
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Technical Reports Computer Science

01 Dec 1985

Industrial Simulation with Animation Industrial Simulation with Animation

Edward T. Hammerand

Chung You Ho
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hammerand, Edward T. and Ho, Chung You, "Industrial Simulation with Animation" (1985). Computer
Science Technical Reports. 94.
https://scholarsmine.mst.edu/comsci_techreports/94

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is
protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_techreports
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_techreports?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/comsci_techreports/94?utm_source=scholarsmine.mst.edu%2Fcomsci_techreports%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

INDUSTRIAL SIMULATION WITH ANIMATION

Edward T. Hammerand* and C. Y. Ho

CSc-85-4

Department of Computer Science
University of Missouri-Rolla

Rolla, Missouri 65401 (314) 341-4491

*This report is substantially the M.S. thesis of the first author,
completed December, 1985.

ABSTRACT

This thesis examines and evaluates the new simulation
language PCModel. Prior to the arrival of PCModel, simulation
via computer typically resulted in pages of statistics
compiled over the duration of the simulation. PCModel's
approach is to simulate the model on the display before the
user in real time. Additionally, user interaction is supported
to allow changes to be made throughout the simulation run.

The evaluation of PCModel is accomplished through
inspection of a pair of examples already simulated in a
conventional simulation language. The examples show the
relative strong and weak points of the language, as well as
demonstrating how PCModel is used.

iii

ACKNOWLEDGEMENTS

The author would like to extend his sincere appreciation
to his advisor, Dr. Peter C. Ho, for his guidance and support.
Thanks are also extended to committee members Dr. Darrow F.
Dawson and Dr. Arlan R. DeKock for their assistance in
completing this text.

Special thanks are also extended to Clark L. Wilson and
Miles Hufft who, as advanced mathematics instructors in high
school, helped to decide which track my career would take.

Gratitude is expressed also to my family and friends who
were supportive and understanding during the writing of this
wor k .

IV

TABLE OF CONTENTS
Page

ABSTRACT.. ii
ACKNOWLEDGEMENTS.. iii
TABLE OF CONTENTS... iv
LIST OF ILLUSTRATIONS...................................... vii
LIST OF TABLES.. viii

I. INTRODUCTION... 1
A. REVIEW OF THE LITERATURE........................ 1
B. ASPECTS OF PCMODEL............................... 5

II. THE PCMODEL ENVIRONMENT.............................. 7
A. LOAD-TIME DIRECTIVES............................ 7
B. DATA TYPES AND SYMBOLS.......................... 11
C. THE INSTRUCTION SET............................. 13
D. RUNNING THE SIMULATION.......................... 21
E. SOLVING SIMULATION PROBLEMS USING PCMODEL.... 29

1. Define and Limit the Problem............... 29
2. Collect Data for the Problem............... 31
3. Develop a Software Solution................ 33
4. Solve the Model.............................. 35
5. Evaluate the Solution...................... 36

III. THE AUTOMATED WAREHOUSE PROBLEM.................... 37
A. DEFINE AND LIMIT THE PROBLEM................... 37
B. COLLECT DATA...................................... 39
C. SOLVING THE PROBLEM IN SOFTWARE............... 44

1. Job and Route Definitions.................. 44
2. Received Goods................................ 47

V

Page
3. Pallets to be Shipped....................... 55
4. Conveyor Synchronization.................... 66
5. The Corridor Cranes.......................... 68

a. Crane Behavior........................... 69
b. Handling a Received Pallet.............. 73
c. Handling a Shipping Request............. 83
d. Controlling the Crane................... 90

6. Initialization................................ 99
7. Load-Time Directives......................... 102

D. RUN THE SIMULATION................................ 108
E. EVALUATE THE RESULTS............................. Ill

IV. THE SUPERMARKET PROBLEM............................... 122
A. DEFINE AND LIMIT THE PROBLEM.................... 122
B. COLLECT DATA....................................... 124

1. Data to Build the Model With................. 124
2. Data Desired as Output...................... 126

C. SOLVING THE PROBLEM IN SOFTWARE................ 126
1. Job and Route Definitions................... 126
2. Customers...................................... 130
3. Statistics.................................... 147
4. Initialization................................ 157
5. Load-Time Directives......................... 160

D. RUN THE SIMULATION................................ 167
E. EVALUATE THE RESULTS............................. 173

V. CONCLUSIONS... 179
BIBLIOGRAPHY 181

VI

Page
VITA.. 183
APPENDICES... 184

A. THE AUTOMATED WAREHOUSE PROGRAM....................... 184
B. THE SUPERMARKET PROGRAM.............................. 221

LIST OF ILLUSTRATIONS
Figure Page
1. Warehouse Overlay.. 45
2. Warehouse Overlay: Run 1, Hour 1 0 112
3. Warehouse Overlay: Run 1, Hour 2 0 113
4. Warehouse Overlay: Run 2, Hour 1 0 116
5. Warehouse Overlay: Run 2, Hour 2 0 117
6. Supermarket Overlay...................................... 131
7. Supermarket Overlay: Hour 20.......................... 171
8. Supermarket Overlay: Hour 4 0.......................... 172
9. Supermarket Overlay: Time of GPSS Termination...... 174

vii

viii

LIST OF TABLES
Table Page

I. Warehouse Statistics: Run 1, Hour 10.............. 114
II. Warehouse Statistics: Run 1, Hour 2 0 115

III. Warehouse Statistics: Run 2, Hour 10............... 118
IV. Warehouse Statistics: Run 2, Hour 2 0 119
V. Supermarket Statistics: Hours 10 and 2 0 168

VI. Supermarket Statistics: Hours 30 and 4 0 169
VII. Supermarket Statistics: PCModel versus GPSS...... 177

1

I. INTRODUCTION
Simulation has been posed as a problem in computer science

for as long as computers have been available for use. Many
approaches have been taken to the problem, some using
conventional programming languages like FORTRAN and others
using languages dedicated to simulation, like GPSS. It is the
purpose of this section to examine how a language like PCModel
was a natural step in the evolution of languages and how
PCModel differs from what has gone before.
A. REVIEW OF THE LITERATURE

The purpose of a simulation typically falls into one of
the three categories described by Mittra^: (1) description of
a current system for prediction of behavior, (2) exploration of
a hypothetical system, or (3) design of an improved system. To
implement the simulation for whatever reason, a computer is
generally employed; this for the same reasons computers are
used elsewhere -- they can perform the necessary operations
that would otherwise not be feasible. The first and third
categories listed are concerned with simulations done by
business and industry, while the second is more academic in
nature. However, the purpose is basically the same for all
three; a simulation is performed in order to determine what
would be the result of a proposed system or change to an
existing system without having to actually build or modify
anything. Academic simulations result in theoretical
information aimed at the problem being explored, while
business simulation output influences the amount of time and

2

money to be spent on alternative courses of action. For this
reason alone the capability to predict the outcome of the given
alternatives is both very useful and attractive.

The implementation of a simulation is developed using a
programming language. The programming language, in turn, has
been created with a field of use in mind. Those that are
concerned with the simulation of systems are thus relatively
restricted when compared with other languages of a more global
nature, such as FORTRAN. Stephenson2 points out that languages
should be developed in as simple a fashion as possible, while
at the same time incorporating the sophistication necessary
for the solution of intricate problems by experienced
programmers. Culik^ further suggests that the type of problem
to be solved should be defined first; then the features and
divisions of the language can be created with specific types of
use in mind. The combination of these two considerations
should be employed in the development of a language, and this
is indeed the case for PCModel. First, it has a relatively
small instruction set, relying on combinations of instructions
to accomplish tasks of a more sophisticated nature. As a
programmer becomes more comfortable with it, he is able to
assimilate in his repertoire sequences of codings to perform
standard tasks. The simplicity of the instruction set allows
such sequences to be altered to fit specific circumstances with
relative ease.

Secondly, PCModel is intended to handle a specific class
of problems. David A. White, the designer of PCModel, states

3

that it is designed "to model the movement of manufactured
assemblies through the assembly process."^ This statement
defines the nature of PCModel clearly enough so that one may
decide up front if it is inappropriate for the problem at hand.
The ability to determine whether or not a given language would
be an effective tool for simulation is important. Meier,- points
out that the differences between simulation languages are wide
enough to make the proper choice of a language a very important
part of the simulation and evaluation process.

Even with the language most compatible with the problem
selected, there are still a number of issues which can give
rise to problems. Pritsker^ examines in some detail the trouble
caused by the sometimes slow rate of convergence to steady
state conditions. It is oftentimes difficult to determine when
a model has reached its own steady state behavior, and until
this point is defined the simulation results cannot be
evaluated precisely. Another problem lies waiting in the
significance to be attributed to sampling error. A simulation
needs to be examined for a range of initial parameters to
obtain more meaningful results. However, the repeating of
simulation runs for a variety of conditions is quite often not
feasible simply for economic reasons, as noted by Tocher^. He
suggests a number of techniques to compensate for the problem.
Another problem must be considered during the analysis of the
output of a simulation. Even if the simulation correctly
models the given system, the interpretation of the data is

4

still a rather tricky proposition; Graybealg considers some
characteristics of this problem.

Finally, one potential problem remains that can easily be
overlooked, yet is vital to decisions based on the outcome of
the simulation. It is the separation of distinct possibilities
before the constructing of the model begins. ChorafaSg
discusses the problem and sites examples of how its presence
can totally invalidate any simulation which incorporates it.
Essentially, some decisions concerning the problem must be
recognized as outside the scope of the problem; thus the
simulation will examine alternatives of a more compatible
nature.

Up to this point in its history, simulation has been done
with either a conventional programming language or one
designed especially for simulation. In most instances a
simulation resulted in tables of statistics concerning various
entitites in the model. However, little support was made for
the capability of user interaction. Crosbie and H a y ^ and
Licklider^ both observe the need for interactive facilities
in a simulation programming environment. Indeed, without
interaction the user must wait until program end to determine
the results of the initial conditions; interaction allows the
status of the model to be monitored and adjusted as it runs.

The interaction capability of PCModel extends past just
allowing user access to the ongoing generation of statistics;
it goes hand in hand with PCModel's most outstanding feature:

5

its graphic display. The user can watch on the screen before
him what is taking place in the simulation. Jones12 in
referring to the graphic display of functions relating to
simulations remarked that the display was a strong persuader in
the argument concerning the correctness of the simulation. It
was clear on the screen that the results being observed were
indeed along anticipated lines within the range of
possibility. This is even more so the case with PCModel. As
will be seen, the various entities of the model will be
displayed on the screen as they move around the work area
defined by the model. This is indeed a powerful means of
displaying the behavior of a given system.
B. ASPECTS OF PCMODEL

PCModel should probably be thought of as more a simulation
programming environment than a simulation language.
Simulating a given model requires first the creation of the
software to represent it to the system. The software in turn is
composed of two parts: the simulation instructions and the
overlay. The overlay is the map or floor plan over which the
entities of the simulation will travel. It is created as a
rectangular area of screen rows and columns, the individual
positions of which are filled with whatever characters will
make the overlay the most meaningful. The accompanying
instructions create and control the entities, or objects, of
the model. Objects are created by PCModel jobs; a job may
create one object for a simulation or thousands. Control of

6

objects is then managed by means of routes; the various
instructions for moving objects about the screen and so forth
are contained in routes. Subroutine-like constructs are also
supported; they are PCModel links and contain the same type of
instructions as routes. The running of a simulation under
PCModel is a two-step process: first, the object program is
loaded and converted to its run-time equivalent; the actual
simulation then takes place in the run-time step. The
instructions described above are concerned with the run-time
model; there are also those that deal with the load-time
process. All of these topics will be examined in more detail in
the next section, which categorizes the different parts of the
PCModel simulation environment.

7

II. THE PCMODEL ENVIRONMENT
The purpose of this section is to acquaint the reader with

the various aspects of PCModel. This is accomplished through
examination of not only the simulation language elements, but
also the capabilities of the interactive running process. The
explanations given here are not intended to explain in
technical detail; that is left to the software documentation.
Rather, this chapter logically groups the various aspects of
PCModel for presentation purposes; the last section defines
the logical process for solving problems using the features of
PCModel. The following sections will examine characteristic
simulation problems, noting specific programming details as
they come up.
A. LOAD-TIME DIRECTIVES

The purpose of the PCModel directives is to define certain
parameters and so forth at load-time that will be used during
the loading process to create the run-time model. They are
presented here in the order recommended by the designer of
PCModel.

M (Maximum objects) defines the maximum number of objects
that will ever be allowed in the model at any one time. This
value is used to reserve storage for the MCB's, or Movement
Control Blocks; each active object will have one MCB allocated
to it, and that MCB will contain all of the information
pertaining to it.

W (set maximum Work-in-process) is used to initialize the
variable number of objects that will be allowed in the model at

8

any given moment. This number may vary from zero to the number
specified by M above. The F5 and F6 keys are used to decrement
and increment, respectively, this value during the simulation
run.

S (Symbols) gives the number of symbols and labels in the
program. This value is used to reserve storage for them. Since
the program will not be able to load if insufficient storage is
allocated, an exaggerated estimate may be used here. If it
turns out to be insufficient, a larger value must be used. It
is always a good idea to specify an extra large value. The
reason for this is that the symbol table is generated using
both the space defined here and the space defined for the
MCB' s. If a symbol in the program is overlooked or misspelled,
the loader will produce an unresolved symbol error. Generally,
examining the value screeen will identify the offending
variable. However, it may be that the symbol was processed
inside the MCB storage and thus will not show up on the value
screen. Increasing the S directive amount will make room for
it in the symbol storage space.

X (X dimension of logical screen) and Y (Y dimension of
logical screen) specify the number of columns and rows,
respectively, to be used in the overlay. At least a single
screen of 80 x 25 spaces must be used; the maximum product of
the X and Y directive values is 32,767.

V (Viewing-window location) is used to position the
display screen on the overlay during the loading process. This
is very useful, as the loader plots the various routes on the

9

display as it loads the model. V can be used to change the
portion of the overlay on the screen during the loading
process; as many V's may be used as are deemed necessary.

D (Description definition) is used to define a screen of
text which describes the problem being modeled. Once the model
is loaded, this screen may be examined by pressing the D key. A
maximum of 25 lines is permitted and the text is terminated
w i th a ' $ ' .

O (Overlay definition) gives the location of the overlay
to be used with the model. The overlay may be included inline
with the program, or it may be kept in a disk file. If the
overlay is kept inline, it is typically created with whatever
editor the user has at his disposal. If the overlay is a disk
file, it may be created, modified, and saved using PCModel's
built in attribute editor. This editor allows for the creation
of colored overlays and has a generous selection of functions
to aid in the process. The overlay directive provides for an
overlay to be kept in a disk file with the same name as the
simulation program, one with a different but constant name, or
an arbitrary file which the loader will prompt the user for.

The next part of a PCModel program consists of symbol
definitions. These follow from the S directive explained
earlier. All of the various symbols required throughout the
program should be grouped together and defined here. Further,
all of the variable symbols should be placed before any
constant or pointer symbols; this will conserve the amount of
memory required for the model due to the internal workings of
PCModel.

10

J (Job description) directives define each of the jobs to
be active in the model. For each job, J specifies its job
number, the character by which it can be identified on the
overlay, the route it will take, the number of objects to be
released by the job, and so forth.

U (Utilization definition) singles out specific positions
on the overlay for which utilization statistics are to be
generated. Basically, this results in a percent-of-time-
occupied figure for the position. U allows the positions to be
labeled so that when the statistics are viewed during the
simulation using the U key, it is easy to associate positions
with their significance.

R (Relative xy reference) is the last of the load-time
directives. It is used to specify a reference position on
which subsequent relative moves (MU, MD, ML, MR, and RM) can be
based. An R directive has no effect at run time, as is the case
for all of the directives listed here, but it is useful in the
debugging phase of programming. As the instructions are being
loaded, the path a route will take is charted on the overlay.
If logical jumps take place without absolute moves, there will
not be anything for the loader to reference succeeding relative
moves on. The R directive solves this problem, allowing the
route path to be verified. R directives may be use throughout
the links and routes as needed.

This concludes the set of load-time directives. As stated
at the beginning of this section, they have been presented in
the order that they should occur in the simulation program.

11

The remainder of the program consists of the links and routes
for the model. Of the two, the links should precede the routes.
B. DATA TYPES AND SYMBOLS

This section will discuss the various symbols that may be
used in a PCModel program. Three basic data types are
supported for use in modeling systems: variable values,
constant values, and clock values. Two different types of
labels are used, one type for labeling specific instructions
and the other for labeling links. Finally, there is a symbol
type for identifying overlay positions. Each of these will be
examined in turn.

Variables are defined, as are all of the symbol types
excepting labels, by including them in the symbol section of
the program along with an initial value. They are of the form
@VARNAME. The value of a variable may range from 0 to 65,535.
The number of variables is limited only by available storage.
Additionally, each object that is active in the model has six
variable parameters, which are referenced as OBJ@n. They have
the same restrictions as declared variables.

Constants are values that are fixed thoughout the
program. They are referred to by #CONSNAME. Constants should
be used for values that are fixed for a simulation, as opposed
to coding the number itself; in the event that the value must be
changed, editing the source program will still be necessary,
but only in a single place. Constants, like variables, are
valid for values from 0 to 65,535.

12

Clock values allow for a range of operations dealing with
the passage of time in the simulation. First the current
simulated time may be accessed by a reference to the system
variable CLOCK. Second, clock variables may be declared in the
symbol section as %CLCKNAME; these variables may be operated on
arithmetically to determine times for various events to occur,
elapsed times, and so forth. Additionally, each object has 2
parameters which are clock variables, thus making it easy to
associate times with specific objects. Each object also has
associated with it a system parameter, OBJ%ST, which is set to
the creation time of the object. This parameter may be used as
a third variable clock parameter. Clock values may be compared
for branching purposes.

As noted above, each object has six variable parameters,
two variable clock parameters, and one system parameter
containing the time of its creation. Each object has three
other system parameters as well. The first is the job number of
the object, given by JOB@ID. This value is specified in the J
load-time directive. The second is the serial number of the
object, JOB@SN. This number indicates what position the object
has in the sequence of objects created by its job. JOB@ID and
JOB@SN can be used together to uniquely identify any object in
the model. The last system parameter is OBJ@ID, which contains
the ASCII code for the character used to represent the object
on the overlay. This parameter yields essentially the same
information as JOB@lD; the same decisions can be made on
knowledge of either the job number or the character a job is

13

represented by, provided a one-to-one correspondence exists.
Each of the three parameters may be used just like variable
symbols, if desired. Changing OBJ@ID will alter the object on
the overlay.

Label symbols are used for reference to both specific
instructions and to any links that may be defined.
Instructions are labeled as :INSLABEL; every PCModel program
will utilize some instruction labels as they are used as
destinations for the various branching instructions. When
links are used, they are labeled as 1LINKNAME. Links are
transferred to with the LK instruction. They are PCModel's
version of procedures or subroutines; once an object has moved
from the beginning to the end of a link, it is returned to the
instruction following the LK in the route.

The final type of symbol is that used to indicate
positions on the overlay. They are constant in nature, which
tends to limit the flexibility of PCModel in some instances. A
symbol for an overlay position is of the form *POSNAME.
C, THE INSTRUCTION SET

Due to the unique graphical approach of PCModel, the
nature of the instruction set is different from that of a
conventional simulation language. The instruction set
includes instructions solely involved with the logic of the
simulation, some concerned only with the display for the
simulation, and still others that touch on both aspects of the
model. This section will examine briefly the various
instructions in logical groupings. Details concerning their
use will be emphasized in example models later.

14

The route and link delimiters (BR, ER, BL, EL) are used to
used to signify the beginning and end of each route and link in
the program; specifically, BR and ER are the begin and end
instructions for routes, while BL and EL are used with links.
BR specifies a route number, overlay position, and initial
delay for any object using its route. BL must give the label
for the link and may have an optional overlay position and
delay. Each BR must have one and only one corresponding ER; a
BL may have one or more EL's, but this is a poor programming
practice (one entry with more than one associated exit).

The object movement instructions (MU, MD, ML, MR, RM, MA),
together with the arithmetic instructions, typically make up
the main portion of sequential program flow. The movement
instructions are used to move the object's display character
around the overlay, taking specified amounts of time for the
movement. Of the six instructions under this grouping, five are
relative in nature; that is, they cause the object character to
move a fixed number of spaces in the implied direction relative
to the current position. There is one instruction for each of
the four directions of movement on the overlay: MU (Up), MD
(Down), ML (Left), and MR (Right). Each of these instructions
specifies a constant value for the number of spaces to move and
a delay period after moving each space. For example, MU(3,6)
would cause the object character to move up on the screen 3
rows, delaying 6 seconds on each row. The RM instruction
specifies a signed (+/-) movement for both the x and y
directions, as well as a delay period once the object has

15

moved. The last of the instructions is MA, or Move Absolute.
It moves the character immediately from wherever it is to the
location specified and then waits for the indicated period.

One thing to note is that in the loading process the
loader will trace on the overlay exactly the moves that have
been indicated in the program. At load time, there is no way to
determine the current location for referencing subsequent
relative moves when sequential program flow is broken.
Therefore the loader must be told what to take as the current
screen position after any ' transfer-of-execution' type
statements (IF's, JP's, etc.); this is accomplished with the R
(Relative reference) directive discussed earlier. The path of
the route can then be correctly traced on the overlay, which in
turn aids in the debugging process.

The object delay instructions (ST, DN) halt the object in
the traversal of its route. The ST (Set Time) instruction is
the primary means of delaying an object. The value used for the
delay can be a constant, come from a global variable, or come
from a parameter of the object itself. ST is typcially used for
simulating the time involved for the object to undergo some
process. The DN, or Do Nothing, instruction is essentially
equivalent to ST(1). Its function is to hold the object at the
position of the DN in the route until the next second of clock
time. The typical use of DN is to prevent entry into an
infinite loop. As many PCModel instructions take no simulation
clock time to execute, it is very easy to inadvertently code
the program so that it is vulnerable to an infinite loop

16

situation. This is particularly easy to do where only
mathematical calculations are required in a loop; this will be
examined further later.

The arithmetic operations (AO, IV, DV, SV) provide for
PCModel1s manipulation of numbers. The first of the four
instructions grouped here is the AO, or Arithmetic Operation,
instruction. It is the heart of the mathematical manipulations
that can be performed, as it encompasses the defined operations
of addition (+), subtraction (-), multiplication (*), and
division (/). It takes three operands, the second of which is
one of the symbols for the listed operations. The first and
third operands are both sources for the operation, with the
first also being utilized as the destination of the result; its
previous value is destroyed. A copy must be made if the first
operand will be needed later. Note that the order of the
operands for the instruction places them in infix notation for
the operation to take place. The IV (Increment Value) and DV
(Decrement Value) instructions do exactly what they imply.
They perform the indicated change on their single operands.
IV(OPERAND) and DV(OPERAND) are logically equivalent to
A O (OPERAND,+,1) and A O (O P E R A N D 1), respectively.

The last instruction of the group is SV (Save Value),
which simply copies the value of its second operand to its
first operand. It is useful for saving the first operand of an
AO instruction. It can thus be used to make copies of values
that are required for arithmetic in more than one place or to
prevent changing of a value until a certain point or time in the
simulation.

17

The random number instructions (RS, RV) can accomodate
those models requiring generation of a random number to
determine inter arrival times of objects, which way to branch,
and other such aspects. PCModel has built into it a random
number generator for this purpose. RS (Random Seed) allows the
user to choose a seed value for the sequence, while RV (Random
Value) allows successive elements of the sequence to be
obtained. It should be noted here that the random number
sequence must be initialized with a seed by RS before any
attempts are made to get a random number through RV. This in
turn typically requires that programs using random numbers
have a high priority job whose route will encounter RS before
any other objects get to an RV.

The next group of instructions (JP, LK) are concerned with
unconditional transfers. The JP (JumP) instruction breaks the
sequential flow of the object through its route and transfers
it to the label it specifies as its operand. The LK (LinK)
instruction also transfers the object, but in this case it
transfers it out of its route to the link specified as its
operand. The object will be returned to the instruction
following LK when it encounters an EL in the link. Thus, a link
in PCModel is similar to a subroutine call in a conventional
programming language.

The two conditional jumps (JB, JC) transfer the object to
the label specified as their last operand depending upon the
result of the test performed. JB (Jump if path Blocked) has as
its first operand an integer specifying a number of positions;

18

this is followed by the screen positions to check. If one or
more of the given positions are blocked, the object will be
transferred. JC (Jump if path Clear) uses the same format for
its operands; however it only transfers the object if all of
the positions are clear.

The conditional jump (IF) instruction is considered
separately as it has a number of different forms. All IF
instructions utilize the same format for the condition they
test. The check made concerns one of six possible relationships
between two operands: equal (EQ), not equal (N E), greater than
(GT), less than (LT), greater than or equal (G E) , and less than
or equal (L E). The relationship itself is the second operand
of the instruction, while the two numerical values take the
first and third positions. The remaining portion of the
instruction details the action to take place based on the
result of the tested relation. Essentially, the instruction
allows branching for either of the true and false results.
Both the true and false results may specify a label to branch
to. Additionally, a label may be replaced with the keyword
NEXT to indicate that the next sequential instruction is the
destination of the branch. Finally, the keyword WAIT can be
used in place of a destination label; if the condition occurs
that would otherwise branch to the label in WAIT's place, the
object is held at the IF statement until the next clock cycle
when the condition will be checked again. This is similar to
the manner in which the TP instruction operates.

19

The position posting and clearing instructions (PO, CL,
TP) are generally used in combination with one another to
synchronize object movement. PO (POst) takes as an operand a
screen location which will be marked as occupied, or posted,
when the instruction is encountered by an object. CL (CLear)
reverses the effect of a PO. It marks as unoccupied, or clears,
its operand which is also a screen location. Care should be
taken to ensure that the position to be posted or cleared is not
already occupied by an object. If it is, posting the location
will only hide the object that is currently there. When the
object's time at that position elapses, it will move on and the
position will become clear. Clearing a location which is
currently occupied will result in the deletion of that object
from the simulation. The third instruction of this group, TP
(Test Position) can be used to test a number of positions to see
if any one of them is currently occupied. If so, the object at
the TP instruction will be held there until the next clock
period, at which time the check will once again take place.
Thus, TP provides the capability of checking for a clear path
before proceeding; this can be used to prevent a PO or CL
instruction from affecting an occupied position.

The wait conditionals (WC, WK) halt the object when it
encounters them and holds it until a condition is met. WC (Wait
Clock) may be used to halt an object in its route until the
clock time specified by WC's operand is reached. WC might be
used to synchronize objects in the simulation. WK (Wait
Keyboard), on the other hand, stops the entire simulation when

20

it is encountered by an object. Execution will begin again as
soon as a key is struck. WK could be used to halt the
simulation at points when the display should be saved.

The overlay instructions (PV, PM, VW, X Z) constitute the
remainder of PCModel's instruction set. PV (Print Value)
prints at a given location the current value of the specified
variable. This is useful in the output of intermediate
calculations, as well as statistics that may be saved with the
screen image. PM (Print Message) prints at a given location
like PV, but it prints a constant character string. This has
use in displaying messages concerning the occurrence of
specific events. VW (Viewing Window) changes the portion of the
overlay that is displayed on the 80 x 25 character screen. For
logical screens greater than the minimum, it can be used to
focus on a portion of the overlay when the program logic
dictates that something of interest will be happening there.
The upper left position of the desired overlay section is
specified to V W . This instruction may be used in multiple
places throughout the simulation routes. Lastly, SA (Set
Attribute colors of object) is used to set the foreground and
background overlay character colors of the object encountering
it. This can be used where objects encounter a multiple
branch. If the number of branches are relatively limited, the
foreground color of the object could be set to reflect the
branch taken or decision made, thus providing some useful
feedback. The background color could be set by another scheme
as well.

21

D._RUNNING THE SIMULATION
Once the PCModel program for simulation of a given system

has been created, it is ready to be loaded and run. It will be
the purpose of this section to examine this process and all of
the options that are available throughout.

With the source file saved on disk, the computer is ready
to run PCModel. Entering ’'PCModel" starts the program. This
will bring up the copyright information and the message "Press
G to Continue." Doing so brings up the main menu, or help
screen, which lists all of the options available under PCModel.
Each of the possibilities is identified by a single character
associated with its purpose, such as ’ L* for Loading a source
program. This is the first step to take.

Once L has been pressed, PCModel asks for the filename of
the source program to be loaded. The filename is typed in here;
the extension should be left off as PCModel requires and looks
for an extension of .MDL. When the filename has been entered,
PCModel begins reading it from the disk drive and creating the
run-time program. As it does this, it traces on the screen the
path each route defines while simultaneously displaying the
instructions responsible for the route at the bottom of the
screen. This is useful in debugging the program; the loader
will probably show here if a route is not going to behave as
expected. Additionally, any undefined symbols will cause a
message stating such to be printed at the end of the program
load. The symbols could be any of the six types discussed
earlier (variables, instruction labels, etc.).

22

The V (Values) command can be used to Identify undefined
variables. V displays all of the symbols defined in the
program. For each variable that is undefined at the end of the
loading process, a 'U' will appear next to it on the screen. If
the route appears to have a flaw in it or one or more symbols
are undefined, it will be necessary to exit PCModel and return
to the text editor to correct the souce program. To exit, use
the Q (Quit) command. When the problem is corrected, repeat
the loading process.

Once the program has loaded without evidence of any
errors, the simulation can be run using the G (Go) command.
This starts the simulation at time 0000:00:00. While running,
the simulation can be temporarily halted at any time by
pressing the space bar. There are a host of user interactions
available once a running simulation is obtained.

Four types of information are available both for viewing
and for alteration. The most common one is accessible using
the V (Values) command described earlier. The values displayed
are not limited to being helpful in the debugging phase; they
may also be viewed when the simulation is temporarily halted
and any variable values may be changed. This allows greater
flexibility in placing loads upon the simulation. The E
(Event) command displays the event screen, which contains
information pertaining to each object currently in the
simulation; this information includes the character for the
object, creation time, current screen location, and release
serial number. The parameter screen can be accessed with the P

23

(Parameter) command; the six variable and two clock parameters
for each active object are listed. Finally, data concerning
each job for the model is displayed when the J (Job) command is
invoked. This consists of each job's size, overlay character,
priority, associated routing, etc. Like the value screen, the
screens for events, parameters, and jobs can all be edited for
certain values.

One other screen is available for viewing. It is the
utilization screen and is called up with the U (Utilization)
command. On this screen are kept the hourly utilization
statistics for the locations defined in the source program. It
is possible to define a maximum of 21 of these locations;
PCModel then calculates the percent of time these positions are
occupied and tabulates the information on this screen. It
should be noted that the column of statistics for the current
hour of simulation is meaningless until the end of the hour.
Also, the screen has room for only ten hours of simulation. At
the start of the eleventh hour, tl*e column for the first hour
will be used again, and so on. Invoking the U command causes
the model to be temporarily halted while the utilization screen
is displayed; using the G command will change the screen back
to the overlay and continue the simulation. This is also the
case for the V, P, E, and J commands. One notable difference
between U and the previous four commands is that the screen has
no alterable values on it.

There are two procedures that can be used with the
utilization screen. The first is the O (Output) command. When

invoked, it prompts the user for a filename under which to save
the utilization data after each ten hour period; successive
screens are appended to one another. The file thus created can
be handed in turn to a program in a conventional programming
language for further calculations or it may simply be used for
inspection by the user. In either case, this option allows for
long simulation periods without loss of information. The
second procedure is defined through use of the function key 7.
This key acts as a toggle for halting the simulation after
every ten hours; when active this allows the user to inspect
ten complete hours of utilization statistics and print them if
desired before resuming simulation. It would also be useful if
certain variables might require changing periodically. The
status of the F7 toggle, H for Halt mode and G for Go mode, is
displayed at the bottom of the overlay screen.

Another PCModel feature is the capability to save the
entire status of the simulation to disk and then bring it back
to start at the point where it was stopped. Also, some
simulations may take some time to get to steady state. Once
this steady state is reached, the simulation could be saved to
disk using the S (Save) command, which prompts the user for a
filename. Then it could be used to illustrate the system to
others without the annoyance of having to wait while the
initial simulation period takes place. The simulation
environment is brought up from the disk using the R (Restore)
command, which prompts for the saved filename. Further, R could
be used on the same file more than once. The file extension for

25

a saved simulation environment is required by PCModel to be
. SIM.

As the simulation may be viewed by other than its author,
the D (Description) command can be helpful. When invoked, it
brings up the screen which consists of the input to the D
directive in the source program. Useful comments here can make
interpretation of the simulation more meaningful.

The last PCModel command that is directly involved with
the running of the simulation is the I (Initialize) command.
Utilizing I causes the simulation to be set back to the same
position it was in when it was first loaded; thus the entire run
can be started all over, perhaps with some different variable
values, without having to reload the entire program. The only
aspect of the model environment that I does not affect is that
of the variable values which were defined in the symbol section
of the program. These variables had their storage allocated at
load time and they were initialized then as well; thus only
reloading the program will initialize them again. To avoid
this, the variables can be initialized in the run-time model by
some dummy job whose priority allows it to affect these
variables before any use is required of them.

At any time the simulation is running, the currently
visible portion of the overlay may be sent to the printer. This
is accomplished using the Shift-PrtSc key combination.
Alternatively, the overlay image may be saved to a disk file
using the F (File) command. The first time F is invoked, it
will prompt for a filename; the extension is required to be

26

.SCR. Subsequent uses of F will concatenate the current screen
to the .SCR file. The portion of the overlay that is currently
being displayed can be changed in two ways. First, there is the
PCModel instruction VW which changes the upper left corner of
the viewing window to the specified position when executed.
Secondly, the user may interactively move the screen over the
overlay using the four cursor keys. To do this, the scroll lock
key must be toggled so that it is the overlay which appears to
move when the cursor keys are used. The other use of the scroll
lock toggle will be discussed next.

A common happenstance in a simulated environment is that
of tool failures and periodic maintenance. While this can be
coded in the software, PCModel also provides an interactive
method for simulating failures. As mentioned above, in one
setting of the scroll lock toggle, the cursor keys move the
display around the overlay. For the other, the cursor keys
move PCModel's blocking character. Moving it to an arbitrary
position and depositing a block there is equivalent to moving
some job object to that position or posting the position in the
software. Once a position has a block deposited on it, which is
done by pressing the F8 key while the blocking character is
over it, that position remains occupied until the block is
removed, which is accomplished by moving the blocking
character to the position and pressing F8 a second time. A
maximum of 50 blocks may be deposited on the overlay at any one
time .

27

Four of the function keys have functions relating to the
time advancement for a model. Keys FI and F2 decrement and
increment, respectively, the pace at which the model proceeds.
Using them, the model can be slowed from its original setting
of the system’s top pace to a pace which closely approximates
real time clock advancement. The current factor for the pace,
which ranges from 0 to 250, is displayed at the bottom of the
overlay screen. FI and F2 affect the pace for settings of 0 to
10 by intervals of 1 and then from 10 to 250 by intervals of 10.
The pace can be slowed during crucial intervals and increased
for those that are not of concern. F3 toggles the advancement
mode for the simulation clock. In increment mode (indicated by
I at the bottom of the overlay) the clock advances one second at
a time; in look-ahead mode (indicated by L) the clock advances
to the time of the next projected route movement of an object.
Look-ahead mode will simulate a model more quickly, but
PCModel's author states that it may not be as accurate as the
increment mode for some simulation environments. Finally, F4
can be used to put the clock advancement into a single-step
mode (indicated by an S next to the clock on the overlay).
Pressing F4 again puts the model back in the regular go mode
(indicated by a G) . When in single-step mode, the clock
advances 1 second for each press of the G key. Single-stepping
makes possible close examination of events that would
otherwise be difficult to follow.

