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ABSTRACT

This study addresses the experimental methods used to develop and characterize 

plasmonic devices capable of modifying the optical response of alpha quartz via the 

deposition of gold nanoparticles in etched ion tracks. In the first part of the research, the 

microstructural characterization of latent and etched ion tracks produced in alpha quartz 

(a-SiO2) is presented. Single crystals of a-SiO2 were irradiated with two highly energetic 

ions to different nominal fluences. As expected, the morphology of the resulting ion 

tracks depends on the energy of the incident ion and their stopping powers within the 

target material. Subsequent chemical vapor-etching was conducted to create nanowells in 

the crystal structure. The etching process resulted in facetted nanowells, whose 

superficial dimensions increased with etching times and etchant concentrations. It was 

found that the etching rate is highly dependent on crystal orientation. Additionally,

Raman spectroscopic analysis of the phonon confinement effect and strain due to the ion 

tracks is presented. Results show that the optical phonon modes undergo a shift towards 

higher frequencies while broadening asymmetrically compared to the unirradiated 

samples due to phonon confinement effects. In the second part of the research, the 

deposition of gold nanoparticles inside of the nanowells was conducted. The modification 

of the optical response of quartz by depositing gold nanoparticles in the nanowells is 

discussed. An increase in the Raman intensity was observed thanks to the enhancement of 

the electromagnetic field produced by localized surface plasmons at the surface of the 

gold nanoparticles. The deposition of nanoparticles in etched ion tracks in fused silica 

was also achieved and is also briefly discussed.
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SECTION

1. INTRODUCTION

Over the past ten years, the term “plasmonics” has been designated to new 

technology focused on improving the optical properties of materials using surface 

plasmons in metallic nanostructures to help guide and manipulate light at the nanometric 

scale [1]. Metallic nanostructures can alter the way that light scatters from the molecules 

thanks to the ability of their optical properties to support collective light-induced 

electronic excitations (plasmons) [2]. Materials that use plasmons to achieve optical 

properties not seen in nature are known as plasmonic materials.

The most important advances in plasmonic materials are related to the capacity of 

the plasmonic nanostructures to concentrate light into nanoscale volumes, allowing 

fundamental studies of light-matter interactions at length scales that are otherwise 

inaccessible. Plasmonics is expected to be the key in nanotechnology that will merge 

electronics and conventional photonic components on the same nanodevice [3]-[6].

Figure 1.1 shows the relationship between device operating speed and device size within 

different technology paradigms. Each of these technologies can perform unique 

functions. The electrical properties of semiconductors and the high transparency of 

dielectrics facilitate information storage and information transport over long distances. 

However, semiconductor electronics are limited in speed by heat generation, and 

dielectric photonics are limited in size by diffractive effects. Metallic nanoplasmonics,



which utilize near-field phenomena, can act as a bridge between nanoelectronics and 

dielectric photonics by combining small size and high speeds [1].

2

Figure 1.1. Operating speed vs critical device dimension of metallic nanoplasmonics, 
dielectric photonics, and semiconductor electronics. From Brongersma, M.L., and 
Shalaev, V.M., 2010. The case for plasmonics. science, 328(5977), pp.440-441. 

Reprinted with permission from AAAS

All forms of light-matter interaction are heavily influenced by the optical density 

of states (DOS) in different materials. The DOS represents the number of ‘channels’ for 

storing and/or routing the electromagnetic energy in a specific medium. Materials with 

DOS values higher than that of ordinary isotropic media can be engineered to enhance 

light absorption and emission, enabling localized heating and driving near-field heat 

exchange between hot and cold surfaces. Some applications that use materials with high



DOS values include solid-state lighting, solar-thermal technologies, photovoltaics, and 

thermophotovoltaics [7]-[10].

In an interface of a metal-dielectric material, the incident light can excite coherent 

electron density oscillations, the quanta of which are known as plasmons. The free 

electrons at the metallic surface absorb the energy of the incident photon and oscillate 

collectively producing both charge motion in the metal and electromagnetic waves in the 

dielectric material, in accordance with Maxwell’s laws. These excitations are known as 

surface plasmon polaritons [11], [12].

When a metallic material is macroscopic in size, the free electrons can travel 

along the metal reflecting the light and producing the luster characteristic of conductive 

materials. When the metallic structure is nanometers in scale, however, its free electrons 

are confined within a small space, limiting the frequencies at which they can vibrate. The 

characteristic frequencies of the oscillation depend on the size and shape of the metallic 

nanostructure. Such plasmons only absorb the fraction of the incoming light that 

oscillates at the same frequency as the plasmon itself, reflect the rest of the light. These 

so-call localized surface plasmons have large DOS values and are thus able to locally 

concentrate the oscillating electric field component of electromagnetic radiation at 

specific frequencies [13], [14]. The large DOS of plasmonic nanomaterials and their 

ability to absorb EM radiation and locally concentrate electric fields has been 

successfully used for nanoantennas [15], [16], efficient solar cells [17]—[19], 

nanoplasmonic biosensors [20]-[24], surface-enhanced Raman spectroscopy [25]-[28], 

localized heat generation [29]-[32], smart coatings [33]-[37], plasmonic nanofilters 

[38]-[40], and other useful devices.
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Plasmonic nanoparticles strongly modify the phase of the optical field in their 

vicinity due to their capacity to couple their electron density with an electromagnetic 

field with wavelengths that are larger than the nanoparticle itself [41]. When two or more 

nanoparticles are near each other, separated by a distance comparable to or smaller than 

their diameters, additional electromagnetic effects appear [42]-[45]. Plasmon coupling 

occurs when two or more plasmonic nanoparticles form clusters and their near-field 

surface plasmons begin to hybridize. This creates a boosted localized electric field within 

the clusters (hot spots), as well as favors the exchange of hot electron between adjacent 

nanoparticles. Previous studies have reported an enhancement of the interparticle electric 

field by several orders of magnitude, far-exceeding the field enhancement created by 

single plasmonic nanoparticles [46]-[49]. One of the sensing applications that use 

plasmon coupling to achieve ultralow detection limits is surface-enhanced Raman 

spectroscopy [50].

Indeed, the incorporation of nanostructures with plasmonic properties into 

optoelectronic devices is believed to be a promising approach to modify specific device 

properties without increasing the size of the device. The plasmon coupling is thus able to 

combine photonics, electronics, and all of the advantages of nanotechnology in one 

device while enhancing the optical near-field at sub-wavelength length scales.

1.1. RESEARCH OBJECTIVE AND CONTRIBUTION

This research is aimed towards constructing a device to modify the optical 

properties of alpha quartz (a-SiO2) by reinforcing external electromagnetic fields near the 

crystal surface via localized plasmonic resonance of gold nanoparticles. To achieve this

4



goal, the experimental campaign was divided into three parts: first, a-SiO2 samples were 

irradiated with highly energetic ions to create amorphous areas (ion tracks) in the crystal 

structure; second, the nanowells were produced by chemical vapor etching of the ion 

tracks with hydrofluoric acid solutions; and third, gold nanoparticles were deposited 

inside the etched nanowells. The deposition of gold nanoparticles in etched tracks in 

fused silica is also briefly discussed. The modification of the optical properties of quartz 

by the presence of the gold nanoparticles was evaluated with Raman spectroscopy. 

Additionally, a quantitative analysis of the phonon confinement effect and coherence 

lengths produced by the ion tracks and subsequently etched nanowells are presented. 

Phonon confinement effect refers to the alteration of the phonon transport along a crystal 

structure due to the presence of defects or impurities.

The formation of latent ion tracks in dielectric materials has been studied 

extensively. Some of the studies include amorphous and crystalline (quartz) SiO2 [51]- 

[63]. However, with regard to chemical etching, most of the studies that involve etching 

of ion tracks in SiO2 have been conducted on amorphous SiO2 substrates [64]-[67]. One 

essential reason for the lack of knowledge on the chemical etching of ion tracks produced 

in a-SiO2 is its complex crystal structure. It has been difficult to predict the results of a- 

SiO2 etching with models based exclusively on theoretical assumptions. Experimental 

studies conducted so far include analysis of possible crystallographic planes and the etch 

rates for various etchants and the rate-controlling steps [68]-[71]. However, to our 

knowledge, no authors have conducted etching studies on ion tracks in crystalline SiO2, 

much less explored the possibility of developing novel plasmonic devices using the 

resulting nanostructures.

5



Thus, this dissertation extends the current state of knowledge of: (1) the 

irradiation response of a-SiO2 and its dependence on different crystal orientations, ion 

energies, stopping power, and ion velocities; (2) a-SiO2 chemical vapor etching rates in 

ion tracks, its anisotropic behavior, and dependence on the crystal orientation and etchant 

concentration.

Furthermore, the integration of the gold nanoparticles into the nanowell structures 

resulting from ion track etching shows a strong coupling between localized surface 

plasmons and optical phonons. The plasmonic properties of these devices combined with 

the optical properties of quartz may represent a useful vertex in optoelectronics, 

photonics, and nanotechnology.

1.2. DISSERTATION OUTLINE

This dissertation is based on the manuscripts that were prepared to be submitted 

to peer-review journals and is divided into three different sections. Section 1 provides a 

brief introduction to the research topic, as well as the research objectives, contributions, 

and some background information that establishes the state of knowledge on the topic of 

this study. Section 2 contains three manuscripts that present: (1) the ion track formation 

by irradiating a-SiO2 samples with highly energetic ions and subsequent chemical vapor 

etching with HF solutions to create nanowells. Microstructural characterization of the 

latent and etched ion tracks was conducted with AFM measurements; (2) a quantitative 

analysis of phonon confinement in a-SiO2 by the presence of ion tracks and nanowells. 

Calculations of the coherence length were conducted by fitting the experimental results 

with results obtained by the phonon confinement model (PCM) and Density Functional

6
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Perturbation Theory (DFPT) calculations; and (3) a detailed analysis of how the optical 

response of irradiated and etched a-SiO2 is modified by localized surface plasmons. This 

analysis was conducted using Raman microscopy.



8

2. STATE OF KNOWLEDGE

2.1. ALPHA QUARTZ

Quartz is the crystalline form of SiO2 and is one of the most abundant minerals in 

the Earth’s crust. Quartz is a thermally stable oxide that presents interesting optical and 

electrical properties, which in conjunction with high resistance to chemical attack, have 

made it one of the materials widely used in many diverse applications including 

microelectronics, construction materials, integrated optics, spectroscopy, and others [72]- 

[76]. Quartz exists in two different forms: alpha quartz (a-SiO2) is stable under standard 

conditions while beta quartz (P-SiO2) is a high-temperature phase. The transformation 

from the a-quartz to P-quartz occurs at 573 °C and atmospheric pressure.

2.1.1. Crystal Structure of Quartz. Both forms of quartz belong to trapezohedral 

crystal classes. a-SiO2 belongs to the 3 2 class in the trigonal crystal system, while P-SiO2 

belongs to the 6 2 2 class in the hexagonal crystal system. Figure 2.1 shows the crystal 

habit of a-quartz and defines the conventional lattice vectors (a1, a2, a3, and c) and 

Cartesian axes (X,Y, and Z). a-quartz presents a characteristic threefold symmetry 

around its optical axis (c-axis) that is perpendicular to the prismatic planes. Perpendicular 

to the c-axis are the three equivalent electrical X-axes, each with twofold symmetry, and 

three equivalent mechanical Y-axes.

The unit cell of a-quartz has dimensions of a=b=4.91 A and c = 5.41 A, and 

consists of three SiO2 groups rotated with respect to each other by 120°. The atomic 

structure of quartz is such that every silicon atom is surrounded by a regular tetrahedron 

of four covalently bonded oxygen atoms.
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Figure 2.1. Crystal habit of a-quartz. (A) Projection of quartz crystal structure onto a- and 
c-planes. (B) definition of lattice vector and Cartesian coordinates Adapted from 

http://www.quartzpage.de/gen_struct.html

The O atoms are shared with other Si atoms forming oxygen bridges. The bond 

lengths are 1.61 A for Si-O and 2.65 A for O-O (nearest neighbors) and the Si-O-Si 

bonds form an angle of 144°. -Si-O-Si- chains form continuous helical (and chiral) paths 

around three-fold screw axes parallel to the c-axis. Figure 2.2 shows the unit cell of 

quartz generated in VESTA [77], a three-dimensional visualization system for 

crystallographic studies and electronic state calculations. In Figure 2.2, the silicon atoms 

are represented by blue spheres, the red spheres represent the oxygen atoms, and the 

green rods represent the Si-O atomic bonds.

2.1.2. Anisotropic Properties of Quartz. The crystal structure not only defines 

the symmetries of a material but also plays an important role in material properties. 

Quartz, being an anisotropic material can show anisotropic or direction-dependent 

physical properties. Some of these anisotropic properties include refraction,

http://www.quartzpage.de/gen_struct.html


birefringence, optical activity, hardness, thermal conductivity, piezoelectricity, and 

relative permittivity. [78]—[81].

10

Figure 2.2. Crystal structure of quartz

2.2. IRRADIATION WITH ENERGETIC IONS

Material modification via high-energy ion irradiation has been a topic of great 

interest as it is possible to alter the physical and chemical properties of materials. Ion 

irradiation can modify the crystal structure through the introduction of defects such as 

voids, dislocations, grain boundaries, and amorphous regions [82]-[84]. Examples of 

properties that have been modified through irradiation include the index of refraction, 

dielectric constant, absorbance, and chemical reactivity [63], [82], [85]-[87].

The interaction of energetic ions with a target material can be analyzed from two 

different perspectives: from the perspective of the incident ion that loses energy in the
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target, and from the perspective of the target material that experiences rapid and dramatic 

nuclear and electronic excitation from the deposited ion energy. Such energy deposition 

can bring about both transient and permanent changes to the crystal structure.

From the perspective of the incident energetic ions, the ions interact with the 

target by shedding their kinetic energy through two main energy loss mechanisms: 

nuclear energy loss and electronic energy loss. The nuclear energy loss regime occurs at 

low ion energies (on the order of keV/amu), where elastic collisions are produced 

between the incident ions and the atoms in the target material. At higher energies (higher 

than about 0.1 MeV/amu), the incident ions transfer their energy to the electrons of the 

target through inelastic collisions, inducing ionization and initiating a cascade of 

secondary electrons that spreads radially from the track core [55], [88]—[91]. In less than 

a picosecond, energy in the electrons is transferred to the atoms, resulting in rapid lattice 

heating that can produce localized melting and cooling. Depending on the temperatures 

and rates of heating and cooling disordered areas, amorphous zones, recrystallized zone, 

and new phases can form along the ion pathway.

