MISSOURI
E Missouri University of Science and Technology

Scholars' Mine

Computer Science Technical Reports Computer Science

01 Dec 1985

Industrial Simulation with Animation

Edward T. Hammerand

Chung You Ho
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

b Part of the Computer Sciences Commons

Recommended Citation

Hammerand, Edward T. and Ho, Chung You, "Industrial Simulation with Animation" (1985). Computer
Science Technical Reports. 94.

https://scholarsmine.mst.edu/comsci_techreports/94

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.


http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/94?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

INDUSTRIAL SIMULATION WITH ANIMATION

Edward T. Hammerand* and C. Y. Ho

CSc-85-4

Department of Computer Science
University of Missouri-Rolla

Rolla, Missouri 65401 (314) 341-4491

*This report is substantially the M.S. thesis of the fTirst
completed December, 1985.

author,



ABSTRACT

This thesis examines and evaluates the new simulation
language PCModel. Prior to the arrival of PCModel, simulation
via computer typically resulted 1iIn pages of statistics
compiled over the duration of the simulation. PCModel "s
approach 1is to simulate the model on the display before the
user in real time. Additionally, user interaction is supported
to allow changes to be made throughout the simulation run.

The evaluation of PCModel is accomplished through
inspection of a pair of examples already simulated 1in a
conventional simulation language. The examples show the

relative strong and weak points of the language, as well as

demonstrating how PCModel is used.
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I INTRODUCTION

Simulation has been posed as a problem In computer science
for as long as computers have been available for use. Many
approaches have been taken to the problem, some using
conventional programming Ulanguages like FORTRAN and others
using languages dedicated to simulation, like GPSS. 1t is the
purpose of this section to examine how a language like PCModel
was a natural step 1i1n the evolution of languages and how
PCModel differs from what has gone before.
A.  REVIEW OF THE LITERATURE

The purpose of a simulation typically falls into one of
the three categories described by Mittran: (1) description of
a current system for prediction of behavior, (2) exploration of
a hypothetical system, or (3) design of an improved system. To
implement the simulation for whatever reason, a computer 1is
generally employed; this for the same reasons computers are
used elsewhere -- they can perform the necessary operations
that would otherwise not be feasible. The Ffirst and third
categories listed are concerned with simulations done by
business and industry, while the second is more academic 1in
nature. However, the purpose 1is basically the same for all
three; a simulation is performed in order to determine what
would be the result of a proposed system or change to an
existing system without having to actually build or modify
anything. Academic simulations result in theoretical
information aimed at the problem being explored, while

business simulation output influences the amount of time and



money to be spent on alternative courses of action. For this
reason alone the capability to predict the outcome of the given
alternatives is both very useful and attractive.

The implementation of a simulation is developed using a
programming language. The programming language, 1in turn, has
been created with a Ffield of use 1in mind. Those that are
concerned with the simulation of systems are thus relatively
restricted when compared with other languages of a more global
nature, such as FORTRAN. Stephenson2 points out that languages
should be developed in as simple a fashion as possible, while
at the same time 1incorporating the sophistication necessary
for the solution of iIntricate problems by experienced
programmers. Culik” further suggests that the type of problem
to be solved should be defined Tfirst; then the features and
divisions of the language can be created with specific types of
use in mind. The combination of these +two considerations
should be employed in the development of a language, and this
is indeed the case for PCModel. First, it has a relatively
small instruction set, relying on combinations of instructions
to accomplish tasks of a more sophisticated nature. As a
programmer becomes more comfortable with 1it, he is able to
assimilate in his repertoire sequences of codings to perform
standard tasks. The simplicity of the instruction set allows
such sequences to be altered to fit specific circumstances with
relative ease.

Secondly, PCModel is intended to handle a specific class

of problems. David A. White, the designer of PCModel, states



that it is designed "to model the movement of manufactured
assemblies through the assembly process.”” This statement
defines the nature of PCModel clearly enough so that one may
decide up front if it is inappropriate for the problem at hand.
The ability to determine whether or not a given language would
be an effective tool for simulation is Important. Meier,- points
out that the differences between simulation languages are wide
enough to make the proper choice of a language a very important
part of the simulation and evaluation process.

Even with the language most compatible with the problem
selected, there are still a number of issues which can give
rise to problems. Pritsker”™ examines in some detail the trouble
caused by the sometimes slow rate of convergence to steady
state conditions. It is oftentimes difficult to determine when
a model has reached its own steady state behavior, and until
this point 1is defined the simulation results cannot be
evaluated precisely. Another problem [lies wailting 1iIn the
significance to be attributed to sampling error. A simulation
needs to be examined for a range of initial parameters to
obtain more meaningful results. However, the repeating of
simulation runs for a variety of conditions iIs quite often not
feasible simply for economic reasons, as noted by Tocher”™. He
suggests a number of techniques to compensate for the problem.
Another problem must be considered during the analysis of the
output of a simulation. Even 1if the simulation correctly

models the given system, the interpretation of the data 1is



still a rather tricky proposition; Graybealg considers some
characteristics of this problem.

Finally, one potential problem remains that can easily be
overlooked, yet is vital to decisions based on the outcome of
the simulation. It is the separation of distinct possibilities
before the constructing of the model begins. ChorafaSg
discusses the problem and sites examples of how its presence
can totally invalidate any simulation which incorporates it.
Essentially, some decisions concerning the problem must be
recognized as outside the scope of the problem; thus the
simulation will examine alternatives of a more compatible
nature.

Up to this point in its history, simulation has been done
with either a conventional programming Qlanguage or one
designed especially for simulation. In most instances a
simulation resulted in tables of statistics concerning various
entitites in the model. However, little support was made for
the capability of user interaction. Crosbie and Hay” and
Licklider”™ both observe the need for interactive fTacilities
in a simulation programming environment. Indeed, without
interaction the user must wait until program end to determine
the results of the initial conditions; interaction allows the
status of the model to be monitored and adjusted as It runs.

The iInteraction capability of PCModel extends past just
allowing user access to the ongoing generation of statistics;

it goes hand in hand with PCModel®"s most outstanding feature:



its graphic display. The user can watch on the screen before
him what 1s taking place 1i1n the simulation. Jonesl2 1in
referring to the graphic display of functions relating to
simulations remarked that the display was a strong persuader in
the argument concerning the correctness of the simulation. It
was clear on the screen that the results being observed were
indeed along anticipated lines within the range of
possibility. This is even more so the case with PCModel. As
will be seen, the various entities of the model will be
displayed on the screen as they move around the work area
defined by the model. This 1is 1indeed a powerful means of
displaying the behavior of a given system.
B. ASPECTS OF PCMODEL

PCModel should probably be thought of as more a simulation
programming environment than a simulation language.
Simulating a given model requires Tirst the creation of the
software to represent it to the system. The software in turn 1is
composed of two parts: the simulation instructions and the
overlay. The overlay is the map or floor plan over which the
entities of the simulation will travel. It is created as a
rectangular area of screen rows and columns, the individual
positions of which are fTilled with whatever characters will
make the overlay the most meaningful. The accompanying
instructions create and control the entities, or objects, of
the model. Objects are created by PCModel jobs; a job may

create one object for a simulation or thousands. Control of



objects 1s then managed by means of routes; the various
instructions for moving objects about the screen and so forth
are contained in routes. Subroutine-like constructs are also
supported; they are PCModel links and contain the same type of
instructions as routes. The running of a simulation under
PCModel 1is a two-step process: TFfirst, the object program is
loaded and converted to its run-time equivalent; the actual
simulation then takes place 1iIn the run-time step. The
instructions described above are concerned with the run-time
model; there are also those that deal with the load-time
process. All of these topics will be examined in more detail in
the next section, which categorizes the different parts of the

PCModel simulation environment.



1. THE PCMODEL ENVIRONMENT

The purpose of this section is to acquaint the reader with
the various aspects of PCModel. This is accomplished through
examination of not only the simulation language elements, but
also the capabilities of the interactive running process. The
explanations given here are not 1iIntended to explain in
technical detail; that i1s left to the software documentation.
Rather, this chapter logically groups the various aspects of
PCModel for presentation purposes; the last section defines
the logical process for solving problems using the features of
PCModel. The following sections will examine characteristic
simulation problems, noting specific programming details as
they come up.

Al LOAD-TIME DIRECTIVES

The purpose of the PCModel directives is to define certain
parameters and so forth at load-time that will be used during
the loading process to create the run-time model. They are
presented here 1in the order recommended by the designer of
PCModel .

M (Maximum objects) defines the maximum number of objects
that will ever be allowed in the model at any one time. This
value is used to reserve storage for the MCB"s, or Movement
Control Blocks; each active object will have one MCB allocated
to 1t, and that MCB will contain all of the 1iInformation
pertaining to it.

W (set maximum Work-in-process) is used to initialize the

variable number of objects that will be allowed iIn the model at



any given moment. This number may vary from zero to the number
specified by M above. The F5 and F6 keys are used to decrement
and iIncrement, respectively, this value during the simulation
run.

S (Symbols) gives the number of symbols and labels in the
program. This value is used to reserve storage for them. Since
the program will not be able to load if insufficient storage 1is
allocated, an exaggerated estimate may be used here. IT it
turns out to be insufficient, a larger value must be used. It
is always a good 1idea to specify an extra large value. The
reason for this is that the symbol table 1is generated using
both the space defined here and the space defined for the
MCB® s. If a symbol in the program is overlooked or misspelled,
the loader will produce an unresolved symbol error. Generally,
examining the value screeen will 1identify the offending
variable. However, it may be that the symbol was processed
inside the MCB storage and thus will not show up on the value
screen. Increasing the S directive amount will make room for
it in the symbol storage space.

X (X dimension of logical screen) and Y (Y dimension of
logical screen) specify the number of columns and rows,
respectively, to be used in the overlay. At least a single
screen of 80 x 25 spaces must be used; the maximum product of
the X and Y directive values i1s 32,767.

V (Viewing-window Jlocation) 1is used to position the
display screen on the overlay during the loading process. This

is very useful, as the loader plots the various routes on the



display as it loads the model. V can be used to change the
portion of the overlay on the screen during the Jloading
process; as many V"s may be used as are deemed necessary.

D (Description definition) 1is used to define a screen of
text which describes the problem being modeled. Once the model
is loaded, this screen may be examined by pressing the D key. A
maximum of 25 lines is permitted and the text 1is terminated
with a "$".

0O (Overlay definition) gives the location of the overlay
to be used with the model. The overlay may be included inline
with the program, or it may be kept in a disk file. IT the
overlay is kept inline, it is typically created with whatever
editor the user has at his disposal. IT the overlay is a disk
file, i1t may be created, modified, and saved using PCModel"s
built in attribute editor. This editor allows for the creation
of colored overlays and has a generous selection of functions
to aid in the process. The overlay directive provides for an
overlay to be kept in a disk file with the same name as the
simulation program, one with a different but constant name, or
an arbitrary file which the loader will prompt the user for.

The next part of a PCModel program consists of symbol
definitions. These follow from the S directive explained
earlier. All of the various symbols required throughout the
program should be grouped together and defined here. Further,
all of the variable symbols should be placed before any
constant or pointer symbols; this will conserve the amount of
memory required for the model due to the internal workings of

PCModel .
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J (Job description) directives define each of the jobs to
be active in the model. For each job, J specifies its job
number, the character by which i1t can be identified on the
overlay, the route it will take, the number of objects to be
released by the job, and so forth.

U (Utilization definition) singles out specific positions
on the overlay for which utilization statistics are to be
generated. Basically, this results 1in a percent-of-time-
occupied figure for the position. U allows the positions to be
labeled so that when the statistics are viewed during the
simulation using the U key, 1t Is easy to associate positions
with their significance.

R (Relative xy reference) 1is the last of the load-time
directives. It is used to specify a reference position on
which subsequent relative moves (MU, MD, ML, MR, and RM) can be
based. An R directive has no effect at run time, as iIs the case
for all of the directives listed here, but it is useful iIn the
debugging phase of programming. As the instructions are being
loaded, the path a route will take is charted on the overlay.
If logical jumps take place without absolute moves, there will
not be anything for the loader to reference succeeding relative
moves on. The R directive solves this problem, allowing the
route path to be verified. R directives may be use throughout
the links and routes as needed.

This concludes the set of load-time directives. As stated
at the beginning of this section, they have been presented in

the order that they should occur in the simulation program.
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The remainder of the program consists of the links and routes
for the model. Of the two, the links should precede the routes.
B. DATA TYPES AND SYMBOLS

This section will discuss the various symbols that may be

used 1In a PCModel program. Three basic data types are
supported Ffor wuse in modeling systems: variable values,
constant values, and clock values. Two different types of

labels are used, one type for labeling specific iInstructions
and the other for labeling links. Finally, there i1s a symbol
type for identifying overlay positions. Each of these will be
examined In turn.

Variables are defined, as are all of the symbol types
excepting labels, by including them in the symbol section of
the program along with an initial value. They are of the form
@VARNAME . The value of a variable may range from 0 to 65,535.
The number of variables is limited only by available storage.
Additionally, each object that is active in the model has six
variable parameters, which are referenced as OBJ@n. They have
the same restrictions as declared variables.

Constants are values that are fTixed thoughout the
program. They are referred to by #CONSNAME. Constants should
be used for values that are fixed for a simulation, as opposed
to coding the number itself; iIn the event that the value must be
changed, editing the source program will still be necessary,
but only in a single place. Constants, like variables, are

valid for values from O to 65,535.
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Clock values allow for a range of operations dealing with
the passage of time 1in the simulation. First the current
simulated time may be accessed by a reference to the system
variable CLOCK. Second, clock variables may be declared in the
symbol section as WCLCKNAME; these variables may be operated on
arithmetically to determine times for various events to occur,
elapsed times, and so forth. Additionally, each object has 2
parameters which are clock variables, thus making it easy to
associate times with specific objects. Each object also has
associated with it a system parameter, OBJ%ST, which is set to
the creation time of the object. This parameter may be used as
a third variable clock parameter. Clock values may be compared
for branching purposes.

As noted above, each object has six variable parameters,
two variable clock parameters, and one system parameter
containing the time of its creation. Each object has three
other system parameters as well. The first is the job number of
the object, given by JOB@ID. This value is specified in the J
load-time directive. The second is the serial number of the
object, JOB@SN. This number indicates what position the object
has in the sequence of objects created by its job. JOB@ID and
JOB@SN can be used together to uniquely identify any object in
the model. The last system parameter is OBJ@ID, which contains
the ASCII code for the character used to represent the object
on the overlay. This parameter yields essentially the same
information as JOB@ID; the same decisions can be made on

knowledge of either the job number or the character a job is
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represented by, provided a one-to-one correspondence exists.
Each of the three parameters may be used just like variable
symbols, if desired. Changing 0BJ@ID will alter the object on
the overlay.