Two other function keys have functions defined under
PCModel. They are the F5 and F6 keys for respectively

28

decrementing and incrementing the maximum number of objects
allowed in the system at any given time. This is the Works-in-
Process figure mentioned earlier in connection with the W load­
time directive. W initializes the number and then F5 and F6 can
be used to alter it. The current value for Maximum Works In
Process (MWIP) is displayed at the bottom of the overlay
screen, along with the other model status values examined thus
far. The other two statistics displayed are the current number
of objects in the model, or Works In Process (WIP) and the
number of objects that have completed their routes and exited
the model, or the Work Complete Count (WCC).

When it is desired to terminate PCModel, the Q (Quit)
command is invoked. This command was mentioned earlier in
connection with the loading process. Before quitting, any
saving of screens or the current simulation environment must be
completed because the Q command completely exits the PCModel
program, returning the computer to the operating system.

For the sake of completeness, it should be noted that
there are four other commands available under PCModel,
although they have nothing to do with the actual running of a
simulation program. The first of them is the A (Attribute
editor) command, which invokes the overlay editor built in to
PCModel. This editor is specially designed for creating
colored overlay screens. The other three commands are all
concerned with the display being used for the simulation
session. They are B (Black and white), C (Color), and M
(Monochrome).

29

E. SOLVING SIMULATION PROBLEMS USING PCMODEL
This section is devoted to the task of outlining the steps

required for the development of the solution, or model, of a
given simulation problem. This development will be broken down
into five steps, each explained in the general terms of the
PCModel programming environment. This development process
will be used to develop two different kinds of simulation
models in the following sections.

1. Define and Limit the Problem When a problem is
presented for simulation, it inherently has a set of
characteristics particular to it. It is this set of
characteristics that must be precisely outlined during this
step, not only of the given problem, but those of the desired
solution.

In terms of PCModel, the types of things to identify are
those that will be associated with jobs and those that will be
incorporated into routes. For example, consider a simulation
model to be set up for an automobile manufacturing plant. The
model is to consist of an automibile assembly line and the
stations at which they stop for assembly. Assume that all of
the specific data, such as processing rates and required
assembly line speed are available for use. Modeling of the
assembly line still cannot begin until a thorough definition of
the solution requirements has been stated. Those items of
interest in the solution must be designated so that the model
can incorporate generation of statistics for them. An example
of this can be seen in the simulation output required for a

30

particular tool on the assembly line. If the output for the
tool is to consist of its utilization time, it may be easiest to
incorporate the tool in the model as a job, rather than as part
of a route. Simulation of failures may be simpler if the tool
is a job, given the blocking capability of PCModel. If, on the
other hand, it is only necessary to halt the automobile on the
assembly line for some variable work time, the tool
characteristics would probably just be incorporated into the
route for automobiles. All of these types of decisions and
their repercussions will be pointed out in the succeeding
chapters dealing with specific examples.

Secondly, some aspects of the system must be regarded as
outside the scope of the simulation. The problem must be
limited to one which can be reasonably modeled. In order to
keep the complexity of the software from becoming so great as
to confuse the model behavior with programming tricks, some
boundary must be drawn as the environment for the system.
Consider the model of an automated warehouse. It must be
decided where to begin modeling the behavior of the goods
stored in the warehouse and which operations of the warehouse
are to be included. Assume the goods arrive by truck at the
warehouse door and are then processed through the receiving
area. Also, goods must be processed by the shipping department
before leaving the warehouse. It may be that including the
behavior of the receiving and shipping departments would
overly complicate the model; it might even be decided to
simulate the shipping and receiving departments separately to

31

determine their effectiveness. (The example of the automated
warehouse will be examined in detail in the next section.)

Not only must the problem be limited, but in some cases it
may be that PCModel is determined to be inappropriate for the
given circumstances. As is the case in all simulation
languages, PCModel inherently has some weaknesses which make
it a poor choice to simulate some types of environments. For
example, consider a model for a supermarket wherein customers
enter the store and stay for various lengths of time before
being checked out. GPSS, a standard simulation language, would
typically make use of an ADVANCE block to delay for the time a
customer spends in the store. The ADVANCE block creates
neither a first-in first-out (FIFO) ordering of customers, nor
is it a single customer facility. In order to simulate such a
system with PCModel, its natural FIFO ordering of objects must
be overcome. In fact, depending on the problem, it may be that
PCModel is not the system to use. (The problem of the
supermarket will be examined l a t e m)

2. Collect Data for the Problem Once the problem and
output requirements have been defined, the development of the
solution moves to the second step, that of collecting data.
This data will be in the form of specific numerical values for
the various pieces of the simulation environment. Continuing
with the example of the automobile assembly line, some
representative examples would include the processing times of
the various assembly stations on the line, the number of each
type of tool at each of the assembly stations, the on-line time

32

for any given tool (or conversely its down time due to periodic
malfunction and repair), and so on.

In addition to determining what the values for specific
parts of the simulation are, it is also necessary to determine
which values are fixed and which are variable for the
simulation. If the simulation is to determine the results of
possible changes in an already existing system, some numerical
values will be constant due to the system's nature. For the
assembly line, a particular painting apparatus that is going to
be part of the new set up whatever the result of the simulation
studies (due to economic factors, for example) must have a
constant time to function. This value cannot change and may be
entered into the simulation data as a constant.

In contrast to this are the variable values to be
considered. These are quantities, rates, delay times, etc.
which the simulation will be used to find optimum values for.
On the assembly line, it would be possible to consider
different numbers of assembly workers for upholstery fitting.
Each of the workers will perform his task at a more or less
constant rate, but the number of workers performing the same
function will greatly affect the performance of the system. If
there are too few workers, the entire assembly line has what
amounts to a bottle neck; on the other hand, if there are too
many workers, some of them remain idle and the assembly line
may not prove to be economically sound. Besides quantities,
there are also tools which can be set to run at variable rates
and assembly times that may be varied. Essentially, no part of

33

the assembly line can run so slow as to interfere with the
performance of the other parts, yet neither can any part run so
fast as to be economically unfeasible.

One other important part of the data collection step is to
decide upon or obtain the specific measurements for the
overlay, or "floor plan", of the simulation. Such information
is needed by any simulation language, but it becomes especially
important when the graphics nature of PCModel's output is
considered. In order for the model solution to be realistic,
it must obviously appear to be as close to the actual physical
operating environment as possible. Fine points in the
production floor layout that would either be disguised or
overlooked completely by a conventional simulation language
suddenly take on new relevance under PCModel.

3. Develop a Software Solution With the specifics of a
system defined, the creation of the working simulation turns to
the task of choosing and developing a method of solution. This
entails the process of putting together the pieces of PCModel
required to effectively simulate the model, once it has been
thoroughly defined and the numerical information concerning it
has been established.

Before the coding of the PCModel program can be attempted,
each individual piece of the model should be assigned to a job
and/or route. This furthers what was put in motion in step 1,
with the emphasis shifted away from defining the problem
requirements to the correlations to be made between the
requirements and PCModel's specific configuration. With the

34

pieces for each job and route known, coding can begin to take
place. Now the data collected in Step 2 is applied to form the
configuration for each of the routes required by the model.

For a given route, all of the information pertaining to it
is reflected by PCModel in two ways. First, the path the object
is to follow on the screen is mapped onto the overlay and plots,
at the scale arrived at for the display, the foot by foot
progression of the route's objects through the simulation.
Second, everything that is to happen to an object during its
course through the simulation is built into the route for that
obj ect.

The overlay path and the coded route are created in tandem
with one another. The instructions must mimic the behavior of
the object, as must its path on the overlay. At each place in
the PCModel code where some event takes place other than a
typical move, the overlay should reflect the nature of this
event. Key processing points, cross-overs with other routes,
points of object origin and exit, etc. should all be clearly
labeled. Conversely, the overlay can be used to develop the
code, making sure that each of the routes runs logically along
the assembly floor. No interference should be caused by the
route in question, nor should it receive any from other routes;
that is, where routes logically overlap the software should
anticipate and handle possible collisions beyond PCModel's
built in collision-prevention mechanism. Also, the overlay
will help to determine if routes are intersecting where they
logically should not. The following sections examine the

35

entire software development process for the two problems
mentioned previously. Specific examples of programming details
will be left until then to be explained.

4. Solve the Model With the system configuration and
data embedded in a PCModel program and overlay, the simulation
can be run to determine the effectiveness of the set up. It is
in this step that the interactive nature of PCModel comes into
play. By its unique method of operation, PCModel runs the
simulation on the display of the computer in real time, at a
rate which can be increased or decreased as desired throughout
the simulation. The system can be adjusted to run at a rate
approximating that of the real operation to provide close
inspection of its operation. Solving the model entails running
the program and interacting with it in whatever manner
necessary to explore the variable aspects of the system. For
example, at various points it may be of interest to temporarily
halt the simulation and change the values of certain parameters
or variables; this allows the system to be subjected to any
loads or bottle necks that are deemed feasible. Simulation of
tool failures, or route blockages, can also be created and
removed with the used of the blocking character.

Besides user interaction taking place to examine the
system, PCModel handles some generation of information by
itself. Utilization data can be assimilated for various
positions on the screen by defining these positions in the
software. (This essentially amounts to the percentage of the
time the position is occupied, a statistic similar to the

36

utilization figures for a facility in GPSS.) The data screens
can be saved to disk for later examination or for use by a
program written in a conventional language such as BASIC or
PASCAL. It might also be feasible to make use of PCModel's
capability of checking the system clock and halting for user
input to let the user known when to save overlay screens.

5. Evaluate the Solution Once the program has been run
to its logical conclusion, it is time to evaluate what has been
produced. First, it must be determined whether or not the model
behaved in a realistic manner. If not, the model must be
adjusted until it is deemed realistic by those familiar with
the real world counterpart.

When it is decided that the simulation output can be
trusted, it is time to examine what that output means. If the
system modeled is already in existence, the simulation will
hopefully have shown what courses of action can be taken to
increase the performance and efficiency of the system. On the
other hand, if the simulation was being done to determine the
workings of a new or anticipated system, the output should be a
strong indicator as to how many workers to hire and how to
arrange them efficiently, for example.

Lastly, the simulation model can be continuously upgraded
and expanded upon to examine other areas under scrutiny in the
given system. Small changes can continue to be made to the
software and overlay until PCModel creates an efficent and
accurate graphical predictor of the system of interest.

37

III. THE AUTOMATED WAREHOUSE PROBLEM
In the text Simulation with GPSS and GPSSV by Bobillier/

Kahan, and Probst^^/ an automated warehouse is simulated using
GPSS. An automated warehouse is one under computer control
that handles all of the input and output assignments; thus the
operation runs very efficiently. GPSS's output for the
simulation is in the form of facility utilizations, queue
statistics, and other numerical data determined upon the end of
the simulation. In this section the same problem is examined;
PCModel is used to solve it and the solution is compared with
that of GPSS. In addition to showing the relative strengths
and weaknesses of PCModel when compared to a standard
simulation language, much insight into the workings of PCModel
can be gained from such an example.
A. DEFINE AND LIMIT THE PROBLEM

As was indicated in the previous section, the first thing
to be done is to determine the limitations to be placed on the
problem. The same warehouse characteristics will be used for
this example as are specified for the GPSS model. The problem
as defined for the GPSS solution is to "simulate the operation
of the warehouse to check if the whole system can operate
satisfactorily, especially during peak hours."

The warehouse consists of corridors, each with its own
automated crane. On each side of each corridor is a rack, so
that each crane has access to two racks. Each rack is further
divided into bins; each bin is capable of storing one pallet.
Pallets, in turn, are defined to be the smallest unit of the

38

warehouse and the only unit to be physically handled by the
system.

Pallets of goods arrive at a receiving port and are placed
on the lower level of a circular conveyor when an open position
arrives. The conveyor is actually a twin pair of conveyors,
one above the other, each moving opposite the other at the same
speed. They are connected at their ends by a twin pair of
lifts, running at the same speed so as not to disrupt the
continuous path of the pallets. As a pallet travels across the
upper level of the conveyor, it is transferred from the
conveyor to the input buffer of its corridor by computer
control, if space permits. The GPSS model serially assigns
corridor numbers to pallets; for the PCModel simulation, this
assignment will be done randomly, to exhibit this feature of
the language. If the input buffer should be full, the pallet
will go around the entire conveyor again.

Once a pallet enters the input buffer for its corridor, it
waits for the crane to finish with any previous jobs and get to
it for placement in the corridor. The corridor will be broken
up into zones for placement of the pallet; this division will
be according to the distribution of different types of pallets
for that corridor.

Shipping requests will be handled in a similar manner.
The requests will be considered to arrive at a central location
and forwarded to the computer control of the crane of the
corridor designated for the pallet to be shipped. As was done
for the incoming pallets, the requests will be assigned

39

randomly to the different corridors. The requests will wait in
a buffer while the crane finishes prior jobs. When the crane is
free, it will move to the position of the pallet to be shipped
(determined again by the distribution of the pallets) and move
the pallet from its stored location to the output buffer area
to wait for a position on the main conveyor. When an open
position arrives, the pallet is placed on the conveyor by
computer control and moves to the lower level of the conveyor
where it exits the system to be loaded onto a truck or freight
car .

Thus, the problem is defined in general terms although no
actual, specific data has been gathered concerning the system
to be developed. The problem is implicitly limited to the
areas of interest discussed in this section.
B . COLLECT DATA

In this phase of model development, numerical data
concerning the particular problem to be simulated is gathered.
The physical dimensions of the GPSS model will be used in the
overlay screen of the PCModel simulation, as well as in
defining the moves to be taken in the routes for the various
jobs. Other constants, such as conveyor speeds, arrival rates,
crane speeds, buffer sizes, etc. will be assimilated in order
to be prepared for Step 3, that of putting together the
software to solve the problem.

Data collection starts here with information pertaining
to the smallest entity in the simulation, the pallet. Each
pallet will be a square, 1 meter (m) on a side. Thus, each bin

40

need be only this size. A rack will contain 10 bins vertically
and 50 horizontally; it then measures 10 x 1m, or 10m,
vertically and 50 x lm, or 50m, horizontally. Each rack in turn
will therefore contain 50 x 10, or 500, individual bins; with
each corridor having a rack on either side, every crane will
have access to the corridor's total of 1,000 bins. The
simulation will model 10 such corridors, with a 1.5m width
separating the racks for the respective cranes. For 2 racks of
lm width each and the 1.5m width of the crane space, the width
of each corridor totals 3.5m; the total width of the warehouse
of 10 corridors comes to 35m. The length of the warehouse will
be 50m, for 50 horizontal bins at lm length apiece.

Each corridor will initially be considered to consist of 4
zones. The quantity of both received pallets and shipping
requests will breakdown as 40%, 30%, 20%, and 10% for each of
the four zones A, B, C, and D, respectively. The GPSS model
breaks the four zones into equal sizes; however the PCModel
simulation will be built with slightly altered percentages.
This comes from a decision to keep the logic of the program at a
moderate level, as PCModel has only integer arithmetic. As will
be seen in the calculations for crane movement, it is much
simpler if each zone starts on a whole boundary. This cannot be
resolved with a horizontal distance of 50m being split into 4
equal zones. The solution is to have the first zone be slightly
larger than a fourth of the corridor at 13/50, the second
slightly smaller at 12/50, and the third and fourth zones at
13/50 and 12/50. The distances for crane movement will be

41

slightly different from those determined in the GPSS model, but
the programming logic will remain manageable, as will be seen
in the section on coding.

Each corridor will have an input buffer which will receive
pallets from the conveyor and an output buffer where pallets
will wait for an open space on the conveyor. The input buffer
will hold 4 pallets, and the output buffer will have room for 2
pallets. The servicing of pallets in both buffers will follow
the obvious first-in first-out ordering. The received pallets
enter the input buffer and wait there for the crane to place
them in the corridor; the pallets pulled from the corridor to
be shipped are placed in the output buffer. If the input buffer
is too small, some received pallets may have to travel around
the conveyor more than once; if the output buffer is too small,
the crane will be unable to get any more pallets requested for
shipping because there is no place to put them. Thus, the
values for the input and output buffer sizes are crucial to the
effectiveness of the system. For both buffers of a corridor,
an automatic mechanism independent of the crane is assumed to
exist to take pallets to or from the conveyor.

The conveyor is defined to be 35m in length on both the
upper and lower levels. The lifts between the two levels will
be 3m tall. (A height of 2m was quoted as the distance for the
GPSS model, but this conflicts with the conveyor capacity
stated.) Thus, the length of the entire conveyor circuit will
be (2 x 35m) + (2 x 3m), or 76m. Pallets will be placed 1 m
apart on the conveyor, so it will support a maximum of 76m x (1

42

pallet/2m), or 38 pallets. The conveyor will move at a
constant speed of 20 meters per minute.

The cranes will operate at lOm/min in the horizontal
direction and 1 meter/min vertically. The behavior of the
crane will be as follows: if a pallet has been placed in the
input buffer, the crane gets it and places it in its bin. Next,
the crane checks to see if a request to ship a pallet has been
received. If so, the crane moves to the calculated position,
if there is a pallet in storage, gets the pallet, and moves it
to the output buffer. The crane then repeats the cycle by
checking for a received pallet. (The determination of the
position of placement for a received pallet or storage location
of a pallet to be shipped will be considered in detail in the
actual PCModel software coding of the calculation.)

The remaining physical part of the warehouse operation is
the placement of the receiving and shipping ports. They are
arbitrarily placed on the lower level of the conveyor. The
receiving port is the place where 'pallets enter the simulation
and wait to be placed on the conveyor. The shipping port is the
place where the pallets exit from the simulation by leaving the
conveyor. Their behavior is not part of the simulation itself;
they are included for completeness of the problem. (This is
actually part of the implicit limiting of the problem indicated
in step 1.) From the left end of the lower level of the
conveyor to the shipping port is 15m; the port itself is lm
wide; it is then 3m to the receiving port which is also lm wide;
the remaining distance is another 15m to the right end of the

43

lower level of the conveyor to yield the conveyor's total
length of 35m.

With the physical dimensions of the warehouse in hand, the
scale to be used for the overlay can be obtained. As
calculated, the warehouse is 35m wide; the divisions in that
35m are lm for pallets, bins, etc. and 1.5m for the crane
spaces. The greatest common fraction is 0.5m, so it would be
convenient to use this in the model. At 0.5m per character
space, 35m would require a minimum overlay width of 70
characters which is less than the required display screen width
of 80 columns; in fact, an additional 10 columns, or 5 to either
side of the warehouse, will be available at this scale. If lm
per character space were used (thus distorting the crane
spaces), then the warehouse would only take up 35 of the
required 80 columns. This arrangement would not be very
attractive, so 0.5m per character column seems to be optimal.

Determination of the scale of distance per display row
proceeds in a similar fashion. The physical distance required
would include the length of the warehouse at 50m, the length of
the buffers at 4m, the distance to display the conveyor on the
screen at 5m (lm for both the upper and lower levels and 3m for
the lifts), and the length of the shipping/receiving port at
10m (arbitrarily chosen). The total comes to 69m. As lm is
used as an increment, it should be used as the scale per row.
This would mean allocating a minimum of 69 rows for the
overlay. This is well over the single screen figure of 25 rows.
Thus even halving this scale would still not place it all on one

44

screen. On the other hand, using 69 rows will allow the
receiving/shipping ports, the conveyor, the input and output
buffers, and the first few meters of the corridors to be
displayed on a single screen. Thus lm/row is an acceptable
scale. The warehouse overlay can be seen in Figure 1.

Finally, the last numerical items required for the
problem data collection are the arrival rates of received
pallets and the requests for pallets to be shipped. The GPSS
model is designed to allow for variable arrival rates, and thus
the PCModel simulation will be set up in this manner as well.
One capability of GPSS utilized in its model that PCModel does
not have is that of generation of exponentially distributed
variables. The arrival rates themselves are stated to be
Poisson distributed. For the PCModel simulation, a constant
mean interarrival time is used for the Poisson variable. The
two sets of arrival rates to be simulated are (1) receiving at 2
pallets/min and shipping at 1 pallet/min and (2) receiving at 1
pallet/min and shipping at 3 pallets/min.

At this point in the development, the problem has been
defined as to what is to be simulated. Further, the system
specifics in the form of numerical data have been collected for
the model to be constructed. The next step in the development
process is to construct the PCModel software necessary to
accurately reflect the problem as given.
C. SOLVING THE PROBLEM IN SOFTWARE

1, Job and Route Definitions To begin the writing of
the software, the association of system pieces with jobs and

012345678901234567890123456789012345678901234567890123456789012345678901234567890
1 2 3 4 5 6 7 8

03 Pos
1 H
2
3
4
5
6
7
8
9
04
1
2
3
4
56
7Recv
8Wa i t 9Sh i p
O Belt
1
2 0 I
3
4
5
6
7
8
9
06
1
2
3
4
56
7
8
9

Com1
Zone

D

C

B

A

hr

Pos
H

Corn
2

ZoneD
C

B

A

hr0 I

Pos
H

Corn
3

Zone
D

C

B

A

Pos
H

Corn
4

Zone
D

C

B

A

hrhr0 1 0 1

Pos
H

Com
5

Zone
D

C

B

A

hr0 I

Pos
H

Com
6

Zone
D

C

B

A

Pos
H

Com
7

Zone
D

C

B

A

hrir 0 1 0 1

Pos
H

Com
8

Zone
D

C

B

A

hr0 I

Pos
H

Com
9

Zone
D

C

B

A

PosH

Co r r0
Zone

D

C

B

A

hrhr0 1 0 1

Recv
Wa i t
Sh i p
Be 11

38 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19

s
HI
P
PI
N
G

012345678901234567890123456789012345678901234567890123456789012345678901234567890
1 2 3 4 5 6 7 6

F igure 1. Warehouse O verlay

46

routes must be finalized. For the automated warehouse, the job
associations will be stated and all other information will be
incorporated into the routes taken by the jobs. First, the
received pallets and requests for items to be shipped are
designated as jobs, as they are the primary focus of the
simulation. (An object of the received pallet job will
typically be referred to as "R" throughout the software
development, while an object of the shipping request job will
be referred to as "S".) Second, each of the cranes will be
modeled as a separate job, consisting of one object which loops
through the system checking for the presence of R's and S's
waiting to be processed in the corridor. Lastly,
initialization of the simulation will be handled by one
separate job, whose single object perfroms the required
initializations along its route and then exits the model before
any other objects enter. (This initialization at run time of
the model, rather than only at load time, is a standard
procedure when using PCModel; it allows the use of the
initialize option of PCModel's interactive facility to restart
the simulation without reloading it, as explained earlier.) In
addition to the three types of jobs indicated, a fourth will be
deemed necessary once programming begins, for synchronization
of pallets on the conveyor belt.

With the jobs thus defined, the coding effort can be
concentrated. One might be inclined to assume that the
initialization job and its route would be the logical choice to
define first. However, as it is the initialization job's

47

nnrrjose to set up the system for the others to follow, it
actually makes more sense to leave it until the last. As noted
previously, the R's and S's are the primary focus of the
system, so they will be considered first. The discussion of
the R job precedes that of the S job as a matter of human
factors; it is normal to think of a received pallet as the first
thing to enter the warehouse when it opens for business.

2. Received Goods The R's model the received pallets.
They enter the system at the receiving port and wait for a spot
on the conveyor. When an opening arrives, R is placed on the
conveyor by implicit computer control and proceeds to its
designated corridor. If a position in the corridor's input
buffer is open, R moves into it and waits for the crane to
process it; if not, it makes one full circuit of the conveyor
and checks again. This process is repeated as many times as are
necessary; this behavior will lead to the complete utilization
of the conveyor capacity when the system becomes overloaded due
to high arrival rates, low crane speeds, etc. Once R is
accepted in the input buffer for its corridor, it moves up the
input buffer as space permits.

When the crane gets to R, logically R would be removed
from the input buffer and moved to the bin in the corridor where
it would stay until a shipping request removed it. Practical
considerations preclude this, however. For the capacity of the
warehouse, there would have to be 10,000 character spaces
allocated to this purpose. Although 10,000 characters is a
considerable requirement, it is well within the 32,767

48

character overlay limit. The inclusion of this much space would
make the overlay extremely unwieldy and certainly distort the
physical dimensions of the warehouse. Further, PCModel does
not allow for the direct movement of objects based on how many
are already in storage. Even when this is overcome by coding
tests to determine how much constant movement is required, the
problem becomes one of having to code the tests and moves
individually for each of the corridors. This is due to
PCModel’s limitation to constant reference locations. When
the jobs and routes for the crane objects are discussed, this
same problem arises and its resolution will be made there. For
purposes of the R job, it is simpler to let the R's exit the
system once the crane is known to be ready to take the R from
the input buffer.

As can be seen in Figure 1, the R's will arrive at
XY(44,69). The time between arrivals as discussed in the first
section is taken to be a constant and will be stored in the
variable @RECVRATE. (Using a variable instead of a constant
allows the arrival rate to be altered using PCModel's value
screen while the simulation is running.) Also, if the
initialization and synchronization jobs are assumed to be
numbered 1 and 2 respectively, then the R job is 3. Thus, to
begin the R route,

BR<3,XY<44,69>,aRECVRATE>
is coded. R moves up the receiving conveyor at an arbitrary
speed of 6 sec/m to the point where it meets the main conveyor.

49

MU<9,6>
At this point, R waits for an open position to come by on

the conveyor, which is chosen to travel past the waiting R's in
a left-to-right fashion. The column-wise scale of the screen
is 0.5m per column. This means that any given R will appear to
only take up 0.5m left-to-right; it must be assumed that the R
is actually occupying two horizontal character positions.
Thus, the R's on the belt when it is full will occupy every
fourth position (as the belt requirements state that lm, or 2
columns, must separate pallets). Further, the conveyor is
moving at a speed of 20 meters per minute, which is equivalent
to 1/3 m/s. The given conveyor rate of 1/3 m/s is equivalent to
0.5m per 1.5 seconds. To keep the arithmetic reasonable, the
conveyor speed needs to be in terms of 0.5m per n seconds, where
n is an integer. This allows conformity with the PCModel
restriction of integer operands. Cutting the given rate of 1/3
m/s in half yields 1/6 m/s, or 0.5m per 3 seconds. It is a
simple matter to cut all other speeds in half, so that no part
of the system is altered. The times indicated in the PCModel
instructions will effectively be half-seconds, when the
comparison with GPSS is made.

With the conveyor speed of 1/6 m/s, it takes 6 seconds to
move lm and thus 12 seconds to move 2m; therefore, a possible
open spot on the conveyor will occur every 12 seconds. What is
needed now is some mechanism to indicate, perhaps by means of a
global variable, when a valid time to check the conveyor for an
open spot occurs. This is accomplished by the synchronization

50

job mentioned earlier. The sole task of this job will be to
naintain a global variable, @GO, such that it increments on the
closed interval (0,11) at the rate of 1 per second. Thus when
@GO is zero, an R can "go" onto the conveyor (provided that the
spot is not already taken, as will be checked next). Note the
use of the DN (Do Nothing) instruction to prevent the
occurrence of an infinite loop.

:WAIT DN
IF(aGO,EQ, 0,:READY)
JP(:WAIT)

Once it is known that a valid position has arrived, a
check must be made to ensure that it is empty before an R
attempts to move onto the space. Also, it must be remembered
that an R is assumed to be occupying two horizontal character
spaces, so both must be checked.

:READY JB(2,XY(4zi,59),XY(45,58), :WAIT)
If R makes it past the JB statement without transferring,

it is because it an open space was found. The R is assigned a
corridor number before being placed on the conveyor because of
the nature of the data structures available in PCModel. Since
the only data type as of this writing is the scalar variable,
all of the information pertaining to a specific corridor will
have to be kept in global scalar variables. This in turn means
that software for the simulation of each of the corridors must
be coded separately with the particular set of variables built
in. The global nature of the variables does make it easy to
pass information to the cranes, though. The corridor number is
generated from the random value sequence initialized by j ob 1.

51

RVORNDMCORR.l.lO)
Also, the color foreground of R is changed so that it

reflects the overlay color of the corridor input buffer it is
designated for. The background is set as defined by @COLOR and
the SA instruction.

SA(aC0L0R,aRNDMC0RR>
Now R is ready to branch to the set of instructions for its
assigned corridor.

IF(aRNDMCORR,EG,1:C0RR1)
IF (aRNDMC0RR,EQ,2:C0RR2>

■ •

t «
IF (aRNDMCORR,EQ,9:C0RR9)
JP (:CORRO)

It should be noted here that the tenth corridor is designated
as corridor 0 and will be referred to as such throughout. This
is solely for purposes of program readability; all of the other
corridors have single digit numbers and by dropping the "1”
from "10", the labels and variables for corridor 10 will line
up with those of the other nine.

The next step is to examine the path an R takes, given its
corridor number. The logic for the first corridor will be
fully explained here; the remaining nine sets of corridor-
dependent software behave in a parallel manner. Without any
delay, the R moves onto the main conveyor under implicit
computer control as soon as a valid open spot is recognized.
(The branching procedure above contained no instructions
requiring clock time.) As the next steps utilize instructions
which will move R around the screen, it is necessary to use the

52

"R=" directive; this will give PCModel's loader a location as
reference for the subsequent relative moves. There is no run­
time value in this, but it is extremely handy to ensure during
the loading phase that the route is indeed following the path
intended. Once R is on the conveyor, it moves to the conveyor's
right edge at the conveyor's constant rate of 3 sec per half
meter (or 6 sec per meter) .

: C0RR1 R=(XYm,60>>
MU(1,0)
MR(30,3)

The reason the route above stops where it does (in the lower
right hand corner of the conveyor) is that some R' s will have to
circle the conveyor one or more whole laps before the input
buffer for an R's corridor has an opening. The right hand
corner is a good place to loop because here no code will be
duplicated; that is, the MR instruction above only moves R from
the receiving position to the right edge. The next time around
the R must be moved right from the left edge, not the receiving
position. To get to corridor 1, R must move to the upper
conveyor and then left to input buffer 1. The rate going up is
6 sec/m and the rate moving to the left is 3 sec/0.5m, or 6
sec/m also.

:CONTI MU(4,6)
ML(65,3)

Now, with R at the entrance to input buffer 1, the number
already in the buffer, @INBUF1, must be compared with the
buffer capacity @BUFCAP. If it is less than the capacity,
there is room for at least one more R; thus R is transferred to
the input sequence.

53

IF(aINBUFl,LT,aBUFCAP, : INPUT1)
Otherwise, R stays on the main conveyor belt and goes

around again; R is moved to the left edge, down to the lower
level, over to the right edge, and then repeats as explained
before.

ML (3,3)
MD(4,6)
MR(68,3)
JP(:CONTI)

Once an R is accepted into the input buffer, it has only to
wait for the crane to finish with its previous tasks to get to
it. The entry of the R in the input buffer causes the number in
the buffer to increase, and R is moved up the input buffer to
wait. Note again the use of the R= directive to relocate the
reference for relative moves after a branch.

:INPUT1 R=(XY(9,55))
IVOINBUF1)
MU (4,6)

When the crane takes R from the input buffer, it exits
from the system. The problem is how to have the crane know that
there are received pallets waiting. This is accomplished by
incorporating a pair of flags which are used by both the
corridor sequence and the crane route. They are the @RECRQ1
and @0KRECRQ1 variables. The corridor sequence sets the
RECeiving ReQuest flag by incrementing @RECRQ1 whenever an R
gets to the entrance of the corridor (i.e., it is at the front
of the input buffer).

IVORECRQl)

54

The crane route will be looking for this to happen; when it does
and the crane is free to replace the R, the crane route will
increment @OKRECRQl to signal OKay on the RECeiving ReQest.

Until @OKRECRQl is set, R must wait at the front of the
input buffer.

:BACK1 DN
IFOOKRECRQl.ECLO, :BACK1>

Thus, when the crane takes the received pallet for
storage, R can exit the system. As it leaves, it resets both
the @RECRQ1 and @OKRECRQl flags for the next R to use.

DV(o)OKRECRQl)
DV(8RECRQ1)

The count for the input buffer is also decremented to
reflect the fact that the input buffer now has room for one more
R.

DV OINBUF1)
Lastly, R jumps to the end of the route used by all of the

corridor receiving sequences.
JP <:INDONE)

:INDONE ER
The corridor sequences for the other 9 corridors follow

exactly from that given here for the first; all of the
variables and labels are changed to reflect the number of the
corridor. The moves along the upper conveyor must be adjusted
for the different corridors.

By allowing the received pallets to exit the system at
this point, much effort is saved in the coding effort. The
presence of the received pallets after the R's leave the system

55

is kept track of in the variables for corridor quantities.
This will be examined in full detail in the section covering
the crane routes.

With the route for the received pallets constructed and
the interrelationships among jobs defined, the job statement
for the route can be given. The initialization job will be of
highest priority (0) with the synchronization job following
(1). Thus the receiving and shipping pallets, as well as the
cranes, will all be of the next level priority (2). The job
statement for the receiving pallets is

J=(3,R,3,0,0,2,5000)
indicating that job 3 will follow route 3, and job 3's objects
will use the character "R" to represent them on the screen.
Additionally, there will be 5000 pallets received before the
job ends; this value was chosen arbitrarily.

3. Pallets to be Shipped The shipping requests for
pallets are next. The shipping requests will be modeled by the
objects of the shipping pallet job, denoted by "S". All of the
request for pallets to be shipped enter the system at a common
point, perhaps the office for such requests. An S is then
forwarded to the computer control of the crane for the
corresponding corridor. Once there, S waits in the buffer for
crane shipping requests. The crane has to deal simultaneously
with R's and S's; the procedure for handling both will become
apparent in the development of code for a crane.

Once the crane does get to the S, there is the delay time
for crane movement to consider. The position of the pallet to

56

ship must be calculated and the crane delayed for the amount of
time to move from its current location to that of the pallet and
then to the output buffer. This arrangement for retrieval from
the corridor parallels that for placement in the corridor
described for received pallets. Once time has been allowed for
the crane to finish its task, an S can move from the buffer for
shipping requests to the output buffer for the corridor. It is
here that S waits until an empty position on the warehouse
conveyor is free; when a spot arrives, S is transferred to the
conveyor by implicit computer control (as was the case for an R
entering from the receiving area). It should be noted that
both R's and S's will be vying for the positions on the belt.
Once on the belt, the S moves to the shipping area and is
deleted from the simulation. This deletion is the operation
wherein the pallet would be placed on board a truck or
freighter to be transported away.

Again referring to Figure 1, the position XY(34,69) is
seen to have been selected as the shipping request center. The
arrival rate of shipping requests will be maintained in the
variable @SHIPRATE. As before, the use of a variable rather
than a constant here makes possible the changing of the rate
during the simulation run. As job numbers 1, 2, and 3 have been
spoken for, the S job will be assigned job number 4. To begin
the S route then,

BR<4,XY<34,69),aSHIPRATE)
is used. Immediately following the beginning of the route is
placed a labeled instruction to be branched to when a shipping
request buffer is full. This will be explained shortly.

57

:REPEAT DN
The first sequence for an S is the determination of a

corridor for S. For purposes of the simulation, this assignment
of corridors to requests is done randomly; the GPSS model also
makes a random selction.

RV(aRNDMCORR,1,10)
As was done for the R job objects, the S job objects have

their foreground color set to the color used for their
respective output buffers on the overlay; the random corridor
number carries this information. This allows insight into the
conveyor load; for instance, the simulation may be, halted
temporarily in order to observe exactly which corridors have R
and S job objects on the conveyor and further, how many of each.
@COLOR is used for the background as defined by the variable
value.

SA(aC0L0R,aRNDMC0RR)
S can now transfer to the set of instructions coded

explicitly for its corridor.
IF(aRNDMCORR,EQ,l,:EXIT1>
IFORNDMCORR, EQ,2, :EXIT2>

IF(aRNDMC0RR,EQ,9,:EXIT9>
JP(:EXITO)

It should seem reasonable that the handling of an S job
will parallel that used for an R job; one is coming in, the
other going out of the warehouse. Just as the code for each of
the corridor input sequences is similar to the others given a
change of labels, distances, and relative references, so will

58

be the code for the corridor exit sequences. An examination of
the code required for exiting corridor 1 will serve to explain
the sequences for the remaining corridors.