From the perspective of the target material, the nuclear energy loss regime 

produces point defects and defect clusters in the crystal matrix. Such defects include: 

vacancies, vacancy clusters, self-interstitial atoms, interstitial clusters, antisites (in the 

case of certain compounds), and implanted ions. In the electronic energy loss regime, the 

type of defects introduced will depend on the electronic structure of the material. High- 

energy ions introduce a high density of electronic excitations through inelastic collisions. 

The nature of these excitations and their stability depends on the electronic structure of 

the material. Trapped carriers can remain for long periods in insulators and



semiconductors while excited electrons dissipate their energy in conductors as thermal 

energy without creating a significant number of defects [91]—[94]. However, in both 

cases, the rapid dissipation of energy from the electrons into the lattice can result in 

localized lattice heating and the production of latent ion tracks. This will be discussed in 

further detail below.

Stopping power is a quantity that characterizes the energy loss decelerating an 

incident ion during its passage through a material. The nuclear stopping power (Sn) 

accounts for nuclear energy loss (elastic ion-ion collisions) while the electronic stopping 

power (Se) accounts for electronic energy loss from inelastic collisions with orbital 

electrons. Ion track formation, permanent structural changes along the track core, have 

been observed at sufficiently high values of Se. Experimentally one sees that the Se value 

needs to be higher than a certain threshold value (STh) in order for highly defective or 

amorphous ion tracks to form [55], [88], [95].

The formation of ions tracks is still not completely understood. Different theories 

exist, including: the Coulomb explosion explanation [96]-[99], reduced electronic energy 

loss [100], thermal spike model [55], [101]—[104], bond weakening [105], [106] , among 

others. This section will include just a general explanation of the two more popular 

models, the Coulomb explosion model proposed by Fleischer et al. [97] and the inelastic 

thermal spike model proposed by Dessauer [104].

The Coulomb explosion model proposes a “cold” mechanism that transforms the 

energy of the incident ion into atomic motion via electrostatic repulsion. This model 

assumes that the incident energetic ion strips outer valence electrons from the target
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atoms, breaking the chemical bonds between the atoms, and creating a highly ionized 

region along the ion pathway.

The ionized electrons are ejected away from the track core creating a positive 

space charge region in the core surrounded by a negative space charge region from the 

surrounding electrons. The partially ionized atoms in the core, being positive, experience 

mutual electrostatic repulsion and rapidly explode into a plasma of more fully ionized 

matter. This explosion produces a large number of atomic displacements creating the 

amorphous tracks. This model offers an explanation for the insensitivity to ion irradiation 

observed in hard insulators and metallic materials in the electronic energy loss regime, as 

well as the description of the conditions under which repulsive Coulomb forces are 

sufficient to overcome lattice bonding forces [101].

The inelastic thermal spike model proposes a mechanism that involves a melting 

process along the ion pathway followed by a rapid cooling process. Amorphous regions 

form in the ion track as a consequence of supercooling. The incident ion loses its kinetic 

energy through inelastic collisions with the electrons on the target material producing a 

dense column of electronic excitation in its wake. The excited electrons quickly 

equilibrate with each other through electron-electron interactions and establish quasi­

equilibrium in which the electrons have a well-defined temperature many thousands of 

degrees hotter than the lattice temperature. As the hot electrons diffuse outward from the 

track core they also transfer heat to the cold lattice through the electron-phonon coupling 

resulting in a spike in the lattice temperature and a drop in the electron temperature.

If sufficient energy is deposited along the track, highly localized heating will 

melt a columnar region of material around the track. This process is followed by rapid
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cooling as the heat is conducted into the surrounding cool matrix. When cooling is 

sufficiently rapid, the material may be supercooled and form a glassy amorphous core.

At slower cooling rates, recrystallization and annealing are also possible. The 

competition between amorphization, recrystallization, and annealing are thought to 

establish the observed threshold stopping power for track formation. This model offers an 

explanation for the dependence of the amorphous track diameter on the electronic 

stopping power and also offers some insights into the ion annealing effect.

As mentioning before, permanent changes in the crystal structure can occur when 

a material is irradiated with high-energy ions above the electronic stopping power 

threshold (STh). Previous studies [55], [88], [91], [102], [107], had reported the 

relationship of the ion track morphology with the Se in dielectric materials. When Se is 

close to STh, the pass of the ion through the material creates extended spherical point 

defects with small radii (about 1.5 nm). Upon increasing the Se the point defects begin to 

elongate forming discontinuous cylinders of similar radii. Once Se is larger enough to 

produce continuous tracks, the track radius increases with Se. When the track radius is 

larger than ~ 3 nm, the tracks begin to become regular, homogeneous cylinders. Figure 

2.3 shows the effective radii (Re) in crystalline SiO2 for different values of Se from both 

experiments conducted by Meftah et al. [55] and calculations in the framework of the 

exciton model from Itoh [108]. Meftah et al. irradiated samples of alpha quartz at room 

temperature at the 7 MV tandem Van de Graaff accelerator at Bruyeres le Chatel, and at 

the Grand Accelerateur National d'Ions Lourds (GANIL) facility in Caen, France.

The irradiations were conducted with 19F, 32S, and 63Cu ions with incident 

energies of 0.79, 1.56, and 0.79 MeV/amu, respectively, covering a Se range between 2.4

14
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and 9 keV/nm. The ion beam flux was on the order of 109 ions cm-2 s. Rutherford 

backscattering ion channeling (RBS-C) and electron microscopy were used to measure 

the damage cross-section (A=nRe2). Figure 2.4 shows the effective radius versus the 

energy loss for amorphous tracks created in yttrium iron garnet irradiated with ions at 15 

MeV/amu (triangles), at 2 MeV/amu (circles) [109], and with cluster beams (square) 

[110]. The track morphology was directly linked to the damage cross-section area, A. Se 

dependent track morphology was observed in several materials and seems to be a rather 

general feature [111]. The ion velocity also determines track formation and morphology 

[102], [109], [112]. For a given Se, ions with high specific energy (MeV/amu) deposit its 

kinetic energy over a larger radius from the track core, resulting in wider continuous 

tracks. Consequently, when the ion energy increases, the STh increases for fixed stopping 

power. This phenomenon is sometimes referred to as the velocity effect.

It is important to note that ion tracks have a different density than the bulk 

material. Compared to the crystalline matrix, the highly disordered volume within the 

tracks has a reduced density from the more random bonding arrangement. This results in 

swelling that can be observed as a hillock with nanometric dimensions at the sample 

surface [113], [114]. In the case of initially amorphous materials, the passage of the ion 

can produce densification and plastic deformation along the ion pathway, creating 

compacted ion tracks [56], [62], [88], [112], [115]. Other surface modifications produced 

by ion irradiation include: surface roughness, sputtering, and the creation of holes.

The formation of latent ion tracks in dielectric materials has been studied 

extensively. Some of these studies include ion track formation in amorphous and 

crystalline silicon dioxide (SiO2) [51]—[63], [112], [116]. Therefore, the presence of



latent ions tracks and the fabrication of nanopores in quartz is a promising area within 

materials science and engineering [92], [117].
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Figure 2.3. Experimental effective track radius in crystalline SiO2 for different Se. 
Experimental data from Meftah et al. [55] and calculations from Itoh [108].

Taken from [102]

Figure 2.4. Effective radius versus the energy loss for amorphous tracks created 
in yttrium iron garnet irradiated with ions at 15 MeV/amu (triangle), at 2 

MeV/amu (circle) [109], and with cluster beams (square) [110]. The track 
morphology was directly linked to the damage cross section A. Taken from [88]
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2.3. CHEMICAL ETCHING OF ION TRACKS

Chemical etching of ion tracks is an effective way to produce nanometer sized 

pores in an ion irradiated material. The highly disordered regions inside the ion tracks 

make the tracks more susceptible to the chemical attack and therefore etch at a faster rate 

than the non-irradiated areas [118], [119]. As a consequence, the ion track is etched faster 

than the pristine crystal, forming pores [64], [120]. A major advantage of ion track 

etching is that multiple parameters beyond the etching conditions can be controlled.

These include the ion energy and species, the ion fluence, and incident angle. As such, 

this method may be tailored to suit a wide variety of applications and materials.

At room temperature, SiO2 is chemically inert to most substances. The reason for 

its low reactivity is the strong Si-O bond and its macromolecular structure. Being an 

anhydrite of an acid itself (orthosilicic acid H4SiO4), it will not be attacked when exposed 

to a wide number of acids, hydrofluoric acid (HF) being a prominent exception. When 

exposed to HF, SiO2 will decompose to form silicon fluoride (SiF4) and then 

hydrofluorosilic acid (H2[SiF6]). Some studies report that HF in combination with 

ammonium fluoride (NH4F) can produce especially uniform surfaces [68], [69].

The HF etching reaction is based on two mechanisms: first, the acidic component 

(H+) breaks the siloxane bonds at the SiO2 surface forming silanol species [121]. Second, 

the silanol groups interact with the fluorinate species from the etchant, changing the 

electric field at the surface, and allowing the replacement of these OH groups by F or HF. 

The resulting increase of the electronegativity causes nucleophilic chemisorption of HF 

to the silicon, eventually causing the SiF4 to detach from the surface [64], [122]-[127]. 

The general reaction equation SiO2 with an HF etchant can be described by Equation (1):
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Si02 (s) + 4 H F ( aq) -----> S i F 4  (g) +2^20 (g) (1)

SiF4 and excess water are volatile and are desorbed from the surface [69]. Additionally, 

some of the water will interact with both the newly exposed Si-O bonds at the surface and 

the HF molecules, creating a positive feedback mechanism that increases the reaction rate 

[64], [128]. The chemical etching mechanism does not seem to differ between amorphous 

and crystalline SiO2 [68], but, in the case of a-SiO2, the etching rate depends on the 

crystallographic orientation, where the fastest etching rate proceeds on the plane 

perpendicular to the optical axis (R(Z) > R(AT) > R(+X) > R(-X) > R(Y)) [68], [129].

A previous study suggested that the etching rate depends on the number of 

oxygen atoms that are exposed on the SiO2 surface [122]. In that study, the author 

proposed four different ways in which the atomic structure can be exposed at the SiO2 

surface. Figure 2.5 shows the four possible surface exposures of the SiO4 tetrahedron. 

Type I is the most unstable configuration and may be removed in the presence of water 

through the formation of silanol. Type IV tetrahedra are mostly unreactive due to steric 

considerations that make it difficult to construct an alternative coordination site close to 

the silicon atom. In aqueous systems, exposed oxygen anions are electrically neutralized 

by protons forming a surface layer of hydroxyl groups (OH). Upon exposure to HF, the 

OH groups are replaced by F or HF. Figure 2.6 shows an example of how the Type II 

tetrahedron can be modified in presence of HF. The Si atom can coordinate up to six 

fluorine atoms to satisfy the electrical neutrality requirements.

In Figure 2.6, the hybrid tetrahedron will tend to coordinate a further complement 

of fluorine ions, leading to the full exchange of O to F and increase the electronegativity



of the tetrahedron. This produces a SiF4 molecule which then detaches from the sample 

surface. It is important to note that the number of oxygen atoms at the sample surface, 

and therefore the concentration of types I-IV, will depend on the crystal structure
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Figure 2.5. Four possible surface configuration of the SiO4 tetrahedron.
Adapted from [122]

In amorphous SiO2, the four types will occur randomly and therefore isotropic 

behavior of the etching is observed. The presence of ion tracks in the crystal structure of 

a-SiO2 favors the etching process along the ion track thanks to the amorphous region



created by the passage of the ion. At the same time, the anisotropic nature of the crystal 

will lead to differences in etching rates in various directions. Thus, the geometry of 

etched pores/nanowells can be irregular.
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Figure 2.6. Hybrid SiO4 tetrahedra resulting from the replacement of OH- by F-
Adapted from [122]

Chemical etching can be conducted as a wet process (by submerging the sample 

in the etchant solution) or a dry process (by exposing the sample to the vapor etchant at a 

specific distance from the liquid surface). Most of the studies that involve chemical 

etching of latent ion tracks in SiO2 have been conducted on amorphous SiO2 substrates 

[64]-[67]. These studies have demonstrated that wet-etching of amorphous SiO2 

produces conically shaped holes while vapor-etching produces more cylindrical-shaped 

holes [64], [120], [130], [131]. This difference in the hole shape can be explained as a 

consequence of the etching rate of the ion track (Vt) being comparable to the etching rate 

of the unirradiated crystal (Vb). A nearly cylindrical hole results when Vt is large
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compared to Vb . The cone half-angle (<p) is given in Equation (2):

^  = sin -i© (2)

A previous study had reported that liquid etching of the fission fragment tracks in 

fused silica produced conical pits with cone half angles of 15°-20° [60], [64]. Figure 2.7 

schematically illustrates the etched ion track structure [132].

Figure 2.7. Diagram of an etched ion track. Adapted from [132]
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ABSTRACT

This study reports a systematic microstructural characterization of latent and 

etched ion tracks generated by high electronic excitation in alpha quartz (a-SiO2). Single 

crystals of Y- and Z-cut a-SiO2 were irradiated at room temperature with 20 MeV Ni6+ 

ions and 40 MeV I7+ ions to different nominal fluences. The revealed morphology of the 

resulting ion tracks depends on the energy of the incident ion and the stopping power on 

the target material. Subsequent chemical vapor-etching with hydrofluoric acid solutions 

was conducted with varying etching times and acid concentrations. The vapor etching



process resulted in facetted nanowells, whose superficial dimensions increased with 

etching time and etchant concentrations. It was found that the etching rate is highly 

dependent on crystal orientation. The Y-cut samples etched more slowly than the Z-cut 

samples and exhibited anisotropic track etching behavior. Production of nanowells with 

different aspect ratios was accomplished by altering the etching time and etchant 

concentration. The obtained ion tracks and subsequently etched nanowells were 

characterized by Atomic Force Microscopy (AFM). A detailed procedure to generate 

templates with the stated nanostructures is presented. Such templates could be used in the 

fabrication of novel nanodevices with unique optical, thermal, and electronic properties.

