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ABSTRACT

Concussions represent a growing health concern and are challenging to diagnose 

and manage. Roughly four million concussions are diagnosed every year in the United 

States. Although research into the application of advanced metrics such as neuroimages 

and blood biomarkers has shown promise, they are yet to be implemented at a clinical 

level due to cost and reliability concerns. Therefore, concussion diagnosis is still reliant 

on clinical evaluations of symptoms, balance, and neurocognitive status and function.

The lack of a universal threshold on these assessments makes the diagnosis process 

entirely reliant on a physician’s interpretation of these assessment scores. This study aims 

to show that the implementation of machine learning models can be beneficial to the 

concussion diagnosis process. While studies on machine learning applications for 

traumatic brain injuries are gaining traction, previous studies have primarily relied on 

neuroimaging metrics. The few that used clinical assessment tests have employed only 

univariate models. This study explores the use of multiple assessment scores in the 

models and evaluates the importance of each assessment score from the clinical tests. A 

comprehensive predictive modeling approach was conducted with a number of candidate 

models and subsampling techniques being evaluated. The findings in this research 

demonstrate the potential benefits of machine learning models to identify concussed and 

non-concussed subjects at a 24-48-hour post-injury time point. The results also suggest 

that not all clinical assessment test scores are of equal importance.
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1. INTRODUCTION

While millions of concussions are diagnosed every year, of particular concern are 

many concussions that go underreported, or worse undiagnosed. Concussed individuals 

are susceptible to more severe consequences if their injury is neglected [1]. The series of 

biological developments that follow a concussion creates a vulnerability for a second 

injury and can lead to severe neurodegeneration [2].

Although research into concussions dates back to the late 19th century [3], there is 

not a precise definition of concussion. Clinical evaluations such as SAC, SCAT5, BESS, 

BSI-18, and ImPACT have been developed to measure the acute symptoms typical of a 

concussion. However, there is no universal threshold on these clinical tests to 

characterize or identify a definite concussion. Advanced research into neuroimaging 

metrics and blood biomarkers have yielded promising results but are not yet ready for 

deployment at a clinical level. Advanced neuroimaging techniques, such as functional 

magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), have 

accessibility and cost constraints. Blood biomarkers are yet to show enough evidence to 

warrant broad-scale implementation as a diagnostic tool. Therefore, clinical assessment 

tests are currently used in the diagnosis protocol of concussions. Although not required to 

administer the tests themselves, only physicians can diagnose a concussion, after 

conducting a holistic review of the patient's assessment metrics and neurological status. 

This process can consume a physician's time and strain a clinic with limited resources. It 

also makes it impossible to objectively diagnose concussions at remote locations or 

clinics without a physician trained to recognize concussions. These limitations motivated



the work described in this thesis. Research into machine learning applications in 

concussions has primarily focused on using DTI and fMRI metrics [4], with few studies 

that utilize concussion evaluation measurements [5]. Also, most of these studies have 

relied on univariate models. This study seeks to use multiple clinical concussion 

assessments and identify the importance of individual assessment scores. The goal is to 

inspire the application of machine learning models on readily available clinical data in 

the diagnosis protocol to aid physicians in their judgment by flagging patients suspected 

of having concussions based on their clinical assessment metrics, even before their 

neurological examination.

An essential part of predictive modeling is to evaluate a broad range of candidate 

models. While there is not a clear hierarchy in the models' predictive power, some 

models perform better than others due to inbuilt characteristics such as bagging and 

boosting. Another critical consideration that influences model performance is the data- 

splitting choice during the model-training process. Some of the data-splitting options 

include validation-split, cross-validation, repeated cross-validation, and bootstrap 

methods. Section 2 of the thesis provides a brief overview of the candidate models' 

performance and evaluation metrics. Additionally, the effects of different subsampling 

techniques that are typically used to address model-performance issues caused by class 

imbalance are explored for the final models selected from the candidates. Concussions 

clinics are expected to have a higher frequency of concussed patients coming into the 

clinic than non-concussed patients. This imbalance is reflected in the relative proportion 

of classes in the dataset, which poses a challenge to effectively classify both classes. One 

method to address this challenge is to use subsampling techniques. Some subsampling

2



techniques, such as SMOTE and up-sampling, are explored in Section 2 to investigate 

these methods' effect on model performance.

The thesis contains the paper intended for publication at the Computational 

Intelligence in Healthcare and E-health (IEEE CICARE) Symposium. The paper contains 

a detailed description of the data, data preparation process, and predictive modeling 

approach for final models used to explore the application of machine learning models 

with the motivation of promoting their use in the concussion diagnosis process.

This thesis explores machine learning techniques in the concussion diagnosis 

process, using data from established clinical concussion assessment tests. As the clinical 

tests require little specialized equipment, it is possible to implement the models explored 

in this thesis on a large scale. Furthermore, this thesis aims to promote research into 

applying computational intelligence at a clinical level. The results in the following 

sections show promising signs for the addition of advanced modeling techniques to the 

concussion diagnosis protocol.

3



4

2. PREDICTIVE MODELING PROCESS

This section presents an overview of the predictive modeling process used in this 

research study. A detailed description of the data, data preparation, and feature selection 

process are given in the Paper section of the thesis. A critical step in the predictive 

modeling process is to identify the type of problem. The problem at hand is a two-class 

classification problem and requires the consideration of appropriate candidate models. A 

total of 14 classification models with varying degrees of complexity and interpretability 

were included in this list of candidates [6]. The class and type of models considered for 

selection are listed below.