Given that S has been assigned a corridor, the first event
to occur is a simple check to see if the buffer for shipping
requests on that corridor is full. If it is, the S will simply
be reassigned to a different corridor. This decision is made
to ensure that the system can handle the shipping requests at
the specified arrival rate. The other possiblility for an S
that finds its buffer for shipping requests full is to have it
branch out of the simulation altogether. This would only serve
to lighten the load placed on the simulation; reassigning the S
to a different corridor assures a conservative estimation of
system capability.

The code to check the shipping request is
:EXIT1 R=(XY<7,47)>

JB(1,XY<7,47),:REPEAT)
where R= is used as before to allow the loader to accurately
represent the job path. Note that a different approach to
buffer capacity is used here, as compared to that for the
corridor input buffers. As described previously, use was made
of a counter to keep track of how many R's would be waiting on
the crane at any given moment. Here, the Jump if path Blocked
instruction is used to determine if the buffer is full; note
that no explicit variable is defined or required. The buffer
will be full if this space is blocked because the last shipping
request to enter the buffer has not moved forward due to

59

shipping requests occupying all of the preceding buffer
positions. A trick of this sort could be helpful in large
simulations where the physical storage for variables becomes a
problem. It also eliminates the need for the program logic to
maintain the buffer count. On the other side of the coin,
implying the maximum size of a buffer by coding an instruction
such as this makes the program less changeable. If it is
desired to change the buffer capacity, even if only by one,
then the program itself must be modified. These considerations
suggest that such a contrivance should only be used in the case
of constant, or unchangeable buffer sizes. The logic is coded
here in this manner to illustrate an alternative to the
explicit buffer variable concept used before.

The other point to note concerning the JB instruction Is
the location to which an object transfers if the location is
indeed blocked. It is the instruction labeled :REPEAT given
earlier. It might seem that the :REPEAT label could be
attached directly to the RV instruction immediately following
it in order to save a line of code and to save the time of the
clock increment caused by the DN instruction. The reason for
separating the JB destination with the DN instruction becomes
apparent when one gives thought to the behavior of the system
if it becomes saturated with shipping requests. It may well be
that all of the shipping request buffers become filled at some
point. Consider what would happen if an S were to enter the
simulation at such a time. It would be assigned a random
corridor, which would have a full buffer; it then immediately

60

branches to another random corridor which would again have a
full buffer. This sequence would be in essence an infinite
loop. No hope of termination would exist because none of the
instructions in the cycle require any clock time. The
inclusion of the DN instruction prevents this from happening by
allowing the S to attempt to enter only one shipping request
buffer per clock second. Meanwhile, the cranes will be allowed
to continue working, and hopefully, some corridor space will
become available.

Assuming that the non-full shipping request buffer
located is in corridor 1, the progress of S continues. Since a
position for S exists, it is transferred without delay from the
office for shipping requests (by implicit computer control) to
the buffer for corridor 1 by

MA(XY(7,47>,0>
where XY(7,47) is the first position in the buffer. Now,
consider the behavior of the crane at this point. When the
crane finishes its previous tasks and finds that an S is
waiting in the buffer, its computer control will calculate the
storage location of the pallet to be shipped and the crane will
immediately begin the process of moving to the location and
returning with the pallet. On first thought, this would
probably appear to be all well and good. However, the
possibility exists that the warehouse conveyor is currently
saturated with R's and S's, and thus no room remains for
additional S ’s to be transferred to the conveyor. If this is
the case, then the output buffer for the corridor will become

61

full, with its S' s waiting for positions to open up. Unless the
crane checks for this occurrence, it will bring back a pallet
and have no place to release it. Therefore, a check is made as
soon as the request reaches the end of the request lane but
before the crane route is informed it is present.

MD(3,0)
DN
TP<1,XY<7,53>>

The TP instruction is employed to check if the last position in
the output buffer is blocked. Again, if this last position is
occupied, it is because the position following it is occupied
as well (the buffer capacity is 2) and the object in the
foremost position cannot move ahead. This buffer position is
XY(7,51), as can be seen in Figure 1. Note the use of the DN
instruction to prevent the test from being performed before the
previous shipped pallet has a chance to enter the output
buffer. Without the DN instruction, it is possible for too
many objects to move in the space of a single clock period to
the output buffer.

Once it is known that space exists in the corridor’s
output buffer, the count of shipping requests for the corridor
can be incremented. It is essential that this incrementation
not be done until now in order to prevent the crane from
retrieving a pallet before a space exists for it.

IVOSHPRQl)
With S at the bottom of the request buffer, there is

nothing to do but wait until the crane signals it has brought a
pallet to the output buffer. The crane does this by setting the

62

flag @OKSHPRQ to 1, indicating that the SHiPping ReQuest is
OKay to proceed. Until the flag becomes 1, the S waits here.

:H0LD1 DN
IF(a0KSHPRQl,EQ,0,:H0LD1>

Once the crane has signaled that a pallet has been brought
up from its storage position to the corridor entrance, S is
ready to move from the shipping request buffer to the corridor
output buffer. Before this is done, however, the @OKSHPRQl
flag is reset for use by the next S and @SHPRQ1 is decremented
so the crane can know if there are any shipping requests
pending.

DVOOKSHPRQl)
DVOSHPRQl)

It should be observed that the purpose of this pair of
variables parallels the use of the @RECRQ1 and @OKRECRQl
variables used for the R jobs.

R then moves down the output buffer immediately, so as to
occupy the buffer positions before another fetch can be
requested of the crane when no room, actually exists.

MD<4,0>
When S gets to the entrance onto the conveyor, it must

wait here just as the R objects did for the two events that must
occur in order: (1) S must be synchronized with the passage of
pallets on the belt, and (2) the current position must be
unoccupied in order for S to be able to be placed on the
conveyor.

The synchronization problem has an added wrinkle from
that considered for the R jobs. As the R jobs were placed on

63

the belt at only one position, that position was the only one of
interest for synchronization so it was decided to use the
synchronization value, kept in the variable @GO, of 0 to
determine valid times there. This same value of 0 is not
necessarily the one to use for other conveyor positions.
However, with one position and its @GO value defined, the @GO
values for the corridor output buffer entries to the conveyor
can be determined. For corridor 1 the output position is
XY(7,55). For the receiving lanes entry the position is
XY(44,59). (Both of these positions can be obtained from Figure
1.) As discussed before, an R placed on the conveyor at @GO = 0
travels to the right 30 spaces at 3 seconds per space, for a
total of 90 seconds. Next, the R travels up 4 rows at 6 seconds
per row, taking 24 seconds. Lastly, to reach corridor l's
output buffer position the R must travel left 67 spaces at 3
seconds per space, requiring 201 seconds. The total elapsed
time is 90 + 24 + 201, or 315 seconds. Now remove the complete
counts of 12 from 315; this is 315,mod 12, or 3. Thus the value
of @GO when the R is in the position before the corridor output
buffer is 3; consequently, this is the @GO value to check for
before allowing a pallet to be placed on the conveyor.

:WAIT1 DN
IF(aG0.EQ.3,:READYl>
JP(:WAIT1)

The synchronization values for exits from the other nine
output buffers can be arrived at similarly. It is actually
much simpler after the initial value is obtained. Since the
@GO value for output buffer 1 at XY(7,55) is known, the GO value

64

for output buffer 2 at XY(14,55) comes from the determination
of the time it takes an object to move from one buffer to the
other, the distance being 14 - 7 = 7 spaces at 3 seconds per
space, or 21 seconds. 21 mod 12 is 9 @GO units. Since
XY(14,55) occurs prior to XY(7,55) in the direction of conveyor
flow, 9 is the count to back up from 3; thus 3, 2, 1, 0, 11, 10,
9, 8, 7, 6 is the sequence with 6 being the @GO value for
XY(14,55). Lastly, since all of the output positions are 7
spaces apart, the constant value of 9 may be used to back up
from output position 2 to 3, 3 to 4, and so on.

Given that the conveyor is synchronized, the position
must still be clear. As was explained earlier, each object is
considered to be occupying two horizontal spaces due to the
scale being employed, so two spaces must be checked on the
conveyor to ensure that the current position is unoccupied.

:READY1 R=(XY<7,54)>
JB<2,XY(7,55>,XY<6,55>,:WAIT1>

Once the position is known to be present and unoccupied,
the S object is placed on the conveyor without delay by the
implicit computer control and proceeds around the conveyor to
the shipping area of the simulation.

MD (1,0)
ML<1,3>
MD<4,6)
MR<29,3>
MD(10,6>

Note that since the shipping area is being simulated as
requiring no time, no logic to check for "backing-up" in the
shipping area is needed.

65

Finally, the S jumps to the ER used by all of the corridor
shipping sequences.

JP(:0UTD0NE)
:OUTDONE ER

This type of transfer was also done for the receiving
sequences. It is necessary to use this sort of control flow
because only one ER is allowed for each BR. Even if this were
not the case, it is always preferable to develop code with only
one entry and exit.

This section has developed the instructions necessary to
generate a shipping request and then to model its passage
through a single corridor. As was the case for the receiving
section, the code outlined for the single corridor can be
propagated to the other 9 by simply changing the label indices,
the relative references, and some of the traveling distances
(from the output buffer to the left edge of the upper
conveyor). This serves to again emphasize PCModel's weakness
due to its lack of both arrays and variable move capability. If
the language had incorporated these features, much of the
parallel behavior could be incorporated in links.

As was done for the receiving pallet job, the shipping
pallet job is now coded last with all of the other information
in place. The shipping job, like the receiving job, has
priority 2, leaving priorities 0 and 1 for the initialization
and synchronization jobs respectively. The job statement is
coded as

66

J=<4,S,4,0,0,2,5000>
indicating that job 4's objects will be represented on the
display by ’ R' and that job 4 will follow route 4. Lastly, 5000
requests for pallets to be shipped will be placed before this
job is exhausted. The 5000 figure was selected arbitrarily.

4. Conveyor Synchronization At this point, the routes
for the receiving and shipping pallets have been coded. Both
of these have made use of the synchronization variable @G0; it
would be used to determine the appropriate times that a valid
conveyor position would be present for entry onto the conveyor.
In this section, the determination of the variable @GO is
examined through the development of the synchronization job's
code.

The synchronization job object enters the simulation
during the first second without delay.

BR(2>XY<65,68),0)
Route number 2 was reserved for the synchronization job earlier
and the position XY(65,68) was ohosen entirely arbitrarily.
Actually, no screen movement occurs for this job, so a position
is not logically required here; however, it must be included as
the BR instruction demands its presence.

As was described previously, @GO was assumed by both the
receiving and shipping pallets to have a value on the closed
range (0,11) which would change each second. This interval was
derived from the conveyor speed. At 0.5m per 3 sec, the
conveyor would travel 2m every 12 seconds. Thus a flag set to
zero every twelfth second would indicate to the jobs when a

67

valid conveyor position was present. Assuming that @GO will be
set to O by the initialization job, its value would need to be
incremented each clock second.

.■BACK IV(aGO)
Now, the value for @G0 can be checked to determine if it is

still on the proper range (i.e., its value is no greater than
11, or equivalently, still less than 12).

IF(aG0,LT,12,:OVER)
If the value has incremented to 12, which will obviously

occur every 12 clock seconds, then @GO must be reset for the
current second.

SV(aGO.O)
In either case, @GO has now been set for the current clock

second, so this value must now be preserved for the receiving
and shipping jobs to reference during this second. This is
done by delaying the synchronization job object for one second.

:0VER ST <1)
This value is made present for the complete second to the other
jobs by giving the synchronization job a priority of 1; the
receiving and shipping jobs, along with the cranes to be coded,
will operate at priority 2. Thus the synchronization will be
processed before any of the other jobs during any given second.
(The priority 0 is being reserved for the initialization job,
which will only run once before the first second of
simulation.) Note that no other instruction for the
synchronization job requires any clock time.

68

Once the @GO's value has been maintained for the current
second, the job object is transferred to the beginning of the
loop so that a new @G0 value may be determined for the next
second.

JPOBACK)
Note that the job releases only the one object into the system.
This same object will remain active for the duration of the
simulation; thus it never reaches an ER, or End Route,
instruction. Nevertheless, one must be included to indicate to
the loader that the instruction sequence for the job route
started with the preceding BR instruction is completed.

ER
This same technique of using a single job object throughout the
simulation will be employed in the modeling of the cranes.

As was done for the prior jobs, coding of the job
statement has been left for last. As explained above, the
priority of the job will be 1 and the number of job objects is
also 1. The job was assigned job number 2 before any coding
began.

J=(2,#,2,0,0,1,1)
Thus job number 2 will take route 2, and the screen image for
the job is the '#' character, chosen arbitrarily as the job
really has no logical display output.

5. The Corridor Cranes With the behavior of the
receiving and shipping jobs completely determined, coding for
each of the ten corridor cranes can begin. The decisions
reached concerning the information the corridors would make

69

known to the cranes will now be utilized to create the crane
behavior. The receiving objects passed the presence of jobs
through @RECRQn and expected acknowledgments through @OKRECRQn
(where n is the subscript of the corridor); the shipping
objects likewise utilized @SHPRQn and @OKSHPRQn. The use of
these variables will now be seen from a crane's point of view.

a. Crane Behavior As done for the corridor input and
output sequences belonging to the receiving and shipping
objects respectively, the behavior for only one crane will be
examined here. As before, the changes necessary in the code to
go from one crane to the next will consist basically of changes
to label and variable indices and to screen positions.

Two facets of PCModel that have not been examined as of
yet will be employed for the cranes. They are links and object
parameters. Links will be used in the same manner as
subroutines are used in typical programming languages; their
inclusion will greatly relieve the coding and debugging
efforts by making the same sequence of route instructions
available to all ten corridors. Object parameters will take
the role of subroutine parameters, carrying information to and
from the links. The global nature of variables in PCModel
forces this use of object parameters in links requiring clock
time (as will be seen); otherwise, the links would be severely
restricted in their capability to affect different corridor
statistics.

Object parameters will also play another role in the
modeling of the cranes. As noted in the section detailing the

70

synchronization job, each crane will be modeled by a single
non-terminating job object; in other words, each crane job will
create only one object, which will remain in the simulation for
its duration. This being the case, object parameters can be
used to maintain some of the statistics concerning a crane and
its corridor. This in turn reduces the number of variables
which require storage to be allocated and it makes whatever
information kept in the parameters known to any links a crane
object, hereafter referred to as ’C', enters.

The information that must be maintained for each corridor
includes the current crane position, both vertically and
horizontally, and the number of pallets stored in each of the
four zones of the corridor. This totals to six variables,
exactly the number of parameters for an object. However, such
an assignment does not leave any parameters for use in
transferring intermediate information between links or for use
during links as work variables. These types of uses will be
seen during development of the links.

Before beginning the coding for crane 1, its behavior must
be completely defined. It is present in the warehouse when the
simulation starts and begins its work as soon as a pallet
enters its input buffer. When this occurs, it takes the pallet
from the input buffer and moves it to the bin assigned to it by
computer control. It stays at that position and checks to see
if a request has been made for a pallet to be shipped. If so ,it
moves to the location of the pallet (again determined by
computer), picks it from its bin, and moves it to the output

71

buffer. Whether or not a shipping request sequence takes
place, the crane next polls the receiving buffer to see if
another pallet is waiting to be stored in the corridor. At this
point, the cycle repeats and will do so until simulation end.
Additionally, checks must be made so that no attempt is made to
store a pallet in a zone that is already full or remove a pallet
from a zone that is currently empty.

Now consider what pieces of this sequence of events can be
grouped into links. Basically, whether a crane is storing a
received pallet or bringing a pallet to the output buffer to
satisfy a shipping request, two events must take place. First,
the zone of the pallet must be determined; this would include
checking the zone for the full (on receiving) or empty (on
shipping) condition. Second, the crane must be moved from its
current position to that of the pallet and then to the pallet's
destination. Each of these two events is different enough for
its receiving and shipping counterparts to warrant the
development of a separate link for each. Thus, the utilization
of four links is in order: determination of the zone for a
received pallet, movement of the crane during receiving,
determination of the zone of a pallet to be shipped, and
movement of the crane during shipping. The development of
these four links will be detailed first, in order that their
requirements can be reflected in the crane route. As the
determination of the zone for a received pallet is the first
event to occur for a crane, the link for it will be developed
first.

72

Before the software is decided upon, the utilization of
the cranes six parameters must be defined. As noted
previously, each corridor requires six variables: the four
zone quantities and the crane's horizontal and vertical
position. Now consider the nature of the links to be used.
Global variables are naturally accessible inside each link; as
long as the link causes no clock delay for the crane object,
global variables may be used to pass information. However, if
C encounters a time delay at any point in the link, this may
allow one or more different C's inside the link and they will be
referencing the same global variables while the first C is
being delayed. Thus a new C would cause interference with the
global variable values that the previous C was using when it
entered the link. The solution to this problem is to ensure
that one of two possible scenarios is followed: (1) no time
delays are caused by the link, thus allowing the use of global
variables, or (2) no global variables are specified (i.e.
variables are passed solely as object parameters), so that time
delays may be encountered by different objects without causing
interference for others. Each of these scenarios will be used,
the first by the link for determination of the zone and the
second in the link for the movement of the crane, which will
certainly require time delays.

Two factors come into the final definition of the crane
object parameters. The first is that the four zone variables
will be used only by the first link which will require no clock
time. Thus, they may be passed globally. Secondly, the crane

74

each corridor. Crane object parameters 3 and 4 are selected to
contain the number of pallets currently in the selected zone
and the offset to the zone, respectively. The determination of
the bin from this information will be detailed in the link for
receiving movement. Lastly, the link should set some sort of
flag to indicate if the zone was already full so that no attempt
is made to store yet another pallet there. Parameter 2 is set
aside for this purpose. A '1' in this parameter will indicate a
full zone to the crane route.

The coding of a link always begins with the Begin Link
instruction, specifying the name by which routes will refer to
it. For the link to determine the zone for received pallets,

BL(IRECVZONE)
is used. The next thing to do is insure that the flag for
"fullness" is cleared upon each entry to the link.

SV(0BJa2,0>
Now the physical zone can be selected for the received

pallet. As detailed during the collection of data for the
problem, the frequency for storage in the four zones A, B, C,
and D breaks down as 40%, 30%, 20%, and 10%, respectively. To
model such a breakdown, a random number is generated between 1
and 100.

RVORNDMZONE, 1,100)
This RaNDoM ZONE value can then be used to branch based on the
percentages. For zone A, at 40%, the range would be (1,40), so

IFORNDMZONEAT,41, :RZ0NEA>

73

position will be required in the calculation of distance and
thus time to move in the second link; thus, it would be
immensely helpful if they could be maintained in the object
parameters. This in turn will alow the link to encompass more
logic, since the crane object will not have to return to its
specific route for time delays. Tentatively then, two of the
crane parameters will be used for its horizontal (arbitrarily
chosen as parameter 5) and vertical (parameter 6) positions.
The other four object parameters willl be open for use as
needed in the links.

b- Handling a Received Pallet For the received pallet
zone-determination link, the decision must be made as to what
information needs to be returned to the crane route. Since the
first four object parameters are open, they may as well be used
for this purpose to reduce the storage required for variable
allocation. It is the job of this link to acquire the
information necessary for the receiving movement link to
determine the specific bin the pallet is to be placed in.
Knowing the bin, the link can then determine distances of
movement and thus time required to move. To determine the bin,
two values currently accessible to the object will suffice,
specifically the offset from the input buffer at the head of
the corridor to the zone and the number of pallets currently in
the selected zone. The offset to the zone will be a different
constant for each of the four zones, but it will be known on
entry to the link. The current number in the zone can be
obtained from the global variables that will be maintained for

75

is coded. Zones B and C are coded similarly for their
percentages, keeping in mind that as an object passes an IF it
is known that the random percentage must lie in the remaining
interval.

IF(aRNDMZ0NE,LT,71, :RZONEB)
IF(aRNDMZ0NEAT,91, :RZ0NEC>

The same type of instruction could be coded for zone D,
but instead

JP (:RZONED)
is used. This probably better serves to aid in the detection of
a coding error; if a number is incorrectly specified above,
more or less items will be easiest to notice in zone D, the
least frequent in traffic.

Now with the zone specified, information pertaining to it
can be gathered. Assume at this point that the global
variables containing the corridor zone quantities were placed
in the variables @ZONEA, @ZONEB, @ZONEC, and @ZONED for use by
the link. Consider first the treatment of zone A. As noted in
the data collection process, zone A is defined to occupy 13/50
of the corridor, since equal percentages of volume were deemed
inappropriately complicated. Since each corridor's capacity
is 1000 pallets, zone A's capacity is 260, and this is the value
used for identifying a zone-full condition.

:RZ0NEA IF(3Z0NEA,EGL260,:Z0NEFULL)
Assuming the zone is not full, crane parameter 3 is set to

the number currently in the zone, and then this value is
incremented for use in updating the zone quantities in the
crane route.

76

SV(0BJa3,aZ0NEA)
IV(aZONE/V)

Note that parameter 3 contains the number before the current
pallet is stored; it is important to keep this in mind when the
determination of the bin location is made in the next link.

The other information required for the bin location is the
offset to the zone, as explained before. As zone A starts at
the head of the corridor, its offset is zero.

SV(OBJa4,0>
With the information for zone A in place, the crane object

can return to its route.
JP(:OKSTORE)

:0KST0RE EL
Had the zone been full, the object would have transferred

to the instruction immediately prior to the EL instruction to
set the flag parameter.

:Z0NEFULL SV(0BJa2,l)
The handling of the other 3 zones is identical to that of

zone A, in much the same manner as the treatment for the
corridor input and output of the receiving and shipping routes.
The different values for zones B, C, and D include the varying
zone capacities: 240, 260, and 240; the zone offsets: 13, 25,
and 38 meters; and the variables used for the zone quantities:
@ZONEB, @ZONEC, and @ZONED. Note that the offsets were arrived
by applying the corridor percentages to the corridor length of
50 meters: 13/50 for zone A implies 13m to zone B; 12/50 for
zone B implies 12m plus the previous 13, or 25m, to zone C; and

77

13/50 for zone C implies 13m plus the previous 25, or 38m to
zone D. Substitution of these changes into the code for zone A
yields the code for zones B, C, and D.

Assuming that C has returned to its route just to update
corridor l's zone quantities from the link's global zone
variables before another crane has time to interfere with them,
its progress can now be charted through the link for receiving
movement. Remember that time delays will occur here so it is
crucial that all calculations be done using C's parameters;
thus more than one crane can use the link at the same time. The
link begins as described in the previous section.

BL(IRECVMOVE)
Assuming that the crane route did not affect the object

parameters when the crane returned there from iRECVZONE, the
values saved there are still in place. Parameter 3 contains
the number in the selected zone and 4 has the offset to the
zone. Parameter 1 was unused by the link so it is free for any
use deemed necessary here. In addition to this, parameter 2,
the zone full flag, fulfilled its purpose upon return to the
route by indicating whether the zone was full or not; it is now
free as well. Thus, C parameters 1 and 2 may be used as work
variables where needed. This is the basis of the capability
that allows other crane objects to use the same link
simultaneously, without affecting one another.

The first thing the crane must do in order to store a
pallet located in the input buffer is to move from its current
location to the end of the corridor. Its current positions

78

(horizontal and vertical) are located in object parameters 5
and 6. The end of the corridor is defined to be position (H=l,
V=1) ; this is the same position as that for the first object to
be placed in zone A. Consider first the horizontal move. Since
the value for the horizontal position of the crane will be
required for later work, it is copied to parameter 1 here.

SV(0BJal,0BJa5)
This is done to provide the most accurate statistics possible
on the object parameter display. The parameter screen will not
be changed until the crane has had time to move.

The distance then is calculated by obtaining the
difference between the desired position (constant at H=l, V^l)
and the current position. In other words, subtract 1 from, or
decrement, the horizontal position in OBJ@l.

DV(OBJal)
After decrementation, the parameter will contain a

distance, not a position. Multiplying it by a rate of seconds
per meter will give the time to move in the horizontal
direction. The rate is kept in the global variable @HORZRATE.

A0(0BJ3l,*,aH0RZRATE>
This being done, the parameter now contains a time, no

longer a position or distance. This time can be used to delay
the crane object for simulation of movement.

ST(OBJal)
Lastly, the crane's horizontal position is set to reflect

the move.

79

SV(0BJa5,l)
When the horizontal move is complete, the crane moves

vertically. The logic and coding follow from that of the
horizontal.

SV<0BJal,0BJa6)
DV(OBJal)
AO(OBJal,*,aVERTRATE)
ST(OBJal)
SV<0BJ36,1>

After these delays, the crane will be positioned at the
head of the corridor, at the input buffer exit; once there, it
removes a pallet from the buffer, an operation which is assumed
to take negligible time. The crane is now ready to move to the
pallet's position; thus the next step is the calculation of
this position. Breaking the problem down further, consider
only the distance to move in the horizontal direction. The
crane is in horizontal position 1. Adding to 1 the offset for
the zone (from OBJ@4) will yield the horizontal position of the
first bin in the zone. The calculation from there is more
involved.

First make a copy of the number in the zone in OBJ@1.
sV(0BJal,0BJa3)

This provides a copy of the number which can be worked with, so
as not to destroy the original; this value will be required
later in the vertical calculation.

For each horizontal meter of corridor length there are 20
bins (10 high on either side); integer division (DIV) of the
number in the zone by 20 thus yields the whole number of these
sets of 20 filled. For instance, if there are 17 pallets in the

80

zone, then 17 DIV 20 = 0, meaning no sets of 20 are filled, and
the next pallet would he placed in this "zeroth" horizontal
meter; if there are 46 pallets in the zone, then 46 DIV 20 = 2,
two sets of 20 are filled, and the crane would have to move 2
meters further down the corridor, past the filled "zeroth" and
first meters, to place the next pallet. Therefore dividing by
20 yields the distance into the corridor the crane must move.

ACKOBJal,/,20)
Adding in the offset to the zone gives the distance the

crane must move from position 1 to get to the new position.
ACKOBJal,+,0BJaA)

OBJ@l will be used in the delay for horizontal movement.
Lastly, the new horizontal position is determined and

saved in OBJ@2 for placement in OBJ@5 once the time has elapsed
for the crane to get there. The new position is obtained from
the fact that the crane is in position 1 and OBJ@l is currently
the distance; thus saving a copy of OBJ@l in 0BJ@2 and then
incrementing OBJ@2 puts the position in OBJ@2 while leaving the
distance in 0BJ@1.

SV(0BJa2,0BJal)
A0(0BJa2,+,l>

This allows OBJ@l to be worked with again and it prevents the
position parameter of the crane from being set until the crane
gets there.

Knowing the required horizontal distance, the required
movement time can be determined as was done for the movement to
position 1. Multiply the horizontal distance by seconds per
meter to get the time and then delay for that time.

81

AO (OBJal, *,aHORZRATE)
ST(OBJal)

Now the horizontal position of the crane can be updated
from the copy saved earlier.

SV(0BJa5,0BJa2)
Now in the proper horizontal position, the crane is ready

for vertical movement. Basically, the determination of the
next vertical bin position to be filled is an extended
application of the logic used for the horizontal position. As
before, get a copy of the number in the zone to work with.

SV(0BJal,0BJa3)
To determine how many bins are occupied of the 20

vertica lly accessible to the crane in its current horizontal
position, remove the whole sets of 20 from the number in the
zone. In other words, take the number in the zone modulo 20.
Doing this with PCModel's four arithmetic operations requires
several steps and two variables. First get the number of whole
20' s by dividing the number in the zone by 20.

A0(0BJal,/,20)
Second, get the greatest multiple of 20 contained in the zone
by multiplying by 20.

ACKOBJal,*,20)
Now, subtracting this value from the number in the zone will
produce the desired modulo. A copy of the zone quantity is made
in OBJ@2 (to preserve OBJ@3 for possible future use), and then
the subtraction is performed.

82

SV(0BJa2,0BJa3)
A0(0BJa2,-,0BJal>

OBJ@2 now contains the number of filled bins in the current
vertical 20. In fact, if the bins were arranged vertically on
one wall, OBJ@2 + 1 would be the vertical position of the bin
for the next pallet. However, this is not the case; there are
10 bins arranged vertically on either side of the corridor.
Therefore the vertical distance to the first empty bin is OBJ@2
DIV 2. For example, 0 or 1 filled bins means the distance is 0,
2 or 3 filled bins yields a distance of 1, 4 or 5 filled bins
yields a distance of 2. Thus

A0(0BJa2,/,2)

puts the vertical distance in OBJ@2 . A copy of this distance is
placed in OBJ@l for use in the movement delay.

SV(0BJal,0BJa2>

Lastly, OBJ@2 is changed from a distance to a vertical
position by adding one.

A0(0BJa2,+,l>

Again, this is due to the fact that the crane is already in
vertical position 1, so 1 plus the distance to move will give
the new position. As done horizontally, the vertical position
parameter will not be updated until the time has passed for the
crane to get there.

Moving the crane vertically consists of the same steps as
moving horizontally: multiply distance by seconds per meter,
delay for the required time, and then set the new vertical
position.

AO(OBJal,*,aVERTRATE)
ST(QBJal)
SV<0BJa6,0BJa2>

83

At this point, the crane can place the received pallet, an
operation which is assumed to take no appreciable time. The
crane's next logical procedure is to check for more pallets to
be moved. It has been decided to let the crane wait wherever it
placed the pallet; this decision will be explored further in
the crane route, which is where the crane object returns at
this point.

EL
c. Handling a Shipping Request Now the focus of

attention is turned to the link dedicated to determining the
zone to obtain a pallet from to satisfy a shipping request. It
is an exact counterpart to the link for determining the zone
information for a received pallet. As such, it will not be
explained in the detail that ! RECVZONE was. As for every link,
this one begins with the BL instruction declaring the name it
will be referred to by.

BL(1SHIPZ0NE)
This time, a flag in the value of OBJ@2 will be used to

determine the "emptiness" condition for the selected zone. It
is set to zero to initialize it for the current C.

SV<0BJa2,0)
Again, the zone itself is selected on a percentage basis,

40%, 30%, 20%, and 10% for zones A, B, C, and D respectively.
The random number and the zone branch is handled as before.

84

RVORNDMZONE, 1,100)
IF<aRNDMZ0NE,LT,40, :SZ0NEA)
IFORNDMZONE,LT,71, :SZ0NEB>
IF(aRNDMZ0NE,LT,91, :SZ0NEC>
JP(:SZONED)

Considering only zone A for the moment, the first thing to
check is the possibility that the zone could be empty.

:SZONEA IF <aZ0NEA,EQ,0,NONEMPTY)
Next, the number currently in the zone is saved in OBJ@3

and then the number is decremented to reflect the retrieval of
a pallet upon return to the crane route.

SV(0BJa3,aZ0NEA)
DV(aZONEA)

The zone offset is saved and the crane object is ready to
transfer back to the crane route.

SV(OBJa4,0>
JP(:0KGET)

:OKGET EL
To handle the zone empty condition, OBJ@2 would have been

set to 1 immediately before encountering the EL return.
:Z0NEMPTY SV(0BJa2,l)

To generate the code for the three remaining zones,
proceed as in the case for the received zone link. Change the
label and variable indices and the offsets to the different
zones (13, 25, and 38 for zones B, C, and D respectively); note
that no change need be made for the zone empty check, as the
same value (zero) indicates a zone empty condition for all four
zones.

The last link required for use by the ten cranes is the one
to model the behavior of the crane as it moves both from its

85

current position to that the link calculates for the pallet to
be shipped and then to the output buffer to release the pallet
into the system. Observe that a fundamental difference exists
between this behavior and that modeled by the link which
determined the movements for receiving a pallet. In the
receiving situation, the crane had to move from wherever it was
currently to the input buffer, and then back into the corridor
again. For it, the direction of movement is implied by the
behavior; thus, distances can always be calculated to come out
as positive. For the shipping case, the crane moves from
wherever it is currently to the position determined for the
pallet to be shipped; the direction of motion is not implied
here, so special checks will have to be made to assure that the
subtraction is performed in the proper direction. (As noted in
the definition of the AO instruction, a negative result causes
the destination to be set to zero.)

In keeping with the established pattern for link
nomenclature, the name of the link for determining movement
behavior during shipping is '.SHIPMOVE.

BLdSHIPMOVE)
As in the receiving movement modeling, the first thing the

crane must accomplish is movement from its current location to
that of the pallet to be shipped. Proceed as in the receiving
case, first considering the horizontal movement and then the
vertical. To get the horizontal position of the pallet, get
its distance into its zone first. This is accomplished by
copying the number in the zone (OBJ@3) to a work variable

86

(OBJ@l) and then dividing by the number of bins per horizontal
meter of corridor.

SV(0BJal,0BJa3>
A0(0BJal,/,20)

OBJ@l is thus the offset into the zone; adding the offset to the
zone from the corridor (OBJ@4) yields the distance from
position 1 to the pallet location.

A0(0BJal,+,0BJa4>
Finally, adding 1 to this distance produces the actual

horizontal location.
A0(0BJal,+,l>

Note that OBJ@l is no longer a distance, but a position.
Again as before, OBJ@l is copied to 0BJ@2 so that C's

parameter may be set to reflect the new position of the crane
once the time has elapsed for the move.

SV(0BJa2,0BJal)
Now comes the task of determining the distance from the

current horizontal crane position (OBJ@5) to that of the pallet
(0BJ@1). A check is made here to determine in which direction
the crane is to move. If the crane will be moving toward the
entrance to the corridor (OBJ@5 is greater than OBJ@l), the
crane object transfers to the code for that situation.

IF(OBJ05,GT,OBJal,:D0WN1)
Otherwise, the crane will be moving away from the entrance

(OBJ@5 is less than OBJ@1) . Thus the distance may be obtained
by subtracting the smaller location from the larger.

87

A0<0BJal,-,0BJa5)
The crane object then transfers to the code which assumes

the distance is in OBJ@1.
JPODOWN2)

In the event the crane will be moving toward the exit,
OBJ@5 is greater than OBJ@l. Again the distance is calculated
by subtracting smaller from larger. An extra temporary
variable is used to allow the preservation of OBJ@5 until the
move has been completed.

:D0WN1 SV(aTEMP,0BJa5)
A0<aTEMP,OBJal)

Since the following code assumes that the distance for the
move will be in OBJ@1, the value is transferred.

SV(OBJal,aTEMP)
Observe that since no clock time elapses during the scope of
@TEMP' s use, no other object will be able to affect @TEMP, even
though it is a global variable.

Now for either direction of motion, OBJ@l contains the
distance. The time for movement is again obtained by
multiplying by the rate of seconds per meter (@HORZRATE) and
the delay is implemented with ST.

:D0WN2 AO(OBJal,*,aHORZRATE)
ST(OBJal)

Now the horizontal position of the crane can be updated.
SV(0BJa5,0BJa2)

With the horizontal move completed, the vertical move
takes place in much the same manner, combining the pattern of
!RECVMOVE with the direction logic employed above. Copying the

88

number in the zone (OBJ@3) to OBJ@l and then successively
dividing and multiplying that value by 20 produces the greatest
multiple of 20 contained in the zone.

SV(0BJal,0BJa3>
A0(0BJai,/,20)
A0(0BJal,*,20>

Again get a copy (OBJ@2) of the number in the zone
(OBJ@3); subtracting the greatest multiple of 20 (0BJ@1) from
this leaves the number of bins filled vertically in the current
horizontal meter of corridor.

SV(0BJa2,0BJa3)
A0(0BJa2,-,OBJal)

Dividing the number of filled bins by 2 gives the distance
from position 1 to the next empty bin; adding 1 gives its
location.

A0(0BJa2,/,2)
A0(0BJa2,+,l>

The location is copied to OBJ@l so that OBJ@2 may be used
to update the vertical position after the move.

SV(0BJal,0BJa2.)
Now the check is made to transfer if the crane's current

position is greater than that desired.
IF(0BJa6,GT,OBJal,:D0WN3>

If the pallet's location is larger, the distance is
obtained by performing the subtraction with it being
subtracted from and the object transferring to the code
expecting the distance in OBJ@l.

A0(0BJal,-,0BJa6)
JP(:D0WN4>

89

Otherwise, the subtraction will be performed in the
opposite direction, again employing the use of the variable
@TEMP to preserve the vertical location until after the move.

