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ABSTRACT

iii

Epigenetics is the study of changes in gene activity or function that are not related 

to a change in the DNA sequence. DNA methylation is one of the main types of epigenetic 

modifications, that occur when a methyl chemical group attaches to a cytosine on the DNA 

sequence. Although the sequence does not change, the addition of a methyl group can 

change the way genes are expressed and produce different phenotypes. DNA methylation 

is involved in many biological processes and has important implications in the fields of 

biomedicine and agriculture.

Statistical methods have been developed to compare DNA methylation at cytosine 

nucleotides between populations of interest (e.g., healthy and diseased) across the entire 

genome from next generation sequence (NGS) data. Testing for the differences between 

populations in DNA methylation at specific sites is often followed by an assessment of 

regional difference using post hoc aggregation procedures to group neighboring sites that 

are differentially methylated. Although site-level analysis can yield some useful information, 

there are advantages to testing for differential methylation across entire genomic regions. 

Examining genomic regions produces less noise, reduces the numbers of statistical tests, 

and has the potential to provide more informative results to biologists.

In this research, several different types of logistic regression models are investigated 

to test for differentially methylated regions (DMRs). The focus of this work is on developing 

a fuzzy logistic regression model for DMR detection. Two other logistic regression methods 

(weighted average logistic regression and ordinal logistic regression) are also introduced 

as alternative approaches. The performance of these novel approaches are then compared 

with an existing logistic regression method (MAGIg) for region-level testing, using data 

simulated based on two (one plant, one human) real NGS methylation data sets.
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1. INTRODUCTION

1.1. BASIC CONCEPTS OF GENETICS AND EPIGENETICS

This dissertation focuses on statistical methodology for analyzing epigenetic data. 

Specifically, statistical methods that aim to identify differentially methylated genomic re

gions are addressed in this work. In this section, basic concepts of genetics and epigenetics 

are provided as background to understand the biological nature of the topic.

1.1.1. Genetics. Genetics is the scientific study of inherited variation. Genes are 

sections of deoxyribonucleic acid (DNA) located inside each cell of an organism that are the 

fundamental units of heredity and play a role in determining the nature of living organisms 

(Lim and Maher, 2010). Organisms inherit phenotypes (characteristics) based on genotypes 

(the version of genes an individual possesses). For example, hair color, eye color, height, and 

the sound of a person's voice are phenotypes, the outward manifestations of the genotypes. 

It is of interest to determine the connection between genotype and phenotype. One way to 

investigate this connection at the molecular level involves the field of molecular genetics, 

a field that combines genetics with molecular biology. The Central Dogma of Molecular 

Biology (Varley et al., 2013) offers a way to understand how genes are transferred to 

functional information (Lim and Maher, 2010; Varley et al., 2013). The Central Dogma of 

Molecular Biology describes this two-step process (transcription and translation) that takes 

the information in DNA and uses it to produce proteins: D N A ^  R N A ^  protein (DeBruyn, 

2012). That is, the information contained in genes (DNA) is transcribed to messenger RNA, 

which is then translated to proteins. Proteins are the essential functional units of the cell.

The field of genomics involves studies that are conducted at the genome level, the 

study of the complete set of DNA in an organism (Varley et al., 2013). DNA is double

stranded and is comprised of millions of nucleotides. Nucleotides function as subunits 

and are composed of a nitrogen nucleobase (i.e., cytosine(C), guanine(G), adenine(A), and
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thymine(T)), a five-carbon sugar, and at least one phosphate group (Lodish et al., 2000). 

These bases can be categorized into two classes: the purine bases (A and G) that have a 

double ring structure and the pyrimidine bases (T and C) that only have a single ring. On the 

double stranded DNA (dsDNA), a purine on one strand pairs with a pyrimidine on the other 

strand. This is called complementary base pairing and it always occurs where A is paired 

with T while G is paired with C. The length of the dsDNA is measured by the number of 

base pairs (bp) of the product. The sequence length ranges from a few thousand (i.e., kilo 

base pairs (kbp)) in single-celled organisms to several million (i.e., mega base pairs (Mbp)) 

per molecule for complex organisms (Topal and Fresco, 1976).

DNA molecules are tightly packed around histone proteins to make structures called 

chromosomes. In humans there are 23 pairs of chromosomes. The largest chromosome, 

chromosome 1, contains about 2000 genes. The smallest chromosome, chromosome 21, 

contains about 200-300 genes. The mapping of genomes for particular organisms enables 

scientists to identify and record the location of genes within the DNA, the distances between 

genes on a chromosome, and gene functions. Mapping genomes allows the DNA to be 

annotated into important structures such as protein-coding genes (a sequence of DNA that 

codes for protein) and non-coding sequences (which do not provide instructions for making 

proteins). The map of these structures can be further annotated into additional units such as 

exons, introns, CpG islands and promoter regions that often play specific roles in different 

molecular processes.

The Human Genome Project (Venter et al., 2001) was an international genome-wide 

study of the DNA sequence in humans with the goals of identifying the sequence of the 

approximately three billion nucleotide positions that make up human DNA and identifying 

the locations of the genes within this sequence. The order of nucleotides in a gene is revealed 

by DNA sequencing. Initially, sequence information was used in organism specific genome 

projects such as the Human Genome Project to map the position of a gene or genetic marker 

to be used as a reference for future studies of that organism. With advances in technology,
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whole genome sequencing can now be used to reveal all of the genetic information from any 

individual. Such genome-wide studies are powerful tools for exploring genetic contributions 

to phenotypic variation and have the potential to allow for important health advances, such 

as personalized medicine, in the future.

1.1.2. Epigenetics. Epigenetics is the study of biological mechanisms that will 

switch genes on and off without any change in the DNA sequence. The word "epigenet

ics" comes from the Greek root “epi", which means “above" or “on top of" the genetic 

information. Epigenetics encompasses all the information contained within the cell and 

expressed for more than one cell generation, as the DNA sequence remains stable (Vaillant 

and Paszkowski, 2007). In other words, epigenetics is the study of heritable changes in gene 

expression (active versus inactive genes) that cannot be explained by changes in the DNA 

sequence (Russo et al., 1996). DNA methylation and histone modifications are two key 

epigenetic mechanisms (Figure 1.1) (Jones and Baylin, 2007). Both of these mechanisms 

involve the addition of chemical marks to the DNA or histone proteins. DNA methylation 

occurs when a methyl (Me) group attaches to a cytosine (C) base on the DNA molecule 

and is the focus of this work. Histone modifications occur when certain chemical groups 

(e.g., methyl, acetyl) attach to the tails of histone proteins. Epigenetic modifications help 

to control gene expression (Jaenisch and Bird, 2003; Vaillant and Paszkowski, 2007; Zil- 

berman et al., 2007), and epigenetic aberrations correlate with cancer (Feinberg and Tycko, 

2004; Feinberg and Vogelstein, 1983) and other diseases (Robertson, 2005; Shames et al., 

2007). Environmental and lifestyle factors may influence epigenetic mechanisms, such as 

DNA methylation and histone modifications. An advantage of these environmental influ

ences is that drugs can be developed to modify epigenetic patterns in cancer cells (Issa and 

Kantarjian, 2009).

1.1.3. DNA Methylation. DNA methylation is an epigenetic mechanism that oc

curs by adding a methyl (Me) group to DNA, thereby often modifying the function of the 

genes and affecting gene expression (Bird, 2002; Suzuki and Bird, 2008). In mammals,
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Figure 1.1. Two key epigenetic modifications: (1) DNA methylation and (2) histone 
modification. Image from Qiu (2006).

DNA methylation occurs primarily when cytosine (C) is followed by guanine (G) in the 

5’-3’ direction of the DNA sequence; although there is increasing evidence that methylation 

also occurs in other contexts. This is denoted as CG or CpG, the latter notation showing 

that cytosine and guanine are connected by a phosphate on one of the DNA strands (Li and 

Zhang, 2014). In plants, DNA methylation occurs in the contexts of: CG, CHG and CHH 

(where H = A, T or C). At least three DNA methylation pathways exist in plants, and each 

pathway appears to methylate cytosines in different sequence contexts (Law and Jacobsen, 

2010). In mammals, DNA methylation patterns are established and maintained by three
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DNA methyltransferases: DNMT3a, DNMT3b and DNMT1 (Margot et al., 2003). Plants 

also have methyltransferase enzymes, some similar to DNMT1 and others unique to plants 

(Law and Jacobsen, 2010). CpG islands are short stretches of DNA in which the frequency 

of the CG sequence is higher than other regions. Usually, CpG islands occur upstream of 

many genes that are unmethylated (Law and Jacobsen, 2010).

Recent research suggests that the relationship between genetic variation, DNA 

methylation and expression is complex (van Eijk et al., 2012). DNA methylation is im

portant for many biological processes, including genomic imprinting, X-chromosome inac

tivation, embryonic development and the silencing of transposable elements (Bird, 2002; 

Finnegan, 2010; Gehring and Henikoff, 2007; Kim et al., 2009; Slotkin and Martienssen, 

2007). In plants, DNA methylation is important for genome stability and plant improvement 

(Finnegan, 2010; Gehring and Henikoff, 2007). In humans, particular DNA methylation 

patterns have been associated with the development of cancer (Feinberg and Vogelstein, 

1983). A general loss of DNA methylation (hypomethylation) that occurs with an increase 

in methylation (hypermethylation) at the CpG islands in promoter regions is often found in 

cancer cells (Feinberg and Vogelstein, 1983; Shames et al., 2007).

1.2. NEXT-GENERATION SEQUENCING TECHNOLOGY

Next-generation sequencing (NGS) technologies are rapidly becoming an integral 

part of genetic research and discovery. Next-generation sequencing is also known as high- 

throughput sequencing and is a catch-all term used to describe a number of different modern 

sequencing technologies. NGS techniques combine high-throughput capability and high 

sequencing read accuracy with a low cost per base. The cost for the sequencing of an 

entire human genome has dropped from about $10 million to about $1000 in just the last 

15 years (Brettin et al., 2015). NGS methods offer advantages for such large-scale studies 

over the traditional Sanger sequencing developed in 1977 as they allow DNA and RNA to 

be sequenced much more quickly and cheaply.
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NGS technology has enabled researchers to conduct genome-wide investigations 

of many different molecular level phenomena, including gene expression and epigenetic 

modifications such as DNA methylation. Next-generation sequencing platforms can deliver 

a great amount of useful DNA methylation information at individual cytosines due to 

their higher accuracy and sensitivity, making them suitable for epigenomic investigations 

(Berglund et al., 2011). Several different companies manufacture NGS technologies (e.g., 

Illumina, Roche 454, Life Technologies) and their specific technical details may differ. 

However, there is a set of general processing steps shared between them that is illustrated in 

Figure 1.2 (Voelkerding et al. ,2010). These common NGS steps include library preparation, 

amplification, sequencing, imaging and alignment, which result in millions of sequencing 

reads per run. Coverage or sequencing depth is one of the common measures of the amount 

of sequence data generated, and it refers to the average number of times each base in the 

genome is sequenced (Voelkerding et al., 2010)

1.2.1. Genome-wide Methylation Profiling Approaches. DNA methylation can 

be investigated at a genome-wide level using a variety of technologies, including microarrays 

and NGS methods. These technologies provide an opportunity to rapidly analyze the 

genome of any organism. The advantage of NGS technologies is that they can cover 

cytosine sites across the entire genome and not just a pre-chosen subset of locations covered 

by microarrays. Next-generation technologies can also cover a wide range of the genome 

including repetitive elements (Lister et al., 2008).

Novel approaches have been developed with NGS to obtain genome-wide profiles 

of DNA methylation. Some methods require bisulfite-converted genomic DNA, such as 

MethylC-seq and RRBS (reduced representation bisulfite sequencing) (Lister et al., 2008; 

Meissner et al., 2008), some rely on the enrichment of methylated DNA, such as MeDIP-seq 

(methylated DNA immunoprecipitation sequencing) and MBD-seq (methylated DNA bind

ing domain sequencing) (Down et al., 2008; Serre et al., 2009) and some use methylation- 

sensitive characteristics of restriction enzymes to digest genomic DNA. Each method has
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Figure 1.2. Next-generation sequencing process steps for platforms requiring clonally 
amplified templates (Roche 454, Illumina and Life Technologies). Input DNA is converted 
to a sequencing library by fragmentation, end repair and ligation to platform specific 
oligonucleotide adapters. Individual library fragments are clonally amplified by either (1) 
water in oil bead-based emulsion PCR (Roche 454 and Life Technologies) or (2) solid 
surface bridge amplification (Illumina). Flow cell sequencing of clonal templates generates 
luminescent or fluorescent images that are algorithmically processed into sequence reads. 
Image from Voelkerding et al. (2010).

advantages and disadvantages with regard to sequencing depth, covered regions, accuracy 

and cost. For example, MeDIP-seq and MBD-seq cannot provide base pair-specific profiles, 

but they can reflect high to medium methylation of DNA sequences covering broader re

gions (Bird, 2002). In contrast, whole genome bisulfite sequencing (WGBS) methods, such 

as methylC-seq, provide a direct measure of CpG methylation at predefined regions and 

are considered the gold standard, but this technique is very costly (Suzuki and Bird, 2008). 

