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ABSTRACT

iii

The United States has set an aggressive time line to not only return to the Moon, but 

also to establish a sustained human presence. In the Apollo missions dust was a significant 

factor, but the duration of those missions was short so dust and surface charging were prob

lems, but they did not pose an immediate threat. For a long-term mission, these problems 

instead become incredibly detrimental. Because of this, research needs to be conducted to 

investigate these phenomena so that mitigation techniques can be developed and tested. To 

this end, this thesis serves to demonstrate the Gas and Plasma Dynamics Lab's (GPDL) 

ability to recreate the lunar plasma environment, and to establish competence to conduct 

meaningful experimental research on this topic. This work may also serve as a guide for 

future researchers in the GPDL. Further, this work suggests avenues of near-future exper

imental work, as well as inexpensive improvements to the facility, which will increase the 

capability of the GPDL in the long term.
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1. INTRODUCTION

1.1. MOTIVATION

According to the current administration’s space exploration directive, the United 

States will

“Lead an innovative program of exploration ... to enable human expan

sion across the solar system and to bring back to Earth new knowledge and 

opportunities. Beginning with missions beyond low-Earth Orbit, the United 

States will lead the return of humans to the Moon for long-term exploration 

and utilization,” [1].

NASA’s schedule to accomplish these goals puts humans on the surface of the Moon by 

2024, with the end goal being sustainable human presence [2]. Unlike the Apollo missions, 

these will require prolonged human presence on the surface of the Moon. As such, hazards 

that were inconvenient for Apollo, but could be worked around, will be crippling for the 

planned landings. These need to be characterized and protected against as soon as possible. 

The assessment of these risks are complicated by the fact that the planned missions will take 

place at the polar regions of the Moon, unlike the Apollo missions where the landings were 

always in well-lit regions. At the poles, locations of constant darkness and constant light 

are commonly in very close proximity, leading to two additional major contributors to the 

risk of such a mission: dust transport, and arcing.
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Figure 1.1. Eugene Cernan with spacesuit covered with lunar dust.

1.2. DUST TRANSPORT

Figure 1.1 shows Apollo astronaut Eugene Cernan covered in dust following a lu

nar excursion. This was taken during Apollo 17 where the mission took place in well-lit 

regions, where dust transport is expected to be less significant. The upcoming landings, 

however, will take place at the south pole. The polar regions are continuously at or near the 

lunar terminator, which is the transition between the light and dark hemispheres.

Dust collection at the lunar terminator is much more significant because of differ

ential surface charging. In a sunlit region, the lunar surface is exposed to phenomena that 

drive the charge positive: solar wind ion collection, photoelectron emission, and secondary 

electron emission. These phenomena compete with the collection of solar wind electrons, 

which occurs very readily due to their very high thermal velocity. With the positive drivers 

present, a charge equilibrium is attained easily at a low positive potential relative to the 

ambient [3, 4]. In regions shaded by obstacles, these easily available, positive driving 

counter-balances are not present. Solar wind electrons have very little problem flowing 

around an obstacle because of their high mobility. Ions, on the other hand, are much heav

ier, and are only driven into the wake region by the negative charge caused by the electrons 

that are already there. The ions' relatively slow response to the obstacle, coupled with
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the total unavailability of photo-electron emission due to lack of sunlight, make reaching 

a charge equilibrium much more difficult [5]. In this situation there are three options to 

shed negative charge. The first is to create an electric field strong enough to force ions 

to be collected. The required field strength for this to overcome Debye shielding is un

realistically large [5]. Another option is increased secondary electron emission, but such 

emission requires an incident electron and is further limited by electron temperature and 

surface properties [6], so it cannot fully balance the current. The final easy method to shed 

negative charge is dust grain lofting [5]. Eventually, at a strong enough negative surface po

tential, the electrostatic repelling forces between like charges will overcome gravitational 

attraction, resulting in dust particles leaving the surface. The current of negatively charged 

dust leaving the surface becomes a necessary mechanism to create a charge balance on the 

lunar surface.

A recent simulation of dust lofting by Orger et. al. [7] found that depending on dust 

grain size and plasma conditions, the height that dust particles can loft to can be hundreds 

of meters. This presents a major problem for equipment on the lunar surface. When the 

dust falls back to the surface it can cover solar panels, abrade sensitive materials, or obstruct 

moving parts. All of these factors would limit the useful lifetime of rovers, spacesuits, or 

habitats if unprotected.

1.3. ARCING

A more immediate threat is arcing induced by differential charging. When mobile 

equipment or an astronaut travels from a region in front of an obstacle to the strongly 

negative environment behind the obstacle, they bring their charge with them. This creates 

an especially strong voltage gradient which can lead to arcing. The same is true in reverse 

when moving from behind the obstacle into a sunlit region. In recent experimental work 

by Chou [8], it was found that the presence of dust on equipment or spacesuits exacerbates 

the arcing risk because they introduce a second material with different dielectric properties.
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Similar triple junction interfaces, between plasma and two unlike materials, have been 

observed to cause arcing in spacecraft charging studies. Chou’s [8] experiment did not 

involve the transition between a region exposed to unperturbed plasma and a region behind 

an obstacle; this means that such transitions are not the only locations where arcing can 

occur if a dusty environment is involved. Reducing dust contamination, or finding shielding 

techniques that work despite the presence of dust is paramount for safe long-term lunar 

missions.

1.4. OBJECTIVES

Considering the immediacy of NASA’s plan to return humans to the Moon, there 

is great need for scientific research on these topics. The main goal of this work is to con

duct the first step in pertinent experimental investigations. That is, to answer the following 

question: Can the Gas and Plasma Dynamics Lab (GPDL) mimic this environment in the 

Space Tank vacuum facility at Missouri S&T? To this end, the document herein is orga

nized as follows: Section 2 is a literature review, and acts as an overview of the technical 

challenges involved in creating an environment analogous to solar wind. Section 3 pro

vides an overview of the testing facility and the plasma source used in this work. Section 

4 discusses, in explicit detail, the plasma diagnostic probes utilized to measure important 

properties of the plasma generated within the facility. Section 5 develops a model that 

utilizes data from a single diagnostic probe taken from a location of interest within the 

plasma plume to approximate the relative size of the charge exchange (CEX) ion popula

tion. This represents a key difference between solar wind and the plasma generated in a 

vacuum chamber. Finally, Section 6 draws conclusions for this work and suggests a few 

experimental investigations which the GPDL is capable of at the conclusion of this work. 

It also discusses inexpensive actions the GPDL could take in the near future to improve its 

capabilities long-term.
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2. LITERATURE REVIEW

2.1. THE LUNAR PLASMA ENVIRONMENT

Solar wind is mostly comprised of mesothermal hydrogen plasma, meaning that its 

bulk drifting velocity is between the ion’s and electron’s thermal velocities. For an average 

solar wind condition, the number density of the plasma is 8.7 cm-3, and the electron tem

perature is 12 eV. The drifting velocity of solar wind plasma is 4.68 x 107cm/s which, for 

hydrogen, corresponds to an ion energy of 1,144 eV [9]. Electron temperature and plasma 

density are important because they are used in the calculation of the Debye length, a char

acteristic length that parameterizes how far electrostatic perturbations can extend into the 

plasma. Ion energy is important because it determines how readily an ion will be attracted 

to or repelled from a charged surface.

The plasma environment on the Moon is not constant; depending on its location on 

its orbit and the solar output at a given moment, these properties can deviate significantly 

from their aformentioned values. On it’s orbit the Moon can be exposed to three types of 

plasma: unperturbed solar wind, Earth’s magnetosheath, and Earth’s magnetotail [3]. The 

Moon spends most of its time in unperturbed solar wind or the magnetosheath, but the 

time spent in Earth’s magnetotail accounts for ~6 days of its evolution around the Earth

[3]. In this region it is assumed than the flow is practically stagnant because there is no 

angular dependence of plasma properties observed by the Lunar Prospector satellite [4]. 

The environment in Earth’s magnetotail is also characterized by very low densities but very 

high temperatures of 0.016 cm-3 and 161 eV, respectively [4].

The plasma environment the lunar surface interacts with is also dependent on vari

ations in solar output. Solar energetic particle events, coronal mass ejections, and geo

magnetic storms all perturb this environment. In the data utilized by Orger et al. [7] the
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plasma density varied from less than 1 to ~60 cm-3, bulk velocity varied from ~3.8 x 107 

to ~8 x 107 cm/s, and Debye length varied from ~2 to ~30 m. Given this wide variation 

shown by just a single study, the need for a plasma source with a highly variable output is 

established.

2.2. THE VACUUM CHAMBER PLASMA ENVIRONMENT

The plasma environment created in a vacuum chamber is fundamentally different 

than the solar wind environments the GPDL is aiming to recreate. The first, and most easily 

accounted for difference is that in this work argon plasma is used, instead of hydrogen. 

Argon is 40 times heavier than hydrogen, so its motion will be much less effected by local 

electric fields. This is compensated for by matching the kinetic energy of solar wind. 

This is because whether a charged particle is collected or repelled by a charged surface is 

determined by its ability to overcome electrostatic forces across the distance of the sheath; 

thus energy, not momentum, is the pertinent property.

Another easily accounted for difference is that a plasma source will create a plasma 

much denser than solar wind, thus the vacuum chamber environment needs to be scaled to 

the lunar environment. The metric with which to do this is the Debye length, AD. This is the 

characteristic length of how far electrostatic perturbations propagate into the surrounding 

plasma. The sheath thickness, d , is a multiple of the Debye length determined by the 

surface potential and the Mach number of the plasma entering the sheath, Equations (2.1) 

through (2.3) (If the plasma is traveling sub-sonic, it accelerates to M=1 at the edge of the 

sheath). To ensure the sheath thickness around the test article is representative of what will 

occur on the Moon, the Debye length must be scaled to the same proportion of the test 

article scale.

d = A d
4V2 ( e (^plasma ŝurface ) \   ̂ 1
~ V \  kTe ) M

T 1/2
(2.1)

9
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where d is the sheath thickness,AmathrmD  is the Debye length, e is the fundamental 

charge, k is the Boltzmann constant, Te is the electron temperature, M is the plasma Mach 

Number, and 0plasma and 0 surface are the plasma potential and surface potential, respectively.