Keywords: Nanowells, chemical etching, a-quartz, ion tracks, ion beam 

modification
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1. INTRODUCTION

Nanomodification of materials is a topic of great technological interest as it is 

often observed that material properties can be radically altered when their chemical or 

physical characteristics are modified at the nanometer and atomic scale [1]-[4]. High 

energy irradiation is one of the tools used to alter the physical properties of materials. 

Through irradiation, it is possible to modify the crystal structure through the introduction 

of defects such as voids, dislocations, grain boundaries, and amorphous regions [5]-[7]. 

Examples of properties that have been modified through irradiation include refraction 

index, dielectric constant, absorbance, and chemical reactivity [5], [8]—[11].
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Ion tracks represent one such irradiation-induced microstructural modification. 

Under irradiation, the incident energetic ions interact with the target material by losing 

their energy via two independent mechanisms.

In the nuclear energy loss regime, which dominates at low energies (on the order 

of keV/amu), elastic collisions are produced between the incident ions and the atoms in 

the target. At higher energies (> 0.1 MeV/amu), the incident ions transfer their energy to 

the electrons of the target through inelastic collisions (electronic energy loss regime), 

inducing ionization and initiating a cascade of secondary electrons that spreads radially 

from the track core [12]—[16]. In less than a picosecond, energy in the electrons is 

transferred to the atoms, resulting in lattice heating. The rapid lattice heating can result in 

localized melting and cooling that leaves behind disordered areas along the ion pathway, 

as well as small hillocks at the specimen surface.

Permanent changes in the structural properties occur when the electronic stopping 

power (Se) is above a certain threshold (STh) required to form highly defective or 

amorphous zones [12], creating ion tracks embedded in the crystal matrix [16], [17]. The 

ion velocity also determines track formation and morphology [18], [19]. For a given Se, 

ions with low specific energy deposit their kinetic energy over a deeper distance from the 

sample surface, resulting in larger continuous tracks. Consequently, when the ion energy 

increases, the Sih increases for fixed stopping power. This phenomenon is sometimes 

referred to as the velocity effect.

Although ion tracks have importance in geological dating, microelectronics in 

radiation environments and the nuclear fuel cycle, interest in ion tracks in

1.1. ION TRACK FORMATION



nanotechnology and nanoscience mainly comes from their usefulness in fabricating 

tailored nanopores and nanowires. Modification of materials using ion tracks has 

contributed to a number of different technologies [15], [20]-[23]. The formation of latent 

ion tracks in dielectric materials has been studied extensively. Some of these studies 

include ion track formation in amorphous and crystalline silicon dioxide (SiO2) [10],

[16], [18], [24]-[35].

Quartz is one of the most abundant minerals in the Earth’s crust. It is thermally 

stable, strong, and resistant to chemical attack. Thanks to its optical and electrical 

properties, a-quartz (a-SiO2) is used in many diverse applications including 

semiconductors, construction materials, integrated optics, microelectronics, spectroscopy, 

and others [36]-[40]. Therefore, the presence of latent ions tracks and the fabrication of 

nanopores in quartz is a promising area within materials science and engineering [1],[41].

1.2. CHEMICAL ETCHING PROCESS IN SIOi

Chemical etching is an effective way to produce nanowells in an ion irradiated 

material. When exposed to an etching solution, the ion tracks produced in the crystal 

matrix etch at a faster rate than the non-irradiated areas. As a consequence, the ion track 

is etched out before the pristine crystal gets removed, forming pores [42], [43].

This preferential etching is related to the presence of highly disordered regions 

along the length of the ion track and its susceptibility to the chemical attack [44], [45]. 

Chemical etching can be conducted as a wet process (by submerging the sample in the 

etchant solution) or a dry process (by exposing the sample to the vapor etchant at a 

specific distance from the liquid surface). For both amorphous and crystalline SiO2, the
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etching process is usually conducted with fluoride-based solutions. Some studies report 

that etchants with HF, often in combination with ammonium fluoride (NH4F) can 

produce smooth surfaces [46], [47]. The chemical etching mechanism does not seem to 

differ between amorphous and crystalline SiO2 [46], but, in the case of a-SiO2, the 

etching rate depends on the crystallographic orientation (R(Z) > R(AT) > R(+X) > R(-X)

> R(Y)) [46], [48]. A previous study suggested that the etching rate depends on the 

number of oxygen atoms that are exposed on the SiO2 surface [49]. This dependence can 

be explained by the etching reaction that is based on two mechanisms: first, in the 

presence of an aqueous solution, the acidic component (H+) breaks the siloxane bonds at 

the SiO2 surface forming silanol species [50]. Second, the silanol groups interact with the 

fluorinate species from the etchant, changing the electric field at the surface, and 

allowing the replacement of these OH groups by F or HF. The resulting increase of the 

electronegativity causes nucleophilic chemisorption of HF to the silicon, eventually 

causing the SiF4 to detach from the surface [42], [49], [51]—[55].

The general reaction equation SiO2 with an HF etchant can be described by 

Equation (1):
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S1O2 (s') + 4^ P(aq) -----> S1F4 (g) + 2 H2 0 (g) (1)

where the SiF4 and excess water are volatile and are desorbed from the surface [47]. 

Additionally, some of the water will interact with both the newly exposed Si-O bonds at 

the surface and the HF molecules, creating a positive feedback mechanism that increases

the reaction rate [42], [56].
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Most of the studies that involve chemical etching of latent ion tracks in SiO2 have 

been conducted on amorphous SiO2 substrates [42], [57]—[59]. These studies have 

demonstrated that wet-etching of amorphous SiO2 produces conically shaped holes while 

vapor-etching produces more cylindrical-shaped holes [42], [43], [60], [61]. Holes with 

diameters of ~ 24 to ~ 80 nm have been documented with length/diameter ratios of up to 

22 when vapor-etching with HF solutions varying acid concentration (4.5 - 48%w), 

etchant temperature (19°C - 28°C), and sample temperature (23°C - 47°C) [42].

One reason for the lack of knowledge on the chemical etching of ion tracks 

produced in a-SiO2 is its complex crystal structure. It has been difficult to predict the 

result of a-SiO2 etching with models based exclusively on theoretical assumptions. 

Experimental studies conducted so far include analysis of possible crystallographic 

planes and their etch rates for various etchants and the rate-controlling steps [46], [47], 

[62]-[64].

Additionally, previous studies reported that the etching rate of SiO2 increases with 

HF concentration [46], [59], [62], [65]. The temperature-dependence of the etching rate 

in bulk SiO2 has been reported as well [46], [53], [56]. Some of these studies included the 

analysis of etching rates when ion tracks are present [42], [43], [59], [62], [65], [66]. The 

etching rate of bulk SiO2 rapidly decreases with increasing sample temperature (>60°C) 

[67]. Also, a previous study reported that the amount of oxygen removed decreases by 

more than two orders of magnitude when the sample temperature is increased from 25°C 

to 50°C for vapor from an azeotropic solution of HF/H2O [58], [67]. Despite the decrease 

in etching rate with higher sample temperatures, one of these studies also reported
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stronger preferential etching along ion tracks when the sample temperature is higher than 

the etchant temperature (AT ~ 10°C - 15°C) [42].

The purpose of this work is to produce latent ion tracks in a-SiO2 and 

subsequently etch nanowells by chemical vapor-etching using HF solutions. Different 

etching conditions were used to determine how etchant concentration, time, and ion 

species can control track dimension and morphology and can be used to tailor 

nanostructures. This manuscript describes the irradiation process, the ion track 

morphology, and their size distribution. An analysis of the etching process and its relation 

to crystal orientation is also discussed.

2. METHODOLOGY

Optical grade synthetic a-SiO2 (Y-cut and Z-cut) single crystals were used in this 

study. The samples, purchased from MTI Corp., had dimensions of 1^10x10 mm and 

were polished on one side. The different orientations were selected to better understand 

how ion track formation and the etching process are affected by crystallographic 

direction. Two different ion species at different energies were employed. Higher energies 

and heavier ions will produce more well-defined, continuous, and deeper tracks with 

homogeneous radii in accordance with the velocity effect. Therefore, a particular choice 

of ion species and energy may be selected in order to achieve a particular etched 

nanopore shape (e.g. with the desired aspect ratio, depth, superficial opening shape, 

regularity, etc.).
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2.1. IRRADIATION CONDITIONS

21 samples of a-SiO2 (9 Y-cut / 12 Z-cut) were irradiated under a vacuum of 

5x10-5 Pa in the Ion Beam Materials Laboratory (IBML) at the University of Tennessee 

Knoxville (UTK) [68]. The irradiation process was conducted at room temperature with 

20 MeV Ni6+ (0.34 MeV/amu) at nominal fluence values of 1x109, 1 x1010, and 1x1012 

ions cm-2. The fluence values were chosen to maintain a degree of track separation, from 

isolated (1x109 ions cm-2) to partially overlapping (1x1012 ions cm-2) regime. To reach 

such low fluences accurately, the beam was defocused and rastered to achieve a low 

beam current on the order of picoamperes.

The ion beam current was measured using a Faraday cup placed under the sample 

holder and a picoammeter (Keithley Model 6485). The samples were tilted 5 degrees with 

respect to the incident ion beam to avoid ion channeling during irradiation. Adjustable 

beam slits were used to define an irradiation area of 10x10 mm2 covering the entire 

sample surface. Beam homogeneity was verified to within 10% by measuring the spatial 

ion luminescence signal induced in a sample of amorphous silica using a 12-bit charge- 

coupled device (CCD) camera mounted on the end-station [69]. In addition, the current 

measured during irradiation through slits guarantees irradiation uniformity.

A second set of irradiations was conducted at the Centro de Microanalisis de 

Materiales - Universidad Autonoma de Madrid (CMAM-UAM) [70]. 30 samples of a- 

SiO2 (15 samples for each orientation) were irradiated using 40 MeV I7+ (0.31 MeV/amu) 

under similar irradiation conditions used in the nickel irradiations (fluences: 1x109,

1 x 1010, and 1X1011 ions cm-2). Table 1 shows the experimental conditions for both
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irradiation process including the nominal fluences and the effective distance between ion 

tracks estimated using Dtracks = 1/VO, where O is the ion fluence.

The combination of ion species and energies were chosen based on the Sm Sih 

for a-SiO2 lies between 2 and 5 keV nm-1 [12], [34], [71]. The Stopping and Range of 

Ions in Matter (SRIM) code (version 2008) [72] was used to calculate the relevant 

irradiation parameters. The electronic stopping power in the surface region for 20 MeV 

Ni6+ ions in SiO2 is 6.7 keV nm-1, and the projected range is 6.7 pm. For the case of 40 

MeV I7+ ions, the electronic stopping power in the surface region is 9.1 keV nm-1, and the 

projected range is 8.1 pm. Figure 1 shows the nuclear energy loss, electronic energy loss, 

and the implanted ion concentration for both ions used in the irradiations.

Table 1. Experimental conditions for the irradiation processes with different ions

20 MeV - Ni6+ ion irradiation 40 MeV -  I7+ ion irradiation

Nominal Fluence 
(cm-2)

1x109 X o o 1x1012 1x109 X o o 1X1011

Flux (cm-2s-1 ) 2.2x108 5.8x108 3.5x1010 1.3x108 1.5x108 2.2x108

Dtracks (nm) 316.2 100.0 10.0 316.2 100.0 31.6

I (nA) 0.2 0.5 3.0 15.0 17.0 25.0
At (s) 4.5 17.3 28.8 8.0 66.0 449.0



N
uc

le
ar

 E
ne

rg
y 

Lo
ss

 ( 
ke

V
/n

m
 )

31

Figure 1. SRIM simulation for the ions and energies used in the irradiations

2.2. ETCHING CONDITIONS

The ion irradiated samples of the present work were chemical vapor etched with 

HF solutions at different etching times and etchant concentrations (10%w HF, 20%w HF, 

and 30%w HF). Some experiments included the variation of etchant temperature to 

evaluate the effect of the temperature on the production of nanowells. It was found that 

higher acid temperatures dramatically increased the etching rate, making it difficult to 

control the etching process. High roughness was observed even at low acid 

concentrations (10%w HF) and short etching times (30 seconds). Therefore, subsequent 

etching processes were conducted with the HF acid at room temperature while the 

concentration and etching time were varied. The results reported in this study include just 

the etching process conducted with the samples and the acid at room temperature.

All samples were cleaned with isopropyl alcohol and deionized water before etching. The 

homemade experimental setup consists of a high-density polyethylene container with a
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sample holder attached to the lid. The sample holder suspends the surface of the a-SiO2 

sample 1 cm above from the etchant solution, with the irradiated side facing down. The 

holder was designed to expose all irradiated areas to the etchant, avoiding undesirable 

condensation by contact on the surface of interest.

2.3. ATOMIC FORCE MICROSCOPY

A Digital Instruments Nanoscope IIIa Atomic Force Microscope was used to 

examine the surface of the irradiated samples. The AFM measurements were performed 

at room temperature using hard tapping mode. Two different AFM silicon probes (from 

AppNano), with a reflex side of aluminum, were used. The first type has a tip with a 

tetrahedral shape and radius of curvature of 6 nm. This type of probes has a high 

resonance frequency (300 kHz) for high-speed scanning in tapping mode. The second 

type of probes was used to analyze the depth of the obtained etched nanowells. These tips 

had a pyramidal shape with high aspect ratio tips, 2 pm long spike, with no tilt 

compensation. The radius of curvature was 20 nm. It is important to note that the tip 

shape and radius of curvature affect the measurement [73], [74], a larger radius will 

reduce the resolution. However, the high aspect ratio allowed to get acquired 

measurements of nanowell depths. The Full Width at Half Maximum (FWHM) and the 

height of the hillocks created by the ions were measured. AFM measurements of the 

unirradiated samples were taken for comparison purposes.

The AFM imaging conditions for all samples were as follows: the images sizes 

range from 0.8 pm2 to 5 pm2, with a scan speed of 1-1.97 Hz, and 512 points per line. 