• Linear Models: Logistic regression and support vector machine with a linear 

kernel (SVM Linear).

• Discriminant Analysis Models: Quadratic Discriminant Analysis (QDA), 

mixture discriminant analysis (MDA), heteroscedastic discriminant analysis 

(HDA), flexible discriminant analysis (FDA).

• Nonlinear Models: support vector machine with a radial kernel (SVM Radial), 

model-averaged neural network (Neural Net).

• Classification Tree Model: Recursive Partitioning (Rpart)

• Bagged/Boosted Tree-Based Models: Stochastic gradient boosting (GBM), 

C5.0, AdaBoost, random forest (RF), and extreme gradient boosting with 

DART (XgbDART).
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2.1. DATA RESAMPLING TECHNIQUES

Splitting the data into only one training and one test set can lead to high variation 

in the model’s performance [6]. Resampling methods give a more accurate representation 

of the true fit of a model. Additionally, resampling methods are useful for tuning the 

model parameters. The following three resampling approaches were used at different 

stages of this work.

• k-fold Cross-Validation: A k-fold cross-validation approach can be used to reduce the 

variance that is introduced from selecting the test dataset. In this approach, each fold 

of data is used as the training set k-1 times and used k times as the test dataset. The 

model performance is given by the average performance across k-folds of the test 

data.

• Repeated Cross-Validation: This approach provides an even more robust 

approximation of the classification model's average performance as the folds in k-fold 

cross-validation are resampled with replacement.

• Bootstrap: This technique involves random sampling of the training data with 

replacement. The unselected samples are used to estimate the error rate for each 

iteration. A modified version of the simple bootstrap called the 632 method addresses 

the bias created by non-distinct observations in the bootstrap sample by combining 

the simple bootstrap estimate and apparent error rate [6].

The candidate models were trained using a ten-fold repeated (five times) cross

validation as this approach has good bias and variance properties with reasonable 

computation time. The performance of the candidate models is shown in Table 2.2.
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2.2. PERFORMANCE METRICS

The performance metrics used in this thesis are derived from a confusion matrix 

[6]. The confusion matrix and calculations for the measurements discussed are shown 

below in Table 2.1.

Table 2.1 Confusion Matrix

Truth

Predicted

Positive Class Negative Class

Positive Class True Positive (TP) False Positive (FP)

Negative Class False Negative (FN) True Negative (TN)

Accuracy = TP+T
TP +P N +P P + T (1)

Sensitivity = TP
TP +FN

(2)

Specificity TN
(3)F P + TN
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„  . . . S e n sitiv itv + S p e cific ityBalanced Accuracy = ----------- ------------- (4)

„  _ A c c u r a c y —Exp ec Accuracy
1 -E x p e c t e d  Accura cy  v '

The model selection process often requires the consideration of multiple 

performance metrics. Given that the dataset used in this study is severely imbalanced in 

favor of the positive class, it can be seen from the equation (1) that even a model that 

classifies every single sample as the positive "case" group will have high accuracy. Any 

model worthy of consideration will need to show an accuracy over the no-information- 

rate (NIR) baseline. The Kappa metric considers the class distribution in the training set 

and gives a measurement that takes into account an accuracy obtained by chance. This 

characteristic makes the Kappa coefficient an informative metric for model-performance 

measurement on imbalanced datasets. The sensitivity measures the true positive rate, 

while the specificity measures the models' true negative rate. As there is usually a 

tradeoff between sensitivity and specificity for imbalanced datasets, balanced accuracy, 

which is the average of the sensitivity and specificity measurements, indicates the 

model's overall performance. The objective of the modeling approach in this study is to 

primarily identify the concussed patients with minimum false negative while identifying 

enough controls so as to be useful in the diagnosis protocol. However, while sensitivity is 

more important than specificity when identifying concussed patients, the sensitivity 

cannot solely serve the purpose of identifying the best performing model as even a null 

classifier will have perfect sensitivity. The performance metrics need to be considered 

together in order to gauge a model's performance.
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2.3. CANDIDATE MODEL PERFORMANCE

Table 2.2 shows the performance for a ZeroR classifier and the 14 candidate 

models based on the metrics described in the above section. The ZeroR classifier simply 

predicts the majority class, and in the context of this paper, classifies every patient as 

having a concussion. The accuracy of this classifier can be used as a baseline metric to 

compare the performance of the other models tested.

The results show that linear models (Logistic and SVM Linear) are unable to 

identify the control group effectively, with very low specificities. While the discriminant 

analysis models (except for MDA) appear to have the best specificities among the 

candidate model types, the improved specificity is at the expense of sensitivity. Although 

the discriminant analysis models are dismissed from further consideration for this study, 

their ability to identify controls makes them a candidate for inclusion in stacked models.

Nonlinear models (SVM Radial and Neural Net) were also removed from further 

consideration due to their unsatisfactory performance in terms of identifying controls. It 

can be observed that the tree-based models are the most appropriate classifiers for the 

dataset, with the C5.0 algorithm having the best Kappa and accuracy metrics, and the RF, 

Rpart, and AdaBoost models all having accuracy and Kappa greater than 0.94 and 0.50 

respectively. After reviewing the candidate models' performance, the C5.0, Rpart, RF, 

and XgbDART algorithms were selected as the final models to be used in the paper.

