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Motivation

• Potential impact on sensing: Natural convection has been studied in 
electrochemistry and Microfluidics due to its potential impact on sensing.

• Electrochemistry-driven Natural convection is less 
understood in redox systems: NC is better understood and modeled 
in electrodeposition. 

• Previous models are limited due to their empirical nature.

• Experiments show NC influences  observed behavior.

• Selman and Newman* model:
The authors modeled NC in redox electrochemistry by using a 
densification coefficient similar to the expansion coefficient in 
temperature-induced natural convection.

*JR Selman and J Newman, J. Electrochem. Soc., 118, 7, 1971

Copyright © 2017 by K. M. Isaac. All rights reserved.
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 densification coefficient
(Ci – Cib) is the change in 
concentration of species i.

Selman and Newman model*

Motivation (continued)

*JR Selman and J Newman, J. Electrochem. Soc., 118, 7, 1971
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Background

• Satisfying electro-neutrality has been proposed by 
other investigators as the underlying reason for NC.

• Balance sheet approach of Bard and Faulkner* can 
be used to quantify NC.  

• Key concept: Supporting electrolyte ions migrate
in/out of the diffusion layer to satisfy 
Electroneutrality.

• The strength of NC is dependent on the difference in 
the molecular weights of the positive and negative 
ions of the supporting electrolyte.

*AJ Bard and LR Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Ed., Wiley, 2001

Copyright © 2017 by K. M. Isaac. All rights reserved.



Problem Description
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• Figure shows oxidized and 
reduced species concentration 
profiles at the working 
electrode due to electron 
transfer.

• Results in a charge imbalance 
causing deviation from 
Electroneutrality.

• Supporting electrolyte ions 
migrate in and out of the 
electrode region to re-establish 
electroneutrality.

Reduction reaction at the 
electrode

Copyright © 2017 by K. M. Isaac. All rights reserved.
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Problem Description (continued)

Non-dimensional parameters 

𝐵𝐹
𝑗 𝐵

𝑔|𝜌 𝜌 |

𝑅𝑎
𝑔 𝜌 𝜌𝟎 𝒎𝒂𝒙 𝐿

𝜇𝐷

Rayleigh number for pure natural convection

BF number, the ratio of MHD force to buoyancy force 
for mixed convection.

BF number does not account for volume effects.

Copyright © 2017 by K. M. Isaac. All rights reserved.
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Problem Description (continued)

We introduce a TN number to account for the volume 
effect.

L – Cell characteristic dimension
 – Diffusion layer thickness
d – Electrode characteristic dimension
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2
0 max

volume ratio

*Volume ratio = ele

BF

j B LTN BF
g d  






Diffusion length for semi-infinite diffusion

Dt 
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Problem Description (continued)

Reduced species ionic charge concentration

Oxidized species ionic charge concentration

𝐼 𝐶 𝐶∗ 𝑧

𝐼 𝐶 𝐶∗ 𝑧

Sum of IR and IO gives the charge imbalance.

Supporting electrolyte ions migrate into the diffusion layer to 
neutralize the charge imbalance.

Charge concentrations in the diffusion layer

Copyright © 2017 by K. M. Isaac. All rights reserved.
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Problem Description (continued)

𝛥𝜌 𝛥𝐶 𝑀 𝛥𝐶 𝑀

Density change is calculated from the change in concentrations 
of the supporting electrolyte ions, given by the following equation. 

Migration ratio:
Determined by their respective transference numbers (ion 
transport numbers).

𝜌 𝜌∗ 𝛥𝜌

Density is calculated as

Body force term is calculated as

𝑓 𝛥𝜌𝑔

Copyright © 2017 by K. M. Isaac. All rights reserved.
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Solution Highlights

• Software package: ANSYS FLUENT
• Write a  user-defined function (UDF) for NC, and add 

the UDF module to the solver module
• Natural convection will appear as a body force term in 

the modified momentum equation
• 3D domain with a disk working electrode was used.
• Continuity, momentum and species equations are 

solved in a coupled manner
• Time-accurate solution is obtained up to ~300s 

elapsed time
• Solved on Intel 8-core workstation
• CPU time up to several days

Copyright © 2017 by K. M. Isaac. All rights reserved.
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Case Summary

Copyright © 2017 by K. M. Isaac. All rights reserved.



