 =  17. The update o f W  is shown in Figure 3. In 

Iteration 8 , the 7th training point shown in Table 3 is added to update L(X, Z), resulting in 

W  =  0.45% <  0.5%. Therefore, no more new training points are needed. Note that in all 

the eight iterations, n MCS =  400 remains unchanged.

Table 3. Added training points

Iteration z (next) X(next) (next)

1 0 .0 0 0 0 0 .0 0 0 0 0.9263 0.9630 3188.0
2 2 .0 0 0 0 0 .0 0 0 0 0.9769 1.0544 4269.2
3 2 .0 0 0 0 5.0000 0.9263 0.9630 1082.4
4 0 .0 0 0 0 5.0000 1.0557 0.9859 5208.2
5 0 .0 0 0 0 5.0000 1 .0 2 2 2 1.0460 6107.1
6 2 .0 0 0 0 0 .0 0 0 0 1.0161 0.9451 3707.9
7 2 .0 0 0 0 0 .0 0 0 0 0.9330 0.9927 3444.1

To check if  400 samples are sufficient to obtain accurate £ L(Q), we calculate T 

using Eq. (22), which results in T =  0.0064. Since 0.0064 is larger than the threshold y =  

0.005, the sample size n MCS =  400 is not sufficiently large and hence we need to increase 

it. From Eqs. (25) and (26), we know that n MCS should be increased by at least 247. 

However, according to Eq. (27), we only increase it by 100, because we set the 

hyperparameter n add =  100. The reason for limiting the increasing step o f n MCS has been 

given in Subsection 4.4. Then with the updated n MCS =  400 +  100 =  500 and updated 

x MCS, we calculate W  again to check if  L(X, Z) is still accurate. Figure 3 shows that W  <
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0.5% in Iteration 9; hence L(X, Z) is still accurate. We calculate r  and then W again and 

repeat the process until both W < 0.5% and r  < 0.005 are satisfied.

Figure 3. Update of W

Table 4. Robustness analysis results

Methods Proposed method MCS
£ l(H )($) 4.28 x  103 4.35 x  103

Relative error (%) -1.5 -
n MCS 677 1 0 5

•̂call 17 1 0 8

The final results, as well as the results obtained directly by MCS, are given in Table 

4. The robustness computed by the proposed method is $4.28 x  103, and the robustness 

by MCS is $4.35 x  103. The proposed method is very accurate, with a small relative error 

of -1 .5 % . In addition to the 10 initial training points, 7 more training points are added 

adaptively to update the Gaussian process model, and hence the proposed method costs 17
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function calls. The proposed method adaptively increases the sample size, obtaining 

accurate results with only 677 samples.

To test the proposed method with higher dimensionality, we set N  = 8  while 

keeping other parameters unchanged. The results obtained from the proposed method and 

MCS are given in Table 5. The robustness computed by the proposed method is 

$6.70 X 104, and the robustness by MCS is $6.67 X 104. The relative error is 0.5%, and 

70 function calls and only 400 samples are used by the proposed method. In this case, N  = 

8  and Nz = 2, and hence the dimensionality o f L(X, Z) is 10. The two cases show that the 

proposed method works well for both low dimensions and moderate dimensions in this 

example problem.

Table 5. Robustness analysis results

Methods Proposed method MCS
£ l(H )($ ) 6.70 X 104 6.67 X 104

Relative error (%) 0.5 -
n MCS 400 1 0 5

•̂call 70 1 0 8

Note that the second case needs a smaller sample size (n MCS =  400) than that 

(nMCS =  677) o f the first case, although the dimensionality is higher in the second case.

ct(Q)
The reason is that the deviation coefficient £l(Q) of kmax(X, Q) in the first case is larger

than that in the second case.
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5.2. A SLIDER M ECHANISM

Shown in Figure 4 is a slider mechanism [39]. The spatial variables are the offset 

H and the initial angle d0 with the following ranges: H E [14.85,15.15] m and d0 E 

[-2 ° , 2°]. The time span is t  E [0,0.1^] s. Then the Z vector is (H ,0 o, t ) .  The random 

variable vector is X =  (L1,L2) , which includes two independent random link lengths 

LX~ N (1 5 ,0 .0 1 5 2) m and L2~ N (3 5 ,0 .0 3 5 2) m. The QC, or the actual position o f the 

slider, is

Y  =  L1 cos(0o +  mt) +  — (H +  sin (0o +  mt) ) 2 (36)

where m =  1 rad /s is the angular velocity. The target QC is

m (Z) =  15 cos(m t) +  ^ 3 5 2 — (15  +  15 sin(m t) ) 2 (37)

and ^(Z ) =  $ 1 0 0 0 /m 2. The intervals o f h , 0o and t are all evenly discretized into 20 

points. Accordingly, Q =  [14.85,15.15] m x  [—2°, 2°] X [0,0.1^] s is discretized into 

n Q =  2 0  x  2 0  x  2 0  =  8  x  1 0 3 points.

Figure 4. A slider mechanism [39]
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Setting the initial value o f n MCS to 1000 and n add to 100, the robustness analysis 

results are given in Table 6 . The proposed method is accurate and efficient with 31 function 

calls.

Table 6 . Robustness analysis results

Methods Proposed method MCS
El (Q)  ($) 88.43 8 8 .0 2

Relative error (%) 0.5 -
n MCS 1492 1 0 5

•̂call 31 8  x  1 0 8

5.3. A CANTILEVER BEAM

Shown in Figure 5 is a cantilever beam. Its span L = 1 m. Due to the machining 

error, the diameter o f its cross-section is not deterministic. Instead, it is modeled as a one

dimensional stationary Gaussian random field D ( x ). The mean value and standard 

deviation oD o f D (x)  are 0.1 m and 0.001 m, respectively. Its autocorrelation coefficient 

function pD(x 1(x2) is given as

p D(xi ,X2) = exp[- ( x i  -  X2)2] (38)

Figure 5. A cantilever beam
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The beam is subjected to a torsion T (t) and a tensile force F at the right endpoint. 

F is a normal variable with mean and standard deviation aF being 1000 N  and 100 N, 

respectively. T ( t )  is a stationary Gaussian process with mean and standard deviation 

aT being 200 N • m and 20 N • m , respectively. Its autocorrelation coefficient function 

p T( t 1, t 2 ) is given by

P r( t i , t 2) =  exp (39)

The maximum von Misses stress o f the beam is the QC and is given by

Y =
4 F

nD (x ) 2.
+ 3

16 T ( t )
nD (x ) 3

(40)
22

The target m ( Z) =  0 and A ( Z) =  $1000/(M pa ) 2 . The domain h  o f  Z =  ( x , t )  is 

[0,1] m x  [0, 5] yr and is evenly discretized into n Q =  20 x  50 =  1000 points.

With pD ( x 1, x 2) we can get the autocorrelation coefficient matrix MD of the one

dimensional random field D (x). Since x  is discretized evenly into 20 points, the dimension 

of Md is 20 x  20. The most significant three eigenvalues o f MD are 17.0693, 2.7182 and 

0.2026. We use EOLE to generate the series expansion o f D (x) and only keep the first 

three orders. Similarly, we use EOLE to generate the series expansion o f T (t) and only 

keep the first six orders.