As a compromise, RRBS combines the use of restriction enzymes with NGS and bisulfite 

sequencing to obtain methylation levels at individual cytosines in a subset of the genome



8

with high CpG content. This reduces the cost at the expense of missing some information 

in some regions. This works focuses on developing statistical methods for bisulfite-based 

NGS methods. The bisulfite sequencing technique is reviewed in the next section followed 

by a detailed description of the RRBS workflow, due to its aforementioned advantages.

1.2.2. Bisulfite Sequencing Methods to Profile DNA Methylation. Bisulfite se

quencing is a technique that enables the measurement of DNA methylation percentage at 

the individual-base level (Frommer et al., 1992). This technique utilizes a process called 

bisulfite transformation of genomic DNA, in which the DNA molecules undergo a bisulfite 

treatment that allows methylated cytosines to be differentiated from unmethylated cytosines 

at the individual-base resolution. By this method, unmethylated CpG sites can lose an amine 

group to yield the uracil base, whereas methylated cytosines remain unmodified (Frommer 

et al., 1992). A polymerase chain reaction (PCR) is used to amplify bisulfite-treated 

DNA. After this is completed, the unmethylated cytosines appear as thymines (Figure 1.3). 

Therefore, when combined with NGS, full genome methylation profiles can be produced 

at the individual-base resolution. CpG sites that are methylated will read as a cytosine; 

whereas unmethylated CpG sites will be read as thymine. The number of methylated reads 

and unmethylated reads at the individual-base resolution can be counted and converted to 

methylation percentages at that position.

1.2.3. Reduced Representation Bisulfite Sequencing. Bisulfite sequencing meth

ods are combined with NGS technologies for whole genome studies using methods such as 

BS-seq or methylC-seq (Masser et al., 2015). Although these WGBS are considered the 

gold standard, they are expensive and prohibitive for most large-scale projects, especially 

for large genomes and large sample sizes. Meissner et al. (2008) pioneered the reduced 

representation bisulfite sequencing (RRBS) approach for analyzing and comparing genomic 

methylation between groups (e.g., case vs. control) with large sample sizes for use in smaller 

labs (Gu et al., 2010). The RRBS method utilizes bisulfite sequencing with NGS, but it 

only sequences a subset of the CpG sites rather than the whole genome.



9

Figure 1.3. Workflow of an RRBS library preparation. Image from Olbricht (2012).

RRBS works by using an enzyme that digests genomic DNA for fragments that 

always start with a C (if the cytosine is methylated) or a T (if the cytosine is not methylated). 

After this initial step, conversion is completed to establish the methylation levels in DNA 

for the subset of selected fragments (Raine et al., 2016). Core promoters and CpG islands 

generated by this fragmentation contain the key regulatory parts of the genome even though 

RRBS comprises only ~ 1% of the whole genome (Meissner et al., 2005). DNA quantities 

as little as 10-300 ng are adequate to produce accurate DNA methylation levels with RRBS 

(Gu et al., 2011). Therefore, RRBS is suitable for large numbers of clinical samples (e.g., 

tumors) that only supply a small amount of genomic input DNA material.

The basic steps of preparing an RRBS library (Figure 1.3) are described below. The 

DNAmust first be isolated, so that it can be used to make genomic libraries (Gu etal., 2011). 

The second step is the digestion reaction and fragmentation. Two commercially available 

enzymes, MspI and TaqI, are frequently used in this process. These enzymes produce 

fragments that will contain at least one CpG dinucleotide. MspI and TaqI (Gu et al., 2011)
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are important to aid in capturing CpG-dense regions while reducing the genomic space. In 

the third step, the digested and size-selected fragments are bisulfite converted, as described 

in Section 1.2.2, and then PCR amplified. In step four, all the PCR products that have been 

amplified from bisulfite-converted fragments are sequenced using an NGS platform. One of 

the most common RRBS workflows uses the Illumina NGS platform (Krueger et al., 2012). 

In step five, the short sequence reads are aligned to a reference genome. Finally, in step six, 

cytosine methylation status is determined across all reads and summarized, resulting in a 

count of the number of methylated (C) and the number of unmethylated (T) reads at each 

cytosine sequenced. Note that in mammals, typically only CpG sites are summarized, but 

all cytosines are of interest in plants.

1.3. LITERATURE REVIEW FOR STATISTICAL METHODS

The ability to measure DNA methylation on a genome-wide scale enables researchers 

to investigate associations between DNA methylation and different phenotypes and condi

tions of interest. Identifying locations in the genome that have DNA methylation differences 

between conditions is referred to as differential methylation testing. These results enable 

researchers to better understand the role of DNA methylation and locate specific genomic 

locations that may be promising to target in future investigations. This work specifically 

focuses on developing improved statistical methods for detecting differentially methylated 

regions (DMRs) from bisulfite-based NGS data. A review of previous statistical methods 

that provide tests at the region-level is first given, followed by a brief introduction to one 

of the primary methods proposed in this work (fuzzy logistic regression). The section ends 

with a summary of the proposed methods for DMR testing.

1.3.1. Previous Approaches for DMR Testing. Differential methylation testing 

can be done on an individual site-level or on a region-level. Although there are occasions 

when researchers are interested studying the relationship between single CpG sites and a 

phenotype of interest (Weaver et al., 2004), differentially methylated regions are often more 

predictive features of phenotypes (Lun and Smyth, 2014). Also, differences at any given
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site may be small and noisy, but variations across a region can often be more easily detected. 

For region-level testing, it is important to define the region location. Methods that operate 

on predefined regions must be distinguished from those that define regions of DMRs as part 

of the method (i.e., the regions are not known in advance). One issue with methods that do 

not define the region in advance is that the false discovery rate (FDR) needs to be controlled 

across the regions tested, which is difficult when the number of this is unknown in advance. 

Therefore, the most straightforward approach is to use predefined regions which can be 

defined based on annotation (e.g., CpG islands, CpG shores, exons, or introns) or defined 

by CpG density. One other statistical issue that needs to be considered for DMR detection 

is that methylation levels between neighboring sites are often highly correlated.

Table 1.1. Statistical methods to detect differentially methylated regions (DMRs).

Method Design Region Definition Statistical Elements Reference
M3D
MAGIg

RRBS
WGBS
or
RRBS

CpG Density 
Annotation

Kernel-based 
Fisher's Exact Test, 
Logistic Regression

Mayo et al. (2015) 
Baumann and Do- 
erge (2014)

This work focuses on methods that utilize predefined regions in constructing a 

region-level test for differential methylation using bisulfite-based NGS data. Although there 

are many statistical approaches in the literature for differential methylation testing, there 

are currently only two main methods specifically for detecting DMRs based on predefined 

regions in bisulfite sequencing data. These methods are summarized in Table 1.1. M3D 

(Mayo et al., 2015) is a nonparametric statistical method that uses a kernel distance statistic 

to detect DMRs from predefined regions based on CpG density. Methylation analysis using 

genome information (MAGI) (Baumann and Doerge, 2014) defines testing regions based 

on existing annotation information, assumes spatial homogeneity across regions and thus 

does not adjust for spatial correlations between individual cytosine sites. It proposes two 

different approaches (MAGIc and MAGIg), of which only MAGIg provides a test at the
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region-level. MAGIg classifies each cytosine as either methylated or unmethylated based 

on a prior threshold determined by k-means (k=2) clustering. It performs a single Fisher’s 

exact test (FET) for unreplicated data or a logistic regression for replicated data for each 

region.

This dissertation builds on the work of MAGIg and focuses on developing methods 

for DMR testing over predefined regions using different logistic regression methodologies. 

Specifically, a fuzzy logistic regression analysis technique is developed for DMR detection 

and two other logistic regression approaches are also proposed. The performance of the 

different logistic regression approaches are compared to MAGIg, the only other method 

that utilizes a logistic regression methodology for DMR testing at predefined regions.

1.3.2. A Brief Introduction to Fuzzy Regression. In this work, one of the main 

new methods proposed is a fuzzy logistic regression (FLR) model. The fuzzy regression 

modeling approach is introduced here to provide a brief background about this type of 

modeling. Fuzzy regression models are used to evaluate the functional relationship between 

a response variable and one or more explanatory variables in a fuzzy environment. A fuzzy 

environment may occur due to the vague or imprecise nature of the response observations. 

In the case of a binary response, a logistic regression is often used, but when the response 

observations are fuzzy the classical logistic regression may not be appropriate. Several 

methods have been presented to estimate fuzzy regression models such as Tanaka’s linear 

programming approach and the fuzzy least-squares approach by focusing on the extension 

principle (Tanaka et al., 1982) for minimizing errors between the given outputs and the 

estimated outputs (Diamond, 1987). Fuzzy regression modeling is used in many areas such 

as economics, engineering, biology and physical sciences (Chang and Lee, 1996). In this 

work, a fuzzy logistic regression analysis has been developed to detect DMRs. FLR is an 

extension of the classical logistic regression analysis in which some elements of the model
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1.3.3. Summary of Proposed Methods for DMR Testing. The main purpose of 

this dissertation is to develop improved methods for detecting differentially methylated 

regions in bisulfite-based NGS studies with predefined regions. The MAGIg method 

(Baumann and Doerge, 2014) is one of the primary existing methods used in previous work 

for this type of data and testing. MAGIg uses a logistic regression approach, but it has 

some limitations that are explored in this dissertation. Building on the logistic regression 

framework, this research proposes three new logistic regression approaches for DMR testing 

and investigates their performance via simulation studies. These three approaches include 

ordinal logistic regression (OLR), a weighted average logistic regression (WALR) and fuzzy 

logistic regression (FLR). All three methods are described in further details in Section 2. In 

particular, it is important to highlight that this work represents a novel application of fuzzy 

logistic regression procedures for analysis of DNA methylation data from bisulfite-based 

NGS studies. Specifically, these FLR methods will enable testing DMRs and pinpoint 

genomic regions that are likely to be biologically meaningful.

A brief summary of the FLR approach is described as follows. The k-means 

clustering method (k=5) is first used to classify each site into methylation level groups 

(Very Low, Low, Medium, High and Very High). The mode is then taken across the 

region to identify a linguistic term. The fuzzy coefficient estimates will be obtained for 

the model relating condition (e.g., treatment vs. control) to the fuzzy methylation output. 

A bootstrap-based approach is used to test whether the fuzzy coefficient corresponding to 

the condition term is zero and a list of significant DMRs is obtained. Finally, the false 

discovery rate (FDR) is controlled all region-level tests (Benjamini and Hochberg, 1995). 

Simulation studies will be used to evaluate the performance of FLR compared to MAGIg, 

OLR and WALR methods. One simulation is based on plant data and another is based on

are represented by fuzzy numbers (Kao and Chyu, 2002). The uncertainty in this type of

regression model become fuzziness, not randomness. More details about the FLR proposed

for DMR detection are given in Section 2.
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human data, with the goal of investigating model performance in both types of data that are 

known to differ in DNA methylation structure. A description of the simulation studies and 

their results are provided in Section 3.
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2. METHODS

2.1. INTRODUCTION OF METHODS

The focus of this work is to investigate statistical methods for differential methylation 

testing across predefined regions using bisulfite sequencing based next-generation sequenc

ing (NGS) data. One of the primary methods for testing over predefined annotation-based 

regions is the methylation analysis using genome information (MAGIg) approach (Bau

mann and Doerge, 2014). In this method’s genome region-level analysis (MAGIg), each 

potentially methylated site in a region is first classified as methylated or unmethylated based 

on a cutoff of the methylation level established through k-means (k=2) clustering. This 

information is summarized as the fraction of methylated sites across the region, which is 

then used as the response in a logistic regression model. The predictor variable of interest is 

often a categorical group variable (e.g., treatment vs. control, disease vs. healthy), although 

additional predictor variables can be included in the model if they are of interest. Note that 

for human or mammalian data, CG sites are typically the only sites considered for potential 

methylation, while in plants CG, CHG, and CHH sites are considered as potentially methy

lated sites (Law and Jacobsen, 2010). Further references to cytosine sites of interest should 

be understood to be taken in context of the organism being studied.