2.4. COMPARING SUBSAMPLING METHODS

Imbalance in a dataset's class frequencies can pose a challenge to train a 

classification model to recognize both classes effectively. One of the remedies for
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handling imbalanced data is to use subsampling techniques such as up-sampling and 

SMOTE [6].

Table 2.2 Candidate Model Performance

Model Accuracy Sensitivity Specificity Balanced
Accuracy

Kappa

ZeroR 0.9233 1 0 0.5 0

Linear Models

Logistic 0.9282 0.9947 0.1277 0.5612 0.1944

SVM Linear 0.9233 1 0 0.5000 0

Discriminant Analysis Models

QDA 0.8189 0.8163 0.8511 0.8337 0.3429

MDA 0.9233 0.9965 0.0426 0.5195 0.0672

HDA 0.8467 0.8587 0.7021 0.7804 0.3411

FDA 0.9103 0.9364 0.5957 0.7661 0.4564

Nonlinear Models

SVM Radial 0.9233 0.99647 0.0426 0.5195 0.0672

Neural Net 0.9331 0.9823 0.3404 0.6614 0.4059

Tree-based Models

Rpart 0.9429 0.9788 0.5106 0.7447 0.5483

Adaboost 0.9413 0.9806 0.4681 0.7243 0.5196

GBM 0.9233 0.9647 0.4255 0.6951 0.4188

C5.0 0.9543 0.9859 0.5745 0.7802 0.6346

RF 0.9429 0.9841 0.4468 0.7155 0.5166

XgbDART 0.9396 0.9823 0.4255 0.7039 0.4889
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The performances for the final models using these techniques are compared with a 

view of evaluating whether a subsampling method can improve the final model's 

performance. The bootstrap 632 method was used in the model-validation process when 

comparing the subsampling methods to the original ratio of class frequencies. The 

performance comparison results for each of the final models are presented in Tables 2.3,

2.4, 2.5, and 2.6.

Table 2.3 Performance Comparison of Sampling Techniques for C5.0

Method Accuracy Sensitivity Specificity Balanced
Accuracy

Kappa

Original 0.9511 0.9841 0.5532 0.7686 0.6085

Up
sampling

1 1 1 1 1

SMOTE 0.9070 0.9223 0.7234 0.8228 0.4957

Table 2.4 Performance Comparison of Sampling Techniques for Rpart

Sampling
Method

Accuracy Sensitivity Specificity Balanced
Accuracy

Kappa

Original 0.9429 0.9788 0.5106 0.7447 0.5483

Up
sampling

1 1 1 1 1

SMOTE 0.8532 0.8498 0.8936 0.8717 0.4176
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Tables 2.3 and 2.4 show that the up-sampling approach gave perfect classification 

in the test set using the C5.0 or Rpart algorithms. Despite these results indicating that the 

up-sampling technique offers superior performance, perfect classification, while 

encouraging, is suspicious.

Table 2.5 Performance Comparison of Sampling Techniques for RF

Sampling
Method

Accuracy Sensitivity Specificity Balanced Accuracy Kappa

Original 0.9494 0.9894 0.4681 0.7287 0.5616

Up
sampling

0.9462 0.9735 0.6170 0.7953 0.6083

SMOTE 0.8923 0.8958 0.8511 0.8734 0.4955

Table 2.6 Performance Comparison of Sampling Techniques for XgbDART

Sampling
Method

Accuracy Sensitivity Specificity Balanced Accuracy Kappa

Original 0.9347 0.9735 0.4681 0.7208 0.4893

Up
sampling

0.9282 0.9488 0.6809 0.8148 0.5540

SMOTE 0.8825 0.8869 0.8298 0.8584 0.4635

The results for the subsampling methods in Tables 2.5 and 2.6 indicate superior 

Kappa for the up-sampling technique in the RF and XgbDART models. However, the



accuracy and sensitivity are higher when using the original data structure. The SMOTE 

method offered the best balanced-accuracy among the sampling methods for the RF and 

XgbDART models. However, the lower sensitivity with this subsampling approach 

eliminated this method from further use in this study. The low sensitivity when using the 

SMOTE technique can be attributed to the smaller training sample size of the positive 

class group that is created during this method. Its performance is worth investigating with 

a larger sample size of the control group. The original data's performance and the up

sampled data are very similar for both the RF and XgbDART models. The up-sampled 

data had higher specificity but lower sensitivity.

The SMOTE method significantly impacted all the chosen models' sensitivity, and 

the up-sampling technique negatively affected the sensitivity for the RF and XgbDART 

models. Although the up-sampling method gave perfect classification on the test set for 

the C5.0 and Rpart models, further investigation is warranted before recommending this 

subsampling technique. For the reasons stated above, it was decided that a subsampling 

technique will not be used to tackle the class imbalance issue inherent in the dataset. 

Future research can further explore these subsampling techniques along with other 

remedial techniques such as cost-sensitive training, and unequal class-weights [6].