A d
ls0Te

en
(2.2)

where s 0 is the permittivity of free space and n is the plasma number density.

M = — iL (2.3)
/Mey  m[

where mi is the mass of an ion and vbu]k is the plasma’s bulk drifting velocity.

The last major environmental difference addressed in this work is the presence of 

low energy ions, which is not significant near the lunar surface. These low energy ions are 

generated by charge exchange (CEX) collisions with neutrals from either the background 

gas or unionized feed gas (referred to as CEX ions herein). The presence of CEX ions is 

a significant issue because, as shown in Equation 2.1, the sheath thickness is dependent 

on the ion’s speed. The CEX ions will create a much thicker sheath, which will impact 

surface charging. The electric propulsion community has developed a workaround for the 

presence of unnatural CEX ions in the plume of an ion thruster. Put simply, this method 

is to take plasma diagnostic data at several different background pressures and extrapolate 

the results to zero pressure [10, 11, 12, 13]. This method is sound and conceptually simple, 

but unfortunately it will not work for this study, at least not completely. It is a good way 

to characterize the difference between a plasma source operating in a vacuum chamber and 

one operating in space, but it does not account for the difference between plasma generated 

by an artificial source and real solar wind. Specifically, it does not account for the CEX 

ions generated by unionized feed (appropriate for its intended application, but not for this 

work). Polansky [3] also mitigated them using a biased plate to remove them from the
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environment. Suggestions for adapting these methods to the GPDL’s setup are made in 

Section 6.3. Currently, the best option for the GPDL is to minimize the CEX ion population 

by minimizing the background pressure and maximizing the ionization fraction.
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3. TESTING FACILITY OVERVIEW AND CHARACTERIZATION

3.1. GENERAL OVERVIEW

This Section provides an overview of the plasma source and vacuum facility used. 

The benefits of a plasma source with a wide variety of operating conditions is discussed. 

The operation of the vacuum facility is qualitatively discussed. An experiment to char

acterize its performance is analyzed. The pressures in the GPDL facility at various flow 

rates indicate that this facility has similar capabilities to other large scale vacuum facilities 

in academia. The composition of the background gas is determined, which will be useful 

when characterizing the population of CEX ions in Section 5.

3.2. VEECO® RF PLASMA SOURCE OVERVIEW

The plasma source utilized in this work was purchased commercially from Veeco® In

struments Inc. This plasma source was chosen because it will readily ionize hydrogen gas, 

which is a factor of key importance if the chemical interaction between various materials 

and solar wind is to be investigated. This is a possible direction the GPDL will take long

term. However, in this and in near-future work, argon will be used because it is chemically 

inert and easier to ionize. This will still allow for several important experimental inves

tigations to be conducted. These include the impact of local topography on lunar surface 

charging, dust grain lofting in lunar or large asteroid regolith, or coupling between solar 

wind and planetary magnetic fields. Further potential avenues for near-future work will be 

discussed in Section 6.3.

The plasma source uses triple-coiled radio frequency (RF) antenna to generate 

plasma within its discharge chamber. The plasma beam is extracted and focused using 

three Molybdenum grids: a positively biased screen grid to maintain the plasma discharge
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and to drive the beam voltage, a negatively biased accelerator grid to extract ions from the 

discharge chamber and to aid in beam focusing, and a grounded deceleration grid to focus 

the beam and to protect the acceleration grid from CEX ion impingement [14]. The plasma 

source also uses an RF generated neutralizer to produce electrons so that the source does 

not accumulate a charge during operation. Figure 3.1 shows the source while in operation 

with a sample test article to show how the GPDL can study the interaction between the 

plasma plume and an object.

Figure 3.1. Photograph taken from inside the vacuum chamber while the Veeco® RF 
plasma source is in operation.

The Veeco® source also has a broad operational envelope capable of producing 

a plasma beam with voltage and current ranging from 100-1500 V and 100-500 mA re

spectively. Table 3.1 shows 16 points within the envelope for which stability of the beam, 

defined by a steady discharge and low accelerator impingement current, has already been 

established [15]. Discharge voltage, discharge current, and accelerator voltage represent 

the 3 main controller inputs. For a more detailed characterization of the source’s perfor

mance refer to Sections 4 and 5.
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Table 3.1. Operational envelope of the Veeco® RF plasma source.

Discharge 
Voltage, V

Discharge 
Current, mA

Accelerator 
Voltage, V

Accelerator 
Current, mA

Netralizer 
Emission, mA

Chamber 
Pressure, uTorr

100 100 -300 4 125 83.3
100 150 -400 6 188 85.2
100 200 -500 8 250 89.5
250 100 -200 4 125 85.0
250 300 -500 11 375 91.6
250 400 -700 14 500 92.2
500 200 -100 7 250 No Data
500 300 -200 10 376 92.2
500 400 -400 14 500 112.0
1000 200 -100 4 250 96.0
1000 300 -100 6 377 95.3
1000 400 -100 8 500 101.0
1500 200 -300 4 249 98.9
1500 300 -200 6 378 100.0
1500 400 -200 7 500 98.3
1500 500 -200 11 625 108.0

3.3. VACUUM FACILITY OVERVIEW

The vacuum facility utilized in this, and in ongoing work, is cylindrical, 6 feet in 

diameter, 10 feet in length. The vacuum is pumped by four hot-oil diffusion pumps backed 

by a rotary vane pump and roots blower. Each diffusion pump operates at a rate of 200,000 

L/s if acting on air. Figure 3.2 shows the chamber’s setup and dimensions. Because each 

pump behaves slightly differently depending on which and how many pumps are used, the 

chamber’s base pressure varies in the range 1-3 x 10-5 Torr. The vacuum system is set up 

such that any of the four diffusion pumps can be operated independantly, all four at once, 

or in any arbitrary combination. Pumps 2 and 3 are the most stable, achieving a true steady 

state during operation. Pumps 1 and 4, on the other hand, run into thermal issues. Pump 1 

will overheat its oil, while Pump 4 rapidly overheats its cooling water. Both can be operated 

safely, but require regular monitoring such that they may be shut down momentarily to 

cool when they approach overheating. Diffusion pumps operate based on the existence
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of a strong enough oil temperature gradient that convection occurs; as long as a sufficient 

gradient is present, the pump will continue to produce vacuum whether or not the heating 

element is on at a given moment. This is displayed empirically by Figure 3.3, a plot of 

oil and cooling water temperature along with the corresponding tank pressure from when 

Pump 4 was run on its own. The slight uptick in pressure just after 16:00 corresponds to 

the incipience of argon gas being fed into the tank, not a variation in pumping performance. 

Also of note is the spike just before 14:00. This corresponds to the transition between rough 

and high vacuum. The pressure gauges used in this chamber were designed for atmosphere 

down to rough vacuum («10-3 Torr) and high vacuum (below «10-5 Torr); they do not 

handle pressures between those two regimes well. The spike is not apparent when the 

chamber is re-pressurized because that process is much faster; the time in transition is not 

long enough to appear on the pressure plot [15].

Figure 3.2. Schematic and photograph of the vacuum facility.

3.4. VACUUM CHAMBER CHARACTERIZATION

3.4.1. Experimental Overview. The primary goal of this experiment is to char

acterize the background gas within the vacuum chamber for gas flow rates which are used 

during the plasma source’s operation. The desired results are tank pressure and composition 

so collisions with the background gas may be characterized in Section 5.
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Figure 3.3. Oil temperature, vacuum pressure, and cooling water temperature vs. time 
during the operation of Pump 4.

Due to cooling system constraints, not every pumping configuration is considered 

in the performance characterization. Pumps 1 and 4 were not run on their own in the 

experiment; if only one is needed, Pumps 2 and 3 are better options. Also, all four pumps 

were not turned on at once. This could be done safely in the future, but it would require 

constant monitoring instead of regularly checking the oil and water temperatures so it is 

unlikely to be of value. For each considered pumping configuration, the base pressure for 

air is determined, after which argon gas is fed into the chamber with flow rates increasing 

in increments of 10 sccm.

3.4.2. Results and Discussion. Table 3.2 shows the steady-state pressure corrected 

for argon for each set of operating conditions. For conditions where argon is present these 

values are corrected according to Equation 3.1 [10].

Pcorrected — ( îndicated Pbase) X f corr + Pbase (3.1)
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where f corr is a correction factor provided by the manual for the pressure gauge [16]; for 

argon it is 0.8.

Table 3.3 shows the mole fraction of argon in the vacuum chamber. This is done as

suming that the presence of nitrogen and oxygen remain relatively constant as more argon 

is added. This will over-predict their contribution to the background gas composition be

cause nitrogen and oxygen are lighter than argon, therefore, the diffusion pumps will act on 

them relatively more effectively. Knowledge of the background gas’s composition is useful 

when characterizing the CEX ion population, the presence of which is a notable difference 

between plasma generated in a vacuum chamber and the solar wind environment. The un

certainty of the indicated pressure is ±30%. The uncertainty of the flow rate is ±0.8% of 

the reading ±0.1 sccm.

Table 3.2. Steady-state pressure for various operating conditions in uTorr.

Pump Configuration 2 3 2-3 1-2-3 2-3-4
0 sccm argon in (Base Pressure) 30 10 17 14 14

10 sccm argon in 46 32 28 21 21
20 sccm argon in 68 52 37 29 29
30 sccm argon in 95 79 44 34 34
40 sccm argon in 110 100 55 40 40

Table 3.3. Mole fraction of argon in the tank.

Pump Configuration 2 3 2-3 1-2-3 2-3-4
0 sccm argon in (Base Pressure) 0.0 0.0 0.0 0.0 0.0

10 sccm argon in 0.4 0.7 0.4 0.3 0.3
20 sccm argon in 0.6 0.8 0.6 0.5 0.5
30 sccm argon in 0.7 0.9 0.6 0.6 0.6
40 sccm argon in 0.7 0.9 0.7 0.6 0.7

20 sccm argon is the highest flow rate that Veeco® deems necessary to operate 

this plasma source and is the flow rate which is used hereinafter [14]. At this flow rate 

the tank settles to pressures between 2.859 and 6.820 x 10-5 Torr. Despite the system’s
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modest base pressure, the plasma source can be operated at similar background pressures to 

those within other highly regarded facilities performing similar work [10, 17, 18, 19]. The 

operating pressures stated therein are slightly lower than those which are attainable by this 

facility, but the setup herein uses significantly more gas; this vacuum facility’s capabilities 

are comparable. This is due to the very rapid throughput of the diffusion pumps utilized by 

the GPDL.
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4. PLASMA DIAGNOSTICS

4.1. OUTLINE

This Section covers the plasma diagnostics used in this work and provides local 

plume properties for a sample location vs. controller inputs. Probe theory is well estab

lished in literature, but all-encompassing guides to analyzing probe data are hard to come 

by. This Section aims to fill that gap for Langmuir and Faraday probes by not only stating 

the methods used, but explicitly showing how each step was performed. Figure 4.1 shows 

the locations from which data was taken in this work.