The logistic modeling framework is a natural choice for region-level differential 

methylation testing with NGS data. However, there are several possibilities to consider in 

improving the logistic regression modeling beyond the MAGIg method. This work explores 

three alternative methods all within the logistic regression modeling framework to address 

potential limitations of the MAGIg approach. Specifically, the MAGIg method assumes 

the methylation status at each site is binary (methylated or unmethylated). However, this 

may be too restrictive. Although methylation at an individual site in an individual cell 

may be binary, bulk NGS methods involve analyzing a sample that contains multiple cells,
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One alternative approach is to use the weighted methylation level (Schultz et al., 

2012) to summarize across the region using the sequencing read information rather than 

relying on classification into methylated and unmethylated sites. This approach is referred 

to as weighted average logistic regression (WALR). Another option is to utilize the k-means 

clustering approach to classify the methylation status of each site, but use k=5 rather than 

k=2 to correspond to the following methylation status groups: Very Low, Low, Medium, 

High, Very High. An ordinal logistic regression (OLR) (McCullagh, 1980) can then be 

implemented for differential methylation testing. Finally, a novel implementation of a fuzzy 

logistic regression (FLR) (Pourahmad, 2013; Pourahmad et al., 2011) offers a different way 

of viewing the methylation level of a region as a fuzzy observation.

In this section, the logistic regression framework is first introduced and explained 

in terms of region-level differential methylation testing via the MAGIg approach. The three 

alternative methods (WALR, OLR, and FLR) are proposed and presented. A focus is placed 

on introducing the details of the fuzzy logistic regression modeling approach, since this 

work is the first time this type of modeling has been proposed for differential methylation 

testing.

2.2. LOGISTIC REGRESSION

Logistic regression is a type of generalized linear model that is important for mod

eling categorical response data (Agresti, 1996). It is used in a wide variety of applications, 

including biomedical studies and genetic data analysis. For example, in biomedical studies, 

it can be used to model the relationship between the probability of having disease or not 

and potential risk factors. In genetics, it has been used in quantitative trait loci analysis 

to model the probability of an offspring inheriting a specific allele as function of different 

quantitative traits for that offspring (Bird, 2002).

which may not all have the same methylation status at a particular site. This results in the

methylation level at each site actually being a proportion of methylated sequencing reads

that ranges between 0 and 1 (Baumann and Doerge, 2014).
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Logistic regression has also been used for testing differential methylation between 

two groups of interest (e.g., disease vs. healthy) at the cytosine-level (Akalin et al., 2012). 

This allows researchers to identify potentially important cytosine sites where methylation 

differences could be playing an important cellular role (e.g., altering gene expression) in 

disease or other condition being studied. At each cytosine site, a logistic regression model 

is fit using the observed methylation levels as the response and the condition of interest as 

the predictor. The methylation level for each cytosine is based on the observed proportion 

of methylated sequencing reads out of the total number of sequencing reads for the site.

Although site-level information can be informative, researchers are often interested 

in understanding differences in methylation across genomic regions (Mayo et al., 2015). 

Region-level differential methylation analysis can be performed in two ways: (1) focus on 

cytosine-level tests and then summarize across the genomic region or (2) summarize the 

cytosine-level information first and then test once over the region. This work focuses on 

the latter since this approach provides a way to test for statistical significance at the region- 

level. Annotation information or CG density can be used to define the regions of interest. 

Compared to site-level tests, it also reduces the overall number of tests performed, which is 

beneficial when addressing multiple testing issues.

In region-level models, a marginalization or summary of the methylation levels 

across all cytosine sites in the region must be calculated. The MAGIg approach (Baumann 

and Doerge, 2014)) is one method that implements such a marginalization over the region 

and then utilizes logistic regression for a region-level test. This dissertation focuses on 

the benefit of conducting region-level differential methylation tests at predefined regions. 

Different approaches for marginalizing over the region followed by alternative implementa

tions of logistic regression methodology are investigated. Most notably, the fuzzy logistic 

regression (FLR) (Pourahmad, 2013; Pourahmad et al., 2011) as an extension to logistic 

regression is proposed for the first time for identifying differentially methylated regions 

(DMRs). This section presents the theory of logistic regression and explains how logistic
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2.2.1. Logistic Regression and Generalized Linear Models. According to Al- 

Ghamdi (2002), regression methods are widely used for analysing the relationship between 

a dependent (response) variable and one or more independent (predictor) variables. One of 

the most commonly used regression methods is linear regression with a continuous response, 

which is referred to as conventional regression analysis (CRA). Statistical inferences for this 

model are applicable if the dependent variable observations are continuous, independent 

and normally distributed with constant variance and the mean dependent on the independent 

variable values. When the dependent variable is categorical, CRA is not appropriate since 

the assumptions needed for inference are not met. The most significant reasons why CRA 

cannot be used when there is a categorical dependent variable are:

• The dependent variable in CRA should be continuous,

• The dependent variable in CRA should be normally distributed, and

• The dependent variable in CRA could take negative and non-negative values.

These CRA assumptions are not satisfied in cases where the dependent variable is 

categorical (Al-Ghamdi, 2002). In such cases, logistic regression analysis is often applied 

(Dayton, 1992). Logistic regression, like CRA, is a statistical technique that is used to 

explore the relationship between a dependent (response) variable and at least one indepen

dent (predictor) variable. The difference is that CRA is used when the dependent variable 

is continuous, while logistic regression techniques are used with categorical dependent 

variables. The standard logistic regression model is used when the dependent variable is 

dichotomous (binary). However, extensions of the logistic regression model have also been 

developed for polychotomous (multi-category) and ordinal data.

regression differs from conventional regression. A statistical test that is used to assess

the significance of individual coefficients for inclusion or exclusion in a logistic regression

model is also described.
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Logistic regression, like other model building techniques, is aimed at finding the 

best fitting, yet sensible model to assess the relationship between a response variable and at 

least one independent variable. Logistic regression models are a type of generalized linear 

model (GLM) that extend on the ideas of CRA models to include response data that are not 

normally distributed. There are three main components of GLMs: a random component, a 

systematic component, and a link function. The model component specifies the probability 

distribution of the response variable (Y). This probability distribution is assumed to be from 

an exponential family, so it includes the normal distribution but also many other distributions 

such as binomial and Poisson. This allows the model to accommodate different types of 

response data such as categorical data that are not normally distributed. The systematic 

component is the linear combination of the predictor variables (XA). The link function is 

a function of the mean of the response (E(Y)) that is set equal to the systematic component 

in the model (Agresti, 1996).

The general form of a GLM model is written as follows:

p-1

g(M) = Pj XV
j =0

where there are i = 1 , . . . , n observations and j  = 0 , . . . , p  -  1 predictors. The m  term 

represents the mean of the response variable, that is m  = E (Yi), and g is a monotone 

differentiable function. Here, the random component is the independent Y's that follow some
p-1

exponential family distribution. The systematic component is £  PjXij, where typically
j =0

xij = 1 for all i when j  = 0 is an intercept term. The link function is g(m ). CRA is actually 

a special case of the GLM when g(M) = M and the response follows a normal distribution 

(Agresti, 1996). The model specification for logistic regression when the response is binary 

is described in the next section.
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2.2.2. Binary Logistic Regression Model. Binary logistic regression is a model 

that is fitted where there is a dichotomous or binary dependent variable. For DNA methy- 

lation research, it is of interest whether a genomic site or region is differentially methylated 

or not between conditions of interest. Normally the response category of interest is referred 

to as "success" and typically coded as "1". The other group is known as a "failure" and is 

coded as "0". In this research, the category of interest will be denoted by a "1" if a site is 

methylated, otherwise it will be denoted by a "0" if the site is not methylated. The region- 

level logistic regression model (Agresti, 1996) as formulated by MAGIg for methylation 

(Baumann and Doerge, 2014) is given as:

n'
log-— —  = a  + S  * Xi. (2.1)

1 -  n

A separate model is fit for each region. For methylation data, the response is:

) 0 if the sth site in the genomic region is not methylated for individual i 

1 if the sth site in the genomic region is methylated for individual i

5
where i = 1 ,2 , . . . ,  n and s = 1,2 , . . . ,  S for a given region. Here, y;\ = £  yis is the

s=1
number of methylated sites in the genomic region for individual i, which follows a binomial 

distribution. The predictor (x') is the independent variable, which in this case represents 

the group of the individual (e.g., treatment vs. control, disease vs. healthy). Note that 

additional predictors could be added, if of interest. a  is the coefficient of the constant term 

(intercept). S  is the slope coefficient of the independent variable. The coefficients (a,f5) are 

estimated via the maximum likelihood (ML) method (Kleinbaum et al., 2008). Note that 

these coefficients are estimated separately for each region. ni is the probability of success 

(methylated) and 1 -  n  is the probability of failure (not methylated) for the predictor value 

X' . The link function in the model is log( ̂ ), which is the log odds or logit function.
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According to Kleinbaum et al. (2008), logistic regression quantifies the relationship 

between the dichotomous dependent variable and the predictor(s) using the log odds. The 

odds indicate the probability that an event ("success") will occur divided by the probability 

that the event will not happen ("failure") In this work, the odds are -2- ,  which represent 

the probability that a region will be methylated divided by the probability that a region will 

not be methylated. Thus, the link function connects the log of the odds to the systematic 

component of the model in equation (2.1). The odds have a minimum value of zero but 

no upper limit. A value less than one indicates that an event or success is not likely under 

those circumstances and a value greater than one indicates that a success is more likely than 

a failure.
ni

The odds ratio is a ratio of the odds of two different conditions (1 and 2): The
1-n2

odds ratio is also a non-negative value and equals 1 when the odds are the same for the two 

conditions. When the odds ratio is greater than 1, this indicates that condition 1 is more 

likely to have a success than condition 2 (vice versa when the odds ratio is less than 1). In 

the logistic regression model (2.1), it can be seen when both sides of the model equation 

are exponentiated that the odds are an exponential function of the predictor X . Thus, an 

interpretation of the coefficient &g can be made as follows. For every 1 unit increase in X, 

the odds increase multiplicatively by e&. This means that e& is actually an odds ratio of 

the odds at X = x + - divided by the odds at X = x (Agresti, 1996). When X is a binary 

variable representing a condition of interest (e.g., disease vs. healthy), this simplifies to the 

odds ratio of the condition represented by a "1" over the condition represented by a "0". 

The further the odds ratio is from one the stronger the relationship is between X and Y .

2.2.3. Assumptions of Logistic Regression. In CRA, the model is often written 

as y = E (Y | X) + e, where e represents the error term that follows a normal distribution with 

mean zero and constant variance. Hosmer et al. (1997) consider a similar formulation for 

logistic regression as y = n(x) + e. The logistic regression model assumptions are given 

below.
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• The model error terms s  have a mean of zero and a variance of n(x)(1 -  n(x)).

• The conditional distribution of Y given X is binomial with conditional mean n(x).

• The conditional mean n(x) of the regression equation is between 0 and 1 by using the 

logit link function.

• Data collected from different individuals are independent.

Hosmer et al. (1997) also note that the same principles used when conducting CRA also 

apply for logistic regression equation with one of the main differences being that the 

regression will be modeling the log odds of an event or success occurring.

2.2.4. Hypothesis Testing. After estimating the logistic regression model param

eters using maximum likelihood estimation, the significance of the independent variable 

needs to be assessed with regards to predicting the response variable. There are a number 

of statistical tests that can be used to carry out this assessment and these include the like

lihood ratio test, Wald test and Score test (Steyerberg et al., 2001). The Wald test is used 

in this research. To determine if there is a statistically significant relationship between the 

predictor and the response the following hypotheses are tested for each region:

Ho : fS = 0 vs . Hi : y8 ^  0.

The Wald test statistic is:

W IS1
[SE (S)]2

x 2(i)

under H0 where SE (j3) is the estimated standard error of the parameter estimate y§. If the 

null is rejected at significance level a, then there is a significant relationship between the 

response and predictor.
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Note that testing whether S  = 0 or not corresponds to testing whether the odds ratio 

(eS) is equal to 1 and represents a test of independence between the response and the predictor 

variable. For methylation data, this test determines whether there is a statistically significant 

relationship between the methylation level of a region and the condition of interest. If the 

null hypothesis is rejected, then the region is said to be differentially methylated.

2.2.5. Logistic Regression with MAGIg. As described in the previous sections, 

MAGIg (Baumann and Doerge, 2014) employs the logistic regression model (2.1) to test 

for differentially methylated regions (DMRs) using bisulfite-based NGS data. The regions 

tested are predefined based on genomic annotation. MAGIg first obtains the methylation 

level of each cytosine site by calculating the proportion of methylated reads out of the total 

number of reads for the site. The methylation level of each site is then classified into a binary 

representation of methylation status (1=methylated, 0=unmethylated) based on a threshold 

established from k-means clustering (k=2). The clustering is implemented on the observed 

methylation levels for each chromosome and strand. The threshold is the mean of the two 

cluster centroids. A marginalization over all sites in the genomic region is then completed 

to obtain a region-level summary within each group of interest and replicate. This is done 

by finding the number of methylated and unmethylated sites across all sites in the region. 