Label symbols are used for reference to both specific
instructions and to any links that may be defined.
Instructions are labeled as :INSLABEL; every PCModel program
will utilize some 1instruction labels as they are used as
destinations for the various branching 1instructions. When
links are used, they are Qlabeled as 1LINKNAME. Links are
transferred to with the LK instruction. They are PCModel~"s
version of procedures or subroutines; once an object has moved
from the beginning to the end of a link, it is returned to the
instruction following the LK in the route.

The final type of symbol 1i1s that used to 1indicate
positions on the overlay. They are constant in nature, which
tends to limit the flexibility of PCModel in some instances. A
symbol for an overlay position is of the form *POSNAME.

C, THE INSTRUCTION SET

Due to the unique graphical approach of PCModel, the
nature of the instruction set 1is different from that of a
conventional simulation language. The instruction set
includes instructions solely i1nvolved with the logic of the
simulation, some concerned only with the display for the
simulation, and still others that touch on both aspects of the
model . This section will examine briefly the various
instructions in logical groupings. Details concerning their

use will be emphasized in example models later.



14

The route and link delimiters (BR, ER, BL, EL) are used to
used to signify the beginning and end of each route and link in
the program; specifically, BR and ER are the begin and end
instructions for routes, while BL and EL are used with links.
BR specifies a route number, overlay position, and initial
delay for any object using its route. BL must give the label
for the link and may have an optional overlay position and
delay. Each BR must have one and only one corresponding ER; a
BL may have one or more EL"s, but this 1Is a poor programming
practice (one entry with more than one associated exit).

The object movement instructions (MU, MD, ML, MR, RM, MA),
together with the arithmetic instructions, typically make up
the main portion of sequential program flow. The movement
instructions are used to move the object"s display character
around the overlay, taking specified amounts of time for the
movement. OF the six Instructions under this grouping, Ffive are
relative in nature; that is, they cause the object character to
move a Tixed number of spaces in the implied direction relative
to the current position. There is one instruction for each of
the four directions of movement on the overlay: MU (Up), MD
(Down), ML (Left), and MR (Right). Each of these instructions
specifies a constant value for the number of spaces to move and
a delay period after moving each space. For example, MU(3,6)
would cause the object character to move up on the screen 3
rows, delaying 6 seconds on each row. The RM iInstruction
specifies a signed (+/-) movement Tfor both the x and vy

directions, as well as a delay period once the object has
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moved . The Hlast of the instructions i1s MA, or Move Absolute.
It moves the character immediately from wherever it is to the
location specified and then waits for the iIndicated period.

One thing to note 1is that in the Qloading process the
loader will trace on the overlay exactly the moves that have
been indicated in the program. At load time, there is no way to
determine the current Ilocation TfTor referencing subsequent
relative moves when sequential program Fflow is broken.
Therefore the loader must be told what to take as the current
screen position after any -transfer-of-execution”® type
statements (IF"s, JP"s, etc.); this is accomplished with the R
(Relative reference) directive discussed earlier. The path of
the route can then be correctly traced on the overlay, which in
turn aids in the debugging process.

The object delay instructions (ST, DN) halt the object in
the traversal of its route. The ST (Set Time) instruction is
the primary means of delaying an object. The value used for the
delay can be a constant, come from a global variable, or come
from a parameter of the object itself. ST is typcially used for
simulating the time involved for the object to undergo some
process. The DN, or Do Nothing, 1instruction 1is essentially
equivalent to ST(1). Its function is to hold the object at the
position of the DN in the route until the next second of clock
time. The typical use of DN i1s to prevent entry 1into an
infinite loop. As many PCModel instructions take no simulation
clock time to execute, 1t Is very easy to inadvertently code

the program so that it is vulnerable to an infinite loop
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situation. This 1s particularly easy to do where only
mathematical calculations are required in a loop; this will be
examined further later.

The arithmetic operations (A0, IV, DV, SV) provide for
PCModells manipulation of numbers. The Tfirst of the four
instructions grouped here is the AO, or Arithmetic Operation,
instruction. It is the heart of the mathematical manipulations
that can be performed, as it encompasses the defined operations
of addition (+), subtraction (-), multiplication (*), and
division (/). It takes three operands, the second of which is
one of the symbols for the listed operations. The Tfirst and
third operands are both sources for the operation, with the
first also being utilized as the destination of the result; its
previous value is destroyed. A copy must be made if the first
operand will be needed later. Note that the order of the
operands for the instruction places them in Infix notation for
the operation to take place. The 1V (Increment Value) and DV
(Decrement Value) 1instructions do exactly what they imply.
They perform the indicated change on their single operands.
1V(OPERAND) and DV(OPERAND) are logically equivalent to
AO (OPERAND,+,1) and AO(OPERAND 1), respectively.

The Ulast instruction of the group is SV (Save Value),
which simply copies the value of its second operand to 1its
first operand. It is useful for saving the first operand of an
AO instruction. It can thus be used to make copies of values
that are required for arithmetic in more than one place or to
prevent changing of a value until a certain point or time in the

simulation.
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The random number instructions (RS, RV) can accomodate
those models requiring generation of a random number to
determine inter arrival times of objects, which way to branch,
and other such aspects. PCModel has built into it a random
number generator for this purpose. RS (Random Seed) allows the
user to choose a seed value for the sequence, while RV (Random
Value) allows successive elements of the sequence to be
obtained. It should be noted here that the random number
sequence must be 1initialized with a seed by RS before any
attempts are made to get a random number through RV. This 1iIn
turn typically requires that programs using random numbers
have a high priority job whose route will encounter RS before
any other objects get to an RV.

The next group of instructions (JP, LK) are concerned with
unconditional transfers. The JP (JumP) 1instruction breaks the
sequential fTlow of the object through its route and transfers
it to the label it specifies as i1ts operand. The LK (LinK)
instruction also transfers the object, but in this case it
transfers it out of its route to the link specified as its
operand. The object will be returned to the instruction
following LK when 1t encounters an EL in the link. Thus, a link
in PCModel 1is similar to a subroutine call in a conventional
programming language.

The two conditional jumps (JB, JC) transfer the object to
the label specified as their last operand depending upon the
result of the test performed. JB (Jump if path Blocked) has as

its First operand an integer specifying a number of positions;
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this is followed by the screen positions to check. If one or
more of the given positions are blocked, the object will be
transferred. JC ((Jump if path Clear) uses the same format for
its operands; however it only transfers the object if all of
the positions are clear.

The conditional jump (IF) 1instruction 1is considered
separately as it has a number of different forms. All IF
instructions utilize the same format for the condition they
test. The check made concerns one of six possible relationships
between two operands: equal (EQ), not equal (NE), greater than
(GT), less than (LT), greater than or equal (GE), and less than
or equal (LE). The relationship itself is the second operand
of the instruction, while the two numerical values take the
first and third positions. The remaining portion of the
instruction details the action to take place based on the
result of the tested relation. Essentially, the instruction
allows branching for either of the true and false results.
Both the true and false results may specify a label to branch
to. Additionally, a label may be replaced with the keyword
NEXT to indicate that the next sequential instruction is the
destination of the branch. Finally, the keyword WAIT can be
used In place of a destination label; if the condition occurs
that would otherwise branch to the label in WAIT"s place, the
object is held at the IF statement until the next clock cycle
when the condition will be checked again. This is similar to

the manner in which the TP Instruction operates.
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The position posting and clearing instructions (PO, CL,
TP) are generally used in combination with one another to
synchronize object movement. PO (POst) takes as an operand a
screen location which will be marked as occupied, or posted,
when the instruction is encountered by an object. CL (CLear)
reverses the effect of a PO. It marks as unoccupied, or clears,
its operand which is also a screen location. Care should be
taken to ensure that the position to be posted or cleared is not
already occupied by an object. If it is, posting the location
will only hide the object that is currently there. When the
object®s time at that position elapses, it will move on and the
position will become clear. Clearing a location which 1is
currently occupied will result in the deletion of that object
from the simulation. The third instruction of this group, TP
(Test Position) can be used to test a number of positions to see
if any one of them is currently occupied. IT so, the object at
the TP instruction will be held there until the next clock
period, at which time the check will once again take place.
Thus, TP provides the capability of checking for a clear path
before proceeding; this can be used to prevent a PO or CL
instruction from affecting an occupied position.

The wait conditionals (WC, WK) halt the object when it
encounters them and holds 1t until a condition is met. WC (Wait
Clock) may be used to halt an object in its route until the
clock time specified by WC"s operand is reached. WC might be
used to synchronize objects 1in the simulation. WK (Wait

Keyboard), on the other hand, stops the entire simulation when
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it is encountered by an object. Execution will begin again as
soon as a key 1is struck. WK could be used to halt the
simulation at points when the display should be saved.

The overlay instructions (PV, PM, VW, XZ) constitute the
remainder of PCModel®s instruction set. PV (Print Value)
prints at a given location the current value of the specified
variable. This 1i1s wuseful 1i1n the output of 1iIntermediate
calculations, as well as statistics that may be saved with the
screen 1iImage. PM (Print Message) prints at a given location
like PV, but it prints a constant character string. This has
use in displaying messages concerning the occurrence of
specific events. VW (Viewing Window) changes the portion of the
overlay that is displayed on the 80 x 25 character screen. For
logical screens greater than the minimum, it can be used to
focus on a portion of the overlay when the program logic
dictates that something of interest will be happening there.
The upper left position of the desired overlay section is
specified to VW. This 1instruction may be used in multiple
places throughout the simulation routes. Lastly, SA (Set
Attribute colors of object) is used to set the foreground and
background overlay character colors of the object encountering
it. This can be used where objects encounter a multiple
branch. 1If the number of branches are relatively limited, the
foreground color of the object could be set to reflect the
branch taken or decision made, thus providing some useful

feedback. The background color could be set by another scheme

as well.
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D.__RUNNING THE SIMULATION

Once the PCModel program for simulation of a given system
has been created, it is ready to be loaded and run. It will be
the purpose of this section to examine this process and all of
the options that are available throughout.

With the source file saved on disk, the computer iIs ready
to run PCModel. Entering ™PCModel"™ starts the program. This
will bring up the copyright information and the message "Press
G to Continue.”™ Doing so brings up the main menu, or help
screen, which lists all of the options available under PCModel.
Each of the possibilities is identified by a single character
associated with its purpose, such as ’L* for Loading a source
program. This is the first step to take.

Once L has been pressed, PCModel asks for the filename of
the source program to be loaded. The Ffilename is typed iIn here;
the extension should be left off as PCModel requires and looks
for an extension of _MDL. When the filename has been entered,
PCModel begins reading it from the disk drive and creating the
run-time program. As it does this, it traces on the screen the
path each route defines while simultaneously displaying the
instructions responsible for the route at the bottom of the
screen. This 1is useful in debugging the program; the Iloader
will probably show here if a route iIs not going to behave as
expected. Additionally, any undefined symbols will cause a
message stating such to be printed at the end of the program
load. The symbols could be any of the six types discussed

earlier (variables, instruction labels, etc.).
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The V (Values) command can be used to ldentify undefined
variables. V displays all of the symbols defined 1in the
program. For each variable that is undefined at the end of the
loading process, a "U" will appear next to it on the screen. If
the route appears to have a flaw iIn it or one or more symbols
are undefined, i1t will be necessary to exit PCModel and return
to the text editor to correct the souce program. To exit, use
the Q (Quit) command. When the problem is corrected, repeat
the loading process.

Once the program has Jloaded without evidence of any
errors, the simulation can be run using the G (Go) command.
This starts the simulation at time 0000:00:00. While running,
the simulation can be temporarily halted at any time by
pressing the space bar. There are a host of user interactions
available once a running simulation is obtained.

Four types of information are available both for viewing
and for alteration. The most common one 1is accessible using
the V (Values) command described earlier. The values displayed
are not limited to being helpful in the debugging phase; they
may also be viewed when the simulation is temporarily halted
and any variable values may be changed. This allows greater
flexibility 1in placing loads upon the simulation. The E
(Event) command displays the event screen, which contains
information pertaining to each object currently 1iIn the
simulation; this information includes the character for the
object, creation time, current screen location, and release

serial number. The parameter screen can be accessed with the P
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(Parameter) command; the six variable and two clock parameters
for each active object are listed. Finally, data concerning
each job for the model 1is displayed when the J (Job) command is
invoked. This consists of each job®"s size, overlay character,
priority, associated routing, etc. Like the value screen, the
screens for events, parameters, and jobs can all be edited for
certain values.

One other screen 1is available for viewing. It is the
utilization screen and is called up with the U (Utilization)
command . On this screen are kept the hourly utilization
statistics for the locations defined in the source program. It
is possible to define a maximum of 21 of these locations;
PCModel then calculates the percent of time these positions are
occupied and tabulates the information on this screen. It
should be noted that the column of statistics for the current
hour of simulation is meaningless until the end of the hour.
Also, the screen has room for only ten hours of simulation. At
the start of the eleventh hour, tl*e column for the Tfirst hour
will be used again, and so on. Invoking the U command causes
the model to be temporarily halted while the utilization screen
is displayed; using the G command will change the screen back
to the overlay and continue the simulation. This is also the
case for the V, P, E, and J commands. One notable difference
between U and the previous four commands is that the screen has
no alterable values on it.

There are two procedures that can be used with the

utilization screen. The TfTirst is the 0 (Output) command. When



invoked, it prompts the user for a filename under which to save
the utilization data after each ten hour period; successive
screens are appended to one another. The file thus created can
be handed in turn to a program iIn a conventional programming
language for further calculations or it may simply be used for
inspection by the user. In either case, this option allows for
long simulation periods without Boss of 1information. The
second procedure is defined through use of the function key 7.
This key acts as a toggle for halting the simulation after
every ten hours; when active this allows the user to inspect
ten complete hours of utilization statistics and print them if
desired before resuming simulation. It would also be useful if
certain variables might require changing periodically. The
status of the F7 toggle, H for Halt mode and G for Go mode, is
displayed at the bottom of the overlay screen.

Another PCModel feature 1is the capability to save the
entire status of the simulation to disk and then bring it back
to start at the point where it was stopped. Also, some
simulations may take some time to get to steady state. Once
this steady state is reached, the simulation could be saved to
disk using the S (Save) command, which prompts the user for a
filename. Then i1t could be used to illustrate the system to
others without the annoyance of having to wait while the
initial simulation period takes place. The simulation
environment is brought up from the disk using the R (Restore)
command, which prompts for the saved filename. Further, R could

be used on the same file more than once. The file extension for
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a saved simulation environment 1is required by PCModel to be
.SIM.