12
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PAPER

I. PREDICTIVE MODELING OF SPORTS-RELATED CONCUSSIONS USING
CLINICAL ASSESSMENT METRICS

ABSTRACT

Concussions represent a growing health concern and are difficult to diagnose and 

manage, with roughly four million concussions diagnosed every year in the United States. 

While research in machine learning applications for concussions have focused on the use 

of advanced metrics such as neuroimages, and blood biomarkers, these metrics are yet to 

be implemented at a clinical level due to cost, and reliability concerns. Therefore, 

concussion diagnosis is still reliant on clinical evaluations of symptoms, balance, and 

neurocognitive status and function. The lack of a universal threshold on these 

assessments make the diagnosis process entirely reliant on a physician’s interpretation of 

these assessment scores. The aim of this study is to explore and promote the use of 

machine learning techniques to aid the concussion diagnosis process. The benefits of the 

models proposed include being able to flag concussed patients even before being seen by 

a doctor and expanding the scope of concussion diagnosis to remote locations, and areas

with limited access to doctors.
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1. INTRODUCTION

Concussion, a term that is often used to describe mild traumatic brain injury 

(mTBI) has several consensus-based definitions [1], and the lack of a universal definition 

has led to bias in clinical applications. Although the terms concussion and mTBI are 

frequently used interchangeably, the loosely defined former has some notable distinctions 

from the latter [2]. The Glasgow Coma Scale (GCS) has traditionally been used to gauge 

the severity of traumatic brain injuries, with a GCS score between 13-15 indicating an 

mTBI. However, the GCS score is not suitable for distinguishing severity variation in the 

mTBI range. It is possible to have a fractured skull or intracranial hemorrhage and still 

obtain a GCS score between 13-15 [3]. Despite the confusion surrounding the definition 

of concussion, it is generally agreed that a concussion is a biomechanically induced 

alteration in brain physiology inducing neurocognitive dysfunction, not necessarily 

involving a loss of consciousness [1-4]. There is not any disagreement about whether 

concussions represent a severe problem that is difficult to diagnose and has potentially 

disabling sequelae [5]. In the United States itself, roughly four million sports and 

recreation-related concussions occur every year [6].

In 2014, the National Collegiate Athletic Association, together with the 

Department of Defense established the Concussion Assessment, Research, and Education 

(CARE) Consortium to address the challenges associated with concussion diagnosis and 

management, particularly among student-athletes and military cadets [7][8][1]. The 

ongoing CARE study is the biggest clinical concussion-study in history [1], and has 

conducted research on traditional and new clinical concussion assessment tools, magnetic



resonance imaging (MRI) metrics, and investigated the pathophysiology of concussions 

through neurological tests, neuroimages, and blood biomarkers [9].

Although advanced concussion assessment approaches have shown promise, they 

are yet to transition to an application on a clinical scale. Access to advanced MRI 

techniques for individual patients is limited, and blood biomarkers are yet to show the 

required level of sensitivity for implementation as a diagnostic tool [5]. Therefore, 

concussion diagnosis relies on clinical examinations [10] that evaluate symptoms, 

neurocognitive status and function, and balance. The Brief Symptom Inventory-18 (BSI- 

18), Standardized Assessment of Concussion (SAC), Immediate Post-Concussion 

Assessment and Cognitive Testing (ImPACT), and Balance Error Scoring System 

(BESS) are some of the most commonly used clinical concussion assessments [10]. Less 

commonly used tests for reaction time, oculomotor and vestibular function include the 

King-Devick, Vestibular Ocular Motor Screen (VOMS), and Clinical Reaction time [10]. 

The Sports Concussion Assessment Tool (SCAT5) [11] is a commonly used tool for 

evaluating concussions in sports that combines assessments for cognitive-measure, 

balance, and acute symptoms to provide a broad scope of measurements. However, it 

does not function as a single metric for diagnosis [12].

Clinical examinations can be easily administered by trained proctors or healthcare 

professionals and do not require a doctor to administer. However, only a physician can 

diagnose the concussion. While research into machine learning applications in 

concussions is gaining traction, they have primarily focused on using diffusion tensor 

imaging (DTI) and functional MRI metrics [13], with few studies relying on concussion 

evaluation measurements [14]. This paper aims to explore and promote the use of

15



machine learning techniques to aid the diagnosis process, which relies on clinical 

evaluation metrics. By correctly identifying a majority of concussions before being seen 

by a doctor, a clinic can quickly flag patients that require immediate attention. 

Additionally, these models can be implemented in remote areas, including rural or 

isolated military locations, with limited access to trained physicians to recommend 

additional examination or care to individuals identified by the model. Moreover, such a 

tool will enable clinics with limited resources to effectively manage patient care.

2. METHODS

16

2.1. DATA

The data used in this study are available through the research conducted by the 

CARE consortium [7][8] and were downloaded on August 22, 2019, through the Federal 

Interagency Traumatic Brain Injury Research (FITBIR) website [15]. The CARE 

investigation conducted clinical assessments [10] for all consenting participants at 

baseline. Individuals diagnosed with a concussion were labeled as a 'case', and clinical 

assessments were repeated at five time-periods post-injury [7], including <6 hours post

injury, 24-48 hours post-injury, asymptomatic, unrestricted return to play (RTP), and 

finally six months post-RTP. Matched non-concussed subjects labeled as ‘control’ were 

also given the clinical-assessment tests following the case subjects' evaluations. The 

assessments included established Level A tests and emerging Level B tests [10]. Except 

for ImPACT, which was given at 25 out of 29 sites, the other level A tests were
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administered at all CARE test locations. The models used in this study only used Level A 

scores.