The logistic regression model (2.1) is then fit for each genomic region using the number 

of methylated cytosines out of the total sites in the region as the response along with the 

group information (x) as the predictor variable. The Wald test as described in Section 2.2.4 

is then used to determine significance of the slope coefficient (S). A p-value from this test 

is obtained for all genomic regions and the false discovery rate (FDR) is controlled across 

all of the region-level tests (Benjamini and Hochberg, 1995). Regions whose FDR-adjusted 

p-value is below the significance level (a) are said to be DMRs.

One drawback of MAGIg is that the binary classification (methylated or unmethy

lated) at each site does not take into account the sequencing depth (total number of reads) 

at each site. Since the sequencing depth varies from site-to-site, this ignores the fact that
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a site that is 20% methylated could arise from a site with 1 out of 5 reads methylated or 

a site with 20 out of 100 reads methylated. Both would get called as unmethylated if the 

threshold was, say 40%, and they would both be treated equally when summarizing over the 

region and finding the number of methylated sites. One alternative that addresses this issue 

is weighted average logistic regression, which is discussed in Section 2.2.6. Also, a binary 

classification may not be the most appropriate since some sites have methylation levels that 

are not close to 0 or 1. One option to address this is to utilize k-means clustering where k=5 

to allow for Very Low, Low, Medium, High, and Very High methylation groups. Using this 

approach an ordinal logistic regression could be fit, which is described in Section 2.3. An 

alternative way to view this issue is to view the methylation level for the region as a fuzzy 

observation and employ a fuzzy logistic regression. This approach is described in Section

2.4.

2.2.6. Weighted Average Logistic Regression Analysis. As previously mentioned, 

the DNA methylation level at each cytosine site represents a survey of the methylation states 

across the sequencing reads at the site. The site-level methylation calculation is shown 

in Table 2.1. The numerator represents the total number of cytosine (Cs) reads at site s. 

The denominator is the total number of reads at the site, which is a sum of the cytosine 

reads that are methylated and the thymine (Ts) reads that are unmethylated at site s. Note 

that the methylation status in a single cell would be binary (unmethylated or methylated), 

but in many studies a sample of cells is needed to obtain enough input DNA for the NGS 

technology. These types of samples are often referred to as bulk samples and are the type 

of data investigated in this dissertation. Since some cells may be methylated and others 

unmethylated at a site, the proportion of methylated reads at a site is the quantity of interest 

(Schultz etal., 2012).

For region-level testing, a summary over the methylation levels for all sites in a 

region is needed. One approach is to first classify each site as methylated or unmethylated. 

This can be done using k -means clustering, as in the MAGIg approach (Baumann and
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Doerge, 2014), or by conducting a binomial test at each site (Schultz et al., 2012). After 

this initial classification is done, the MAGIg method then obtains a region-level methylation 

value by calculating the fraction of methylated cytosines for the region (Table 2.1, Fraction 

methylation level). The drawback to this approach is that it does not incorporate information 

about the individual methylation levels at each site, which range between 0 and 1 rather than 

being a binary value. Using information about the methylation levels may be important 

since a change in the proportion of methylated cells at different sites could be indicative of 

a fundamental phenotypic change (Schultz et al., 2012).

An alternative approach for obtaining region-level methylation values is to calculate 

the mean methylation level (Table 2.1). This method involves calculating the arithmetic 

mean of the methylation levels across all sites in the region. That is, the methylation levels 

at each site are first calculated and the mean of these values is computed across the sites in 

the region. This does provide the advantage of utilizing the site-level methylation values 

rather than binary values at each site. However, it does not consider the sequencing depth 

or coverage (i.e., the total number of unique reads that are present or "cover" a specific site). 

Sequencing depth varies across sites in the region and the higher the depth the more accurate 

the estimates of the methylation level (Schultz et al., 2012). The contribution of each site 

is equal using the arithmetic mean and does not account for this accuracy difference that is 

present at the different sites.

This dissertation implements an approach for calculating region-level methylation 

values that addresses the issues of treating the site-level methylation as binary and not 

accounting varying sequencing depths. The weighted methylation level (Table 2.1) is used 

to weight the contribution of each site by its sequencing depth in the region-level summary 

(Schultz et al., 2012). The weighted methylation level is calculated by taking the fraction 

of methylated reads across all sites in the region over the total methylated and unmethylated 

reads across all sites in the region. As an example, consider a region with two sites. One site 

has 70 methylated reads out of a total of 100 reads and the other has 1 methylated read out of
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a total of 4 reads. The mean methylation level would weight these two values the same and 

the region-level value would be (0.7+0.25)/2 = 0.475. The weighted mean methylation level 

would give the site with 100 reads more weight than the site with 4 reads and the calculation 

would be (70+1)/(100+4) = 0.683. Thus, the mean and weighted methylation levels can be 

quite different. Figure 2.1 provides an additional example of how the fraction, mean, and 

weighted methylation level calculations differ for a region with 5 sites. The weighted mean 

is the method recommended by Schultz et al. (2012) since it more widely applicable and 

addresses the previously mentioned drawbacks.

The weighted mean methylation level can be utilized in the logistic regression model 

proposed in (2.1) instead of the fraction methylation level used in MAGIg for region-level 

differential methylation testing. This approach is called the weighted average logistic 

regression (WALR) throughout this dissertation. Similar to MAGIg, the test for the slope 

coefficient described in Section 2.2.4 can be used to test for DMRs and the p-value from this 

test adjusted for multiple testing using the FDR method (Benjamini and Hochberg, 1995). 

Regions whose FDR-adjusted p-value is below the significance threshold (a) are said to be 

DMRs.

Table 2.1. Different methods for calculating methylation levels at the site and region levels. 
Fraction, mean and weighted mean methylation levels are all region-level calculations. C = 
methylated cytosine, T = unmethylated cytosine, s = position of cytosine, S = total number 
of cytosine positions in the region, M = an indicator variable that is one when k-means or 
binomial test identifies the position as methylated (Schultz et al., 2012).

Definition Calculation
Site methylation level Cs /(C s + Ts)

Fraction methylation level 1/S 2  Ms
s=1

Mean methylation level 1/S 2  Cs /(C s + Ts)
s=1

Weighted methylation level 2  Cs /  2  (Cs + Ts)
s=1 s=1
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Figure 2.1. Illustration of different methods for calculating methylation levels at sites and 
regions. An example of the calculations described in Table 2.1 is shown for a region 
with 5 cytosines. For the k-means 40% cutoff for site-level methylation, the site is con
sidered methylated (M) if > 40% reads are methylated. Otherwise, the site is considered 
unmethylated (U).

2.3. ORDINAL LOGISTIC REGRESSION

This section introduces an extension of logistic regression analysis to multi-category 

response data that have an inherent ordering. Many response variables in biostatistics and 

other fields of study are ordinal in nature, such as cardiac risk levels (low, medium, high) 

or the grade of a tumor (1, 2, 3). Ordinal logistic regression methods can be used to 

model the relationship between such an ordinal response variable and a set of explanatory 

variables. This section describes how ordinal logistic regression can be used for region-level 

differential methylation testing of NGS data.

Two approaches (MAGIg and WALR) were discussed in Sections 2.2.5 and 2.2.6, 

respectively, that provided different ways to summarize the methylation level across a region. 

These region-level methylation values were used as the response in a logistic regression 

model. Specifically, the MAGIg approach (Baumann and Doerge, 2014) involves classifying 

each cytosine site as methylated or unmethylated based on a cutoff established from k- 

means clustering (k=2). However, as previously mentioned, such binary classification has 

limitations in bulk samples since the data at each site is a mixture of cells, some of which
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may be methylated and others are not. As an alternative to the approach in MAGIg, this work 

proposes to classify each site into five ordinal categories for methylation (Very Low, Low, 

Medium, High, Very High) using k=5 in k -means clustering. A methylation profile over the 

cytosine sites in a region is calculated by obtaining the number of cytosines in each of the 

five categories. An ordinal logistic regression is employed to detect differentially methylated 

regions (DMRs) between two groups or conditions of interest (disease vs. healthy).

This section provides a short review of the ordinal logistic regression (OLR) mod

eling framework needed for DMR testing. There are different types of logistic regression 

models for ordinal data, including the cumulative logit, continuation-ratio logit, and the 

adjacent-category logit models (Agresti, 1996). Each of these models have similar assump

tions, but have unique structures for constructing the logit that serves as the link function. 

The cumulative logit model is chosen in this work for DMR testing. It was proposed by 

McCullagh (1980) and is a widely used ordinal logistic regression model when there is 

assumed to be some underlying continuous variable for the response. An overview of the 

cumulative logit model for ordinal logistic regression is given in the following sections.

2.3.1. Cumulative Logit Model. The proposed ordinal logistic regression model 

using the cumulative logit model will be employed to identify DMRs within predefined 

genomic regions. Let the data for the model consist of the observations (xj, Yis) where 

xi is the factor or condition of interest for testing (e.g., treatment or disease status) for 

i = 1 , . . . ,  n individuals and Yis is an ordinal observation for the sth site (s = 1 , . . . ,  S) in a 

given genomic region for individual i. Yis here is an ordinal value (Very Low, Low, Medium, 

High, Very High) corresponding to the methylation status for a particular site s in the region 

that is obtained via k-means (k=5) clustering of the methylation levels. When summed over 

the sites in the region, the counts for each of the categories of Y (subscripts dropped for 

simplicity) follow a multinomial distribution. Consider modeling the cumulative probability 

(Agresti, 1996) for Y:

logit[p(Y < k )] = ni + . . .  + nk



29

where k = 1 , . . . ,  K  represents the ordinal outcome category and nk is the probability of 

methylation status k for a particular region. Here, K = 5 and the values of k correspond 

to the inherent ordering of the methylation categories: 1=Very Low, 2=Low, 3=Medium, 

4=High, 5=Very High. This cumulative probability represents the probability that the 

methylation status for a region falls at or below a particular level k . The logit of this 

cumulative probability is called the cumulative logit, as defined below (Agresti, 1996):

logit[p(Y < k )] = log
p(Y < k)

T - W T k )
log

n i + . . .  + nk 
nk+1 + . . .  + nK

There are a total of K - 1  of these logits (here, there are 4 cumulative logits). The cumulative 

logit model for a given region is (Agresti, 1996):

logit[p(Y < k)] = ak + ySx (2 .2)

where a k is a vector of K -  1 intercept parameters and yS is the slope regression coefficient 

that describes the effect of x on the log odds of response category k or below. The 

parameters are estimated through maximum likelihood estimation. A separate model is fit 

for each region. The log odds ratio of cumulative probabilities for two values of x (x1 and 

x2) is equal to yS(x1 -  x2), which is proportional to the distance between the values of x 

(Agresti, 1996). McCullagh (1980) called this model a proportional odds model, since each 

cumulative probability has the same proportionality constant yS. Thus, in this proportional 

odds model, the odds ratio of the event Y < k is independent of the category indicator. Note 

that when x1 = 1 and x2 = 0, as in the case for testing for differential methylation, the log 

odds ratio of the cumulative probabilities is equal to yS and the odds of the response being 

at or below category k when x1 = 1 is times the odds when x 1 = 0.
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2.3.2. Hypothesis Testing. Similar to the standard logistic regression analysis, it 

is of interest to test for whether the regression coefficient (fi) in model (2 .2) is significantly 

different from zero or not. That is, the following hypotheses are tested for each region:

Hq : yS = 0 vs . H\ : S  ^  0.

This corresponds to a test for independence, which determines whether there is a statistically 

significant relationship between the methylation level of a region and the condition of 

interest. If the null hypothesis is rejected, then the region is said to be differentially 

methylated. The Wald test statistic (Agresti, 1996) is used to conduct the test. A p-value 

is calculated for each region and adjusted p-values based on controlling the false discovery 

rate at a=0.05 across all regions are found (Benjamini and Hochberg, 1995). Any region 

with an adjusted p-value less than 0.05 is said to be differentially methylated.

2.4. FUZZY LOGISTIC REGRESSION

This section presents an alternative logistic regression approach based on fuzzy 

modeling for detecting differentially methylated regions (DMRs). The previous methods 

focused on different ways to summarize methylation levels over a region, which were 

considered as the response in an appropriate logistic regression model. A different way to 

view the region-level methylation is to consider that it has an element of vagueness, in that 

there is some ambiguity concerning the methylation level of the region. Viewed in this way, 

the region-level methylation outcome can be considered a fuzzy output. In this research, 

fuzzy logistic regression modeling (Pourahmad, 2013; Pourahmad et al., 2011) techniques 

are explored to model the relationship between the vague region-level methylation and the 

factor of interest (e.g., disease vs. healthy). In this section, a review of fuzzy sets and fuzzy 

modeling is provided and a novel method for DMR testing using a fuzzy logistic regression
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approach is proposed. To the best of the author’s knowledge, this method represents the first 

such application of fuzzy modeling to analyzing DNA methylation data. As such, several 

introductory concepts are presented for background of the proposed approach.

