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Motivation

• Speed of chemical reactions is dictated by mixing efficiency

• Low Reynolds number (~1) makes mixing a challenge

• Introducing Turbulent-like features can enhance mixing

• Chaotic advection provides foundation for analysis and control

• Simulations based on Navier-Stokes equations provide many 

insights 

• Powerful post-processing tools help understand underlying 

mixing phenomena 

• Simulation results can help develop new mixing and flow control 

strategies
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Problem Description

• Stirring vs. mixing: An important distinction

• Stirring increases the mean value of gradients

• Mixing decrease the mean value of gradients 

• Stirring leads to stretching and folding of the interface

• Chaotic advection is an efficient way of stirring

• Mixing is complete when the gradients disappear 
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Problem Description

• MHD can introduce a non-intrusive driving force 

• Lorentz force  for MHD is due to ionic current-

magnetic field cross product

• Flow field and species concentration fields are obtained by 

solving unsteady, 3D Navier-Stokes equations 

• Extensive post-processing is performed to visualize the results 

and obtain mixing quality

• Passive numerical particles are tracked by integrating the 

advection equation   
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Problem Description
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Cell geometry

Shallow open cell
r1 = 3mm
r2 = 2.4 mm
r3 = 2mm
rd = 0.16 mm
H = 0.5 mm

NaCl solution:  = 1000 kg/m3,  = 0.001 kg/(m.s), C* = 0.1M,
= 0.04 V,  = 1.29 S/m. 
Magnetic field: Bz = 0.36 Tesla
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Problem Description
Governing Equations
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Auxiliary Equations
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Problem Description
Gouy-Chapman Model for Double Layer

T = 10s
t = 1T, 5T,
10T, 20T
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Problem Description
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Results
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• Scheme 1, Scheme 2

Velocity vectors
Velocity profiles
Potential contours
Current lines
Poincaré maps
Mixing performance

• Scheme 2
…+
Particle concentration maps
Species concentration contours
Material line deformation

• Observations
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Results
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(a)                        (b)                              (c)

(d)

Scheme 1
(a) Velocity vectors
(b) Velocity profile
(c), (d) Potential contours
and current flux lines
(c: z = 0.4 mm plane,
d: y = 0 plane) 
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Results
t = 0              T = 1s (75)           T = 2s (100)
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(b)                                            (c) 

T = 4s (300)          T = 8s (400)      T = 10s (400)

Scheme 1
Poincaré maps
z = 0.4 mm

Number of 
periods are
shown in 
parentheses
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Results
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Scheme 1
Evolution of mixing 
quality vs. time t for 
5 values of T
in plane z = 0.4 mm
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Results
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(a)                               (b)                          (c)             

(d)

(d)

Scheme 2
(a) Velocity vectors
(b)  Velocity vectors
(c), (d) Potential 

contours
and current flux 
vectors and lines

(c: z = 0.4 mm plane,
d: y = 0 plane) 
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Results
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Scheme 2.
T = 4s, t = 200s z = 0.4 mm 
plane. 
(a) Poincaré map 
(b) particle concentration 

map 
(c) species concentration 

contours 
(d) Stretching and 

deformation of two 
material lines. 

(a)           (b)

(c)                           (d)
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Results
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Scheme 2
Temporal evolution
of mixing quality 
α and degree of 
mixing ε. T = 4s.
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Results
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• Switching Scheme1 is a practical way to create the blinking vortex 

model

• Scheme 1 results are similar to those from the Stokes flow model 

• Results from particles and material lines show that  increases 

with period T

• Switching Scheme 2 improves over Switching Scheme 1

• The islands disappear faster in  Scheme 2 compared to Scheme 1

• Each pair of disks is insulated during part of the cycle. No current 

on the disk, no vortical flow around the disk to isolate it  
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Conclusions and Future Work

229th ECS Meeting, San Diego, May 29-Jun 2, 2016

• Even better mixing may be possible with more number of 

electrodes 

• Optimal geometric placement and judicious choice of switching 

schemes may further improve mixing.

• Islands disappear faster with the electrodes insulated during part 

of the cycle 

• The Navier-Stokes simulations show differences compared to 

the Stokes flow model for ReH >> 1

• Good post-processing tools are necessary for analysis
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Conclusions and Future Work
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• Chaotic advection increases with increase with the dimension of 

the problem (no chaotic advection in 2D, and increases in the 

order: unsteady 2D and steady 3D, unsteady 3D

• Length scales and time scales have an influence on chaotic 

advection 

• CFD simulations advance the modeling over potential flow and 

stokes flow

• Work on Transmission Line Equivalent Circuit (TLEC) model is in 

progress
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