This study's primary objective is to use predictive models in classifying the case 

and control groups at a given time to explore the potential of using machine learning 

methods to diagnose concussions using only established Level A measurements. The data 

were filtered to focus on the 24-48 hour time point as it is regarded as a critical period 

during which concussion patients are symptomatic, and this time point has the most 

complete data during the acute concussion phase [7]. Also, tests such as the ImPACT test 

and BSI-18 are not given at the < 6-hour time point. The data contained clinical 

assessment measures for 2455 participants with 2265 subjects in the concussed case 

group and 190 subjects in the control group. Although concussion history was not 

factored into the predictive modeling in this study, it is worth noting that the matched 

controls included individuals with a history of concussions. The Level A concussion 

assessment tests are briefly described below.

• Balance Error Scoring System (BESS): BESS [16] is used to assess the effects 

of mild head injury on static postural stability. The test is conducted on both 

firm and foam surfaces with the scores for each surface range from 0 to 30, 

and each increment representing an error.

• Standardized Assessment of Concussion (SAC): The SAC [17] assesses the 

cognitive status and contains sections on orientation, immediate memory, 

concentration, and delayed recall. Each section contains a binary scoring 

system (0=wrong, 1=correct). Composite scores are calculated for each 

section and then added to give a total score.



• Brief Symptom Inventory-18 (BSI-18): The BSI-18 [18] is a self-reported 

questionnaire consisting of 18 descriptions of physical and emotional pain 

symptoms. Individuals are asked to indicate on a scale from 0 (not at all) to 4 

(very much) to what extent they are troubled by each symptom. The symptom 

list consists of three symptom scales: somatization, depression, and anxiety. 

Each of the scales comprises of six symptoms.

• Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT): 

The ImPACT test [19] is a neurocognitive test that measures verbal memory, 

visual memory, visual-motor speed, reaction time, impulse control, and post

concussion symptoms. It can be a useful tool to establish neurocognitive 

performance post-injury by comparing to baseline (when available) or to 

scores for similar age groups.

The clinical evaluations listed above provided the features for the predictive 

models used in this study. A full list of features from the tests is given below in Table 1.
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Table 1. Feature List

Assessment Features Extracted

BESS BESS.Total.Firm.Error, BESS.Total.Foam. Error

SAC SAC.Concentration, SAC.Delayed.Recall, SAC.Immediate.Memory, 
SAC.Orientation*

BSI-18 BSI18.Depression, BSI18.Anxiety, BSI18.Somatization

ImPACT ImPACT.T otal. Symptom, ImPACT.Vi sual .Motor. Speed, 
ImPACT.Vi sual .Memory, ImPACT.React. Time, 
ImPACT.Verbal.Memory, ImPACT.Impulse.Control*

* Eliminated during the feature selection process.
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2.2. DATA PREPARATION

The data preparation process revealed several unusual observations, especially in 

the control group, that would significantly influence the predictive modeling process.

Due to the limited number of control subjects, the extreme observations were replaced 

with missing values and then imputed. The ImPACT Clinical Interpretation Manual [19] 

provides guidelines for identifying unusual observations at baseline that can usually 

indicate deliberate poor performance at baseline. For instance, ImPACT reaction time 

scores in the range of 0.8 to 1.5 at baseline are usually indicative of sandbagging [19]. 

Similarly, unusual observations for other ImPACT composite scores include verbal 

memory less than 70, visual memory less than 60, motor speed less than 25, and impulse 

control scores higher than 30 [19]. It is recommended that impulse control scores above 

20 are reevaluated [20]. Given that the control subjects did not have a concussion, the 

values suggested by the ImPACT manual were used as a cutoff to replace the unusual 

observations in the control group. The filters used for the other assessment tests included 

a BESS foam-error greater than 17 but firm-error less than 7. SAC concentration and 

delayed recall scores below 3 were also replaced with missing values in the control 

group. The extreme observations in the case group were not manipulated as it is possible 

that they suffered from significant cognitive impairment. Only an unusual value of 83 

seconds for the ImPACT reaction time score was replaced with a missing value in the 

case group.

The data contained missing values, with the ImPACT composite scores having the 

most missing values. The ImPACT total symptom score had 719 missing values, while 

699 individuals were missing for the other ImPACT composite scores. It is likely that the



missing values for the ImPACT scores can largely be attributed to the ImPACT tests 

being administered at fewer locations than the other Level A tests. The missing values 

were imputed using multivariate imputation by chained equations (mice), and the 

predictive mean matching method was used in the mice algorithm [21]. The imputations 

were performed separately for the case and control groups to preserve the nature of the 

groups' distributions. The boxplots representing some of the test scores are shown in 

Figure 1.
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Figure 1. Boxplots of Assessment Scores for Case and Control Groups
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2.3. PREDICTIVE MODELING APPROACH

The imbalanced nature of the dataset with 2265 samples in the positive case class 

and 190 samples in the negative control class makes this a challenging classification 

problem. Typically complications caused by an imbalance in the classes can be addressed 

by subsampling techniques such as up-sampling the minority class, down-sampling the 

majority class, or hybrid methods including synthetic minority oversampling technique 

(SMOTE) and random oversampling examples (ROSE) [22]. However, there are a few 

issues with these subsampling techniques. The SMOTE, ROSE, and down-sampling 

techniques sacrifice some training samples of the positive class. Given the limited data 

and the fact that identifying concussions is more important than identifying the controls, 

it was decided that these subsampling methods were unsuitable for this exploratory study. 