2.4.1. Introduction to Fuzzy Sets and Fuzzy Modeling. Fuzzy set theory was 

first introduced by Lofti A. Zadeh in 1965 (Zadeh, 1965) and has since been used in many 

studies in medicine, biology, engineering, and other applications. In classical set theory, 

an element is either a member of the set or it is not. For example, consider the set of 

all even integers. All even integers are members of the set and all other possible values 

are not a member of the set. However, some situations exist where the set does not have 

such a precisely defined criteria for membership. For example, medical studies of patients 

with "high" blood pressure or methylation studies with regions of "low" methylation. This 

ambiguity in definition gives rise to the possibility of a fuzzy set, whose elements may have 

some degree of membership between 0 and 1. More formally, the following definitions of 

classical and fuzzy sets are taken from Pourahmad (2013).

Definition 1 (Classical Set): A classical set is defined as collection of elements of a 

universal (A c  X) set that can be finite or countable. Each element can either belong to or 

not belong to a set (x e A or x g A). In the former case, the statement "x belongs to A" is 

true, whereas in the latter case this statement is false.

Definition 2 (Fuzzy Set): A fuzzy set of the universal set X is defined as a set of ordered 

pairs:

A = {x ,^A (x)|x e X }

where, ^ a (.) is called the membership function of A, and ^ a(x) is the grade of membership 

of x in A . Note that ^ a(x) is also sometimes denoted A(x).
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A classical set is often referred to as a crisp set in this context and is a special case 

of when the membership function only takes on values 0 and 1. That is, the membership 

function of a classical set (A) is denoted as:

( 1 x e A
Ea( x) = \

I 0 x £ A.

For fuzzy sets, values of the membership function range from 0 to 1, with 0 indicating 

non-membership, 1 indicating full membership and values in between indicating partial 

membership for the vague elements.

Fuzzy set theory is an extension of classical set theory that offers an alternative way 

to model uncertainty by providing a representation of observations and relationships that 

are vague or imprecise. Many additional concepts needed for fuzzy set theory, including 

fuzzy arithmetic, are given in Pourahmad (2013) and Zimmerman (1996). Only concepts 

needed for the formulation of the proposed method for DMR detection are provided in this 

dissertation. The following definitions that are needed for later formulations are provided 

from Pourahmad (2013).

Definition 3 (a -level Set): A set of elements that belong to a fuzzy set A at least to the 

degree a  is called a-level set of A:

Aa = {x e X|A(x) > a}.

Definition 4 (Fuzzy Number): A fuzzy set of R for which any a-cut, 0 < a  < 1, is a 

nonempty closed bounded interval is called a fuzzy number (denoted by E ).

Definition 5 (LR-type, Triangular and Symmetric Triangular Fuzzy Numbers): A

fuzzy number N e E is of LR-type (L stands for left and R stands for right) if it has the
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membership function as follows:

_ I L (^ ) x < m 
N (x) = |  a

|  R ( ) x > m

where L and R are decreasing shape functions from R+ to [0,1] with L(0) = 1, L(x) < 1 

for all x > 0, L(x) > 0 for all x < 1 and L(1) = 0. Similar conditions hold for R. The 

real number m is called the mean value of N  and a  and S  (positive numbers) are called the 

left and right spreads, respectively. Symbolically N  is denoted by (m, a,S)LR. In the special 

case, where L(x) = R(x) = max(0, 1 -  x ), then N  is called a triangular fuzzy number and 

denoted by (m, a,S)T. So, its membership function is:

I 1 -  m_x, m -  a < x < m
N (x) = I a

[ 1 -  , m < x < m + S.

If, in addition, a = yS, then N  is denoted by (m, a)T and is called the symmetric triangular 

fuzzy number.

Fuzzy set theory can be used in modeling the relationship between explanatory and 

response variables. In a conventional regression analysis, both the dependent (response) 

variable and random error terms are assumed to follow a probability distribution. However, 

many research studies involve vague or non-precise observations. When the response 

variable is a fuzzy observation, such distributional assumptions are not appropriate and a 

different type of modeling is needed. Tanaka et al. (1982) first proposed linear regression 

analysis with a fuzzy model as an extension of classical regression analysis. In such models, 

uncertainty is accounted for via fuzziness rather than including a random error term.

In fuzzy regression analysis, some elements of the model are fuzzy numbers (Pourah- 

mad, 2013). There are different approaches to the fuzzy modeling depending on which 

elements of the model are fuzzy. Some models incorporate fuzziness in the relationships 

between variables, by incorporating fuzzy regression coefficients. The variables themselves
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may also be fuzzy numbers. In some models, only the response variable is fuzzy (and the 

explanatory variables are crisp), while in others both types of variables are fuzzy. Tanaka 

et al. (1982) first considered the case where the explanatory variables are crisp, the response 

is fuzzy and the relationship between the explanatory and response is fuzzy. Several other 

model formulations and estimation methods (Yen et al., 1999) have since been proposed for 

fuzzy linear regression modeling.

In this work, fuzzy logistic regression (FLR) models are explored for situations 

when the response is a vague binary observation. Pourahmad (2013) proposed three 

different types of fuzzy logistic regression models and describe methods for estimation of 

the model parameters. A method for DMR detection based on FLR is developed based on 

these ideas. The model formulation and proposed approach are described in the following 

sections.

2.4.2. Theory of the Fuzzy Logistic Regression Model. As described previously, 

logistic regression is used in many fields to model the relationship between some explanatory 

variables and a categorical response variable. In a standard logistic regression analysis, 

the response is binary and extensions have been developed for multi-category and ordinal 

data. When the definition of the categories for a response variable are not precise, values 

may have a vague status and be viewed as a fuzzy output. For example, in the medical 

field consider the outcome of whether an individual has a certain disease or not. Some 

diseases do not have precisely established criteria for diagnosis and physicians may utilize 

information from multiple sources (e.g., symptoms, lab tests). Many patients may exhibit 

some but not all of the disease indicators and thus their true disease status remains vague. In 

addition, some ordinal responses (e.g., pain severity) that are described by linguistic terms 

such as low, medium, high can also be considered vague. These fuzzy categorical outputs 

can be modeled in a FLR framework.
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The catalyst for this work is to develop improved methods for detecting differen

tially methylated regions using next-generation sequencing data. Testing for differential 

methylation for a region requires obtaining a region-level methylation value that represents 

a summary of the methylation levels at individual sites in the region. There are different 

ways to perform this region-level summary, which provide different information about the 

region (Table 2.1, Figure 2.1). An alternative is to consider the region-level methylation 

status as a vague or fuzzy binary or categorical observation.

Let the input (explanatory) and output (response) data consist of the following 

observations:

(xi1, . . ., xi(p-1), Y')

where xij are real crisp (explanatory or input) values in R for individual 1 < i < n and input 

variable j  = 1 , . . . ,  p  -  1. Note that for DMR testing, one explanatory variable is of interest 

(e.g., treatment or disease status), but the model is given with additional predictors for 

thoroughness. Y is a fuzzy (response or output) observation representing the methylation 

status of individual i for a particular region. The fuzzy observation (Y) can take two labels: 

approximately 1 or approximately 0, instead of 1 or 0 (Pourahmad, 2013). Due to the vague 

methylation status of the region, the binary response observations are not precise. This 

results in several issues for a standard logistic regression model. The Bernoulli probability 

distribution cannot be assumed and the probability of success (P(Yi = 1) = ni) cannot be 

calculated exactly. A model for or the odds (y -n ) based on explanatory variables is not

meaningful in this situation. In this case, the possibility of success is considered instead 

of the probability of success. Possibility is another aspect of uncertainty. It measures the 

consistent degree of an individual’s (methylation) status to a known or previously defined 

criteria (for methylation) which is called a success. A term called a Possibilistic odds is 

then defined and modeled. The following definition for is taken from Pourahmad (2013).
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Definition 6 (Possibility and Possibilistic Odds): Let ji, i = 1 , . . . ,  n, be the possibility 

of success, u i = poss(Yi = 1), where p i is the consistent degree of the ith individual to the 

success criteria. It can be defined in two ways:

• A real crisp value, j  e R : 0 < p i < 1, or

• A linguistic term, j i  e {Very Low, Low, Medium, High, Very High}. These logistic 

terms should be defined in such a way that the union of their support covers the whole 

range of (0, 1).

The ratio (y - j ), i = 1 , . . . ,  n is called the possibility odds of the ith individual, which 

indicates the possibility of being methylated (success) status relative to the possibility of 

not being methylated (non success). See Pourahmad (2013) and Dubois and Prade (1988) 

for further details on possibility theory. To distinguish a crisp possibility from a linguistic 

one, the former will be denoted j  and the latter j .

When the possibility is a crisp value, the researcher compares each individual to 

criteria for a success and assigns a consistent degree as a real number in the (0,1) interval 

(Pourahmad, 2013). Alternatively, this work utilizes a linguistic term to define the possibility 

of success. These possibilities are defined by five different values for the linguistic term: 

jli e {Very Low, Low, Medium, High, Very High}. This approach involves assigning each 

individual a linguistic term based on the methylation data at sites on the region. First, 

k-means (k=5) clustering is performed and each site is assigned to one of values in jii. 

Then a region-level value for j  is obtained by taking the mode of the linguistic terms across 

all sites in the region. This yields one linguistic term j  per region for each individual that 

indicates the possibility of being methylated.



37

To model the relationship between the crisp explanatory variables (x'--s) and the,j

fuzzy responses (Y) with linguistic terms fii, the following fuzzy logistic regression model 

is proposed:

Wi = ln ( , ) = b0 + b x i i + . . .  + bp- 1xi(p -i), i = 1, . . . ,  n . (2.3)

Here, b0, b , . . .  bp - 1 e E  are fuzzy regression coefficients indicating a fuzzy relationship. 

One can transform the estimated outputs (W,) into the possibility of success (jli(x)) by using 

the extension principle (Wu, 2003). The definitions and propositions needed to achieve this 

goal are given below from Pourahmad (2013).

Definition 7 (Extension Principle): Let X be the Cartesian product of universes X1 x 

X2 . . .  x Xn and A 1, A2, . . . ,  An be n fuzzy sets in X1, . . . ,  Xn, respectively. Suppose that f  is 

a mapping from X to a universe Y , y = f  (x1, . . . ,  xn). Then, the extension principle allows 

a fuzzy set l in Y to be defined by (Zimmerman, 1996):

l~ = {(y, l~(y))ly = f  (x1, . . . ,  xn), (x1, . . . ,  xn) e X}

where

i(y) =
sup min{ A 1 ( x ^ , . . . ,  An (xn)} if f  1(y) = 0

(x1 ,...,x„)e/-1

0 otherwise

where f - 1  is the inverse image of f . 

In one dimension there is:

l = {(y, l (y))|y = f  (x), x e X}

where

l(y) =
sup A (x )
xef1

if f - 1(y) = 0

0 otherwise .
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The extension principle results in the following propositions (Pourahmad, 2013). 

Proposition 1: Let M = (m, a ,S )LR be an LR-type fuzzy number and c e R. Then

) (cm, ca, cS)LR c > 0

(cm, -cyS, -c a )RL c < 0.

Proposition 2 : Let M = (m1,a 1,fi1)LR and N = (m2, a2,fi2)LR be two LR-type fuzzy 

numbers. Then,

M + N  = (mi + m2, a i + a2,fii + S2)lr .

The observed outputs are given as, wi = ln(y—̂ ) for i = 1 , . . . ,  n. A membership function 

of these observed possibilistic odds vWi can be derived once a formal definition of the jli 

are given. Suppose jli is the possibility of success defined by a linguistic variable with 

u eU = (0,1). The values that this linguistic variable can take are:

T (x ) = {Very Low, Low, Medium, High, Very High}.

Note that each of these values can be represented by a fuzzy set. Consider Ml(x) to be a rule 

that assigns a fuzzy set to each value of the linguistic variable. In this work, the following 

definitions as proposed in Pourahmad (2013) are used:

M(very low) = {(u,y.very low(u))|u e(0,1)} where

Mvery low(u)

1 -  ° § f  0.01 < u < 0.02

1 -  0.02 < u < 0.18

o t h e r  w is e ,0
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M(low) = {(u, /iiow(u))|u 6(0,1)} where

Wow (u)

1

1

0

0.25-u 
0.15

u-0.25 
0.15

Hmedium (u)

1 0.50-u 
0.15

1 _ u-0.50 
1 0.15

0

M (high) = {(u,iihigh(u))|u 6(0,1)} where

l ĥig h (u)

1

1

0

0.75-u
0.15

u-0.75
0.15

0.1 < u < 0.25 

0.25 < u < 0.40 

other wise,

M (medium) = {(u, ^medium(u))|u 6(0,1)} where

0.35 < u < 0.5 

0.5 < u < 0.65 

other wise,

0.60 < u < 0.75 

0.75 < u < 0.90 

otherwise,

and Ml(very high) = {(u,wery high(u))|u 6(0,1)} where

livery high(u) =

1 0.98-u
0.18

1 u-0.98
1 0.01

0

0.80 < u < 0.98 

0.98 < u < 0.99 

otherwise.