Sections 4.2 and 4.3 provide guides to analyze data recorded from their respective 

probes, including explicit samples and rigorous uncertainty quantification. Section 4.4 

shows an example of how different diagnostic probes can be used to validate one-another, 

known as cross-calibration. Performance maps of plasma property vs. controller inputs are 

provided and results of an ongoing spatially resolved plume characterization are shown in 

Section 4.4.

4.2. LANGMUIR PROBES

4.2.1. Overview. Langmuir Probes are a very important tool in plasma diagnos

tics, as they can be used to measure a number of different properties. This is important 

because several other plasma probes measure a single property, and Langmuir probes can 

be used to tie the information from multiple probes together. This is referred to as cross

calibration. In this work, a Langmuir probe is used to find plasma potential, ion and electron 

density, and electron temperature. Plasma potential and ion density are used to predict ion 

flux, which is compared to that directly measured by the Faraday probe.
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Figure 4.1. Measurement locations thus far.

Langmuir probes are simply a biased electrode immersed in plasma. The applied 

bias is swept from ion saturation, sufficiently negative to repel all electrons, to electron 

saturation, sufficiently positive to repel all ions. Typically this means a small to moderate 

(more than 10, less than 100) negative voltage to a moderate positive (more than 30, less 

than 100) voltage. At sufficiently negative voltages the ion current will usually saturate, and 

in an ideal probe the electron current will saturate at and above the plasma potential. True 

electron current saturation is rare for a multitude of reasons. The most significant of cause 

is that the plasma sheath surrounding the probe expands with increasing voltage, allowing 

more electrons to be attracted to the probe. Instead of a maximum collected current, elec

tron saturation typically appears as a ‘knee’ in the current vs. voltage characteristic (I-V 

trace herein). This is shown in Figure 4.2.

The I-V trace is split into three regimes, ion saturation, electron retarding, and elec

tron repelling. The ion saturation regime is voltages below the X intercept. The X intercept 

is known as the floating voltage, and is where equal number of electrons and ions are col-
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Figure 4 .2 .1-V trace with knee at plasma potential and the three regimes labeled. The axes 
are arbitrary.

lected by the probe. The current collected in the ion saturation region is mostly, and at 

sufficiently negative voltages (where the current plateaus), all ions. The electron retarding 

region is between the floating potential and plasma potential. This regime selectively fil

ters electrons according to their energy; near the floating potential, only the high energy 

tail of the electron’s energy distribution can make it to the probe without being repelled; 

as the plasma potential is approached, the number of electrons that can overcome the en

ergy barrier to be collected increases. In this regime ions are still being attracted; the ion 

current collected by the probe is relatively unchanged [12, 20]. The current is positive 

in the electron retarding regime because electrons have much less mass and are therefore 

much more mobile; they are more readily available to be collected. The electron saturation 

regime is voltages above the plasma potential. Here, the probe attracts electrons and repels 

ions. In stationary plasma, at voltages above the plasma potential no ions are collected. In 

a moving plasma, this is only true for surfaces parallel to the motion of the plasma. To re

pel ions from being collected by non-parallel surfaces, the applied voltage must be greater 

than the ion’s retarding voltage, at voltages this high the attracted electron current would 

likely melt the probe [21]. This additional ion current stays relatively constant throughout
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the I-V trace, so it shifts the entire trace negative by a small constant. The largest impact 

of this is that it causes the over-prediction of ion density. This can be accounted for in 

post-processing, but methods to do so presuppose knowledge of the direction of the ion's 

local bulk motion[21, 22]. Luckily, for a cylindrical probe, if the length of the probe is 

sufficiently greater than the radius the impact of this end-effect is negligible [22].

The Langmuir probes used in this work are cylindrical, with diameter 1.65 and 

length 20.5 mm. Voltage is applied by B& K Precision'® and BlackJack Test Ins.™ power 

supplies. Current is measured via the voltage drop across a 14.97 kQ shunt resistor, read 

by two Tektronix® V2221 voltage probes. One of the probes directly measured the probe 

bias, the other measured the voltage at the other side of the shunt, VPower in Figure 4.4. Data 

was recorded synchronously with a DATAQ® DI-145, removing the need for an automatic 

sweep (other than for convenience). The probes were placed on a rake, shown in Figure

4.3, to interrogate multiple plume locations in quick succession. All voltage sweeps were 

taken from -30 to 60 V. The probe circuit is shown in Figure 4.4.

4.2.2. RF Compensation. Usually, for RF generated plasma, the plume is per

turbed by the propagating RF signal; this results in plasma potential fluctuating at the RF 

frequency with a magnitude of Te/e  [23]. This perturbs the I-V trace such that useful infor

mation cannot be obtained. RF compensated probes, which essentially act as narrow-pass 

filters tuned to the RF frequency, are often required to obtain meaningful data from an 

I-V trace. However, comparison of our (uncompensated) collected data to that in Lobbia 

and Beal [21] from a Hall Effect thruster, where breathing and spoke modes cause similar 

plasma fluctuations to an RF signal, shows that RF noise is not significant in our setup. 

In the published data the magnitude of the noise increases substantially in the electron 

saturation region (above the plasma potential) [21]. The noise magnitude in our data is 

constant throughout the trace, and on the order of the voltage probe uncertainty divided 

by the shunt's resistance. Therefor the experimental noise is more likely characterized by 

measurement inaccuracy than by fluctuating plasma properties.
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(a) Side View (b) Front View

Figure 4.3. Photograph of the Langmuir probe rake installed in the vacuum chamber.

4.2.3. Data Analysis. Consider the I-V trace shown in Figure 4.5 taken at the cen

terline of the plume, 17.5” downstream of the exit plane. For this trace the source was 

outputting a 400 mA beam at 500 V. The Accelerator grid was biased to -400 V. There is 

no ‘knee’ at the plasma potential, because the electron Debye length is on the same or

der as the probe radius; above the plasma potential the sheath expands too rapidly for a 

change in slope of the I-V trace to be apparent. This claim will be verified at the end of this 

assessment.

The first step in analyzing Langmuir probe data is to find the floating potential 

[12, 20, 21, 24]. Unfortunately root finding algorithms fail for this data set, even those that 

bracket the root. This is because in the ion saturation regime the signal to noise ratio is 

poor; any conventional root finding algorithm has many false zeros to converge to. Instead,
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Figure 4.4. Langmuir probe circuit.

(a) The whole probe characteristic (b) Zoomed in on the floating potential

Figure 4.5. Data collected from a voltage sweep taken in this work.

the floating potential was found by starting at the highest probe bias and approximating 

the current by averaging together the data inside a window with half-width equal the volt

age probe's uncertainty. The considered voltage is iteratively decreased until the returned 

average is within the noise threshold of the data. This approach is unorthodox, so it was 

validated by measuring the floating potential directly. This was done by unplugging the 

probe from the power circuit and measuring the voltage it maintained. Of course, the volt

age probe circuit has a very large, but finite, resistance to ground. However, the floating 

voltage is small, so the amount the resulting measurement will be perturbed from the true 

floating potential is negligible. The floating potential found by the root of the I-V trace and 

by direct measurement are in agreement to within the uncertainty of the voltage probe's
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Table 4.1. A comparison between calculated and directly measured floating potential.

From the I-V Trace Directly Measured
Value, V 7.7888 7.6706

Uncertainty, V 3.3786 0.1520
Current to Ground, mA N/A 0.0022

measurement. This is shown in both Table 4.1 and Figure 4.5, see Section 4.2.5 for details 

for uncertainty quantification. The associated current to ground was calculated using the 

most conservative estimate of the voltage probe’s effective resistance to ground: 3.5 MQ. 

The resulting current to ground is approximately one fifth of the magnitude of the noise, 

determined by inspection of Figure 4.5b. Thus, the algorithm to find the root of the I-V 

trace is to be trusted, and direct measurement of floating potential is unneeded and there

for will not be performed hereinafter. It should also be noted that the directly measured 

floating potential will not be used in the determination of plasma properties, it was simply 

a verification that the algorithm converges to the physical value.

With the floating potential found, the next step is to remove the ion current from the 

I-V trace. This is done by fitting a line through the ion saturation regime, as shown in Figure 

4.6 [21]. It is worth noting that the line is fit through only the truly linear portion of the ion 

saturation regime, not the entire voltage range. This line is then used to approximate ion 

current throughout the trace. Subtracting the ion current yields the isolated electron current. 

A semi-log plot of the electron current for voltages above the floating potential is needed 

to find electron temperature and plasma potential. The natural logarithm operation inflates 

the impact of the data’s noise, so a 4th order polynomial is fit to the electron current above 

the floating potential. The fit and residuals are shown in Figure 4.7. For the sample shown 

R2 is 0.9993, so the fit accurately represents the data and plotting the natural logarithm of 

the data fit will return meaningful results.
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Figure 4.6. I-V trace with a line fit to the ion saturation regime to estimate ion current 
through the entire trace.

(a) The fourth order polynomial fit overlain onto (b) Residual plot, as a percentage of the average 
the raw data. electron current.

Figure 4.7. Polynomial fit of the electron current in the electron saturation and electron 
retarding regimes, along with the associated residual plot.
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On the semi-log plot, a line is fit to the first few voltages above the floating potential, 

referred to as the electron temperature line. Electron Temperature is the inverse slope of 

this line. Often, a small, shallow sloped tail exists just above the floating potential, which 

will artificially increase the measured electron temperature. This tail is algorithmically 

ignored by instead defining the electron temperature line as a tangent line through the point 

of maximum slope. A second line, referred to as the plasma potential line, is drawn through 

the last few data points in the log plot. The voltage where these two lines intersect is the 

plasma potential. The log plot of electron current and overlain electron temperature and 

plasma potential lines is shown in Figure 4.8.