Setting the initial value o f n MCS to 1000 and n add to 1000, the robustness analysis 

results are given in Table 7. The robustness computed by the proposed method and by MCS 

are $3.85 x  103 and 3.88 x  103 , respectively. The relative error o f the robustness 

computed by the proposed method is only -0.7% . The proposed method calls the original 

quality loss function 13 times, showing its high efficiency.
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Table 7. Robustness analysis results

Methods Proposed method MCS
El (Q) ($) 3.85 x  103 3.88 x  103

Relative error (%) -0.7 -
n MCS 1 0 0 0 1 0 5

•̂call 13 1 0 8

5.4. AN ELECTRON ACCELERATOR

Shown in Figure 6  is an electron accelerator, which is used to accelerate electrons 

to a higher speed. Electrons are horizontally emitted from the electrode, then enter the 

electric field E(w, h ) in the accelerator, and finally fly out from the accelerator. The initial 

velocity o f the electrons is a time-dependent stationary Gaussian random field V0(w, h, t),  

whose mean value p Vo and standard deviation aVo are 500,000 m /s  and 50,000 m /s ,

respectively. Its autocorrelation coefficient function p Vo(w 1, h 1, t 1; w 2, h 2, t 2) is given by

2
rw 1 — w 2 2 h 1 — h2^

Pv0 (w i, hx, tx; W2, h 2, t 2 ) = exp
_  -  w 2^ 2 ^hx -  h ^ 2 (41)

Figure 6 . An electron accelerator
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The length o f the accelerator L is a random variable that follows a normal 

distribution N (  1, 0.012) m. The electric field E ( w , h ) is a two-dimensional stationary 

Gaussian random field, whose mean value ^ E and standard deviation aE are 10 N/C and 1 

N/C, respectively. Its autocorrelation coefficient function p E(w 1, h 1; w 2, h 2) is given by

p E(w 1, h 1;W2 , h 2 ) = exp
_  f w i -  w 2\ 2 ( h i  -  h2V

(  0 .1  )  (  0 .1  )
(42)

If the acceleration time and the interaction among the electrons are negligible, the 

velocity V(w, h, t )  o f the electrons after acceleration is given by

2 q E (w ,h )L  _
V (w , h, t) = I -------+  Vt0 (w,  h, t) (43)

m

where q = 1.6 x  10 19 C and m  = 9.109 x  1 0  31 kg are the electric quantity and mass 

of an electron, respectively. The target velocity Vt is given by

(44)
m

In this example, Z =  (w ,h ,  t) E Q = [-0 .05 ,0 .05 ] m x  [-0 .05 ,0 .05 ] m x  

[0,10] s and m (Z )  = $10~8/ ( m / s ) 2. Q is evenly discretized into nQ =  10 x  10 x  20 =  

2000 points. We also use EOLE to generate the series expansions o f both V0(w, h, t )  and 

E(w,  h),  and the first 20 and 8 orders are kept, respectively.

Setting the initial value o f n MCS to 2 x  104 and n add to 103 , the robustness 

analysis results are given in Table 8 . The robustness computed by the proposed method is 

$ 271.25.  Again, the proposed method is both accurate, with a relative error being -0.1%, 

and efficient, with only 40 function evaluations. Although two multidimensional random 

fields are involved, the efficiency is still high. The high efficiency is achieved by using the
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method described in Subsection 4.6, and the dimension o f this problem is only three, 

including one random variable and two random fields.

Table 8 . Robustness analysis results

Methods Proposed method MCS
El (Q)  ($) 271.25 271.44

Relative error (%) -0 .1 -
n MCS 22476 1 0 5

•̂call 40 2  X 1 0 8

6 . CONCLUSIONS

Existing robustness analysis methods only consider static or time-dependent 

problems. More general are time-and space-dependent problems. In this paper, a new 

robustness metric is proposed for time-and space-dependent problems. The new metric has 

the following features:

• The robustness is measured by the expected maximum quality loss over the 

domain o f interest, which consists o f the space and period o f time under 

consideration.

• This metric can fully take into consideration o f the autocorrelation o f the time- 

and space-dependent quality loss function at all points o f the domain o f interest.

• Minimizing the expected maximum quality loss will reduce both the deviation 

of a quality characteristic (QC) from its target and the standard deviation o f the 

QC in the domain o f interest, thereby maximizing the robustness.
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An efficient robustness analysis method is developed to quantify the robustness 

metric based on the Gaussian process model and efficient global optimization. The method 

can accommodate QCs that are general functions o f random variables, random processes, 

and random fields, temporal variables, and spatial variables.

Possible future work includes the following tasks: Further improve the efficiency 

of the proposed robustness analysis method, develop other robustness analysis methods, 

and investigate possible robustness metrics when multiple time- and space-dependent QCs 

are considered.
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V. ADAPTIVE KRIGING METHOD FOR UNCERTAINTY QUANTIFICATION  
OF THE PHOTOELECTRON SHEATH AND DUST LEVITATION ON THE

LUNAR SURFACE

ABSTRACT

This paper presents an adaptive Kriging based method to perform uncertainty 

quantification (UQ) o f the photoelectron sheath and dust levitation on the lunar surface. 

The objective o f this study is to identify the upper and lower bounds o f the electric potential 

and that o f dust levitation height, given the intervals o f model parameters in the 1-D  

photoelectron sheath model. To improve the calculation efficiency, we employ the widely 

used adaptive Kriging method (AKM). A  task-oriented learning function and a stopping 

criterion are developed to train the Kriging model and customize the AKM. Experiment 

analysis shows that the proposed AKM is both accurate and efficient.

1. INTRODUCTION

The Moon is directly exposed to solar radiation and solar wind plasma (drifting 

protons and electrons) lacking an atmosphere and a global magnetic field. Consequently, 

the lunar surface is electrically charged by the bombardment o f solar wind plasma and 

emission/collection o f photoelectrons. Near the illuminated lunar surface, the plasma 

sheath is dominated by photoelectrons, thus usually referred to as “photoelectron sheath”. 

Additionally, dust grains on the lunar surface may get charged and levitated from the 

surface under the influence o f the electric field within the plasma sheath as well as gravity.
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This work is motivated by the high computational cost associated with uncertainty 

quantification (UQ) analysis o f plasma simulations using high-fidelity kinetic models such 

as particle-in-cell (PIC). The main quantities o f interest (QoI) o f this study are the vertical 

structure of the photoelectron sheath and its effects on the levitation of dust grains with 

different sizes and electric charges.

Both the electric potential (0 )  and the electric field (E) on the lunar surface are 

determined by many parameters, such as solar wind drifting velocity ( v d ), electron 

temperature (Te), photoelectron temperature (Tp), the density o f ions at infinity (niro), and 

density o f photoelectrons (np), etc. Due to uncertain factors in the lunar environment, the 

electric potential, electric field, and the dust levitation height, etc., are also uncertain. While 

many sources of uncertainty may exist, they are generally categorized as either aleatory or 

epistemic. Uncertainties are characterized as epistemic if  the modeler sees a possibility to 

reduce them by gathering more data or by refining models. Uncertainties are categorized 

as aleatory if  the modeler does not foresee the possibility o f reducing them [1]. An example 

of the aleatory uncertainty in the lunar environment is the solar wind parameters, and an 

example o f the epistemic uncertainty is the photoelectron temperature which is obtained 

by limited measurement data from Apollo missions. For lunar landing missions, one needs 

to take into consideration the uncertainties of the electrostatic and dust environment near 

the lunar surface. For example, the upper and lower bounds o f the electric field and dust 

grain levitation heights in the photoelectron sheath should be considered when determining 

whether it is safe for a certain area to land a spacecraft.