These parameters allowed a digital resolution up to 10 nm pixel-1. The integral and
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proportional gains were set at 0.4. Drive frequency was set around 310 kHz with a drive 

amplitude of approximately 357 mV. The amplitude set point was 2.75 V. Second-order 

flattening was used to correct for image bow caused by the piezoelectric scanner non­

linearity. This correction does not affect features much smaller than the image size; 

therefore, it does not significantly affect the quantitative measurement of the hillock 

features on the irradiated surface.

3. RESULTS AND DISCUSSION

3.1. FORMATION AND CHARACTERIZATION OF ION TRACKS

The formation of ion tracks in a-SiO2, at different crystal orientations, was 

successfully accomplished by irradiating with both 20 MeV Ni6+ ions and 40 MeV I+7 

ions, using different fluences. The AFM measurements show the presence of hillocks at 

the surface of all samples analyzed. The actual fluence was found to be in reasonable 

agreement with the nominal fluence (within about half order of magnitude) by counting 

the number of hillocks found in the AFM micrographs. Figure 2 shows the a-SiO2 

surfaces of Z-cut samples after irradiation with 20 MeV Ni6+ at different fluences. As one 

can see, the surface modification by the presence of the hillocks increases with ion 

fluence. The samples irradiated at higher fluences (1*10u ions cm-2 for 40 MeV I7+, and 

1x1012 ions cm-2 for 20 MeV Ni6+) showed a high degree of track overlapping that 

complicated the quantitative characterization of the hillocks. A similar situation was 

observed after etching these highly irradiated samples. Due to the high degree of track 

overlapping, it was not possible to observe individual nanowells above a fluence of



1 x 1010 ions cm-2. For illustration purposes, Figure 3 shows a Y-cut sample that was 

irradiated with 40 MeV I7+ to a fluence of 1x10u ions cm-2 and a Z-cut sample irradiated 

with 20 MeV Ni6+ to a fluence of 1x1012 ions cm-2. Both samples were etched for 10 

minutes with 10% HF at room temperature. Henceforth, the analysis conducted for the 

latent ion tracks and etched nanowells will include the results obtained from samples 

irradiated at the two lower fluences (1x109 and 1x1010 ions cm-2) paying particular 

attention to the etching process of samples irradiated to 1x109 ions cm-2. Figure 4 shows 

AFM images of an unirradiated a-SiO2 surface in the Z-cut direction (A), the hillocks 

produced at the same sample surface after being irradiated with 1x109 cm-2 40 MeV I7+ 

ions (B), its 3D-surface view (C), and the section analysis of the ion tracks found in the 

analyzed area (D).
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Figure 2. Surfaces of Z-cut samples. (A) Unirradiated, and after been irradiated with 20 
MeV Ni6+ at (B) 1 x109ions cm-2, (C) 1 x1010ions cm-2, and (D) 1x1012 ions cm-2
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Figure 3. Etched samples with 10% HF for 10 minutes at room temperature. Y-cut sample 
irradiated with 40 MeV I7+ at U1011 ions cm-2 (A), etched sample surface (B), 3D-surface 

analysis, and (C) the section analysis of the nanowells found in the selected area. Z-cut 
sample irradiated with 20 MeV Ni6+ at U1012 ions cm-2 (D), etched sample surface (E), 3D- 

surface analysis, and (F) the section analysis of the nanowells found in the selected area

Figure 4. AFM images of a Z-cut a-SiO2 before and after being irradiated. (A) 
Unirradiated surface. (B) Irradiated surface with 40 MeV I7+ ion at U109 cm-2. (C) 3D- 

surface analysis of the irradiated surface and (D) the section analysis of the hillocks
found in the selected area



36

From AFM image analysis, it was found that the hillocks have similar dimensions 

(height and FWHM) in both crystal orientations. Table 2 shows the mean and standard 

error values for the hillock heights and FWHMs obtained after the irradiation with each 

ion at different fluences. For the analysis, 60 hillocks from each sample were measured.

Table 2. Height, FWHM, and standard error of ion track hillocks

Ion
Crystal Fluence Ave. Height Ave. FWHM

orientation (ion cm-2) (nm) (nm)

20 MeV
Z-cut

1x109
1x1010

1.58 ± 0.10 
1.38 ± 0.04

29.6 ± 1.1 
28.9 ± 0.9

Ni6+
Y-cut

1x109
1x1010

1.34 ± 0.09 
1.24 ± 0.06

27.7 ± 1.2 
27.2 ± 1.1

40 MeV
Z-cut

1x109
1x1010

1.09 ± 0.04 
1.22 ± 0.06

26.7 ± 0.9 
25.6 ± 0.8

I7+
Y-cut

1x109
1x1010

1.00 ± 0.03 
1.14 ± 0.02

24.8 ± 1.1 
24.4 ± 0.7

It was found that samples irradiated with 20 MeV Ni6+ produced slightly higher 

(97% confidence) and broader (99% confidence) hillocks. This observation is ascribed to 

the difference in length of the produced ion track and the deposited energy density, which 

affect the resulting macroscopic swelling creating hillocks with different dimensions.

Even when the ions had similar specific energy (0.34 MeV/amu for Ni6+ and 0.31 

MeV/amu for I7+), irradiating with 40 MeV I7+ presented a higher Se value (ASe = 2.4 

keV nm-1), inducing a larger but lower density radial distribution of energy deposited
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onto the electronic structure, and resulting in deeper tracks with smaller diameters which 

can be related with a lower swelling effect and smaller hillocks. The obtained results are 

in agreement with previous studies [16], [75]. Z-cut samples had slightly larger hillocks 

on average. This may be due to the anisotropic nature of the material. It should be 

mentioned, however, that the difference was statistically weaker (77% confidence on the 

FWHM). However, the effect is still plausible as it has been observed in other materials 

such as lithium niobate where crystal symmetry plays an important role in hillock 

morphology evolution due to the crystal-dependence on strain around the tracks and due 

to the energy and mass of the ions [76], [77].

3.2. FORMATION AND CHARACTERIZATION OF NANOWELLS

The production of nanowells by HF-vapor etching of the irradiated samples was 

successfully achieved with different acid concentrations. As expected, it was found that 

both the nanowell superficial dimensions and depths increase with longer etching time 

and higher acid concentration. However, the Z-cut samples showed a higher sensitivity to 

the acid with a faster etch rate than the Y-cut samples. Previous studies have discussed 

the anisotropic etching behavior of quartz [46]-[48], [64], [67].

3.2.1. Effect of Crystal Orientation on the Etching Rate. Figure 5 shows AFM 

images of sample surfaces that were etched at different etching times and acid 

concentrations. These images include AFM measurements of Y-cut and at Z-cut samples 

that were irradiated with 20 MeV Ni6+ ions to a fluence of 1*109 cm-2. The Z-cut sample 

that was etched with 20%w HF for 1 minute at room temperature and exhibits conical



features that likely etch outward from the ion tracks. The selected area shows a well 

isolated conical feature with dimensions of 400 nm diameter and 50 nm depth.

Presumably, the sponge-like features are formed when more closely separated 

conical wells merge with each other. The Avrami model with an effective particle 

diameter of 400 nm and areal density of 1*109 cm-2 predicts that 72% of the surface 

should be covered with overlapping wells, which is in qualitative agreement with Figure

5. The Y-cut sample was etched with a more concentrated acid for a longer time (30%

HF for 15 minutes). The surface obtained had nanowells with pyramidal-shaped 

nanopores and faceted diameters around 80 nm in width with depths of < 30 nm. In 

addition, etching of unirradiated samples was conducted to compare the damage caused 

at the surface when no ion tracks are present. Etching conditions were similar to those 

used on the irradiated samples. It was found that the unirradiated surfaces became slightly 

rougher after etching (average roughness 0.4 nm). However, it was not possible to find 

nanostructures at the sample surface with comparable geometry and dimensions to those 

of the etched irradiated samples. Figure 5 also includes the AFM images of an 

unirradiated Y-cut sample that was etched with 20%w HF for 10 minutes.

In order to produce isolated nanowells in the Z-cut samples, it is necessary to 

conduct the etching process with a lower concentration. From this point forward, the 

results shown for etched Z-cut samples include samples etched with 10%w HF for up to 

10 minutes. After 10 min, the agglomerated nanowell features appear. Figure 6 shows the 

depths and superficial diameters of nanowells obtained in Z-cut samples after etching 

with 10%w HF. AFM images of a Z-cut sample, irradiated with 1x109 - 20 MeV Ni6+ and 

etched with 10%w HF for 10 minutes are also included. It was found that the etching rate
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was fast during the first minute (diameter ~ 68 ± 7 nm min-1, depth ~ 3.1 ± 0.3 nm min-1 

for samples irradiated with Ni6+, diameter ~ 60.2 ± 8.2 nm min-1, depth ~ 4.9 ± 0.3 nm 

min-1 for samples irradiated with I7+). After one minute of etching, the rate decreases 

significantly (diameter ~ 14 ± 3 nm min-1, depth ~ 0.9 ± 0.1 nm min-1 for samples 

irradiated with Ni6+, diameter ~ 12.2 ± 1.3 nm min-1, depth ~ 1.34 ± 0.02 nm min-1 for 

samples irradiated with I7+).

Unirradiated Y-cut a -S i02

X (nm)

Figure 5. AFM images for etched a-SiO2 samples. (top) unirradiated Y-cut sample 
(etched with 20%w HF for 10 minutes), (middle) an irradiated Z-cut sample (20 MeV 

Ni6+ at 1x109 cm-2- etched with 20%w HF for 1 minute), and (bottom) an irradiated Y- 
cut a-SiO2 sample (20 MeV Ni6+ at 1 x109 cm-2 - etched with 30%w HF for 15 minutes)



This behavior suggests that two different kinetic regimes may be present. In the 

initial fast regime, the hillocks and ion track cores etch at a faster rate than the rest of the 

sample surface. The fast etching rate can be related to the high density of crystal defects 

along the ion tracks. After removing the hillocks from the surface and forming the 

nanowells, the etching rates slow. The decrease in the etching rate could be due to the 

increase in the ratio of the surface area of the crystalline to amorphous regions. It may 

also be indicative of differences between the near-surface track structure, density, and 

strain. Table 3 shows the nanowell aspect ratio (depth/width), surface nanowell diameter 

etching rate, and nanowell depth etching rate obtained for the Z-cut samples.

40

ions cm-2, and etched with 10%w HF for 10 minutes. (A) etched sample surface, (B) 3D- 
surface analysis, and (C) the section analysis of the ion tracks found in the selected area. 
(Right) Depth and superficial diameter of nanowells in Z-cut samples that were etched

with 10% HF
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Table 3. Pore aspect ratio, surface nanowell diameter etching rate, and nanowell depth 
etching rate obtained for the Z-cut samples etched with 10% HF after 1 minute

Etching rates (nm min-1)

Ion Pore Aspect 
ratio Diameter Depth

20 MeV Ni6+ < 0.09 14.0 ± 2.4 0.9 ± 0.1

40 MeV I7+ < 0.12 12.2 ± 1.3 1.30 ± 0.03

The AFM analysis conducted on the etched Y-cut samples exhibited lower 

etching rates. Nanowells could be produced with less modification of the crystal surface. 

Due to the lower reactivity of the surface, it was possible to conduct the etching process 

with higher acid concentrations (10%, 20%, and 30% HF) for up to 2 hours. However, 

after 1 hour of etching with 30% HF, the surface became highly damaged making 

subsequent image analysis difficult. Therefore, all etched samples were quantitatively 

analyzed up to 1 hour of etching.

3.2.2. Anisotropic Behavior in the Etching of Y-cut Samples. Anisotropic 

behavior in the etching process was found after 15 minutes of etching. During the first 15 

minutes, the nanowells appeared as lenticular-shaped features at the surface. After 15 

minutes, the nanowells began to elongate in the Z-direction transforming the nanowells 

into nanochannel structures. Figure 7 shows the anisotropic behavior of the etching 

process conducted on Y-cut samples irradiated with 40 MeV I7+ and etched with 20% HF 

at different etching times of 10 minutes (A), 30 minutes (B), and 60 minutes (C). The 

superficial XZ aspect ratios were found to increase linearly with etching time and were 

0.8 ± 0.2, 2.8 ± 1.3, and 4.8 ± 2.0, respectively.
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Figure 7. Anisotropic behavior revealed by the etching process on Y-cut samples 
irradiated with 40 MeV I7+ and etched with 20% HF at different etching times: (A) 10 

minutes, (B) 30 minutes, and (C) 60 minutes

Figure 8 shows the superficial dimensions (length and width) and the depths of 

the nanowells in Y-cut samples. The etching rates were slower than those of the Z-cut 

samples (-50% slower for width/diameter, 15% - 60% slower for depths), even when 

using high etchant concentrations (30% HF). Table 4 shows the etching rate values in nm 

min-1 during the fast regime (first 20 minutes of etching). As shown in Table 4, the 

etching rate at the sample surface along the Z direction (nanowell length) is faster than 

the etching rate along the X direction (width) favoring the production of nanochannels at 

higher acid concentrations.

Three different kinetic regimes of the etching process were observed in the Y-cut 

samples. The first regime was observed for the first 20 minutes of etching, after which 

the etching rate decreases significantly. After about 40 minutes of etching, the nanowells 

began to agglomerate creating the nanochannels at the sample surface. At about this time 

the etching rate increased.
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Table 4. Etching rate for superficial dimensions and depths of the obtained nanowells in 
Y-cut samples when etching with HF at different concentrations

Acid
concentration

Ion
Length 

(Z direction) 
(nm min-1)

Width
( X direction)
(nm min-1)

Depth
(Y direction)
(nm min-1)

10%w
20 MeV Ni6+ 
40 MeV I7+

2.7 ± 0.9 
2.0 ± 0.6

2.1 ± 0.9 
2.0 ± 0.6

0.3 ± 0.1 
0.5 ± 0.1

20%w
20 MeV Ni6+ 
40 MeV I7+

11.4 ± 4.1 
9.8 ± 4.1

5.3 ± 0.8 
4.0 ± 0.7

1.4 ± 0.4 
3.0 ± 1.5

30%w
20 MeV Ni6+ 
40 MeV I7+

28.5 ± 9.5 
27.0 ± 9.5

6.4 ± 0.9 
5.0 ± 0.4

2.1 ± 0.5 
5.0 ± 3.3

Figure 8. Superficial width and depth of etched tracks in Y-cut samples

The increase in etching rate is probably due to the enhanced transport of HF into 

and through the agglomerated channel structure. It was possible to obtain nanowells with 

~700 nm depth with the samples irradiated with 40 MeV I7+ and etched with 30% HF.