As the simulation may be viewed by other than its author,
the D (Description) command can be helpful. When invoked, it
brings up the screen which consists of the input to the D
directive in the source program. Useful comments here can make
interpretation of the simulation more meaningful.

The last PCModel command that is directly involved with
the running of the simulation is the | (Initialize) command.
utilizing 1 causes the simulation to be set back to the same
position it was in when it was first loaded; thus the entire run
can be started all over, perhaps with some different variable
values, without having to reload the entire program. The only
aspect of the model environment that 1 does not affect is that
of the variable values which were defined in the symbol section
of the program. These variables had their storage allocated at
load time and they were initialized then as well; thus only
reloading the program will initialize them again. To avoid
this, the variables can be initialized in the run-time model by
some dummy job whose priority allows it to affect these
variables before any use is required of them.

At any time the simulation 1is running, the currently
visible portion of the overlay may be sent to the printer. This
is accomplished wusing the Shift-PrtSc key combination.
Alternatively, the overlay image may be saved to a disk file
using the F (File) command. The Tfirst time F is invoked, it

will prompt for a filename; the extension 1iIs required to be



26

.SCR. Subsequent uses of Fwill concatenate the current screen
to the _SCR file. The portion of the overlay that is currently
being displayed can be changed in two ways. First, there is the
PCModel 1instruction VW which changes the upper left corner of
the viewing window to the specified position when executed.
Secondly, the user may interactively move the screen over the
overlay using the four cursor keys. To do this, the scroll lock
key must be toggled so that it is the overlay which appears to
move when the cursor keys are used. The other use of the scroll
lock toggle will be discussed next.

A common happenstance iIn a simulated environment is that
of tool fTailures and periodic maintenance. While this can be
coded in the software, PCModel also provides an interactive
method for simulating failures. As mentioned above, iIn one
setting of the scroll lock toggle, the cursor keys move the
display around the overlay. For the other, the cursor keys
move PCModel"s blocking character. Moving it to an arbitrary
position and depositing a block there is equivalent to moving
some job object to that position or posting the position in the
software. Once a position has a block deposited on i1t, which 1is
done by pressing the F8 key while the blocking character is
over 1it, that position remains occupied until the block is
removed, which 1s accomplished by moving the blocking
character to the position and pressing F8 a second time. A

maximum of 50 blocks may be deposited on the overlay at any one

time .
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Four of the function keys have functions relating to the
time advancement fTor a model. Keys FI and F2 decrement and
increment, respectively, the pace at which the model proceeds.
Using them, the model can be slowed from its original setting
of the system’s top pace to a pace which closely approximates
real time clock advancement. The current factor for the pace,
which ranges from 0 to 250, is displayed at the bottom of the
overlay screen. FI and F2 affect the pace for settings of 0 to
10 by intervals of 1 and then from 10 to 250 by intervals of 10.
The pace can be slowed during crucial intervals and increased
for those that are not of concern. F3 toggles the advancement
mode Tfor the simulation clock. 1In increment mode (indicated by
I at the bottom of the overlay) the clock advances one second at
a time; in look-ahead mode (indicated by L) the clock advances
to the time of the next projected route movement of an object.
Look-ahead mode will simulate a model more quickly, but
PCModel "s author states that it may not be as accurate as the
increment mode for some simulation environments. Finally, F4
can be used to put the clock advancement into a single-step
mode (indicated by an S next to the clock on the overlay).
Pressing F4 again puts the model back in the regular go mode
(indicated by a G) . When 1i1n single-step mode, the clock
advances 1 second for each press of the G key. Single-stepping
makes possible close examination of events that would
otherwise be difficult to follow.

Two other Ffunction keys have fTunctions defined under

PCModel . They are the F5 and F6 keys fTor respectively
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decrementing and incrementing the maximum number of objects
allowed in the system at any given time. This is the Works-in-
Process figure mentioned earlier in connection with the W load-
time directive. W initializes the number and then F5 and F6 can
be used to alter it. The current value for Maximum Works 1In
Process (MWIP) 1is displayed at the bottom of the overlay
screen, along with the other model status values examined thus
far. The other two statistics displayed are the current number
of objects in the model, or Works 1In Process (WIP) and the
number of objects that have completed their routes and exited
the model, or the Work Complete Count (WCC).

When 1t 1i1s desired to terminate PCModel, the Q (Quit)
command is 1invoked. This command was mentioned earlier 1in
connection with the Iloading process. Before quitting, any
saving of screens or the current simulation environment must be
completed because the Q command completely exits the PCModel
program, returning the computer to the operating system.

For the sake of completeness, it should be noted that
there are four other commands available under PCModel,
although they have nothing to do with the actual running of a
simulation program. The Tfirst of them 1is the A (Attribute
editor) command, which i1nvokes the overlay editor built in to
PCModel . This editor 1is specially designed for creating
colored overlay screens. The other three commands are all
concerned with the display being used for the simulation
session. They are B (Black and white), C (Color), and M

(Monochrome).
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E. SOLVING SIMULATION PROBLEMS USING PCMODEL

This section is devoted to the task of outlining the steps
required for the development of the solution, or model, of a
given simulation problem. This development will be broken down
into five steps, each explained in the general terms of the
PCModel programming environment. This development process
will be used to develop two different Kkinds of simulation
models in the following sections.

1. Define and Limit the Problem When a problem is
presented for simulation, it 1inherently has a set of
characteristics particular to it It 1is this set of
characteristics that must be precisely outlined during this
step, not only of the given problem, but those of the desired
solution.

In terms of PCModel, the types of things to identify are
those that will be associated with jobs and those that will be
incorporated into routes. For example, consider a simulation
model to be set up for an automobile manufacturing plant. The
model 1is to consist of an automibile assembly line and the
stations at which they stop for assembly. Assume that all of
the specific data, such as processing rates and required
assembly line speed are available for use. Modeling of the
assembly line still cannot begin until a thorough definition of
the solution requirements has been stated. Those 1items of
interest in the solution must be designated so that the model
can incorporate generation of statistics for them. An example

of this can be seen iIn the simulation output required for a
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particular tool on the assembly line. IT the output for the
tool i1s to consist of its utilization time, it may be easiest to
incorporate the tool in the model as a job, rather than as part
of a route. Simulation of failures may be simpler if the tool
is a job, given the blocking capability of PCModel. If, on the
other hand, it is only necessary to halt the automobile on the
assembly line for some variable work time, the tool
characteristics would probably just be incorporated into the
route TfTor automobiles. All of these types of decisions and
their repercussions will be pointed out in the succeeding
chapters dealing with specific examples.

Secondly, some aspects of the system must be regarded as
outside the scope of the simulation. The problem must be
limited to one which can be reasonably modeled. In order to
keep the complexity of the software from becoming so great as
to confuse the model behavior with programming tricks, some
boundary must be drawn as the environment Tfor the system.
Consider the model of an automated warehouse. It must be
decided where to begin modeling the behavior of the goods
stored i1In the warehouse and which operations of the warehouse
are to be i1ncluded. Assume the goods arrive by truck at the
warehouse door and are then processed through the receiving
area. Also, goods must be processed by the shipping department
before leaving the warehouse. It may be that including the
behavior of the receiving and shipping departments would
overly complicate the model; i1t might even be decided to

simulate the shipping and receiving departments separately to
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determine their effectiveness. (The example of the automated
warehouse will be examined in detail in the next section.)

Not only must the problem be limited, but in some cases it
may be that PCModel 1is determined to be iInappropriate for the
given circumstances. As is the case in all simulation
languages, PCModel inherently has some weaknesses which make
it a poor choice to simulate some types of environments. For
example, consider a model for a supermarket wherein customers
enter the store and stay for various lengths of time before
being checked out. GPSS, a standard simulation language, would
typically make use of an ADVANCE block to delay for the time a
customer spends in the store. The ADVANCE block creates
neither a first-in first-out (FIFO) ordering of customers, nor
is It a single customer facility. In order to simulate such a
system with PCModel, its natural FIFO ordering of objects must
be overcome. In fact, depending on the problem, it may be that
PCModel 1is not the system to use. (The problem of the
supermarket will be examined latem)

2. Collect Data for the Problem Once the problem and
output requirements have been defined, the development of the
solution moves to the second step, that of collecting data.
This data will be in the form of specific numerical values for
the various pieces of the simulation environment. Continuing
with the example of the automobile assembly 1line, some
representative examples would include the processing times of
the various assembly stations on the line, the number of each

type of tool at each of the assembly stations, the on-line time
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for any given tool (or conversely its down time due to periodic
malfunction and repair), and so on.

In addition to determining what the values fTor specific
parts of the simulation are, it is also necessary to determine
which values are fixed and which are variable for the
simulation. IT the simulation is to determine the results of
possible changes in an already existing system, some numerical
values will be constant due to the system®s nature. For the
assembly line, a particular painting apparatus that is going to
be part of the new set up whatever the result of the simulation
studies (due to economic Tactors, TfTor example) must have a
constant time to function. This value cannot change and may be
entered into the simulation data as a constant.

In contrast to this are the variable values to be
considered. These are quantities, rates, delay times, etc.
which the simulation will be used to find optimum values for.
On the assembly 1line, it would be possible to consider
different numbers of assembly workers for upholstery fTitting.
Each of the workers will perform his task at a more or less
constant rate, but the number of workers performing the same
function will greatly affect the performance of the system. If
there are too few workers, the entire assembly line has what
amounts to a bottle neck; on the other hand, if there are too
many workers, some of them remain i1dle and the assembly line
may not prove to be economically sound. Besides quantities,
there are also tools which can be set to run at variable rates

and assembly times that may be varied. Essentially, no part of
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the assembly line can run so slow as to interfere with the
performance of the other parts, yet neither can any part run so
fast as to be economically unfeasible.

One other Important part of the data collection step iIs to
decide wupon or obtain the specific measurements fTor the
overlay, or "floor plan', of the simulation. Such information
is needed by any simulation language, but it becomes especially
important when the graphics nature of PCModel®s output is
considered. In order for the model solution to be realistic,
it must obviously appear to be as close to the actual physical
operating environment as possible. Fine points in the
production Tfloor Jlayout that would either be disguised or
overlooked completely by a conventional simulation language
suddenly take on new relevance under PCModel.

3. Develop a Software Solution With the specifics of a
system defined, the creation of the working simulation turns to
the task of choosing and developing a method of solution. This
entails the process of putting together the pieces of PCModel
required to effectively simulate the model, once it has been
thoroughly defined and the numerical information concerning it
has been established.

Before the coding of the PCModel program can be attempted,
each individual piece of the model should be assigned to a job
and/or route. This furthers what was put in motion in step 1,
with the emphasis shifted away from defining the problem
requirements to the correlations to be made between the

requirements and PCModel®"s specific configuration. With the
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pieces for each job and route known, coding can begin to take
place. Now the data collected in Step 2 is applied to form the
configuration for each of the routes required by the model.

For a given route, all of the information pertaining to it
is reflected by PCModel in two ways. First, the path the object
is to follow on the screen is mapped onto the overlay and plots,
at the scale arrived at for the display, the foot by foot
progression of the route®"s objects through the simulation.
Second, everything that is to happen to an object during its
course through the simulation is built into the route for that
object.

The overlay path and the coded route are created iIn tandem
with one another. The iInstructions must mimic the behavior of
the object, as must i1ts path on the overlay. At each place in
the PCModel code where some event takes place other than a
typical move, the overlay should reflect the nature of this
event. Key processing points, cross-overs with other routes,
points of object origin and exit, etc. should all be clearly
labeled. Conversely, the overlay can be used to develop the
code, making sure that each of the routes runs logically along
the assembly floor. No interference should be caused by the
route in question, nor should it receive any from other routes;
that is, where routes logically overlap the software should
anticipate and handle possible collisions beyond PCModel-~s
built in collision-prevention mechanism. Also, the overlay
will help to determine if routes are intersecting where they

logically should not. The TfTollowing sections examine the
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entire software development process for the two problems
mentioned previously. Specific examples of programming details
will be left until then to be explained.

4. Solve the Model With the system configuration and
data embedded in a PCModel program and overlay, the simulation
can be run to determine the effectiveness of the set up. It is
in this step that the interactive nature of PCModel comes into
play. By its unique method of operation, PCModel runs the
simulation on the display of the computer i1n real time, at a
rate which can be iIncreased or decreased as desired throughout
the simulation. The system can be adjusted to run at a rate
approximating that of the real operation to provide close
inspection of its operation. Solving the model entails running
the program and 1interacting with it 1in whatever manner
necessary to explore the variable aspects of the system. For
example, at various points i1t may be of interest to temporarily
halt the simulation and change the values of certain parameters
or variables; this allows the system to be subjected to any
loads or bottle necks that are deemed feasible. Simulation of
tool fairlures, or route blockages, can also be created and
removed with the used of the blocking character.

Besides user 1interaction taking place to examine the
system, PCModel handles some generation of information by
itself. Utilization data can be assimilated for various
positions on the screen by defining these positions 1iIn the
software. (This essentially amounts to the percentage of the

time the position 1iIs occupied, a statistic similar to the
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utilization figures for a facility in GPSS.) The data screens
can be saved to disk for later examination or for use by a
program written in a conventional Jlanguage such as BASIC or
PASCAL. 1t might also be feasible to make use of PCModel®s
capability of checking the system clock and halting for user
input to let the user known when to save overlay screens.

5. Evaluate the Solution Once the program has been run
to 1ts logical conclusion, it is time to evaluate what has been
produced. First, it must be determined whether or not the model
behaved in a realistic manner. If not, the model must be
adjusted until it is deemed realistic by those familiar with
the real world counterpart.

When it 1is decided that the simulation output can be
trusted, 1t is time to examine what that output means. IT the
system modeled is already in existence, the simulation will
hopefully have shown what courses of action can be taken to
increase the performance and efficiency of the system. On the
other hand, if the simulation was being done to determine the
workings of a new or anticipated system, the output should be a
strong 1indicator as to how many workers to hire and how to
arrange them efficiently, for example.