Determining the bounds o f the electric potential, electric field, and dust levitation 

height, however, is computationally expensive, because the particle-based kinetic models
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such as particle-in-cell simulations are time-consuming to evaluate. To address this issue, 

we develop an adaptive Kriging method (AKM) which can determine those bounds with a 

small number o f calculations o f the model. It is straightforward to train and obtain an 

accurate Kriging model [2] to replace the actual model and then calculate the bounds with 

the model. However, the Kriging model doesn't need to be accurate everywhere in its input 

space, because it will need more training samples and hence decrease the efficiency. Since 

the objective is to determine those bounds, we only need the Kriging model to be partially 

accurate near the regions o f interest, as long as it can help find those bounds accurately. 

This way, we can save more computational efforts. To this end, we develop a task-oriented 

learning function and a stopping criterion to adaptively train the Kriging model. We start 

with an analytic model for the 1-D photoelectron sheath near the lunar surface [3, 4]. This 

model is computationally cheap and hence the accurate results can be obtained by brute 

force. With accurate results, we can test the accuracy of the proposed method. It is noted 

here that the ultimate application o f this method is not the simple 1-D problem presented 

in this work, but more complicated or computationally expensive models such as 3-D fully 

kinetic particle-in-cell plasma simulations.

The rest o f this paper is organized as follows. Section 2 presents the 1-D 

photoelectron sheath and dust levitation problem on the lunar surface, as well as the 1-D 

analytic model. Section 3 briefly introduces the Kriging method and general AKM. Section 

4 presents the proposed AKM. Section 5 presents the results. Conclusions are given in

Section 6.
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2. PROBLEM  STATEMENT

2.1. 1-D PHOTOELECTRON SHEATH M ODEL ON THE LUNAR SURFACE

We employ the recently derived 1-D photoelectron sheath model for the lunar 

surface [3, 4]. As given in detail in [3, 4], there are three types o f electric potential profiles 

[3-6] in the photoelectron sheath: Type A, Type B, and Type C, as shown in Figure 1, 

where 0  is the electric potential and Z is the vertical coordinate. In this study, we focus on 

Type C sheath profile as it is expected at the polar regions o f the Moon, where the next 

lunar landing mission will likely occur.

Free solarReflected solar
wind electronswind electrons

FreeCaptured
photoelectronsphotoelectrons

Type C Type B

Figure 1. Three types o f sheath potential profiles in the analytic 1-D photoelectron sheath
model [2 ]

Both the electrical potential 0  and corresponding electric field E are functions o f Z  

with a series o f parameters P =  ( v d, Te, Tp, n im, n p). To obtain 0 (Z ;P ) and E(Z;  P), we
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need to solve an ordinary differential equation (ODE) [3]. Once the potential profile 0  is 

obtained, it is straightforward to calculate electric field E by

d0(Z; P)
dZ

( 1)

A typical Type C sample curve o f E(Z;  P) is shown in Figure 2. Note that both 0  

and E converge to zero at large values o f Z  where it is used as the electric potential 

reference (zero potential and zero field).

Figure 2. A typical Type C sample o f E(Z;  P)

2.2. DUST LEVITATION

Subjected to the electric field force, a charged dust on the lunar surface may be 

levitated [7, 8 ]. Above the lunar surface, there is a position where the upward electric field 

force balances the downward gravity [4]. This position is referred to as equilibrium
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levitation height, denoted as Z*. Z* can be solved through the following equation o f static 

equilibrium of a charged dust in an electric field:

qE(Z;  P) =  m g  (2)

where q is the dust charge, m  is the mass o f the dust, and g  = 1.62 m /s 2 is the gravity 

acceleration on the lunar surface [9]. With the assumption o f spherical dust grains, m  is 

given by

4
m  = n r 3p  (3)

where r  is the radius o f the lunar dust grain, and p  = 1 .8  g /cm 3 is the mass density o f dust 

grains [10]. For simplicity, Eq. (2) is rewritten as

E(Z;  P ) = w  (4)

where w  = m g / q . Once both E(Z;  P) and w  have been given or determined, a root

finding scheme is employed to solve Eq. (4) for Z*. Figure 3 shows an example o f how to 

obtain Z* graphically.

Figure 3. Method to solve for the equilibrium height o f dust levitation
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2.3. OBJECTIVE

Due to the lack o f information, it is almost impossible to obtain the distribution 

functions o f P. The bounds o f P, however, are much easier to obtain. In some work designs 

on the lunar surface, we need to determine the bounds o f 0(Z; P) and/or E(Z;  P), given 

the bounds o f P. In this study, all the parameters in P are modeled as interval variables, 

whose domain is denoted as H . For a given realization p o f P , both 0 (Z ;p ) and 

E(Z;  p ),Z  G [Zmin,Z max] are obtained by solving the ODE.

The upper bound 0 (Z ) o f the electric potential is defined as

0 (z) =  m ax 0 (z ;p ) (5 )
pGO v '

where z is a given value o f variable Z. Note that the entire upper bound curve 0 (Z ) is not 

necessarily determined by a specific p. In other words, at different values o f z, 0 (z )  may 

be determined by different realizations o f P . Similarly, the lower bound 0 (Z ) o f the

electric potential, the upper bound E (Z) o f the electric field, and the lower bound E(Z) are 

defined as

0 (z) =  min 0 (z; p)— pGO (6 )

E (z) =  max E (z; p)
pGO (7)

E (z) =  m in £ (z ;p )pGO (8 )

Since P are modeled as interval variables and the intervals (lower and upper bounds) 

of output are desired, we cope with interval propagation problems in this work. The most 

straightforward method to determine 0 (Z ),0 (Z ), E(Z) and E(Z) is through Monte Carlo
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Simulation (MCS) [11] in the following steps. First, evenly generate a large number NMCS 

of samples o f P. For convenience, we denote those samples as p MCS. Second, obtain the 

corresponding NMCS samples o f 0 (Z ;P ) and E(Z;  P) by solving the ODE NMCS times. 

Finally, calculate 0 ( Z ) , 0 ( Z ) , E(Z)  and E_(Z) using the NMCS samples o f 0 (Z ;P ) and 

E(Z;  P):

0 (z) =  m ax 0 (z; p) 
pepMCS (9)

0 (z) =  min 0 (z; p)
— pEpMCS ( 1 0 )

E ( z ) = max f (z ;p )
pepMCS ( 1 1 )

F (z ) =  min £ (z ;p )
pEpMCS ( 1 2 )

However, this method is too expensive or even unaffordable. One reason is that 

solving the ODE a large number NMCS o f times is time-consuming, even when the analytic 

solution to the ODE is available for the 1-D problem. Another reason is that there is no 

analytic solution to complex 2-D or 3-D problems where kinetic particle-in-cell simulations 

are usually employed to solve the electrostatic field through Poisson’s equation.