Figure 4.8. Natural log of electron current vs. probe bias with electron temperature and 
plasma potential lines overlain.

Electron and Ion density are then found using equations (4.1) and (4.2).

ne =
Ie,sat 2n me

eAprobe eTe
(4.1)

ni =
exp (1/2) A,sat mi

eAsheath
(4.2)
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Table 4.2. Plasma properties attained from the shown I-V trace.

Property Value Uncertainty, same units as property
Te,eV 4.128 0.8663

0 plasma, V 19.2526 0.152
_3ne, cm 3 1.718 x 107 4.384 x106
_3ni, cm- 3 8.647 x 108 7.129x10 8

4 D,n cm (rprobe/4 D,i) 0.0514 (1.6061) 6.018 x 10- 4

4 D ^ cm (rprobe/ 4 D,e) 0.3644 (0.2264) 2.185x10- 4

where Ie,sat is the electron current collected at the plasma potential, and / i,sat is the ion 

current collected at a strongly negative bias relative to the plasma potential. Because the 

linear fit of ion saturation assumed a thin sheath, it is appropriate to assume Asheath « Aprobe. 

Finally, the electron and ion Debye lengths are found using Equations (4.3) and (4.4).

4 D,e
gpTe
ene

(4.3)

4 D,i =
gpTe
eni

(4.4)

The results of this assessment are shown in Table 4.2. The Debye length for elec

trons is just less than one fourth of the probes radius, this is why the sheath expands so 

rapidly above the plasma potential and methods that rely on finding the ‘knee’ in the unal

tered I-V trace are not reliable for finding the plasma potential for this setup.

4.2.4. Accounting for Sheath Expansion. According to Lobbia and Beal [21], 

for this Debye length scale the results need to be corrected for orbital motion limited ef

fects. That is, including angular momentum considerations in the calculation of ion density 

[21]. Nominally, the electron current does not need correcting because it is measured from 

data collected at the plasma potential, where no sheath exists. In this work, accounting for 

sheath expansion is neglected for two reasons, one from literature and one from experi

mental result: Polansky [3] used similar methods for conditions where the Debye length is
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much longer relative to probe radius and attained valid results, and more importantly, that 

predictions of ion flux made from the measured plasma potential and ion density agree with 

the ion flux directly measured by the Faraday probe. See Section 4.4 for details.

4.2.5. Uncertainty. With plasma diagnostics, it is important to report uncertainty, 

because the measurement error between setups can be vastly different. Equations (4.5) 

through (4.11), adapted from Lobbia and Beal [21] and Lobbia and Gallimore [25] achieve 

this. For the probe setup therein, discreet voltage sweeps were utilized, with current vs. 

voltage measurements taken a few volts apart. The separation between measurements is 

denoted as AVbias in the equations below. This work utilized a continuous sweep, hence 

using the difference between voltages in the sweep would result in a singularity. As a 

rough workaround, this work used the span of the voltage range for which the electron 

temperature line is a good fit in the semi-log electron current plot, defined by the range 

in voltages where the difference between the line and the semi-log plot is less than 0.3%. 

Quantitative justification for this substitution is difficult, but qualitatively the resulting trend 

is reasonable, if a wider portion of the data fits into the linear region of the semi-log plot 

the uncertainty in the electron temperature will decrease. Making this substitution doesn't 

change the equation in an appreciable way, it simply uses an alterative value to normalize 

the probe bias uncertainty to. Anecdotally, this substitution returns a value on the same 

order as the difference between voltages in Lobbia and Gallimore [25].

dAprobe = 2^ J  (Lprobe + r  prate) d^robe + rprobe dLprobe (4.5)

d1probe = 21probe
If dVbias \ 2 + / dRshUnt \ 2

\  \ Rprobe Rshunt/ \ Rshunt /
(4.6)

dTe = r eU2 | + 2 ^d/e,sat Te ^
lAVWi Ie,sat AVb ias

(4.7)
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dne = n
d1e,sat\ + / dAprobe\ + / dTe \ 
Ie,sat / \ Aprobe / \ 2Te/

(4.8)

dni = n^ / d/j,sat 
\ î,sat

2
+ dAprobe

Aprobe

2
+ dTe ) 2

2Tej
(4.9)

dVp V(dVbias )2 + (AVbias )2 (4.10)

dVf = ^  (dVbias )2 + ^  (4.11)

where, in this case, the operator d means uncertainty. Uncertainty in Debye length is not 

explicitly defined in Lobbia and Beal [21] or Lobbia and Gallimore [25] , but its value can 

be easily determined using the same standard propagation techniques, Equations (4.12)- 

(4.13).

dd D,e = d D,e ( § ) 2 + ( ^ )\ 2Te / \ 2ne /
(4.12)

ddD,i = d D,i (W ) 2 + ( T - )\2Te \2m
(4.13)

4.3. FARADAY PROBE

Similar to a Langmuir probe, Faraday probes are simply an electrode immersed in 

plasma with a voltage bias applied and current measured via a voltage drop across a shunt 

resistor. What is special to a Faraday probe are all of the design considerations that spe

cialize it to measuring ion current density. Instead of the collecting surface being a narrow 

cylinder it is a flat circle with a relatively large radius surrounded by a guard ring. Nomi

nally, a constant negative voltage will be applied that is sufficiently strong enough to repel
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all electrons from reaching the collecting surface, i.e. at or below the electron repelling 

voltage. The resulting collected current is divided by the collection area yielding the ion 

current density. This process is shown by Equations (4.14) and (4.15). The negative in 

(4.15) is to account for collected ion current being considered negative by the sign conven

tions used in this work. The guard ring is biased to the same voltage as the collector; its 

purpose is to mitigate edge effects by creating a uniform sheath across the surface of the 

collector, effectively shielding the collector from perturbations caused by the corner of the 

collecting surface [3, 11, 12].

Iprobe
power -  Vbi

Rshunt
(4.14)

p̂robe
^collector

ion (4.15)

Faraday probes are a very powerful tool in plasma diagnostics. They can be trans

lated across the plume to measure the radial distribution of the ion flux from which the 

plume divergence half-angle can be attained. The variance of the ion flux distribution with 

background pressure is of great importance in the electric propulsion community; this is 

because it represents a key facility effect that needs to be accounted for when predicting 

the actual in-orbit performance of gridded ion and Hall-effect thrusters [10, 11, 13]. Due 

to hardware and time constraints this is not performed in this work, but is planned for in 

the very near future. In this work, Faraday probe data is only taken along the centerline 

of the plume at the location indicated by the red circle in Figure 4.1 to act as a valida

tion of Langmuir probe data. This is obviously not ideal, but the information lost is not a 

debilitating factor because this work focuses on locally mimicking the lunar plasma envi

ronment, not characterizing the performance of a thruster. Brown et al. [11] recommends 

that when a Faraday probe is to be swept across the plume a cylindrical coordinate system 

be used in the near field and a spherical coordinate system be used in the far-field. For



29

Figure 4.9. Faraday probe circuit.

the near field it is also recommended that the probe’s collecting surface stay parallel to the 

source’s exit plane and for the far field the probe stay pointed at the centerpoint of the exit 

[11]. Following these coordinate systems and pointing conventions will simplify the appli

cation of geometric correction factors according to the methods therein. These corrections 

are neglected in this work because all measurements were taken along the centerline. For 

both near and far field, the spatial resolution of the probe is the diameter of the collector; 

measurements taken within that distance of each-other cannot be considered unique.

The Faraday probe circuit used in this work is shown in Figure 4.9. The probe’s 

mounting within the vacuum chamber is shown in Figure 4.10. In this work an additional 

shunt resistor of equal value was used between the guard ring and power supply in an 

attempt to keep it at the same bias as the collector.

Nominally, the electron repelling voltage is known beforehand and the probe can 

simply be biased to that value to measure ion flux. This value cannot be arbitrarily as

sumed, however, and if it is unknown it must be found by sweeping to probe voltage until 

the current stops measurably increasing. This typically occurs at small to moderate nega

tive voltages, but in some instances it is below -100 V [11]. The electron repelling voltage 

at the centerline for a given axial distance can be assumed sufficiently negative to repel 

electrons for every measurement at that axial distance [11] (or sweep radius if in the far
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Faraday Probe 
Collector .

Faraday Probe 
I Guard Ring

(a) Front view (b) Side view

Figure 4.10. Faraday probe as installed in the vacuum chamber.

field). The results for such a sweep are shown in Figure 4.11a. This voltage sweep asymp

totically approaches a value then begins increasing again. Current saturation is assessed 

using the analytic model for electron flux to a charged surface, Equation (4.16) and Figure 

4.11b. The collected current saturates before the anomalous current increase begins so the 

anomaly isn’t a significant issue. The cause of this increasing current is still unknown, but 

a reasonable explanation is that the sheath begins expanding beyond what the guard ring 

can protect against at very negative voltages. The uncertainty of the measured ion flux is 

defined using standard uncertainty propagation practices, Equation (4.17).

je = ene
Te e(Vbias ^plasma )

2n m eexp — —
(4.16)
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(a) Sweep to find the electron repelling voltage (b) Normalized electron flux from the analytic
model

Figure 4.11. Determination of electron repelling voltage.

where j e is the electron current density to a surface with voltage Vbias immersed in plasma 

with potential ^plasma.

djion ( d1probe \ 2

p̂robe
ddcollector

ĉollector
(4.17)

4.4. RESULTS

4.4.1. Local Plume Properties. Table 4.3 compares the ion current density pre

dicted from Langmuir probe data, calculated from Equations (4.18)-(4.19), with that di

rectly measured from the Faraday probe.

2 e
j ion,predicted — enivi — eni (Vbeam — ^plasma)Mi

(4.18)

djion,predicted — j ion,predicted
dU{ + 1 d^plasma
ni 2 ^plasma

(4.19)
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In 14 of the 16 data points the difference is less than uncertainty, and in 12 of the data points 

the difference is less than half of the uncertainty. The mean discrepancy normalized to the 

uncertainty is 34.49%.