The up-sampling technique is also not suitable as it alters the natural state of the data.

The authors wanted to train the data to reflect the imbalance that is likely visible among 

patients, particularly student-athletes undergoing concussion diagnosis. Due to the 

reasons stated above, a stratified split was used in this study. The data were split to have 

75% of the data in the training set, and 25% of the data in the holdout set in order to have 

sufficient samples of both classes in the training and evaluation process.

An initial exploration of candidate models revealed that linear and discriminant 

analysis models were ineffective in separating the case and control classes. Four models 

with diverse computational and modeling complexities were selected from the candidate 

models set. The final models selected for this study are briefly described below.

• C5.0: The C5.0 algorithm is an advanced version of the C4.5 algorithm [23]

with boosting and unequal penalties for different types of errors [22]. The



C5.0 algorithm can function as a rules-based or tree model. The tuning 

process for the C5.0 method in the caret package [24] of R can include the 

selection between rule-based and tree-based models. The C5.0 determines 

predictor importance by identifying the percentage of training samples that 

fall into all the terminal nodes after a split [22]. The model also has an option 

for dropping noninformative predictors through a process called winnowing, 

but this selection does not always improve the error rate. Winnowing can be 

added as a tuning parameter to choose the full predictor set, and a pruned 

predictor set.

• Recursive Partitioning (Rpart): The Rpart is a classification and regression 

tree method that builds the classification tree by first identifying the feature 

that best splits the data according to a node purity criteria and building binary 

trees until no further improvement in performance is observed [25]. A tuning 

parameter called the cost-complexity (cp) parameter can be incorporated into 

the model building process to construct a pruned tree to counter the tree-based 

classifier’s tendency to overfit the training data.

• Random Forest (RF): Random Forest [26] is an ensemble model of decision 

trees that train learners in parallel on different samples of data. Then, the votes 

of each tree are combined to obtain a predicted class. A random subset of the 

predictors is selected to grow decorrelated trees. The tuning parameter mtry 

determines the number of predictors selected. The number of trees needed for 

good performance is dependent on the number of predictors, with more trees 

giving more stability to the variable importance estimates [27]. The random
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forest classifier is robust to overfitting and can produce competitive results 

compared to powerful boosting algorithms [26].

• Extreme Gradient Boosting with DART (Dropouts meet Multiple Additive 

Regression Trees) booster (XgbDART): The extreme gradient boosting model 

is a boosted ensemble tree-based algorithm built on the gradient boosting 

algorithm, and has similarities to the random forest model. However, unlike 

the random forest model where trees are created independently, the gradient 

boosting algorithm creates trees dependent on prior trees [22]. The XgbDART 

model uses the DART [28] booster technique, which incorporates dropouts for 

the ensemble trees in the extreme gradient boosting algorithm. The XgbDART 

algorithm learns from the existing trees in the ensemble to compensate for 

shortcomings in the prior trees.

The bootstrap 632 method [29] resampling technique with 500 resamples was 

used in the model training process as this method effectively reduces the bias and 

variance in performance. This method is a variation of the bootstrap method that 

addresses the bias created by non-distinct observations in the bootstrap sample by 

combining the simple bootstrap estimate and apparent error rate [22]. Due to the extreme 

imbalance in the data and the small sample size of the control group, the Kappa metric 

was chosen as the metric for tuning the model. The Kappa metric considers the class 

distribution in the training set and gives a measurement that takes into account an 

accuracy obtained by chance. This characteristic makes the Kappa coefficient an 

informative metric for model performance measurement on imbalanced datasets.
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For a given assessment test, the total scores were dropped from the model feature 

list in favor of their subcomponent scores to assess the importance of each element in a 

clinical assessment metric. Fifteen features were available for use in the model after 

dropping the total scores for the SAC, BESS, and BSI-18 tests. The Boruta [30] feature 

selection algorithm was implemented to identify all the relevant variables to use in the 

selected models. The Boruta algorithm is based on the random forest model and uses an 

iterative approach to identify important and nonimportant features by comparing the 

variable to randomly created shadow attributes [30]. The results from the Boruta 

algorithm can be seen in Figure 2.

Figure 2. Feature Selection Results from the Boruta Algorithm



The green and red plots represent the Z-scores of the selected and rejected 

features respectively, while the blue plots are the shadow attributes. The algorithm 

identified the SAC orientation score and ImPACT impulse control scores as unimportant 

attributes. Hence, these two features were removed from further consideration, leaving a 

final feature list of 13 clinical assessment scores for use in the classification models 

(Table 1).
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3. RESULTS

The predictive modeling results on the holdout set containing 566 concussed 

(case) and 47 non-concussed (control) samples are presented in this section. The test set's 

imbalanced nature with a prevalence of 92.33% was assumed to represent the real 

potential rate of concussion among athletes after a head impact. The final tuning 

parameters obtained from the bootstrap training method for each classification model 

tested are given in Table 2.