The objective o f this study is to develop a method to determine 0 (Z ), 0 (Z ), E(Z)  

and E_(Z) accurately and then calculate Z* o f dust grains. It is noted here that the ultimate 

application o f this method is not the relatively simple 1-D problem presented in this work, 

but more complicated or computationally expensive models such as 3-D fully kinetic 

particle-in-cell plasma simulations. For computationally expensive models, evaluating the 

model consumes the majority o f computational resource, so we will use the number N ODE

of ODEs that we need to solve as a measure o f the computational cost.
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3. INTRODUCTION TO KRIGING M ODEL AND AKM

Before presenting the proposed method, we briefly introduce the Kriging model 

[12, 13] and AKM [13-28], on which the proposed method is based.

3.1. OVERVIEW  OF KRIGING MODEL

Kriging model makes regression to a black-box function (BBF) using a training 

sample set, or a design o f experiment (DoE). The main idea o f Kriging is to treat the BBF 

as a realization o f a Gaussian random field indexed by the input variables o f the BBF. The 

theoretical foundation o f the Kriging model is exactly the Bayesian inference [28]. From 

the perspective o f the Bayesian interface, a prior parameterized Gaussian random field is 

trained by the DoE and hence a posterior Gaussian random field is generated. Then the 

mean value function, also indexed by the input variables o f the BBF, o f the posterior 

random field is the Kriging prediction to the BBF. Besides, the variance function, also 

indexed by the input variables o f the BBF, o f the posterior random field quantifies the local 

prediction uncertainty or prediction error.

The randomness, or uncertainty, o f the posterior random field, mainly comes from 

the fact that only a limited number o f samples o f the BBF are used to train the prior random 

field. In other words, only part o f the information o f the BBF is available, and the missing 

part o f information leads to the epistemic uncertainty in the random field. Generally, the 

more training samples we use, the less epistemic uncertainty will result, and with stronger 

confidence will we predict the BBF.



151

3.2. FORM ULATION OF KRIGING MODEL

A simple yet widely used prior random field is the stationary Gaussian random field 

given by

K(X)  =M +  ^(X;<f2,0 )  (13)

where ^  is an unknown parameter representing the mean value o f the random field K(X)  

and ^(X; %2, 6)  is a zero-mean stationary Gaussian random field indexed by X, the input 

variables o f a BBF k(X) .  Both the variance parameter %2 and correlation parameters 0 of 

^(X; %2, 0) are unknown. The parameters ^, %2 and 0 fully define the prior random field 

K(X).  A DoE, or a training sample set, o f k (X)  is used to train K(X)  and then determine 

those parameters.

The correlation function C ( x (l), x (j))  o f  ̂ (X; ^2 , 0) is given by

C ( x (l), x (j)) = ^ 2R ( x (i), x (j );Q)  (14)

where R ( x (l), x (j);Q)  is the correlation coefficient function o f ^(X;^2 , 0) at two points 

x (l) and x (j) o f X. There are many models for R ( x (l), x (j);Q).  A widely used model is 

known as the Gaussian model, or squared exponential model, given by

D

R ( x (l\ x (rt; 0 )  =  exP —6d {x ci') — x(P )
d=1

2
(15)

where D is the dimension o f X , is the d th component o f x (l') , and 9d is the d th 

component o f 0 .

For a BBF k ( X ) , the Kriging model predicts k ( x )  as k ( x ) ,  which is a normal 

variable whose mean value and variance are k ( x )  and o 2(x),  respectively. Note that o 2(x)  

is also termed as the mean squared error (MSE). Generally, k ( x )  is regarded as the
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deterministic prediction to k (x ) ,  since a deterministic prediction is usually needed. a 2 (x) 

measures the prediction uncertainty, or prediction error, and therefore we can validate a 

Kriging model simply using k ( x )  and a 2 (x) without employing traditional validation 

methods, such as cross-validation [30]. Because o f this advantage, many algorithms have 

been proposed to adaptively train a Kriging model for expensive BBFs [14-27, 31-36]. 

When sufficient training samples have been used for training, a 2(x)  converges to 0 and 

the normal variable k ( x )  degenerates to a deterministic value, i.e., the exact value o f k(x) .

3.3. AN EXAM PLE OF KRIGING MODEL

Figure 4 shows a 1-D example o f the Kriging model. In total five initial training 

samples are used to train the Kriging. The vertical distance between k ( x )  ±  a ( x )  

graphically quantify the prediction error at x . The larger the distance, the larger the 

prediction error. On interval [0,2], the training samples are denser than that on [2,10]. 

Consequently, the prediction error is smaller on [0, 2] than that on [2,10]. It is noted that 

the prediction error is not only dependent on the density o f the training samples but also 

on the nonlinearity o f the BBF. With the prediction error shown in Figure 4, it is obvious 

that to improve the prediction accuracy, we need to add training samples somewhere near 

x  = 4  and x  = 8 . Figure 5 shows the updated Kriging model with one more training 

sample added at x  = 8 . The overall prediction accuracy is improved significantly.

3.4. AKM

The main idea o f AKM is to adaptively add training samples to update the Kriging 

model iteratively until an expected accuracy is achieved. Figure 6  shows a brief flowchart
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of AKM. The QoI is what we aim to calculate, such as 0 (Z ) and 0 (Z ). Since the QoI is

calculated through the Kriging model instead o f the BBF itself, there is an inevitable error 

caused by the Kriging model. The error metric is used to measure the error. The stopping 

criterion, which is based on the error metric, is used to determine when to stop adding 

training samples. Once the error o f QoI is sufficiently small, it is reasonable to return the 

QoI and stop the algorithm. If the error is large in an iteration, we must add one or more 

training samples to update the Kriging model. How to determine new training samples is 

the task o f the learning function. A good learning function should be robust and lead to a 

high convergence rate.

Figure 4. Original Kriging model: Prediction error is large near x  = 4  and x  =  8
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Given a specific engineering problem, the key to employing an AKM is to make 

good use o f all available information, such as the features o f the BBF and QoI, and then 

design a customized or task-oriented error metric, stopping criterion, and learning function. 

In the UQ community, a great number o f AKMs have been developed to solve varies kinds 

of problems, such as reliability analysis [15, 17-24, 26, 31-33, 36], robustness analysis [14], 

sensitivity analysis [34], robust design [25, 35], and reliability-based design [16, 27], etc.

Figure 5. Updated Kriging model with one more training sample added at x  = 8 : Overall 
prediction accuracy is improved significantly

4. THE PROPOSED METHOD

In this section, we present detailed procedures for calculating 0 (Z ) and 0 ( Z ) .