14

Material Properties
• Redox species: TMPD 

• supporting electrolyte: CH3CN/0.5M TBAP  

• Initial concentrations: CTMPD- = 10.3 mM, CTMPD+ = 0 

• Temperature: Uniform at T = 298K. Joule heating is 
neglected 

• Operating mode: Potential step, high enough for operation 
in the diffusion-limited regime 

• Electrical conductivity of the bulk solution  = 0.625 S/m

• Density: Calculated using the present model

Copyright © 2017 by K. M. Isaac. All rights reserved.
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Next slide………..
Case B velocity vector plots

Frame          t(s)                    vmax

(a) 4.62                46.6 m/s
(b) 6.62                82.4 m/s
(c) 8.62                187  m/s
(d) 10.62               481 m/s
(e) 12.62 782 m/s
(f) 14.62              1.46 mm/s
(g) 16.62 1.80  mm/s
(h) 18.82 1.50  mm/s   

Copyright © 2017 by K. M. Isaac. All rights reserved.
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a (4.64s)            b 6.64s)             c (8.64s)           d (10.64s)              

e (12.64s)            f (14.64s)           g (16.64s)          h (18.64s)              

Case B
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Case B Density Contours

a: t = 12.64s

b: t = 19.64 s 

Color key: 
red: 785 kg/m3

blue: 783 kg/m3

Copyright © 2017 by K. M. Isaac. All rights reserved.
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Case B
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Case C Velocity Vectors

(a): t = 4.73s, Vmax = 31.5e-2 m/s (b): t = 19.73s, Vmax = 54.9 m/s 

(c): t = 39.73s, Vmax = 70.2 m/s 

(d): t = 69.73s, Vmax = 184 m/s 
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Case C Current vs. time

Copyright © 2017 by K. M. Isaac. All rights reserved.
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Maximum velocity vs. time 
Case B Case C

Copyright © 2017 by K. M. Isaac. All rights reserved.
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Mixed Convection Parameter TN vs. time
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Results Highlights

• Velocity magnitudes are an order of magnitude lower 
when the flow is toward the surface.

• Maximum velocity location depends on the flow 
direction (toward or away from the surface). 

• The flow features can be explained considering 
acceleration of the fluid elements along the 
streamlines due to the body forces. 

Copyright © 2017 by K. M. Isaac. All rights reserved.
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Experiments
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Experiments based on Schlieren Imaging

• Experiments were conducted on Ferri/Ferro with the KCl in 
aqueous solution as supporting electrolyte. 

• Chronoamperometry was performed under potential step to 
plot i vs. t.

• Pt disk working electrode
• Pt wire counter electrode
• Ag/AgCl reference electrode
• 50 mm x 50 mm x 50 mm 

electrochemical cell with flat 
transparent walls for optical 
diagnostics 

Copyright © 2017 by K. M. Isaac. All rights reserved.
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Results
Shadowgraph 
images of 3 mm dia 
Pt electrode inlaid in 
6.35 mm dia PEEK 
rod. 
Ferri/ferro 
(0.1M/0.1M) in 
aqueous KCl (0.1M) 
solution
Chronoamperometry. 
Potential step: 1V

Copyright © 2017 by K. M. Isaac. All rights reserved.
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Results: Schlieren Imaging
• Velocity estimates by measuring visible heights of 

the slender column
uy ~ 0.5 mm/s using frames (a) and (b)
uy ~ 1.4 mm/s using frames (b) and (c)

• Velocity magnitudes are in order of magnitude 
agreement with previous experiments of White’s 
group and Bau’s group. 

• Initially, the velocity increases.

• A blob is formed on the circular flat face confined to 
the circular electrode region.

Copyright © 2017 by K. M. Isaac. All rights reserved.
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Results: Schlieren Imaging (continued)

• A slow diffusion broadening of the slender column 
can be seen in the sequence (a) - (h).

• A larger diameter convection column at larger 
times (Frames (f), (g) and (h) at t = 170s, 230s and 
290 s, respectively) is formed with a height ~30 
mm in Frame (h).  

• The slender column has an instability indicated by 
the waviness. However, no oscillations were 
observed during the duration of the experiments.

Copyright © 2017 by K. M. Isaac. All rights reserved.
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Results: Schlieren Imaging (continued)

Behavior when potential is switched (images not 
included)

• Beyond the working electrode region, the 
concentration gradients are too weak to observe by 
schlieren.

• The current vs. time plot (not presented) is not as 
smooth as in the first case.

Copyright © 2017 by K. M. Isaac. All rights reserved.
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Conclusions
• A scaling parameter (TN) for mixed convection is proposed.
• A model for natural convection is developed.
• Simulations based on the model show reasonably good 

agreement with experiment.
• Experiments show natural convection in the form of a column 

that grows downward.
• When the reaction direction is reversed, a blob forms in the 

vicinity of the electrode. 
• Schlieren doesn’t appear to be sensitive enough to pick up the 

upward convection around the insulating rod.
• Simulations and the experiments show higher velocity 

magnitudes when natural convection direction is away from 
the electrode surface.  

Copyright © 2017 by K. M. Isaac. All rights reserved.
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Future Work

• Conduct additional simulation case studies for 
different redox pairs, solution concentrations, and 
B-field strengths.

• Perform simulations of the Ferri/Ferro/KCL mixture
of the experiments.

• Perform simulations and experiments for electrode 
sizes varying from 1mm to 25 m to understand 
geometry dependence. 

• Perform simulations of representative microfluidic 
cell. 

• Implement background-oriented schlieren (BOS) for 
quantitative measurement of the density field.

Copyright © 2017 by K. M. Isaac. All rights reserved.
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