The depth aspect ratios (depth/superficial width) of nanowells obtained at different 

irradiation conditions and different etchant concentrations are shown in Table 5.
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Table 5. Aspect ratios of obtained nanowells at different acid concentrations for samples
irradiated with both energetic ions

10% HF 20% HF 30% HF
20 MeV Ni6+ < 0.12 ± 0.01 < 0.34 ± 0.01 < 0.39 ± 0.01
40 MeV I7+ < 0.40 ± 0.01 < 1.75 ± 0.01 < 2.41 ± 0.01

All samples irradiated with 40 MeV I7+ had deeper nanowells with smaller 

diameters than samples irradiated with 20 MeV Ni6+ which had shallow nanowells with 

wider diameters. The difference in aspect ratio is consistent with the ion velocity effect. 

For a given nanowell depth, a higher aspect ratio could be achieved with a more 

concentrated etchant. This suggests that the adsorption of HF onto the surface may be a 

rate-limiting step. With these findings, it appears there are parameters that could be used 

to design and tailor nanowell templates. Such templates could be used in novel 

nanodevices and to functionalize the surface of quartz thereby enhancing its thermal, 

optical, and dielectric properties, among others.
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4. CONCLUSIONS

The production of latent ion tracks in a-SiO2 and subsequent formation of 

nanowells by chemical HF-vapor etching was systematically studied. Irradiating quartz 

with both 20 MeV Ni6+ ions and 40 MeV I+7 ions produced continuous and homogeneous 

ion tracks. After irradiating, it was possible to observe hillocks at the sample surface as a 

consequence of the amorphization process. Hillocks of similar height and FWHM were 

observed in both Y- and Z-cut samples. The hillock morphology depends on the ion 

velocity. Samples irradiated with 20 MeV Ni6+ had broader hillocks and presumably 

wider tracks. Samples irradiated with 40 MeV I+7 ions produced deeper ion tracks with 

smaller diameters.

Upon etching, it was found that Z-cut samples etched at faster rates. Low acid 

concentrations (<10% HF) were needed to conduct an etching process with controllable 

etching time and without damaging the surface of the samples. Under those etching 

conditions, it was possible to obtain conical-shaped nanowells with superficial 

dimensions up to ~ 140 nm with and depths of around ~ 15 nm.

In the etched, Y-cut samples, strong anisotropic etching was revealed. Nanowells 

produced during the first 15 minutes were roughly lenticular in shape. After longer 

etching times, the nanowells began to elongate in the Z direction, eventually 

agglomerating into nanochannels.

Different kinetic regimes were identified in all etched samples. Initially, the 

etching process is rapid and occurs primarily along the track core. This is followed by a 

slower regime where the growth of the superficial dimension(s) increases. For Y-cut



quartz, a third, fast etching regime was also observed where the agglomeration of 

channels creates a relatively open structure that may improve HF transport. The ion 

velocity effect is believed to explain differences in the nanowell aspect ratio. Samples 

that were irradiated with 20 MeV Ni6+ ions presented shallower nanowells with broader 

diameters than those irradiated with 40 MeV I+7. Higher aspect ratios could also be 

achieved at higher etchant concentrations. Through the right choice of irradiation 

parameters (i.e. ion mass and energy) as well as a choice of etchant and crystallographic 

orientation, it may be possible to further optimize the etching process to design and tailor 

nanowell templates. Functionalizing such templates may prove to be an effective route to 

developing novel optical, electronic, and thermal metamaterials.
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ABSTRACT

This study reports phonon confinement and strain effects in the Raman spectrum 

of ion irradiated and subsequently etched a-quartz. Y- and Z- cut a-quartz single crystals 

were irradiated at room temperature with 20 MeV Ni6+ and 40 MeV I7+ ions. Latent ion 

tracks were produced with areal densities ranging from the isolated track regime to the 

overlapping track regime (nominal fluences of 1x109, 1x1010, and 1x10n ions cm-2). 

Nanowell structures were revealed after vapor etching with HF aqueous solutions. A 

phonon confinement model was invoked to explain the observed changes in the shape of 

the strong Raman peak located around 463 cm-1. Phonon coherence lengths of the 

irradiated samples were determined by fitting experimental data to the confinement 

model. An additional blue shift at higher ion fluences was attributed to a contribution 

from lattice strain when track separations are small and the overlapping strain fields 

around ion tracks extend through a large volume fraction of the crystal.
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1. INTRODUCTION

Raman spectroscopy is a non-destructive tool that has been widely used for 

studying phonon dynamics, structure, and the phases of different materials, including 

nanostructured materials [1]-[8]. In the first-order Raman scattering process, when long- 

range order exists over length scales comparable to the wavelength of the incident 

photons, only phonons with small wave vector (i.e. those near the Brillouin-zone center) 

contribute to the Raman signal, producing Stokes lines with Lorentzian shape and narrow 

FWHM [9], [10]. In the case of nanomaterials, where long-range order is reduced to 

submicron or nanometric dimensions, the wave vector selection rule is relaxed, causing 

contributions from phonons further away from the Brillouin-zone center to contribute to 

the Raman signal. This phenomenon has been described as a phonon confinement effect. 

It can lead to major modifications in the vibrational, electronic, and nonlinear properties 

of the material [6]-[8]. In the Raman spectrum, it appears as asymmetric broadening and 

shifting of the Raman bands [9]—[13].

Confinement effects have been observed in structurally modified single crystals 

and polycrystals [5], [6], [14]—[16]. Ionizing radiation, for example, can produce disorder 

in a crystal through the introduction of defects like ion tracks, voids, phase precipitates, 

and dislocations [17], [18]. When disorder is introduced, the correlation length of the 

phonons is reduced as the wave vector selection rule is relaxed. Consequently, the
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phonon modes shift and broaden asymmetrically as the irradiation fluence is increased 

[19], [20].

With the aforementioned considerations in mind, the present study aims to 

analyze the phonon confinement effect in a crystalline material that was irradiated to 

produce ion tracks and subsequently etched to produce nanowells. Latent ion tracks are 

amorphous or highly disordered columnar nanostructures created by the passage of 

highly energetic ions through a material, causing atomic displacements, and thus creating 

highly-disordered regions along the ion pathway [21]-[23]. The projectile ions must have 

electronic stopping powers (Se) higher than a certain threshold (Se,Th) [21], [24], [25]. 

Through chemical etching, it is possible to preferentially remove the disordered volume 

of the ion track and produce holes in the crystal structure (nanowells) [26]-[30]. It is 

believed that phonons can be scattered or confined by the presence of various defects and 

nanostructures, including ion tracks and nanopores [31]—[33]. Studying the ion track- 

induced alteration of the phonon spectrum helps one understand how energy and heat 

transfer may be tailored by irradiating materials with ion beams [34].

Experiments were conducted using single crystals of a-quartz. Raman spectra of 

a-quartz with ion tracks and etched ion tracks (resulting in nanowells) were measured as 

a function of the ion fluence for two different crystal orientations. In addition to being a 

commonly occurring mineral in Earth’s crust, quartz has many technological uses thanks 

to its optical and dielectric properties [35]—[41]. The phonon spectrum of quartz has been 

studied extensively with Raman and Infrared spectroscopy [42]-[49], with which it has 

been possible to completely define the fundamental optical phonon modes at the center of 

the Brillouin zone. However, to the authors' knowledge, none of these previous studies



have examined the effect of ion tracks or porous structures on the phonon properties of 

quartz. Thus, this study presents new knowledge of phonon confinement effects in 

irradiated a-quartz. The irradiation conditions, etching processes, and characterization are 

described in greater detail in a companion paper.

Measurements using Raman Spectroscopy, in conjunction with Density 

Functional Perturbation Theory calculations, performed with the first principles code, 

ABINIT [50], were conducted to analyze the effect of ion tracks on phonon confinement.

2. METHODOLOGY

58

30 samples of single-crystal Y- and Z-cut a-SiO2 from MTI corp. (15 samples per 

direction), were used in this study. The samples had dimensions of 10^10^1 mm and 

were polished to optical grade on one side.

The samples were irradiated at room temperature with both 20 MeV nickel ions 

(20 MeV -  Ni6+) and 40 MeV iodine ions (40 MeV -  I7+) at nominal fluences of 1x109,

1 x1010, and 1x10u ions cm-2. At these energies, continuous track lengths are expected to 

be at least 2 pm (Se > Se,Th ~ 2-5 keV nm-1 [21], [51], [52]).

Subsequent chemical vapor-etching with aqueous solutions of hydrofluoric acid 

at concentrations of 10%w, 20%w, and 30%w were conducted for various etching times. 

Figure 1 shows a schematic diagram the irradiation and etching processes used to 

produce ion tracks and nanowells.
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Figure 1. Schematic diagram of ion tracks and nanowells formation

Raman measurements were taken with a Horiba Xplora Plus Confocal Raman 

Microscope. Unirradiated, irradiated, and etched samples were analyzed for comparison 

purposes. The measurements were conducted at room temperature. A 785 nm 

semiconductor laser was used with a 1800 lines mm-1 grating and a 100 pm diameter 

confocal aperture. A 100* objective with an air numerical aperture of 0.9 was used. 

Based on these parameters, the index of refraction of quartz and the formulae in [53], an 

optical sectioning resolution (FWHM) of about 2 pm is assumed. With the focal plane 

placed on the surface region of the sample, this ensures that the Raman signal mostly 

contains information from the ion track region and not from the underlying single crystal 

substrate (depth > ~ 2pm). All measurements were acquired in the backscattering 

geometry without polarization optics.
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Analysis of the Raman measurements was divided into three sections to compare 

the differences produced in the spectra when: (1) the samples are irradiated with different 

ions (effect of mass and energy of projectile ion), (2) the irradiation is conducted at 

different ion fluences (ion fluence effect), and (3) the sample is unirradiated, irradiated or 

etched (effect of nanostructure features on the modification of substrate properties).

In general, it was possible to identify the Raman active optical phonon modes at 

the center of the Brillouin zone for frequencies between 100 cm-1 and 500 cm-1 in all 

measured samples. Well-defined bands located around 120, 205, 263, 354, 393, 398, and 

463 cm-1 were found in the Raman spectra for Y- and Z-cut samples. Differences in the 

peak intensities were observed and are related to the dependence of the vibrational modes 

on the crystal orientation [46], [54].

3. RESULTS AND DISCUSSION

3.1. RAMAN EXPERIMENTAL DATA ANALYSIS

Figure 2 shows the Raman spectra of Y- and Z-cut samples irradiated with 1*109 

ions cm-2 of 40 MeV I7+ and 20 MeV Ni6+ ions. The spectra were normalized to the 

maximum intensity value and shifted vertically for better visualization. The phonon 

modes are specified for each peak, where A1 represents the non-degenerate phonons and 

E represents the doubly degenerate phonons that can present longitudinal (L) or 

transverse (T) oscillations.

By comparing the Raman spectrum for each crystal orientation, it can be observed 

that the peak at 120 cm-1 has a higher intensity for Z-cut samples while the peak at 263



cm-1 is not present in this crystal orientation. A similar situation occurs with the peak 

centered at 393 cm-1 that is not present in the spectrum obtained from Y-cut samples. The 

peaks at 205 cm-1 and 463 cm-1 remain in the spectra with small changes in the intensity 

for each crystal orientation. Henceforth, the analysis of the Raman spectra was restricted 

to the most intense Raman peak, located at 463 cm-1, to obtain consistent analysis for 

both crystal orientations. It is important to note that the vibration located at 463 cm-1 can 

be described as the motion of the bridging oxygen in the planes bisecting pairs of Si 

atoms in Si-O-Si groups [46], [54].

In comparing the data obtained from samples irradiated with the different ions, 

consistent behavior was observed in the evolution of the line shape. In other words, the 

Raman spectra obtained from samples irradiated with Ni6+ did not present significant 

differences when compared to those obtained after irradiation with I7+ at the same fluence, 

despite the differences in ion mass, energy, and electronic stopping powers (ASe = 2.41 

keV nm-1 at the surface). These results can be explained by the production of ion tracks 

with similar diameters and depths.

From the companion paper, it was found that the irradiation conditions used here 

produced surface features with comparable dimensions in both Y- and Z-cut samples 

when irradiating with these two different ions. While the ion tracks may differ in radius 

by several nanometers, the inter-track spacing is primarily determined by the ion fluence 

at low fluences. Therefore, one can conclude that either the structure of the tracks are 

similar or that the structure and morphology of the tracks do not contribute significantly 

to changes in the Raman spectra (at least to within the equipment resolution (0.5 cm-1)). 

The magnified view of the 463 cm-1 peak on the right side of Figure 2 shows no
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observable change in peak center or width, with crystallographic orientation or ion (at the 

same fluence). Similar behavior was found with the other Raman bands.

Figure 2. Raman spectra of Y- and Z-cut quartz samples, irradiated with 20 MeV Ni6+ 
and 40 MeV I7+ to a fluence of 1x109 ions cm-2

In contrast to ion species and energy, a systematic variation in line-shape was 

found with increasing ion fluence. Measurements of irradiated samples at different 

fluences (1 x109, 1x1010, 1x10u ions cm-2) were taken in conjunction with unirradiated 

samples for comparison purposes. Figure 3 shows the 463 cm-1 peak for Y-cut samples 

that were irradiated with 40 MeV I7+ at different fluences along with an unirradiated 

control. It was found that the Raman bands broadened and shifted to higher frequencies 

with increasing fluence. Comparable results were obtained for Z-cut samples and for
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samples irradiated with 20 MeV Ni6+. The broadening behavior is related to the atomic 

disorder added to the samples [5], [6], [14]—[16]. This disorder is caused by radiation 

damage produced during the passage of the incident ion through the crystal structure [55].