Similar procedures can also apply to calculate E(Z)  and F(Z).
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Figure 6 . Brief flowchart o f AKM

4.1. OVERVIEW  OF THE PROPOSED METHOD

The main idea o f the proposed method is to employ the framework o f AKM and 

customize it to calculate 0 (Z ) and 0 (Z ) (as well as E ( Z ) and E_(Z)). Figure 7 shows a

brief flowchart o f the proposed method. In Step 1, we evenly generate Nin initial samples 

of P . Generally, Nin is much smaller than N MCS. Details o f this step will be given in 

Subsection 4.2. In Step 2, the ODE (1-D Poisson’s equation) is solved Nin times, with the 

Nin samples o f P, to obtain Nin samples o f 0(Z ; P). In Step 3, the samples o f 0(Z ; P) are
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used to build a Kriging model 0(Z ; P). Both Z and P are treated as input variables so the 

dimension of 0(Z ; P) is 1 +  5 =  6 . In Step 4, 0 (Z ) and 0 (Z ) are estimated through

0 (z) =  m ax <p(z; p) 
pepMCS

0 (z) =  m in s $ (z '; P)pep

(16)

(17)

In Step 5, an error metric is developed to measure the error of 0 (Z ) and 0 (Z ) estimated

by Eq. (16) and Eq. (17). Step 6 is about a stopping criterion. Details about Steps 5 and 6 

will be given in Subsection 4.4. The learning function involved in Step 7 will be given in 

Subsection 4.3. The implementation of the proposed method will be given in Subsection

4.5.

Step 6:
Stopping
criterion
satisfied4?

Step 3: Build an Kriging model $(Z; P) using the training sample set of $(Z; P)

Step 4: Calculate <p(Z) and $(Z ) using <£(Z; P)

Step 5: Calculate error metric
^Step 7:

Determine a
new sample
of 0(Z; P)
and add it to
the training

Yes ^sample set
Return 0(Z) and d)(Z)

f End )

( Start J

Step 1: Generate initial training samples of P

Step 2: Solve ODE to obtain initial samples of 0(Z; P)

Figure 7. Brief flowchart of the proposed method
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There are two significant differences between most existing AKMs and the 

proposed method. First, the former aims at estimating a constant value, such as the 

structural reliability and robustness, while the latter aims at estimating two functions, i.e., 

0 (Z ) and 0 (Z ). Second, when given a specific value o f the input, the output o f the BBFs

involved in the former methods is a single value. However, in this work, with a given 

realization p o f P , the output o f solving the ODE is a function 0 ( Z ; p ) . With those 

differences, we cannot use the existing error metrics, stopping criteria, or learning functions. 

Instead, we take into consideration those differences and design a new error metric, 

stopping criterion, and learning function to fit the problem. This is the main contribution 

of the proposed algorithm.

4.2. CANDIDATE SAMPLES AND INITIAL TRAINING SAMPLES

For numerical computation, we need to evenly discretize H into a few points. 

Suppose Pj, the ith component o f P, is discretized into N t points, then H will be discretized 

into in total NP = n f = 1 ^i points. For convenience, we denote the set o f those points as 

p MCS . Similarly, Z  is discretized into Nz  points (denoted as z MCS ) in its range 

[Zmin,Z max].Theoretically, any p £ H  could be selected as a training sample for 0(Z ; P). 

However, we do not want any two training samples to be clustering together, because we 

use the exact interpolation in Kriging and clustered training samples may impact the 

training and the convergence rate o f the proposed AKM. Therefore, we only select training 

samples o f P from p MCS and call p MCS candidate samples or candidate points.

The Nin initial training samples p in o f P are selected such that they are distributed 

in H as even as possible. Commonly used sampling methods include random sampling,
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Latin hypercube sampling, and Hammersley sampling [37]. In this study, we employ the 

Hammersley sampling method because it has better uniformity properties over a 

multidimensional space [38]. The Hammersley sampling method firstly generates initial 

training samples in a 5-dimensional hypercube [0,1]5 and then they are mapped into H to 

get the initial training samples o f P. Note that the five dimensions o f the hypercube are 

assumed to be independent, with the assumption that all variables in P are independent. 

Those training samples, however, are not necessarily among p MCS, so we need to round 

them to the nearest ones in p MCS. Since the components o f P do not necessarily share the 

same dimension unit, the distances which we use to find the nearest samples should be 

normalized. For example, the distance d between a sample p (h) generated by Hammersley 

and a candidate sample p (c) in p MCS is given by

d (p (h), p (c)) =  1̂  
J  t=i

,(ft)
Pi -  Pi

(c)

p. — p.1 i,max 1 i,r

2

(18)

where p(ft) is the i th component o f p (h), p(c) is the i th component o f p (c), Pj,max is the

maximal value o f Pj which is the ith component o f P, and Pj,min is the minimal value of

Pj . Then p (h) is rounded to p * =  arg min d (p (h), p (c)). When all the initial training
pepMCS

samples generated by Hammersley have been rounded to the nearest ones in p MCS, we get 

the initial training sample set p in c  p MCS of P.

Solving the ODE Nin times, each with a sample in p in, we get Nin samples of 

0(Z ; P). Note that each sample o f 0(Z ; P) has Nz points, since we discretized Z into Nz 

points. Then we have WzWin input training points z MCS X p in. Except the Nin points at 

Zmax, we select the other (Nz — 1)N in points to form the first part o f the input training
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sample set o f 0(Z; P). We denote those (Nz  — 1)Nin input training points as x inp1 , where 

superscript inp o f x represents the input, and the superscript 1 means that x inp1 is only the 

first part o f the entire input training sample set. The other part x inp2 is given below.

Since for any p G p MCS, it is known that 0 (Z max; p) =  0 (Figure 1), theoretically 

we also need to add all the NP points Zmax x  p MCS as input training samples so that we 

make good use o f all known information. However, it is not practical to do so. For example, 

if  Ni =  10, i =  1,2, ...,5, we need to add NP =  105 points as input training samples. So 

many training samples will make 0(Z ; P) complex, expensive, and not accurate, losing its 

expected properties. To balance the need to add them and the drawback o f adding all of 

them, we add part o f them. Specifically, we evenly generate NP samples p' o f P using 

procedures similar to what we used to generate p in. Then x inp2 is given by

x lnp2 =  {(Zmax,P) |P G p'} (19)

The input training sample set x inp =  x inp1 U x in p 2 . Denote the corresponding electric 

potential 0  at x inp as ^ out. The input-output training sample pairs (x inp, ^ out) are used 

to build the initial 0(Z; P). More training samples will be added to update 0(Z ; P) later.

4.3. LEARNING FUNCTION

Generally, the initial Kriging model is not accurate enough to get 0 (Z ) or 0 (Z )  

accurately through Eq. (5) and Eq. (6 ). To improve the accuracy o f 0(Z; P) and hence of 

0 (Z ) and 0 (Z ), we need to add training samples o f 0(Z ; P) to refine 0(Z; P). A learning 

function is used to determine which sample o f P, and hence o f 0(Z ; P), should be added.
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In our previous work [3], we used the learning function given by

a(z;  p)p (next) _  arg maX
r  pepMcs I

zezM
(2 0 )

zmcs. <P( z ; p )

where p (next) is the next to-be-added sample o f P , 0 (z ;p ) is the predicted value of 

0 (z ;p )  by the Kriging model 0 ( Z ; P ) , and a (z ;p )  is the standard deviation o f the

prediction. Both 0 (z ; p) and a(z; p) are calculated by the Kriging toolbox.
(̂zO'bp)

is the0(zO);p)

deviation coefficient o f the prediction at (z; p), and thus the learning function in Eq. (20) 

determines the training sample p (next) at which the summation o f the absolute deviation 

coefficients o f the predictions along Z coordinate is maximal. The summation

z zezMCS a-(z;p)
0 (z;p)

p to update 0(Z; P) will let Z

measures the overall prediction error at p. Adding a sample o f 0(Z ; P) at

a-(z;p)
zezMCS 0 (z;p) become zero, and therefore adding a sample

of 0 (Z ;P ) at p (next) to update 0 (Z ;P ) will decrease the overall prediction error o f 

0(Z ; P) by the largest extent. This is the basic mechanism of the learning function in Eq.