Table 4.3. Comparison between ion flux predictions from Langmuir probe data and that 
directly measured by the Faraday probe.

Beam Beam Ion current density, mAcm 2 Difference/
Voltage, V Current, mA Predicted (Langmuir) Measured (Faraday) Uncertainty

100 100 0.1733 ± 0.2717 0.0886 ± 0.0047 0.3117
100 150 0.1661 ± 0.2223 0.1293 ± 0.0048 0.1655
100 200 0.1684 ± 0.2916 0.1617 ± 0.0049 0.0230
250 100 0.1254 ± 0.6227 0.1348 ± 0.0048 -0.0151
250 300 0.7015 ± 0.7129 0.3558 ± 0.0059 0.4849
250 400 0.3264 ± 0.455 0.4758 ± 0.0067 -0.3283
500 200 0.7634 ± 0.4993 0.3139 ± 0.0056 0.9002
500 300 0.6845 ± 0.6084 0.4504 ± 0.0065 0.3848
500 400 0.5003 ± 0.5414 0.5681 ± 0.0074 -0.1193
1000 200 0.7744 ± 0.6004 0.3435 ± 0.0058 0.7177
1000 300 0.5853 ± 0.618 0.4651 ± 0.0066 0.1945
1000 400 0.7217 ± 0.5937 0.4889 ± 0.0068 0.3921
1500 200 0.4902 ± 0.7527 0.3111 ± 0.0056 0.2379
1500 300 1.2664 ± 0.7567 0.3712 ± 0.006 1.1830
1500 400 1.3273 ± 0.8356 1.4464 ± 0.0066 -0.1425
1500 500 2.5744 ± 1.7679 0.578 ± 0.0077 1.1292

mean 0.3449

Polansky [3] used ion flux measured by the Faraday probe along with plasma po

tential to determine the ion density, reducing uncertainty. In this work, due to both time 

and hardware constraints, Faraday probe data is only available at the centerline, 44.45 cm 

downstream of the exit. Given this limitation, that method is not available for the entire 

measurement field, so the Faraday is used only to validate the Langmuir probe data for a 

test case. The uncertainty for predicted ion flux is high, regularly greater than 100%, be

cause uncertainty in ion saturation current, electron temperature, probe area, and plasma 

potential are all involved in its calculation. Despite the high uncertainty, the difference
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between predicted and measured ion flux is the best validation metric available with the 

given hardware because nearly all of the Langmuir probe’s measured properties go into the 

prediction of ion flux.

With the probe data validated by cross calibration, the Langmuir probe data can be 

used to create a meaningful performance map of the plasma source. This is shown for each 

plasma property of interest in Figure 4.12. Not many quantitative conclusions can be drawn 

from these maps without a specific set of target conditions, but qualitative examination of 

trends is productive to further verify the probe readings and will help in future work. Many 

of the trends displayed make physical sense. Floating potential has obvious positive trends 

with both beam current and beam voltage, because it will take a higher voltage to reach 

current equilibrium in a more ion-rich environment and with higher energy ions. There is a 

positive correlation between electron temperature and plasma potential, Figure 4.13. This is 

to be expected because more energetic electrons force a greater difference between plasma 

potential and floating potential. With the beam operating at 300 mA the ion density is 

greater at 300 V than 1000 V, the same total current but moving faster reults in a less dense 

flow. These maps do not account for the accelerator grid voltage, but each beam current 

and voltage set has an associated ideal accelerator voltage. This voltage which represents a 

minimum impingement current; thus accelerator voltage is not a truly independent variable 

if the ideal voltage is used in all cases [14]. Also of note is that these maps contain no 

information regarding plume divergence. The expected trend that a higher beam current at 

the same voltage and lower beam voltage at the same beam current result in denser plasma 

is followed generally, but not universally because of unaccounted differences in plume 

divergence.
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(a) Ion density

(c) Electron temperature

(e) Ion Debye length

cm'3x107

200 400 600 800 1000 1200 1400
Beam Voltage, V

(b) Electron density
v

200 400 600 800 1000 1200 1400
Beam Voltage, V

(d) Plasma potential

(f) Floating potential

(g) n  /ne

Figure 4.12. Performance maps of the Veeco® RF ion source, taken at the centerline 17.5 
downstream of the exit plane.
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Figure 4.13. Plasma potential plotted against electron temperature.

4.4.2. Ongoing Plume Characterization. Figure 4.14 shows spatially resolved 

maps of the plasma properties created when the plume is operating at 500 V and 400 mA. 

This is an ongoing work, as only 9 locations have thus far been considered, but the informa

tion provided is sufficient to obtain initial results for the CEX population model proposed 

in Section 5, which is what everything thus far has been building towards.
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(a) Ion density

(c) Electron temperature

(e) Floating potential

(g) Debye length scaling factor

(b) Electron density

(d) Plasma potential

(f) Ion Debye length

(h) fti/fte

Figure 4.14. Spatially resolved plume maps for the Veeco® RF plasma source operating at 
500 V, 400 mA.
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5. MODELING LOCAL CHARGE EXCHANGE ION DENSITY

5.1. REASONING FOR THE MODEL

Knowledge of the local CEX ion population is a significant gap in the plume char

acterization methods mentioned thus far. The GPDL initially planned to obtain this using a 

retarding potential analyzer, RPA. RPA’s act similarly to a Faraday probes, but by forcing 

the ions to flow through a series of electrostatically biased grids they selectively filter ions 

based on their energy. By sweeping the applied voltage the probe directly measures the ion 

energy distribution. Nominally, the CEX population would appear as a small bump on the 

low energy tail of an otherwise Maxwellian distribution. Unfortunately, due to time con

straints caused by the campus shutdown in response to COVID-19, the required hardware 

is still not available for use. The GPDL is working to get this hardware operational, but 

the time-frame is unknown. With the RPA currently unavailable, an alternative approach 

to determining the relative CEX ion population size is desired. This Section proposes and 

applies a model to determine if such an assessment can obtain meaningful results without 

performing a fully kinetic simulation of the plume as discussed by Wang et al. [26]. It 

should be noted that this is meant to be a back-of-the-envelope approximation. The sim

plicity of this model means that it will maintain its value, even after the RPA is working. 

The translating stage takes approximately 90 minutes to interrogate the plume per probe. 

Due to current cooling constraints on the plasma source this corresponds to the maximum 

duration the source can be operated in one day without burning out the recirculating water 

pump. To perform a full characterization of a new operating condition, it will take a full 

day of experimentation per probe. This is simply too great a time commitment if a particu

lar set of plume conditions is sought. This is where the usefulness of this model is realized, 

it only requires Langmuir probe data for an abridged portion of the plume. Such data takes
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approximately 15 minutes to obtain, post-process, and assess using this model, allowing 

for 6 operating conditions to be tested in a single day. Once a set of desired conditions is 

found, then more rigorous plume characterization methods can be applied.

The layout of the remainder of this Section is as follows: Section 5.2 defines prop

erties of the plume that cannot be directly determined by the current diagnostic probe array. 

Section 5.3 shows the derivation of a model of local CEX ion density population. Section 

5.4 presents a spatially resolved map of the CEX ion density for the plasma source operat

ing at 500 V, 400 mA, and a potential application for which that operating condition would 

be useful is discussed. A performance map that shows the maximum test article size that 

would occupy the region where CEX ions account for less than 20% of the total ion density 

vs. operating conditions is also presented.

5.2. MODEL INPUTS

In order to model the production of low energy CEX ions, there are a few things 

that need to be known about the local plasma that can't be found with common plasma 

diagnostics. Namely, those are the local neutral density and the CEX collision cross section. 

The cross section can be found by Equation (5.1), which returns the value in m2 [27].

vcex  = [k1 + k2 ln(E ) ]2 x 10-20 (5.1)

where E is the ion energy in eV. For argon, k1 and k2 are 5.17 and -0.25, respectively. This 

model was developed based on a data fit of multiple experiments spanning ~1 - ~105 eV, 

so it is valid for the entire operational envelope of the plasma source used in this work.
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In order to model unionized feed gas’s contribution to the neutral density within 

the plume, first consider a single grid aperture to be treated as a point source of neutral 

particles. The distance, L from the opening and angle from the opening’s center-line, a, 

are defined in Equations (5.2), (5.3), and shown in Figure 5.1 [28].

L = V r 2 + z2 (5.2)

z
cos(a) = (5.3)

L

Figure 5.1. Geometry for neutrals escaping a single aperture.

Equations (5.4) and (5.5) provide the angular distibution, T , of particles traveling 

through the aperture [28].

T (a) = 1 -
2

n:(1 -  K) arcsin
. / ttan (a ) \ t ta n (a ) / t ta n (a ) \ 2

—  + —  1 -  — 2- ^

+ (1 -  2 k)-
3n

1 —  ̂ftan(a) y21 3/2

ftan(a)
2

(5.4)
1
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if a  < arctan(2 /t) , or:
4  i _

T (a) = k + —  (5.5)v ' ttan(a) v '
2

if a  > arctan(2/t). The neutral density downstream of a single grid aperture is given by 

Equation (5.6) [28].

^  = Fscm R 2 T ( a ) £  (5.6)n0 4 L3

where Fscm is a correction factor that will account for the presence of the screen grid and 

deceleration grid. To simplify the assessment this is assumed to be unity because their radii 

are much wider than the accelerating grid [28]. The parameter t is the aperture thickness 

divided by the aperture radius, and k is defined by Equation (5.7)

k =
Vt2 + 4 -  t 

2 + Vt2+4
(5.7)

The above set of equations defines a single aperture’s contribution to the unionized 

feed in the plume. For each location the contribution of each aperture must be summed 

together. Figure 5.2 shows normalized neutral particle density contours for gas escaping 

through and single aperture and for the total grid. This formulation is also only valid when 

a grid aperture has a thickness to radius ratio less than 8 and the considered location is 

far enough downstream that the point source assumption is valid [28]. For this work that 

threshold is arbitrarily defined to be 20  aperture radii downstream of the grid.