Lastly, the simulation model can be continuously upgraded
and expanded upon to examine other areas under scrutiny in the
given system. Small changes can continue to be made to the
software and overlay until PCModel creates an efficent and

accurate graphical predictor of the system of interest.
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. THE AUTOMATED WAREHOUSE PROBLEM

In the text Simulation with GPSS and GPSSV by Bobillier/
Kahan, and Probst™™/ an automated warehouse is simulated using
GPSS. An automated warehouse 1i1s one under computer control
that handles all of the input and output assignments; thus the
operation runs very efficiently. GPSS®"s output for the
simulation 1is 1in the Tform of facility utilizations, queue
statistics, and other numerical data determined upon the end of
the simulation. In this section the same problem iIs examined;
PCModel 1is used to solve it and the solution is compared with
that of GPSS. In addition to showing the relative strengths
and weaknesses of PCModel when compared to a standard
simulation language, much insight into the workings of PCModel
can be gained from such an example.
Al DEFINE AND LIMIT THE PROBLEM

As was iIndicated iIn the previous section, the first thing
to be done is to determine the limitations to be placed on the
problem. The same warehouse characteristics will be used for
this example as are specified for the GPSS model. The problem
as defined for the GPSS solution is to "simulate the operation
of the warehouse to check i1f the whole system can operate
satisfactorily, especially during peak hours.™

The warehouse consists of corridors, each with i1ts own
automated crane. On each side of each corridor i1s a rack, so
that each crane has access to two racks. Each rack is further
divided into bins; each bin is capable of storing one pallet.

Pallets, in turn, are defined to be the smallest unit of the
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warehouse and the only unit to be physically handled by the
system.

Pallets of goods arrive at a receiving port and are placed
on the lower level of a circular conveyor when an open position
arrives. The conveyor is actually a twin pair of conveyors,
one above the other, each moving opposite the other at the same
speed. They are connected at their ends by a twin pair of
lifts, running at the same speed so as not to disrupt the
continuous path of the pallets. As a pallet travels across the
upper level of the conveyor, it is transferred from the
conveyor to the 1input buffer of 1its corridor by computer
control, 1if space permits. The GPSS model serially assigns
corridor numbers to pallets; for the PCModel simulation, this
assignment will be done randomly, to exhibit this feature of
the Ilanguage. IT the input buffer should be full, the pallet
will go around the entire conveyor again.

Once a pallet enters the input buffer for its corridor, it
waits for the crane to finish with any previous jobs and get to
it for placement in the corridor. The corridor will be broken
up into zones fTor placement of the pallet; this division will
be according to the distribution of different types of pallets
for that corridor.

Shipping requests will be handled in a similar manner.
The requests will be considered to arrive at a central location
and fTorwarded to the computer control of the crane of the
corridor designated for the pallet to be shipped. As was done

for the 1incoming pallets, the requests will be assigned
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randomly to the different corridors. The requests will wait in
a buffer while the crane finishes prior jobs. When the crane is
free, it will move to the position of the pallet to be shipped
(determined again by the distribution of the pallets) and move
the pallet from its stored location to the output buffer area
to wait for a position on the main conveyor. When an open
position arrives, the pallet is placed on the conveyor by
computer control and moves to the lower level of the conveyor
where i1t exits the system to be loaded onto a truck or freight
car .

Thus, the problem is defined in general terms although no
actual, specific data has been gathered concerning the system
to be developed. The problem is implicitly Ilimited to the
areas of interest discussed In this section.

B. COLLECT DATA

In this phase of model development, numerical data
concerning the particular problem to be simulated is gathered.
The physical dimensions of the GPSS model will be used in the
overlay screen of the PCModel simulation, as well as 1iIn
defining the moves to be taken in the routes for the various
jobs. Other constants, such as conveyor speeds, arrival rates,
crane speeds, buffer sizes, etc. will be assimilated in order
to be prepared for Step 3, that of putting together the
software to solve the problem.

Data collection starts here with information pertaining
to the smallest entity in the simulation, the pallet. Each

pallet will be a square, 1 meter (m) on a side. Thus, each bin
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need be only this size. A rack will contain 10 bins vertically
and 50 horizontally; it then measures 10 x 1m, or 10m,
vertically and 50 x Im, or 50m, horizontally. Each rack in turn
will therefore contain 50 x 10, or 500, 1individual bins; with
each corridor having a rack on either side, every crane will
have access to the corridor"s total of 1,000 bins. The
simulation will model 10 such corridors, with a 1.5m width
separating the racks for the respective cranes. For 2 racks of
Im width each and the 1.5m width of the crane space, the width
of each corridor totals 3.5m; the total width of the warehouse
of 10 corridors comes to 35m. The length of the warehouse will
be 50m, for 50 horizontal bins at Im length apiece.

Each corridor will initially be considered to consist of 4
zones. The quantity of both received pallets and shipping
requests will breakdown as 40%, 30%, 20%, and 10% for each of
the four zones A, B, C, and D, respectively. The GPSS model
breaks the four zones into equal sizes; however the PCModel
simulation will be built with slightly altered percentages.
This comes from a decision to keep the logic of the program at a
moderate level, as PCModel has only integer arithmetic. As will
be seen iIn the calculations for crane movement, 1t 1is much
simpler if each zone starts on a whole boundary. This cannot be
resolved with a horizontal distance of 50m being split into 4
equal zones. The solution is to have the first zone be slightly
larger than a fourth of the corridor at 13/50, the second
slightly smaller at 12/50, and the third and fourth zones at

13/50 and 12/50. The distances for crane movement will be
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slightly different from those determined in the GPSS model, but
the programming logic will remain manageable, as will be seen
in the section on coding.

Each corridor will have an input buffer which will receive
pallets from the conveyor and an output buffer where pallets
will wait for an open space on the conveyor. The input buffer
will hold 4 pallets, and the output buffer will have room for 2
pallets. The servicing of pallets in both buffers will follow
the obvious first-in first-out ordering. The received pallets
enter the input buffer and wait there for the crane to place
them in the corridor; the pallets pulled from the corridor to
be shipped are placed in the output buffer. |If the input buffer
is too small, some received pallets may have to travel around
the conveyor more than once; if the output buffer is too small,
the crane will be unable to get any more pallets requested for
shipping because there is no place to put them. Thus, the
values for the input and output buffer sizes are crucial to the
effectiveness of the system. For both buffers of a corridor,
an automatic mechanism iIndependent of the crane is assumed to
exist to take pallets to or from the conveyor.

The conveyor is defined to be 35m in length on both the
upper and lower levels. The lifts between the two levels will
be 3m tall. (A height of 2m was quoted as the distance for the
GPSS model, but this conflicts with the conveyor capacity
stated.) Thus, the length of the entire conveyor circuit will
be (2 x 35m) + (2 x 3m), or 76m. Pallets will be placed 1 m

apart on the conveyor, so it will support a maximum of 76m x (1
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pallet/2m), or 38 pallets. The conveyor will move at a
constant speed of 20 meters per minute.

The cranes will operate at I0m/min in the horizontal
direction and 1 meter/min vertically. The behavior of the
crane will be as follows: 11f a pallet has been placed in the
input buffer, the crane gets it and places it in its bin. Next,
the crane checks to see if a request to ship a pallet has been
received. IfT so, the crane moves to the calculated position,
if there is a pallet iIn storage, gets the pallet, and moves it
to the output buffer. The crane then repeats the cycle by
checking for a received pallet. (The determination of the
position of placement for a received pallet or storage location
of a pallet to be shipped will be considered in detail in the
actual PCModel software coding of the calculation.)

The remaining physical part of the warehouse operation is
the placement of the receiving and shipping ports. They are
arbitrarily placed on the Ilower level of the conveyor. The
receiving port is the place where "pallets enter the simulation
and wait to be placed on the conveyor. The shipping port is the
place where the pallets exit from the simulation by leaving the
conveyor. Their behavior is not part of the simulation itself;
they are included for completeness of the problem. (This 1is
actually part of the implicit limiting of the problem indicated
in step 1.) From the 1left end of the Ilower level of the
conveyor to the shipping port is 15m; the port itself is Inm
wide; i1t is then 3m to the receiving port which is also Im wide;

the remaining distance i1s another 15m to the right end of the
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lower level of the conveyor to yield the conveyor®s total
length of 35m.

With the physical dimensions of the warehouse i1n hand, the
scale to be wused for the overlay can be obtained. As
calculated, the warehouse 1i1s 35m wide; the divisions 1iIn that
35m are Im for pallets, bins, etc. and 1.5m for the crane
spaces. The greatest common fraction is 0.5m, so it would be
convenient to use this in the model. At 0.5m per character
space, 35m would require a minimum overlay width of 70
characters which is less than the required display screen width
of 80 columns; in fact, an additional 10 columns, or 5 to either
side of the warehouse, will be available at this scale. I Im
per character space were used (thus distorting the crane
spaces), then the warehouse would only take up 35 of the
required 80 columns. This arrangement would not be very
attractive, so 0.5m per character column seems to be optimal.

Determination of the scale of distance per display row
proceeds in a similar fashion. The physical distance required
would include the length of the warehouse at 50m, the length of
the buffers at 4m, the distance to display the conveyor on the
screen at 5m (Im for both the upper and lower levels and 3m for
the l1ifts), and the length of the shipping/receiving port at
10m (arbitrarily chosen). The total comes to 69m. As Im 1is
used as an increment, it should be used as the scale per row.
This would mean allocating a minimum of 69 rows for the
overlay. This is well over the single screen figure of 25 rows.

Thus even halving this scale would still not place it all on one
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screen. On the other hand, wusing 69 rows will allow the
receiving/shipping ports, the conveyor, the input and output
buffers, and the Ffirst few meters of the corridors to be
displayed on a single screen. Thus Im/row 1is an acceptable
scale. The warehouse overlay can be seen In Figure 1.

Finally, the Jlast numerical 1items required for the
problem data collection are the arrival rates of received
pallets and the requests for pallets to be shipped. The GPSS
model 1is designed to allow for variable arrival rates, and thus
the PCModel simulation will be set up in this manner as well.
One capability of GPSS utilized iIn its model that PCModel does
not have is that of generation of exponentially distributed
variables. The arrival rates themselves are stated to be
Poisson distributed. For the PCModel simulation, a constant
mean interarrival time is used for the Poisson variable. The
two sets of arrival rates to be simulated are (1) receiving at 2
pallets/min and shipping at 1 pallet/min and (2) receiving at 1
pallet/min and shipping at 3 pallets/min.

At this point in the development, the problem has been
defined as to what is to be simulated. Further, the systenm
specifics in the form of numerical data have been collected for
the model to be constructed. The next step iIn the development
process 1is to construct the PCModel software necessary to
accurately reflect the problem as given.

C. SOLVING THE PROBLEM IN SOFTWARE
1, Job and Route Definitions To begin the writing of

the software, the association of system pieces with jobs and
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routes must be finalized. For the automated warehouse, the job
associations will be stated and all other information will be
incorporated into the routes taken by the jobs. First, the
received pallets and requests for items to be shipped are
designated as jobs, as they are the primary focus of the
simulation. (An object of the received pallet job will
typically be referred to as "R" throughout the software
development, while an object of the shipping request job will
be referred to as 'S".) Second, each of the cranes will be
modeled as a separate job, consisting of one object which loops
through the system checking for the presence of R"s and S°'s
waiting to be processed in the corridor. Lastly,

initialization of the simulation will be handled by one
separate job, whose single object perfroms the required

initializations along its route and then exits the model before

any other objects enter. (This initialization at run time of
the model, rather than only at 1load time, 1is a standard
procedure when wusing PCModel; it allows the use of the

initialize option of PCModel~"s interactive facility to restart
the simulation without reloading it, as explained earlier.) In
addition to the three types of jobs indicated, a fourth will be
deemed necessary once programming begins, Tfor synchronization
of pallets on the conveyor belt.

With the Jjobs thus defined, the coding effort can be
concentrated. One might be 1inclined to assume that the
initialization job and its route would be the logical choice to

define Ffirst. However, as it 1is the 1initialization job"s
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nnrrjose to set up the system for the others to follow, it
actually makes more sense to leave it until the last. As noted
previously, the R"s and S"s are the primary Tfocus of the
system, so they will be considered first. The discussion of
the R job precedes that of the S job as a matter of human
factors; it is normal to think of a received pallet as the first
thing to enter the warehouse when it opens for business.

2. Received Goods The R"s model the received pallets.
They enter the system at the receiving port and wait for a spot
on the conveyor. When an opening arrives, R is placed on the
conveyor by 1implicit computer control and proceeds to its
designated corridor. IT a position in the corridor®s input
buffer 1iIs open, R moves into it and waits fTor the crane to
process it; if not, it makes one Tull circuit of the conveyor
and checks again. This process is repeated as many times as are
necessary; this behavior will lead to the complete utilization
of the conveyor capacity when the system becomes overloaded due
to high arrival rates, low crane speeds, etc. Once R is
accepted in the input buffer for its corridor, it moves up the
input buffer as space permits.

When the crane gets to R, logically R would be removed
from the input buffer and moved to the bin In the corridor where
it would stay until a shipping request removed i1t. Practical
considerations preclude this, however. For the capacity of the
warehouse, there would have to be 10,000 character spaces
allocated to this purpose. Although 10,000 characters 1is a

considerable requirement, it 1s well within the 32,767
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character overlay limit. The inclusion of this much space would
make the overlay extremely unwieldy and certainly distort the
physical dimensions of the warehouse. Further, PCModel does
not allow for the direct movement of objects based on how many
are already in storage. Even when this iIs overcome by coding
tests to determine how much constant movement is required, the
problem becomes one of having to code the tests and moves
individually for each of the corridors. This 1is due to
PCModel’s limitation to constant reference locations. When
the jobs and routes for the crane objects are discussed, this
same problem arises and its resolution will be made there. For
purposes of the R job, it is simpler to let the R"s exit the
system once the crane is known to be ready to take the R from
the i1nput buffer.

As can be seen in Figure 1, the R"s will arrive at
XY(44,69). The time between arrivals as discussed in the fTirst
section is taken to be a constant and will be stored in the
variable @RECVRATE. (Using a variable instead of a constant
allows the arrival rate to be altered using PCModel®"s value
screen while the simulation 1is running.) Also, it the
initialization and synchronization jobs are assumed to be
numbered 1 and 2 respectively, then the R job i1s 3. Thus, to
begin the R route,

BR<3,XY<44,69>,aRECVRATE>
is coded. R moves up the receiving conveyor at an arbitrary

speed of 6 sec/m to the point where it meets the main conveyor.
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MU<9, 6>

At this point, R waits for an open position to come by on
the conveyor, which is chosen to travel past the waiting R"s in
a left-to-right fashion. The column-wise scale of the screen
is 0.5m per column. This means that any given R will appear to
only take up 0.5m left-to-right; it must be assumed that the R
is actually occupying two horizontal character positions.
Thus, the R"s on the belt when i1t is Tfull will occupy every
fourth position (as the belt requirements state that Im, or 2
columns, must separate pallets). Further, the conveyor Iis
moving at a speed of 20 meters per minute, which is equivalent
to 1/3 m/s. The given conveyor rate of 1/3 m/s is equivalent to
0.5m per 1.5 seconds. To keep the arithmetic reasonable, the
conveyor speed needs to be in terms of 0.5m per n seconds, where
n is an 1integer. This allows conformity with the PCModel
restriction of integer operands. Cutting the given rate of 1/3
m/s in half yields 1/6 m/s, or 0.5m per 3 seconds. It is a
simple matter to cut all other speeds in half, so that no part
of the system is altered. The times indicated in the PCModel
instructions will effectively be half-seconds, when the
comparison with GPSS is made.