The membership function of the observed outputs (wi) can then be calculated from 

the defined membership function of jli by the extension principle as follows:

f  (x) = in
x

1 -  x
, 0 < x < 1
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yields

Wt (y) = sup fit (x).
Vx:ln =y

Since f  (x) = In jX-. is a one-to-one function, there is only one x e (0,1) such that In = y . 

Thus, the membership function of the logarithm transformation of possibility odds w>t is 

derived as:
~ , , x N ~ , exP(x) \
wi (y =  ln i ------- ) =  f t  (^ -------- r r h1 -  x 1 + exp(x)

This result yields the following observed outputs for the fuzzy logistic regression model 

(Pourahmad, 2013).

1

wvery low = | 1

0

0-02-( j+SpX)) 
0.01

(T + a ) - 0 . 0 2
0.18

-4 .59  < x < -3 .89 

-3 .89  < x < -1 .38 

other wise,

if low = "

1 

1

0.25-( 1+ ^ )  
0.15

(T+Sp:X))-0.25 
0.15

0

-2 .19  < x < -1 .09  

-1 .09  < x < -0 .40

otherwise,

w medium = '

1 

1

0.50-( 1 + ^ )  
0.15

(T+ep& )-o .5 o
0.15

-0 .62  < x < 0

0 < x < 0.62

0 otherwise,

w hig h = "

1 

1

0.75-( 1+ ^ )
0.15

(T+iP:X))-0.75 
0.15

0.41 < x < 1.099 

1.099 < x < 2.20

o t h e r wi s e ,0
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and

wvery high

1 -  

< 1 -

0.98-( T+xppi)) 
0.18

(T+Sp-X))-0.98 
0.01

0

1.39 < x < 3.90 

3.90 < x < 4.60 

other wise.

2.4.3. Fuzzy Least Squares Method for Estimating FLR Parameters. The FLR

model (2.3) has a set of fuzzy regression coefficients (b0, b?1, . . .  bp-1) that require estimation. 

This research utilizes an extension of the ordinary least squares approach to fuzzy regression 

modeling for fuzzy response data in which the parameters of the model are also assumed 

to be fuzzy numbers. This fuzzy least squares method is detailed in Pourahmad (2013) 

and an explanation is provided below for thoroughness. It assumes that all fuzzy data 

are symmetric LR fuzzy numbers, which is proposed by Diamond (1987) and Celmms 

(1987). First, a definition for the distance in the space between fuzzy numbers is required 

(Pourahmad, 2013).

Definition 8 (Distance Between Two Fuzzy Numbers): Let A, B e E  be two fuzzy 

numbers. Also, suppose Aa = [a1, a2] and Ba = [b1, b2] are their respective a-cuts. The 

distance between these numbers is defined as follows:

D( A, B) = [ / 1 f  (a)d2( A a, Ba )da

1
2

where

d2(Aa, Ba) = [a1 -  b j 2 + [a2 -  b2]2,

and f  (a) is an increasing function of [0,1] for which f  (0) = 0 and f  (a)da = 2. The

function f  (a) is a weighting function for d2(Aya, Ba). In determining the distance between 

two fuzzy numbers (A, B), the distance function (D(Ay, B )) is a measure of discrepancy 

between Ay and B. Using ideas from ordinary least squares, the goal is to obtain estimates 

(b0, b \ , . . .  bp-1) such that the distance between the observed and estimated values is min

imized. For the proposed model, this corresponds to minimizing the sum of the distance
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between \vi and Wi, which is called the sum of squared error (SSE). The SSE  is defined as 

follows:
n / \ 2 

SSE = £  d(vWf, IWi) .
i= 1

To estimate the fuzzy parameters, the partial derivatives of the SSE with respect to bj, j  = 

0, 1, . . . ,  p -  1 are set to 0 and solved:

_d_ 
d b,

SSE = 0, j  = 0 , 1 , . . . , p  -  1.

Without loss of generality, assume that bj = (aj, Sj) are symmetric triangular fuzzy num

bers. Then, the estimated outputs are also symmetric triangular fuzzy numbers:

(Wi)a = [(a -  1) f i (s) + fi(a), (1 -  a)f  (s) + f  (a)]

in which fi (a) = a0 + a1 xi1 + . . .  + anxin, and fi (s) = s0 + s 1 xi1 + . . .  + snxin by some 

algebraic calculation. To calculate (wi)a based on (jli)a, there is jli = (mi, dl, dR) and

(Pi)a = [(a -  1)dL + mi, (1 -  a)dR + mt];

therefore

(Wi )a  = ln-
(a -  1)dL + mi

1 -  (a -  1)dL -  m, 

To calculate the distance between wi and Wi:

-, In
(1 -  a)dR + mi 

1 -  (1 -  a)dR -  mi

d(wi, Wi g(a)d2((wi)a, (Wi)a)da

1
2
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where g(a) = a  is the weighting function, g(a)da = ^ , g(0) = 0 and d2((wi)a, (Wi )a) =
(1 -a)dR +m, 2in dd-tiZ,, -( a  - 1) f (s) -  f ,(a ) + in i- ; ,- ; ;d+ : m, - ( 1 - a )  f » -  f  «

The SSE criterion that should be minimized when estimating the parameters is:

n / /*!
SSE = > /  g(a) [fuzzy number left + fuzzy number right] da]

1=1 V' 0
l

where

and

fuzzy number left

fuzzy number right

in

in

(a  -  1)dL + mi 

1 -  (a  -  1)diL -  m;-

(1 -  a)dR + mi

T 2
- ( a -  ^ f i(s) -  f i(a)

T 2
-  (1 -  a ) f i(s) -  f i(a)

1 -  (1 -  a)dR -  mi

The distance function depends on the model’s coefficients only through f i (s) and fi (a). 

Partial derivatives of the SSE with respect to aj and Sj equal to zero as follows:

d d
SSE = 0 and — SSE = 0.

d aj d Si

This leads to the following equations:

n / r 1

§  U .
2 a  x ,ij

(a -  1)dL + mi (1 -  a)dR + mi
2 fi ( a ) -  in—  ---------- in- ( ) 1

1 -  (a -  1)dL -  mi 1 -  (1 -  a)dR -  mi
da  = 0 (2.4)

and

n / r  1
2 ( 1-  )xij 2(1 -a )  fi (s)+in

(a -  1)dL + mi (1 -  a)dR + mi
1 - i n -

1 -  (a -  1)dL -  mi 1 -  (1 -  a)dR -  mi
d = 0. 

(2.5)
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The quantities in the above equations depend on (fa) assigned to each individual. For DNA

methylation data, this is the mode of the linguistic values a cross the region. From equation

2.4 the following is obtained.

A /  r 1 . . r 1 / (a -  1 )dL + \
E  (4aXijfi(a)da) - \  2a xijln-—  ------— L-------

Jo \ 1 -  (a  -  1)dL -  mi)

and

l ' (

(1 -  a)dR + mi
2 a  Xijln------------- 5------- d a  = 0

J 1 - ( 1  -  a)dR -  mj

^  (2 Xijfi (a) -  2 Xijzn -  2xijzi2) = 0
i=1

where r 1 ( , (a-1)dL +mt , ) , r 1 ( , (1-a)dR +m; , ) , ,
zi1 = Jo (aln 1-(a-1)dL-mi d a ) and Zi2 = io (aln 1-(l-a)d«-m1 d^  are tw° real num

bers. From equation 2.5, the following is obtained:

n 1 r 1

s  t  f .
4a(1 -  a )2xijfi(s)da + / 2a(1 -  a)xijlnJ 1

(a  -  1)dL + mj- 

1 -  (a  -  1)diL -  mi
da

and

1 (1 -  a)dR + mt
■ 2a(1 -  a)xijln „Jo ( ) J 1 -  (1 -  a)dR -  mj

da  = 0

S S (a  xijf i(s) + 2 xijki1 2 xijki2 ) = 0
i=1

where kn = Z. 1 (a (1 -  a)ln ̂ +* da) and ki2 = Z. 1 (a (1 -  a)ln da) are

two real numbers. Finally, the following equations are derived:

and

n n n n
ao ^  xio xij + a 1 ^  xn xij + . . .  + a ^ ^  x ^ j  = ^  zixij (2 .6)

i=1 i=1 i=1 i=1

n n n n
so ^  xio xij + S1 ^  xi1 xij + . . .  + S n ^ j  x ^ i j  = ^  kixij (2.7)

i=1 i=1 i=1 i=1
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where xi0 = 1 and zi ,ki are the results of integral computation in the estimation process for 

each case. Equations 2.6 and 2.7 can be written in matrix form as follows. First, Aa = Z , 

where A = X ' X ,

1 X11 ••• X1(p-1)

1 x21 • • • X2(p-1)
X =

1 Xn1 • • • xn(p-1)

is the design matrix, a = (a0, a 1, . . . ,  ap-1)T, and

( n n n iT
^   ̂zixi0, ^   ̂zixi1, • • •, ^   ̂ziXi(p-1) I . 
i=1 i=1 i=1 '

Also in matrix form, As = K  where s = (s0, s 1, . . . ,  sp-1)T, and

( n n n \ T
^   ̂kjXjQ,  ̂kiXi1, . . . , ^   ̂kiXi(p-1) I . 
i=1 i=1 i=1 >

Thus, the estimates (bj) for bj = (aj, Sj) are: a = A-1 Z  and s = A-1  K . Note that a separate 

model is fit for each region.

2.4.4. Hypothesis Testing for Fuzzy Regression Coefficients. Although Pourah- 

mad (2013) provided the inspiration for using fuzzy logistic regression for DMR testing, 

that approach does not provide a method for hypothesis testing of the fuzzy regression 

coefficients. A bootstrap-based approach is proposed by Lee et al. (2015) for fuzzy linear 

regression to conduct hypothesis tests for the fuzzy regression coefficients. This work 

employs the same type of bootstrap approach to determine the significance of the fuzzy 

coefficients in a fuzzy logistic regression model. Testing for significance of the fuzzy coef

ficient corresponding to the factor of interest provides a test for differential methylation at 

the region-level. Consider the hypotheses as follows:

Ho : bj a = {0} vs. H1 : bj a * {0},
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where j  = 0 , 1 , . . . ,  p -  1. The test statistic proposed by Lee et al. (2015) is used as follows:

Tj a = A
d2 (b j  a  0 g {0})

S -

where S ? = -\Jg[j + 1]^ i=1 dn(-‘2a’W'a) and g[j] is the j th diagonal entry of the matrix

(XTX) 1. The distance between the a-cut of two fuzzy numbers A and B is defined as 

follows: d2(Aa , Ba) = (A( - B( )+(AJ f- B^ ) where A(  = 1  (AL + AL ) and =  1 (Aa- B%).

The general Hukuhara difference is defined as [AL, AL ]0 g [Ba, B^ ] = [C- , (2+] where

Ca  = min{AL -  Ba , 21a  -  BU } and (2+ = m ax{AL -  BL, A a  -  BU }. The p-value of the test 

can be computed as the proportion of values T 1 . . . . ,  T? that is greater than or equal to thej a  j a

calculated test statistic Tja :

p -valuea  =
#{b : Tjba > Tja }

B

Ja

Ja

where B = the number of bootstrap samples. A separate test is conducted for each region 

and the false discovery rate was controlled across all the regions at 5% (Benjamini and 

Hochberg, 1995). Regions with an adjusted p-value < 0.05 are considered DMRs.

2.4.5. Summary of FLR Approach for Detecting DMRs. Fuzzy logistic regres

sion (FLR) is an extension of classical logistic regression analysis in which some elements 

of the model are represented by fuzzy numbers. In this work, a FLR approach was developed 

to detect differentially methylation regions (DMRs). This approach provides an alternative 

way to view the methylation levels of a region as fuzzy observations that are vague or im

precise. These fuzzy observations are incorporated into a fuzzy modeling approach based 

on the FLR methodology in Pourahmad (2013) and bootstrap based hypothesis testing for 

fuzzy regression coefficients in Lee et al. (2015). The first step in the FLR approach for 

DMR detection involves performing k-means clustering (k=5) on the DNA methylation 

levels of all cytosine sites. Cutoffs based on the clustering results are then used to classify
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each cytosine site into methylation level groups (Very Low, Low, Medium, High and Very 

High). The mode across the region is used to identify a linguistic term for the region, which 

is considered the fuzzy response in the FLR model (2.3). The crisp explanatory variable 

is the indicator variable for the condition of interest (e.g., disease vs. healthy), although 

other covariates could be included. The fuzzy coefficients for the FLR model (2.3) relating 

the condition of interest to the fuzzy methylation output are then estimated via the fuzzy 

least squares method. A bootstrap-based approach is then used to test whether the fuzzy 

coefficient corresponding to the condition term is zero or not and p-value is calculated. 