Table 2. Final Tuning Parameters for the Classification Models

C5.0 Rpart RF XgbDART

trials = 100 
model = tree 
winnow = FALSE

cp = 0.01398601 mtry = 11 
ntree = 5000 
(ntree was set 

manually)

nrounds = 709 
max depth = 9 
eta = 0.6213674 
rate drop = 0.3279209 
skip drop = 0.8211969 
min child weight = 1
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The confusion matrices from the classification models on the holdout set are 

presented in Table 3. It can be seen that the random forest model had the best 

performance in terms of identifying the concussed case group, and the C5.O algorithm 

correctly identified the most controls from the models tested. All of the models presented 

in this paper were successfully able to identify most of the case group members, and the 

C5.0 and Rpart models correctly classified more than half of the controls.

Table 3. Confusion Matrices for the Classification Models

C5.0 Rpart

Truth Truth

Predicted

Case Control

Predicted

Case Control

Case 557 20 Case 554 23

Control 9 27 Control 12 24

RF XgbDART

Truth Truth

Predicted

Case Control

Predicted

Case Control

Case 559 25 Case 558 27

Control 7 22 Control 8 20

The ZeroR classifier simply predicts the majority class, and in the context of this 

paper, classifies every patient as having a concussion. The accuracy of this classifier can
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be used as a baseline metric to compare the performance of the other models tested. The 

other metrics used to assess model performance include the Kappa, specificity, 

sensitivity, balanced accuracy, and F2 scores.

The sensitivity measures the true positive rate of classification on the test set, 

while the specificity measures the models' true negative rate. The F2 score is a weighted 

averaged of the precision and sensitivity of a model’s performance such that false 

negatives are more important than false positives. As the primary goal of the modeling 

approach is to correctly identify as concussions while minimizing false negatives, the F2 

score can be considered an important metric for evaluating model performance.

Table 4. Performance Metrics for the Classification Models

Acc. Sens. Spec. Balanced
Acc.

F2 Kappa Training
Time

ZeroR 0.9233 1 0 0.5 0.9904 0 0

C5.0 0.9527* 0.9841 0.5745 0.7793 0.9803 0.6257 14.62 mins

Rpart 0.9429* 0.9788 0.5106 0.7447 0.9750 0.5483 13.30 secs

RF 0.9478* 0.9876 0.4681 0.7279 0.9814 0.5528 50.06 mins

XgbDAR
T

0.9429* 0.9859 0.4255 0.7057 0.9793 0.5050 5.23 hours

Accuracy > 0.9233 at 0.05 signi icance level. Acc: Accuracy, Sens: Sensitivity, Spec:
Specificity, Balanced Acc: Balanced Accuracy
*

The performance metrics of the evaluated classification models are presented in 

Table 4. The C5.0, Rpart, random forest, and XgbDART models all had a significantly 

better accuracy than the ZeroR classifier. The C5.0 model had the highest balanced
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accuracy (77.93%), with a 98.41% sensitivity and specificity of 57.47%. This model also 

had the highest Kappa metric with the XgbDART showing the lowest Kappa. As 

expected, the ZeroR classifier with perfect sensitivity has the highest F2 score. However, 

this model does not add value by merely classifying every subject as having a 

concussion, and this can be seen in the zero specificity of the ZeroR classifier.

The random forest had the highest F2 score among the models evaluated with the 

C5.0 model following closely. The relative performance of the Rpart model is 

particularly impressive, considering that it was computationally the least expensive 

model in terms of time. The tuning process took the least amount of time for the Rpart 

model and the most amount of time for the XgbDART model.

Figure 3. Variable Importance Plots for the Classification Models



The variable importance of the assessment scores for each model is presented in 

Figure 3. The x-axis on the figure represents the scaled importance of the features, with 

100 representing the most important feature. The BSI-18 somatization, ImPACT 

symptom, SAC concentration, and delayed recall scores were essential features in the 

C5.0 algorithm model. In contrast, the BESS firm, BSI-18 anxiety, and SAC immediate 

memory scores were the least important features for that model. In the Rpart model, the 

ImPACT Symptom, BSI-18 somatization, and ImPACT visual and verbal scores were 

ranked (in order) as the top features. The BESS foam, SAC immediate memory, and 

BESS firm scores were the least important variables in the Rpart model. The random 

forest model's top five features were all composite scores of the ImPACT test, with the 

symptom and motor speed composite scores being the most important features. The SAC 

concentration score, BSI-18 depression, and SAC immediate memory scores were the 

least important in the random forest model. The ImPACT symptom score was again the 

most important predictor and the SAC immediate memory score the least important 

predictor in the XgbDART model.
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4. DISCUSSION

4.1. CONCLUSIONS

This study evaluated the performance of machine learning models, specifically 

C5.0, Rpart, random forest, and XgbDART, on identifying concussed individuals in an 

imbalanced dataset by using scores from the BSI-18, BESS, SAC, and ImPACT 

assessment tools as features. Few studies have explored using the Level A tools in a



multifactor model to separate concussed individuals from non-concussed subjects at a 

given time point. This study showed that it is possible to use the established concussion 

assessment metrics in machine learning models to identify a majority of concussed 

individuals correctly. The C5.0 model had the best balanced-accuracy, making this a 

good choice for trials at clinics looking to optimize their resources. The random forest 

model had the highest F2 score, making this the preferred model for a cautious 

classification approach seeking to minimize the misclassification of the concussed group. 