With the conveyor speed of 1/6 m/s, it takes 6 seconds to
move Im and thus 12 seconds to move 2m; therefore, a possible
open spot on the conveyor will occur every 12 seconds. What 1is
needed now is some mechanism to indicate, perhaps by means of a
global variable, when avalid time to check the conveyor for an

open spot occurs. This is accomplished by the synchronization
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job mentioned earlier. The sole task of this job will be to
naintain a global variable, @GO, such that It increments on the

closed interval (0,11) at the rate of 1 per second. Thus when

@GO 1i1s zero, an R can onto the conveyor (provided that the

go
spot is not already taken, as will be checked next). Note the
use of the DN (Do Nothing) instruction to prevent the
occurrence of an infinite loop.

“WAIT DN
IF(aG0.EQ, 0, READY)
JPE:WAIT%

Once 1t iIs known that a valid position has arrived, a
check must be made to ensure that i1t is empty before an R
attempts to move onto the space. Also, 1t must be remembered
that an R i1s assumed to be occupying two horizontal character
spaces, so both must be checked.

‘READY  JB(2,XY(44,59),XY(45,58), :WAIT)

IT R makes it past the JB statement without transferring,
it is because i1t an open space was found. The R is assigned a
corridor number before being placed on the conveyor because of
the nature of the data structures available in PCModel. Since
the only data type as of this writing is the scalar variable,
all of the information pertaining to a specific corridor will
have to be kept in global scalar variables. This iIn turn means
that software for the simulation of each of the corridors must
be coded separately with the particular set of variables built
in. The global nature of the variables does make it easy to
pass information to the cranes, though. The corridor number 1is

generated from the random value sequence initialized by job 1.
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RVORNDMCORR. 1.10)

Also, the color foreground of R is changed so that it
reflects the overlay color of the corridor input buffer it is
designated for. The background is set as defined by @COLOR and
the SA instruction.

SA(aCOLOR, aRNDMCORR>
Now R 1is ready to branch to the set of instructions for its

assigned corridor.

IF aRNDMCORR,EG,l:CORng
IF (aRNDMCORR, EQ, 2:CORR2

t «

IFEaRNDMCORR,EQ,Q:CORR9)

JP (:CORRO)
It should be noted here that the tenth corridor is designated
as corridor 0 and will be referred to as such throughout. This
is solely for purposes of program readability; all of the other
corridors have single digit numbers and by dropping the "1~
from "10", the Ilabels and variables for corridor 10 will Iline
up with those of the other nine.

The next step is to examine the path an R takes, given its
corridor number. The [logic Tfor the TfTirst corridor will be
fully explained here; the remaining nine sets of corridor-
dependent software behave in a parallel manner. Without any
delay, the R moves onto the main conveyor under 1implicit
computer control as soon as a valid open spot 1i1s recoghized.
(The branching procedure above contained no iInstructions
requiring clock time.) As the next steps utilize instructions

which will move R around the screen, it is necessary to use the
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“"R=" directive; this will give PCModel"s loader a location as
reference for the subsequent relative moves. There is no run-
time value In this, but it is extremely handy to ensure during
the loading phase that the route is indeed following the path
intended. Once R is on the conveyor, it moves to the conveyor-s
right edge at the conveyor®s constant rate of 3 sec per half
meter (or 6 sec per meter) .
:CORR1 R=(XYm,60>>

MU 0\)3

MR (30,3)
The reason the route above stops where it does (in the lower
right hand corner of the conveyor) is that some R" swill have to
circle the conveyor one or more whole laps before the input
buffer for an R"s corridor has an opening. The right hand
corner 1is a good place to loop because here no code will be
duplicated; that is, the MR instruction above only moves R from
the receiving position to the right edge. The next time around
the R must be moved right from the left edge, not the receiving
position. To get to corridor 1, R must move to the upper
conveyor and then left to input buffer 1. The rate going up is
6 sec/m and the rate moving to the left is 3 sec/0.5m, or 6
sec/m also.

:CONTI MU(4,6

ML&;B,%)

Now, with R at the entrance to input buffer 1, the number
already 1in the buffer, @INBUF1l, must be compared with the
buffer capacity @BUFCAP. |If it 1is less than the capacity,
there 1s room for at least one more R; thus R is transferred to

the iInput sequence.
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IF(aINBUFI,LT,aBUFCAP, -INPUT1)
Otherwise, R stays on the main conveyor belt and goes
around again; R is moved to the left edge, down to the lower
level, over to the right edge, and then repeats as explained

before.

ML (3,3
MD(4 6%

MR{68 }
JPC:CONTD)

Once an R 1s accepted into the input buffer, i1t has only to
wait for the crane to finish with its previous tasks to get to
it. The entry of the R in the input buffer causes the number in
the buffer to increase, and R is moved up the input buffer to
wait. Note again the use of the R= directive to relocate the
reference for relative moves after a branch.

-INPUT1 R:\;OXY’\%,SSp
1VOINBUF1
MU (4,6)

When the crane takes R from the input buffer, It exits
from the system. The problem is how to have the crane know that
there are received pallets waiting. This 1is accomplished by
incorporating a pair of flags which are used by both the
corridor sequence and the crane route. They are the @RECRQ1
and @OKRECRQ1l variables. The corridor sequence sets the
RECeiving ReQuest flag by incrementing @RECRQ1l whenever an R
gets to the entrance of the corridor (i.e., i1t is at the front

of the input buffer).
1VORECRQI)
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The crane route will be looking for this to happen; when i1t does

and the crane 1is free to replace the R, the crane route will

increment @QOKRECRQI to signal OKay on the RECeiving ReQest.
Until @OKRECRQI 1is set, R must wait at the front of the

input buffer.

‘BACK1 DN
IFOOKRECRQI .ECLO, :BACK1>

Thus, when the crane takes the received pallet for
storage, R can exit the system. As it leaves, it resets both
the @RECRQ1 and @OKRECRQI flags for the next R to use.

DV(Q)OKRECRQI)
DV(8RECRO1

The count Tfor the input buffer 1is also decremented to
reflect the fact that the input buffer now has room for one more
R.

DVOINBUF1)

Lastly, R jumps to the end of the route used by all of the

corridor receiving sequences.
JP < INDONE)
INDONE ER

The corridor sequences for the other 9 corridors follow
exactly from that given here for the TFTirst; all of the
variables and labels are changed to reflect the number of the
corridor. The moves along the upper conveyor must be adjusted
for the different corridors.

By allowing the received pallets to exit the system at
this point, much effort is saved iIn the coding effort. The

presence of the received pallets after the R*s leave the system
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is kept track of in the variables for corridor quantities.
This will be examined in full detail 1In the section covering
the crane routes.

With the route for the received pallets constructed and
the interrelationships among jobs defined, the job statement
for the route can be given. The initialization job will be of
highest priority (0) with the synchronization job following
(1). Thus the receiving and shipping pallets, as well as the
cranes, will all be of the next level priority (2). The job
statement for the receiving pallets is

J=(3,R,3,0,0,2,5000)
indicating that job 3 will follow route 3, and job 3"s objects
will use the character "R to represent them on the screen.
Additionally, there will be 5000 pallets received before the
job ends; this value was chosen arbitrarily.

3. Pallets to be Shipped The shipping requests
pallets are next. The shipping requests will be modeled by the
objects of the shipping pallet job, denoted by "S". All of the
request for pallets to be shipped enter the system at a common
point, perhaps the office for such requests. An S is then
forwarded to the computer control of the crane for the
corresponding corridor. Once there, S waits in the buffer for
crane shipping requests. The crane has to deal simultaneously
with R"s and S"s; the procedure for handling both will become
apparent in the development of code for a crane.

Once the crane does get to the S, there i1s the delay time

for crane movement to consider. The position of the pallet to

for
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ship must be calculated and the crane delayed for the amount of
time to move from its current location to that of the pallet and
then to the output buffer. This arrangement for retrieval from
the corridor parallels that for placement in the corridor
described for received pallets. Once time has been allowed for
the crane to finish i1ts task, an S can move from the buffer for
shipping requests to the output buffer for the corridor. It is
here that S waits until an empty position on the warehouse
conveyor is free; when a spot arrives, S is transferred to the
conveyor by implicit computer control (as was the case for an R
entering from the receiving area). It should be noted that
both R"s and S"s will be vying for the positions on the belt.
Once on the belt, the S moves to the shipping area and 1is
deleted from the simulation. This deletion is the operation
wherein the pallet would be placed on board a truck or
freighter to be transported away.-

Again referring to Figure 1, the position XY(34,69) is
seen to have been selected as the shipping request center. The
arrival rate of shipping requests will be maintained in the
variable @SHIPRATE. As before, the use of a variable rather
than a constant here makes possible the changing of the rate
during the simulation run. As job numbers 1, 2, and 3 have been
spoken for, the S job will be assigned job number 4. To begin
the S route then,

BR<4,XY<34,69) ,aSHIPRATE)
is used. Immediately following the beginning of the route is
placed a labeled instruction to be branched to when a shipping

request buffer is full. This will be explained shortly.
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‘REPEAT DN

The first sequence for an S i1s the determination of a
corridor for S. For purposes of the simulation, this assignment
of corridors to requests is done randomly; the GPSS model also
makes a random selction.

RV(aRNDMCORR, 1,10)

As was done for the R job objects, the S job objects have
their fToreground color set to the color used for their
respective output buffers on the overlay; the random corridor
number carries this information. This allows insight into the
conveyor load; for 1instance, the simulation may be, halted
temporarily in order to observe exactly which corridors have R
and S job objects on the conveyor and further, how many of each.
@COLOR 1is used for the background as defined by the variable
value.

SA(aCOLOR , aRNDMCORR)
S can now transfer to the set of 1iInstructions coded

explicitly for its corridor.

IFSaRNDMCORR,E 1, EXIT1
IFORNDMCORR, EQ,2, EXIT2

V'V

IE(aRNDMCORR,EQ, 9, :EXITO>
JPCEXITO

It should seem reasonable that the handling of an S job
will parallel that used for an R job; one is coming in, the
other going out of the warehouse. Just as the code for each of
the corridor input sequences is similar to the others given a

change of labels, distances, and relative references, so will
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be the code for the corridor exit sequences. An examination of
the code required for exiting corridor 1 will serve to explain
the sequences for the remaining corridors.

Given that S has been assigned a corridor, the First event
to occur is a simple check to see if the buffer for shipping
requests on that corridor is full. If it is, the Swill simply
be reassigned to a different corridor. This decision is made
to ensure that the system can handle the shipping requests at
the specified arrival rate. The other possiblility for an S
that finds its buffer for shipping requests full is to have it
branch out of the simulation altogether. This would only serve
to lighten the load placed on the simulation; reassigning the S
to a different corridor assures a conservative estimation of
system capability.

The code to check the shipping request is

EXITL  R=(XY<7,47)>
JB(1,XYX7,47), :REPEAT)

where R= 1s used as before to allow the loader to accurately
represent the jJob path. Note that a different approach to
buffer capacity is used here, as compared to that for the
corridor input buffers. As described previously, use was made
of a counter to keep track of how many R"s would be waiting on
the crane at any given moment. Here, the Jump i1f path Blocked
instruction i1s used to determine if the buffer i1s fTull; note
that no explicit variable i1s defined or required. The buffer
will be full if this space is blocked because the last shipping

request to enter the buffer has not moved forward due to
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shipping requests occupying all of the preceding buffer
positions. A trick of this sort could be helpful in large
simulations where the physical storage for variables becomes a
problem. It also eliminates the need for the program logic to
maintain the buffer count. On the other side of the coin,
implying the maximum size of a buffer by coding an instruction
such as this makes the program less changeable. IT it 1is
desired to change the buffer capacity, even if only by one,
then the program itself must be modified. These considerations
suggest that such a contrivance should only be used in the case
of constant, or unchangeable buffer sizes. The logic is coded
here 1i1n this manner to 1illustrate an alternative to the
explicit buffer variable concept used before.

The other point to note concerning the JB instruction Is
the location to which an object transfers if the location is
indeed blocked. It is the instruction labeled :REPEAT given
earlier. It might seem that the :REPEAT [label could be
attached directly to the RV instruction immediately following
it in order to save a line of code and to save the time of the
clock increment caused by the DN instruction. The reason for
separating the JB destination with the DN instruction becomes
apparent when one gives thought to the behavior of the system
if It becomes saturated with shipping requests. It may well be
that all of the shipping request buffers become filled at some
point. Consider what would happen if an S were to enter the
simulation at such a time. It would be assigned a random

corridor, which would have a full buffer; it then immediately
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branches to another random corridor which would again have a
full buffer. This sequence would be iIn essence an infinite
loop. No hope of termination would exist because none of the
instructions 1i1n the cycle require any clock time. The
inclusion of the DN instruction prevents this from happening by
allowing the S to attempt to enter only one shipping request
buffer per clock second. Meanwhile, the cranes will be allowed
to continue working, and hopefully, some corridor space will
become available.

Assuming that the non-full shipping request buffer
located is in corridor 1, the progress of S continues. Since a
position for S exists, it is transferred without delay from the
office for shipping requests (by implicit computer control) to
the buffer for corridor 1 by

MA(XY(7,47>,0>
where XY(7,47) 1is the first position in the buffer. Now,
consider the behavior of the crane at this point. When the
crane Tinishes 1its previous tasks and finds that an S is
waiting in the buffer, i1ts computer control will calculate the
storage location of the pallet to be shipped and the crane will
immediately begin the process of moving to the location and
returning with the pallet. On Tfirst thought, this would
probably appear to be all well and good. However, the
possibility exists that the warehouse conveyor 1is currently
saturated with R"s and S"s, and thus no room remains for
additional S’s to be transferred to the conveyor. IT this is

the case, then the output buffer for the corridor will become
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full, with 1ts S" swaiting for positions to open up. Unless the
crane checks for this occurrence, i1t will bring back a pallet
and have no place to release it. Therefore, a check is made as
soon as the request reaches the end of the request lane but
before the crane route is informed It is present.

l\[/l),EI)(3 ,0)

TP<1,XY<7,53>>
The TP instruction is employed to check if the last position in
the output buffer is blocked. Again, i1f this last position 1is
occupied, it iIs because the position following it is occupied
as well (the buffer capacity 1is 2) and the object 1in the
foremost position cannot move ahead. This buffer position is
XY(7,51), as can be seen iIn Figure 1. Note the use of the DN
instruction to prevent the test from being performed before the
previous shipped pallet has a chance to enter the output
buffer. Without the DN instruction, it 1is possible for too
many objects to move in the space of a single clock period to
the output buffer.

