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Motivation

• Potential impact on sensing: Natural convection has been studied in 
electrochemistry and Microfluidics due to its potential impact sensing.

• NC is less understood in redox systems: Natural convection is 
better understood and modeled in electrodeposition. 

• Previous models do not have wide applicability.

• Experiments show influence  observed phenomena.

• Selman and Newman* model:
• The authors modelled NC in redox electrochemistry by using an 

densification coefficient similar to the expansion coefficient in temperature-
induced natural convection

PRiME 2016, Honolulu

*JR Selman and J Newman, J. Electrochem. Soc., 118, 7, 1971
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 densification coefficient
Ci – Cib is the change in concentration of species i.

Selman and Newman model

Motivation (continued)
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Background

• Migration to satisfy electroneutrality and solvation effect 
models

• The former is more widely accepted as the source of NC

• Balance sheet approach of Bard and Faulkner* 

• Supporting electrolyte ions migrate toward the electrode to 
satisfy Electroneutrality

• The effect is dependent on the molecular weights of the 
positive and negative ions of the supporting electrolyte.

PRiME 2016, Honolulu

*AJ Bard and LR Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Ed., Wiley, 2001



Problem Description

7

• Oxidized and reduced 
species concentration 
profiles at the working 
electrode due to electron 
transfer.

• Results in a charge 
imbalance causing 
deviation from 
Electroneutrality.

• Supporting electrolyte 
ions move in and out of 
the electrode region to re-
establish electroneutrality.

PRiME 2016, Honolulu

Reduction reaction at the 
electrode
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Problem Description (continued)

Non-dimensional parameters 

𝐵𝐹 ൌ
𝑗௘௟௘𝐵
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Rayleigh number for pure natural convection

BF number, the ratio of MHD force to buoyancy force for mixed 
convection.

BF number does not account for volume effects.
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Problem Description (continued)

We introduce a TN number to account for the volume effect.

PRiME 2016, Honolulu

L – Cell characteristic length
 – Diffusion layer thickness
d – Electrode dimension



3

2
0 max

volume ratio

*Volume ratio = ele

BF

j B LTN BF
g d  



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Problem Description (continued)

Reduced species ionic charge concentration

Oxidized species ionic charge concentration

𝐼ை ൌ 𝐶ை െ 𝐶ை∗ 𝑧ை

𝐼ோ ൌ 𝐶ோ െ 𝐶ோ∗ 𝑧ோ

Sum of IR and IO gives the charge imbalance.

Supporting electrolyte ions migrate into the diffusion layer to 
neutralize the charge imbalance.

Charge concentrations in the diffusion layer
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Problem Description (continued)

𝛥𝜌 ൌ 𝛥𝐶ௌష𝑀ௌష ൅ 𝛥𝐶ௌశ𝑀ௌశ

Density change is calculated from the change in concentrations 
of the supporting electrolyte ions, given by the following equation. 

Migration ratio:
Determined by their respective transference numbers (ion 
transport numbers).

𝜌 ൌ 𝜌∗ ൅ 𝛥𝜌

Density is calculated as

Body force term is calculated as

𝑓ఘ ൌ െ𝛥𝜌𝑔
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Solution Highlights

• Software package: ANSYS FLUENT

• Write a  user-defined function (UDF) for natural convection
Add the UDF module to the solver module

• Natural convection will show as a body force term in the modified momentum 
equation

• A 2D domain with a band working electrode was used

• Continuity, momentum and species equations are solved in a coupled manner
• Mesh size: ~42,000 quad cells

• Time-accurate solution is obtained up to 40s elapsed time

• Solved on Intel 8-core workstation

• CPU time up to several days

PRiME 2016, Honolulu
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Results (B = 0)

(a)                                      (b)                                 (c)
Fig. 2. (a): gx = -9.81 m/s2, t = 35 s, (b): gy = -9.81 m/s2, t = 39 s, (c): gy = 9.81 m/s2, t = 39 s. 