Finally, the p-values are adjusted to control the false discovery rate (FDR) at 0.05 across all 

regions and a list of significant DMRs is obtained.
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3. SIMULATION STUDIES

3.1. INTRODUCTION OF SIMULATION STUDIES

To evaluate the performance of the proposed models described in Section 2 for 

differentially methylated region (DMR) testing, two different simulation studies were con

ducted and are presented in this section. Both studies compare the true positive and false 

positive rates between the existing method, methylation analysis using genome information 

(MAGIg) (Baumann and Doerge, 2014), and the three proposed logistic regression meth

ods: weighted average logistic regression (WALR), ordinal logistic regression (OLR), and 

fuzzy logistic regression (FLR). Both studies are based on real data to help create a data set 

that maintains a realistic structure. The first simulation study presented is based on plant 

data, which involves analyzing cytosine sites in the CG, CHG, and CHH contexts. Since 

the mechanism of methylation differs between these sequence contexts, it is important to 

evaluate the methods in each context separately. The second simulation study is based on 

human data, which only involves analyzing CG sites. Various settings are investigated in 

both simulations to determine different situations that may affect method performance.

3.2. SIMULATION STUDY I: PLANT DATA

To evaluate the performance of the four methods (MAGIg, WALR, OLR, FLR), a 

simulation study based on reduced representation bisulfite sequencing (RRBS) data was 

performed. Methylation data for three replicates of Columbia-0 Arabidopsis thaliana 

seedlings (Law et al., 2013; Qian et al., 2012; Zhong et al., 2012) were accessed from 

the NGSmethDB website (https://bioinfo2.ugr.es/NGSmethDB/). Arabidopsis thaliana (or 

thale cress) is a small flowering plant that is often used as a model organism in the study of 

plants. Columbia-0 is a widely studied wild type accession of Arabidopsis. NGSmethDB is 

an online data repository for DNA methylation NGS data. Data are available on the cytosine 

context (CG, CHG, CHH), genomic location (chromosome, position), and the number of

https://bioinfo2.ugr.es/NGSmethDB/
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methylated (and total) reads for each cytosine. NGSmethDB also provides filtered data sets 

based on the sequencing depth. Sites with a minimum depth of 10 reads were chosen for 

further analysis.

3.2.1. Simulation Framework. To simulate methylation profiles in a realistic way, 

an approach similar to M3D (Mayo et al., 2015) and Baumann et al. (2015) was taken using 

the RRBS data set described above. The simulation study focuses on the first 1000 regions 

(genes) on chromosome 1. The three replicates serve as the control group. A case group 

is simulated by applying some random noise to the three replicates and a subset of genes 

are simulated to be differentially methylated. First, following Baumann et al. (2015), the 

number of reads at each site is simulated by adding or subtracting random Poisson (5 = 1) 

noise to the control samples. Then, random noise from a Uniform (-0.1, 0.1) distribution is 

added to the cytosine methylation level, Li, which is the proportion of methylated reads out 

of the total number of reads for individual i at a particular site.

To simulate methylation changes, 200 genes were randomly selected out of a possi

ble 1000 to be true DMRs and differential methylation changes were applied according to 

the simulation framework of Mayo et al. (2015). The methylation level Lold represents the 

proportion of methylated cytosines in control sample i at a particular site. The methylation 

level in the case group is represented by Lnew and is simulated as follows. For hypermethy- 

lation (methylation higher in case than control), Lnew = (1 -  A) L°ld + A when L°ld < 0.5 

on average for the gene. For hypomethyation (methylation lower in case than control), 

Lnew = (1 -  A) L°ld when L°ld > 0.5 on average for the gene. The degree methylation 

change is controlled by the parameter A e [0,1].

To investigate the performance of the methods under different degrees of differential 

methylation, the A parameter is varied as A = {0.2,0.3,0.4,0.5,0.6}. Methylation changes 

were applied to all cytosines of a specific context (CG, CHG, CHH) within the selected genes 

that were DMRs. MAGIg, WALR, OLR, and FLR were applied for DMR testing separately 

for each of the three sequence contexts and across the various settings of A. For FLR, there
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Table 3.1. Results for CG sites. True positive rate and false positive rate are given for FLR,
OLR, WALR, and MAGIg with various degrees of methylation change A.

CG
A Method TPR FPR
0.2 FLR 0.98 0.0025
0.2 OLR 0.95 0
0.2 WALR 0.77 0
0.2 MAGIg 0.60 0
0.3 FLR 0.99 0.0026
0.3 OLR 0.96 0
0.3 WALR 0.78 0
0.3 MAGIg 0.77 0
0.4 FLR 0.99 0.0025
0.4 OLR 0.96 0
0.4 WALR 0.78 0
0.4 MAGIg 0.77 0
0.5 FLR 0.99 0.0025
0.5 OLR 0.96 0
0.5 WALR 0.78 0
0.5 MAGIg 0.77 0
0.6 FLR 0.99 0.0026
0.6 OLR 0.97 0
0.6 WALR 0.79 0
0.6 MAGIg 0.78 0

are B=1000 bootstrap samples used in the test of the fuzzy regression coefficient. The false 

discovery rate (FDR) is controlled at 5% for each analysis. The methods are compared 

via the true positive rate (TPR) and false positive rate (FPR). The TPR is the proportion 

of true DMRs that are correctly detected. The TPR is also referred to as the observed 

power or sensitivity, with values closer to 1 indicating better performance. The FPR is the 

proportion of genes that are falsely identified as DMRs among the genes that are truly not 

differentially methylated. The FPR is the observed type I error rate, with values closer 0 (or 

the significance level a) being desired.
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Figure 3.1. For CG sites, the true positive rate versus A level for controlling the degree of 
differential methylation for each of the four methods (FLR-Red, MAGIg-Green, OLR-Blue, 
and WALR-Black).

3.2.2. Results. In the CG context, results for the four methods (FLR, OLR, WALR, 

and MAGIg) are summarized in Table 3.1 for different values of the methylation difference 

strength parameter A. The TPR and FPR are given for each method. As an illustration of 

the calculations, the FLR method identified 196 out of 200 true DMRs, which yields a TPR 

of 0.98 when A=0.2. Only 2 genes were falsely identified as DMRs out of a total of 800 

genes that are truly non-DMRs, yielding a FPR of 0.0025 when A=0.2. The FPR is zero 

for all of the methods except for FLR, where it is still small and controlled to be below 5%. 

The TPR for varying degrees of methylation difference A are displayed in graphical form in 

Figure 3.1 for each of the four methods. The FLR method had the highest TPR across all 

A values, with OLR yielding similar, but slightly lower, TPR. Both methods had high TPR 

values of 0.95 or higher for all A values. The WALR and MAGIg methods did not perform 

as well. Both methods had TPR values around 0.77-0.79 at all A values except when A=0.2, 

in which MAGIg exhibited reduced performance (TPR=0.6).
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Table 3.2. Results for CHG sites. True positive rate and false positive rate are given for
FLR, OLR, WALR, and MAGIg with various degrees of methylation change A.

CHG
A Method TPR FPR
0.2 FLR 0.97 0.0025
0.2 OLR 0.95 0
0.2 WALR 0.88 0
0.2 MAGIg 0.73 0
0.3 FLR 0.98 0.0037
0.3 OLR 0.95 0
0.3 WALR 0.88 0
0.3 MAGIg 0.86 0
0.4 FLR 0.99 0.0025
0.4 OLR 0.96 0
0.4 WALR 0.88 0
0.4 MAGIg 0.86 0
0.5 FLR 0.99 0.005
0.5 OLR 0.96 0
0.5 WALR 0.88 0
0.5 MAGIg 0.86 0
0.6 FLR 0.99 0.0012
0.6 OLR 0.96 0
0.6 WALR 0.88 0
0.6 MAGIg 0.86 0

Results for the CHG context are summarized in Table 3.2 and Figure 3.2. These 

results are similar to the patterns observed in the CG context. The FPR is small (less 

than 0.05) for all methods and is zero for all methods except FLR. The FLR and OLR 

performed well in terms of TPR (0.95 or greater across all A values), with FLR always 

slightly outperforming OLR. The WALR and MAGIg had reduced performance, but TPR 

values were slightly higher than in the CG context (between 0.86-0.88 for most values of A). 

Again, MAGIg did not perform as well when the methylation difference was small (A=0.2).



53

Figure 3.2. For CHG sites, the true positive rate versus A level for controlling the degree of 
differential methylation for each of the four methods (FLR-Red, MAGIg-Green, OLR-Blue, 
and WALR-Black).

For the CHH context, the results are given in Table 3.3 and Figure 3.3. For the FPR, 

the results are similar to the CG and CHG context, with all methods being below 0.05. For 

the TPR, the results are more varied than they were for the other contexts. The TPR was 

at least 0.90 for all methods at A values 0.3 and higher, indicating they all perform well. 

However there is not one method that is clearly superior across all values of A. The methods 

all have a slightly lower TPR at A=0.2, with MAGIg having the lowest TPR of 0.86.

In conclusion, all methods had a low FPR (<0.05) across all A values and sequence 

contexts. All methods except the FLR actually had no false positives across all settings, but 

FLR still only had a very small proportion of false positives, well below 0.05. The TPR 

results for CG and CHG were similar and indicated a clear performance advantage of FLR 

and OLR, with FLR having a slightly better TPR across all settings. The results for CHH
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Table 3.3. Results for CHH sites. True positive rate and false positive rate are given for
FLR, OLR, WALR, and MAGIg with various degrees of methylation change A.

CHH
A Method TPR FPR
0.2 FLR 0.95 0.0025
0.2 OLR 0.92 0
0.2 WALR 0.90 0
0.2 MAGIg 0.86 0
0.3 FLR 0.96 0.0050
0.3 OLR 0.93 0
0.3 WALR 0.98 0
0.3 MAGIg 0.95 0
0.4 FLR 0.98 0.0025
0.4 OLR 0.95 0
0.4 WALR 0.98 0
0.4 MAGIg 0.95 0
0.5 FLR 0.98 0.0024
0.5 OLR 0.95 0
0.5 WALR 0.97 0
0.5 MAGIg 0.95 0
0.6 FLR 0.98 0.0022
0.6 OLR 0.95 0
0.6 WALR 0.97 0
0.6 MAGIg 0.95 0

were mixed with all methods performing fairly well. Although the TPR was similar across 

all A values for a particular method and sequence context, the TPR was always lower when 

A=0.2, which is expected since it is more difficult to detect smaller differences.

3.2.3. Correlation Levels for Different Contexts. One possible explanation for 

the performance differences between sequence contexts could be due to the differences in 

correlation between methylation levels of neighboring cytosines for the different contexts. 

To investigate this, 100 reference cytosine sites for each context were randomly select from 

the genes that were included in the simulation study. The Pearson correlation between 

methylation level of the reference and each cytosine up to 10 sites downstream of the
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Figure 3.3. For CHH sites, the true positive rate versus A level for controlling the degree of 
differential methylation for each of the four methods (FLR-Red, MAGIg-Green, OLR-Blue, 
and WALR-Black).

reference was calculated. Figure 3.4 shows the average Pearson correlation over the 100 lo

cations between the reference and downstream cytosines under different sequence contexts. 

Three different coverage depths (1, 5, and 10 reads) were also investigated. In all contexts, 

the correlation between the methylation levels declines the further away a site is from the 

reference cytosine. CG tends to have the highest level of correlation between neighboring 

sites, followed closely by CHG. The correlation is greater than 0.8 up to 10 cytosines away 

from the reference in both contexts. The correlation is lower in CHH ranging from around 

0.6 for the sites furthest away from the reference to 0.8 at sites closest to the reference. The 

correlation values are similar for all of the sequencing depths and there is not a clear trend 

when summarizing across contexts and number of sites away from the reference.
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Figure 3.4. The average Pearson correlation of methylation levels between a reference 
cytosine and 10 downstream cytosines for 100 reference sites. Results are given for different 
cytosine contexts (CG, CHG, and CHH) and three coverage depths (1, 5 and 10 reads).

When viewed in light of the simulation study results, the TPR of FLR and OLR 

stayed fairly consistent across all contexts, whereas the TPR of WALR and MAGIg differed 

by sequence context. WALR and MAGIg had the highest TPR for the CHH context 

followed by the CHG context and was the worst for the CG context. It is interesting to note 

that performance improved for these two methods in contexts where the correlation with 

neighboring sites was lower (this is most noticeable for CHH). This is an observation that 

merits further investigation in future studies since it may offer insights into situations when 

WALR and MAGIg may be preferred. However, due to the consistent performance of FLR 

and OLR, these methods are recommended based on this simulation study with FLR having 

a slight advantage over OLR.
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3.3. SIMULATION STUDY II: HUMAN DATA

To evaluate the performance of the four logistic regression methods (MAGIg, 

WALR, OLR, FLR) on human data and investigate the impact of the replicate number, 

a simulation study based on real RRBS data was performed. Methylation data of bisulfite- 

sequenced DNA were obtained from 4 patients with acute promyelocytic leukemia (APL) 

and 61 APL control samples. This data set was obtained under accession number GSE27584 

from the Gene Expression Omnibus at the National Center for Biotechnology Information 

website (https://www.ncbi.nlm.nih.gov/geo). The RRBS data were pre-processed using 

Bismark version 0.5 (a reference genome alignment tool) that maps bisulfite-treated se

quencing reads to a genome of interest and performs methylation calls in a single step. Only 

the CG context was available for analysis, since that is the primary methylation context 

in humans. In this simulation study, regions are defined based on CG density rather than 

genomic annotation (genes).