:DOWN3 SV(aTEMP,0BJa6>
AOOTEMP, OBJal)
SV(OBJal,aTEMP>

With the distance computed in OBJ@l, the simulated travel
time comes from the multiplication by the rate and the object
is delayed appropriately; when the crane has "moved", its
location (OBJ@6) is set.

:DOWm AO(OBJal,*,aVERTRATE)
ST(OBJal)
SV(0BJa6,0BJa2>

The crane is now in the same position as it was for the
first movement of ! RECVMOVE (i.e., it is somewhere out in the
corridor and must move to the entrance). For !RECVMOVE, the
crane traveled to the entrance to pick up a pallet for storing;
here, the crane is taking a pallet to the entrance for
shipping. Since the weight of the pallet is assumed to have no
effect on the crane’s speed, the coding is identical. The first
step is to get a copy of the current horizontal position and
decrement it to convert it to the horizontal distance to the
corridor entrance.

sv<0BJai,0BJa5)
DV(OBJal)

Secondly, multiply by the horizontal rate and use this for
the delay.

AO(OBJal,*,aHORZRATE)
ST(OBJal)

90

Lastly, update the horizontal position to reflect the
crane's movement to the entrance.

SV<0BJa5,l>
The vertical movement is handled in a parallel fashion.

SV(0BJal,0BJa6>
DV(OBJal)
A0(0BJal,w,aVERTRATE)
ST(OBJal)
SV(0BJa6,l>

This completes the modeling of the crane's shipping
movement. Therefore C is returned to its route to proceed with
the processing of pallets for the corridor.

EL
d. Controlling the Crane In the next section, the route

which sends the crane to the previous four links will be
examined. It is there that the decisions are made concerning
when to utilize the previously defined links.

As was done for the programming of the specific corridor
input and output procedures, the examination of a single crane
route here will suffice to explain the structure used for all
ten routes. This section will look at the coding process for
crane l's route.

The object for crane 1 ('C') enters the simulation at the
head of corridor 1, XY(8,50), in the first second of
simulation.

BR<11,XY<8,50),0>
As the route numbers 1 through 4 have already been used, the
crane routes will be numbered consecutively from 11 to 20.
Note that this implies no PCModel restrictions exist on the
numbering of routes, as 5 through 10 are completely unused.

91

During the coding of the links, it was specified that C's
parameters would each be designated to contain a variable
value; these values would be assumed present by the links upon
C's entry into them. Scrutiny of the !RECVZONE and !SHIPZONE
links shows that they use no incoming values, but set
parameters 2, 3, and 4 before exit. The ! RECVMOVE and
JSHIPMOVE links use the information that enters in parameters
3, 4, 5, and 6. From this information alone, it should be
obvious that parameter 2 is something passed back to the crane
route for use there, while parameters 5 and 6 must be set by the
route itself before entry into the MOVE links.

Now remembering that parameters 5 and 6 were defined to be
the horizontal and vertical positions of the crane
respectively, they are initialized here; it is assumed that the
crane will be positioned at the entrance to the corridor, ready
to take a pallet from the input buffer.

SV (0BJa5,l)
SV<0BJa6,l>

The next five PCModel instructions define the basis for
the crane behavior. The first is simply a position to transfer
to. It is required by the nature of the route. Only one C will
be generated; this C will remain in the simulation for its
duration. Thus C must be in an endless loop. The following
instruction is the start of each cycle.

:CRANE1 DN

The purpose of the DN instruction is to prevent C from entering
an infinite loop between clock seconds. This would occur

92

because the following behavior may well take no time at all
during periods of the simulation, specifically at simulation
start.

The first thing the crane does, as explained before, is to
check for any received pallets waiting in the input buffer.
Their presence would be indicated by a value of 1 for @RECRQ1
(which is set by the receiving route).

:RECVING1 IF(aRECRQl,GT,(L:REC1>

This is followed by a DN instuction to prevent entry into
a different infinite loop which could occur for reasons to be
explained shortly.

DN
If there were no pallets waiting, C proceeds to the next

instruction where it checks for a shipping request.
:SHPPING1 IF (aSHPRQl,GT, CL :SHP1)

If, on the other hand, there was indeed a pallet to be
stored in the corridor, C transfers to RECeivingl, after which
it returns to the shipping check.

Shipping is handled in the same way. If there were no
requests waiting, as indicated by the global @SHPRQ1 variable,
C proceeds to the next instruction where it transfers to the
top of the loop, to be followed by the receiving check.

JP(: CRANED

If there was a request ready to be filled, C transfers to
SHiPpingl, at the end of which it transfers directly to
:RECVING1. This is the reason the receiving check is followed
by a DN instruction; it is here that an infinite loop could be

93

entered. Consider the case where there are shipping requests
but only empty zones (e.g. at the start of the simulation).
First C would transfer immediately to the receiving check. If,
at that instant, there were no pallets in the input buffer, C
would immediately fall through to the shipping check again and
transfer immediately to the receiving check again. This
behavior constitutes an infinite loop, thus the DN directly
following the receiving check.

It should be noted here that the prevention of an infinite
loop can be handled in any number of ways. One alternative
might be to have the shipping code transfer to the top of the
loop rather than the receiving check. The trade off here is to
alter the logic of the shipping code to reflect an inherent
problem with programming languages. It was decided to leave the
shipping code alone and reflect the problem in the relatively
simple master loop, where it would not complicate matters.
However, where to do so is definitely a matter of choice and
style. The bottom line is that prevention of an infinite loop
must be accomplished in some fashion.

Next, consider the behavior of the crane once it has been
determined that a pallet is waiting to be placed in the
corridor. The first thing to do is determine the information
for the zone to place the pallet. As noted in !RECVZONE, the
zone is determined randomly, and C's parameters are set to the
number in the zone selected (OBJ@3), the offset to the zone
<OBJ@4), and as a flag indicating if the zone is already full
(OBJ@2). !RECVZONE also assumes that the global variables

94

@ZONEA, @ZONEB, @ZONEC, and @ZONED will contain the zone
quantities for the C which enters the link. Outside of the
link, the zone quantities will be kept in subscripted
variables, such as @ZONElA for corridor l ’s zone A, @ZONElB for
corridor l's zone B, and so forth.

Passage by C to and from the link then is accomplished by
first setting the zone quantities for corridor 1.

:REC1 SV(3Z0NEA,aZONElA)
SV(aZONEB,aZONElB)
SV(aZONEC,aZONEIC)
SVOZONED,aZONElD>

Next, C transfers to the link by the LK instruction.
LK(!RECVZ0NE>

Finally, as RECVZONE required no clock time, the values in
<5)ZONEA-D will not have been altered by any other objects, so
they may be used to update corridor 1' s zone quantities.

SV(aZONElA,aZONEA)
SV(aZONElB,aZONEB)
SV(aZONElC.aZONEC)
SV(aZONElD,aZONED)

This completes the "subroutine call" procedure as
performed for PCModel.

As mentioned above, C's parameters 2, 3, and 4 were set
inside ! RECVZONE; parameter 2 in particular is used by the
route to indicate the "full" condition for the zone. If the
zone was full, no attempt should be made to store it. Thus, the
code for moving the crane with a pallet is skipped.

IF<0BJa2,EQ ,l:FULLl>

: FULL1 is a label on the last instruction of the sequence,
which transfers C to the check for shipping requests. Note

95

that the pallet in the input buffer is simply ignored; it will
be there the next time the crane checks the input buffer.
However this time, one of two things could have happened: (1) a
space may have opened up in the full zone due to the shipping
request that may have just been filled, or (2) a different zone
may be determined by the random number process for the pallet.
Note that this is a simplifying assumption; actually a pallet
would be designated for a specfic zone and have to be handled
accordingly, even if the zone were full. This behavior was
deemed to be beyond the bounds of this simulation in that it
would only serve to complicate the logic.

Now, assuming that the zone is not full, the receive
request is acknowledged by incrementing the number of pallets.

IVOOKRECRQl)
Actually, this should not be performed until the crane has
reached the entrance to the corridor and picked up the pallet,
but the structure of the .’RECVMOVE precludes this.

Next, C is immediately moved to position XY(8,47) on the
overlay to signal that it is in the process of moving to store a
received pallet.

MA(XY(8 ,47),0 >

The crane and pallet movement takes place by transferring
C to the appropriate link.

LK(IRECVMOVE)

After the crane has placed the pallet in the corridor, the
zone quantities are printed on the overlay to display the
status of the corridor.

96

PV(XY(4,39 >,aZONElD)
PV(XY(4 ,41),aZONElC)
PV <XY(4 ,4 3),aZONElB)
PV<XY(4,45),aZONElA>

Additionally, the crane's position in the corridor is
updated.

PV(XY (*f,32),0BJa5)
PV<XY(4,34),0BJa6>

Lastly, C is moved to position XY(8,48) to represent that
the crane has completed the receiving movement and is waiting
out in the corridor for another task.

M A (X Y (8^8),0)

With the receiving behavior complete, C transfers to the
check for shipping requests. Note that this is also the
instruction transferred to in the occurrence of an attempt to
store a pallet in a full zone.

:FULL1 J P (:SHIPPING1)

The programming for the crane when a shipping request is
similar to that used for the received pallets waiting in the
input buffers, as has been noted. These similarities occur in
much the same fashion as those noted in the parallels between
shipping and receiving links for zone determination and
movement.

Given the presence of a shipping request, the global
variables for the corridor zone quantities are established and
C transfers to the link for determination of the zone to pull
the pallet from.

:SHP1 SV(aZ0NEA> aZONElA)
SV(aZONEB,aZONElB)
SV(3Z0NEC., aZONEIC)

97

SV(aZONED,aZONElD)
LKdSHIPZONE)

The zone quantities are then updated upon the return of C.
SVOZONElA.aZONEA)
SVOZONE1B, aZONEB)
SV(aZONElC,aZONEC)
SVOZONEID, aZONED)

The check for an empty zone is then made; a parameter 2
value of ' 1* indicates the occurence here as it did for the
receiving procedure.

IF (0 B Ja 2 ,E Q ,l,:EMPTY1>

One point should be noted here in addition to the remarks
made previously about the behavior of the model during either
the full or empty zone conditions. As stated before, the
pallet or request is simply ignored on the current pass and
will still be in the buffer next time around. One might
consider simply generating a different zone inside the link
when one is found full or empty so that the pallet could be
handled during the current pass. The problem with that
reasoning is that the entire corridor could be either full or
empty, respectively. In that case, an infinite loop would again
result. It was decided that the simplest procedure would be to
proceed as presented, rather than complicate the logic in favor
of a relatively small point.

To reflect that the crane is going to get a pallet for
shipping, C is moved to XY(8,49) on the overlay. This is
followed by entry into the appropriate link.

MA<XY<8,49>,0>
LK(!SHIPMOVE)

98

The global variable @OKSHPRQl is then incremented to
signal okay to the shipping route’s request for a pallet.

IVOOKSHPRQl)

In other words, C has had time to bring a pallet up from the
corridor to the output buffer, so one of the shipping requests
can change from being a request to the pallet which will fill
that request; it will then enter the output buffer.

After the move is complete, the values for the corridor
zone quantities are printed to reflect the loss of one pallet
to satisfy the shipping request.

PV (XY (4,39)., aZONElD)
PV(XY(/f,41),aZ0NElC)
PV(XY(*b43),aZ0NElB>
PV(XY(4,45),aZ0NElA>

Also, the crane's new postion, which will be (H=l, V=l)
after a shipping process, is printed on the overlay.

PV(XY(4 ,32),0BJa5)
PV(XY(A,3*D,OBJa6>

Finally, C is moved on the overlay to XY(8,50), the
position used to indicate that the crane is at the entrance to
the corridor and is waiting for a task to perform.

MA(XY<8,50>,0>

This completes the procedure for shipping, so C next
transfers to the check for a received pallet.

:EMPTY1 JP <:RECEIVING)

Note that this is also the location transferred to in the event
that the zone determined for shipping was found to be empty.

As explained previously, the crane job will only produce
one object, which will loop through the crane route for the

99

duration of the simulation. This implies that C will never
encounter an End Route instruction, which is indeed the case.
However, as observed for the synchronization route, one must be
included to signal to the loader where the instructions for the
crane route stop.

ER
This then completes the coding for the route of crane 1.

The instruction sequences for the other nine routes are exactly
the same except for the usual changes of screen positions and
variable and label subscripts. It is interesting to note that
no relative references are required for the crane routes; this
is because the movement instructions are absolute.

Finally, the job statements for the crane jobs can be
assembled. As noted at the beginning of this section, the
routes for the ten cranes will be numbered consecutively from
11 to 20. Thus, the crane jobs will be numbered identically to
provide a 1-to-l correspondence between job and route. Also as
noted above, the jobs will only produce one object each.
Lastly, the priority for the objects during the simulation will
be 2, as established at the beginning of the coding for the
corridors.

J=<11,1,11,0,0,2,1)
The job statements for the other nine jobs are identical with a
change of job and route number.

6. Initialization The last job required for the
simulation is the initialization job. As noted previously, it
may seem at first that this job should be considered first.

100

However, with the rest of the simulation built first, the
variables required by them can now be included during the
building of the initialization route.

The initialization object enters the model at the first
second of the simulation. The screen position is chosen
arbitrarily to be XY(60,68), as there is no logical display
purpose for it.

BR (1 ,(XY (60,68),0)

Job number '1’ was reserved for use here earlier.
The first task of the route is to initialize the random

number sequence. This must be done before any other object
tries to obtain a number from the sequence.

RS(#SEED)

The fact that the job will have the highest priority allows
this to be accomplished.

Second, the route initializes the conveyor
synchronization variable @GO.

SV(3G0,0)

This sets it up for use by the receiving and shipping jobs
later.

Third, the position of the overlay on the screen is set so
as to focus on the center of the overlay action.

VW(XY(1 ,46))

The positioning can be adjusted later with the scrolling
feature of PCModel.

The initialization object then sets the value of each of
the global variables used by the system to zero. For the

101

following subscripted variables, there are ten of each (n = 0,
1, - - - , 9):

SV<aINBUFN,0>
SVORECRQn,0>
SV(aOKRECRQN,0 >
SV<3SHPRQn,0)
SV(a0KSHPRQN,0)

These are used in the shipping and receiving routes, as well as
by the cranes.

For the corridor zone quantity variables, there are also
ten of each.

SV(aZONENA,0)
SV(aZ0NENB,0)
SV(aZ0NENC,0)
SV(3Z0NEnD,0)

The purpose of initializing these 90 variables, as well as
@GO, may not be clear at first. Certainly, when the model is
loaded, their values are set to zero by their symbol
definitions. Thus, when the simulation is started after
loading, most of the work done by the initialization route is
only repeating during run time what was accomplished during
load time. The value of having these initializations done
during run time becomes obvious when the second running of the
simulation is considered. It may be decided after a few
minutes of simulation that one of the variable values, perhaps
a conveyor speed or buffer capacity, needs to be adjusted
before the simulation will provide any meaningful results.
PCModel allows the simulation to be reset using its I
(Initialize) command. However, this initialization does not
reset all of the user-defined variables for the model. To

102

reset them, the value for each one must be edited on the values
screen or the model must reload them itself during execution,
which is what is being done here.

This completes the work of the initialization route, so
its object may now leave the simulation.

ER
Note that none of the instructions specified in the route

require any clock time. Thus, the object will complete its
route before the first second of the simulation is complete.
Further, due to the priority of 0 reserved for the job, it will
be done before any other job is considered. Thus, the
initializations will be effective for all variables.

The job statement will specify the zero priority and the
fact that there is to be only one object produced.

J=(1,X,1,0,0,0,1)
The character 'X' is arbitrarily chosen to represent the object
during its instantaneous period on the display. As noted
earlier, this will be job number 1 and follow route 1.

7. Load-Time Directives At this point, the coding for
each of the routes is complete. All that remains to do to have
a working PCModel program is to define the load-time directives
for the system constructed thus far. It is important to note
here again that the directives are implemented during the model
loading; they have no effect during the running of the
simulation. However, they are vitally important to the system
in that they define the storage for variables, the overlay to
be used, and other such features. They are presented here for

103

the automated warehouse in the order suggested by the designer
of PCModel. Variations in this ordering may cause
unpredictable results.

The first directive to specify is the M, or Maximum
objects, directive. The value specified here is used to
reserve storage for the maximum number of movement control
blocks. This maximum may be determined by assuming that the
simulation is completely saturated with received objects and
shipping requests. On the conveyor there is room for 38
objects. Each of the corridors have 1 crane, for a total of 10
objects. The corridors each have an input buffer, for which
the capacity is initially set at 4; thus 40 objects can wait
here. As to the shipping objects, they appear both as
requests, at a buffer of 4 to a corridor, and as pallets in the
output buffer, here at 2 to a corridor; this yields a maximum of
60 objects. Additionally, a maximum of 10 objects can fit in
the receiving area. The only other object is that used for the
synchronization job. All of these objects total to 159. 200
spaces were reserved. It is better to allocate too much storage
here than too little. In the former case the system will
recognize the problem up front; in the latter, the simulation
may run for an extended period before the shortage causes a
problem.

M=(200)
The W, or maximum Works in process, directive is directly

related to the M directive. W's value at any give time
specifies how many objects may be active in the model at that

104

time. It may be altered during the simulation run
interactively. The W value specified here is used to
initialize the maximum. This feature allows variation in the
simulation load. It is set here to the maximum possible to
allow the simulation to run under a full load.

W=(200)
Storage is then reserved for symbols and labels using the

S directive. The minimum value for S is the number of variable
symbols used. In this simulation, each corridor had 5
different crane-information variables and 4 zone quantity
variables, for a total of 90. Additionally, there were 2
variables for arrival rates, 2 for crane speeds, 2 for random
numbers, 1 for color, 1 for buffer capacity, 1 for
synchronizing conveyor movement, and 5 used by the links, for a
total of 14. The total required is then 14 + 90, or 104. A
value of 600 is specified here, which will allow room for
additions to be made.

S= <600)
Next come the numbers of screen columns and rows, as given

by the X and Y directives, respectively. This defines the size
of the overlay. From the data collection process a 100 column
by 70 row screen, as shown in Figure 1, will be adequate.

X=<100)
Y=(70)

Recommended next is the description definition, given by
the D directive. The description used for the warehouse
simulation is derived from the information gathered in step 2;

105

it may be seen in the program listing in Appendix 1. Note that
the description is limited to 25 lines and is terminated with a
' $ ’ •

The source of the overlay is next in the sequence of load­
time directives. O defines the overlay file, whether it is
inline with the program or is in a separate overlay file, as is
the case for this simulation.

0=<=)
The 1 =' option specifies that the overlay is kept in a file with
the same filename as the model's and an extension of .OLY.

Immediately following the overlay is the V directive for
Viewing window location. The XY position given here will be
used as the upper-left hand corner of the portion of the
overlay displayed during the loading process. More than one
could be specified throughout the program to move around the
overlay image to focus on areas of interest during loading. As
all object movement takes place on one 80x25 section of the
overlay in this simulation, the one is all that is utilized.

V=(XY(1,46))
The next section consists of the symbol definitions. For

the warehouse model, the symbols are those that were listed
during the calculation for the symbol storage directive. Their
initial values at load-time are specified here. For the rates
of receiving and shipping:

aRECVRATE=(60)
aSHIPRATE=(120 >

Crane rates horizontally and vertically
aH0RZRATE=(12>
aVERTRATE=(120)

Random number variables:
aRNDMC0RR=(0)
aRNDMZ0NE=(0>

Overlay character background color:
aC0L0R=<7>

Input buffer capacity:
aBUFCAP=<4)

Synchronization variable:
aG0=(0)

Link temporary variable:
aTEMP=(0)

Corridor input buffer quantity:
aINBUFN=(0)

Pallets waiting to be stored:
3RECRQn=(0)

Stored pallets okay to exit:
a0KRECRQN=(0)

Shipping requests for pallets:
aSHPRQN=(0)

Retrieved pallets okay to go to buffer:
aOKSHPRQN=(0)

Zone quantities used by links:
aZONEA=(0)
aZ0NEB=(0)
aZ0NEC=(0)
aZ0NED=(0)

107

Corridor zone quantities:
3ZONEnA=<0>
9ZONEnB=<0)
3ZONEnC=<0>
3Z0NEnD=(0>

Random number seed:
#SEED=(9997)

Note that the variable symbols should be placed before any
constants (#SEED) or screen pointers, due to the manner in
which PCModel allocates storage.

Next, all of the job statements follow in a single group.
The derivations for the individual statements were explained
at the end of the route for each.

J= (1 ,X ,1 ,0 ,0 ,0 ,1)
J = <2 ,0 ,2 ,0 ,0 ,1 ,1)
J= <3,R,3,0,0 ,2 ,5000)
J= (4 ,S ,4,0,0 ,2 ,5000)

J= <11,1,11,0 ,0 ,2 ,1)
J=<12,2 ,12 ,0 ,0 ,2 ,1)

J = (20 ,0 ,20 ,0 ,0 ,2 ,1)

The last of the load-time directives is that for
Utilization definitions, the U directive. It specifies XY
locations on the screen for which a utilization figure is
maintained. The crane routes were arranged so that the crane
objects would be on one of two overlay rows whenever they were
at work. The 47th row was moved to when the crane was
receiving, while the 49th row was used to indicate shipping
movement. Specifying the two locations for each crane will
yield statistics concerning the crane's busy time.

108

U=(1,REC 1,XY (8 ,47))
U=(2,SHP 1,XY<8,49>)
U= (3,REC 2,XY(15,47)>
U=(4,SHP 2,XY(15,49))

« ■
■ i

11= (19,REC 0,XY(71,47))
U=(20,SHP 0,XY(71,49))

Note that the U directive allows a meaningful label to be
associated with each position.

This completes the sequence of load-time directives. The
rest of the simulation should be organized so that the links
are next, followed finally by the routes. See Appendix A for a
complete listing of the program.
D. RUN THE SIMULATION

It is at this point that the power and uniqueness of
PCModel come into play. For a GPSS program, this step would
consist of nothing more than submitting the program for
execution and then receiving the tabulated statistics at
simulation end. PCModel's approach to simulation allows the
user to have a hand in the operation of the system being
modeled. As listed earlier, there are a host of interactive
capabilities supported.

Several options needed to be decided on at the start of
the simulation period. The O (Output) command was used to
cause PCModel to automatically save the utilization data
generated every 10 hours of simulation time. This created
useful data for the warehouse as the two busy positions of each
crane have been defined as 20 of the 21 available utilization
positions. The F3 key was used to toggle PCModel's execution

109

to the increment mode; as mentioned previously, increment mode
steps the system clock one second at a time while the look­
ahead mode sets the clock to the time of the next event to
occur. The warehouse simulation was run under the incremental
mode to obtain as much accuracy as possible in the operation of
the model. It was also decided to place the simulation in the
halt mode with the F7 key; under halt (as opposed to the normal
go mode) the simulation stopped at the end of every 10 hour
period and waited for a user entry before resuming simulation.
While the O command saved the utilization figures every ten
hours without interaction, the halt mode permitted the
corresponding overlays to be saved as well. The task of saving
overlay screens was accomplished by use of the F (File)
command; F saves successive screens to a user specified file.

The debugging phase consisted of a set of simulation runs
for which various loads were placed on the system. The
receiving and shipping rates were varied to insure that the
model would behave as anticipated; the crane speeds were also
altered. The blocking character facility of PCModel lent
itself especially well to the debugging process. Blocking
characters were deposited at various positions to verify that
the model would react appropriately. For example, blocking
characters were used to stop up the corridor output buffers; it
was then possible to observe that the cranes did not attempt to
fetch pallets for shipping while no space remained in their
output buffers. Without the blocking capability, the trial
runs would have to have been allowed to run until the output

110

buffers filled up as a result of the load on the system. This
could have taken an unreasonable amount of time to occur.
Combinations of variable alterations and blocking characters
were used to test the program for a wide variety of
circumstances .

One run was made for each of the two sets of initial
conditions used for the GPSS model. The parameters that vary
for the two sets of conditions are the arrival rate for
received goods and the arrival rate of requests for pallets to
be shipped. These values are stored in the variables @RECVRATE
and @SHIPRATE, respectively. For the first case (Run 1), the
receiving rate is 2 pallets per min and the shipping rate 1
pallet per minute. This is the peak case wherein the receiving
rate is larger than the shipping rate. These values are
equivalent to 30 seconds per pallet on receiving and 60 seconds
per pallet on shipping. Seconds are required as that is the
time unit PCModel works with. Finally, recalling that the
entire model was adjusted to work at half the rate of the GPSS
model (in order to maintain integer relationships), these
rates of seconds per pallet were also doubled. Thus the values
used in the program are 60 seconds per pallet on receiving and
120 seconds per pallet on shipping. The second case (Run 2),
wherein shipping outpaces receiving, puts receiving at 1
pallet per minute and shipping at 3 pallets per minute. These
values are equivalent to respective rates of 60 and 20 seconds
per pallet; these values are in turn doubled as above to yield a
receiving rate of 120 seconds per pallet and a shipping rate of

Ill

40 seconds per pallet. The model was run and statistics
generated over a 20 hour period for both sets of initial
conditions. The I (Initialize) command allowed the simulation
to be reset for the second run without having to reload the
source program. The value screen was accessed to edit the
receiving and shipping rates. The simulation for the first case
above created the overlay of Figure 2 at 10 hours into the
simulation and that of Figure 3 20 hours in. The corresponding
utilization statistic screens are presented in Tables I and II.
For the second case described above, the overlay at 10 hours
into the simulation is given in Figure 4 and that at 20 hours in
Figure 5. Tables III and IV contain the accompanying
utilization statistics. Interpretation of the output will be
covered in the next section.
E. EVALUATE THE RESULTS

First, consider the results for the peak input situation
(Run 1). It is clear from Figure 2 that after ten hours of
simulation the conveyor was totally congested, causing
incoming pallets to back up in the receiving bay. Figure 3
indicates that the problem is still evident 10 hours later.
The utilization statistics of Tables I and II for the cranes
indicate that enough of the cranes were busy all of the time to
keep the conveyor belt congested; that is, the cranes never got
caught up so that the pallets waiting for them on the belt could
get to them. This suggests that the behavior of the system as
defined should be examined. Since the problem requires that
the system be capable of handling the peak loads given, some

Recv
Wa i t
Sh i p
Be 11

PosH1
V
1

Co rr
1

Zone
D
6
C
2
B
2
A
7

1
S
s

-S rI R
0 R

Pos
H
1
V
5

Corr
2

Zone
D
2
C1
B
3
A
9

2
*-S r-1I R

0 R

Pos
H

14
V
3

Corr
3

Zone
D0
C
7
B
6
A
1

3
L-S (— J I R

0 R

Pos
H
1
V4

Corr
4

Zone
D0
C
3
B
3
A
7

S
S

>—S r
I R
0 R

Pos
H

39
V
2

Corr
5

Zone0
3
C0
B
1
A
2

5
L S (—I Ro i

Pos
H
1
V
1

Corr
6

Zone
D
1
C0
B
1
A

10

S6
s
s

L-s r
I R
0 R

Pos
H
1
V
4

Corr
7

Zone
D
1
C
5
B
5
A
7

SI

l-s r
I R
0 R

Pos
H1
V
1

Corr
8

Zone00
c0
B
5
A
5

S
s>—S8
0 Ir

Pos
H

26
V5

Co rr
9

Zone
0
1
C

10
B0
A
7

S
S9

'-S r—'
I R
0 R

Pos
H

26
V
2

Corr
0

Zone
D
3
C
4
B
6
A
6

0"S r
I R
0 R

38 |01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
R

37 i 36 35 34 33
R— R---S--- R--- 1

Recv
Wa i t
Sh i p
Be 11

R R R 1 R R S 1 R| R

R - L r—
R

LRj— R-1
R

i-R---RJ
R 1

L—LR---R-1-R--
R

LRj— R—1
1 s

L-R---R-l— 1
s

LR---R— -R--
R

'-R1-
16 17 118

R
1932 31 30 29 28

_______D____D____D____D____ 27 26 25 24 23 22 21 20 I
- _r> — f? P t r>____p____ p __ n - n J------- n--- r\ — r\--- r\ f n r\--- n r\----r\----r\ r\

R
s R r
H R E
I R c
p R E
P R I
I R V
N R I

001 0 : 0 0 : 00 R IH P= 0 M= 200 W=

G S
S|

115 C=

R N
R G

695

F igu re 2. Warehouse O ve r l a y : Run 1, Hour 10

112

Recv
Wa i t
Sh i p
Be 11

Pos
H1
V
1

Corr
1

Zone0
7
c
1
B
1
A

13

S1
S
s

L_S I—
I R
0 R

Pos
H
1
V
1

Corr
2

Zone
D0
C
3
B
3
A

12

2
S
S

_ S rI R
O R

Pos
H

26
V
6

Corr
3

Zone
D0
C

11
B0
A

10

S
S
S3

“ S rI R
0 R

Pos
H
1
V4

Corr4
Zone

D0
C
3
B
7
A
7

S
s
S 4

- S rI R
0 R

Pos
H
1
V
1

Corr
5

Zone
D0
c0
B0
A
0

S
S
S

i r0 I

Pos
H
1
V
1

Corr
6

Zone
D
1
C
2
B
6
A
7

S6
S
S

1 r0 I

Pos
H

14
V
1

Corr
7

Zone
D
2
C
6
B
1
A
9

S
S7
S

*—S

0 Ir

Pos
H

26
V
3

Corr
8

Zone
D0
C
6
B
5
A
1

S
S8
Sl—s
r

38
rR-L-R—
101 02

IRX-
03

-R-1-
04

-R—
05

-R-1— LR---R-1-
06 07 08

-R—
09

-LRJ—
10

-R—*■
11

-R-
12

37
g
|36 35
R— R---R-

34
-- R

33
---R-

32
-- R-

31 30 29
— R---R-r-R-

28
-- R

27
— i-R-

26
— R

25
—

s
s

-R-1—*-R-

Pos
H1
V
3

Corr
9

ZoneD
2
C

11
B1
A
6

S
S
S9■—S rI R
0 R

Pos
H
1
V
1

Corr 0
Zone

D
2
C
3
B
2
A

12

SO Recv
S W ait
S Ship

- S |— Be 11
I R
0 R

R
R

R-L-R

19

R
R R
R E
R C
R E
R I
R V
R I
R N
R G

0020:00:00 RIH P= 0 M= 200 W= 130 C= 1207

Figure 3. Warehouse Overlay: Run 1, Hour 20

TABLE I
WAREHOUSE STATISTICS: RUN 1, HOUR 10

HOURLY UTILIZATION FIGURES
--TOOL-- H0UR1 H0UR2 H0UR3 H0UR4 H0UR5 H0UR6 H0UR7 H0UR8 H0UR9 HOUR 10
REC 1 45. 00 60. 44 57.33 85 .00 52. 33 44.33 78..22 17,.66 44. 33 29. 77
SH P 1 20. 58 39. 41 22.00 15 .00 47. 66 55.66 21 .,77 82., 33 55. 66 70. 22
REC 2 46.,33 28. 02 25.66 92 .97 51.,33 16.69 56,. 33 45,.97 29. 33 33. 33
SHP 2 12. 66 27. 66 27.66 07 .02 48.,66 83.30 43,.66 54,.02 70. 66 66. 66
REC 3 21 .00 76. 25 43.41 48 .66 70. 11 36.22 68.,61 39.,05 31. 00 52. 66
SHP 3 05.,91 23. 75 56.33 51 .30 29.,69 63.61 31 ,.38 60,.94 69. 00 47. 33
REC 4 22,,86 69. 47 66.00 22 .27 38.,72 34.66 38,.33 23..66 28. 66 40. 27
SHP 4 00,,00 17. 63 33.97 77 .72 61.,27 65.33 61,.66 76., 33 71 . 33 59. 72
REC 5 43,,44 64. 33 30.55 16 .00 26. 61 43.50 30.,16 10..72 16. 00 54. 00
SHP 5 12,.66 35..66 50.66 80 .58 53..41 35.33 61..33 73..00 56. 33 33. 11
REC 6 65,.69 29. 66 59.63 46 .00 31,.33 16.66 32..66 40..00 30. 33 37. 36
SHP 6 21 ,. 33 25. 33 32.69 54 .00 68.,66 83.33 67,.33 60.,00 69. 66 62. 63
REC 7 33,.33 38. 00 82.33 26 .02 91.,63 44.33 43..69 44,.33 51. 66 41. 30
SHP 7 27 .55 47..47 17.66 73 .63 08..36 55.66 56,.30 55..66 48. 33 58. 69
REC 8 13,.00 41. 33 14.33 61 .52 34.,80 29.52 26,.80 51,,00 33. 00 24. 33
SHP 8 00 .00 23. 66 36.61 05 .72 65.,19 70.47 66..02 49,,00 67. 00 66. 63
REC 9 17 .00 16.,36 40.08 49 .66 56,.66 70.88 60,.00 67,.44 50. 66 56. 22
SHP 9 17 .00 12. 66 17.33 27 .00 25.,00 29.11 40..00 32..55 49. 33 43. 77
REC 0 38 .00 80. 69 69.63 48 .69 62, 66 50.97 52,,33 28,,33 36. 02 54. 63
SHP 0 27,, 30 19. 02 26.69 51 .30 37. 33 49.02 47..66 71. 66 63. 97 45. 36
not used 100,.00 100. 00 100.00 100 .00 100.,00 100.00 100,,00 100.,00 100. 00 100. 00
THRUPUT: 67 85 76 74 73 73 61 60 58 68
0005>: 59: 59 R IH P= 0 M= 150 W= 115 C= 695

TABLE I I

WAREHOUSE STATISTICS: RUN 1, HOUR 2l

HOURLY UTILIZATION F IGURES
--TOOL-- HOUR1 H0UR2 H0UR3 H0UR4 H0UR5 H0UR6 H0UR7
REC 1 30.55 32.11 68.55 79.44 38.66 33.00 25.22
SHP 1 69.44 67.88 31.44 20.55 61.33 67.00 74.77
REC 2 63.02 80.00 41.63 08.66 28.33 21.86 38.47
SHP 2 36.97 20.00 58.36 75.16 71.66 78.13 61.52
REC 3 50.94 53.38 45.61 59.00 41.38 38.27 80.00
SHP 3 49.05 46.61 54.38 41.00 58.61 61.72 20.00
REC 4 55.00 29.05 38.27 44.66 23.38 27.00 28.27
SHP 4 45.00 70.94 61.72 55.33 76.61 73.00 71.72
REC 5 03.33 07.66 04.33 00.00 01.77 36.22 21 .00
SHP 5 25.50 70.91 34.13 00.00 00.00 28.41 34.36
REC 6 51.33 47.30 29.33 21.00 28.00 37.02 56.63
SHP 6 48.66 52.69 70.66 79.00 72.00 62.97 17.66
REC 7 71.36 30.00 28.63 31.66 36.00 16.66 36.66
SHP 7 28.63 70.00 71.36 65.75 62.22 11.00 57.00
REC 8 08.33 34.66 54.00 48.66 18.33 22.66 00.00
SHP 8 51.36 65.33 45.83 47.13 50.33 34.33 10.02
REC 9 38.33 60.00 24.33 45.11 31.88 20.00 35.11
SHP 9 61.66 40.00 75.66 54.88 68.11 80.00 64.88
REC 0 46.36 33.66 30.97 37.00 27.66 52.02 18.30
SHP 0 53.63 66.33 69.02 63.00 72.33 47.97 81.69
not used 100.00 100.00 100.00 100.00 100.00 100.00 100.00
THRUPUT: 56 54 63 51 44 52 48
0019:59:59 RIH P= 0 M= 150 W= 130 C- 1207

H0UR8 H0UR9 H0UR10
37.66 53. 33 34.44
62.33 46. 66 65.55
43.66 31. 66 33.52
56.33 68. 33 66.47
44.38 34. 33 46.66
55.61 65. 66 53.33
45.66 52. 05 36.00
54.33 47. 94 64.00
04.33 21. 33 12.66
09.22 21. 33 12.66
46.33 22. 00 04.86
49.86 37. 47 24.33
12.66 03. 44 26.88
25.00 46. 00 69.33
11.66 37. 66 27.66
14.97 51. 66 30.33
42.33 25. 88 15.33
57.66 74. 11 84.66
25.33 34. 33 44.02
74.66 65. 66 55.97