The broadening and peak shifting can also be related to the relaxation of the wave 

vector selection rules, or, equivalently, to the reduction of the correlation length of the 

phonon modes. The higher the ion fluence, the smaller the areal fraction of defect-free 

crystalline material [19], [20], [56]-[58]. It should be noted, however, that even up to 

fluences of 1*10u ions cm-2 no amorphous background was observed. This suggests that 

the actual areal fraction of amorphous or glassy material is below detection limits and 

that the observed changes in line shape are more likely due to the phonon confinement 

effect.

In Raman spectra, a shift of the peak center can also indicate the presence of 

strain. The sign of the shift depends on the sign of the stress and a shift without 

corresponding broadening is indicative of uniform strain [59]. Accordingly, the blue shift 

in the peak at 463 cm-1 may also be caused, wholly, or in part, by compressive strain in 

the crystalline regions between ion tracks. This is consistent with the expectation that 

disordered/amorphous track cores have a lower density than the surrounding matrix and 

therefore exert an outward compressive strain on the crystalline matrix.

Figure 4 shows the Raman peak at 463 cm-1 for Y-cut samples before and after 

being irradiated with 40 MeV I7+ at 1*109 cm-2, and after etching with an aqueous 

solution of 30%w of HF for one hour. As shown in a companion paper, etching with 

30%w HF for one hour produces well-defined nanowells with diameters up to 300 nm 

and depths up to 700 nm. As with the non-etched ion irradiated samples, the peaks for the



etched sample experience both a blue shift and broadening relative to the unirradiated 

specimens. However, the Raman peak obtained from the etched samples was slightly 

redshifted relative to the irradiated samples (Aro ~ 2.04 cm-1). The shift back towards the 

original centroid can be explained as a partial release of the compressive strain by the ion 

track core when the core is removed in the etching process.
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Raman spectra of Y-cut sample irradiated with 40 Mev I
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Figure 3 Raman peak centered at 463 cm-1 for Y-cut samples 
ions at different ion fluences

irradiated with 40 MeV I7+

The residual shift and broadening may be due to a combination of the remaining 

section of the un-etched ion track and/or by phonon confinement. As mentioned before, 

the phonon confinement effect can manifest itself as both shifting and asymmetric
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broadening of the peaks. To evaluate the symmetry of the peak broadening, open-source 

software for nonlinear curve fitting and data analysis, Fityk 0.9.8, was used [60]. A split 

Voigt function was used to fit the measured Raman peaks. The peak center, the left half 

width at half maximum (HWHM1), and the right half width at half maximum (HWHM2) 

were determined through least-squares fitting.

Raman spectra of Y-cut samples

1600 Unirradiated
Irradiated

1400 ■ ----- Etched

200

1000

800

BOO

400

200

450 460 470 480 490
Raman Shift (cm )

Figure 4. Raman peak centered at 463 cm-1 for Y-cut samples before the irradiation 
process (pristine), after being irradiated with 40 MeV I7+ at 1*109 cm-2, and etched with

30%w HF solutions for 1 hour

The asymmetric peak broadening was evaluated by calculating the asymmetry 

factor, J, defined as the ratio of the right HWHM to left HWHM. An asymmetry factor of 

1 indicates symmetric peak broadening. Symmetric broadening might be better explained



using phonon lifetime arguments than by invoking phonon confinement. Values greater 

than 1 indicate a positive skew while values less than 1 indicate negative skew [61]-[64]. 

In phonon confinement models, the sign of the skew is related to the curvature of the 

Raman active phonon dispersion curve at the Brillouin zone center. Figure 5 shows the 

asymmetry factor values for unirradiated, irradiated, and etched samples, for Y- and Z- 

cut orientations, irradiated with both ions to a fluence of 1*109 ions cm-2. All samples 

asymmetrically broadened towards higher frequency values (J >1), making phonon 

confinement a plausible explanation. Z-cut samples presented a larger gap in the J values 

when irradiating with 40 MeV I7+, even after the etching process.
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Asymmetry factor - Raman peak 463 cm

Unirradiated Irradiated Etched

Figure 5. Asymmetry factor values for unirradiated, irradiated, and etched samples, at Y- 
and Z-cut orientations, that were irradiated with the two different ions at a fluence of

1x109 cm-2
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3.2. THEORETICAL FRAMEWORK: APPLICATION OF PHONON-
CONFINEMENT MODEL (PCM) TO NANOSTRUCTURED a-QUARTZ

To complement the experimental analysis, calculations of the phonon coherence 

length were obtained from the theoretical phonon-confinement model (PCM), developed 

by Richter et al. [61] who used it to describe Raman scattering from optical phonons in 

nanostructures. According to the PCM, the first-order Raman scattering intensity, I(<s>), is 

given by Equation (1) [61], [62]:

\C (0 ,q ) \2d 3q 

[w -  w ( q ) ]2 +
x [nfai) -  1] x (R2) (1)

w ( q )  is the phonon dispersion curve for the branch of interest, ro is the natural linewidth 

(FWHM) of the zone-center optical phonon in the unirradiated samples, and C(0 , q)  is the 

Fourier transform of the confinement function. n (M i) is the Bose occupation number, and 

(R2) are the Raman susceptibility tensors that establish the polarization direction 

depending on the crystal orientation. The Fourier transform of the confinement function 

is given by Equation (2):

C ( 0 , q ) 2 = exp
- q 2L2

4 )2)

where L is the coherence length. The Bose occupation number is given by Equation (3):

i&d  - 1  = [ l -  exp ( hMi/kijT)] (3)
-1
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The Raman susceptibility tensors are given by Equation (4):

(R2) = es x ai,j ,ny x e; (4)

es and e; are the unit polarization vectors of the scattered and incident photons. aiJ/nY is 

the Raman tensor that includes the first-order change in the dielectric susceptibility 

tensors and the eigendisplacement vectors.

To calculate /(w), simulations with the Abinit quantum chemistry code [50] were 

conducted. The calculations were conducted with the linear and nonlinear response 

within the framework of Density Functional Perturbation Theory (DFPT) and the 2n+1 

theorem. The dielectric tensors, interatomic forces, the phonon energies for each phonon 

wave vector, and the eigenvectors were obtained.

The phonon dispersion curves (Figure 6), were found to be in agreement with 

previous studies [42]-[44], [48], [49], [65]-[68]. I(w) curves were calculated for a range 

of L values. The peak center and HWHM values were measured with Fityk using a split 

Voigt function following the same procedure used to analyze the experimental spectra. 

Figure 7 shows the fitting parameters of the 463 cm-1 Raman peak obtained from the 

irradiated samples (data points) with the model prediction (line) parameterized by 

coherence length. Good agreement was found between the measured parameters and the 

model, indicating that the PCM can describe most of the observed spectral changes. As 

mentioned above, the etching studies seemed to indicate that a portion of the peak shift 

could be due to compressive strain between the tracks.
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Phonon Dispersion Curve of a-quartz from simulations

1000

800

Figure 6. Phonon dispersion curve for a-quartz obtained by simulations with Abinit

This could explain the additional blue shift of the measured data, especially at 

lxlO11 ions cm-2, where the areal fraction of crystal under compressive strain is large. 

The obtained phonon coherence lengths were ~ 66 nm for samples irradiated with 1*109 

ions cm-2, ~ 58 nm for samples irradiated with 1*1010 ions cm-2, and ~ 45 nm for samples 

irradiated with 1*10u cm-2. As expected, with decreasing mean track separation (higher 

fluences), there is a corresponding decrease in coherence length.



70

Phonon Coherence Length (nm)

1x10 Simulated data
;6 +20 MeV N -Z  cut

20 MeV Ni - Y cutf1x10 7+40 MeV I -Z  cut

-1A FWHM cm '

Figure 7. Phonon coherence length of the 463 cm-1 Raman peak for the Y- and Z-cut 
samples irradiated with 20 MeV Ni4 * 6+ and 40 MeV I7 *+ with different fluences

4. CONCLUSIONS

Phonon confinement effects in ion irradiated and etched samples of a-quartz were

investigated. Samples of Y- and Z-cut quartz were irradiated with 20 MeV Ni6+ and 40

MeV I7+ at ion fluences of 1X109, 1x1010, and 1x10u cm-2. Samples were etched with

aqueous solutions of HF at different concentrations to create nanowells in the crystal

structure. Raman measurements indicated changes in peak center, breadth, and symmetry
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induced by irradiation and etching. It was observed that the peaks experience a blue shift 

and broadening asymmetrically with positive skew after irradiation, in agreement with a 

phonon confinement effect. Similar results were found when analyzing the etched 

samples, with the main difference being that the Raman peaks experienced a slight red 

shift relative to the irradiated samples. This is interpreted as relaxation of the stress when 

the track core was removed in the etching process. Calculations of the phonon coherence 

length were conducted by curving fitting the experimental spectra and spectra obtained 

by a phonon confinement model. It was found that the phonon coherence lengths 

decreased with increasing flux, suggesting that ion tracks may confine optical phonons in 

quartz.
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ABSTRACT

This study presents the characterization of a novel plasmonic device. The device 

was prepared through the drop-wise deposition of a colloidal suspension of gold 

nanoparticles into etched ion tracks in Y-cut alpha quartz. Scanning Electron Microscopy 

(SEM) measurements were carried out to verify the presence of nanoparticles inside of 

the nanowells. Raman spectra of substrates with different nanoparticle concentrations 

were obtained to study the relationship between Raman intensity and nanoparticle 

concentration. Analysis of the Raman spectra revealed a Surface-Enhanced Raman 

Scattering (SERS) response from the quartz substrate in ion irradiated and etched 

specimens. The enhancement of the Raman scattered intensity was observed to increase 

linearly with concentration for low concentrations of deposited gold nanoparticles (up to 

4M06 nps/pL). At higher concentrations, the intensity decreased exponentially with 

concentration following the Beer-Lambert law. It is believed that the reduction in the



enhancement is caused by light attenuation when the deposited nanoparticle layer 

becomes thick enough to absorb a significant fraction of the incident laser light. 

Interestingly, no Raman enhancement was observed when the same concentrations of 

nanoparticles were deposited on unirradiated and unetched quartz. This suggests that 

plasmon-phonon coupling may be enhanced through this nanostructure.

1. INTRODUCTION
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One of the main goals of modern optoelectronic devices is to enhance 

performance without increasing size. The incorporation of metallic nanostructures has 

made it possible to enhance the performance of such devices by introducing light-matter 

interactions at the nanometric scale [1]. Metallic nanostructures can alter the way light 

scatters from the molecules thanks to the ability of their optical properties to support 

collective light-induced electronic excitations (plasmons) [2]-[5]. The free electrons at a 

metallic surface absorb the energy of the incident photons and begin to oscillate. 

However, due to the nanometric size of the metallic nanoparticles and the boundary 

conditions that they impose, such oscillations appear as localized surface plasmons. 

Localized surface plasmons only absorb incoming light with the same frequencies as the 

plasmons themselves. Localized surface plasmons are responsible for enhancing the 

optical response of materials by several orders of magnitude [6]-[9].

Plasmonic nanoparticles strongly modify the phase of the optical field in their 

vicinity due to their capacity to strongly couple local electron density fluctuations with an 

electromagnetic field of wavelengths larger than the nanoparticle itself [10]. When these



nanoparticles get closer to each other to a distance comparable to their diameter, 

additional electromagnetic effects appear [11]—[14]. Plasmon coupling occurs when two 

or more plasmonic nanoparticles form clusters so that their near-field surface plasmons 

begin to hybridize and further enhance the localized electric field within the clusters (hot 

spots). Such clusters also enable the exchange of hot electrons between adjacent 

nanoparticles. Previous studies have reported an enhancement of the interparticle electric 

field by several orders of magnitude, far-exceeding the field enhancement created by a 

single plasmonic nanoparticle [6]-[9]. One of the sensing applications that use plasmon 

coupling to achieve ultralow detection limits is SERS [15].

Nanoplasmonic devices have been of great interest in physics and engineering and 

they are expected to be the key in nanotechnology that will merge electronics and 

conventional photonic components on the same nanodevice [3], [16]—[18].

Nanoplasmonics have been successfully used for nanoantennas [19], [20], 

efficient solar cells [21]-[23], nanoplasmonic biosensors [24]-[28], SERS [29]-[36], 

localized heat generation [37]-[40], smart coatings [41]-[45], plasmonic nanofilters 

[46]-[48], and other useful devices.

Quartz is widely used in optoelectronics and photonic devices. Its optical and 

electrical properties, in conjunction with its thermostability, high resistance to chemical 

attack, and its insulating and piezoelectric properties, make quartz a good candidate for 

diverse applications including semiconductors, construction materials, integrated optics, 

microelectronics, spectroscopy, and others [49]-[53]. Hence, developing new techniques 

to modify the optical properties of quartz can represent a promising approach to broaden 

its technological applications.
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The main objective of the present work is to incorporate gold nanoparticles 

(AuNPs) into the crystal structure of quartz in order to modify its optical response by 

enhancing the plasmon-phonon coupling via localized surface plasmons. To achieve this, 

samples of Y-cut orientation alpha quartz were irradiated with highly energetic ions and 

subsequently vapor-etched with hydrofluoric acid solutions to produce nanowell 

structures. The production and characterization of latent and etched ion tracks were 

reported in a companion paper. Gold nanoparticles with a mean diameter of 7 nm were 

deposited into the etched nanowells by dropping a colloidal suspension on the sample 

surfaces and allowing them to dry. The characterization of the plasmonic devices 

included scanning electron microscopy (SEM) and Raman spectroscopy.

2. METHODOLOGY

The samples used in this study consisted of single side polished, Y-cut alpha 

quartz (MTI inc.). The samples were irradiated with 40 MeV I7+ (0.31 MeV/amu) ions to 

a fluence of 1*109 ions cm-2. The passage of the ions forms ion tracks, 

disordered/amorphous columnar structures that extend several microns into the quartz 

surface. After irradiation, the samples were vapor-etched with an aqueous solution of 

20%w HF for 1 hour at room temperature. The resulting nanowells had nanochannel 

shapes with superficial dimensions of ~600 nm in length and ~200 nm in width, and 

depths up to ~ 1 pm. Figure 1 shows SEM images of the nanowells. The micrograph on the 

left side shows the nanowell openings at the sample surface. The micrograph on the right 

shows a cross-section where the nanowell depth can be determined. SEM micrographs
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were obtained at a high voltage of 15 kV, with a current of 86 pA, a working distance of 

4.1 mm, and magnifications ranging between 20,000* and 50,000*. The samples were 

coated with a 3 nm layer of Au/Pd to inhibit charging, reduce thermal damage, and 

improve the secondary electron signal required for the topographic examination.