(2 0 ).

However, we do not necessarily need 0 (Z ;P ) to be overall accurate. Since the 

objective is to estimate 0 (Z ) and 0 (Z ) accurately and efficiently, we only need 0 (Z ;P )

to be partially or locally accurate enough so that it can help estimate 0 (Z ) and 0 (Z )

accurately. With this idea, we can further improve the efficiency o f updating 0(Z; P) by 

adding training samples more skillfully.
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A widely used learning function in an AKM that aims at calculating extreme values 

is the expected improvement function [27]. The expected improvement function ^(z, p)

o f 0 (z) is given by

^(z ,p )  =  (<p(z; p) -  0 (z ) ) $
/(j)(Z) p) -  0 (z )N

+  <r(z; p )^

a (z; p ) 

0 (z ;p ) - 0 (z )Ni
(2 1 )

a (z; p) )

where $ (• )  and ^ ( 0  are the cumulative distribution function and probability density 

function o f the standard Gaussian variable, respectively. A simple explanation o f the 

expected improvement function ^(z, p) is that if  we added a training point at (z, p), we 

could expect to improve current 0 (z) to 0 (z) + ^(z, p ) , with an improvement rate of 

^(z, p ) /0 ( z ) .  If the objective is to estimate 0 (z ) ,  which is a maximal value, instead of 

0 (Z ), which is an entire function, we can determine the next training sample p (next) o f P 

using the learning function given by

P(next) =  ar^_m ax.|^(z ,p ) / 0 (z ) |
pep (2 2 )

However, since the objective is to determine the entire function 0 (Z ) and one ODE 

solution has training points, we must have a learning function which aims at improving 

the calculation accuracy o f the entire function 0 (Z ). Therefore, we propose a learning 

function given by

p (next) =  arg max
*  ®  lvrrPePaxs Z  |f (z ,p ) / ^ ( z ) l

zezMCS
(23)

where we sum up the absolute values o f the improvement rate.
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This learning function means that if  we added a training sample 0 (Z ; p (next)), 

which has Nz  points, to update 0(Z ; P), we could expect to get the best improvement of 

0 (Z ). Similarly, the expected improvement function ^(z, p) o f 0 (z )  is given by

£(z, P) =  (  0 (z ) -  $ (z; p ) ) o ( :
U (z ) - 4 > (z; p )N 

(  a (z; p )

/ 0 (z ) -< ^ (z; p )N

+  ff(Z;P)^ (  g(Z;p )

To estimate 0 (Z ), we also propose a learning function given by 

p (next) =  arg m a ^  Z  | f (z ,p V  0 (z )|

(24)

(25)
zezMCS

To estimate both 0 (Z ) and 0 (Z ) simultaneously, we combine Eq. (24) and Eq. (25) to

propose a learning function given by

p (next) =  arg max { max y  k u^(z, p )

P£PMCSzê McJ  0 (z) Z

K (z, p )
, max z \ ± . .
pepMCS ^ c s  ^ (z ) zezMCS —

(26)

Once p (next) has been determined, we solve the ODE to numerically get a function 

0(Z ; p (next)), from which we get (Nz — 1) points (the remaining one at Zmax, where 0  =  

0 , is excluded) and add them into (x inp, ^ out) to enrich the training samples.

4.4. ERROR M ETRIC AND STOPPING CRITERION

Since Eq. (16) and Eq. (17) cannot obtain absolutely accurate 0 (Z ) and 0 (Z ) due 

to the prediction error o f 0(Z ; P), we need an error metric to measure the error o f currently 

estimated 0 (Z ) and 0 (Z ). Since f (Z,p)
0 (Z) measures the absolute expected improvement rate
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of 0 (z) , if ?(z,p)
0 (Z) is small for any z e  z MCS and p G p MCS, 0 (Z ) is expected to

sufficiently accurate. Therefore, we propose to use maxJ ’ f t -  zezMcs,pepMcs
f (z,P)
0 (Z) to quantify the

error o f 0 (Z ) . Similarly, max
ZGZMCS,pGpMCS

f (z,p)
0 (Z) is used to quantify the error o f 0 ( Z ) .

Combining both, we have the error metric E, which measures the error o f both 0 (Z ) and 

0 (Z), given by

r  =  max { max
I ZGZMCS,pGpMCS

^(Z, P)

0 (Z)
, max
ZGZMCS,pGpMCS

^(Z, P)

0 (Z) (27)

Once r  is small enough, the estimated 0 (Z ) and 0 (Z ) are expected to be sufficiently 

accurate. Therefore, the stopping criterion shown in Figure 7 is defined as

r  <  y (28)

where y is a threshold that controls the efficiency and accuracy o f the proposed AKM. 

Generally speaking, a smaller y will lead to higher accuracy but lower efficiency.

4.5. IM PLEM ENTATION

As shown in Figure 1, 0(Z ; P) approaches zero when Z takes large value. As a 

result, 0 ( z )  and 0 (z )  in Eq. (26) and Eq. (27) are likely to take very small values close to

zero. It leads to the singularity o f the calculation o f Eq. (26) and Eq. (27), harming the 

robustness o f the proposed algorithm. To solve this issue, we translate all training samples 

of 0(Z ; P) simply by adding a negative constant e. This way, the translated 0(Z ; P) will 

never approach zero and the singularity issue is evitable. Trained by the translated samples
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of 0(Z ; P), the Kriging model 0(Z; P) will also lead to the translation o f 0 (Z ) and 0 (Z ).

We can translate 0 (Z ) and 0 (Z ) back simply by subtracting e from them. Note that there

is no rigorous theory to quantify how e affects the properties o f the proposed AKM. We 

suggest determining e using

e =  mean(0(O; p ) |p  e  p in} (29)

where mean(-) represents mean value. Based on all the procedures given above, we 

generate the pseudo codes o f the proposed AKM given in Algorithm 1.

Algorithm 1. Pseudo codes o f the proposed method

Row
1

2

3

4

5

6

7

8

9
10 

11

12

13
14
15
16 
17

______________________________ Pseudo codes______________________________
Evenly discretize H into points p MCS.
Evenly discretize interval [Zmin,Z max] into points z MCS.
Generate Nin samples p in o f P with procedures given in Subsection 4.2.
Solve ODE Nin times to get Nin samples 0 (Z ;p ), p e p in o f 0 (Z ;P ) ; 
Calculate e with Eq. (29); NODE =  Nin.