Once it is known that space exists in the corridor’s
output buffer, the count of shipping requests for the corridor
can be incremented. It Is essential that this incrementation
not be done until now iIn order to prevent the crane from
retrieving a pallet before a space exists for it.

1VOSHPRQI)

With S at the bottom of the request buffer, there 1is

nothing to do but wait until the crane signals it has brought a

pallet to the output buffer. The crane does this by setting the
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flag @OKSHPRQ to 1, indicating that the SHiPping ReQuest is

OKay to proceed. Until the flag becomes 1, the S waits here.

-HOLD1 DN
IF(aOKSHPRQI ,EQ, 0, -HOLD1>

Once the crane has signaled that a pallet has been brought
up from its storage position to the corridor entrance, S is
ready to move from the shipping request buffer to the corridor
output buffer. Before this 1is done, however, the @OKSHPRQI
flag 1s reset for use by the next S and @SHPRQ1 1is decremented
so the crane can know if there are any shipping requests
pending.

DVOOKSHPRQI)
DVOSHPRO

It should be observed that the purpose of this pair of
variables parallels the use of the @RECRQ1 and @OKRECRQI
variables used for the R jobs.

R then moves down the output buffer iImmediately, so as to
occupy the buffer positions before another fetch can be
requested of the crane when no room, actually exists.

MD<4,0>

When S gets to the entrance onto the conveyor, it must
wailt here just as the R objects did for the two events that must
occur in order: (1) S must be synchronized with the passage of
pallets on the belt, and (2) the current position must be
unoccupied in order for S to be able to be placed on the
conveyor .

The synchronization problem has an added wrinkle from

that considered for the R jobs. As the R jobs were placed on
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the belt at only one position, that position was the only one of
interest fTor synchronization so it was decided to use the
synchronization value, kept 1iIn the variable @GO, of 0 to
determine valid times there. This same value of 0 1s not
necessarily the one to use fTor other conveyor positions.
However, with one position and i1ts @GO value defined, the @GO
values for the corridor output buffer entries to the conveyor
can be determined. For corridor 1 the output position 1is
XY(7,55). For the receiving Blanes entry the position is
XY(44,59). (Both of these positions can be obtained from Figure
1. ) As discussed before, an R placed on the conveyor at @GO = 0
travels to the right 30 spaces at 3 seconds per space, TfTor a
total of 90 seconds. Next, the R travels up 4 rows at 6 seconds
per row, taking 24 seconds. Lastly, to reach corridor 1I°s
output buffer position the R must travel left 67 spaces at 3
seconds per space, requiring 201 seconds. The total elapsed
time 1s 90 + 24 + 201, or 315 seconds. Now remove the complete
counts of 12 from 315; this is 315,mod 12, or 3. Thus the value
of @GO when the R is in the position before the corridor output
buffer is 3; consequently, this is the @GO value to check for

before allowing a pallet to be placed on the conveyor.

WAL O a60.E0.3, -READYI>
JPE:\NAIT )

The synchronization values for exits from the other nine
output buffers can be arrived at similarly. It 1s actually
much simpler after the initial value is obtained. Since the

@GO value for output buffer 1 at XY(7,55) 1is known, the GO value
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for output buffer 2 at XY(14,55) comes from the determination
of the time it takes an object to move from one buffer to the
other, the distance being 14 -7 = 7 spaces at 3 seconds per
space, or 21 seconds. 21 mod 12 i1s 9 @GO wunits. Since
XY(14,55) occurs prior to XY(7,55) in the direction of conveyor
flow, 9 is the count to back up from 3; thus 3, 2, 1, 0, 11, 10,
9, 8, 7, 6 1is the sequence with 6 being the @GO value for
XY(14,55). Lastly, since all of the output positions are 7
spaces apart, the constant value of 9 may be used to back up
from output position 2 to 3, 3 to 4, and so on.

Given that the conveyor 1is synchronized, the position
must still be clear. As was explained earlier, each object 1is
considered to be occupying two horizontal spaces due to the
scale being employed, so two spaces must be checked on the

conveyor to ensure that the current position is unoccupied.

:READY1 R= XY<7,54%?
JB<2,XY(7,55>,XY<6,55>, -WAIT1>

Once the position is known to be present and unoccupied,
the S object is placed on the conveyor without delay by the
implicit computer control and proceeds around the conveyor to
the shipping area of the simulation.

MD (11,0)
ML<1,3>
MD<4 6%
MR<29,3>
MD(10.6>
Note that since the shipping area 1is being simulated as

requiring no time, no logic to check for ™"backing-up"™ 1in the

shipping area is needed.
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Finally, the S jumps to the ER used by all of the corridor

shipping sequences.

JP(-OUTDONE)
‘OUTDONE  ER

This type of transfer was also done for the receiving
sequences. It is necessary to use this sort of control flow
because only one ER is allowed for each BR. Even if this were
not the case, i1t is always preferable to develop code with only
one entry and exit.

This section has developed the instructions necessary to
generate a shipping request and then to model 1its passage
through a single corridor. As was the case for the receiving
section, the code outlined for the single corridor can be
propagated to the other 9 by simply changing the label indices,
the relative references, and some of the traveling distances
(from the output buffer to the Jleft edge of the upper
conveyor). This serves to again emphasize PCModel®s weakness
due to its lack of both arrays and variable move capability. IT
the Jlanguage had 1incorporated these features, much of the
parallel behavior could be incorporated in links.

As was done for the receiving pallet job, the shipping
pallet job is now coded last with all of the other information
in place. The shipping job, [like the receiving job, has
priority 2, leaving priorities 0 and 1 for the initialization

and synchronization jobs respectively. The job statement is

coded as



66

J=<4,S5,4,0,0,2,5000>
indicating that job 4°s objects will be represented on the
display by ’R" and that job 4 will follow route 4. Lastly, 5000
requests for pallets to be shipped will be placed before this
job is exhausted. The 5000 figure was selected arbitrarily.

4. Conveyor Synchronization At this point, the routes
for the receiving and shipping pallets have been coded. Both
of these have made use of the synchronization variable @GO; it
would be used to determine the appropriate times that a valid
conveyor position would be present for entry onto the conveyor.
In this section, the determination of the variable @GO 1is
examined through the development of the synchronization job"s
code.

The synchronization Jjob object enters the simulation
during the first second without delay.

BR(2>XY<65,68),0)
Route number 2 was reserved for the synchronization job earlier
and the position XY(65,68) was ohosen entirely arbitrarily.
Actually, no screen movement occurs for this job, so a position
is not logically required here; however, it must be included as
the BR instruction demands its presence.

As was described previously, @GO was assumed by both the
receiving and shipping pallets to have a value on the closed
range (0,11) which would change each second. This interval was
derived from the conveyor speed. At 0.5m per 3 sec, the
conveyor would travel 2m every 12 seconds. Thus a flag set to

zero every twelfth second would iIndicate to the jJobs when a
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valid conveyor position was present. Assuming that @GO will be
set to O by the initialization job, its value would need to be
incremented each clock second.

_mBAK 1V(aG0)

Now, the value for @GO can be checked to determine i1f it iIs
still on the proper range (i.e., 1its value is no greater than
11, or equivalently, still less than 12).

IF(aGO0,LT,12, :0VER)

IT the value has incremented to 12, which will obviously
occur every 12 clock seconds, then @GO must be reset for the
current second.

SV(aG0.0)

In either case, @GO has now been set for the current clock
second, so this value must now be preserved for the receiving
and shipping jobs to reference during this second. This is
done by delaying the synchronization job object for one second.

:OVER ST<1)
This value is made present for the complete second to the other
Jjobs by giving the synchronization job a priority of 1; the
receiving and shipping jobs, along with the cranes to be coded,
will operate at priority 2. Thus the synchronization will be
processed before any of the other jobs during any given second.
(The priority O is being reserved for the initialization job,
which will only run once before the Tfirst second of
simulation.) Note that no other instruction for the

synchronization job requires any clock time.
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Once the @GO"s value has been maintained for the current
second, the job object is transferred to the beginning of the
loop so that a new @GO value may be determined for the next
second.

JPOBACK)
Note that the job releases only the one object into the system.
This same object will remain active for the duration of the
simulation; thus 1t never reaches an ER, or End Route,
instruction. Nevertheless, one must be included to indicate to
the loader that the instruction sequence for the job route
started with the preceding BR instruction is completed.

ER
This same technique of using a single job object throughout the
simulation will be employed in the modeling of the cranes.

As was done for the prior jobs, coding of the job
statement has been left for last. As explained above, the
priority of the job will be 1 and the number of job objects is
also 1. The job was assigned job number 2 before any coding
began.

J=(2,#,2,0,0,1,1)
Thus job number 2 will take route 2, and the screen image for
the job is the "#° character, chosen arbitrarily as the job
really has no logical display output.

5. The Corridor Cranes With the behavior of the
receiving and shipping jobs completely determined, coding for
each of the ten corridor cranes can begin. The decisions

reached concerning the information the corridors would make
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known to the cranes will now be utilized to create the crane
behavior. The receiving objects passed the presence of jobs
through @RECRQn and expected acknowledgments through @OKRECRQnN
(where n 1is the subscript of the corridor); the shipping
objects likewise utilized @SHPRQn and @OKSHPRQn. The use of
these variables will now be seen from a crane®s point of view.

a. Crane Behavior As done for the corridor 1input and
output sequences belonging to the receiving and shipping
objects respectively, the behavior for only one crane will be
examined here. As before, the changes necessary in the code to
go from one crane to the next will consist basically of changes
to label and variable indices and to screen positions.

Two facets of PCModel that have not been examined as of
yet will be employed for the cranes. They are links and object
parameters. Links will be wused 1in the same manner as
subroutines are used iIn typical programming Qlanguages; their
inclusion will greatly relieve the <coding and debugging
efforts by making the same sequence of route instructions
available to all ten corridors. Object parameters will take
the role of subroutine parameters, carrying information to and
from the links. The global nature of variables 1i1n PCModel
forces this use of object parameters in links requiring clock
time (as will be seen); otherwise, the links would be severely
restricted in their capability to affect different corridor
statistics.

Object parameters will also play another role in the

modeling of the cranes. As noted in the section detailing the
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synchronization job, each crane will be modeled by a single
non-terminating job object; in other words, each crane job will
create only one object, which will remain in the simulation for
its duration. This being the case, object parameters can be
used to maintain some of the statistics concerning a crane and
its corridor. This in turn reduces the number of variables
which require storage to be allocated and it makes whatever
information kept in the parameters known to any links a crane
object, hereafter referred to as °C", enters.

The i1information that must be maintained for each corridor
includes the current crane position, both vertically and
horizontally, and the number of pallets stored in each of the
four zones of the corridor. This totals to six variables,
exactly the number of parameters for an object. However, such
an assignment does not leave any parameters for use in
transferring intermediate information between links or for use
during links as work variables. These types of uses will be
seen during development of the links.

Before beginning the coding for crane 1, its behavior must
be completely defined. It is present in the warehouse when the
simulation starts and begins its work as soon as a pallet
enters its input buffer. When this occurs, it takes the pallet
from the input buffer and moves it to the bin assigned to it by
computer control. It stays at that position and checks to see
if a request has been made for a pallet to be shipped. If so ,it
moves to the location of the pallet (again determined by

computer), picks 1t from its bin, and moves it to the output
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buffer. Whether or not a shipping request sequence takes
place, the crane next polls the receiving buffer to see if
another pallet is waiting to be stored in the corridor. At this
point, the cycle repeats and will do so until simulation end.
Additionally, checks must be made so that no attempt is made to
store a pallet in a zone that is already full or remove a pallet
from a zone that is currently empty.

Now consider what pieces of this sequence of events can be
grouped into links. Basically, whether a crane 1is storing a
received pallet or bringing a pallet to the output buffer to
satisfy a shipping request, two events must take place. First,
the zone of the pallet must be determined; this would include
checking the zone for the fTull (on receiving) or empty (on
shipping) condition. Second, the crane must be moved from its
current position to that of the pallet and then to the pallet®s
destination. Each of these two events is different enough for
its receiving and shipping counterparts to warrant the
development of a separate link for each. Thus, the utilization
of four 1links 1is 1in order: determination of the zone for a
received pallet, movement of the crane during receiving,
determination of the zone of a pallet to be shipped, and
movement of the crane during shipping. The development of
these fTour links will be detailed first, 1in order that their
requirements can be reflected in the crane route. As the
determination of the zone for a received pallet is the TfTirst
event to occur for a crane, the link for it will be developed

first.
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Before the software 1is decided upon, the utilization of
the cranes six parameters must be defined. As noted
previously, each corridor requires six variables: the four
zone quantities and the crane"s horizontal and vertical
position. Now consider the nature of the links to be used.
Global variables are naturally accessible inside each link; as
long as the link causes no clock delay for the crane object,
global variables may be used to pass information. However, if
C encounters a time delay at any point in the link, this may
allow one or more different C"s inside the link and they will be
referencing the same global variables while the first C is
being delayed. Thus a new C would cause interference with the
global variable values that the previous C was using when it
entered the link. The solution to this problem is to ensure
that one of two possible scenarios is followed: (1 no time
delays are caused by the link, thus allowing the use of global
variables, or (2) no global variables are specified (i.e.
variables are passed solely as object parameters), so that time
delays may be encountered by different objects without causing
interference for others. Each of these scenarios will be used,
the fTirst by the link for determination of the zone and the
second in the link for the movement of the crane, which will
certainly require time delays.

Two factors come into the final definition of the crane
object parameters. The first is that the four zone variables
will be used only by the first link which will require no clock

time. Thus, they may be passed globally. Secondly, the crane
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each corridor. Crane object parameters 3 and 4 are selected to
contain the number of pallets currently in the selected zone
and the offset to the zone, respectively. The determination of
the bin from this information will be detailed in the link for
receiving movement. Lastly, the link should set some sort of
flag to indicate if the zone was already full so that no attempt
is made to store yet another pallet there. Parameter 2 is set
aside for this purpose. A "1 in this parameter will iIndicate a
full zone to the crane route.