Figure 1. SEM images of irradiated and etched Y-cut a-quartz samples. The nanowell 
surface dimensions (left) and depth (right) are indicated

Citrate-coated AuNPs with spherical shape and 7 nm diameter were used in the 

deposition. The AuNPs were purchased from Luna Nanotech as a liquid suspension in 

water (1.55*10-6 M). The citrate coat acts as a stabilizing surfactant to avoid 

agglomeration (size dispersity: ~ 1.2 nm). The AuNP deposition on the sample surfaces 

was conducted by dripping 20 pL drops of a diluted suspension (2.3*10-8 M in deionized 

water) onto the samples and letting them dry. Samples with different concentrations of 

deposited AuNPs were prepared by varying the number of drops. Before depositing a



new drop, the sample's surfaces were cleaned by wiping them with deionized water to 

remove the nanoparticles that did not get trapped in the nanowells. This procedure was 

intended to produce devices where the majority of AuNPs reside in the nanowells. Figure 

2 shows a photograph of quartz samples with differing AuNPs concentrations: (A) no 

nanoparticles, (B) 1x106 nanoparticles per microliter (nps/pL), (C) 4x106 nps/pL, (D) 

1x107 nps/pL, and (E) 9x107 nps/pL that correspond to a 20 pL-drop of the concentrated 

suspension (1.55x10-6 M).
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Figure 2. Quartz sample with different AuNP concentrations: (A) no nanoparticles, (B) 
1x106 nanoparticles per microliter (nps/pL), (C) 4x106 nps/pL, (D) 1x107 nps/pL, and 

(E) 9x107 nps/pL corresponding to a 20 pL-drop of the concentrated suspension
(1.55x10-6 M)

Raman spectra were obtained with a Horiba Xplora Plus Confocal Raman 

Microscope at room temperature with a 785 nm semiconductor laser. Spectra were 

collected using a 10x objective lens with an air numerical aperture of 0.25, 1800 lines 

mm-1 grating, and a 100 pm diameter pinhole. Based on these parameters, the index of 

refraction of quartz and the formulae in [54], an optical sectioning resolution (FWHM) of



about 98.4 pm is assumed. All measurements were acquired in the backscattering 

geometry without polarization optics.
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3. RESULTS

Figure 3 shows an SEM micrograph of a sample with deposited AuNPs at a low 

concentration (4*106 nps/pL). SEM images were taken to characterize the AuNPs 

distribution after deposition. The micrographs were acquired at high voltage (10 kV), 

with a current of 43 pA, a working distance of 5.3 mm, and magnitudes ranging between 

20,000* and 50,000*. To inhibit charging and improve the secondary electron signal, the 

samples were coated, but in this case, a 15 nm layer of carbon was used to avoid 

interference between the Au/Pd coating and the AuNPs.

Agglomeration of AuNPs was observed in the SEM image. This is expected as 

capillary forces draw NPs together as they dry. Most of the agglomerated AuNPs were 

found inside the nanowells,. The AuNPs deposition was observed to be nonuniform in the 

nanowells and several nanowells did not show the presence of AuNPs at all. Also, some 

of the nanowells that showed the presence of AuNPs were not completely filled at the 

surface. It is believed that, due to the nanowell geometry, most of the AuNPs fell to the 

bottom with the possible presence of empty spaces between agglomerated clusters. It was 

not possible to obtain an SEM cross-section image of the filled nanowells because ion 

milling can sputter the AuNPs out during the process and contaminate the microscope.
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Figure 3. SEM micrograph of a sample with deposited AuNPs

Despite the non-homogeneous AuNP deposition, a modification in the optical 

response of quartz by the presence of hotspots in agglomerated AuNPs was observed.

The enhancement of the electromagnetic field due to plasmon oscillations can occur 

between as few as two coupled nanoparticles [3], [4], [6]-[10], [55]. Figure 4 shows the 

Raman spectra of samples with different nanoparticle concentrations. The spectrum of a 

sample with no AuNPs was included for comparison purposes.

A significant change in the Raman scattering intensities was observed in samples 

with deposited AuNPs. Samples with a low concentration (up to 4*106 nps/pL) of AuNPs 

presented a roughly linear increase in the Raman signal intensity with concentration. 

However, at higher concentrations, Raman intensity decreased with increasing 

concentration. It is believed that, with the increase in deposited-AuNPs, an increase in the 

number of filled nanowells occurs as does the number of locations where hotspots are in



close proximity to the quartz structure. However, with continued deposition, AuNPs 

begin to cover the sample surface and block hotspots from new AuNPs from penetrating 

into the quartz resulting in a saturation of the SERS response. In addition to the saturation 

of SERS response, continued deposition of AuNPs can produce a decrease in Raman 

intensity due to light attenuation.
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Figure 4. Raman spectra of samples with different AuNP concentrations

The larger number of nanoparticles at the surface increases the mass thickness of 

gold between the incident laser and the quartz substrate to the point where significant 

light absorption occurs.

Figure 5 shows the relationship between the enhancement in the localized 

electromagnetic field with AuNP concentration. The enhancement in the Raman intensity



was evaluated by comparing the measured intensity of the plasmonic devices with the 

intensity obtained from the samples with no deposited AuNPs. In other words, the 

enhancement factor was calculated as shown in Equation (1):
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/
E F =  j -  

l0
(1)

where I is the Raman intensity obtained from the plasmonic devices with 

different deposited-AuNPs concentrations and /0 is the Raman intensity obtained from 

samples without deposited AuNPs. It is important to note that the same Raman 

microscope conditions were used for all measurements. It is interesting to compare the 

regime of light attenuation with the Beer-Lambert law shown in Equation (2):

/ = e vx (2)
'o

^  is the extinction coefficient calculated as 2.854*10-7 by fiting the Raman enhancement 

curve, and x was calculated as the concentration of deposited-AuNPs (nps/pL). As 

mentioned before, at lower concentrations, the incident light is weakly attenuated and a 

linear relationship between the EF with the AuNPs concentration was observed (see 

Figure 6 inset). A maximum EF = 3.41 ± 0.01 was observed at 4*106 nps/pL. The 

attenuation of light follows an exponential relationship to the AuNPs concentration 

following the Beer-Lambert law. The Beer-Lambert law from equation 2 is overlayed in
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Figure 5. Apart from an intensity, the Beer-Lambert law shows good agreement with the 

data.

P asmomc Device
y -  6.53* 10 x + 0.983Unirradiated sample

K 0.997
— — Beer-Lambert Law

--------Linear Regression o f  I/Io ^
2.5

n p s u L  x 106

= 4.512 e ( - 2-8S4xl°" -  3.437 X lO-9*  + 1.96

R2 =  0.99

X  10Nanoparticle Concentration (nps/uL)

Figure 5. Enhancement in the localized electromagnetic field with AuNP concentration
on the plasmonic device

4. CONCLUSIONS

A novel plasmonic device was fabricated and characterized using SEM and 

Raman spectroscopy. The device comprised a single crystal Y-cut alpha quartz substate 

with gold nanoparticles deposited into nanowells embedded in its crystal structure. The 

nanowells were produced by chemical vapor-etching of ion tracks that were obtained
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after high energy ion irradiation. The gold nanoparticles produced hotspots that reinforce 

the electromagnetic field via localized surface plasmons at the nanoparticle surface. The 

modification in the optical response of the plasmonic device was evaluated by Raman 

spectroscopy. An increase in the Raman scattering intensity was observed with an 

increase in AuNP concentration up to 4x 106 nps/pL. A maximum enhancement factor of 

3.4 was observed. For higher nanoparticle concentrations, an exponential reduction in the 

Raman intensity from light absorption in the AuNPs followed the Beer-Lambert Law. 

Similar enhancement behavior was not revealed in spectra from unirradiated and 

unetched quartz when nanoparticles were deposited. This particular nanostructure may be 

used to couple electromagnetic radiation to optical phonons near the surface of quartz via 

localized surface plasmons. Moreover, as quartz has piezoelectric properties, the coupling 

between external electromagnetic radiation and the displacement field of quartz should be 

studied. Further studies may also investigate the effects of crystal orientation and the 

geometry of nanowells on the enhancement factor; the effects of interparticle separation, 

agglomeration, and uniformity; and characterization of other optical properties such as 

polarization, reflectance, and absorbance and the spectral dependence of these properties.
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SECTION

3. PARALLEL STUDY CONDUCTED IN AMORPHOUS SiOi

As mentioned in the introduction, most of the previous studies about latent and 

etched ion tracks in SiO2 have been conducted on the amorphous form, fused silica.

These studies include detailed analysis of ion track formation [130], [133], the evolution 

of the damage induced by ion-irradiation [134], the effect of deposited energy density on 

the ion track radius [112], the mechanical response [63] and plastic deformation [58] of 

SiO2 after ion irradiation, and etching mechanism under different etching conditions 

[62], [64], [67], [120]. Therefore, the same experimental procedure used in this study was 

conducted on fused silica samples to create a reference point for the results obtained with 

a-SiO2 and to validate the used experimental methodology.

Fused silica samples, from MTI corporation, were irradiated at the CMAM-UAM 

with 40 MeV I7+ ions at fluences of 1x109, 1 x1010, and 1x10u ions cm-2, and etched at 

room temperature with solutions of 10, 20, and 30%w HF and different etching times.

The irradiated and subsequently etched samples showed similar results, with a few 

significant differences, when compared with a-SiO2.

The first difference observed was related to the formation of hillocks at the 

irradiated sample surface. The AFM measurements taken from irradiated a-SiO2 showed 

hillocks at the sample surface as a consequence of swelling and decrease in density 

produced by the passage of energetic ions (See Section 2.1). On the other hand, it was 

difficult to identify the formation of hillocks at the sample surface of irradiated fused



97

silica by atomic force microscopy (AFM) measurements. According to previous studies

[56], [62], [88], [112], [115], ion irradiation of amorphous substrates produces 

densification and plastic deformation of the material, not expansion. This means the silica 

samples had higher density (more compact) ion tracks that did not produce hillocks at the 

sample surface. The previous studies have reported that amorphous and crystalline SiO2 

have a similar electronic stopping power threshold (2 -  5 keV/nm). Hence, ion tracks 

with similar diameters and depths can be expected in both silica and a-SiO2 though it 

may be difficult to observe tracks in fused silica with AFM.

The second difference was found in the nanowells formed after etching the fused 

silica samples. Vapor-etching was conducted following the same experimental procedure 

as the one used for a-SiO2 (see Paper I). Aqueous solutions of HF at 10, 20, and 30%w 

HF were used with etching times up to 1 hour. As observed after etching a-SiO2, the 

fused silica samples irradiated with 1*10u ions cm-2 exhibited high surface damage even 

when etching with the lower acid concentration and short etching times (< 10 minutes). 

This is expected in the overlapping track regime. Therefore, to produce isolated 

nanowells, the etching process was conducted on samples irradiated with fluences of 

1x109 cm-2 and 1*1010 cm-2. Also, samples etched with 30%w HF were highly sensitive 

to acid attack, making it difficult to control the etching rate because the bulk material 

(zones without ion tracks) was being etched at the same time. The best results were 

observed on samples etched with 20%w HF up to 10 minutes. Longer etching times 

produced greater surface modification and the nanowells began to exhibit agglomeration.

The formation of nanowells was successfully observed. However, instead of 

showing facetted openings, the nanowells had circular openings and conical shapes in the



solid even when using the higher acid concentration with longer etching time. It is 

believed that the circular shape of the opening is caused by the absence of a crystal 

structure; the random position of the oxygen atoms gives rise to isotropic etching 

behavior (as explained in Section 2.3).

Figure 3.1 shows, at the left, an SEM micrograph of a silica sample that was 

irradiated with 40 MeV I7+ at 1*109 ion cm-2 and subsequently etched with 10%w HF for 

10 minutes. The nanowells superficial diameters and depths were measured with AFM 

are shown on the right. The SEM micrograph was obtained at high voltage of 15 kV, with 

a current of 86 pA, a working distance of 4.1 mm, and a magnification of 35,000*. The 

sample was coated with a 3 nm layer of Au/Pd to inhibit charging, reduce thermal 

damage, and improve the secondary electron signal required for the topographic 

examination.
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Figure 3.1. (Left) SEM micrograph of a silica sample irradiated with 40 MeV I7+ ion at 1*109 
ions cm-2 and etched with 10% HF for 10 minutes. (right) Analysis of the nanowell superficial 
diameter and depths obtained after etching with 10% and 20% HF for different etching times



It was found that the depths and diameters increase with acid concentration, as 

observed when etching a-SiO2. The etching rates were ~15 nm/min (superficial diameter) 

and ~20 nm/min (depth) for samples etched with 10% HF, and ~27 nm/min (superficial 

diameter) and ~40 nm/ min (depth) for samples etched with 20% HF. The calculated 

aspect ratios (depth/diameter) were 1.3 and 1.5 respectively and were slightly higher than 

the nanowell aspect ratios obtained from etching a-SiO2 with similar acid concentrations.

The deposition of gold nanoparticles (AuNPs) was conducted by drying drops of a 

diluted colloidal solution (23 nM) as explained in Paper III. Samples that were etched 

with 20% HF for 10 minutes were used (superficial diameter: ~250 nm, depths up to 400 

nm). The main objective of this part of the experiments was to deposit the nanoparticles 

inside of the etched nanowells while avoiding nanoparticle deposition on the sample 

surface. The characterization techniques included AFM, SEM, and energy dispersive 

spectroscopy (EDS). It is important to mention that, for both crystalline and amorphous 

SiO2, the main challenge obtained during sample characterization was resolving the 

nanoparticle. The size of the nanoparticles, being just 7 nm, was smaller than the 

resolution of the types of equipment used. AFM can detect features at that nanometric 

scale, but, due to the dimensions of the obtained nanowells in both kinds of samples, it 

was not possible to identify single nanoparticles given the topographic variations in the 

surface of the etched silica. Moreover, AFM does not provide mass or elemental contrast. 