100.00 100. 00 100.00
48 51 45

115

Recv
Wa i t
Sh i p
B e lt

18

19

Figure 4. Warehouse Overlay: Run 2, Hour 10

Recv
Wa i t
Sh i p
Be 11

18

19

Figure 5. Warehouse Overlay: Run 2, Hour 20

TABLE I I I

WAREHOUSE STATISTICS: RUN 2, HOUR 1i

HOURLY UTILIZATION IFIGURES
--TOOL— H0UR1 H0UR2 H0UR3 H0UR4 H0UR5 H0UR6 H0UR7
REC 1 46.02 21.63 04.33 25.33 29.33 38.33 33.66
SHP 1 29.66 38.00 04.33 25.33 28.41 41.66 39.91
REC 2 13.00 08.33 17.00 04.33 33.33 25.33 12.66
SHP 2 13.19 14.80 17.00 04.33 16.16 65.83 12.66
REC 3 08.33 17.00 00.00 16.66 04.33 33.33 08.33
SHP 3 08.33 17.00 00.00 16.66 04.33 40.00 08.33
REC 4 12.52 25.13 20. 19 34.66 08.47 08.66 04.33
SHP 4 08.33 26.83 15.16 38.00 12.66 08.66 04.33
REC 5 17.33 20.77 04.55 16.66 00.00 00.00 04.33
SHP 5 17.33 12.66 12.66 16.66 00.00 00.00 04.33
REC 6 13.00 04.33 00.00 04.33 04.33 08.33 17.00
SHP 6 07.69 09.63 00.00 04.33 04.33 08.33 13.69
REC 7 00.00 29.66 16.66 08.33 15.27 10.38 04.33
SHP 7 00.00 45.00 15.94 09.05 12.66 10.27 07.05
REC 8 00.00 00.00 00.00 04.33 17.00 08.33 00.00
SHP 8 00.00 00.00 00.00 04.33 17.00 08.33 00.00
REC 9 00.00 04.33 12.66 00.00 08.33 34.00 08.66
SHP 9 00.00 04.33 12.66 00.00 08.33 20.41 30.25
REC 0 12.66 17.00 34.02 25.30 29.66 12.66 63.33
SHP 0 08.28 21.41 29.66 29.66 27.36 12.58 29.72
not used 100.00 100.00 100.00 100.00 100.00 100.00 100.00
THRUPUT: 44 66 60 62 52 62 59
0009:59: 59 RIH P= 0 M= 150 W= 57 C= 588

H0UR8 H0UR9 H0UR10
04..33 04.33 08..66
04,.33 04.33 08 .66
17,.00 29.66 17,.00
17,.00 36.33 17,,00
16,,66 24.94 17,,72
13,,58 24.41 19,,55
21 ,, 33 04.33 12,.66
20,. 19 05.47 12,.66
21,,00 13.00 00,.00
21 ,,00 13.00 00,.00
04,.33 21 .00 29,.66
07,.63 21.00 23,,02
13,.00 21.00 17,.00
13,,00 21.00 17,.00
00,,00 00.00 00,,00
00..00 00.00 00. 00
00,.00 04.33 10..44
00..00 04.33 00.,00
17.,00 04.33 00.,00
69,.36 09.97 00..00

100,,00 100.00 100. 00
62 63 58

00

TABLE IV
WAREHOUSE STATISTICS: RUN 2, HOUR 20

HOURLY UT ILIZATION F IGURES
--TOOL-- HOUR! H0UR2 H0UR3 H0UR4 H0UR5 H0UR6 HOUR?
REC 1 25. 33 12.66 04. 33 24..77 04 .88 04 .33 00.,00
SHP 1 07. 11 30.00 11 . 88 21.,00 08 .66 04 .33 00..00
REC 2 08. 66 37.66 17. 00 00..00 25 .33 15 .69 20..97
SHP 2 08. 66 38.08 25..25 00.,00 25 .33 12 .66 21.,00
REC 3 12, 66 08.94 12.,38 24.,94 13 .05 00 .00 00,,00
SHP 3 14, 44 08.66 12.,66 21..33 16 .66 00 .00 00.,00
REC 4 08..66 08.33 17.,00 04., 33 12 .52 29 .80 32.,86
SHP 4 08.,66 08.3 3 17.,00 04., 33 08 .33 40 .66 08.,66
REC 5 04. 33 25.66 25. 33 04. 33 12 .66 00 .00 38.,00
SHP 5 04.,33 32.33 25.,33 04.,33 12 .66 00 .00 25.,44
REC 6 42.,66 04.33 21 .,36 16.,63 04 .33 14 .69 06.,63
SHP 6 33,.30 27.00 12.,66 33., 33 04 .33 12 .66 08.,66
REC 7 00,.00 29.66 04., 33 17.,00 42 .33 29 .66 04,,33
SHP 7 00,.00 09.61 39,,72 17.,00 38 .75 33 .25 01 ..61
REC 8 00,,00 08.66 04.,33 08.,33 08 .66 04 .33 12.,66
SHP 8 00,.00 08.66 04.,33 08.,33 08 .66 04 .33 12,,66
REC 9 14,.55 13.11 03,.88 00.,00 29 .66 29 .33 04..33
SHP 9 25..00 12.66 04.,33 00..00 12 .69 43 .41 07. 22
REC 0 40,,69 01.63 04..33 08..33 00 .00 13 .00 00.,00
SHP 0 29. 66 12.66 04. 33 08. 33 00 .00 13..00 00. 00
not used 100. 00 100.00 TOO. 00 100. 00 100 .00 100,,00 100. 00
THRUPUT: 58 58 66 59 60 60 56
001 s':59: 59 RI H P: 0H= 150 W= 57 c= 1189

H0UR8 H0UR9 HOUR 10
00..00 08. 33 46,.66
00..00 08. 33 34,,36
31..00 08. 33 08,,33
34..00 08. 33 08,,33
25,,66 12. 66 20,.94
49.,00 12. 66 12.,66
26.,13 00. 00 08,.66
57.,00 00. 00 08.,66
30. 77 15. 55 08.,33
65. 22 17. 00 08.,33
04.,33 29. 33 08.,66
04., 33 22. 52 15..47
16.,66 12. 61 25. 38
19.,38 00. 00 30..52
38.,00 54. 77 08..55
27.,16 45. 16 57..00
04. 33 12. 44 13. 22
04. 33 08. 66 17. 00
00.,00 00. 00 04. 33
00. 00 00. 00 00. 02
00. 00 100. 00 100. 00

62 59 63

1
1

9

120

characteristic of the model must be altered. Examples of
things to consider are the crane speeds and conveyor pace.
Certainly if the cranes moved faster the system would not be as
congested; this is suggested by the fact that in both Figures 2
and 3 fully half of the corridor input buffers are full of
pallets waiting on cranes to handle them. The conveyor pace
might also be increased; this would allow the pallets to be
shipped that do make it to the conveyor to be cleared off more
quickly. This in turn would make room for more of the received
pallets, which might be headed for some of the not-so-busy
cranes. Alternatively, the crane behavior might be changed to
decide whether to store an incoming pallet or place it in the
output buffer if a shipping request exists. As it stands now,
the cranes always store received pallets regardless of the
presence of shipping requests for the corridor.

For the peak output situation (Run 2), the system ran
smoothly. As would be expected with the number of shipping
requests exceeding the number of incoming pallets, the number
of pallets in the bins of the corridors is practically zero.
Shipping requests are of course backed up, but that is only to
be expected. If it were decided to discard requests that could
not be filled, this problem would be eliminated as well.
Figures 4 and 5 show the status of the system at the 10 hour and
20 hour points. The zone quantities and waiting states of the
cranes are clear from them.

The GPSS model did not experience the backing up of
pallets as the PCModel simulation did for the first case.

121

Subsequent runs of the PCModel program with higher crane rates
of movement eased this problem somewhat. Both the GPSS and
PCModel programs are fairly involved, which allows some room
for variance. In the next section, a much simpler GPSS model is
examined, thus allowing a closer comparison with PCModel's
results.

1 2 2

IV. THE SUPERMARKET PROBLEM
In the previous section, the simulation of an automated

warehouse was dealt with. For this problem, the floor plan of
the warehouse was instrumental in determining the solution of
the problem; the overlay directly reflected areas where
objects were backed up. This relationship of the physical
layout of the warehouse to the information gathered from the
overlay of the running model is due to the inherent first-in,
first-out (FIFO) ordering of the problem. This is the natural
way that goods and shipping requests would be handled. This is
also inherent in the design of PCModel. As there are objects
moving about the screen, they must move in a follow-the-leader
fashion; there is no way for objects to move at different
speeds along the same route without interfering with one
another's progress. Behavior of this different type is easily
modeled with GPSS's ADVANCE block, as has been noted. This
section examines how such a problem can be dealt with using
PCModel and also looks at how statistics might be collected for
its simulation.
A. DEFINE AND LIMIT THE PROBLEM

A good example of the type of problem to be considered
here can be found in the simulation of a supermarket. Shoppers
will enter such a store and shop for a period of time that is
dependent upon circumstances outside the realm of the model,
such as the size of the shopper's family, the interval between
shopping trips for the family, and so on. At any rate, it is
impossible to model the shoppers in a FIFO fashion as is

123

typical of PCModel. In this section and the next the behavior
of such a system and its numeric parameters will be defined;
the section on coding the problem will then examine ways to
model the set up. The text GPSS V: AN INTRODUCTION-^ defines
exactly such a problem; using the same parameters for a PCModel
simulation will allow comparison of the results obtained under
the two languages.

Behavior of each customer upon entering the store begins
with an attempt to obtain a shopping cart. It is assumed that
the customer will wait until a cart is available before
beginning shopping (i.e. each shopper will need a cart) and
that no customer will leave the store due to the required wait
for a cart. Once a cart is obtained, the customer shops for an
amount of time which is determined in two parts. First, a
certain percentage of the customers entering the store are
assumed to be there for general shopping needs; these regular
customers will all take a minimum amount of time for shopping.
The remaining customers will have entered the store just to
pick up a limited number of items; these are the express
customers, none of which will require over a given maximum
amount of time. This breakdown of customers sorts them into
two categories. The other part of determining the shopping
time follows from the assumption that one average time is
required for express shoppers and another for regular
shoppers. All remaining details concerning these times will be
stipulated in the data collection process.

124

The remaining part of customer behavior is concerned with
the checkout process. For purposes of this model, there will
be two registers available for checkout. One will be available
for express checkouts only, with the other reserved for regular
customers. To simplify matters, it is assumed that regular
customers will use only the regular checkout line, and the same
will apply for express shoppers. This will hold true even if
customers must wait in the line for one checkout register while
the other line is empty. Once the checkout process has been
completed for a customer, his cart is assumed to be free for use
immediately. The customer then leaves the store, bag in arms.
B . COLLECT DATA

1. Data to Build the Model With For the supermarket as
defined, there are five general entities about which to gather
information: express shoppers, regular shoppers, the express
checkout counter, the regular checkout counter, and the carts
present in the store. Each of these will be examined in turn in
this section.

One customer, either express or regular, will be entering
the store on the average of every four minutes; the
distribution of interarrival times is uniform and discrete,
varying from 0 to 8 minutes. The percentage of customers
entering the store as express shoppers will be 30%, leaving 70%
as regular shoppers. Once an express customer has obtained a
shopping cart, he will require from 1 to 11 (6 +/- 5) minutes in
the store; a regular shopper will take from 15 to 45 (30 +/- 15)
minutes to select his items. These times are according to a

125

uniform discrete distribution. At the end of the shopping
time, both types of customers enter the lines for their
respective checkout counters.

The checkout for express shoppers will take from 1 to 3 (2
+/- 1) minutes once the customer reaches the counter. In the
regular case the process takes from 3 to 7 (5 +/- 2) minutes.
Again, these times are according to a uniform discrete
distribution. The remaining model entity is that of the carts.
The store will have 20 of them available for use. Each customer
will take one as soon as one is available and keep it throughout
the shopping interval, time in the checkout line, and checkout
period. Once checkout has been completed, the cart will be
assumed ready for use by another customer. This concludes the
parameters required for the model.

It should be noted here that none of the above data in any
way details the layout of the store. In fact, this absence
indicates that the design of the store should in no way
influence the statistics generated. This is in direct contrast
to the automated warehouse problem discussed earlier. For the
warehouse a good part of the data concerning the simulation
detailed the distances from one point to another, which in turn
helped define how much time would be necessary for movement
from one position to another. The dimensional information
directly defined the overlay to be used with the model. Here,
it is just the opposite; it does not matter how many screen
units a customer moves, so long as the various times are
preserved. This reasoning permits great flexibility in the

126

overlay, allowing it to be created in such a fashion as to
facilitate the collection of statistics.

2. Data Desired as Output The purpose of this step thus
far has been the collection of data for the system to be
modeled. Now, consider for a moment the collection of data to
be output for the model. The automated warehouse output
consisted in large part of the action taking place on the
overlay. This was necessitated by the complexity of the
problem itself. Here the coding of the problem solution will
be somewhat simpler, so more emphasis can be placed on the
collection of data. The GPSS model is particularly concerned
with statistics concerning the carts (a GPSS 'storage'), the
checkout and cart waiting lines ('queues'), and the checkout
counters (’facilities'). While the model itself is being
constructed, additional software will be incorporated with the
generation of statistics concerning these GPSS entities in
mind.
C. SOLVING THE PROBLEM IN SOFTWARE

1, Job and Route Definitions Now comes the process by
which the problem definition and data are used to define the
jobs and routes of the PCModel program; once complete, the
coding process itself can begin. As will be the case for almost
any simulation program, a job and route will need to be
reserved for initialization purposes. As noted in the
warehouse problem, the coding of this job (job number 1) is
best left until last. Now, for the behavior of the model
proper, it appears that a single job and associated route for

127

the customers will be sufficient. The carts can be modeled
using a global variable to keep track of the number in use;
certainly an entire job and route are not warranted. For the
checkout counters, there is an argument for modeling them as
separate jobs, as was done for the cranes in the warehouse
problem. This would necessitate a similar handshaking pattern
between customer and checkout routes, but on the other hand it
would allow the checkout counters to have several different
modes as their objects could move to different positions to
indicate different statuses. This is what was done with the
crane jobs. However, examination of the checkout counter
behavior indicates that a counter is either occupied or
unoccupied by a customer. These two states can easily be
represented by the presence of a customer object at the
checkout position on the screen. Further, statistics may be
gathered concerning this overlay position using the U=
directive and the utilization screen to determine how much of
the time it is occupied, and thus how much of the time the
counter is in use. With these facts in mind, it seems simplest
to just incorporate the checkout counters as part of the
customer route. Thus one job and route will be sufficient to
model the supermarket system itself.

In addition to the prior two jobs, one more will be needed
for the purpose of collecting statistics. Consider the
statistics generated by a GPSS simulation. These include
maximum and average contents for queues and storages, number of
entries for queues, storages, and facilities, as well as

128

average time per customer in each, to name a few. Clearly, the
limited arithmetic capabilities of PCModel would make it
extremely difficult to generate such information exactly. For
instance, the average contents of a storage would logically be
found by maintaining a running total consisting of the number
of customers in the storage for each clock interval and then
dividing that total by the number of clock intervals that have
passed. The update of displayed statistics could be done at
any given interval down to each clock interval. PCModel's
variable value limitation of 65,535 makes the maintenance of
such a running total unfeasible by itself; for instance, if on
average 10 of the carts are being used each second, in 6554
seconds (less than 2 hours) the variable for the running total
would overflow. Even if this were not a problem, PCModel's
division is limited to truncated integer results, which would
not be very precise. One solution to the problem of variable
overflow is to only add to the running total at regular
intervals, each of which consists of a fixed number of clock
intervals. Thus the inevitable overflow is delayed to a
reasonable time for simulation purposes. A separate job can
thus be used to generate an object at these regular intervals
for the purpose of collecting variable information. The other
associated problems, such as the limitation to integer
division, will be examined during the creation of the route.
As this job is not directly concerned with the overlay
simulation itself, it is designated job 2. The job for
customers then becomes job 3. This is a programming convention
which puts the actual simulation routings last in the program.

129

The focus of attention is now turned to the coding of the
route for the customers. (It should be noted here that coding
will not be as straight forward as possible in places so as to
employ miscellaneous PCModel instructions that would otherwise
not be included.) As observed previously, the particulars of
the overlay are left to the descretion of the programmer. This
allows the freedom necessary to solve the problem using
PCModel. As the customers will be in the store for different
periods of time, it is clearly impossible to have all shoppers
follow the same path around the screen. Clearly, express
shoppers will be held up by the regular shoppers simply because
the program logic would not make it possible for customers to
pass one another in the aisles. Indeed, there is no straight
forward way to incorporate this behavior in the model, due in
part to the restriction to constant move distances with
PCModel. Separating the express and regular shoppers will not
entirely solve the problem either. For instance, even though
regular shoppers will take on the average thirty minutes each,
there is nothing that says two successive customers entering
the store will not both be regular shoppers, and further that
the second of the pair will be in the store for a much shorter
time than the first. The whole problem can be solved by
dividing the store up into a number of aisles, say twelve.
Reserving three for express shoppers and the remaining nine for
regular shoppers solves the problem of separating the two
widely separated (time-wise) groups. Additionally, within the
aisles reserved for one type of shopper, each successive

130

shopper can be sent to a currently unoccupied aisle. This
separates the individuals from one another. Inside the aisle
shoppers can move at different speeds, while they will all move
at the same pace on common ground. The transferring process
will be examined in detail shortly. The supermarket overlay as
decided upon with its twelve aisles can be seen in Figure 6.

2. Customers Now coding can begin for the customer
route; the various movements will be defined by the selected
overlay. First, as noted in the data collection process,
customers will arrive according to a uniform discrete
distribution from 0 to 480 seconds (0 to 8 minutes). The mean
is 240 seconds (4 minutes), and the variable @ARRIVE will have
been initialized to it. Further, the arrival of the next
customer can be determined using PCModel’s random number
sequence.

BR<3,"ENTRY,aARRIVE)
RVOARRIVE,0,480)

As remarked earlier, the customer job is numbered 3, and thus
the customer route is numbered likewise. The entry position
into the store, *ENTRY, is defined in the program listing in
Appendix B.

Now the customer object, hereafter referred to as 'C',
moves into the store at an arbitrary speed to the area reserved
for the cart waiting line. Here the total number of entries
into the cart queue, @TTLCRTQ, and the current number of
entries in the cart queue, @CRTQUEUE, are updated.

0
1
2
3
4
5
6
7
8
9

10
1
2
3
U
5
6
7
8
9

20
1
2
3
14
5
6
7
8
9

30
1
2
3
4
5
6
7
8
9

401
2
3
4
56

012345678901234567890123456789012345678901234567890123456789012345678901234567890
1 2 3 4 5 6 7 80

N

2 3 4 5 6 7 8 9 A B

Shopping Carts
F ree

Number of Counts Takfen:

Supermarket Simulation

Time of Last Update:
Storages

Storage Capacity

Ca rts

Average
Contents

Entries Total Time
in Storage

Average
Contents

Tota I
Entries

Total Time
in Queue

Current
Contents

e
s
s

i

Current
Contents

Maximum
Contents

Queues
Queue Maximum

Contents
RegCk
ExpCk
Cart

S ta t is t ic s are updated every four minutes of simulation time.

Figure 6. Supermarket Overlay HU

C
IO

(5

3

3

MD(1,5>
IV(aTTLCRTQ)
IVOCRTQUEUE)

132

Additionally, C's first clock parameter is set to the
current time. This will be used shortly in the determination of
C's time in the cart queue. This save is followed by movement
of C through the cart queue to its end.

SV(0BJ%1,CLOCK)
MR(22,5)

Note the use of the system variable CLOCK and the fact that
since C's movement is causing a delay itself, C will take some
time (110 seconds) in the queue even if its progression to the
queue end is not blocked by C's waiting for carts.

Now is a good time to update the maximum number in the cart
queue, @MAXCRTQ. Note that this is accomplished with
instructions which require no clock time themselves.

IF (aCRTQUEUE,LT,aMAXCRTQ,THEN,:PASS)
SV(aMAXCRTQ,aCRTQUEUE)

Once C reaches the end of the cart queue, it can leave the
queue if there is a cart available i. A check is made against the
current number of carts available, @NUMCARTS, to see if one is
available with the IF statement. Note the use of the IF
keywords THEN and NEXT denoting transf errence to the next
sequential instruction if a cart is available, while ELSE and
WAIT hold C at this point, trying the IF condition on each
successive clock interval until it is satisfied before letting
C move on.

:PASS IF(aNUMCARTS,GT,0,THEN,NEXT,ELSE,WAIT)

133

Once a cart is determined available, C leaves the cart
queue and decrements the number in the queue accordingly, as
well as updating the total of the times spent in the cart queue,
% T T L C R T Q T .

DVOCRTQUEUE)
SV(%DIFFRNCE,CLOCK)
AO(%DIFFRNCE,0BJ71)
A0(DIFFRNCE,-,110)
AO <7oTTLCRTQT, +,%DIFFRNCE)

Several things should be noted here. The first is that the
elapsed time is logically the difference in the clock times
upon entering and exiting the queue, less the required time in
the queue. At both points CLOCK is copied so that is may be
worked with. Secondly, a global variable %DIEFRNCE is used
here for obtaining the difference in clock times, rather than
C's second clock parameter which is currently unoccupied.
Trial simulation runs indicated that clock parameters can not
be specified as the destination of an arithmetic operation.
Doing so causes unpredictable results. Finally, it should be
observed that clock variables can be operated on with the
addition and subtraction operators in the same manner as
standard variables.

At the same time C leaves the cart queue it enters the cart
storage. A storage as defined by GPSS is an entity with
multiple unit capacity. For the PCModel simulation, the single
global variable @CRTINUSE will suffice to keep track of the
number of carts currently in use. Upon entry into the cart
storage, the total number of storage entries made, @TTLCRTSU,
and the current number of objects in the storage can be

134

updated; the second object clock parameter is also set here for
later determination of the time in the storage.

IV(TTLCRTSU)
IV(aCRTINUSE)
SV(0BJ%2,CLOCK)

Further, the maximum number of carts ever in use at any
one time, @MAXCRTSU, can be updated here if necessary.

IFOCRTINUSE, LE,aMAXCRTSU,THEN, :0VER)
SV(aMAXCRTSU,aCRTINUSE)

Thus, C has now left the waiting line for a cart and is
ready to start shopping. This is reflected on the screen by
moving the customer to the position at which to take a cart,
*CARTS, and decrementing the number of carts available. The
number of carts left is then displayed on the overlay.

:OVER MA(*CARTS,0)
DV(aNUMCARTS)
PV(*CRTSFREE,aNUMCARTS)

Next, C moves to the position at which it will branch once
it is determined what type of shopping will be done (express or
regular) and which aisles are open for that type. At that
position a random value is generated for the differentiation
between express and regular shopping times.

MD(3,1)
RVOCHANCE, 1,100)

Up to this point every C has been treated identically.
Now comes the first transfer based on the results of the random
value generated.

IF(aCHANCE,LT,^PERCENT,THEN,:EXPL00P)
The constant #PERCENT will thus be defined as the percentage of
express customers. The data collection process indicated this

135

to be 30%. C's fall through the IF to : REGLOOP if the condition
i s not met.

Now consider the route taken by regular customers. As
discussed earlier and consequently incorporated into the
overlay of Figure 5, the C's will be kept from interfering with
one another by sending them successively to unoccupied aisles.
More specifically, each aisle will be considered occupied if
the position at the head of the aisle is occupied. While moving
to the aisle, moving down it, and then moving to the checkout
line, every regular customer will travel at the same rate over
the corresponding areas. The occupation of the single position
at the head of the aisle is the only instance where varying
times of delay will be employed; the varying times themselves
will be calculated based upon the shopping time computed for a
C. This chain of reasoning can employ PCModel's Post (PO) and
Clear (CL) instructions to good advantage. While the C is at
the branching position, *READY, tests can be performed to find
an aisle for which the head position is clear; then, before C
even starts moving toward that aisle (a process which will
require measurable time to mean anything on the overlay), the
position can be reserved by posting it until C gets there. Thus
no subsequent C will start out for the same aisle while the
first C is moving to it.

Thus, the logic for routing C's is defined. Before it is
actually employed, the C's need to branch to the routing for
the particular lane. The lane is decided upon by utilizing the
Jump if path Clear instruction to determine the first lane
available for posting.

136

:REGLOOP JC(1,*LANE1,:SHPLANE1)
JC(1,*LANE2,:SHPLANE2>

• «

■ •

JC(1>LANE9,: SHPLANE9)
DN
JP(:REGLOOP)

Note that in the event all nine of the allocated lanes are
either posted or occupied, C will pause and check again on the
next clock interval. Logically there should never be a delay
here because the software construct above is artificial and
does not model the actual system; rather, it is being used to
solve the problem of interference among objects. If the nine
lanes prove insufficient in handling C's without delay, more
lanes should be allocated in order to keep from distorting the
simulation results. One simple way to monitor the use of the
various posting locations is to define them as utilization
locations. This will be explored further later.

Once a clear lane has been found, C can move to it to
perform the shopping task. In the event that the reserve
position for lane 1, *LANE1, is currently clear, transfer will
occur to the label :SHPLANE1 to "shop" in lane 1. The first
thing to do is establish a reference for the subsequent
relative moves and post the reserve location.

:SHPLANE1 R=(*READY)
PO(*LANE1)

Now C can move over to the lane or aisle. An arbitrary
rate of 5 seconds per screen position will be used for the
typical movement of a regular shopper. Any time used while
moving around the screen will be subtracted off the total

137

shopping time determined for the customer. Note in Figure 6
however that regular and express shoppers share a common screen
route for the first ten spaces to the left of *READY. With the
screen laid out as it is, it is impossible for express
customers to also move at 5 seconds per position because of
their much shorter shopping durations. A rate of 1 second per
position will be needed to move a C through the store in under
the minimum time for an express shopper. This is why the
"express" lanes (A, B, and C) are located so close to both the
cart storage area and the express checkout counter. If there
were any more separation, it would not be possible for an
express customer to traverse the required route in less than
the minimum time without utilizing some immediate moves (no
delay imposed). All of this will be seen in more detail in the
routing of the express lanes, but it needs to be brought out
here to explain the movement of the regular shopper. For any
route throughout the store that is used by both regular and
express shoppers, the regular shopper must move at the higher
rate of the express shopper so as not to form a possible
bottleneck for them. This explains the pair of moves for a
regular shopper moving to lane 1.

ML (10,1)
ML(48,5>

Once at the head of the lane, the reserve position may be
cleared so that the C itself can then occupy it.

CL(*LANE1)
MD(1,5)

138

Now C is at the position where any time other than that
used up moving around the overlay must be consumed. The
shopping time itself is determined as a random number from 900
to 2700 seconds (30 +/- 15 minutes).

RV(aSHOPTIME,900,2700)
From this time must then be subtracted all of the times

expended from the cart cage to the checkout counter. These
times include: 10 spaces at 1 second per and 48 seconds at 5
seconds per getting to the lane (250 seconds); 1 space in 5
seconds moving to the reserve position (5 seconds); 15 spaces
at 10 seconds per moving down the lane (150 seconds); 1 space in
5 seconds moving to the back wall (5 seconds); and finally 40
spaces at 5 seconds per moving along the back wall to the
position common for all nine lanes of regular shoppers (200
seconds). These various times total to 610 seconds and
constitute the movement time from the position beneath the cart
cage to the common position for regular shoppers at the back
wall behind the ninth aisle. Outside of this are times common
to all regular shoppers: 3 spaces at 1 second per moving from
the cart cage to the branching position (3 seconds); 6 spaces
at 8 seconds per and 1 space at 9 seconds (to balance the
timing) moving to the point common with express customers
moving toward checkout (57 seconds); 18 spaces right at 1
second per through the express-common route (18 seconds); 6
more spaces at 9 seconds each moving to the aisle of the regular
checkout (54 seconds); and finally a move of 12 spaces at 9
seconds each moving to the checkout counter (108 seconds). The

139

times here total to 240 seconds. Note that this figure will be
common to all nine lanes, while the sum of 610 seconds is
peculiar to lane 1 only. For each of the other eight, a
different value must be determined, due to the varying
distances of the lanes from the common starting and end points.
All of the moves described here will be seen in the routing
shortly. Also it should be mentioned once again that the
combination of times used is arbitrary so long as they balance
out. At present, the constant delays for lane 1 are subtracted
from the total shopping time and then C is delayed for the
remaining shopping time.

A0(aSH0PTIME,-,610)
ACKaSHOPTIME,-,240)
ST(aSHOPTIME)

Observe that the sum of the required times for a customer sent
to lane 1 is 850 seconds, 50 less than the minimum shopping time
of 900 seconds for a regular customer.

When the time has elapsed, C moves down the aisle, to the
back wall, right to the common point for regular shoppers, all
as described above, and then transfers to the routing common
for the shoppers at that point.

MD(15,10)
MD(1,5)
MR(40,5)
JP(-.REGCHK)

As for the other eight lanes, the routings for them are
parallel to that of lane 1. The differences consist of
changing labels for the lanes, substituting in correct move
distances to and from the lanes, and altering the shopping time

140

constant peculiar to the lane. All of these values change in a
regular pattern from aisle to aisle as the overlay is laid out
in a regular pattern itself. The distances to lanes 2 through 8
are 50, 48, 40, 38, 30, 28, 20, and 18 spaces respectively; the
distances from the lanes to the common point *REGLINE are 32,
30, 22, 20, 12, 10, 2, and 0 spaces. Finally, the corresponding
times for each lane are 530, 510, 430, 410, 330, 310, 230, and
210 seconds; these values can be obtained in the same manner as
the 610 second figure for lane 1.

One other point should be made again here before preceding
on. The seemingly arbitrary rates and distances for the
movements discussed in the time calculations are just that:
arbitrary. Again, the purpose of the route is to create some
displayable image. Any combination of movements and rates
could be used so long as they do not interfere with the
simulation logic of a customer or reflect on the display a
misinterpretation of what is really transpiring.

At this point, the behavior for each regular customer
through the store has been mapped to the common point *REGLINE,
where they all meet on their way to the regular checkout. The
route continues here as they enter the queue, or waiting line,
for the regular checkout counter. Entry into this queue signals
the time at which to update both the total number of entries
into the regular queue, @TTLREGQ, and the current number in the
queue, @REGQUEUE, as well as setting C's first clock parameter
to the current simulation time.

141

:REGCHK R=(*REGLINE)
IV(STTLREGQ)
IVOREGQUEUE)
SV(0BJ%1,CLOCK)

OBJ%l will be used shortly to determine the time in the queue
for C; remember also that OBJ%2 still contains the entry time
for C into the cart storage.

Additionally, the maximum contents for the queue.
@MAXREGQ, can be revised at this point.

IFOREGQUEUE,LT,3MAXREGCLTHEN, :D0WN1)
SVOMAXREGQ,3REGQUEUE)

Now C moves around the screen to the checkout counter as
described previously.

:D0WN1 MR<6,8)
MR(1,9)
MR (18,1)
MR(6,9)
MU (12,9)

Again note the increase in speed through the route common with
the express customers.

When C completes the move up of 12 units indicated above.
it is at the checkout counter and thus ready to exit the waiting
line, or queue, for checkout. To accomplish this, the number
in the queue, @REGQUEUE, is decremented and the elapsed time of
C in the queue, %DIFFRNCE, is added to the running total for
times in the queue, %TTLREGQT.

DV(aREGQUEUE)
SV(%DIFFRNCE,CLOCK)
A0(%DIFFRNCE,-,0BJ7.1)
AO (%DIFFRNCE, -..237)
A0(%TTLREGQT,+,7.DIFFRNCE)

In this case the elapsed times for C's in the queue will consist
of the fixed move delays above, which total to 237 seconds, as

142

well as any delays caused by C's backing up at the checkout.
The figure of 237 seconds is subtracted out of the elapsed time
so that the obtained average may be compared with 0 instead of
237 .

Once at the register, the checkout time, @REGCHK, is
determined randomly in the range of 180 to 420 seconds (5 +/- 2
minutes); C is then held for the period of checkout.

RVOREGCHK, 180,420)
ST(aREGCHK)

When the checkout procedure is finished, the customer has
no more use for his cart; thus it may be returned to the cart
storage. C leaves the storage by updating the number of carts
in use, @CRTINUSE, and adding the elapsed time in the storage,
%DIFFRNCE, to the running total, %TTLCRTST.

DV(aCRTINUSE)
SV (7oDI FFRNCE, CLOCK)
AO(%DIFFRNCE,-,0BJ%2)
AO(%TTLCRTST,+,%DIFFRNCE)

Additionally, the number of carts free for use is updated
and displayed in the cart storage area.

IV(aNUMCARTS)
PV(*CRTSFREE,aNUMCARTS)

Note that the variables @CRTINUSE and @NUMCARTS are simply
complements of one another. @CRTINUSE is sufficient to hold
the necessary information, but an extra variable would be
required for determining the number free for output anyway;
thus it is maintained as a separate value.

At this point, C has effectively completed the simulation
and could be removed immediately. However, in order to reflect

143

on the overlay that the customer would now leave the store, C is
routed across the overlay to the screen position which is
common to all departing C's, *EXIT. A transfer then takes
place to the common routing all C's take upon exiting.

MU(6,5)
ML<7,5)
J P <:EXITSTOR)

:EXITSTOR R=(*EXIT)
ML (5,5)
RM<-2,+0,5)
ML (31,5)
MU(4,5)

Observe the use of the Relative Move (RM) instruction to cause
C to jump over the path crossing that of incoming customers.
Using RM saves the determination of the exact screen locations
required by the Move Absolute instruction. It would be
convenient if these two paths did not have to cross at all. The
problem here relates to that explained for the express
customers. They must be able to move from the cart cage, down
their aisle, and then back to their checkout before the minimum
time expires; thus the overlapping routes.

One final inclusion is the use of a termination count.
The GPSS language provides for specification of a value at
which to stop the simulation and display statistics. PCModel
can do the same thing by keeping a running count of objects that
have completed the customer route. C leaves the simulation
after this update.

IVOTERMCNT)
ER

144

The count might better be taken as C's leave the register, for
that is the point the simulation is done with them. Placing it
here makes it a duplicate of PCModel's Work Complete Count
(WCC) and should not create any appreciable distortion of
statistics gathered. After initialization, the initialization
job object can check for the occurrence of this variable
reaching the specified value using an IF statement. Further,
the simulation need only be halted temporarily when it occurs.
After the statistics are noted, simulation can resume.

The routing for those C' s determined to be express
shoppers proceeds in the same manner as that in the regular
case. Transfer first occurs to :EXPLOOP where an unoccupied
reserve position is located.

:EXPLOOP JC(1,*LANEA,:SHPLANEA)
JC(1,*LANEB,:SHPLANEB)
JC(1,*LANEC,:SHPLANEC)
DN
JP(:EXPLOOP)

If these three lanes do not prove to be sufficient, another
should be established.

Now assume that the first unoccupied reserve position
happens to be *LANEA. In this case, C will shop on lane A. The
lane is posted to reserve it, C moves to it, the reserve
position is cleared, and C assumes position *LANEA for the
delay of shopping time above moving around the overlay. The
shopping time is obtained as a random number from 60 to 660
seconds (6 +/- 5 minutes) .