Determine (x inp, ^ out) with procedures given in Subsection 4.2; ^ out =
^out +  e.
W HILE TRUE DO
Build Kriging model 0(Z ; P) using (x inp, ^ out).
Calculate 0 (Z ) and 0 (Z ) with Eq. (16) and Eq. (17); 0 (Z ) =  0 (Z ) — e ; 
0 ( Z ) = 0 ( Z ) - e .  _
Calculate F with Eq. (27)
IF (E >  y) DO
Solve Eq. (20) for p (next); ty,DE =  ^ ode +  1.
Solve ODE to get a new sample 0 (Z ;p (next)) ; 0 (Z ; p (next)) =  
0 (Z ;p (next)) +  e ; All points o f 0 (Z ;p (next)) excluding the one at Zmax are 
added into (x inp, ^ out).
ELSE
BREAK W HILE  
END IF 
END W HILE
RETURN 0 (Z ), 0 (Z ), and WODE.
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4.6. VALIDATION DISCUSSION

Theoretically, it is vital to validate the Kriging model to make sure that it has been 

trained accurately. An explicit validation, however, is not involved in the proposed AKM. 

There are two main reasons. First, the adaptive training focuses on the accuracy o f QoI 

instead o f the accuracy o f the Kriging model. Once there is an indication that the accuracy 

of QoI in current training iteration is sufficient, i.e., the stopping criterion in Eq. (27) is 

satisfied, the algorithm stops adding more training samples, no matter the Kriging model 

is globally accurate or not. As a result, when the algorithm has converged, the Kriging 

model is likely accurate only in some subdomains but not accurate in other domains. 

Therefore, it is not suitable to do explicit cross-validation. Second, the error metric r can 

measure the accuracy o f QoI, and therefore we do validation implicitly. As long as the 

accuracy o f QoI is sufficient, it does not matter if  the Kriging model is or not accurate in 

the entire domain.

5. RESULTS

In this section, we illustrate the proposed AKM. MCS is used to solve the same 

problems with brute force. Results by MCS are treated as standard to verify the proposed 

AKM. We build the Kriging model and calculate the Kriging predictions using the DACE 

toolbox [39]. The anisotropic Gaussian kernel is used.
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We consider the Type C o f the 1-D photoelectron sheath problem discussed in 

Section 2. The sun elevation angle is given as 9 degrees.The maximal and minimal values 

of P =  ( v d, Te, Tp, n i m, np) are given in Table 1. We use both MCS and the proposed AKM

to estimate 0 (Z ) and 0 (Z ). The values o f all involved parameters are given in Table 2.

5.1. SHEATH PROFILE

Table 1. Variables o f uncertainty

Variables ^d(m /s) ?e(eV) ^p(eV) ni ro( cm 3) np( cm 3)

Minimum 421,200 1 0 .8 1 .8 7.83 57.6
Maximum 414,800 13.2 2 .2 9.57 70.4

Table 2. Parameter values

Parameters Wi~^5 WP Win ^ Wz Y

Values 5 5 5 5 100 50 0 .0 1

Table 3. Samples generated by the Hammersley sampling method

Sample
number

Dimension 1 Dimension 2 Dimension 3 Dimension 4 Dimension
5

1 0 0.5000 0.3333 0 .2 0 0 0 0.1429
2 0 .2 0.2500 0.6667 0.4000 0.2857
3 0.4 0.7500 0 .1 1 1 1 0.6000 0.4286
4 0 .6 0.1250 0.4444 0.8000 0.5714
5 0 .8 0.6250 0.7778 0.0400 0.7143

The domain H o f P is discretized into NP = 5 5 points, which are assembled into 

pMcs. The Nin = 5 samples in hypercube space [0,1]5, generated by the Hammersley 

sampling method, are given in Table 3. Then the 5 samples are mapped into H, as given in
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Table 4. Rounding the 5 samples in H to the nearest ones in p MCS, we get the initial samples 

p in o f P, as given in Table 5. Solving the ODE five times, each with a sample in p in, we 

get five samples o f 0(Z ; P) as shown in Figure 8 .

Table 4. Samples mapped into H

Sample
number ^d(m /s) TUeV) ^p(eV) ni,ra( cm 3) np( cm 3)

1 421,200 1 2 .0 0 0 0 1.9333 8.1780 59.4286
2 439,920 11.4000 2.0667 8.5260 61.2571
3 458,640 12.6000 1.8444 8.8740 63.0857
4 477,360 1 1 .1 0 0 0 1.9778 9.2220 64.9143
5 496,080 12.3000 2 .1 1 1 1 7.8996 66.7429

Table 5. Initial samples o f P

Sample
number ^d(m /s) TUeV) ^p(eV) ni,ra( cm 3) np( cm 3)

1 421,200 1 2 .0 0 0 0 1.9000 8.2650 60.8000
2 444,600 11.4000 2 .1 0 0 0 8.7000 60.8000
3 468,000 12.6000 1.8000 8.7000 64.0000
4 468,000 11.4000 2 .0 0 0 0 9.1350 64.0000
5 491,400 1 2 .0 0 0 0 2 .1 0 0 0 7.8300 67.2000

Each sample o f 0 (Z ;P ) contains Nz = 50 numerical points. Excluding the five 

points at Zmax, we have Nz Nin — 5 =  245 training points in ( x inp1, ^ out1) . With the 

Hammersley sampling method, we generate Np =  100 samples o f P and hence 100 

training points in (x inp2, ^ out2). Note that all points in (x inp2, ^ out2) have Z =  Zmax and 

0  =  0. Combining ( x inp1, ^ out1) and (x inp2, ^ out2) , we have 345 training points in 

(x inp, ^ out). To do the translation mentioned in Subsection 4.5, we update ^ out simply by 

^ out =  ^ out +  e , where e =  —6.97 V is obtained with Eq. (29). With the updated
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(x inp, ^ out), we build an initial Kriging model and then estimate 0 (Z ) and 0 (Z ) through 

Eq. (16) and Eq. (17). Finally, we translate 0 (Z ) and 0 (Z ) back by 0 (Z ) =  0 (Z ) — e and

0 (Z ) =  0 (Z ) — e. Figure 9 shows the 0 (Z ) and 0 (Z ) estimated by both MCS and the 

proposed AKM (with the initial Kriging model). It shows that the initial Kriging model is 

not able to predict 0 (Z ) or 0 (Z ) with sufficient accuracy.

100
Sample 1
Sample 2
Sample 380 -

-  Sample 4
-  Sample 5

40 -

20 -

[v]

Figure 8 . Initial samples o f 0(Z ; P)

To improve accuracy, the proposed method indicates adding a sample at p (next) =  

(514800,13 .2 ,2 .2 ,9 .57 , 57.6). With the p (next), we solve the ODE and get a new sample 

of 0(Z ; P). This sample contains =  50 numerical points. We translate all the numerical 

points and add them, excluding the one at Zmax, to update (x inp, ^ out). The reason why 

we abandon the point at Zmax is that there are already enough points at Zmax in
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(x inp2, $ out2). With the updated (x inp, ^ out), we build a new 0 (Z ;P ). With the new  

0(Z ; P) another p (next) is indicated. With similar procedures, more and more samples of 

0 (Z ;P ) are added to refine 0 (Z ;P ) until the stopping criterion given in Eq. (28) is 

satisfied.