Therefore, the analysis was conducted considering the observation of agglomerated 

nanoparticles at the sample surfaces.

The AFM measurements were conducted to check how the nanowell depths 

change after depositing AuNPs. It was observed that the deposition process was not
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homogeneous on the sample substrates, as observed in the a-SiO2 samples. Several 

nanowells were completely filled to sample surface while others were partially filled 

(mostly at the walls of the nanowells) or empty. Figure 3.2 shows the AFM images for a 

silica sample after depositing 4*106 nps/pL, (A) sample surface, (B) 3D-surface analysis, 

and (C) the section analysis of the ion tracks found in the selected area. The chosen 

nanoparticle concentration was the same as the one found to produce the highest Raman 

enhancement in the a-SiO2 (EF = 3.4).

Thanks to the consistent conical shape of the nanowells, it was easier to analyze 

the changes in depth after the AuNPs deposition. The AFM profile (image C ) from 

Figure 3.1 clearly shows how the depth of some nanowells changes after the deposition 

process. It is still possible, however, that empty spaces are produced in the nanowell due 

to non-uniform nanoparticle agglomeration. A better characterization technique is needed 

to analyze the nanoparticle distribution inside of the nanowell, as suggested in Paper III.

The same AFM analysis conducted on a-SiO2 samples after depositing AuNPs 

was more difficult to interpret. It was not possible to clearly observe isolated filled 

nanowells due to the agglomeration of etched nanowells and formation of linked 

nanochannels. Figure 3.3 showed different AFM profiles taken from the same nanowell 

that was partially filled with AuNPs. Variations in nanowell depth could indicate non­

homogeneous AuNPs deposition and agglomeration (as with fused silica). However, it 

needs to be reiterated that the etched nanowells/nanochannels in quartz were less uniform 

in size and it is difficult to differentiate between filled nanowells and unfilled nanowells 

that are merely more shallow and narrow. Moreover, a clearly defined opening “lip” was 

difficult to observe in the quartz nanowells. The same lip can be seen in Figure 3.2(A).
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Hence, the need for a better characterization technique to analyze the nanoparticle 

distribution inside of the nanowell is reinforced.

Figure 3.4 shows an SEM micrograph of a fused silica sample with deposited 

AuNPs (4*106 nps/pL). The micrographs were acquired at a high voltage of 10 kV, with 

a current of 43 pA, a working distance of 5.3 mm, and magnifications ranging between 

20,000* and 50,000*.
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Figure 3.2. AFM images for a silica sample after depositing 4x106 nps/pL, (A) sample 
surface, (B) 3D-surface analysis, and (C) the section analysis of the ion tracks found in

the selected area
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Figure 3.3. AFM depth profiles of a nanowell with deposited AuNPs. (A) depth profile of 
AuNPs seeing close to the sample surface. (B) and (C) depth profiles of AuNPs probably

at the nanowell bottom

To inhibit charging and improve the secondary electron signal, the samples were 

coated with 15 nm layer of carbon. Carbon was chosen instead of Au/Pd to prevent the 

coating from interfering with the AuNPs in EDS analysis. Through comparison with the 

SEM image of Figure 3.1 (left), it is possible to identify the filled nanowells and empty 

nanowells. Also, it was possible to confirm that the nanowell shape and dimensions 

favored the filling process when compared with the SEM micrographs obtained from a-



SiO2 (Figure 3 from Paper II), though possibly this is, in part, a consequence of the 

surface area and volume difference between the two nanowell shapes.
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Figure 3.4. SEM micrograph of a silica sample with deposited AuNPs (4*106 nps/pL)

From the SEM micrograph, one can conclude that no significant amount of 

agglomerated nanoparticles was observed at the sample surface while it was possible to 

detect AuNPs agglomeration in the nanowells. However, due to the large scales used 

during the AFM and SEM measurements, and the lack of single AuNPs detection, An 

EDS analysis was conducted to verify if AuNPs are present on the sample surface.

EDS spectra were taken from the inside of the filled nanowells as well as from the 

sample surfaces between nanowells. Figure 3.5 shows the EDS spectra taken from a silica 

sample surface (spectrum 6) where no nanowell was observed, and the EDS analysis



taken from a filled nanowell (spectrum 7). Table 3.1 shows the EDS report for each 

spectrum where the characteristics X-ray lines (line type), the apparent concentration, 

ratio of the intensity (number of X-ray counts -  k ratio (ratio of characteristic intensities 

measured on the specimen and standard)), the element concentration in terms of the mass 

fraction (Wt%), its error (Wt% Sigma), and the atomic weight percent (Atomic %) are 

included. It was observed that the EDS analysis did not detect the presence of AuNPs at 

the sample surface. Thus the methodology used to deposit gold nanoparticles successfully 

produced clean silica surfaces with AuNPs residing wholly within the nanowells.
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Figure 3.5. EDS spectra taken from a silica sample after depositing AuNPs. (Top -  
spectrum 6) EDS analysis was taken from the sample surface. (Bottom -  spectrum 7) 

EDS analysis was taken from a filled nanowell
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Table 3.1. EDS reports from silica samples with deposited AuNPs

Element Line
Type

Apparent
Concentration

k
Ratio Wt% Wt%

Sigma
Atomic

%
Standard

Label

O K 5.86 0.02 67.4 0.5 78.4 SiO2
Spectro Si K 1.87 0.01 32.6 0.5 21.6 SiO2

6 Au
Total:

M 0.00 0.00 0.0
100.0

0.5 0.0
100.0

Au

O K 3.98 0.01 57.6 0.9 78.7 SiO2
Spectro Si K 1.35 0.01 24.4 0.6 19.2 SiO2

7 Au
Total:

M 0.64 0.01 18.0
100.0

1.0 2.1
100.0

Au

Considering the previous studies of latent and etched ion tracks in amorphous 

SiO2 and the results shown in this section, it was possible to create a reference point for 

comparing the results obtained with a-SiO2. This section verifies that the methodology 

used in this thesis was suitable to build the plasmonic device using a-SiO2 as the main 

substrate. Additionally, it shows that plasmonic devices may also be easy to fabricate in 

fused silica. Certainly, much additional work could be dedicated to this one topic.
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4. SUMMARY AND CONCLUSIONS

The fabrication of a plasmonic device using single crystals of alpha quartz was 

successfully accomplished. The device consisted of Y-cut a-SiO2 samples with deposited 

gold nanoparticles into nanowells embedded in its crystal structure. The nanowells were 

produced by chemical vapor-etching of ion tracks that were obtained after irradiating 

with highly energetic ions. The deposited gold nanoparticles modified the optical 

response of a-SiO2 thanks to the creation of hotspots in the interparticle spaces. Such 

hotspots enhance the electromagnetic field via localized surface plasmons at the 

nanoparticle surface. Raman measurements showed that such hotspots were effective in 

enhancing the coupling between external electromagnetic radiation and optical phonons. 

As quartz is one of the most used materials in optoelectronics and photonics applications 

and considering plasmonic devices as a promising technology for nanophotonics, this 

work represents a promising approach to broaden these technological applications and to 

make quartz a promising material for nanophotonics.

The experiments can be divided into three main sections: the production of latent 

ion tracks by high energy ion irradiation in electronic energy loss regime, chemical 

vapor-etching of ion tracks to create nanowells, and the deposition of gold nanoparticles 

into the nanowells. It is important to note that experiments were conducted using two 

different sample orientations (Y-cut and Z-cut) to determine which one produces a more 

suitable substrate for deposition and creation of the plasmonic device. Additionally, a 

detailed analysis of the phonon confinement effect produced by the presence of latent and 

etched ion tracks in the crystal structure was conducted.
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Latent ion tracks were produced by irradiating a-SiO2 samples with both 20 MeV 

Ni6+ ions and 40 MeV I7+ ions at different fluences. The species and energies of the ions 

were chosen considering that permanent changes in the crystal structure occur when the 

electronic stopping power exceeds a critical threshold required to form highly defective 

or amorphous zones in the crystal matrix. It was found that the irradiation conditions 

produced continuous and homogeneous ion tracks. After irradiating, it was possible to 

observe hillocks at the sample surface, a consequence of the amorphization process. 

Hillocks of similar height and width were observed in both Y- and Z-cut samples. The 

hillock morphology depends on the stopping power, track depth, and perhaps ion velocity 

to a lesser extent. Samples irradiated with 20 MeV Ni6+ had broader hillocks and 

presumably wider tracks. Samples irradiated with 40 MeV I7+ ions produced deeper ion 

tracks with smaller hillock diameters.

Chemical vapor-etching was conducted with aqueous solutions of HF at different 

concentrations. It was found that Z-cut samples etched at significantly faster rates. Low 

acid concentrations (<10% HF) were needed to conduct an etching process in a controlled 

manner and without damaging the surface of the samples. Under those etching 

conditions, it was possible to obtain conical-shaped nanowells with superficial 

dimensions up to ~ 140 nm width and depths of around ~ 15 nm. The Y-cut samples 

showed higher resistance to acid attack, allowing etching with higher acid concentrations 

(up to 30%w HF) and longer etching times (up to 1 hour). During etching, strong 

anisotropic etching behavior was observed. Nanowells produced during the first 15 

minutes were roughly lenticular in shape. After longer etching times, the nanowells began 

to elongate in the Z direction, eventually agglomerating into nanochannels.



Different kinetic regimes were identified in all etched samples. Initially, the 

etching process is rapid and occurs primarily along the track core. This is followed by a 

slower regime where the growth of the superficial dimension(s) increases. For Y-cut 

quartz, a third, fast etching regime was also observed at longer etching times as a 

consequence of agglomeration of channels, which creates a relatively open structure that 

may improve HF transport. The ion energy and stopping power are believed to explain 

differences in the nanowell aspect ratio. Samples that were irradiated with 20 MeV Ni6+ 

ions presented shallower nanowells with broader diameters than those irradiated with 40 

MeV I7+. Though the ion velocities were similar, the stopping power of the iodine ions 

was higher, possibly resulting in more defective/amorphous track cores. Higher aspect 

ratios could also be achieved at higher etchant concentrations. At this point, it was 

possible to identify the Y-cut samples, irradiated with 40 MeV I7+ at 1*109 ion cm-2, as 

the most suitable substrate for the plasmonic devices. The higher stopping power, 

combined with high acid concentration (20%w HF) and longer etching times (up to 1 

hour), produced deeper nanowells with nanochannel-shapes at the sample surface. The 

nanowell had superficial dimensions of ~ 600 nm length, ~ 200 nm width, and depths up 

to ~ 1 pm.

7 nm diameter Au nanoparticles were deposited into the nanowells by drying 

drops of a diluted colloidal suspension (23 nM). Different nanoparticle concentrations 

were used to evaluate how the optical response of the plasmonic device is modified with 

different amounts of deposited nanoparticles. Raman spectroscopy was used as the main 

technique to evaluate the modification in the optical response. SEM micrographs 

confirmed that the procedure used produced gold nanoparticles confined within the
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nanowells. Agglomerated nanoparticles were observed inside the nanowells with no 

significant presence at the sample surface. The enhancement in the electromagnetic field 

due to localized surface plasmons at the nanoparticle surfaces was observed as an 

increase in the Raman scattering intensities. A linear increase of the enhancement factor 

(I/Io) was observed when depositing gold nanoparticles at low concentrations, reaching 

the maximum enhancement of 3.4 at a nanoparticle concentration of 4*106 nps/pL. 

Higher nanoparticle concentrations exponentially reduced the Raman intensity following 

the Beer-Lambert Law. It is believed that the Raman signal is attenuated due to an 

increase in the mass thickness of Au at the surface and accompanying increase in 

absorption of the incident laser light. Thus, the optimal nanoparticle concentration 

represents a balance between plasmonic enhancement and light absorption.

Additionally, phonon confinement effects in ion irradiated and subsequent etched 

samples were investigated. The analysis was conducted on both Y- and Z-cut a-SiO2. 

Raman measurements indicated a blue shift and asymmetric broadening with positive 

skew after irradiation, in agreement with a phonon confinement effect. Similar results 

were found when analyzing the etched samples, with the main difference being that the 

Raman peaks red-shifted slightly from the irradiated sample values back to lower 

frequencies. This is interpreted as relaxation of the stress when the track core was 

removed in the etching process. Calculations of the phonon coherence length were 

conducted by curving fitting the experimental spectra and spectra obtained by a phonon 

confinement model. It was found that the phonon coherence lengths decreased with 

increasing flux suggesting that ion tracks may confine optical phonons in quartz
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5. RECOMMENDATIONS AND FUTURE WORKS

This dissertation demonstrated several experimental techniques that can be used 

to produced ion tracks in crystalline quartz, etch them to produce anisotropic nanowells, 

and fill the nanowells with gold nanoparticles. A change in the Raman scattering intensity 

was successfully induced by the plasmonic nanoparticles inside of the nanowells. 

However, it is believed that the modification of the optical response of alpha quartz 

deserves further investigation in order to: (1) optimize the experimental procedures and 

thereby tailor a wider variety of novel plasmonic nanostructures and (2) characterize 

more of the optical properties of such structures and devices. Future works may include 

using different irradiation conditions (i.e. ion mass and energy) and etching processes 

with different acids that allow the production of nanowells with higher aspect ratios or 

different shapes. The Raman measurements can be improved by using nanostructures 

with different geometrical shapes, more controlled nanoparticle deposition with varying 

interparticle separation, and understanding in a more systematic way the parameters that 

govern the surface-enhanced Raman response. Also, more detailed SEM or TEM 

characterization is needed to quantitatively analyze the nanoparticle distribution along the 

depth of the nanowells. Different optical characterization techniques (i.e. absorbance, 

UV-Vis spectroscopy, ellipsometry, etc.) and interpretation of experimental data with 

models will help broaden the knowledge of how these 3D arrangements of deposited 

nanoparticles in dielectric media affect optical properties. In a more general sense, one 

seeks to understand the multitude of ways that such structures can couple incident 

electromagnetic radiation with various responses of the material.
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