:SHPLANEA R=(*READY>
P0(*LANEA)
ML<10,1>

CL(*LANEA>
MD(1,1)
RV (aSHOPTIME, 60,660)

145

From this time must then be subtracted all of the movement
delays associated with lane A. These include moving to the
aisle (10 seconds), assuming the reserve position (1 second),
moving down the aisle (15 seconds), moving to the back wall (1
second), and finally moving to the point common to all express
shoppers, *EXPLINE (10 seconds). The sum of these times is 37
seconds. This is the minimum time necessary to move from the
position beneath the cart cage to *EXPLINE, where all express
shoppers meet. Delays outside of this requirement include the
3 seconds to move from the cart cage to the lane branching
position, 6 seconds moving to the lane of the express counter
from the common position *EXPLINE, and 12 seconds needed to
move up the lane to the checkout counter. These times total to
21 seconds; this sum will be common to all express customers.
Thus, the 37 and 21 second delays may be subtracted out of the
shopping time, as they are expended throughout the route; C
then delays for the remainder.

AO(aSHOPTIME,-,37)
AO (aSHOPTIME, - ,21)
ST(aSHOPTIME)

The total delay is 58 seconds, 2 less than the minimum shopping
time for an express customer.

After the specified period elapses, C moves down the
aisle, to the back wall, and to the common point for all express
shoppers.

146

MD(15,1)
MD<1,1)
MR<10,1)
J P(:EXPCHK >

The other two lanes, B and C, are handled similarly. The
distances to them are 8 and 0, while the distances moving from
them to *EXPLINE are 8 and 0 also. The delays associated with
lanes B and C are 33 and 17 seconds, respectively. The only
other changes necessary are in the labels used.

At the common position *EXPLINE, all express customers
enter the waiting line, or queue, for the express checkout.

:EXPCHK R=(*EXPLINE)
IV(aTTLEXPQ)
IV(aEXPQUEUE)
SV(0BJ%1,CLOCK)
IF(aEXPQUEUE,LT,aMAXEXPQ,THEN,:D0WN2)
SV(aMAXEXPQ,aEXPQUEUE)

C's then move to the counter and exit the queue. Note the
removal of the constant time in the queue before updating is
done on the running total.

:D0WN2 MR(6,1)
MU(12,1)
DV(aEXPQUEUE)
SV(%DIFFRNCE,CLOCK)
A0(%DIFFRNCE,-,0BJ%1)
AO(%DIFFRNCE,-,18)
AO(%TTLEXPQT,+,%DIFFRNCE)

The checkout procedure occurs next, taking from 60 to 180
seconds (2 +/- 1 minutes).

RV(aEXPCHK,60,180)
ST(aEXPCHK)

The customer then returns his cart immediately to the
storage area, at which time the storage variables are updated
as is the displayed number of carts available.

147

DV(aCRTINUSE)
SVC7.DIFFRNCE,CLOCK)
A0(%DIFFRNCE,-,0BJ7o2)
AO(7TTLCRTST,+,%DIFFRNCE)
IV(aNUMCARTS)
PV(*CRTSFREE,aNUMCARTS)

C then moves to the common point for all customers and
transfers to the same routing explained for the regular
customers earlier.

MU(6,5)
JP(:EXITSTOR)

This completes the routing for customer objects. The job
statement to create them reflects the fact that it is job 3 and
will take route 3, as well as identifying the character 'C' as
that to be used to represent the objects on the overlay.

J=<3,C,3,0,0,2,1000)
Priority 2 is assigned to the job in order to leave priorities 0
and 1 for the initialization and statistics jobs,
respectively. Finally, the number of C's to be created by the
job is arbitrarily chosen as 1000, well over the 500 customers
modeled in the GPSS program.

3. Statistics While the customer job of the previous
section is running, PCModel can generate utilization
statistics for up to 21 different screen locations and it
indicates areas where customers must wait by way of the overlay
generated. However, to generate figures of a more statistical
nature, such as average lengths of waiting lines, arithmetic
operations must be employed. Further, all of these types of
statistics will be generated by a single job and its route;
their creation will be covered now.

148

As discussed earlier, the method of generating average
queue lengths and storage quantities will be to sample the
current quantities in these structures at regular intervals.
Again, this can not be performed each second because the
variables for the running total would overflow in an
unacceptably short period. In order to determine the interval,
the maximum size of the variable to be sampled must be known.
Additionally, since PCModel uses integer arithmetic,
generation of each decimal place will require multiplication
of the running total involved by a factor of 10. Assuming that
one decimal place is deemed sufficient for averages, this
limits the maximum value of the figure to be divided to 65535
DIV 10, or 6553. A single addition to this value will make it
6554, and that multiplied by 10 is 65540, larger than the
PCModel variable maximum of 65535. In addition to this maximum
sum of 6553, the maximum value to be added must be known.
Averages will be determined for the number in the cart storage
and the quantities in the cart, regular checkout, and express
queues. The cart storage itself has as its maximum number of
entries 20. Assuming that none of the queues will have more
than 20 objects in them at any one time seems reasonable, so 20
is chosen as the maximum. If the simulation shows a maximum for
any queue greater than 20, the calculations to follow must be
adjusted.

The maximum sum was determined to be 6553; if the maximum
increment for any sample is 20, the 6553 capacity would allow
6553 DIV 20, or 327 such samplings to be made. Now the decision

149

must be made as to how long the simulation should be able to run
without possibility of statistic overflow; this decision is
the converse of how often to take samples. At 1 second between
samples, overflow could not occur for 327 seconds (5.45
minutes), a clearly unacceptable period. Separating the
samples by 240 seconds (4 minutes) will put off a possible
overflow until 78,480 (240 * 327) seconds into the simulation;
this is 21 hours and 48 minutes, a much more reasonable figure.
This will be used as the value for the possible overflow time,
%OVERFLOW. Also, this has defined the interval between
successive passes through the statistics route, that is the 240
second figure.

Now can begin the coding for the route. As established,
one pass needs to be made every 240 seconds through the route.
In order to utilize a different combination of PCModel
instructions, only one object will be created by the job; it
will then loop through the route. The first object will enter
the route for the first pass 240 seconds into the simulation.

BR(2,*DUMMY2,240)
This will be route 2 corresponding to the statistics job number
of 2; as the object has no overlay usage, it is created at a
dummy location and will stay there.

Concerning the loop times, the clock variable %LOOPTIME
will be utilized to control the object transfer. It is not
possible to use one of the object's clock parameters here for
reasons that will be made clear at the bottom of the loop. The
time of the first pass is taken from the previous BR
instruction.

150

SV(%LOOPTIME,240)
Consider now what is to be accomplished by the statistics

route. For the most part, the output to the overlay will
consist of printing values for the statistics concerning the
queues and storage: the current quantity of customers
contained, the maximum contents at any one time, the total
number of entries. The updating of all of these variables is
handled in the customer route explained previously. The one
exception to this is the computation of average values, for
instance the average contents of a queue. Now review the
sequence of operations of the averaging process. As this
program has been developed, the contents of a queue will be
added periodically to a running sum of such periodic checks.
To determine the average value is then a simple operation of
division of the running sum by the number of samplings, or
counts, made. This number will be kept in the variable
@NUMBCTS and updated on each iteration.

:T0P IV(aNUMBCTS)
PV(“COUNTS,aNUMBCTS)

Additionally, PCModel's limitation to integer division
should be compensated for; left alone, integer division will
result in truncated quotients. In order to achieve a rounding
effect on the quotient, half of the divisor needs to be added to
the dividend before division. The dividend will be the various
running totals, but the divisor will always be @NUMBCTS. Thus
the rounding factor, @ROUND, can be calculated now, just one
time for all divisions to be performed for the current pass.

151

SV(aROUND,aNUMBCTS)
A0(aR0UND,/,2)

The value in @ROUND will thus be added to any number to be
divided by @NUMBCTS to obtain a rounded result.

Now the statistics for a particular entity, say the cart
storage, may be focused on. The first GPSS statistic to be
output will be the total number of carts available, @TTLCARTS.

PV(*CRTSTGl,aTTLCARTS)
There are a couple of points to be observed here. First is the
use of another variable concerning the cart storage besides
@NUMBCARTS and @CRTINUSE. @CRTINUSE is the number of carts
currently in use, or the number of entries in the cart storage
currently; it always starts out as zero. @NUMCARTS is the
converse of @CRTINUSE; it represents the number of carts free
(for display purposes). @NUMCARTS will be initialized from
@TTLCARTS. It might seem at first that @TTLCARTS should be
declared as a constant or even coded as a numerical value in the
program; however, declaring it as a variable value allows it to
be changed from the variable screen along with @NUMCARTS
without altering the source program. If the program is
initialized, not even @NUMCARTS need be edited on the value
screen, as the initialization job will handle it.
Additionally, the correct value for the maximum number of
entries possible in the storage will always be reflected in the
statistics on the overlay as it is printed straight from the
variable.

152

One other thing to note is the pattern of the overlay
position labels. The various fields for each entity statistics
are collected for will be numbered sequentially. Also, the
label will indicate whether it is dealing with the carts,
regular checkout or express checkout by including the string
'CRT', 'REG', or 'EXP1, respectively; the association with a
storage or queue will be made by 'STG' or ' QUE' .

Next comes the actual determination of the average number
in the storage. The current number is in @CRTINUSE; this will
be added to the running total @CKCRTUSE for checking cart
usage. This sum is in turn copied for computation of the
average.

ACKaCKCRTUSE,+,aCRTINUSE)
SV(aAVERAGE,aCKCRTUSE)

Now as decided at the beginning of this section the
average will be computed to one decimal place. Multiplying by
10, adding in the rounding factor, and dividing will produce
the average value with an implied decimal place between the
ten's and one's position of the number.

AO(aAVERAGE,*,10)
AO OAVERAGE, +, aROUND)
AO(aAVERAGE,/,aNUMBCTS)

It is desired to get the value printed out with the
decimal point inserted in the correct position. Advantage can
be made of the fact that the Print Value instruction prints at
the location specified a 5-space field, the leftmost space of
which is printed at the given location. The value always
prints 5 spaces, with any leading zeroes suppressed as blanks;

153

the fact that 5 spaces are used follows from the variable value
limit of 55535 which requires 5 spaces.

Now print the average with the implied decimal point on
the overlay.

PV(“CRTSTG2C,aAVERAGE)
Next print a character string consisting of a single

decimal point at the screen position which is occupied by the
ten's digit, or second rightmost position of the value just
printed.

PM(*CRTSTG2B,.)
This creates the decimal portion of the average. All that
remains now is to eliminate the one's digit from the average
and print it a a position that will place its rightmost digit
immediately to the left of the decimal point. Elimination of
the one's digit is accomplished by simply dividing the value by
1 0 .

AO(aAVERAGE,/,10)
PV(*CRTSTG2A,aAVERAGE)

Thus the average accurate to one decimal place is obtained and
displayed.

The third value to be output will be the total number of
entries into the storage, @TTLCRTSU, which was updated by the
customer route.

PV(*CRTSTG3,aTTLCRTSU)
Another common statistic for output is the average time

spent in the storage by customers. The customer route
maintained a running total of such times, %TTLCRTST; the number

154

of customers that contributed to this sum can be found by
subtracting the number of customers currently in the storage,
@CRTINUSE, from the total number of entries, @TTLCRTSU.
However, trial runs of the simulation indicate that the
division operation, unlike addition and subtraction, is either
in error or not supported for the clock variables of PCModel.
Thus the best that can be accomplished is to print out the
accumulated sum so that the computation may at least be done by
hand.

PV(*CRTSTG4,%TTLCRTST>

The final two statistics to be displayed are the number of
customers who currently have carts, @CRTINUSE, and the maximum
number of carts ever in use at any one time, @MAXCRTSU. Both of
these values are maintained by the customer route and need be
simply displayed here.

PV(*CRTSTG5,aCRTTNUSE)
PV(*CRTSTG6,aMAXCRTSU)

Generation of statistics for each of the three queues is
identical for each; thus the generation concerning one queue,
say that for the regular checkout, will be sufficient to
explain the others. Further, the queue statistics are for the
most part handled in the same manner as those of the storages.
They are reordered here to reflect the typical output of GPSS
results.

The first value is the maximum in the queue, @MAXREGQ,
which is updated in the customer route.

155

PV(*REGQUEl,aMAXREGQ)
The average queue length is achieved, by the same means as

those used for the average number in the storage. Here @CKREGQ
is the running total and @REGQUEUE is the current number in the
queue.

AOCaCKREGQ,+ ,S)REGQUEUE)
SV(aAVERAGE,aCKREGQ)
AO(aAVERAGE,*,10)
AO(aAVERAGE,+,aROUND)
AO(aAVERAGE,/,aNUMBCTS)
PV(“REGQUE2C,aAVERAGE)
PM(*REGQUE2B,.)
A0(aAVERAGE,/,10)
PV(“REGQUE2A,aAVERAGE)

The remaining values to be displayed are the total entries
into the queue, @TTLREGQ, the total time spent in the queue by
customers, %TTLREGQT, and the current contents of the queue,
@REGQUEUE.

PV(*REGQUE3,aTTLREGQ)
PV(*REGQUE4,%TTLREGQT)
PV(*REGQUE5,aREGQUEUE)

The remaining statistics concern the express checkout
queue and the cart waiting line queue. The routing for them is
identical to that for the regular checkout queue above, with
the substitution of their respective variables and labels.

After generation of the statistics on the current loop,
the overflow situation will be examined. Actually, this would
probably best be handled using a comparison between the
variable values in question and their overflow values. However
the problem will be managed using clock values to display their
use. The time of the first possible occurrence of overflow
will be stored in %OVERFLOW; the actual time was derived

156

previously as 21 hours, 48 minutes. Thus the system clock may
be compared against this time to determine if overflow may be
imminent.

IF(CL0CK,LT,/.OVERFLOW, :SKIP)
If overflow is indeed impending, a message will be

displayed and the simulation halted until the user strikes a
key; at that point the message is erased and simulation
continues.

PM(*MESSAGE,STATISTICS CAN OVERFLOW)
WK
PM(*MESSAGE,xxxxxxxxxxxxxxxxxxxxxxx)

Note that this arrangement will cause the simulation to halt on
each subsequent pass of the statistics route unless the value
of %OVERFLOW is altered. One could edit the value screen the
first time the message occurs, examine the values of the
various running totals, and increase %OVERFLOW to a
conservative estimate of the next time to check for overflow if
it has not yet occurred. Again, this whole arrangement would
probably best be handled by making comparisons on the running
totals themselves; the employed method is used for focusing
attention on the possible uses of clock values.

All that remains for embodiment in the route is the
looping mechanism for the single job object. This is simply a
matter of delaying the object until the time of the next
statistics update to be made. The determination of the next
time can be calculated by adding the delay to the current time;
prior to this, the time of the current update is displayed.

: SKIP

157

PV(*TIME,7.L00PTIME)
A0(7L00PTIME,+,240)

The original purpose of utilizing the %LOOPTIME variable was to
be able to use it at this point to delay the object until the
next loop time with the Wait Clock instruction.

WC(7oL00PTIME)
However, for an undetermined reason, the execution of this
instruction fails to take place properly some eighteen hours
into the simulation; it simply does not wait until the
specified clock time before releasing the object. Thus it is
replaced in the final version of the program with a Set Time
instruction to accomplish the same goal.

ST(240)
The object then loops to the top of the routing

instructions for the statistics generation; an End Route
instruction follows to complete the statistics route.

JP(:TOP)
ER

The job statement of job 2 will generate the single object
for route 2 with the priority of 1 established for it.

J=(2,#,2,0,0,1,1)
The '#’ character is used arbitrarily as no display function is
associated with this job.

4. Initialization The last job required by almost any
PCModel simulation is that dedicated to initialization of the
model. The job object enters the simulation before any other
obj ects.

158

BR (1,*DUMMY1,0)
Like the statistics route, there is no display purpose
associated with this route and the object is thus placed on the
overlay at an arbitrary location.

The first task is initialization of the random number
sequence; this is followed by the time of arrival of the first
customer and the count of customers who have completed the
simulation.

RS(#SEED)
SV(aARRIVE,240)
SV(aTERMCNT,0)

The termination count,@TERMCNT, for halting the simulation is
initialized here as well.

Next, the number of carts free for use, @NUMCARTS, is set
from the original total of carts, @TTLCARTS. @TTLCARTS will be
unaltered while @NUMCARTS will be incremented and decremented
throughout the simulation; as @TTLCARTS is output on the
display, editing its value on the value screen is the only work
necessary to alter the simulation parameter for the number of
carts.

SV ONUMCARTS,aTTLCARTS)
The remaining variables to be initialized are concerned

with the statistics of the simulation. The number of counts
made, @NUMBCTS, is zeroed here first.

SV(aNUMBCTS,0)
This is followed by the variables for the cart storage.

SV<aCRTINUSE,0)
SV(aTTLCRTSU,0)
SV(aMAXCRTSU, 0)

159

SV(3CKCRTUSE,0)
SV(%TTLCRTST,0)

The variables associated with the regular checkout queue.
the express checkout queue, and the cart waiting line queue
follow in similar fashion.

SV<aREGQUEUE,0)
SV(aMAXREGGLO)
SV(aTTLREGCLO)
SV(aCKREGQ.O)
S V (7 c T T L R E G Q T ,0 >

SV(aEXPQUEUE,0)
SV(aMAXEXPQ, 0)
SV(aTTLEXPQ,0)
SV(aCKEXPQ,0>
SV(7TTLEXPQT, 0)
SV(aCRTQUEUE,0)
SV(aMAXCRTQ,0>
SV(aTTLCRTQ,0)
SV(aCKCRTQ,0)
SV(7.TTLCRTQT,0>

As far as the initialization process goes, the route is
complete and the object can exit the model. To save defining
yet another job and route, the logic necessary for the
determination of the time to note statistics for comparison
with those of the GPSS model is incorporated here. The object
is held at this point until the specified count is reached.

IF (aTERMCNT,LT,aGPSSTERM,THEN,WAIT)
When the count is reached, a message indicating such will

be displayed and the simulation halted until the a key is
struck.

PM(*MESSAGE,500 OBJECTS COMPLETED)
WK

This allows the user to copy the current statistics screen
before another update occurs.

160

The message is then erased and the object allowed to exit
the simulation.

PM(*MESSAGE,xxxxxxxxxxxxxxxxxxxxx)
ER

The job statement associated with the route will create
the single object of the route. The arbitrary character 'X' is
used as no significance should be attached to the overlay
output of the route.

J=(1,X,1,0,0,0,1)
Finally, the zero priority of the job is identified, along with
the association of job 1 with route 1.

5. Load-Time Directives The remaining portion of the
PCModel program for the supermarket simulation consists of the
load-time directives used by the loader in creating the run­
time program. The first pair of directives, M and W, specify
the maximum number of objects that will ever be allowed in the
simulation at any one time and the initial value for the number
that will be allowed in the model during the current clock
interval, respectively.

M=(100)
W=<100>

The values use here are outside estimates of the values
required. This is also the case for the number of symbols to
reserve storage for.

S=(250)
Painstaking efforts were made in the warehouse simulation to
illustrate how these values can be arrived at in a conservative

161

fashion; limited memory may require that this be done, but this
is not the case here.

Next- in the sequence are the parameters concerning the
overlay. X and Y give its column and row dimensions,
respectively, while V determines the position of the overlay to
coincide with the upper left corner of the display during
loading.

X= (81)
Y= W >
V=(XY(1,0>)

Note that while Y is larger than the 23 line limit of a single
screen in order to allow space for the statistics, X is only one
larger than the default width of 80 columns; this in
combination with the V directive allows the first column of the
overlay to be numbered sequentially and used as a reference
without distracting from the overlay of the running
simulation. This can be seen more clearly in the overlay in
Figure 6.

The D (Description definition) and O (Overlay) directives
are supplied next.

D= (see Appendix 2)
0= (see Figure 6)

The next section consists of symbol definitions. As this
section is the first occurrence of each symbol in the program,
they should be defined in the accompanying comments . The fact
that all symbols must occur here works to the programmer's
advantage during both the commenting and debugging processes.
The variables of the program are the first symbols to be

162

listed, along with the specification of their initial values
after the loading process. For the customer arrival rate and
chance of being an express versus a regular customer:

3ARRIVE=(240)
aCHANCE=(0)

The generated shopping, express checkout, and regular checkout
times:

aSH0PTIME=(0)
aEXPCHK=(0)
aREGCHK=<0>

The count toward termination and the value to be reached:
aTERMCNT=<0)
aGPSSTERM=(500)

The number of statistics counts made, the rounding factor, and
the variable used for averaging:

aNUMBCTS=(0)
aR0UND=(0)
aAVERAGE=(0)

The number of carts in the store and the number currently
available:

aTTLCARTS=(20)
aNUMCARTS=(0)

The variables pertaining directly to the cart storage, as
explained in the customer route:

aCRTINUSE=<0)
3TTLCRTSU= <0)
aMAXCRTSU=<0)
aCKCRTUSE=<0)
7oTTLCRTST= <0000-.00:00)

The variables concerned with the regular checkout, express,
checkout, and cart waiting line queues successively:

163

aREGQUEUE=(0>
aMAXREGQ=(0)
aTTLREGQ=(0)
aCKREGQ= <0)
%TTLREGQT=(0000:00:00)
aEXPaUEUE=<0)
aMAXEXPQ=(0)
aTTLEXPQ=(0)
aCKEXPQ=<0>
%TTLEXPQT=(0000:00:00)
aCRTQUEUE=(0)
aMAXCRTQ=(0)
aTTLCRTQ=(0)
aCKCRTQ=(0)
%TTLCRTQT=(0000:00:00)

The remaining clock variables for identifying the time of
overflow, the current statistics loop, and the time between
object events:

7.0VERFL0W= <0021:48:00)
%L00PTIME=(0000:00:00)
%DIFFRNCE=(0000:00:00)

Next come the declarations of constants used in the
program. For the supermarket, a random number seed and percent
of express shoppers (versus regular shoppers) were used.

#SEED=(9997)
#PERCENT=(30)

The last group of symbols consist of labels for overlay
positions. For the dummy locations of routes 1 and 2:

*DUMMY1=(XY<2,2>)
*DUMMY2=(XY(1..39))

The entry and exit positions of shoppers:
*ENTRY=(XY<40,0)>
*EXIT=(XY(68,4>)

The positions to wait for a cart and then an open aisle:

164

*CARTS=(XY <62,2)>
*READY=<XY<62,5)>

The common positions all regular or express customers meet when
aeaded for their respective checkouts:

*REGLINE=(XY(44,22))
*EXPLINE=(XY(62,22)>

The locations occupied during regular and express checkout:
*REGLANE=(XY(75,10))
*EXPLANE=(XY(68.. 10))

The reserve positions at the head of each lane:
*LANE1=(XY<4,6>>
*LANE2=(XY<12,6>)

*LANE9=(XYW,6>>
*LANEA=(XY(52,6>>
*LANEB=(XY <54,6))
*LANEC=(XY(62,6>>

The output areas for the number of carts available and the
overflow and termination messages:

*CRTSFREE=(XY(65,2))
*MESSAGE=(XY<2,1>)

The sites for the number of statistic samples made and the time
af the last update:

*C0UNTS=(XY<28,25)>
*TIME=(XY(60,25))

The fields used for cart storage statisticss, particularly the
storage capacity (1), the average contents (2), total entries
(3), total time spent in the storage (4), current contents (5),
and maximum contents (6) :

*CRTSTG1=(XY(16,30)
*CRTSTG2A=(XY(25,30)
*CRTST62B=(XY(30,30)
*CRTSTG2C=(XY<27,30>

165

*CRTSTG3=(XY<37,30>
*CRTSTG4=(XY(46,30>
*CRTSTG5= <XY(60,30)
*CRTSTG6=(XY(71,30)

Note how the subfields of the second data region overlap in
order to produce the decimal average.

The remaining overlay positions deal with the queue
statistics for the regular checkout, express checkout, and the
cart waiting line. Each queue's fields are ordered as maximum
contents (1), average contents (2), total entries (3), total
time spent in queue (4), and current contents (5) .

*REGQUE1=(XY(14,36)
*REGQUE2A=(XY(24,36)
*REGQUE2B=(XY(29,36 >
*REGQUE2C=(XY(26,36)
*REGQUE3=(XY(35,36)
*REGQUE4=(XYm,36>
*REGQUE5=(XY(58,36>
*EXPQUE1=(XY(14,37)
*EXPQUE2A=(XY(24,37 >
*EXPQUE2B=(XY<29,37>
*EXPQUE2C=(XY(26,37)
*EXPQUE3=(XY(35,37)
*EXPQUE4=(XY<44,37)
*EXPQUE5=(XY(58,37)
*CRTQUE1=(XY<14,38>
*CRTQUE2A=(XY(29,38)
*CRTQUE2B=(XY(29,38)
*CRTGUE2C=(XY(26>38)
WCRTQUE3=(XY(35,38)
*CRTQUE4=(XY<44,38)
*CRTQUE5=(XY(58,38)

Following the symbol definitions are the job directives.
The derivation of each was explained at the end of its
respective route.

J=(1,X,1,0,0,0,1)
J=(2,#,2,0,0,1,1)
J=(3,C,3,0,0,2,1000 >

166

The last group of directives are those used to define
utilization locations. The statistics generated for the
positions are essentially the percentages of occupied time on
an hourly basis. As the checkout processes take place at
single positions on the overlay, those spots can be specified
here to create information that corresponds to that of a
facility in GPSS. A facility is defined as a permanent entity
which can accomodate only a single model object at a time. This
is certainly the case with a single overlay position in a
PCModel system.

U= (1,Reg Chk,*REGLANE>
U=(2,Exp Chk,*EXPLANE>

Note that meaningful label is specified to identify the
corresponding data on the utilization screen.

As the two positions for checkout are the only facilities
used in the program, the other 19 of the 21 possible
utilization positions are not required. However, they can be
put to good use in checking the utilizations of the reserve
positions of the aisles. This will provide a simple method of
telling whether or not the allocated number of aisles is
sufficient.

U= (3., Lane 1,*LANE1>
U=<A,Lane 2,*LANE2>

a a

a a

U=g 4,I_ane c,*lanec>
This completes the sequence of load-time directives. The

rest of the program is ordered to include the routes
sequentially by number, as a matter of programming style. The

167

program is thus complete and ready to be run for simulation of
the supermarket. Appendix B contains a complete listing of the
program.
D. RUN THE SIMULATION

As was done for the warehouse simulation, the supermarket
problem was run under the incremental mode to obtain as much
accuracy as possible. The 0 command was used to save the
utilization statistics every ten hours of the 40 hour
simulation period. The output after the 10 hour and 20 hour
times are grouped in Table V; likewise for the statistics at
the 30 and 40 hour marks in Table VI .

The utilization statistics, it will be remembered, were
used in part to aid in the debugging phase. Twelve of the
twenty-one possible data positions were assigned to the lane
reserve positions in order that they could be monitored for
usage. Of particular interest are the statistics for the
reserve spots of lanes 9 and C, as they are only used when all
other positions for their type of customer are full.
Examination of Tables V and VI show that possible trouble spots
are the sixth and seventh hours for lane 9 and the tenth and
sixteenth hours for lane C. *LANEC is never occupied after the
sixteenth hour and *LANE9 never after the seventh hour of the
forty hour period. This suggests that the simulation goes
through a settling-in period after which the number of aisles
allocated is more than sufficient. One lane never being used
is only good for indicating that the others are sufficient.
Concerning the indicated trouble spots, it can be seen for hour

TABLE V

SUPERMARKET STATISTICS: HOURS 10 AND 20

HOURLY UTILIZATION FIGURES
--TOOL-- HOUR1 H0UR2 HOUR3 H0UR4 HOUR5 H0UR6 HOUR7 HOUR8 H0UR9 HOUR10
Reg iChk 32 .63 94..80 99..91 64,. 16 75..94 76..27 100,.00 100,.00 100,.00 100,.00
Exp iChk 04 .55 14. 38 22,.38 29,.13 13..61 13..66 1 1 ,.36 13,.08 06 .25 25..00
Lane 1 81 .66 77. 94 82,.08 69,,16 72..86 78,.58 92,.27 80,,08 90,.97 82,.33
Lane 2 73 .83 41. 44 86..33 70,.58 74,.47 66..72 84,. 19 63,.13 82 ,08 74..41
Lane 3 33 .08 63. 47 61 .58 71 .80 62,.44 61,.55 63,.52 66,.75 59 ,66 52,.47
Lane 4 46 .00 77.,41 60 .75 20 .97 40 .08 98 .77 51 ,.05 64 .66 56 . 30 74,.69
Lane 5 17 .63 76..27 20 .27 02,,22 95,.19 48 .13 56,.05 61 .77 20,,52 80,.02
Lane 6 25.,27 64. 08 27..61 00, 00 56.,27 40,, 19 20,.69 63.,63 00,,00 37..05
Lane 7 00 .00 30. 86 00 .00 00,,00 41,,63 52,.30 00,.00 61..88 00,,00 00.,00
Lane 8 00 .00 00, 00 00 .00 00 .00 00,.00 41 .27 19,.00 00,.00 00,,00 00,,00
Lane 9 00 .00 00. 00 00,.00 00,.00 00..00 40,. 38 16.,30 00,.00 00,,00 00. 00
Lane A 15 .44 30, 13 40 .41 59 .41 36,.02 40 .25 13,.05 56,.11 25,,22 35,.97
Lane B 00 .00 00,,00 03 .25 16 ,05 04,,66 14,.16 00,,00 00,,00 16,,13 17.,47
Lane C 00 .00 00,.00 00 .00 00 ,00 00 .00 00 .00 00,.00 00,.00 00 ,00 07,,22

--TOOL-- HOUR11 H0UR12 H0UR13 H0UR14 H0UR15 H0UR16 H0UR17 HOUR18 H0UR19 H0UR20
Reg Chk 100 .00 100.,00 100 .00 100,.00 100..00 100,.00 100.,00 85..72 100.,00 96..94
Exp 1Chk 14 .36 08. 80 18,.00 06.. 16 11 .,80 19..61 19..69 03..27 15..91 24. 94
Lane 1 90,.91 68. 38 83..80 72,,52 81.,38 82,.38 81.,33 77.,88 87. 77 81 . 38
Lane 2 86 .13 56..50 81 ..80 78,,72 80,.47 71 ,.69 69..58 94..77 73,,77 78..75
Lane 3 77 .86 68. 38 53..02 84,, 13 68.,55 88,,58 43, 16 62..63 69.,22 83.,05
Lane 4 69, 38 48. 25 18. 55 47, 02 42. 80 44..52 35. 63 81 . 02 31 . 1 1 34. 36
Lane 5 67. 80 16. 16 16.,00 27, 27 24. 33 45. 83 26. 72 53. 13 46.,41 44. 11
Lane 6 41 . 05 12. 66 04. 50 50. 97 21 . 38 37. 22 00. 00 37. 97 51 . 69 31 . 38
La ne 7 15. 38 21 . 83 00. 00 17. 13 00. 00 55. 05 00. 00 34. 58 07, 19 43. 02
La ne 8 00. 00 00. 00 00. 00 00. 00 00. 00 15. 13 00. 00 00. 00 00. 00 00. 00
Lane 9 00. 00 00. 00 00. 00 00. 00 00. 00 00. 00 00. 00 00. 00 00, 00 00. 00
Lane A 29. 38 29. 72 28. 63 34. 88 26. 19 48. 22 64. 1 1 04. 94 24. 58 38. 36
La ne B 14. 13 17. 05 04. 66 00. 00 06. 02 21 . 83 04. 61 00. 00 05. 44 27. 50
Lane C 00. 00 00. 00 00. 00 00. 00 00. 00 01 . 36 00. 00 00. 00 00. 00 00. 00

168

TABLE VI

SUPERMARKET STATISTICS: HOURS 30 AND NO

HOURLY U T IL IZ A T IO N F IGURES
--TOOL-- H0UR21 HOUR22 HOUR23 H0UR24 H0UR25 HOUR26 H0UR27 H0UR28 HOUR29
Reg iChk 99,,47 77,.36 100,,00 100,.00 100..00 91 ,,08 96..50 75..13 98,,11
Exp iChk 20,.38 16,.27 21 ,.97 11 ,.77 10.,97 05,.91 13..38 14.,36 10,,88
Lane 1 85 .94 92 .94 87,.41 82 .47 82,.16 73,.88 70..33 78,.52 85,.22
Lane 2 79,.80 85 .11 57,.33 94 .97 72,.16 63..41 70,.47 83,,22 88,,33
Lane 3 59,.61 73 .25 59,,58 97,.05 55,, 11 62.,83 78,.38 63,,36 83,.30
Lane 4 86,.75 57 .61 51 .08 69 .86 79 .58 53,.38 62,.63 88 . 80 69,. 11
Lane 5 51,,83 49,.50 25,. 11 68,.80 25..55 78,,63 49..88 85,,55 75.,61
Lane 6 00,.00 26 .44 15,.94 54,,77 21 ,.36 00..00 27,.86 30,.55 38.,16
Lane 7 11,.25 00,.00 15,.83 14,.02 00..00 00.,00 00,,00 00,,00 54,,08
Lane 8 00,.00 00 .00 13,.75 00 .00 00,.00 00,.00 00,.00 00,.00 00,,00
Lane 9 00,.00 00 .00 00,.00 00,.00 00,.00 00,.00 00,.00 00,.00 00,,00
Lane A 22,.94 31 ,91 25,.22 21,.58 22,,41 15,,44 32.,47 30..88 40. 83
Lane B 23 . 30 00 .00 12 .75 01 ,.13 00,.00 16..13 00..00 11 ,.02 01 ..38
Lane C 00,.00 00 .00 00,.00 00,.00 00,.00 00.,00 00,,00 00,.00 00,,00

--TOOL-- HOUR31 H0UR32 H0UR33 HOUR34 HOUR35 H0UR36 HOUR37 HOUR38 HOUR39
Reg Chk 71 .13 100 .00 100,.00 100 .00 84,.41 89,.22 85,.02 61 ,, 36 82,,47
Exp Chk 31 .55 09 .44 08,.61 06 .44 12,.86 12,.38 20..30 20.,08 11 , 86
Lane 1 85,,55 92,.27 82,.16 82,,80 91 ,.94 96.,61 72..00 90..44 79.,50
Lane 2 63 .08 67 .86 92..63 69..75 67,,58 68.,91 72. 00 52. 80 57. 75
Lane 3 38,,16 76 .00 91,.66 41 ,.86 87.,22 90.,80 80.,05 97,.19 38. 86
Lane 4 75.,30 45,,86 79.,25 43.,61 42. 11 96.,50 54..08 55. 02 82. 33
Lane 5 14. 63 29. 83 49. 61 59. 13 17. 38 63. 52 06. 33 25. 61 67. 63
Lane 6 50. 52 21 .,58 71 . 22 00.,00 00.,00 47. 44 00.,00 00.,00 41 , 25
Lane 7 49. 94 03. 83 81 . 41 23. 38 00. 00 32. 97 00. 00 00. 00 00. 00
Lane 8 51 . 58 08. 30 15. 55 00. 00 00. 00 00. 00 00. 00 00. 00 00. 00
Lane 9 00. 00 00. 00 00. 00 00. 00 00. 00 00. 00 00. 00 00. 00 00. 00
Lane A 55. 77 13. 05 14. 36 23. 97 37. 00 16. 19 47. 27 31 . 41 26. 30
Lane B 20. 19 00. 00 00. 00 00. 00 02. 63 18. 13 12. 80 06. 27 13. 00
Lane C 00. 00 00. 00 00. 00 00. 00 00. 00 00. 00 00. 00 00. 00 00. 00

H0UR30
100.00

16.36
75.66
90.36
38.19
71.58
16.13
39.61
00.00
00.00 00. 00
35. 19
10.63
00.00

H0UR40
84.63
11.80
83.91
93.77
82.22
67.9k
57.77
48.41
31.61 00.00 00.00
25.08
16.83 00.00

1
6

9

170

16 that *LANEC is only occupied for 1.36% of the hour, while for
hour 10 the figure is 7.22%. Neither is very high and, as will
be seen shortly, the use of the positions did not exaggerate
the statistics. Indeed, it may well be that no other lane was
needed at all; however this fact cannot be gleaned from the
utilization figures alone. For *LANE9, it can be observed that
during hour 7, although *LANE9 was occupied, *LANE7 was not.
Thus, there is no possible problem here. (This occurrence of
figures indicates aisle 9 was used during the previous hour
while aisle 7 was busy; aisle 7 was then cleared before the end
of the hour and not used at all during the next hour.) The
utilization figure for *LANE9 in hour 6 is 40.38% and is cause
for concern, as is the figure for *LANEC in hour 10 above. To
justify that neither of these indicate an appreciable error in
the statistics, consider what would happen if there were not
enough lanes for an extended period. In that case, customers
would begin to back up from the *READY position they branch
from. When 4 customers are held up, the position *CARTS
becomes occupied which will then keep customers from being able
to exit the cart queue. As the generated statistics will show,
the accumulated time spent in the cart queue is zero; thus, no
object ever had to wait for any appreciable period. With this
analysis complete, the results of the simulation can be
accepted for evaluation.