Because Equation (5.6) returns the density normalized to the discharge chamber 

density, these contours will remain unchanged regardless of the source’s operating condi

tions. To find the actual density, knowledge of the discharge chamber’s neutral density is
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(a) Neutrals escaping a single aperture. (b) Neutrals in the plume

Figure 5.2. Neutral density due to unionized feed gas within the plume.

required. This can be found using conservation of matter: all of the gas that enters the 

discharge chamber is either ionized and leaves in the beam or escapes as a neutral. This 

balance is shown in Equation (5.8).

mgas,in _ /beam
mn e

+ nn,out (5.8)

where mgas,in is the mass flow rate of feed gas into the ion source, mn is the mass of an 

individual feed gas molecule, and nn,0ut is the number flow rate of neutral particles escaping 

through the grids.

Assuming each grid aperture radius is less than the mean free path within the dis

charge chamber, and that the neutrals inside the discharge chamber are at stagnated equi

librium, the rate at which neutrals leave the discharge chamber can be defined in terms of a 

velocity distribution function (VDF) simplified to 1-dimension shown in Equation (5.9)

r c
nn,out _ Aescapen 0

0
V *

m n 

2 n  kT
1/2 mn 2

exp ( -  2kT V dv
(5.9)
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The above integral is evaluated, leaving Equation (5.10)

k T  /  m n  \
nn,out = Aescapen0 m \2 n k T  /

1/2
(5.10)

where Aescape is the sum of the open grid area. Plugging Equation (5.10) into (5.8) and 

solving for discharge chamber density yields (5.11):

n0
mgas,in b̂eam mn / 2n kT\

mn e kTAescape \ mn /
(5.11)

Unfortunately this requires a temperature, which is unknown. Literature has established 

that the wall temperature of the discharge chamber serve as a good approximation [23, 

28]. Unfortunately the discharge chamber wall temperature is an unknown quantity in our 

system. Typically in literature it is around 500 K [23, 28, 29]. Exact knowledge of the 

discharge chamber wall temperature is ideal, but as shown in Figure 5.3, the contribution 

of unionized feed gas is approximately 2 orders of magnitude less significant than the 

background gas; thus the sensitivity of the model to the discharge chamber wall temperature 

will be small. The model for CEX cross section is only valid for symmetric collisions, i.e. 

collisions with argon, but since argon, accounts for about 80% of the local neutral density, 

nitrogen and oxygen will be approximated to have the same cross section as argon. Since 

this approximation is only applied to 2 0% of the neutral population, the inaccuracy it causes 

is small relative to other assumptions that go into the CEX model developed in Section 5.3, 

which will be discussed therein.

5.3. MODEL DERIVATION

Consider a thin annular control volume (CV) concentric with the center-line of the 

plume, a cross section of which is shown in Figure 5.4. Assume that plasma potential, 

neutral density, and beam ion density are constant within the control volume. The accumu

lation of CEX ions within this control volume can be expressed by Equation (5.12).
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(a) Each species contribution to total neutral den
sity
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Figure 5.3. Neutral density breakdown at an axial distance of 50.16 cm with 20 sccm argon 
feed and a 400 mA beam with discharge chamber wall temperature of 500 K assumed.

Figure 5.4. The control volume in question.

naccum — Win nout + Ttgen (5.12)

The simplest of the three terms is the generation of CEX ions, defined by Equations (5.13) 

and (5.14).



44

ni,Beam — ni ni,CEX (5.13)

2
nCEX,gen — n rcv ̂ cv nneuni,Beamvi,Beam̂ CEX (5.14)

Flux of CEX ions into and out of the CV is more complex. The governing equa

tions for a single wall of a CV is provided by Equations (5.15) through (5.22). This set 

of equations needs to be solved for each wall of every CV. This assessment utilizes the 

Neumann boundary condition, V0N — V0N- 1 to model the flux of CEX ions out from the 

domain. This neglects inward flux of CEX ions from the region outside the model’s do

main. Generally, this will only effect the region upstream of solution domain, because that 

is nominally the only external region in which local potential gradients will push CEX ions 

into the solution domain [18, 26, 30]. Thus, the lost information is mitigated by assessing 

how much the CEX density changes by incrementally including additional upstream planes 

into the solution. Results will only be reported for areas in which the addition of the final 

upstream plane changes the local CEX ion density by less than 1%.

The flux of CEX ions across a surface is defined in terms of the VDF for a drifting 

Maxwellian population, Equation (5.15) shows this, but this method assumes that potential 

gradients are the only driving force behind drifting motion:

rCEX — nCEX r  f m  \ 1/2
Jo v ( a S r )  exp

mi(v -  vd)2 
2kT

dv (5.15)

where vd is the drifting velocity. For convenience, the integral split into two parts, (5.16):

rCEX — nCEX f — \\2n  k T !
v exp

mi(v -  Vd)2 
2kT

dv + v exp
mi(v -  vd)2 

2kT
dv

(5.16)
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For simplicity, the function is shifted by vd, such that the function is centered at 0,

(5.17):

r CEX = nCEX
( mi \ 1/2 

\ 2n k T )
I v exp 

J0
mi(v -  Vd)2 

' 2kT
dv + fJ -V d

v exp
mi (v -  Vd)2

2kT
dv

(5.17)

The first integral term becomes the right half of the stationary Maxwellian distribution, 

which has already been solved in Equation (5.9). The second integral term is found by tak

ing advantage of symmetry about 0 , which can then be trivially solved with a substitution, 

shown in Equation (5.18):

/  °^-vd
v exp

mi v2N 
" ik T .

dv
r  vd 

0

l miv2 \ kT
v exp dv = —2kT mi

1 -  exp
mivd
2 T

(5.18)

Substituting Equations (5.18) and the result of the non-drifting forward flux into Equation 

(5.15) yields an expression for CEX ion flux across an arbitrary plane, Equation (5.19):

_ , m  \ 1/2 kT f
rCEX = ”CExl2n k ^ )  ~ n  +mi

1 -  exp I -
mi v2'
2k T

f
(5.19)

Drifting velocity magnitude is defined by Equation (5.20):

vd
2e | ̂ 1 -  (p21

mi
(5.20)

where ^ 1 and (p2 are the plasma potential inside and outside the CV, respectively.

From this, the rate at which CEX ions are leaving and entering the CV across a 

given wall are expressed by Equations (5.21) and (5.22), respectively:

nCEX,out = Awall ncEX,1
mi \ 1/2 kT 

2nkT) mi 1 + £ 1 -  exp e | (p1 -  (p21)
kT

(5.21)
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ftCEX,in A” >>"CEX̂ ( 2n k ^ ) / -  ^
1 -  exp - e I (pi -  p2 I)

kT
(5.22)

The subscript 1 refers to the value inside the control volume, and 2 refers to the value 

outside the control volume, just across the boundary in question. ^ is a correction factor 

equal to 1 if p 1 > p2 and -1 if p 1 < p2. This accounts for the direction that the VDF was 

shifted to center it about the origin. Expressed mathematically ^ = p1 -p2Ip1 -  p2 I'

The procedure for the assessment is as follows:

1. Divide the probe data into small annular control volumes, interpolating as needed.

2. Consider only the first few downstream-most planes for which data is available.

3. Guess the CEX ion density as 90% of the measured ion density for each control 

volume considered.

4. Calculate beam ion density and CEX ion generation rate across the solution domain.

5. Calculate diffusion of CEX ions across each wall.

6 . Calculate resulting CEX ion accumulation rate for each control volume.

7. Propagate forward a small time-step, updating guess for CEX ion density appropri

ately.

8 . Iterate 4-7 until accumulation is sufficiently small.

9. Add a new plane into the calculation domain, start over at 3.

10. Repeat 9 until the entire domain is resolved, report data for only the areas where 

adding the final plane results in less than 1% change.

It is worth reiterating that this model is intended to be a computationally inexpen

sive approximation of CEX ion density in the plume. The model is best utilized as a tool 

to rule out operating conditions or plume locations that are too laden with CEX ions to
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obtain meaningful experimental data; to make a rudimentary estimate to determine if fur

ther investigation is warranted. Another use for this model is to approximate the size limit 

of a test article for which the local CEX ion population is small. Using the local Debye 

length this will also return the corresponding maximum lunar surface size we can mimic. 

For this use, the model is still only a rough approximation. If a deterministic profile of the 

local CEX population size is desired, then either robust fully kinetic simulation or direct 

measurement with an RPA is needed.

5.4. RESULTS AND DISCUSSION

Figure 5.5 shows the results of this assessment for the beam operating at 500 V and 

400 mA. Data is only presented for regions for which the addition of the last upstream axial 

plane resulted in less than a 1% change in the local CEX ion density. Qualitatively, local 

maxima in plasma potential correlate to local minima in CEX ion density, which matches 

expectation. The region in which the ratio of CEX ion density is less than 20% (highlighted 

in red) is approximately 3.5 cm diameter, which has been arbitrarily chosen to represent the 

cutoff between a region that reasonably mimics the lunar environment and one that is too 

laden with CEX ions. From Figure 4.14 the relative scale to the lunar surface is «30,000, 

thus the region of low CEX density corresponds to ~ 1 km on the lunar surface. This is 

slightly larger than the simulation domain in [9], a recent simulation around a lunar boulder. 

This operating condition will be most useful in investigations pertaining to the conditions 

around a similar small structure, such as a boulder or man-made structure. If mimicking 

such an environment under average solar wind conditions, albeit with lower than normal 

velocity, is the goal, then a more rigorous characterization of this operating condition is a 

useful allocation of resources.
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Figure 5.5. Charge exchange ion density as a fraction of total ion density with the source 
operating at 500 V, 400 mA.

Figure 5.6. Test article size limit for 20% CEX ions vs. control inputs.

Figure 5.6 shows the maximum test article size that can be placed in plume while 

staying within a region of less than 20% CEX ions. Because solar wind varies in Debye 

length, Figure 5.6 was not normalized to the lunar surface in order to keep its usefulness as 

broad as possible.
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6. SUMMARY, CONCLUSION, AND RECOMMENDED FUTURE WORK

6.1. SUMMARY

At the completion of this work the GPDL has the tools required to conduct exper

imental research on the lunar plasma environment. Section 3 shows that the Space Tank 

vacuum facility can attain similar background pressure during plasma source operation to 

other facilities doing similar research. The post-processing algorithms described in Sec

tion 4 are written as ‘black-box’ functions which the lab can easily utilize. The CEX ion 

density model developed in Section 5 is a useful tool that will aid in the search for a set 

of operating conditions which creates an analog for the desired lunar environment. This 

method reduces the time required to perform a preliminary plume assessment from days to 

minutes. The code utilized therein can also be treated as a black box function with a few 

minor alterations.