(a) gx = -9.81 m/s2(to the left), t = 35s
(b) gy = -9.81 m/s2(toward the 

electrode), t = 39s
(c) gy = +9.81 m/s2 (away from the 

electrode), t = 39s

PRiME 2016, Honolulu

Cell size: 20 mm x 10 mm
Working electrode width = 2 mm
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Simulation Results (B = 0)

• Maximum velocity = 0.571 mm/s at 39 s from the start of the potential step.

• Clockwise vortex is formed Frame (a) with gravity parallel to the electrode 
surface.

• Velocity magnitudes are an order of magnitude lower when the flow is toward 
the surface (Frames (b) and (c)).

• Maximum velocity location depends on the flow direction (toward or away from 
the surface, Frames (b) and (c))

• The flow features can be explained considering acceleration of the fluid 
elements along the streamlines due to the body forces. 
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Experiments based on Schlieren Imaging

• Experiments were conducted on Ferri/Ferro with the KCl in 
aqueous solution as supporting electrolyte. 

• Chronoamperometry (i vs. t under potential step) was 
performed under potential step.

• Pt disk working electrode
• Pt wire counter electrode
• Ag/AgCl reference electrode
• 50 mm x 50 mm x 50 mm 

electrochemical cell with flat 
transparent walls for optical 
diagnostics 



Micro Schlieren

16PRiME 2016, Honolulu
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Results

PRiME 2016, Honolulu

g
Shadowgraph 
images of 3 mm dia 
Pt electrode inlaid in 
6.35 mm dia PEEK 
rod. 
Ferri/ferro 
(0.1M/0.1M) in 
aqueous KCl (0.1M) 
solution
Chronoamperometry. 
Potential step: 1V
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Results: Schlieren Imaging

PRiME 2016, Honolulu

• Velocity estimates by measuring visible heights of the slender column
uy ~ 0.5 mm/s using frames (a) and (b)
uy ~ 1.4 mm/s using frames (b) and (c)

• Velocity magnitudes are in order of magnitude agreement with previous 
experiments of White’s group and Bau’s group. 

• Initially, the velocity increases.

• A blob is formed on the circular flat face confined to the circular electrode 
region.

• A larger diameter convection column at larger times (Frames (f), (g) and (h) at 
t = 170s, 230s and 290 s, respectively) is formed with a height ~30 mm in 
Frame (h).  

• The slender column has an instability indicated by the waviness. However, no 
oscillations were observed during the duration of the experiments.
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Results: Schlieren Imaging (continued)

• A secondary wave of shorter wavelength is seen at t = 290s (Frame (h)). 

• A slow diffusion broadening of the slender column can be seen the 
sequence (a) - (h).
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Results: Schlieren Imaging (continued)

PRiME 2016, Honolulu

Behavior when potential is switched

• Initially, a blob forms on the electrode surface.
•
• Beyond the working electrode region, the concentration gradients are too 

weak to observe by schlieren.

• The maximum visible size of the blob is slightly larger than the electrode 
diameter.

• The current vs. time plot (not presented) is not as smooth as in the first case.

• At higher potentials, bubbles form at the electrodes.
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Conclusions

PRiME 2016, Honolulu

• A model for mixed convection is proposed.

• Simulations based on the model show reasonably good agreement with 
experiment.

• Experiments show natural convection in the form of a column that grows 
downward.

• When the reaction direction is reversed, a blob forms in the vicinity of the 
electrode. 

• Schlieren doesn’t appear to be sensitive enough to pick up the upward 
convection around the insulating rod

• .  
• Simulations and the experiments show higher velocity magnitudes when 

natural convection direction is away from the electrode surface.  
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Future Work

PRiME 2016, Honolulu

• Conduct additional simulation case studies for different redox pairs, 
solution concentrations, and B-field strengths.

• Perform simulations of the 3D axisymmetric geometry of the experiments.

• Perform simulations and experiments for electrode sizes varying from 
1mm to 25 m to understand geometry dependence. 

• Perform simulations of representative microfluidic cell. 

• Obtain estimates of diffusion layer thickness for mixed convection model.

• Implement background-oriented schlieren (BOS) for quantitative 
measurement of the density field.


	Natural Convection and Forced Convection Model based on Electroneutrality and Migration in Redox MHD Systems
	Recommended Citation

	Microsoft PowerPoint - PRiME_Oct2016_v3_post_Feb21