In addition to storing the utilization statistics, the
overlay itself was filed at the 20 and 40 hour marks; the
overlays are presented in Figures 7 and 8, respectively. The

Number of Counts Taken: 299 Time of Last Update: 0019:56:00

Storages
Storage Capacity Ave rage E n tr ie s Total Time Current Maximum

Ca rts 20
Contents

10.4 309
in Storage
0202:56:53

Contents
10

Contents
18

Queue
Queues

Maxi mum Average Tota I Total Time Current

RegCk
Contents

13
Contents

4.2
En tr ie s

213
in Queue
0070:15:38

Contents
2

ExpCk 2 0.0 89 0000:15:52 0
Cart 4 0.4 310 0000:00:00 1

S ta tis t ic s are updated every four minutes of simulation time.

0020:00:00 RIH P= 0 M= 100 W= 14 C= 299

Figure 7. Supermarket Overlay: Hour 20

171

0
xxxxxxxxxxxxxxxxxxxxxxx U

T

I c

2 3 4 5 6 7 8 9 A B

Shopping Carts
11 F ree

c i Re9
uI
a
r

Number

Supermarket Simulation

of Counts Taken: 599 Time of Last Update: 0039:56:00

Storages
Storage Capacity Average E n tr ie s Total Time Current Maximum

Ca rts 20
Contents

9.4 609
in Storage
0370:01:18

Contents Contents
9 18

Queue
Queues

Maxi mum Ave rage Tota I Total Time Current

RegCk
Contents

13
Contents

3.2
E n tr ie s

430
in Queue
0098:14:29

Contents
2

ExpCk 2 0.0 173 0000:20:33 0
Ca rt 4 0.4 609 0000:00:00 0

S t a t i s t i c s are updated every fou r minutes o f :s imulation time.

0040:00:00 RIH P= 0 M= 100 W= 12 C= 601

Figure 8. Supermarket Overlay: Hour 40

172

173

overlay at the time the GPSS simulation was terminated was
saved also and can be seen in Figure 9; this will allow
comparison of results in the next section.
E. EVALUATE THE RESULTS

The comparison of the output from the PCModel simulation
and the GPSS simulation is best accomplished by assimilating
like statistics for each. The GPSS statistics of interest are
concerned with the queues (waiting lines for a cart, the
regular checkout, and the express checkout), the storage
(carts available to customers), and the facilities (the
regular and express checkout counters). The overlay of Figure
9 displays a number of the statistics of interest; the rest
will be determined here.

As discussed in the development of the software, it is
impossible to generate average times as division of clock
variables is not supported. However, running totals were kept
for the amounts of time spent in the various queues and
storage. The total time spent in the cart storage was 317
hours, 22 minutes, and 27 seconds (0317:22:27), or 1,142,547
seconds, as of the time of GPSS termination. The total number
of entries into the storage was 512, with 12 still in the
storage at the time the statistics were updated. Therefore 500
objects contributed to the running time total, so the average
per object is 2285.094 seconds (1,142,547 / 500). The average
times spent in the queues are obtained in a similar fashion:
916.969 seconds for the regular checkout queue, 7.239 seconds
for the express checkout queue, and 0.000 seconds for the cart
queue.

xxxxxxxxxxxxxxxxxxxxxxx U
T

0

4umbe r o f Counts Taken: 497 T i me of Last Update : 0033:08 : 00

Storages
Storage Capacity Average E n tr ie s Total Time Current Maximum

Contents in Storage Contents Contents
Ca rts 20 9.7 512 0317:22:27 12 18

Queues
Queue Maxi mum Average Tota 1 Total Time Current

Contents Contents E n t r ie s in Queue Contents
RegCk 13 3.5 363 0091:26:32 4
ExpCk 2 0.0 142 0000:17:08 0
Ca rt 4 0.4 512 0000:00:00 0

S ta t i s t ie s are updated every four minutes of s imulation time.

53:10: 17 R 1 H P= 0 M= 100 W= 14 C= 501

Figure 9. Supermarket Overlay: Time of GPSS Termination

174

175

Dhe determination of facility usage makes use of the
utilization statistics. For the regular checkout location,
the average of the hourly percentage utilizations over the 40
hour period is 90.557%; thus the counter was in use 36.223
hours. However, the customer route has each object move to the
counter and pause for 9 seconds before the delay for checkout.
(This is the last move up the aisle to the counter.) This time
needs to be subtracted out before the utilization figure is
comparable to that of GPSS. The overlay at the end of the 40
hour period, shown in Figure 8, indicates that the regular
checkout queue had a total of 430 entries with 2 of them still
in the queue at the time of update. The overlay also indicates
that 1 customer is still at the checkout counter. The
remaining 427 have all been handled by the checkout facility.
The total time due to the 9 second move delay is then 3843
seconds (9 * 427). Subtracting this time from the 36.223 hours
the counter was in use leaves 35.156 hours the counter was
occupied due to the checkout process alone. Division by the
entire period gives a true utilization factor of 0.879 for the
regular checkout facility. The same process applied to the
express checkout counter produces an average total utilization
figure of 14.558%. The amount of time occupied was then 5.8351
hours, 173 seconds of which is movement delay time. Thus the
counter delay time was 5.787 hours and the facility utilization
factor 0.145.

Two points should be mentioned here. First, the overlay
screen was last updated 4 minutes prior to the end of the 40

1 7

hour period. While the PCModel utilization figures are
accurate for the period, the number of objects that occupied
the facility locations may be slightly under the true count;
this would affect, although slightly, the statistics. For
example, if one more object completed use of the regular
checkout counter, the movement delay would change from 3843
seconds to 3852. This leaves 35.153 hours for the facility
utilization time which yields the same factor of 0.879. Thus
it is negligible and can be ignored. The 1 second figure for the
express checkout amounts to an even smaller discrepancy.

Second, the facility utilizations for the PCModel
simulation are derived for the entire 40 hour period, rather
than up to the time the GPSS simulation halted (0033:10:15).
This was done because the utilization statistics are not
accurate for the current hour until its end. Using the
utilizations at the end of the forty hour period solves this
problem. In any case, the result after forty hours should be
more accurate, if any difference occurs at all, because more
objects have been simulated.

The accumulated statistics are arranged in Table VII for
comparison. The figures for PCModel's queue contents are
rather exaggerated because of the fact that the customer
objects were moving about the screen at a finite speed while
inside the queues. Thus objects inside queues were not
necessarily waiting for something. This is the trade off with
generating graphic output that is meaningful. The average
storage contents are not influenced on the other hand, since

TABLE VI I
SUPERMARKET STATISTICS: PCMODEL VERSUS GPSS

PCMODEL Fac i I i t i es
Fac i l i t y Average

U tiliza tion
RegCk 0.879
ExpCk 0.145

GPSS
Fac iI i ty

RegCk
ExpCk

Fac i I i t ies
Average

Ut i l i zat ion
0.837
0.145

PCMODEL Storages
Storage Capac i ty Average E n tr ie s Average Current Max i mum

Contents T ime/Cust Contents Contents
Ca rts 20 9.7 512 2285.094 12 18

GPSS; Storages
Storage Capac i ty Ave rage E n tr ie s Average Current Maxi mum

Contents T i me/Cust Contents Contents
Ca rts 20 8.364 508 2034.390 8 19

PCMODEL Queues
Queue Maxi mum Ave rage Tota I Ave rage Current

Contents Contents En t r ie s T i me/Cust Contents
RegCk 13 3.5 363 916.969 4
ExpCk 2 0.0 142 7.239 0
Ca rt 4 0.4 512 0.000 0

GPSS Queues
Queue Maxi mum Ave rage Tota l Ave rage Current

Contents Contents Ent r i es T i me/Cust Contents
RegCk 11 1.746 352 613.141 5
ExpCk 2 0.005 153 4.771 0
Ca rt 1 0.000 508 0.000 0 177

178

the movement delays inside the storage were incorporated in the
shopping time. The average times for the storage and queues
should be accurate, as the movement delays were removed from
them before the calculations.

Upon comparison, it is easy to see that for the three non­
zero average times, PCModel’s times are greater than those of
GPSS. The utilization figure for the regular checkout facility
is higher than GPSS's, also. Finally, the average contents of
the cart storage is greater for PCModel than GPSS, indicating
that on the average there were more customers in the store than
in the GPSS simulation. Of course, the PCModel average
calculation is rather crude, but all of the statistics seem to
support it. The operation of the PCModel simulation appears to
run at a noticeably slower pace than the GPSS simulation.
Several things might explain this. For example, if the random
number sequence generated delay times on the high side of the
designated average, then the delays would tend to be longer
than they were supposed to be. The result would be that the
checkout procedures take too long and the queues consequently
back up. This in turn would increase the average number of
customers in the store, as would higher than defined average
shopping times. The results discussed here and those of the
warehouse simulation will be considered jointly in the
concluding section.

179

V. CONCLUSIONS
The thrust of this thesis has been to present the PCModel

simulation environment by means of examples and then compare
the example results to what has gone before. In the warehouse
problem it was obvious that the simulation did not behave in
the same manner as the GPSS model did; however, the complexity
of the two models allowed room for variations in results to
occur. The supermarket simulation, on the other hand, was
considerably less complicated; as such, the results derived
should be more comparable to those for the same model in
another language. The statistics formulated for the PCModel
system did indeed correspond to those found via GPSS, but the
system behaved in a pattern which kept its results different
from those of GPSS — all of the statistics indicated that the
PCModel processes were not operating as quickly as GPSS's. In
other words, delays and processing times appeared to be taking
longer than they should. By itself, this observation might be
attributed to the variations necessary to handle the problem
under PCModel. When taken in conjunction with the results
obtained for the warehouse simulation, a pattern seems to be
forming. Both models behaved in a manner that leads to some
degree of congestion. Further examples and analysis will be
required to determine if this is indeed the case. If so, there
may be some steps to take to adjust for the discrepancies.
Again, these would be determined from further study.

Concerning the programming environment and language
itself, PCModel has been shown to be easy to visualize. The

180

instruction set lends itself to rapid translation from
programming ideas to actual program code. This is one of the
points Emshoff and Sisson^ deem as essential: simulation
languages should be easy to think in terms of. As far as the
user is concerned, the display capability of PCModel eases the
verification of the model as correct. Going one step further,
presentation of a simulation to someone else, even someone
completely unfamiliar with programming of any type, is
simplified with PCModel. There is no need for the simulation
results to be trusted on the word of the programmer; anyone can
observe the simulation in action and verify for themselves that
it behaves as it should. Talavage^ comments on the need to
reduce the fear of what is not understood and trusted when
dealing with simulations and their results.

In conclusion, PCModel is clearly a step in the right
direction for the simulation of systems, as the ease of
programming and interactive features indicate. Further study
is however warranted to verify that the system behaves as it
should for comparison with other languages and to determine
what adjustments, if any, can be taken.

181

BIBLIOGRAPHY
1. Mittra, Sitansu S. "Discrete System Simulation

Concepts," Simulation, XXXXIII, 3 (September, 1984), 142-
144.

2. Stephenson, Robert E. Computer Simulation for Engineers.
New York: Harcourt Brace Jovanovich, Inc., 1971.

3. Culik, K. "On Simulation Methods and on Some
Characteristics of Simulation Languages," Simulation
Programming Languages, pp 234-247. Amsterdam: North-
Holland Publishing Company, 1968.

4. White, David A. PCModel: Personal Computer Screen
Graphics Modeling System User * s Guide. 1985.

5. Meier, Robert C. and others. Simulation in Business and
Economics. New Jersey: Prentice-Hall, Inc., 1969.

6. Pritsker, A. Alan B. and Wilson, James R. "A Survey of
Research on the Simulation Startup Problem," Simulation,
XXXI, 2 (August, 1978), 55-58.

7. Tocher, K. D. The Art of Simulation. London: The English
Universities Press LTD, 1963.

8. Graybeal, Wayne J. and Pooch, Udo W. Simulation:
Principles and Methods. Cambridge: Winthrop Publishers,
Inc., 1980.

9. Chorafas, Dimitris N. Systems and Simulation. New York:
Academic Press, 1965.

10. Crosbie, Roy E. and Hay, John L. "ISIM — A Simulation
Language for Microprocessors,
(September, 1984), 133-136.

Simulation, XXXXIII, 3

182

11. Licklider, J. C. R. "Interactive Dynamic Modeling,"
Prospects for Simulation and Simulators of Dynamic
Systems, 279-289. New York: Spartan Books, 1967.

12. Jones, Alfred W. "The Design of Interactive
Simulations," Record of Proceedings: The 18th Annual
Simulation Symposium, 1985.

13. Bobillier, P. A. and others. Simulation with GPSS and
GPSSV. New Jersey: Prentice-Hall, Inc., 1976.

14. GPSSV: An Introduction. International Business Machines
Corporation, 1979.

15. Emshoff, James R. and Sisson, Roger L. Design and Use of
Computer Simulation Models. New York: The Macmillan
Company, 1970.

16. Talavage, Joseph J. "Models for the Automatic Factory,"
Simulation, XXX, 3 (March 1978), 80-84.

183

VITA

Edward Telley Hammerand was born on November 21, 1961 in
Lebanon, Missouri. He received his primary and secondary
education in Lebanon. He has received his college education
from the University of Missouri-Rolla, in Rolla, Missouri,
where he was designated a Chevron Scholar during his last year.
He received his Bachelor of Science degree in Computer Science
in May 1984.

He has been enrolled in the Graduate School of the
University of Missouri-Rolla since August 1984 and has held a
Chancellor’s Fellowship since that time. He has been a
graduate teaching assistant in the Department of Computer
Science for the full time of his enrollment.

184

APPENDIX A
THE AUTOMATED WAREHOUSE PROGRAM

M=(200) max number of objects to ever
be active at any one time
init num of objects that may be
active at any given time

count of symbols to have storage
reserved for

W=(200)
S=(600)

X=(100)
Y=(70)

x dimension of screen
y dimension of screen

D= ***** Simulation of an Automated Warehouse *****
A warehouse is a building used for storing products until they are

required. Goods are kept on standard-sized trays, called pallets.
Movement of pallets means movement of the goods on those pallets.
Shelves or racks are divided into bins, each of which can accomodate one
pallet. Racks are in turn arranged vertically in corridors.

The warehouse of this simulation is built to handle pallets of lxlxl
meter,- its bins can hold one pallet each. The warehouse consists of
three principal parts: a shipping/receiving bay, the warehouse itself,
consisting of racks of bins, and a conveyor which connects the two.

The shipping and receiving bay is the interface between the warehouse
and the outside world, which can be thought of as the trucks and
railcars that transport goods to and from the warehouse. This problem
models one shipping and one receiving bay.

The warehouse has 10 corridors; each has a stacker crane, which moves
pallets in and out of the 2 adjacent racks. The length of a corridor is
50 m and the height 10 m; thus a rack has 500 bins in which 500 pallets
can be stored. Each crane has access to 1000 bins (left and right
track) and the total capacity of the 10 corridors is 10,000 pallets.

The conveyor connects the receiving and shipping bays with the racks.
It is continuous and designed on 2 levels to move the pallets between
the corridors on the upper level and the shipping/receiving bays on the
lower level. The connections between levels are made by 2 elevators.

The problem is to simulate the operation of the warehouse to check if
it can operate satisfactorily, especially during peak hours. $

0=(=) ; overlay kept in WH.OLY
V=(XY(1,46)) ; viewing-window location

; Symbol Definitions

185

@RECVRATE=(60)
@SHIPRATE=(120)
@HORZRATE=(12)
@VERTRATE=(120)
@RNDMCORR=(0)
@RNDMZONE=(0)
@C0L0R=(7)
@BUFCAP=(4)
@G0=(0)
@TEMP=(0)

@INBUF1=(0)
@INBUF2=(0)
@INBUF3=(0)
@INBUF4=(0)
@INBUF5=(0)
@INBUF6=(0)
@INBUF7=(0)
@INBUF8=(0)
@INBUF9=(0)
@INBUF0=(0)

@RECRQ1=(0)
@RECRQ2=(0)
@RECRQ3=(0)
@RECRQ4=(0)
@RECRQ5=(0)
@RECRQ6=(0)
@RECRQ7=(0)
@RECRQ8=(0)
@RECRQ9=(0)
@RECRQ0=(0)

@OKRECRQ1=(0)
@OKRECRQ2=(0)
@0KRECRQ3=(0)
@0KRECRQ4=(0)
@0KRECRQ5=(0)
@OKRECRQ6=(0)
@0KRECRQ7=(0)
@OKRECRQ8=(0)
@OKRECRQ9=(0)
@OKRECRQ0=(0)

; rate for recvd goods (sec per)
; rate for shp requests (sec per)
; crane horizontal rate (sec/m)
; crane vertical rate (sec/m)
; random corridor number
; random zone value
; background color for objects
; capacity of corr input buffers
; conveyor synchronization
; work variable used in links
; variables for num of objects on
; input conveyors

; num of objs waiting to be placed
; by the crane in the corridor

; num of objs the crane has taken
; from those waiting to be put up

@SHPRQ1=(0)

num of shipping objs that are
waiting to be brought from
their bins to the conveyor

186

@SHPRQ2=(0)
@SHPRQ3=(0)
@SHPRQ4=(0)
@SHPRQ5=(0)
@SHPRQ6=(0)
@SHPRQ7=(0)
@SHPRQ8=(0)
@SHPRQ9=(0)
@SHPRQ0=(0)

; num of shipping objs the crane
; has brought to the conveyor and
; thus may be released onto it

@OKSHPRQ1=(0)
@OKSHPRQ2=(0)
@OKSHPRQ3=(0)
@0KSHPRQ4=(0)
@OKSHPRQ5=(0)
@OKSHPRQ6=(0)
@0KSHPRQ7=(0)
@OKSHPRQ8=(0)
@OKSHPRQ9=(0)
@OKSHPRQ0=(0)

; work variables for quantities
; in zones

@ZONEA=(0)
@ZONEB=(0)
@ZONEC=(0)
@ZONED=(0)

; corridor 1 zone quantities
@ZONE1A=(0)
@ZONE1B=(0)
@ZONE1C=(0)
@ZONE1D=(0)

; corridor 2 zone quantities@ZONE2A=(0)
@ZONE2B=(0)
@Z0NE2C=(0)
@ZONE2D=(0)

; corridor 3 zone quantities
@ZONE3A=(0)
@ZONE3B=(0)
@ZONE3C=(0)
@ZONE3D=(0)

; corridor 4 zone quantities
@ZONE4A=(0)
@ZONE4B=(0)
@ZONE4C=(0)
@ZONE4D=(0)

; corridor 5 zone quantities
@ZONE5A=(0)
<azONE5B=(0)
@ZONE5C=(0)
@ZONE5D=(0)

187

; corridor 6 zone quantities
@ZONE6A=(0)
@Z0NE6B=(0)
@ZONE6C=(0)
@ZONE6D=(0)

; corridor 7 zone quantities
@ZONE7A=(0)
@ZONE7B=(0)
@ZONE7C=(0)
0ZONE7 D=(0)

; corridor 8 zone quantities
@ZONE8A=(0)
@ZONE8B=(0)
@ZONE8C=(0)
@ZONE8D=(0)

; corridor 9 zone quantities
@ZONE9A=(0)
@ZONE9B=(0)
@ZONE9C=(0)
@Z0NE9D=(0)

; corridor 10 zone quantities
@ZONE0A=(0)
0ZONEOB—(0)
0ZONEOC=(O)
0ZONEOD=(O)
#SEED=(9997) ; random number sequence seed

J=(1,X,1,0,0,0,1)
J=(2,#,2,0,0,1,1)

; Job Descriptions
; initialization
; synchronization of conveyor belt

J=(3,R,3,0,0,2,5000)
j=(4,S,4,0,0,2,5000)
J=(11,1,11,0,0,2,1)
J=(12,2,12,0,0,2,l)
J=(13,3,13,0,0,2,l)
J=(14,4,14,0,0,2,1)
J=(15,5,15,0,0,2,1)
J=(16,6,16,0,0,2,1)
J=(17,7,17,0,0,2,l)
J=(18,8,18,0,0,2,l)
J=(19,9,19,0,0,2,1)
J=(20,0,20,0,0,2,1)

,- receiving items
; shipping items
; Crane # 1
; Crane # 2
; Crane # 3
; Crane # 4
; Crane # 5
; Crane # 6
; Crane # 7
; Crane # 8
; Crane # 9
; Crane # 0

; Utilization Locations

188

U=(1,REC 1, XY(8,47))
U=(2,SHP 1,XY(8,49))
U=(3,REC 2,XY(15,47))
U=(4,SHP 2,XY(15,49))
U=(5,REC 3,XY(22,47))
U=(6,SHP 3,XY(22,49))
U=(7,REC 4, XY(29,47))
U= (8,SHP 4,XY(29,49))
U=(9,REC 5,XY(36,47))
U=(10,SHP 5,XY(36,49))
U== (11, REC 6 , XY(43,47))
U=(12,SHP 6,XY(43,49))
U=(13,REC 7,XY(50,47))
U=(14,SHP 7,XY(50,49))
U= (15 , REC 8, XY (57,47))
U=(16,SHP 8,XY(57,49))
U=(17,REC 9,XY(64,47))
U=(18,SHP 9,XY(64,49))
U=(19,REC 0,XY(71,47))
U=(20,SHP 0, XY(71,49))

; Crane # 1

; Crane # 2

; Crane # 3

; Crane # 4

; Crane # 5

; Crane # 6

; Crane # 7

; Crane # 8

; Crane # 9

; Crane # 0

BL(!RECVZONE)

SV(OBJ02,0)

; Link to determine zone
; for receiving
; 0BJ@1: unaltered (work variable)
; OBJ@2: full-zone flag
; OBJ@3: in the selected zone
; OBJ@4: offset to zone
; 0BJ@5: unaltered (h. position)
; OBJ@6: unaltered (v. position)
; clear full flag

RV(©RNDMZONE,1,100)
IF(0RNDMZONE,LT,41,:RZONEA)
IF(0RNDMZONE,LT,71,:RZONEB)
IF(@RNDMZ0NE,LT,91,:RZ0NEC)
JP(sRZONED)

generate random zone value
; 40% = (1, 40) so Zone A
; 30% = (41, 70) so Zone B
; 20% = (71, 90) so Zone C
; 10% = (91,100) so Zone D

:RZONEA IF(@Z0NEA,EQ,260,:ZONEFULL) ; if zone A is full, go set flag

189

RZONEB

RZONEC

RZONED

ZONEFULL

OKSTORE

SV(OBJ@3,©ZONEA)
IV(©ZONEA)
SV(OBJ@4,0)
JP(:OKSTORE)

ZONEA is the # in zone A of corr
increment for storage
set offset for zone A
go to store the pallet

IF(©ZONEB,EQ,240,:ZONEFULL)
SV(OBJ@3,©ZONEB)
IV(©Z0NEB)
SV(0BJ@4,13)
JP(:OKSTORE)

; if zone B is full, go set flag
ZONEB is the # in zone B of corr
increment for storage
set offset for zone B
go to store the pallet

IF(©ZONEC,EQ,260,:ZONEFULL)
SV(OB J@3,©ZONEC)
IV(©ZONEC)
SV(0BJ@4,25)
JP(:OKSTORE)

; if zone C is full, go set flag
ZONEC is the # in zone C of corr
increment for storage
set offset for zone C
go to store the pallet

IF(©ZONED,EQ,240,:ZONEFULL)
SV(OBJ@3,©ZONED)
IV(©ZONED)
SV(0BJ@4,38)
JP(:OKSTORE)

,- if zone D is full, go set flag
ZONED is the # in zone D of corr
increment for storage
set offset for zone D
go to store the pallet

SV(OBJ@2,1) 0BJ@2 is set if the zone was full
At this point, it is known (by
OBJ©4) which zone the crane is
headed for & (by 0BJ©3) how
many are in the zone

BL(!RECVMOVE)

SV(OBJ@l,OBJ@5)
DV(OBJ@l)
AO(OBJ©1,*,©HORZRATE)
ST(0BJ@1)
SV(0BJ©5,1)

Link to move crane for receiving
OBJ@1: work variable
0BJ@2: work variable
OBJ@3: # in zone
OBJ©4: offset to zone
0BJ@5: crane horizontal position
0BJ©6: crane vertical position
First, the crane must move from
current pos to the input position
(H=l, V=l) to pick up the item
copy the horizontal position
decrement for horizontal distance
multiply distance by sec/meter
time to move horizontally
set the new horizontal position

190

SV(0BJ@1,0BJ@6)
DV(OB J@1)
AO(OBJ@1,*,©VERTRATE)
ST(0BJ@1)
SV(0BJ@6,1)

SV(OBJ@1,0BJ@3)
AO(0BJ@1, / , 2 0)

AO(OBJ@1,+,OBJ@4)
SV(OBJ@2,OBJ@1)
AO(OBJ©2, + , 1)
AO(OBJ@1,*,©HORZRATE)
ST(OBJ@1)
SV(OBJ@5,0BJ©2)

SV(OBJ@1,OBJ@3)
AO(OBJ@l, /,20)
AO(OBJ@l,*,20)
SV(OBJ@2,OBJ@3)
AO(OBJ@2,-,OBJ@l)
AO(OBJ@2, / , 2)

SV(OBJ@l,0BJ@2)
AO(OBJ@2,+,l)
AO(OBJ@1,*,©VERTRATE)
ST(OBJ@1)
SV(OBJ@6,0BJ@2)
EL

; copy the vertical position
; decrement for vertical distance
; multiply distance by sec/meter
; time to move vertically
set the new vertical position

; With the crane at the input pos
; at the conveyor belt, the item
; can be picked up and moved to
; its bin
; First, move horizontally
; strategy = determine number in
; horz row to move by determining
; num of whole 201s in the zone
; # in the zone being examined
; integer division by # in each m
add zone offset

; OBJ© 1 & 2 are distance to move
; add 1 for horizontal position
; multiply distance by sec/meter
; time to move horizontally
; set the new horizontal position
; Second, move vertically
,- strategy = determine num in vert
; column to move by removing whole
; 201s (horiz) & then dividing
,- remaining quantity by # per m
; vertically (2)
; # in the zone being examined
; integer division by #/m horz
; mult, for greatest multiple of 20
; in the zone again
; get the remainder after 201s gone
; integer division by #/m vert
; copy this distance
; add 1 for vertical position
; multiply distance by sec/meter
; time to move vertically
; set the new vertical position

; Link to determine zone for
; shipping

191

: SZONEA

tSZONEB

:SZONEC

: SZONED

NONEMPTY

:OKGET

BL(!SHIPZONE)
OBJ@lr- unaltered (work variable)
OBJ@2: empty-zone flag
OBJ@3: " # in the selected zone
OBJ@4: offset to zone
0BJ@5: unaltered (h. position)
0BJ@6: unaltered (v. position)

SV(OBJ@2,0) clear zone empty flag
RV(0RNDMZONE,1,100)
IF(0RNDMZONE,LT,41,:SZONEA)
IF (©RNDMZONE,LT,71,:SZONEB)
IF(©RNDMZONE,LT,91, :SZONE C)
JP(:SZONED)

generate random :zone value
7 40% = (1. 40) SO ZONE A
; 30% = (41, 70) SO ZONE B
; 20% = (71, 90) SO ZONE C
; 10% = (91,100) SO ZONE D

IF(0ZONEA,EQ,0, :ZONEMPTY)
SV(0BJ@3,@Z0NEA)
DV(@ZONEA)
SV(OBJ@4,0)
JP(:0KGET)

if no pallets in zone A, set flag
ZONEA is the # in the zone
decrement for retrieval
set offset for zone A
go get the pallet

IF(©ZONEB,EQ,0,:ZONEMPTY)
SV(OBJ@3,©ZONEB)
DV(©ZONEB)
SV(0BJ©4,13)
JP(:0KGET)

if no pallets in zone B, set flag
ZONEB is the # in the zone
decrement for retrieval
set offset for zone B
go get the pallet

IF(©ZONEC,EQ,0,:ZONEMPTY)
SV(OBJ03,0ZONEC)
DV(0ZONEC)
SV(0BJ@4,25)
JP(:0KGET)

if no pallets in zone C, set flag
ZONEC is the # in the zone
decrement for retrieval
set offset for zone C
go get the pallet

IF(0ZONED,EQ,0,:ZONEMPTY)
SV(OBJ@3,0ZONED)
DV(©ZONED)
SV(OBJ04,38)
JP(:0KGET)

if no pallets in zone D, set flag
ZONED is the # in the zone
decrement for retrieval
set offset for zone D
go get the pallet

SV(0BJ@2,1) set 0BJ©2 if the zone was empty
At this point, it is known (by
0BJ@4) which zone the crane is
headed for & (by OBJ03) how many
are in the zone

BL(!SHIPMOVE)
Link to move crane for shipping

192

OBJ01: work variable
OBJ02: work variable
OBJ03: # in zone
OBJ04: offset to zone
OBJ05: crane horizontal position
0BJ@6: crane vertical position

SV(OBJ@l,OBJ@3)
AO(OBJ01,/,2O)
AO(OBJ01,+,OBJ04)
AO(OBJ01,+,1)
SV(OBJ02,OBJ01)

First, move horizontally
in the zone being examined
integer division by # in each m
add zone offset
add 1 for horizontal position
OBJ02 is now horiz pos desired

IF(OBJ05,GT,OBJ01,:D0WN1)
AO(OBJ01,-,OBJ05)
JP(:D0WN2)

if current pos > new pos, jump
get diff of positions in OBJ01

D0WN1 SV(0TEMP,OBJ05)
AO(0TEMP,-(OBJ01)
SV(OBJ01,0TEMP)

copy to avoid altering OBJ05
get difference of positions
put it in OBJ01

DOWN 2 AO(OBJ01,*,0HORZRATE)
ST(OBJ01)
SV(OBJ05,OBJ02)

multiply distance by sec/meter
time to move horizontally
set the new horizontal position
Second, move vertically
strategy = determine num in vert
column to move by removing whole
201s (horiz) & dividing
remaining quantity by # per m
vertically (2)

SV(OBJ01,OBJ03)
AO(OBJ01,/,20)
AO(OBJ01,*,20)
SV(OBJ02,OBJ03)
AO(OBJ02,-,OBJ01)
AO (OB J02 , / , 2)
AO(OBJ02, + , 1)
SV(OBJ01,OBJ02)

in the zone being examined
integer division by # in each m
mult, for greatest multiple of 20
in the zone again
get the remainder after 20's gone
integer division by #/m vert
add 1 for vertical position
copy pos for updating parameter

IF(OBJ06,GT,OBJ01,:DOWN3)
AO(OBJ01,-,OBJ06)
JP(:D0WN4)

if current pos. > new pos., jump
get diff of positions in OBJ01

D0WN3 SV(0TEMP,OBJ06)
AO(0TEMP,-,OBJ01)
SV(OBJ01/0TEMP)

copy to prevent altering
get difference of positions
put it in OBJ01

D0WN4 AO(OBJ01,*,0VERTRATE)
ST(OBJ01)
SV(OBJ06,OBJ02)

multiply distance by sec/meter
time to move vertically
set the new vertical position

193

; At this point, the crane has the
; item & must move to the exit
; pos (H=l, V=1) at conveyor belt

SV(OBJ@l,OBJ@5) ; copy parameter to avoid altering
DV(0BJ@1) ; decrement for horizontal distance
A0(0BJ@1,*,@HORZRATE) ; multiply distance by sec/meter
ST(OBJ@l) ; time to move horizontally
SV(0BJ@5,1) ; set horizontal position at floor
SV(0BJ@1,OBJ06)
DV(OBJ@l)
A0(0BJ@1,*.@VERTRATE)
ST(0BJ@1)
SV(0BJ@6,1)
EL

copy parameter to avoid altering
decrement for vertical distance
multiply distance by sec/meter
time to move vertically
set vertical position at floor

BR(1,XY(60,68),0)
RS(#SEED)
SV(@GO,0)
VW(XY(1,46))

SV(@INBUF1,0)
SV(0INBUF2,0)
SV(0INBUF3,0)
SV(@INBUF4,0)
SV(@INBUF5,0)
SV(@INBUF6,0)
SV(@INBUF7,0)
SV(@INBUF8,0)
SV(0INBUF9,0)
SV(@INBUF0,0)
SV(0RECRQ1,0)
SV(0RECRQ2,0)
SV(0RECRQ3,0)
SV(@RECRQ4,0)
SV(@RECRQ5,0)
SV(0RECRQ6,0)
SV (0RE CRQ7,0)
SV (@RE CRQ8,0)
SV(0RECRQ9,0)
SV(0RECRQO,0)

,• Job which initializes
; the simulation

; init random number sequence
; set conveyor synchronization
; set initial window position
; init variables defined above

SV(0OKRECRQ1,0)

194

SV(0OKRECRQ2,0)
SV(0OKRECRQ3,0)
SV(0OKRECRQ4,0)
SV(0OKRECRQ5,0)
SV(0OKRECRQ6,0)
SV(@0KRECRQ7,0)
SV(@0KRECRQ8,0)
SV(0OKRECRQ9,0)
SV(@OKRECRQ0,0)
SV(0SHPRQ1,0)
S V (0SHPRQ 2,0)
SV(0SHPRQ3,0)
SV(0SHPRQ4,0)
SV(0SHPRQ5,0)
SV(0SHPRQ6,0)
SV(0SHPRQ7,0)
SV(0SHPRQ8,0)
SV(0SHPRQ9,0)
SV(@SHPRQ0,0)
SV(0OKSHPRQ1,0)
SV(0OKSHPRQ2,0)
SV(0OKSHPRQ3,0)
SV(0OKSHPRQ4,0)
SV(@OKSHPRQ5,0)
SV(@0KSHPRQ6,0)
SV(@OKSHPRQ7,0)
SV(@OKSHPRQ8,0)
SV(0OKSHPRQ9,0)
SV(0OKSHPRQO,0)
SV(0ZONE1A,0)
SV(@Z0NE1B,0)
SV(0ZONE1C,0)
SV(@Z0NE1D,0)
SV(0ZONE2A,0)
SV(0ZONE2B,0)
SV(0ZONE2C,0)
SV(@ZONE2D,0)
SV(@ZONE3A,0)
SV(0ZONE3B,0)
SV(0ZONE3C,0)
SV(0ZONE3D,0)
SV(0ZONE4A,0)
SV(0ZONE4B,0)
SV(@ZONE4C,0)
SV(0ZONE4D,0)
SV(@ZONE5A,0)

SV(0ZONE5B,0)
SV(@ZONE 5 C , 0)
SV(0ZONE5D,0)

195

SV(0ZONE6A,0)
SV(0ZONE6B,0)
SV(0ZONE6C,0)
SV(0ZONE6D,0)
S V (@ZONE7A,0)
SV(0ZONE7B,0)
SV(@Z0NE7C,0)
SV(0ZONE7D,0)
SV(0ZONE8A,0)
SV(0ZONE8B,0)
SV(0ZONE8C,0)
SV(0ZONE8D,0)
SV(0ZONE9A,0)
SV(0ZONE9B,0)
SV(0ZONE9C,0)
SV(0ZONE9D,0)
SV (0ZONEOA, 0)
SV(0ZONEOB,0)
SV(0ZONEOC,0)
SV(@ZONE0D,0)
ER

BR(2,XY(65,68),0)
Job which continuously sets
"GO" with each clock second

BACK IV(@GO)
IF(@GO,LT,12,:OVER)
SV(0GO,0)

increment to next value on (0,11)
on (0,11), "GO" is valid
otherwise, reset sequence