3.3.1. Simulation Framework. To realistically mimic methylation profile changes, 

a simulation was constructed from the RRBS data set described above following a similar 

approach as described for the plant data. The primary difference is the definition of the 

region, which follows the approach as in M3D (Mayo et al., 2015). The regions (CG 

clusters) are defined as follows: (1) CG sites that cover at least 75% of samples are defined 

as frequently covered CG sites, and (2) CG sites with a maximum distance of 100 base pairs 

to the nearest neighbor are included in the region. Using these criteria, only regions with at 

least 20 frequently covered CG sites are used in the analysis.

The simulation study focuses on the first 1,000 regions of chromosome 1. Only 

a subset of 12 out of 61 control samples are used in simulation study. These are split 

into three different simulations of three, four, and five replicates to investigate the impact 

of sample size on the method performance. A case group is simulated for each of the 

different replicate numbers by first adding or subtracting random Poisson (6 = 1) noise to 

the total number of reads at all cytosines in each control sample. Then, random noise from

https://www.ncbi.nlm.nih.gov/geo
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a Uniform (-0.1, 0.1) distribution is added to the cytosine methylation level, L,, defined 

as the ratio of methylated reads to the total number of reads at a particular cytosine for 

individual i. Of the 1000 CG clusters (predefined regions), 300 are randomly selected for 

the application of differential methylation changes to be true DMRs. The methylation levels 

are adjusted within the 300 selected regions and the degree of methylation level change is 

controlled by the parameter A e [0,1]. The methylation level Lold represents the proportion 

of methylated cytosines in control sample i at a particular site. New methylation levels for 

true DMRs in the case group were simulated by Lnew = (1 -  A) Lold + A when Lold < 0.5 

on average for hypermethylation and L"ew = (1 -  A) L°ld when L°ld > 0.5 on average for 

hypomethylation.

FLR, OLR, WALR and MAGIg were applied to simulated data sets under various 

settings. To investigate the performance of the methods under different degrees of differ

ential methylation, the A parameter was varied as A = {0.2,0.3,0.4,0.5,0.6}. To examine 

the robustness of the methods for different sample sizes, three different replicate numbers 

(3, 4 and 5 samples) were simulated per group. For FLR, there are B=1000 bootstrap 

samples used in the test of the fuzzy regression coefficient. The false discovery rate (FDR) 

is controlled at 5% for each analysis. The methods were compared by calculating the TPR 

and FPR.

3.3.2. Results. For the simulation with three replicates per group, results for the 

four methods (FLR, OLR, WALR, and MAGIg) are summarized in Table 3.4 for different 

values of the methylation difference strength parameter A. Both the TPR and FPR are 

reported. The FPR is zero for MAGIg and WALR, but is still small and controlled to be 

below 5% for OLR and FLR. The TPR for varying degrees of methylation difference A 

are displayed in graphical form in Figure 3.5 for each of the four methods and replicate 

numbers. FLR had the highest TPR value of 0.98 for all A values. Both WALR and OLR
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Table 3.4. Results for a sample size of n =3 per group. True positive rate and false
positive rate are given for FLR, OLR, WALR, and MAGIg with various levels of strength
of methylation change A.

CG Three Replicate
A Method TPR FPR
0.2 FLR 0.98 0.0014
0.2 OLR 0.92 0.0014
0.2 WALR 0.96 0
0.2 MAGIg 0.84 0
0.3 FLR 0.98 0.0014
0.3 OLR 0.92 0.0014
0.3 WALR 0.96 0
0.3 MAGIg 0.85 0
0.4 FLR 0.98 0.0014
0.4 OLR 0.93 0
0.4 WALR 0.96 0
0.4 MAGIg 0.85 0
0.5 FLR 0.98 0.0014
0.5 OLR 0.93 0
0.5 WALR 0.97 0
0.5 MAGIg 0.85 0
0.6 FLR 0.98 0.0014
0.6 OLR 0.93 0
0.6 WALR 0.97 0
0.6 MAGIg 0.86 0

yielded lower TPR values than FLR, but still over 0.90 for all A values. WALR always 

yielded higher TPR than OLR. The MAGIg method did not perform as well, with TPR 

values between 0.84-0.86.

Results for the simulation with four replicates per group are summarized in Table 

3.5 and Figure 3.5. These results are similar to the patterns observed in the three replicate 

simulation. The FPR is small (less than 0.05) for all methods and is zero for WALR 

and MAGIg. The FLR, WALR, and OLR performed well in terms of TPR across all A
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Table 3.5. Results for a sample size of n = 4 for each group. True positive rate and false
positive rate are given for FLR, OLR, WALR, and MAGIg with various levels of strength
of methylation change A.

CG Four Replicate
A Method TPR FPR
0.2 FLR 0.99 0.0014
0.2 OLR 0.92 0
0.2 WALR 0.96 0
0.2 MAGIg 0.84 0
0.3 FLR 0.99 0.0014
0.3 OLR 0.92 0.0014
0.3 WALR 0.96 0
0.3 MAGIg 0.85 0
0.4 FLR 0.99 0.0014
0.4 OLR 0.93 0
0.4 WALR 0.96 0
0.4 MAGIg 0.85 0
0.5 FLR 0.99 0.0014
0.5 OLR 0.93 0
0.5 WALR 0.97 0
0.5 MAGIg 0.85 0
0.6 FLR 1.00 0.0014
0.6 OLR 0.93 0
0.6 WALR 0.97 0
0.6 MAGIg 0.86 0

values, with FLR always slightly outperforming WALR, which always outperforms OLR. 

The MAGIg method again had reduced performance, similar to that in the three replicate 

simulation.

For the simulation with five replicates per group, the results are given in Table 3.6 

and Figure 3.5. For the TPR and FPR, the results are similar to the three and four replicate 

simulations. All methods have FPR below 0.05. For TPR, the FLR always had the highest 

value followed by WALR and then OLR. MAGIg was the only method with TPR values

below 0.9.
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Table 3.6. Results for a sample size of n =5 for each group. True positive rate and false
positive rate are given for FLR, OLR, WALR, and MAGIg with various levels of strength
of methylation change A.

CG Five Replicate
A Method TPR FPR
0.2 FLR 0.99 0.0014
0.2 OLR 0.92 0
0.2 WALR 0.96 0
0.2 MAGIg 0.84 0
0.3 FLR 0.99 0.0014
0.3 OLR 0.92 0.0014
0.3 WALR 0.96 0
0.3 MAGIg 0.85 0
0.4 FLR 0.99 0.0014
0.4 OLR 0.93 0
0.4 WALR 0.96 0
0.4 MAGIg 0.85 0
0.5 FLR 0.99 0.0014
0.5 OLR 0.93 0
0.5 WALR 0.97 0
0.5 MAGIg 0.85 0
0.6 FLR 1.00 0.0014
0.6 OLR 0.93 0
0.6 WALR 0.97 0
0.6 MAGIg 0.86 0

In conclusion, all methods had a low FPR (<0.05) across all A values and replicate 

numbers. All methods except the FLR and OLR actually had no false positives across all 

settings, but these methods still only had a very small proportion of false positives, well 

below 0.05. The TPR results for the three, four, and five replicate simulations were all very 

similar, indicating there was not a clear performance difference for sample sizes in the 3-5 

replicate range. Additional studies are needed to investigate a larger variety of replicate
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Figure 3.5. True positive rate versus A level for controlling the degree of differential 
methylation for each of the four methods (FLR-Red, OLR-Blue, WALR-Black, and MAGIg- 
Green). Separate graphs are given for 3, 4, and 5 replicates per group.

numbers to better understand the effect of sample size. The simulations in this research 

indicate a clear performance advantage of FLR and WALR, with FLR having a slightly 

better TPR across all settings.

3.4. SUMMARY OF SIMULATION STUDIES

This research demonstrates that information from RRBS data sets can be analyzed 

using the fuzzy logistic regression approach. A FLR method was developed that successfully 

detects information that cannot be identified by ordinary logistic regression and tests for 

DMRs between case and control groups. Two other logistic regression approaches (WALR 

and OLR) were also proposed for DMR testing. All of the proposed methods were compared
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to the existing method, MAGIg, via simulation studies based on real data. One of the 

simulation studies utilized plant data to investigate method performance in DMR detection 

using annotation based regions (genes) under different sequence contexts (CG, CHG, CHH). 

The other simulation study utilized human data in only the CG context with regions defined 

based on CG density. Three different replicate numbers (3, 4, 5) were investigated in this 

study.

An empirical comparison showed that all methods were effective in controlling the 

false positive rate below the significance level a = 0.05 in all simulated data sets. The 

FLR method consistently had a high true positive rate across all settings compared to the 

MAGIg, WALR and OLR approaches. The MAGIg method had the lowest TPR across most 

settings. In the plant data, the OLR approach was better than the WALR for most settings 

but this was reversed in the human data. Further investigation is needed to understand this 

difference. One possible explanation could be due to the difference in how the regions are 

defined since regions in the plant data are based on annotation (genes) while regions in the 

human data are based on CG density.

For the plant data, the FLR and OLR had consistently high TPR in all three sequence 

contexts. WALR and MAGIg had the highest TPR (with similar performance to FLR and 

OLR) for CHH and lowest TPR for CG. This could be due to the difference in correlation 

between methylation levels of neighboring sites, with CHH having lower correlation levels 

than CG. For the human data, there was not a notable difference in method performance 

when comparing data sets with three, four, or five replicates per sample. Larger differences 

might be observed if additional sample sizes are studied. In all studies, a slight TPR 

performance improvement is observed for larger values of methylation difference (T), but 

the differences are not large.
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4. CONCLUSION

The main purpose of this dissertation is to provide a novel statistical framework for 

identifying differentially methylation regions (DMRs) using reduced representation bisulfite 

sequencing (RRBS) data. Since predefined regions based on annotation or CG density 

can offer biologically meaningful interpretation, the proposed methods focus on this type 

of testing. Section 1 provides an introduction to DNA methylation along with relevant 

concepts in genetics and epigenetics. The technology used to measure DNA methylation 

is presented, focusing on RRBS. Previous methods used for DMR testing at predefined 

regions in RRBS data are reviewed, focusing on two primary methods (M3D and MAGIg). 

This work builds on the logistic regression approach used in MAGIg.

In Section 2, three additional logistic regression methods are proposed to test for 

DMRs between conditions of interest at predefined regions. Two of these methods (weighted 

average logistic regression (WALR) and ordinal logistic regression (OLR)) utilize traditional 

logistic regression methods that are adapted to analyze DNA methylation RRBS data. The 

main proposed method is fuzzy logistic regression (FLR), which can be used when the 

observations are fuzzy numbers. This is the first application of FLR to DNA methylation 

data. This technique is presented in detail using ideas from Pourahmad (2013) for the 

FLR model fitting and Lee et al. (2015) to test for significance of the logistic regression 

coefficient.

The FLR method is evaluated along with WALR, OLR, and MAGIg in two simula

tion studies described in Section 3. Simulation studies in both plants and humans indicate 

that FLR has consistently high true positive rates that are better than other methods under 

most settings. WALR and OLR yielded true positive rates between FLR (highest) and 

MAGIg (lowest) in most settings. Interestingly, all models performed similarly well in the 

CHH context for the plant data, which has the least correlation between methylation levels
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of neighboring sites. Further investigation of the effect of correlation between neighboring 

sites and how to incorporate this into the methods is needed. Additional simulation studies 

may also help understand how alternate settings such as different replicate numbers, varying 

noise levels, and CG density may impact the model performance.

Overall, the FLR based on fuzzy set theory seems to be more useful than the logistic 

regression models based on classic set theory. The FLR method has the potential to be 

beneficial for cancer research as well as in the pursuit of therapies to combat or prevent 

lupus, muscular dystrophy and other diseases. For example, since hypermethylation occurs 

early in colon cancer, the FLR method could be used to detect these DMRs that are an 

important indicator of potential health problems. Further research in FLR modeling for 

DMR detection could investigate using a crisp possibility term. Additionally, since the FLR 

models show promise for methylation data, it is also worth exploring applications of fuzzy 

methods to other types of genomic data.
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