6.2. CONCLUSION

This work shows that the facility utilized by the GPDL is capable of meaningfully 

recreating the lunar plasma environment. The lab’s experimental team is ready to begin 

work that will contribute to the nation’s goal of a sustained human presence on the Moon 

and meaningfully collaborate with the simulation team who is already contributing to the 

field. The GPDL is left in very capable hands.
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6.3. RECOMMENDED FUTURE WORK

6.3.1. Experiment Suggestions. Recently, the GPDL demonstrated an opportu

nity for in-situ resource utilization (ISRU) offered by differential surface charging. Because 

the surface in front of an obstacle is charge positive and behind the obstacle is charge neg

ative, if the two regions were electronically connected current would flow and power could 

be extracted. A photograph of this powering an LED and a rough diagram of the setup is 

shown in Figure 6.1. An approximation of the maximum power available to this system is 

given by the formulas in Equations 6.1 and 6.2.

(a) Differential surface charging powering an 
LED. (b) Representative schematic. The front collec

tor plate is exposed to ions and electrons; the rear 
collector plate is only exposed to electrons.

Figure 6.1. Demonstration of utilizing differential charging to generate power.

/max — j i ̂ collector (6.1)

Pmax — /max AV (6.2)

where j i is the unperturbed ion current density and, Acollector is the surface area of the 

collector plate, /max is the maximum current that plate can collect, and AV is the difference 

in surface potential in front of and behind the obstacle.
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This setup is representative of something that could be constructed on the surface 

of the Moon around the rim of a crater. The value of this concept is its simplicity; it is 

two conducting surfaces connected by a wire. This could make a very reliable backup, or a 

useful start-up power supply that could be deployed while a solar panel or nuclear reactor 

is under construction.

Also, an interesting phenomena was observed during this demo. In the demo two 

LEDs were wired with opposite polarities. The expected result was that when only the 

neutralizer was on one LED would produce light, and when the ion source was turned on 

the other LED would turn on and the first would turn off. As expected, when only the 

neutralizer was on, only one LED produced light. When the ion beam was turned on the 

other light began emitting very brightly, but the other did not turn off. Instead the first 

LED's output began oscillating. A good next step for the GPDL would be to assess the 

viability of this concept with more rigor and attempt to answer the following questions: 

Why did the first LED not turn off as expected? What collector area is required for this 

concept have a meaningful power output? What impact does the presence of dust have on 

this concept?

Another avenue of experimentation that could have an immediate impact on the 

community researching dusty plasma is CEX ion mitigation. A concept that may be worth 

further investigation is a screen placed upstream of a test article with apertures and wire 

thickness sized to absorb CEX ions but let beam ions flow through relatively unperturbed, 

perhaps using a magnetic field downstream of the screen to collimate them if need be. 

This is possible because slow moving ions create a much thicker sheath than fast moving 

ions. This would be beneficial because the only CEX ions present would be those locally 

generated.

Alternatively, the GPDL could look into adapting the electric propulsion commu

nity’s method of accounting for CEX ions to our application. This would mean extrapo

lating the CEX ion density to zero instead of background pressure. The procedure would
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appear to similar; repeat experimentation at different pressures. However, in practice this 

could become very complex because the plasma properties need to be held constant instead 

of the source’s operating conditions. Also, validating this method would be very diffi

cult, likely requiring intense collaboration between the experimental and simulation teams 

within the GPDL.

Finally, the GPDL can experimentally verify the CEX ion density model developed 

in Section 5 using an RPA and propagate uncertainty from probe data and tank pressure 

through the calculations, along with simulations and high fidelity models.

6.3.2. Facility Upgrade Suggestions. Another important topic within future work 

is continuous facility improvement. This is at risk of being overlooked, but its very im

portant to continue producing meaningful research. There are two easy ways this could be 

done without purchasing expensive new hardware. The first is to get more probes working. 

The Langmuir and Faraday probes are very useful but an RPA will allow direct measure

ment of the relative CEX ion density. Also, an emissive probe will be a useful tool because 

it will directly measure plasma potential, and, with the use of cross calibration as discussed 

in Section 4, may reduce uncertainty. Also, a means of obtaining time-resolved data will be 

valuable. For example, a triple probe or a high speed null probe as presented in [21] could 

provide profiles of electron temperature and density vs. time. This will allow the GPDL 

to investigate the transition between different plasma conditions. This is a topic of interest 

in the dust mitigation community, the need for which was discussed at the 2020 LPI Lunar 

Dust Workshop.

Another thing that could be done easily with significant long-term benefit is to add 

to the performance maps presented in Section 4. As they are presented in this document 

they are fairly sparse, only including the 16 test points provided by Veeco® . The use

fulness of these maps will be improved with more points within the operational envelope 

included. Dedicated experimentation may not be required for this, the maps should be built 

upon as new points are investigated.
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1. NOMINAL OPERATION

1.1. SAFETY NOTES

To start off, there are a few safety notes about the vacuum chamber that should be 

noted before the procedure is discussed. Most importantly, hot diffusion pump oil cannot 

be exposed to atmospheric pressure. Boiling oil vapors in the presence of oxygen is a major 

fire hazard. Also, do not move a valve if it is under a pressure differential. The backing 

valve will scrape against its housing and this accelerates wear. It could also tear the O-rings 

on the diffusion pump valves removing their ability to seal.

Diffusion pumps 1 and 4 are known to cause problems. Pump 1 tends to overheat 

its oil and pump 4 tries to boil its cooling water. If either of these pumps are in operation 

the temperatures need to be monitored closely.

1.2. PROCEDURE

The vacuum chamber is operated through a very intuitive LabView 2019 UI called 

“Launch all.” When it is opened two windows will open, shown in Figure 1. Figure 1a 

is the control panel and Figure 1b needs to be activated to access the control panel; click 

the right facing arrow to do so. The top section of the control panel displays the state of 

each valve, the tank pressure, and the pressure in the piping between the backing pump 

and diffusion pumps. It also displays cooling water temperature, diffusion oil temperature 

and the temperature of both mechanical pumps. There is a message box that will display 

warnings about the system.

The operating procedure is as follows:

1.2.1. StartUp.

1. Enable control

2. Open backing valve. Its display should change from red to green.



57

(a) Vacuum chamber control window. Click on 
the tabs at the bottom to switch between data stor
age options, the control panel, temperature trends, 
and vacuum trend.

(b) Vacuum Chamber activation window.

Figure 1. Demonstration of utilizing differential charging to generate power.

3. Open the respective valve for the diffusion pump(s) to be used. If diffusion pumps 

will not be used at least one of the valves needs to be opened to allow flow through 

the tank.

4. Ensure the venting valve is closed (green handle on the chamber door).

5. After the valve(s) are fully opened start the backing pump. Both indicators should 

switch from green to red. If either indicator does not change, or if they are flashing, 

a fault has occurred; turn off the pump. If the pump has not been run on that day, the 

most likely cause is the circuit breaker, unscrew the panel on the roots blower and 

reset the breaker.

6 . Monitor the tank pressure until it drops below 550 Torr (should take about 5 minutes). 

If the chamber has a substantial leak, for example if you forgot to close the venting 

valve, it will settle at about 600 Torr. This step is a check that the backing pumps are 

operating nominally.
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7. When the pressure reaches below 1 Torr turn on the cooling water for the diffusion 

pump(s) to be used.

8 . Turn on the pertinent diffusion pump(s).

9. Immediately verify that the cooling water is flowing. Step into the hallway outside 

the lab, you will be able to hear the cooling pump operating upstairs. Feel the copper 

pipes where they run along the wall, you should be able to feel water running through 

them. Also, after a few minutes the supply should be much cooler than the return.

10. Wait for the tank pressure to reach steady state, this will require between 1 and 3 

hours depending on which pump(s) are used. Monitor oil and water temperature; if 

pump 1 and/or 4 are used monitor them very closely. If cooling water gets above 176 

°F or if the oil temperature gets above 500 °F, turn off the pertinent pump(s) until the 

the temperatures drop to safe levels. It is worth mentioning that the displays are in 

Fahrenheit, but the trend plots read Celsius. DO NOT ALLOW COOLING WATER 

TO REACH BOILING (212 °F or 100°C).

11. Conduct planned experimentation.

1.2.2. Shut Down.

1. Turn off diffusion pump(s), leave cooling water on.

2. When oil in all diffusion pumps are below 170 °F close the backing valve.

3. Turn off the backing pump. Ensure the backing valve is off first. Only do this if 

you are done for the day. This pump will not spool up against an adverse pressure 

gradient. Once it is turned off it will need to equilibrate for several hours before it 

will work again.

4. Open the venting valve.



59

5. Wait until the oil temperature drops below 120 °F. Close the diffusion pump valves.

6 . Turn off the cooling water to all pumps

7. Click “Stop Programs” on activation window.

2. EXTREME OPERATION

Sometimes you may need to get into the chamber without turning off the backing 

pump. An example of such a scenario is if a probe fails and you wish to troubleshoot it then 

finish experimentation in the same day. This is not a desired action, and in most scenarios it 

is better to accept the fact that the day has been lost. Only utilize this procedure in extreme 

cases where losing a day is not an option. The problem with this procedure is not safety, it 

is simply that in most cases it creates more hassle and stress than it is worth. The procedure 

is as follows:

1. Assess the situation. Is performing a nominal shutdown, fixing the problem, then 

conducting the experiment tomorrow an option? If it is not, why? Will it push back 

someone's graduation a semester? Will it cause a critical deadline to be missed? 

What time is it? This process could take 4 hours plus the additional 2 hours after 

experimentation is complete to perform a nominal shutdown. How much time will 

this really save compared to coming in early tomorrow morning? Has the rough

ing pump (underneath the chamber) gone through recent maintenance; i.e. is it in 

working order? How are the oil levels inside the roughing pump?

2. After Step 1 is seriously considered, and this course of action is chosen, close all 

diffusion pump valves.

3. Turn off the diffusion pumps. They will have plenty of time to reheat later on in this 

procedure without causing a delay.
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4. Vent the chamber. Disable control.