Figure 9. Results by initial Kriging model: Predicted electric potential bounds are not
accurate

The final estimation o f 0 (Z ) and 0 (Z ) is shown in Figure 10. It shows that the

proposed AKM can estimate 0 (Z ) and 0 (Z ) very accurately. 19 more samples o f 0(Z ; P)

have been added to refine 0(Z ; P), and therefore in total WODE =  Nin +  16 =  21 ODE 

solutions are needed. Compared to =  3,125 ODE solutions needed in MCS, the 

proposed method is very efficient.
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Figure 10. Final result: Predicted electric potential bounds are accurate

5.2. DUST LEVITATION

In this example, we still consider the same 1-D photoelectron sheath problem in

Subsection 5.1, but the objective is to estimate E ( Z ) and F(Z) and then calculate the dust

levitation height. The values o f all involved parameters are given in Table 6 .

Table 6 . Parameter values

Parameters N1~ N 5 NP Nin Np Nz Y

Values 5 5 5 5 1 0 0 50 0 .0 1

The procedures used to estimate E (Z)  and E_(Z) are almost the same as that used 

to estimate 0 (Z ) and 0 (Z ). The only difference is that the samples o f E(Z;  P) instead of

0(Z ; P) are used. The final estimation o f E(Z)  and E_(Z) is shown in Figure 11. It shows 

that the proposed AKM method is very accurate. As for efficiency, the proposed method
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needs only N ODE = Nin +  18 =  23 ODE solutions. Compared to NP = 3,125 ODE 

solutions needed in MCS, the proposed method is very efficient.

Figure 11. Final result: Predicted electric field bounds are accurate

When the upper and lower bounds o f the electric field have been determined, we 

can use them to determine the levitation heights o f the dust grains. Assuming there are two 

types o f dust grains, A and B, in the electric field. The relevant parameters o f the grains 

are given in Table 7, where e =  1.062 x  10-19C is the electric charge o f an electron. The 

dust levitation heights are shown in Figure 12 and given in Table 8 . Due to the uncertainty 

of P, the levitation heights o f both A and B are also uncertain. The levitation height o f A  

may be any value in the interval [0 m, 9.33 m], which is estimated by the proposed method. 

The interval determined by MCS is [0 m, 9.26 m]. It shows that the proposed method can
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estimate the levitation height o f Grain A with sufficient accuracy. A similar conclusion 

applies to the levitation height o f Grain B.

Given any dust grain with known w  value, we can easily determine its levitation 

height interval using the method shown in Figure 12. This will help to evaluate the risk or 

damage caused by the levitated dust grains for lunar exploration missions.

Table 7. Parameters o f Grains A and B

Grains r  (pm) m  (g) q /e  w  (V /m )

A 0.5 1.5268 x  10 -1 2 50,000 -0 .4 6 5 8
B 0.3 3.2979 x  10 -1 3 45,000 -0 .1 1 1 8

Figure 12. Dust levitation heights: The electric field bounds determines the dust levitation
heights
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Table 8 . Dust levitation heights: The proposed AKM obtained accurate levitation heights

Grains AKM MCS Relative error 
(%)

A
^min(rn)

0 .0 0 0 .0 0 0 .0

zm  ax(m)
9.33 9.26 0 .8

B
^min(m)

1 0 .8 8 1 1 .0 0 - 1 .1

^ a x (m ) 25.55 25.55 0 .0

6 . CONCLUSIONS

We presented an adaptive Kriging based method to perform UQ analysis o f the 1- 

D photoelectron sheath and dust levitation on the lunar surface. A recently derived 1-D 

photoelectron sheath model was used as the high-fidelity physics-based model and the 

black-box function. The adaptive Kriging method, with a task-oriented learning function 

and stopping criterion, was utilized to improve the efficiency in calculating the upper and 

lower bounds o f electric potential as well as dust levitation height, given the intervals of 

model parameters. Experiment analysis shows that the proposed AKM method is both 

accurate and efficient. Current and ongoing efforts are focused on building an adaptive 

Kriging model for 2-D and 3-D kinetic particle simulations o f the lunar plasma/dust 

environment and perform UQ analysis.
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SECTION  

2. CONCLUSIONS

The main objective o f this study is to develop accurate and efficient methods for 

uncertainty analysis. This study contains five works. In the first work, an accurate method 

based on the series expansion, Gauss-Hermite quadrature, and saddle point approximation 

is developed to calculate high-dimensional normal probabilities. Then the method is 

applied to estimate structural time-dependent reliability. In the second work, we develop 

an adaptive Kriging method to estimate product average lifetime. In the third work, a time- 

and space-dependent reliability analysis method based on the widely used first-order and 

second-order methods is proposed. In the fourth work, we extend the existing robustness 

analysis to time- and space-dependent problems and develop an adaptive Kriging method 

to efficiently evaluate the time- and space-dependent robustness. In the fifth work, we 

apply the uncertainty analysis to lunar plasma environment modeling and develop an 

adaptive Kriging method to efficiently estimate the lower and upper bounds o f the electric 

potentials o f the photoelectron sheaths near the lunar surface. Based on the above research 

works, the following conclusions are drawn.

(1) It shows in the first work that the proposed method based on the series expansion, 

Gauss-Hermite quadrature, and saddle point approximation can calculate high-dimensional 

normal probabilities accurately, even when the normal probabilities are very small. In all 

examples, its accuracy is overall significantly better than the widely used randomized quasi
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Monte Carlo method and improved equivalent component method. However, the proposed 

method requires the reduced dimension to not be large.

(2) Statistics-based methods are very expensive to evaluate average product 

lifetime since they need lifetime testing of many real products. Physics-based methods can 

dramatically improve efficiency because they only need numerical models o f the products. 

Besides, physics-based methods can predict the average product lifetime in a design stage. 

The proposed method in the second work, which is based on adaptive training of the 

Kriging model, can estimate the average product lifetime with a small number of 

evaluations of the numerical models.

(3) The time- and space-dependent reliability problem is the most complicated and 

general reliability problem. Efficient and accurate methods remain to be developed. The 

proposed method in the third work is only a beginning because it can only deal with 

problems that involve random variables instead of random processes or random fields.

(4) Similar to the time- and space-dependent reliability problem, the time- and 

space-dependent robustness is also the most complicated and general robustness problem. 

Examples in the forth work show that the proposed adaptive training method is a promising 

method to estimate time- and space-dependent robustness.

(5) When planning an exploratory task on the lunar surface, it is vital to take into 

consideration the electric potential caused by the lunar plasma. Due to uncertainties and 

lack of information, it is almost impossible to determine the exact value of the electric 

potential. However, determining its bounds is sometimes feasible when bounds o f the 

uncertain parameters are given. Determining the output bounds given the input bounds is
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modeled as interval propagation. The proposed adaptive training-based method in the fifth 

work shows good accuracy and efficiency in computing the interval propagation.

Future work includes applying the developed reliability and robustness analysis 

methods in reliability-based optimal design and robust design.
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