The computational efficiency of the simple Rpart model makes this model a good choice 

for quick classification. Although the highest specificity of the models evaluated was 

only 57.45%, the results show much promise for further exploration of using machine 

learning techniques in clinical settings. The results also support the use of such modeling 

approaches in remote locations without a doctor. Rather than merely assuming that 

anyone coming into a clinic has a concussion, using these models can provide some type 

of objective classification supported by data.

When viewed across all models, the variable importance plots indicate that the 

ImPACT symptom score is the most critical variable. The SAC immediate memory score 

is the least important predictor of the 13 features used to construct each model. The SAC 

orientation score and ImPACT impulse control scores are nonessential predictors 

according to the Boruta feature selection method. It can also be observed from the 

variable importance plots that the BESS foam score is more important than the BESS 

firm score. Of the BSI-18 scores, it can be seen that the somatization score is more 

important than the depression or anxiety scores. Overall, it appears that the ImPACT test 

generally has important scores.
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Recent research on using machine learning models in concussion diagnosis has 

concentrated on using advanced metrics, such as neuroimaging and biomarkers.

However, the application of these methods on a large clinical level is still limited.

Clinical evaluations are already conducted on a large scale, and therefore, the models 

explored in this study can be easily implemented and tested across any clinic with these 

data. The results from each of the models show encouraging signs to promote the use of 

these classification models in the diagnosis protocol.

4.2. LIMITATIONS AND FUTURE WORK

A limitation of this study is that only student-athletes and their level A 

measurements were used in the modeling process. Some factors such as gender, 

concussion history, cause of injury, and age-group that can potentially add to the models' 

predictive power were not considered in this study. A further limitation is that a large 

number of missing values for the ImPACT scores were imputed. Using a more complete 

dataset with a larger number of control subjects and incorporating the factors listed above 

that were excluded in this study can improve the machine learning models' predictive 

ability. Also, the use of change scores was not considered in this study, but it can be 

useful in the future for evaluating athletes when baseline scores are available. 

Additionally, the expected cost of misclassifications can be explored to identify optimum 

thresholds for applications in clinics with limited resources. This study's results motivate 

future research to explore applying deep learning models to identify concussions using

clinical assessment metrics.
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SECTION

3. CONCLUSIONS

This thesis was motivated by the potential of machine learning models to support 

the diagnosis protocol for concussions. This thesis aims to explore and promote the use of 

these advanced modeling techniques at a clinical level, using widely available concussion 

evaluation metrics. To accomplish this, a detailed predictive modeling approach was 

followed to classify concussed and non-concussed patients. A wide variety of 

classification models, including linear, nonlinear, and tree-based models, were evaluated 

as candidates to identify the most appropriate model-type for this classification problem.

It was observed that tree-based classification models, including boosted and bagged 

models, are more suitable to classify the dataset containing the clinical concussion test 

features of 2265 concussed and 190 non-concussed student-athletes. Concussion clinics 

typically have a higher relative proportion of concussed patients coming into the clinic. 

Therefore, subsampling techniques were explored to remedy the class-imbalance issue 

that is innate to clinical concussion data. Although no subsampling technique was chosen 

in the final implementation of the chosen models, the results in Section 2 show each 

subsample approach’s pros and cons.

The findings in the Paper section of the thesis demonstrate the potential benefits 

of using tree-based classifiers to identify concussed and non-concussed subjects at a 24

48-hour post-injury time point. The research also suggests that not all clinical assessment 

test scores are of equal importance. It was found that the ImPACT symptom score is an
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essential assessment metric to identify concussed patients while the SAC orientation and 

ImPACT impulse control scores are nonessential features. It was also observed that the 

SAC immediate memory score is of low importance.

The results observed in this thesis show promising signs for the clinical 

implementation of machine learning techniques, particularly tree-based classification 

models, in the concussion diagnosis process. While the application of advanced machine 

learning models in TBI research has been gaining momentum, especially on advanced 

neuroimaging data, this thesis’s research showed that it is beneficial to use these models 

on routine clinical evaluations. The study advocates for further exploration of machine 

learning techniques using clinical assessment metrics. Clinical assessment scores are 

easier to collect than imaging or biomarker data, thereby offering a platform for large 

scale clinical exploration and implementation of these models. Implementing machine 

learning models to identify concussed patients will also expand the scope of clinical 

evaluations to remote locations and clinics without physicians trained to identify 

concussions.

Based on this study’s results, further research can explore the implementation of 

these models on larger datasets with few missing values and use of additional factors 

such as concussion history, gender, cause of injury, and age that can improve the 

predictive power of the machine learning models. The encouraging results can motivate 

exploring techniques to handle imbalanced datasets such as cost-sensitive training, 

unequal class-weights, and alternate-thresholds for models. The subsampling techniques 

can also be explored further to remedy model training issues caused by the imbalanced 

data. Section 2 provides a foundation for this investigation. The use of change scores
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rather than raw scores can also be investigated when baseline metrics are available. 

Furthermore, using data collected from concussion clinics, the expected cost of 

misclassification can be used to tune appropriate model parameters to optimize model 

performance tailored to match a clinic’s expectations.
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