5. Have someone continuously monitor the pressure in the piping between the backing 

pump and diffusion pumps. If it starts to rise there is a leak; skip to Step 8 .

6 . Do whatever work needs to be done inside the chamber.

7. Ensure that no debris is in the opening to the roughing pump. Use a shop-vac to clean 

the screen if needed.

8 . Leave the chamber, seal the door. Enable Control.

9. Open the Roughing Valve.

10. Start Roughing Pump.

11. Turn the diffusion pump(s) back on. There is still vacuum where hot oil exists, so 

this is safe (unless you skipped ahead due to a leak; in that case skip this step).

12. Wait until the tank pressure is close to the pipe pressure. A perfect match is unlikely; 

if needed you can move on if the pressure is below 1 Torr. The roughing pump is 

slightly undersized for the vacuum chamber so this could take hours, especially if 

outgassing is significant.

13. Open the pertinent diffusion pump valves.

14. Close roughing valve.

15. Turn off roughing pump.

16. Run experiments then shutdown as normal.
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3. LEAK PROOFING

For pressurized connections a leak will be outward. To check for leaks in this 

scenario, first slightly pressurize the gas line. If audible leaks exist, tighten the respective 

fittings until they stop; be cognizant of the possibility of cross-threading. Once all the 

audible leaks cease or if none exist use a q-tip to apply soapy water to the outside of 

each joint. Be sure to apply it on any point a leak may occur (the threads, the tube insert 

into the fitting, etc.). If the soapy water bubbles tighten the fitting until it stops. Increase 

pressure and recheck for leaks. Repeat until the pressure is much greater than the maximum 

expected operating pressure, but be sure to not exceed the pressure rating of any equipment. 

When done leak checking wash away the soap with a low-boiling alcohol, such as 99% 

isopropyl alcohol or denatured ethanol. It is worth mentioning that this system operates 

for hours, not days or weeks, so this procedure is good enough for the application. In 

the aerospace industry more rigorous leak proofing is commonly performed, for example, 

M-SAT's procedure leaves the fuel line pressurized and monitors it for weeks or months 

because that is representative of how long their equipment will need to operate.

For vacuum connections a leak will be inwards. The first step to check for leaks 

is to pull a vacuum in the vacuum chamber. As with above, first seal all audible leaks. 

Once audible leaks are sealed the remainder of this procedure will require two people. One 

person monitors the tank pressure while the other sprays a low-boiling alcohol into each 

fitting, one at a time. If a leak exists the chamber pressure will spike. Patience is key; 

the pressure increase takes time to travel from the leak to the pressure gauge. If alcohol is 

applied to the next joint too quickly then the alcohol will need to be fully evaporated and 

the procedure repeated to know which joint caused the spike. It is also useful to compare 

the chamber base pressure to what it was prior to the installation of new equipment.



APPENDIX C.

VEECO® RF PLASMA SOURCE OPERATION
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1. SAFETY NOTES

Before the procedures are discussed, there are a few safety notes to cover. This is 

high voltage equipment, be sure that at least two people are present in the lab when working 

with the plasma source. A second person needs to be present to call 911 and perform CPR 

if someone gets electrocuted.

2. ROUGH PROCEDURE

This section is a rough procedure to operate the source. Its intention is to provide 

supplemental information gained by experience to complement the manuals provided by 

Veeco® , not to be an exhaustive set of instructions. At the very least read the NOVUS ION 

SOURCE CONTROLLER manual before operating the plasma source, though reading all 

of the supplied manuals is strongly encouraged.

2.1. PURGING THE GAS LINES

Every time the feed gas is changed the gas lines need to be purged. This should 

also be done periodically because of small leaks slowly contaminating the feed, though the 

frequency of doing so is up to the user. Doing this semesterly is an arbitrary suggestion.

1. Start up the vacuum chamber as normal. Rough vacuum is okay, so no diffusion 

pump operation is required.

2. Make sure the gas supply is off.

3. Plug in the flow controllers; move the set-points to their maximum.

4. Wait for flow to cease. The gas lines are now empty.

5. Unplug flow controllers, fill gas lines with the (new) feed gas. Repeat starting at Step 

2 if desired. Repetitions will minimize lingering contaminates.
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2.2. OPERATING PROCEDURE

2.2.1. Preparation.

1. Plug the Novus Controller into the 240 V extension that is fed through the Faraday 

Cage.

2. Move the switch on the back of the RF generator to “on.”

3. Power on the Controller, RF Generator and Matching Network Controller. These do 

not need to be powered on in any particular order.

4. Plug in the flow controllers.

5. Plug in the recirculating pump. This overheats in about an hour and a half, and is the 

limiting factor for the source’s operation. Be sure to do this last.

2.2.2. Startup.

1. Make sure everything in “Preparation” was competed.

2. Press the “Source” button on the controller touchscreen. This will initialize the auto

mated startup procedure for the ion source.

3. The Neutralizer will activate first. There are two dials on the vacuum chamber 

throughput for the neutralizer. These are used to tune the impedance of the transmis

sion line to minimize reflected power. During start up these will need to be adjusted 

because the neutralizer’s impedance will change. Try to keep the reflected power to 

a minimum to minimize start up time.

4. Once neutralizer emission is established, the controller will automatically begin pow

ering up the ion source then enter idle mode. Once idle mode is reached let the source 

warm up for at least 5 minutes before operating extracting a beam. If the extracted 

beam is flickering it means that the source needs to warm up longer. Return to idle 

mode and wait an additional 5 minutes.
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2.2.3. Extracting a Beam.

1. Set the Beam Current, Beam Voltage, and Accelerator Voltage to the proper value. To 

do this depress their respective field on the touchscreen. A keypad will appear with 

the value displayed at the top; you may enter the new value if a change is desired.

2. Depress the “Beam” button on the touch screen. This will activate the accelerator 

grid and begin extracting a beam.

3. No further action is required. Periodically check the temperature displays and feel 

the cooling water tubing. The cooling water will warm up during normal operation, 

but if it gets too hot then shutdown is needed (the difference between normal heating 

and overheating is very obvious). Also, listen for variation in pump's sound, this 

could indicate an overheat as well.

4. When done, depress the “Beam” button again to return to idle mode. If you wish to 

investigate a new operating condition go back to Step 1 of this sequence.

2.2.4. Shutdown.

1. When finished return to idle mode.

2. Depress the “Source” button, this will turn everything off.

3. Unplug the recirculating pump and flow controllers.

4. Power down the controller, matching network controller, and RF generator.

5. Move the switch on the back of the RF generator to “off”

6 . Unplug the Novus controller.

7. After the vacuum chamber is off and pressurized close the gas supply valve and vent 

the gas line if no use is planned for an extended period.



APPENDIX D.

MY ADVICE TO A BEGINNING RESEARCHER
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1. READ MORE PAPERS EARLY

The work you are doing is rewarding, otherwise you wouldn’t want to do it; it is 

also important, otherwise no one would fund it; finally, it is difficult, otherwise someone 

would have done it already. With this in mind, it is important to build up your knowledge 

base early in your graduate career. This will make your work in future much easier, both 

conducting the work and writing about it. In this section I will outline the approach I took 

to reading academic papers. Keep in mind that this is how it worked out for me, this is just 

information I think would have benefited me if I had known it when I was getting started.

Everyone will tell you to read more papers; in the following sections I make a few 

suggestions on how to get the most out of each paper.

1.1. LEARNING HOW TO READ ACADEMIC ARTICLES

Early on, I would suggest reading papers with the focus on learning how to read 

them. They are very dense with information, much more so than a textbook, and they can 

be intimidating to someone who isn’t experienced yet. At this stage it is important to take 

very thorough notes on each paper you read. The purpose of this is twofold. First, it ensures 

active consumption of the content; academic literature can be so dense with information 

that important information may be missed if the reader is unaccustomed to it. Second, it 

gives insight into other lab’s setups; most experimental work will explicitly show the setup, 

in some cases stating equipment by product name. This will be very helpful when shopping 

for new lab equipment and it is information which may have been missed otherwise. Also, 

look for what you like and do not like about how information is presented; this will help 

later on when you are writing: emulate what you liked, and avoid what you didn’t. Also, at 

this stage it is important to read papers from a variety of topics, even if it isn’t something 

you plan to work directly on; it is good to have familiarity with adjacent fields. You can 

also utilize this stage to figure out exactly what area you want to focus on.



68

1.2. BUILDING YOUR KNOWLEDGE BASE

There is no “fluff” or “filler” in academic journals, but there is information that 

needs to be said to put the work into context but doesn’t contribute significantly to the 

main objective of the work. Once you have read enough papers to know the context of the 

work you can skim these sections and won’t need to take thorough notes on them. This 

will allow you to focus on the new information each paper brings and increase the rate at 

which you can read papers, take advantage of this to rapidly build your knowledge base. 

There are a few things to be aware of at this stage. Look at the context in which papers 

use their references, build your queue of papers to read accordingly. This will yield much 

more targeted results than searching for keywords in journal databases. Also, be wary of 

using a single paper as the basis for a portion of your work; this is a pitfall that I had fallen 

into. The reason to avoid putting too much value into a single paper is twofold. First, even 

if a paper is directly applicable to planned experimentation, it was built upon a very large 

body of work conducted across decades by an entire community. It will be very difficult 

to properly implement the methods therein without an awareness of the body of work it 

was built upon. Second, the experimentation in the paper was conducted at a different lab 

with different hardware and capabilities. For example, Lobbia et al. [21] suggests a shunt 

resistance of less than 100 Q for Langmuir probes to minimize lost information. With the 

equipment available to the GPDL the signal to noise ratio would be atrocious for a resistor 

that small.

2. IMPOSTOR SYNDROME

Very common in graduate studies is something called impostor syndrome, the fear 

that one unqualified to do the work they are doing or that one has made a fundamental 

oversight in their work that would make the whole project invalid. Another way this rears 

its ugly head is that it can cause people to question their intelligence. It is difficult to make
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these fears go away on your own so talk to someone about it; in the GPDL we support 

each-other not belittle each-other. There are also counseling resources on campus, utilize 

them if needed. Remember, the only way to avoid questioning your abilities is to never 

push them to their limit; you are not any lesser for having any of these fears.
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