The coding of a link always begins with the Begin Link
instruction, specifying the name by which routes will refer to
it. For the link to determine the zone for received pallets,

BL(IRECVZONE)
is used. The next thing to do is insure that the flag for
“"fullness"™ is cleared upon each entry to the link.

SV(0BJa2,0>

Now the physical zone can be selected for the received
pallet. As detailed during the collection of data for the
problem, the frequency for storage in the four zones A, B, C,
and D breaks down as 40%, 30%, 20%, and 10%, respectively. To
model such a breakdown, a random number is generated between 1
and 100.

RVORNDMZONE, 1,100)
This RaNDoM ZONE value can then be used to branch based on the
percentages. For zone A, at 40%, the range would be (1,40), so

I FORNDMZONEAT, 41, :RZONEA>
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position will be required in the calculation of distance and
thus time to move iIn the second Ulink; thus, 1t would be
immensely helpful if they could be maintained iIn the object
parameters. This in turn will alow the link to encompass more
logic, since the crane object will not have to return to 1its
specific route for time delays. Tentatively then, two of the
crane parameters will be used for i1ts horizontal (arbitrarily
chosen as parameter 5) and vertical (parameter 6) positions.
The other four object parameters willl be open for use as
needed in the links.

b- Handling a Received Pallet For the received pallet
zone-determination link, the decision must be made as to what
information needs to be returned to the crane route. Since the
first four object parameters are open, they may as well be used
for this purpose to reduce the storage required for variable
allocation. It is the job of this 1link to acquire the
information necessary fTor the receiving movement link to
determine the specific bin the pallet is to be placed in.
Knowing the bin, the 1link can then determine distances of
movement and thus time required to move. To determine the bin,
two values currently accessible to the object will suffice,
specifically the offset from the input buffer at the head of
the corridor to the zone and the number of pallets currently in
the selected zone. The offset to the zone will be a different
constant for each of the four zones, but it will be known on
entry to the Ulink. The current number 1iIn the zone can be

obtained from the global variables that will be maintained for
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is coded. Zones B and C are coded similarly for their
percentages, keeping in mind that as an object passes an IF it
is known that the random percentage must lie in the remaining

interval.

IE(aRNDMZONE, LT, 71, :RZONEB)
IFCaRNDMZONEAT 91, -RZONECS

The same type of instruction could be coded for zone D,

but iInstead

JP (:RZONED)
is used. This probably better serves to aid in the detection of
a coding error; if a number 1is 1iIncorrectly specified above,
more or less i1tems will be easiest to notice In zone D, the
least frequent in traffic.

Now with the zone specified, information pertaining to it
can be gathered. Assume at this point that the global
variables containing the corridor zone quantities were placed
in the variables @ZONEA, @ZONEB, @ZONEC, and @ZONED for use by
the link. Consider first the treatment of zone A. As noted in
the data collection process, zone A is defined to occupy 13/50
of the corridor, since equal percentages of volume were deemed
inappropriately complicated. Since each corridor®"s capacity
is 1000 pallets, zone A"s capacity is 260, and this is the value
used for identifying a zone-full condition.

:RZONEA  IF(3ZONEA,EGL260, - ZONEFULL)

Assuming the zone is not full, crane parameter 3 iIs set to
the number currently in the zone, and then this value is
incremented for use in updating the zone quantities 1in the

crane route.
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SVSOBJaS,aZONEA)
IVCaZONEAY)

Note that parameter 3 contains the number before the current
pallet is stored; it is important to keep this in mind when the
determination of the bin location is made in the next link.

The other information required for the bin location is the
offset to the zone, as explained before. As zone A starts at
the head of the corridor, its offset is zero.

SV(0BJa4,0>

With the information for zone A in place, the crane object

can return to i1ts route.
JP(:0KSTORE)
:OKSTORE EL

Had the zone been full, the object would have transferred
to the instruction immediately prior to the EL instruction to
set the flag parameter.

:ZONEFULL SV(0BJa2,1)

The handling of the other 3 zones is identical to that of
zone A, in much the same manner as the treatment for the
corridor input and output of the receiving and shipping routes.
The different values for zones B, C, and D include the varying
zone capacities: 240, 260, and 240; the zone offsets: 13, 25,
and 38 meters; and the variables used for the zone quantities:
@ZONEB, @ZONEC, and @ZONED. Note that the offsets were arrived
by applying the corridor percentages to the corridor length of
50 meters: 13/50 for zone A implies 13m to zone B; 12/50 for

zone B implies 12m plus the previous 13, or 25m, to zone C; and
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13/50 for zone C implies 13m plus the previous 25, or 38m to
zone D. Substitution of these changes into the code for zone A
yields the code for zones B, C, and D.

Assuming that C has returned to its route just to update
corridor 1I"s zone quantities from the 1link"s global zone
variables before another crane has time to interfere with them,
its progress can now be charted through the link for receiving
movement. Remember that time delays will occur here so it 1is
crucial that all calculations be done using C"s parameters;
thus more than one crane can use the link at the same time. The
link begins as described in the previous section.

BL(IRECVMOVE)

Assuming that the crane route did not affect the object
parameters when the crane returned there from IRECVZONE, the
values saved there are still in place. Parameter 3 contains
the number i1n the selected zone and 4 has the offset to the
zone. Parameter 1 was unused by the link so it is free for any
use deemed necessary here. In addition to this, parameter 2,
the zone Tfull flag, fTulfilled its purpose upon return to the
route by indicating whether the zone was full or not; it is now
free as well. Thus, C parameters 1 and 2 may be used as work
variables where needed. This iIs the basis of the capability
that allows other crane objects to use the same link
simultaneously, without affecting one another.

The TFfirst thing the crane must do iIn order to store a
pallet located in the input buffer is to move from its current

location to the end of the corridor. Its current positions
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(horizontal and vertical) are located in object parameters 5
and 6. The end of the corridor is defined to be position (H=1l,
V=1); this is the same position as that for the Tirst object to
be placed 1n zone A. Consider first the horizontal move. Since
the value for the horizontal position of the crane will be
required for later work, it is copied to parameter 1 here.
SV(0BJal ,0BJa5)

This 1s done to provide the most accurate statistics possible
on the object parameter display. The parameter screen will not
be changed until the crane has had time to move.

The distance then is calculated by obtaining the
difference between the desired position (constant at H=I, V~I)
and the current position. In other words, subtract 1 from, or
decrement, the horizontal position in OBJ@I.

DvV(OBJal)

After decrementation, the parameter will contain a
distance, not a position. Multiplying it by a rate of seconds
per meter will give the time to move 1iIn the horizontal
direction. The rate is kept in the global variable @HORZRATE.

AO(0BJ3I,*,aHORZRATE>

This being done, the parameter now contains a time, no
longer a position or distance. This time can be used to delay
the crane object for simulation of movement.

ST(OBJal)
Lastly, the crane®s horizontal position is set to reflect

the move.
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SV(0BJa5, )

When the horizontal move 1is complete, the crane moves
vertically. The 1logic and coding follow from that of the
horizontal.

SV<0BJal ,0BJa6)
DV(0OBJal
AO(COBJal,*,aVERTRATE)
ST(OBJa

D

Sv<0BJ36, 1>

After these delays, the crane will be positioned at the
head of the corridor, at the input buffer exit; once there, it
removes a pallet from the buffer, an operation which Is assumed
to take negligible time. The crane is now ready to move to the
pallet®s position; thus the next step 1is the calculation of
this position. Breaking the problem down further, consider
only the distance to move in the horizontal direction. The
crane 1is in horizontal position 1. Adding to 1 the offset for
the zone (from O0BJ@4) will yield the horizontal position of the
first bin in the zone. The calculation from there 1is more
involved.

First make a copy of the number in the zone in OBJ@1.

sV(0BJal ,0BJa3)

This provides a copy of the number which can be worked with, so
as not to destroy the original; this value will be required
later in the vertical calculation.

For each horizontal meter of corridor length there are 20
bins (10 high on either side); 1integer division (DIV) of the
number iIn the zone by 20 thus yields the whole number of these

sets of 20 filled. For instance, if there are 17 pallets in the
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zone, then 17 DIV 20 = 0, meaning no sets of 20 are filled, and
the next pallet would he placed in this ™"zeroth"™ horizontal
meter; if there are 46 pallets iIn the zone, then 46 DIV 20 = 2,
two sets of 20 are Tfilled, and the crane would have to move 2
meters further down the corridor, past the filled "zeroth" and
first meters, to place the next pallet. Therefore dividing by
20 yields the distance into the corridor the crane must move.
ACKOBJal ,/,20)

Adding in the offset to the zone gives the distance the

crane must move from position 1 to get to the new position.
ACKOBJal ,+,0BJaA)
OBJ@I will be used in the delay for horizontal movement.

Lastly, the new horizontal position 1is determined and
saved in 0BJ@2 for placement in OBJ@5 once the time has elapsed
for the crane to get there. The new position is obtained from
the fact that the crane is in position 1 and 0BJ@I 1is currently
the distance; thus saving a copy of 0BJ@I in 0OBJ@2 and then
incrementing OBJ@2 puts the position in 0BJ@2 while leaving the
distance in 0BJ@1.

SV(0BJaz2,0BJal)
AO0(0OBJaz,+, 1>

This allows OBJ@I to be worked with again and it prevents the
position parameter of the crane from being set until the crane
gets there.

Knowing the required horizontal distance, the required
movement time can be determined as was done for the movement to
position 1. Multiply the horizontal distance by seconds per

meter to get the time and then delay for that time.
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AQ (OBJal, *,aHORZRATE
STéOBJaI ) )

Now the horizontal position of the crane can be updated

from the copy saved earlier.
SV(0BJa5,0BJa2)

Now in the proper horizontal position, the crane is ready
for vertical movement. Basically, the determination of the
next vertical bin position to be fTilled 1is an extended
application of the logic used for the horizontal position. As
before, get a copy of the number in the zone to work with.

Sv(0BJal ,0BJa3)

To determine how many bins are occupied of the 20
vertically accessible to the crane in its current horizontal
position, remove the whole sets of 20 from the number in the
zone. In other words, take the number in the zone modulo 20.
Doing this with PCModel®"s four arithmetic operations requires
several steps and two variables. First get the number of whole
20" s by dividing the number in the zone by 20.

A0(0BJal ,/,20)
Second, get the greatest multiple of 20 contained in the zone
by multiplying by 20.

ACKOBJal ,*,20)
Now, subtracting this value from the number in the zone will
produce the desired modulo. A copy of the zone quantity is made
in OBJ@2 (to preserve 0OBJ@3 for possible future use), and then

the subtraction is performed.



82

SV%OBJaZ,OBJaB)
A0(0OBJa2,-,0BJal>

OBJ@2 now contains the number of filled bins 1In the current
vertical 20. In fact, if the bins were arranged vertically on
one wall, OBJ@2 + 1 would be the vertical position of the bin
for the next pallet. However, this iIs not the case; there are
10 bins arranged vertically on either side of the corridor.
Therefore the vertical distance to the first empty bin is 0BJ@2
DIV 2. For example, 0 or 1 filled bins means the distance is 0,
2 or 3 Tfilled bins yields a distance of 1, 4 or 5 filled bins
yields a distance of 2. Thus

A0(0OBJa2,/,2)
puts the vertical distance in OBJ@2 . A copy of this distance is
placed in OBJ@1 for use in the movement delay.

SV(0BJal,0BJa2>

Lastly, O0OBJ@2 1i1s changed from a distance to a vertical

position by adding one.

AO(OBJaz2,+,I>
Again, this is due to the fact that the crane is already in
vertical position 1, so 1 plus the distance to move will give
the new position. As done horizontally, the vertical position
parameter will not be updated until the time has passed for the
crane to get there.

Moving the crane vertically consists of the same steps as

moving horizontally: multiply distance by seconds per meter,
delay for the required time, and then set the new vertical

position.
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AO§OBJaI ,*,aVERTRATE)
ST 8BJaI
SV<0BJa6’,0BJa2>

At this point, the crane can place the received pallet, an
operation which is assumed to take no appreciable time. The
crane®s next logical procedure i1s to check for more pallets to
be moved. It has been decided to let the crane wait wherever it
placed the pallet; this decision will be explored further 1in
the crane route, which is where the crane object returns at
this point.

B

c. Handling a Shipping Request Now the focus of
attention is turned to the link dedicated to determining the
zone to obtain a pallet from to satisfy a shipping request. It
is an exact counterpart to the link for determining the zone
information for a received pallet. As such, 1t will not be
explained in the detail that RECVZONE was. As for every link,
this one begins with the BL instruction declaring the name it
will be referred to by.

BL( 1SHIPZONE)

This time, a flag in the value of 0BJ@2 will be used to
determine the "emptiness'™ condition for the selected zone. It
is set to zero to initialize i1t for the current C.

SV<0BJa2,0)

Again, the zone itself is selected on a percentage basis,

40%, 30%, 20%, and 10% for zones A, B, C, and D respectively.

The random number and the zone branch is handled as before.
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RVORNDMZONE, 1,100)
IF<aRNDMZONE', LT .40, -SZONEA
IFORNDMZONE. LT )71 =SZONEB
IF(aRNDMZONE, LT, 91, =SZONEC>
JP(=SZONED)

Considering only zone A for the moment, the first thing to

check i1s the possibility that the zone could be empty.
:SZONEA IF <aZONEA,EQ,O0,NONEMPTY)

Next, the number currently in the zone is saved in 0BJ@3
and then the number i1s decremented to reflect the retrieval of
a pallet upon return to the crane route.

SV(0BJa3,aZONEA)
DVEaZONEA)
The zone offset is saved and the crane object is ready to
transfer back to the crane route.
Sv(0BJa4.0>
JPE:OKGET)
‘OKGET EL

To handle the zone empty condition, 0BJ@2 would have been

set to 1 immediately before encountering the EL return.
:ZONEMPTY SV(0BJaz2, 1)

To generate the code Tfor the three remaining zones,
proceed as in the case for the received zone link. Change the
label and variable 1i1ndices and the offsets to the different
zones (13, 25, and 38 for zones B, C, and D respectively); note
that no change need be made for the zone empty check, as the
same value (zero) indicates a zone empty condition for all four
zones.

The last link required for use by the ten cranes is the one

to model the behavior of the crane as i1t moves both from its
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current position to that the link calculates for the pallet to
be shipped and then to the output buffer to release the pallet
into the system. Observe that a fundamental difference exists
between this behavior and that modeled by the link which
determined the movements for receiving a pallet. In the
receiving situation, the crane had to move from wherever it was
currently to the input buffer, and then back into the corridor
again. For i1t, the direction of movement 1is implied by the
behavior; thus, distances can always be calculated to come out
as positive. For the shipping case, the crane moves from
wherever it is currently to the position determined for the
pallet to be shipped; the direction of motion is not implied
here, so special checks will have to be made to assure that the
subtraction is performed in the proper direction. (As noted iIn
the definition of the AO instruction, a negative result causes
the destination to be set to zero. )

In keeping with the established pattern for 1link
nomenclature, the name of the link for determining movement
behavior during shipping is ".SHIPMOVE.

BLASHIPMOVE)

As 1n the receiving movement modeling, the first thing the
crane must accomplish is movement from its current location to
that of the pallet to be shipped. Proceed as in the receiving
case, Tirst considering the horizontal movement and then the
vertical. To get the horizontal position of the pallet, get
its distance into its zone Tirst. This 1is accomplished by

copying the number 1in the 2zone (OBJ@3) to a work variable
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(0BJ@l) and then dividing by the number of bins per horizontal

meter of corridor.

SV(0BJal ,0BJa3>
AO(OBJal,”/,20)

OBJ@I 1s thus the offset into the zone; adding the offset to the
zone from the corridor (OBJ@4) vyields the distance from
position 1 to the pallet location.

AO(OBJal ,+,0BJa4>

Finally, adding 1 to this distance produces the actual
horizontal location.

AO(OBJal ,+, 1>
Note that OBJ@I is no longer a distance, but a position.

Again as before, O0BJ@I 1is copied to 0BJ@2 so that C-s
parameter may be set to reflect the new position of the crane
once the time has elapsed for the move.

SV(0BJa2,0BJal)

Now comes the task of determining the distance from the
current horizontal crane position (OBJ@5) to that of the pallet
(0BJ@1). A check i1s made here to determine in which direction
the crane is to move. IT the crane will be moving toward the
entrance to the corridor (OBJ@5 is greater than 0BJ@I), the
crane object transfers to the code for that situation.

IF(OBJO5,GT,0BJal , zDOWN1)

Otherwise, the crane will be moving away from the entrance

(OBJ@5 i1s less than 0BJ@1). Thus the distance may be obtained

by subtracting the smaller location from the larger.
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AO<OBJal ,-,0BJa5)

The crane object then transfers to the code which assumes

the distance is in 0OBJ@1.
JPODOWN2)

In the event the crane will be moving toward the exit,
OBJ@5 i1s greater than OBJ@I. Again the distance is calculated
by subtracting smaller from [larger. An extra temporary
variable 1is used to allow the preservation of OBJ@5 until the

move has been completed.

DOWNL  SV(aTEMP.0BJa5)
AO<aTEMP,0BJal)

Since the following code assumes that the distance for the

move will be in OBJ@1, the value is transferred.

Sv(OBJal ,aTEMP)
Observe that since no clock time elapses during the scope of
@TEMP"s use, no other object will be able to affect @TEMP, even
though it is a global variable.

Now TFfor either direction of motion, O0OBJ@I contains the
distance. The time for movement 1is again obtained by
multiplying by the rate of seconds per meter (@HORZRATE) and
the delay is implemented with ST.

:DOWN2 AOEOBJaI,*,aHORZRATE)
ST(OBJal)

Now the horizontal position of the crane can be updated.
SV(0BJa5,0BJa2)
With the horizontal move completed, the vertical move
takes place in much the same manner, combining the pattern of

IRECVYMOVE with the direction logic employed above. Copying the
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number in the zone (OBJ@3) to OBJ@I and then successively
dividing and multiplying that value by 20 produces the greatest
multiple of 20 contained in the zone.
Sv(0BJal ,0BJa3>
AQ(OBJar,/,20
AO(OBJal ,*,20
Again get a copy (0OBJ@2) of the number 1i1n the zone

(0BJ@3); subtracting the greatest multiple of 20 (0BJ@1) from
this leaves the number of bins filled vertically in the current

horizontal meter of corridor.

SV&SBJaZ,OBJaS)
AO(OBJa2,-,0BJal)

Dividing the number of filled bins by 2 gives the distance
from position 1 to the next empty bin; adding 1 gives its

location.

AO(0BJa2,/,2)
AO(COBJa2 + 13

The location is copied to OBJ@I so that 0OBJ@2 may be used
to update the vertical position after the move.
Sv(0BJal ,0BJa2.)
Now the check is made to transfer if the crane®s current
position is greater than that desired.
IF(0BJa6,GT,0BJal, :DOWN3>
ITf the pallet®"s location 1is larger, the distance 1is
obtained by performing the subtraction with it being
subtracted from and the object transferring to the code

expecting the distance in 0BJ@I.
AQ(OBJal ., - ,0BJa6
JP%:DOWN4> )
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Otherwise, the subtraction will be performed 1iIn the
opposite direction, again employing the use of the variable
@TEMP to preserve the vertical location until after the move.

‘DOWN3  SV(alEMP,0BJa6>
AOOTEMP, _OBJal)
Sv(oBJal’,aTEMP>

With the distance computed in OBJ@I, the simulated travel
time comes from the multiplication by the rate and the object
is delayed appropriately; when the crane has "moved"”, 1its
location (0OBJ@6) 1is set.

-DOwWM AO??BJaI *,aVERTRATE)
ST(0BJal
SV(0BJa6,0BJaz2>

The crane is now In the same position as i1t was for the
first movement of IRECVMOVE (i.e., it is somewhere out in the
corridor and must move to the entrance). For IRECVMOVE, the
crane traveled to the entrance to pick up a pallet for storing;
here, the crane 1is taking a pallet to the entrance for
shipping. Since the weight of the pallet is assumed to have no
effect on the crane’s speed, the coding is identical. The first
step is to get a copy of the current horizontal position and
decrement it to convert it to the horizontal distance to the

corridor entrance.

v<OBJa| 0BJab)

BJal}

Secondly, multiply by the horizontal rate and use this for

the delay.
AOEOBJaI,*,aHORZRATE)
T(0BJal)



90

Lastly, update the horizontal position to reflect the
crane"s movement to the entrance.
SV<0BJa5, I>
The vertical movement is handled in a parallel fashion.
SV Osgag OBJa6>
AO 0BJal,w,aVERTRATE)
ST(OBJal
SV(0BJa6, 1>

This completes the modeling of the crane®s shipping
movement. Therefore C is returned to its route to proceed with
the processing of pallets for the corridor.

EL

d. Controlling the Crane In the next section, the route
which sends the crane to the previous fTour links will be
examined. It is there that the decisions are made concerning
when to utilize the previously defined links.

As was done for the programming of the specific corridor
input and output procedures, the examination of a single crane
route here will suffice to explain the structure used for all
ten routes. This section will look at the coding process for
crane 1"s route.

The object for crane 1 (°C* ) enters the simulation at the
head of corridor 1, XY(8,50), in the Tfirst second of
simulation.

BR<11,XY<8,50),0>
As the route numbers 1 through 4 have already been used, the
crane routes will be numbered consecutively from 11 to 20.
Note that this implies no PCModel restrictions exist on the

numbering of routes, as 5 through 10 are completely unused.
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During the coding of the links, it was specified that C"s
parameters would each be designated to contain a variable
value; these values would be assumed present by the links upon
C"s entry into them. Scrutiny of the RECVZONE and !'SHIPZONE
links shows that they use no 1i1ncoming values, but set
parameters 2, 3, and 4 before exit. The IRECVMOVE and
JSHIPMOVE links use the information that enters in parameters
3, 4, 5, and 6. From this information alone, it should be
obvious that parameter 2 is something passed back to the crane
route for use there, while parameters 5 and 6 must be set by the
route itself before entry into the MOVE links.

Now remembering that parameters 5 and 6 were defined to be
the horizontal and vertical positions of the crane
respectively, they are initialized here; it is assumed that the
crane will be positioned at the entrance to the corridor, ready
to take a pallet from the input buffer.

SV(0BJa5,1)
SV<0BJa6, 1>

The next five PCModel instructions define the basis for
the crane behavior. The first is simply a position to transfer
to. It is required by the nature of the route. Only one C will
be generated; this C will remain in the simulation for Iits
duration. Thus C must be i1n an endless loop. The following
instruction is the start of each cycle.

:CRANE1 DN
The purpose of the DN instruction is to prevent C from entering

an infinite Jloop between clock seconds. This would occur
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because the following behavior may well take no time at all
during periods of the simulation, specifically at simulation
start.

The fTirst thing the crane does, as explained before, 1is to
check for any received pallets waiting in the input buffer.
Their presence would be indicated by a value of 1 for @RECRQ1
(which is set by the receiving route).

‘RECVING1 IF(aRECRQI,GT,(L:REC1>

This is followed by a DN instuction to prevent entry into
a different infinite loop which could occur for reasons to be
explained shortly.

DN
IT there were no pallets waiting, C proceeds to the next
instruction where i1t checks for a shipping request.
:SHPPING1 IF (aSHPRQI,GT, CL :SHP1)

If, on the other hand, there was 1indeed a pallet to be
stored in the corridor, C transfers to RECeivingl, after which
it returns to the shipping check.

Shipping is handled in the same way. If there were no
requests waiting, as indicated by the global @SHPRQ1l variable,
C proceeds to the next instruction where it transfers to the
top of the loop, to be followed by the receiving check.

JP(: CRANED
IT there was a request ready to be filled, C transfers to
SHiPpingl, at the end of which it transfers directly to
:RECVING1. This is the reason the receiving check is followed

by a DN instruction; it is here that an infinite loop could be
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entered. Consider the case where there are shipping requests
but only empty zones (e.g. at the start of the simulation).
First C would transfer immediately to the receiving check. IFT,
at that instant, there were no pallets in the input buffer, C
would immediately fall through to the shipping check again and
transfer 1i1mmediately to the receiving check again. This
behavior constitutes an infinite loop, thus the DN directly
following the receiving check.

It should be noted here that the prevention of an infinite
loop can be handled in any number of ways. One alternative
might be to have the shipping code transfer to the top of the
loop rather than the receiving check. The trade off here is to
alter the logic of the shipping code to reflect an inherent
problem with programming languages. It was decided to leave the
shipping code alone and reflect the problem in the relatively
simple master loop, where it would not complicate matters.
However, where to do so is definitely a matter of choice and
style. The bottom line is that prevention of an infinite loop
must be accomplished in some fashion.

Next, consider the behavior of the crane once it has been
determined that a pallet 1is waiting to be placed in the
corridor. The Tfirst thing to do is determine the information
for the zone to place the pallet. As noted in !'RECVZONE, the
zone is determined randomly, and C"s parameters are set to the
number iIn the zone selected (0BJ@3), the offset to the zone
<0BJ@4), and as a flag indicating if the zone is already full

(0BJ@2) - IRECVZONE also assumes that the global variables
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@ZONEA, @ZONEB, @ZONEC, and @ZONED will contain the zone
quantities for the C which enters the link. Outside of the
link, the zone quantities will be kept 1in subscripted
variables, such as @ZONEIA for corridor I’°s zone A, @ZONEIB for
corridor I"s zone B, and so forth.

Passage by C to and from the link then is accomplished by

first setting the zone quantities for corridor 1.

‘REC1 SV(3ZONEA,aZONEIA
SV(aZONEB,aZONEI
SV(aZONEC,aZONEIC
SVOZONED,aZONEID>

Next, C transfers to the link by the LK instruction.
LK('RECVZONE>
Finally, as RECVZONE required no clock time, the values in
<5)ZONEA-D will not have been altered by any other objects, so
they may be used to update corridor 1" s zone quantities.
SV(aZONEIA,aZONEA
SV(aZONEIB,aZONEB

SV(aZONEIC.aZONEC
SV(aZONEID,aZONED

This completes the ‘“subroutine call”™ procedure as
performed for PCModel.

As mentioned above, C®s parameters 2, 3, and 4 were set
inside IRECVZONE; parameter 2 in particular 1is used by the
route to indicate the "full"™ condition for the zone. IT the
zone was Tull, no attempt should be made to store it. Thus, the
code for moving the crane with a pallet iIs skipped.

IF<OBJa2,EQ,I:FULLI>
:FULL1 is a label on the last instruction of the sequence,

which transfers C to the check for shipping requests. Note
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that the pallet in the input buffer is simply ignored; it will
be there the next time the crane checks the 1i1nput buffer.
However this time, one of two things could have happened: (1) a
space may have opened up in the full zone due to the shipping
request that may have just been filled, or (2) a different zone
may be determined by the random number process for the pallet.
Note that this is a simplifying assumption; actually a pallet
woulld be designated for a specfic zone and have to be handled
accordingly, even if the zone were TfTull. This behavior was
deemed to be beyond the bounds of this simulation in that it
would only serve to complicate the logic.

Now, assuming that the zone 1i1s not Tfull, the receive
request is acknowledged by incrementing the number of pallets.

IVOOKRECRQI)
Actually, this should not be performed until the crane has
reached the entrance to the corridor and picked up the pallet,
but the structure of the ZRECVMOVE precludes this.

Next, C is immediately moved to position XY(8,47) on the
overlay to signal that it is In the process of moving to store a
received pallet.

MA(XY(8,47),0 >

The crane and pallet movement takes place by transferring

C to the appropriate link.
LK(IRECVMOVE)

After the crane has placed the pallet in the corridor, the

zone quantities are printed on the overlay to display the

status of the corridor.



96

PV(XY(4,41),aZONEIC
PV<XY(4.,43),aZONEIB
PV<XY(4,45),aZONEIA>

Additionally, the crane®s position 1iIn the corridor is

PV XY§4,39 >,aZONEID§

updated.

PV(XY (*f,32),0BJab)
PV<XY(4,34),0BJa6>

Lastly, C is moved to position XY(8,48) to represent that
the crane has completed the receiving movement and is waiting
out in the corridor for another task.

MA(XY(878),0)

With the receiving behavior complete, C transfers to the
check TfTor shipping requests. Note that this 1is also the
instruction transferred to in the occurrence of an attempt to
store a pallet in a full zone.

:FULL1 JP(:SHIPPING1)

The programming for the crane when a shipping request is
similar to that used for the received pallets waiting iIn the
input buffers, as has been noted. These similarities occur in
much the same fashion as those noted in the parallels between
shipping and receiving Qlinks Tfor zone determination and
movement .

Given the presence of a shipping request, the global
variables for the corridor zone quantities are established and
C transfers to the link for determination of the zone to pull
the pallet fr