OVER ST(1)
JP(-.BACK)
ER

pause with value for 1 second
repeat each second

; Receiving
BR(3,XY(44,69),@RECVRATE) ; items arrive at bottom of screen

196

:WAIT

: READY

:C0RR1

:CONTI

: INPUT1

: BACK1

: CORR2

MU(9,6) ; move up to conveyor belt
DN
IF(0GO,EQ,0,:READY)
JP(:WAIT)
JB(2,XY(44,59),XY(45,59) ,
RV(0RNDMCORR,1,10)
SA(0COLOR,0RNDMCORR)
IF(0RNDMCORR,EQ,1,:CORR1)
IF(0RNDMCORR,EQ,2,:CORR2)
IF(0RNDMCORR,EQ,3,:CORR3)
IF(0RNDMCORR,EQ,4,:CORR4)
IF(0RNDMCORR,EQ,5,=CORR5)
IF(0RNDMCORR,EQ,6,:CORR6)
IF(0RNDMCORR,EQ,7,:CORR7)
IF(0RNDMCORR,EQ,8,:CORR8)
IF(0RNDMCORR,EQ,9,:CORR9)
JP(:CORRO)

; wait until synchronized with conv
; wait if space on conv is occupied

:WAIT)
; space open
; select corridor number
; set obj color to match corridor
; branch to selected corridor

R=(XY(44,60))
MU(1,0)
MR(30,3)

move onto conveyor
move to right edge of conveyor

MU(4,6)
ML(65,3)

move to upper level of conveyor
move to corridor # 1

IF(0INBUF1,LT,0BUFCAP,:INPUT1) if room on input conveyor,
leave main belt

ML(3,3) ; else go around again
MD(4,6)
MR(68,3)
JP(:CONTI)
R=(XY(9,55))
IV(0INBUF1)
MU(4,6)
IV(0RECRQ1)

inc # on input conveyor
move up input conveyor
update count waiting on crane

DN
IF(0OKRECRQ1,EQ,0,:BACK1)
DV(0OKRECRQ1)
DV(0RECRQ1)
DV(0INBUF1)
JP(:INDONE)

wait for # picked up to inc
decrement # picked up by crane
decrement # waiting for crane
decrement # on input conveyor
leave simulation

R=(XY(44,60)) ; See comments for Corridor # 1
MU(1,0)
MR(30,3)

: C0NT2 MU(4,6)

197

: INPUT2

: BACK2

: C0RR3

: C0NT3

INPUT3

: BACK3

: C0RR4

: C0NT4

ML(58,3)
IF(0INBUF2,LT,0BUFCAP,:INPUT2)
ML(10,3)
MD(4,6)
MR(68,3)
JP(: CONT2)
R=(XY(16,55))
IV(0INBUF2)
MU(4,6)
IV(0RECRQ2)
DN
IF(0OKRECRQ2,EQ,0,:BACK2)
DV(@0KRECRQ2)
DV(0RECRQ2)
DV(@INBUF2)
JP(: INDONE)

R=(XY(44,60)) ; See comments for Corridor # 1
MU(1,0)
MR(30,3)
MU(4,6)
ML(51,3)
IF(0INBUF3,LT,0BUFCAP,:INPUT3)
ML(17,3)
MD(4,6)
MR(68,3)
JP(:CONT3)
R=(XY(23,55))
IV(0INBUF3)
MU(4,6)
IV(0RECRQ3)
DN
IF(@0KRECRQ3,EQ,0,:BACK3)
DV(0OKRECRQ3)
DV(0RECRQ3)
DV(0INBUF3)
JP(:INDONE)

R=(XY(44,60)) ; See comments for Corridor # 1
MU(1,0)
MR(30,3)
MU(4,6)
ML(44,3)
IF(0INBUF4,LT,0BUFCAP,:INPUT4)
ML(24,3)

: INPUT4

:BACK4

:C0RR5

:C0NT5

: INPUT5

:BACK5

:C0RR6

:C0NT6

198

MD(4,6)
MR(68,3)
JP(:C0NT4)
R=(XY(30,55))
IV(0INBUF4)
MU(4,6)
IV(0RECRQ4)
DN
IF (0OKRECRQ4 , EQ , 0 , --BACK4)
DV(0OKRE CRQ4)
DV(0RECRQ4)
DV(0INBUF4)
JP(:INDONE)

R=(XY(44,60)) ; See comments for Corridor # 1
MU(1,0)
MR(30,3)
MU(4,6)
ML(37,3)
IF(0INBUF5 ,LT ,0BUFCAP , -.INPUT5)
ML(31,3)
MD(4,6)
MR(68,3)
JP(:C0NT5)
R= (XY(37,55))
IV(0INBUF5)
MU(4,6)
IV(0RECRQ5)
DN
IF(0OKRECRQ5,EQ,0,:BACK5)
DV(0OKRE CRQ 5)
DV(0RECRQ5)
DV(0INBUF5)
JP(:INDONE)

R-(XY(44,60)) ; See comments for Corridor # 1
MU(1,0)
MR(30,3)
MU(4,6)
ML(30,3)
IF(0INBUF6,LT,0BUFCAP,:INPUT6)
ML(38,3)
MD(4,6)
MR(68,3)
JP(:CONT6)

199

: INPUT6

:BACKS

:C0RR7

:C0NT7

: INPUT7

: BACK7

: C0RR8

:C0NT8

: INPUT8

R=(XY(44,55))
IV(@INBUF6)
MU(4,6)
IV(0RECRQ6)
DN
IF(0OKRECRQ6,EQ,0,:BACK6)
DV(@0KRECRQ6)
DV(0RECRQ6)
DV(@INBUF6)
JP(:INDONE)

R=(XY(44,60)) ; See comments for Corridor # 1
MU(1,0)
MR(30,3)
MU(4,6)
ML(23,3)
IF(0INBUF7,LT,0BUFCAP,:INPUT7)
ML(45,3)
MD(4,6)
MR(68,3)
JP(--C0NT7)
R=(XY(51,55))
IV(0INBUF7)
MU(4,6)
IV(@RECRQ7)
DN
IF(0OKRECRQ7,EQ,0,:BACK7)
DV(0OKRECRQ7)
DV(0RECRQ7)
DV(@INBUF7)
JP(:INDONE)

R=(XY(44,60)) ; See comments for Corridor # 1
MU(1,0)
MR(30,3)
MU(4,6)
ML(16,3)
IF(0INBUF8,LT,@BUFCAP,:INPUT8)
ML(52,3)
MD(4,6)
MR(68,3)
JP(:CONT8)
R=(XY(58,55))
IV(@INBUF8)
MU(4,6)

200

:BACK8

: C0RR9

-.C0NT9

: INPUT9

: BACK9

:CORRO

:CONTO

:INPUTO

IV(0RECRQ8)
DN
IF(0OKRECRQ8,EQ,0,:BACK8)
DV(00KRECRQ8)
DV(@RECRQ8)
DV(@INBUF8)
JP(.-INDONE)

R=(KY(44,60)) ; See comments for Corridor # 1
MU(1,0)
MR(30,3)
MU(4,6)
ML(9,3)
IF(0INBUF9,LT,@BUFCAP,:INPUT9)
ML(59,3)
MD(4,6)
MR(68,3)
JP(: C0NT9)
R=(XY(65,55))
IV(0INBUF9)
MU(4,6)
IV(0RECRQ9)
DN
IF(@OKRECRQ9,EQ,0,:BACK9)
DV(0OKRECRQ9)
DV(0RECRQ9)
DV(0INBUF9)
JP(:INDONE)

R—(XY(44,60)) ; See comments for Corridor # 1
MU(1,0)
MR(30,3)
MU (4,6)
ML(2,3)
IF(0INBUFO,LT,0BUFCAP,:INPUT0)
ML(66,3)
MD(4,6)
MR(68,3)
JP(:CONTO)
R=(XY(72,55))
IV(0INBUFO)
MU(4,6)
IV(ORECRQO)
DN:BACK0

:INDONE

:REPEAT

:EXIT1

:HOLDl

:WAIT1

201

IF(@OKRECRQ0,EQ,0,:BACK0)
DV(0OKRECRQO)
DV(@RECRQ0)
DV(@INBUF0)
JP(:INDONE)

ER

; Shipping
BR(4,XY(34,69),@SHIPRATE)
DN
RV(©RNDMCORR,1,10)
SA(©COLOR,©RNDMCORR)
IF(©RNDMCORR,EQ,1,:EXIT1)
IF(©RNDMCORR,EQ,2,:EXIT2)
IF(©RNDMCORR,EQ,3,:EXIT3)
IF(©RNDMCORR,EQ,4,:EXIT4)
IF(@RNDMCORR,EQ,5,:EXIT5)
IF(©RNDMCORR,EQ,6,:EXIT6)
IF(©RNDMCORR,EQ,7,:EXIT7)
IF(©RNDMCORR,EQ,8,:EXIT8)
IF(©RNDMCORR,EQ,9,:EXIT9)
JP(:EXIT0)

select corridor number
set obj color to match corridor
branch to selected corridor

R=(XY(7,47))
JB(1,XY(7,47) , -.REPEAT)
MA(XY(7,47),0)
MD(3,0)
DN
TP(1,XY(7,53))
IV(©SHPRQl)

if the shp request lane for the
corr is full, try a diff corr

else go to the corridor
move down request lane
pause for output buffer check
wait here if output buffer full
inc the # of shipping requests

DN
IF(©OKSHPRQ1,EQ,0,:HOLDI)
DV(©0KSHPRQ1)
DV(@SHPRQ1)
MD(4,0)

wait for # brought to conveyor by
crane to increment
decrement # brought to conveyor
decrement # of shipping requests
move down output buffer

DN
IF(@GO,EQ,3,:READY1) ; wait until synchronized with conv
JP(:WAIT1)
R=(XY(7,54))
JB(2,XY(7,55),XY(6,55),:WAIT1) ; wait if space on conv taken

:READY!

202

: EXIT2

:H0LD2

:WAIT2

: READY2

.-EXIT3

: H0LD3

:WAIT3

MD(1,0)
ML(1,3)
MD(4,6)
MR(29,3)
MD(10,6)
JP(:OUTDONE)

R=(XY(14,47))
JB(1,XY(14,47),:REPEAT)
MA(XY(14,47),0)
MD(3,0)
DN
TP(1,XY(14,53))
IV(©SHPRQ2)
DN
IF(©0KSHPRQ2,EQ,0,:HOLD2)
DV(©OKSHPRQ2)
DV(©SHPRQ2)
MD(4,0)
DN
IF(@GO,EQ,6,:READY2)
JP(:WAIT2)
R=(XY(14,54))
JB(2,XY(14,55),XY(13,55),:WAIT2)
MD(1,0)
ML(8,3)
MD(4,6)
MR(29,3)
MD(10,6)
JP(-.OUTDONE)

; move on to conveyor
; go to left edge of conveyor
; move down to lower level
; move right to shipping conveyor
; move down shipping conveyor
; leave simulation

; See comments for Exit # 1

R-(XY(21,47)) ; See comments for Exit # 1
JB(1,XY(21,47),:REPEAT)
MA(XY(21,47),0)
MD(3,0)
DN
TP(1,XY(21,53))
IV(©SHPRQ3)
DN
IF(©0KSHPRQ3,EQ,0,:H0LD3)
DV(©OKSHPRQ3)
DV(@SHPRQ3)
MD(4,0)
DN
IF(0GO,EQ,9,:READY3)
JP(:WAIT3)

.-READY3 R=(XY(21,54))

203

: EXIT4

:H0LD4

: WAIT4

:READY4

:EXIT5

:H0LD5

:WAIT5

JB(2,XY(21,55), XY(20,55),:WAIT3)
MD(1,0)
ML(15,3)
MD(4,6)
MR(29,3)
MD(10,6)
JP(:0UTD0NE)

R=(XY(28,47)) ; See comments for Exit # 1
JB (1 , XY' (28,47) , :REPEAT)
MA(XY(28,47),0)
MD(3,0)
DM
TP(1,XY(28,53))
IV(0SHPRQ4)
DN
IF(00KSHPRQ4,EQ,0,:HOLD4)
DV(00KSHPRQ4)
DV(0SHPRQ4)
MD(4,0)
DN
IF(@GO,EQ,0,:READY4)
JP(:WAIT4)
R=(XY(28,54))
JB(2,XY(28,55),XY(27,55),:WAIT4)
MD(1,0)
ML(22,3)
MD(4,6)
MR(29,3)
MD(10,6)
JP(:OUTDONE)

R=(XY(35,47)) ; See comments for Exit # 1
JB(1,XY(35,47),:REPEAT)
MA(XY(35,47),0)
MD(3,0)
DN
TP(1,XY(35,53))
IV(0SHPRQ5)
DN
IF(OOKSHPRQ5,EQ,0,:HOLD5)
DV(0OKSHPRQ5)
DV(OSHPRQ5)
MD(4,0)
DN
IF(@G0,EQ,3,:READY5)
JP(:WAIT5)

:READY5 R=(XY(35,54))

204

: EXIT6

: H0LD6

:WAIT6

:READY6

: EXIT7

: H0LD7

: WAIT7

JB(2,XY(35,55),XY(34, 55) ,:WAIT5)
MD(1,0)
ML(29,3)
MD(4,6)
MR(29,3)
MD(10,6)
JP(:OUTDONE)

R=(XY(42,47)) ; See comments for Exit # 1
JB(1,XY(42,47),:REPEAT)
MA(XY(42,47),0)
MD(3,0)
DN
TP(1,XY(42,53))
IV(©SHPRQ6)
DN
IF(©0KSHPRQ6,EQ,0,:HOLD6)
DV(©OKSHPRQ6)
DV(@SHPRQ6)
MD(4,0)
DN
IF(©GO,EQ,6,:READY6)
JP(:WAIT6)
R=(XY(42,54))
JB(2,XY(42,55),XY(41,55),:WAITS)
MD(1,0)
ML(36,3)
MD(4,6)
MR(29,3)
MD(10,6)
JP(:OUTDONE)

R=(XY(49,47)) ; See comments for Exit # 1
JB(1,XY(49,47),:REPEAT)
MA(XY(49,47),0)
MD(3,0)
DN
TP(1,XY(49,53))
IV(©SHPRQ7)
DN
IF(©OKSHPRQ7,EQ,0,:H0LD7)
DV(©OKSHPRQ7)
DV(©SHPRQ7)
MD(4,0)
DN
IF(©GO,EQ,9,:READY7)
JP(:WAIT?)

:READY7 R=(XY(49,54))

205

:EXIT8

:H0LD8

: WAIT8

:READY8

:EXIT9

:H0LD9

:WAIT9

JB(2,XY(49,55),XY(48,55),:WAIT7)
MD(1,0)
ML(43,3)
MD(4,6)
MR(29,3)
MD(10,6)
JP(:OUTDONE)

R=(XY(56,47)) ; See comments for Exit # 1
JB(1,XY(56,47),:REPEAT)
MA(XY(56,47),0)
MD(3,0)
DN
TP(1,XY(56,53))
IV(©SHPRQ8)
DN
IF(©0KSHPRQ8,EQ,0,:HOLD8)
DV(©OKSHPRQ8)
DV(@SHPRQ8)
MD(4,0)
DN
IF(©GO,EQ,0,:READY8)
JP(:WAIT8)
R=(XY(56,54))
JB(2,XY(56,55),XY(55,55),:WAIT8)
MD(1,0)
ML(50,3)
MD(4,6)
MR(29,3)
MD(10,6)
JP(:OUTDONE)

R=(XY(63,47)) ; See comments for Exit # 1
JB(1,XY(63,47),:REPEAT)
MA(XY(63,47),0)
MD(3,0)
DN
TP(1,XY(63,53))
IV(@SHPRQ9)
DN
IF(©OKSHPRQ9,EQ,0,:HOLD9)
DV(©OKSHPRQ9)
DV(@SHPRQ9)
MD(4,0)
DN
IF(©GO,EQ,3,:READY9)
JP(:WAIT9)

:READY9 R=(XY(63,54))

206

JB(2,XY(63,55),XY(62,55),:WAIT9)
MD(1,0)
ML(57,3)
MD(4,6)
MR(29,3)
MD(10,6)
JP(-.OUTDONE)

EXITO R=(XY(70,47)) ; See comments for Exit # 1
JB(1,XY(70,47),:REPEAT)
MA(XY(70,47),0)
MD(3,0)
DN
TP(1,XY(70,53))
IV(@SHPRQ0)

HOLDO DN
IF(0OKSHPRQO,EQ,0,:HOLDO)
DV(0OKSHPRQO)
DV(@SHPRQ0)
MD(4,0)

WAITO DN
IF(@GO,EQ,6,:READYO)
JP(:WAITO)

READYO R=(XY(70,54))
JB(2,XY(70,55),XY(69,55),:WAITO)
MD(1,0)
ML(64,3)
MD(4,6)
MR(29,3)
MD(10,6)
JP(:OUTDONE)

OUTDONE ER

CRANE1

; Crane #1
BR(11,XY(8,50),0)

; Crane parameters:
SV(OBJ@5,l) horizontal position of crane
SV(OBJ@6,1) ; vertical position of crane
DN

RECVING1 IF(0RECRQ1,GT,0,:REC1) ; check for pallet to store in bins
DN ; delay to prevent infinite loop

SHPPING1 IF(@SHPRQ1,GT,0,:SHP1) ; check for a retrieval from bins
JP(:CRANE1) ; else wait

207

REC1

FULL1

SHP1

SV(OZONEA,OZONE1A)
SV(OZONE B,OZONE1B)
SV(OZONE C,OZONE1C)
SV(OZONED,OZONE1D)
LK(!RECVZONE)
SV(OZONE1A ,OZONEA)
SV(OZONEIB,©ZONEB)
SV(OZONE1C,©ZONEC)
SV(OZONEID,OZONED)
IF(OBJ©2,EQ,l,:FULL1)
IV(OOKRECRQ1)
MA(XY(8,47),0)
LK(!RECVMOVE)
PV(XY(4,39),OZONEID)
PV(XY(4,41),OZONE1C)
PV(XY(4,43),OZONEIB)
PV(XY(4,45),©Z0NE1A)
PV(XY(4,32),OBJ05)
PV (XY (4,34) , OBJ@6)

MA(XY(8,48),0)
JP(:SHPPING1)

This section covers placement of
a pallet when received
set zone quantities for the corr
for use by RECZONE

select zone & set parameters
update zone quantities for corr
after zone selected by RECZONE

if zone was full, nothing put up
inc # to exit from input buffer
step back 3 to signal "receiving"
move for receiving
print zone quantities

print horizontal position
print vertical position
At this point, the crane has
placed the pallet at its
position & will wait here until
needed
forward 1 to signal "waiting"
check for shipping request

SV(©ZONEA,©ZONE1A)
SV(©ZONEB,0ZONE1B)
SV(©ZONE C,©ZONE1C)
SV(©ZONED,©ZONE1D)
LK(!SHIPZONE)
SV(©ZONE1A ,©ZONEA)
SV(©ZONEIB,©ZONEB)
SV(©ZONE1C,©ZONE C)
SV(©ZONEID,©ZONED)
IF(OBJ@2,EQ,1,:EMPTY1)
MA(XY(8,49),0)
LK(!SHIPMOVE)

This section covers retrieval of
a pallet for shipping
set zone quantities for the corr
for use by SHPZONE

select zone & set parameters
update zone quantities for corr
after zone selected by SHIPZONE

if zone empty, nothing to ship
step back I to signal "shipping"
move for shipping

208

:EMPTY1

: CRANE2
:RECVING2
: SHPPING2

: REC2

IV(OOKSHPRQl)

PV(XY(4,39),OZONEID)
PV(XY(4,41),©Z0NE1C)
PV(XY(4,43),©Z0NE1B)
PV(XY(4,45),©Z0NE1A)
PV(XY(4,32),OBJ05)
PV(XY(4,34),OBJ06)

MA(XY(8,50),0)
JP(:RECVING1)

ER

; increment # that can leave corr

; print zone quantities

,- print horizontal position
; print vertical position

; At this point, the crane has
; reached the conveyor and
; released the item
,- move forward 1 to be at conveyor

; check for received item

; Crane #2
BR(12,XY(15,50),0)

; See comments for Crane # 1
SV(0BJ05,1)
SV(OBJ06,1)
DN
IF(0RECRQ2,GT,0,:REC2)
DN
IF(0SHPRQ2,GT,0,:SHP2)
JP(:CRANE2)
SV (©ZONEA , @ZONE 2A)
SV(©ZONEB,OZONE 2B)
SV (OZONE C , OZONE 2 C)
SV(OZONED,0Z0NE2D)
LK(!RECVZONE)
SV(0Z0NE2A,OZONEA)
SV(OZONE2B ,OZONEB)
SV(0Z0NE2C,OZONEC)
SV(0Z0NE2D,OZONED)
IF(OBJ02,EQ,1,:FULL2)
IV(00KRECRQ2)
MA(XY(15,47),0)
LK(!RECVMOVE)
PV(XY(11,39),0Z0NE2D)
PV(XY(11,41),0Z0NE2C)

209

:FULL2

: SHP 2

:EMPTY2

:CRANE3
:RECVING3
:SHPPING3

PV(XY(11,43),0ZONE2B)
PV(XY(11,45),0ZONE2A)
PV(XY(11,32),OBJ05)
PV(XY(11,34),OBJ06)
MA(KY(15,48),0)

JP(:SHPPING2)

SV(0ZONEA,0ZONE 2A)
SV(0ZONEB,0ZONE2B)
SV(0ZONEC,0ZONE2C)
SV(OZONED,0ZONE 2D)
LK(!SHIPZONE)
SV(0ZONE2A,0ZONEA)
SV (0ZONE2B , @ZONEB)
SV(0ZONE2C,0ZONEC)
SV(0ZONE2D,OZONED)
IF(OBJ02,EQ,1,:EMPTY2)
MA(XY(15,49),0)
LK(iSHIPMOVE)
IV(0OKSHPRQ2)
PV(XY(11,39),0ZONE2D)
PV(XY(11,41),0ZONE2C)
PV(XY(11,43),0ZONE2B)
PV(XY(11,45),0ZONE2A)
PV(XY(11,32),0BJ@5)
PV(XY(11,34),0BJ@6)
MA(XY(15,50),0)
JP(:RECVING2)
ER

; Crane #3
BR(13,XY(22,50),0)

; See comments for Crane # 1
SV(OBJ05,1)
SV(OBJ@6,1)
DN
IF(0RECRQ3,GT,0,:REC3)
DN
IF(0SHPRQ3,GT,0,:SHP3)

210

REC3

FULL3

SHP3

JP(:CRANE3)
S V (OZONEA , OZONE 3 A)
SV (OZONEB,OZONE3B)
SV(OZONEC,0ZONE3C)
SV(OZONED,OZONE3D)
LK(!RECVZONE)
SV(0Z0NE3A,OZONEA)
SV(0Z0NE3B,OZONEB)
SV(OZONE 3 C,OZONE C)
SV(0ZONE3D,OZONED)
IF(OBJ02,EQ,1,:FULL3)
IV(00KRECRQ3)
MA(XY(22,47),0)
LK(’RECVMOVE)
PV(XY(18,39),OZONE3D)
PV(XY(18,41),OZONE3C)
PV(XY(18,43),0ZONE3B)
PV(XY(18,45),0ZONE3A)
PV(XY(18,32),0BJ05)
PV(XY(18,34),0BJ06)
MA(XY(22,48),0)
JP(:SHPPING3)

SV (OZONEA , OZONE 3A)
SV (OZONEB , OZONE 3 B)
SV(0ZONEC,0Z0NE3C)
SV (OZONED,0ZONE3D)
LK(!SHIPZONE)
SV (OZONE 3A, OZONEA)
SV(OZONE 3 B,OZONE B)
SV (0Z0NE3 C, OZONE C)
SV(0Z0NE3D,OZONED)
IF(OBJ02,EQ,1,:EMPTY3)
MA(XY(22,49),0)
LK(’SHIPMOVE)
IV(00KSHPRQ3)
PV(XY(18,39),0Z0NE3D)
PV(XY(18,41),0Z0NE3C)
PV(XY(18,43),OZONE3B)
PV(XY(18,45),OZONE3A)
PV(XY(18,32),0BJ05)

211

: EMPTY3

: CRANE4
: RECVING4

:SHPPING4

: REC4

:FULL4

: SHP4

PV(KY(18,34),0BJ@6)
MA(XY(22,50), 0)
JP(:RECVING3)

ER

BR(14,XY(29,50),0)

SV(OBJ@5,1)
SV(OBJ@6,1)

DN
IF(@RECRQ4,GT,0,:REC4)
DN
IF(©SHPRQ4 ,GT , 0 , :SHP4)
JP(:CRANE4)

S'V (©ZONEA , ©Z0NE4A)
SV(©ZONEB,@Z0NE4B)
SV(©ZONEC,©Z0NE4C)
SV(©ZONED,©Z0NE4D)
LK(!RECVZONE)
SV(©Z0NE4A,©ZONEA)
SV(©Z0NE4B,©ZONEB)
SV(©Z0NE4C,©ZONEC)
SV(©Z0NE4D,©ZONED)
IF(OBJ©2,EQ,1,:FULL4)

IV(©0KRECRQ4)
MA(XY(29,47),0)
LK(.'RECVMOVE)

PV(XY(25,39),©Z0NE4D)
PV(XY(25,41),©Z0NE4C)
PV(XY(25,43),©Z0NE4B)
PV(XY(25,45),©Z0NE4A)

PV(XY(25,32),OBJ@5)
PV(XY(25,34),OBJ@6)

MA(XY(29,48),0)

JP(:SHPPING4)

Crane #4
See comments for Crane # 1

SV(©ZONEA,©Z0NE4A)
SV(©ZONEB,©ZONE 4B)

212

: EMPTY4

: CRANE5
: RECVING5

:SHPPING5

: REC5

SV(©ZONE C,©ZONE4C)
SV(©ZONED,©ZONE4D)
LK(!SHIPZONE)
SV(©ZONE4A,©ZONEA)
SV(©Z0NE4B,©ZONEB)
SV(©ZONE4C,©ZONEC)
SV(©ZONE4D,©ZONED)

IF(OBJ@2,EQ,1,:EMPTY4)
MA(XY(29,49),0)
LK(!SHIPMOVE)
IV(©0KSHPRQ4)

PV(XY(25,39),©Z0NE4D)
PV(XY(25,41),©Z0NE4C)
PV(XY(25,43),©Z0NE4B)
PV(XY(25,45),©Z0NE4A)

PV(XY(25,32),OBJ@5)
PV(XY(25,34),OBJ@6)

MA(XY(29,50),0)
JP(:RECVING4)

ER

BR(15,XY(36,50),0)

SV(OBJ@5,1)
SV(OBJ@6,1)

DN
IF(©RE CRQ 5,GT,0, :REC5)
DN
IF(©SHPRQ5,GT,0,:SHP5)
JP(:CRANE5)

SV(©ZONEA,©ZONE 5A)
SV(©ZONEB,©ZONE5B)
SV(©ZONEC,©ZONE 5C)
SV(©ZONED,©ZONE 5D)
LK(!RECVZONE)
SV(©ZONE 5A ,©ZONEA)
SV(©ZONE5B,©ZONEB)
SV(©ZONE5C,©ZONEC)
SV(©ZONE5D,©ZONED)

Crane #5

See comments for Crane # 1

IF(0BJ@2,EQ,1,:FULL5)

: FULL5

:SHP5

: EMPTY5

213

IV(@0KRECRQ5)
MA(KY(36,47),0)
LK(!RECVMOVE)
PV(KY(32,39),@ZONE5D)
PV(XY(32,41),©ZONE5C)
PV(XY(32,43),@Z0NE5B)
PV(KY(32,45),©Z0NE5A)

PV(KY(32,32),0BJ@5)
PV(XY(32,34),OBJ@6)
MA (XY(36,48) ,0)

JP(:SHPPING5)

SV(©ZONEA,©ZONE 5A)
SV(©ZONEB,@ZONE5B)
SV(©ZONEC,©ZONE5C)
SV(©ZONED,©ZONE 5D)
LK(!SHIPZONE)
SV(©ZONE5A ,©ZONEA)
SV(©ZONE5B,©ZONEB)
SV(©ZONE 5C,©ZONEC)
SV(©ZONE5D,©ZONED)
IF (OB J@2 , EQ , 1 , -.EMPTY5)

MA(XY(36,49),0)
LK(!SHIPMOVE)
IV(©0KSHPRQ5)
PV (XY(32,39),©ZONE5D)
PV(XY(32,41),©ZONE5C)
PV(XY(32,43),©ZONE5B)
PV(XY(32,45),©ZONE5A)

PV(XY(32,32),OBJ@5)
PV(XY(32,34),OBJ©6)

MA(XY(36,50),0)

JP(:RECVING5)

ER

BR(16,XY(43,50),0)

SV(OBJ@5,1)

Crane #6

See comments for Crane # 1

SV(0BJ@6,1)
CRANE6
RECVING6
SHPPING6

REC6

FULL6

SHP 6

DN
IF(©RECRQ6,GT,0,:REC6)
DN
IF(©SHPRQ6,GT,0,:SHP6)
JP(:CRANE6)
SV(©ZONEA,©Z0NE6A)
SV(©ZONEB,0ZONE6B)
SV (©ZONEC, ©ZONE6 C)
SV (©ZONED , ©Z0NE6D)
LK(!RECVZONE)
SV(©ZONE6A,©ZONEA)
SV(©ZONE6B ,©ZONEB)
S V (©ZONE 6 C , ©ZONE C)
SV(©ZONE 6D,©ZONE D)
IF(OBJ@2,EQ,1,:FULL6)
IV(©OKRECRQ6)
MA(XY(43,47),0)
LK(!RECVMOVE)
PV(XY(39,39),©ZONE6D)
PV(XY(39,41),©ZONE6C)
PV(XY(39,43),©ZONE6B)
PV(XY(39,45),©ZONE6A)
PV(XY(39,32),OBJ@5)
PV(XY(39,34),OBJ@6)
MA(XY(43,48),0)
JP(:SHPPING6)

SV(@ZONEA,©ZONE6A)
SV(©ZONEB,©ZONE 6 B)
SV(©ZONEC,@ZONE6C)
SV (©ZONED , ©ZONE6D)
LK(!SHIPZONE)
SV(©ZONE 6A ,©ZONEA)
SV(©ZONE6B,©ZONEB)
SV(©ZONE6C,©ZONEC)
SV(©ZONE6D,©ZONED)
IF(OBJ©2,EQ,1,:EMPTY6)
MA(XY(43,49),0)
LK(JSHIPMOVE)
IV(@OKSHPRQ6)

:EMPTY6

:CRANE7
:RECVING7
:SHPPING7

:REC7

215

PV(XY(39,39),©Z0NE6D)
PV(XY(39,41),©Z0NE6C)
PV(XY(39,43),©Z0NE6B)
PV(XY(39,45),©Z0NE6A)
PV(XY(39,32),0BJ©5)
PV(XY(39,34),0BJ@6)
MA(XY(43,50),0)
JP(:RECVING6)
ER

BR(17,XY(50,50),0)

SV(OBJ@5,1)
SV(OBJ@6,1)

DN
IF(©RECRQ7,G T ,0,:REC7)
DN
IF(©SHPRQ7,01,0,:SHP7)
JP(:CRANE7)

SV (©ZONEA , ©ZONE7 A)
SV (©ZONEB , ©ZONE 7 B)
SV(©ZONEC,©ZONE7C)
S V (©ZONED , ©ZONE 7 D)
LK(!RECVZONE)
SV(©ZONE7A,©ZONEA)
SV(@ZONE7B,©ZONEB)
SV(©ZONE7 C ,©ZONE C)
SV(@ZONE7D,©ZONED)

IF(OBJ@2,E Q ,1,:FULL7)

IV(©OKRECRQ7)
MA(XY(50,47),0)
LK(!RECVMOVE)

PV(XY(46,39),©ZONE7D)
PV(XY(46,41),©ZONE7C)
PV(XY(46,43),©ZONE7B)
PV(XY(46,45),©ZONE7A)

Crane #7
See comments for Crane # 1

PV(XY(46,32),0BJ©5)
PV(XY(46,34),0BJ@6)

216

:FULL7

: SHP 7

:EMPTY7

:CRANE8
:RECVING8

:SHPPING8

:REC8

MA(XY(50,48) ,0)

JP (:SHPPING7)

SV(©ZONEA,©ZONE7A)
SV(©ZONEB,©ZONE7B>
SV(©ZONEC,©ZONE7 C)
SV(©ZONED,©ZONE7D)
LK(!SHIPZONE)
SV(©ZONE7A ,©ZONEA)
SV(©ZONE7B,©ZONEB)
SV(@ZONE7C,©ZONEC)
SV(©ZONE7D,©ZONED)
IF(OBJ©2,EQ,1,:EMPTY7)
MA(XY(50,49),0)
LK(!SHIPMOVE)
IV(©OKSHPRQ7)
PV(XY(46,39),©ZONE7D)
PV(XY(46,41),@ZONE7C)
PV(XY(46,43),©ZONE7B)
PV(XY(46,45),©ZONE7A)
PV(XY(46,32),OBJ@5)
PV(XY(46,34),OBJ©6)
MA(XY(50,50),0)
JP(:RECVING7)
ER

; Crane #8
BR(18,XY(57,50),0)

; See comments for Crane # 1
SV(OBJ©5,1)
SV(OBJ©6,1)
DN
IF(©RECRQ8,GT,0,:REC8)
DN
IF(©SHPRQ8,GT,0,:SHP8)
JP(:CRANE8)
SV(©ZONEA,©ZONE8A)
SV (©ZONEB, ©ZONE 8 B)
SV(©ZONEC,©ZONE8C)
SV (©ZONED, ©ZONE8D)

217

LK('.RECVZONE)
SV(@ZONE8A,©ZONEA)
SV(©ZONE8B,©ZONEB)
SV(©Z0NE8C,©ZONEC)
SV (©Z0NE8D , ©ZONED)
IF(OBJ@2,EQ,1,:FULL8)
IV(©OKRECRQ8)
MA(XY(57,47),0)
LK(!RECVMOVE)
PV(XY(53,39),©Z0NE8D)
PV(XY(53,41),©Z0NE8C)
PV(XY(53,43),©Z0NE8B)
PV(XY(53,45),©Z0NE8A)
PV(XY(53,32),0BJ@5)
PV(XY(53,34),0BJ©6)
MA(XY(57,48),0)

FULL8 JP(:SHPPING8)

SHP8 SV(©ZONEA,©Z0NE8A)
SV(©ZONEB,©Z0NE8B)
SV(©ZONEC,©Z0NE8C)
SV(©ZONED,©Z0NE8D)
LK(!SHIPZONE)
SV(©ZONE8A ,©ZONEA)
SV(©Z0NE8B,©ZONEB)
SV(©Z0NE8C,©ZONEC)
SV(©Z0NE8D,©ZONED)
IF(OBJ©2,EQ,1,:EMPTY8)
MA(XY(57,49),0)
LK('SHIPMOVE)
IV(@0KSHPRQ8)
PV(XY(53,39),©Z0NE8D)
PV(XY (53,41),©Z0NE8C)
PV(XY(53,43),©Z0NE8B)
PV(XY(53,45),©ZONE8A)
PV(XY(53,32),OBJ©5)
PV(XY(53,34),OBJ©6)
MA(XY(57,50),0)

EMPTY8 JP(:RECVING8)

218

: CRANE9
:RECVING9
: SHPPING9

.-REC9

: FULL9

: SHP9

ER

BR(19,XY(64,50),0)
SV(OBJ@5,1)
SV(OBJ@6,1)
DN
IF(©RECRQ9,GT,0,:REC9)
DN
IF(©SHPRQ9,GT,0,:SHP9)
JP(:CRANE9)
SV(©ZONEA,©ZONE9A)
SV(©ZONEB,©Z0NE9B)
S V (©ZONE C , ©ZONE 9 C)
SV(©ZONED,©ZONE9D)
LK(’RECVZONE)
SV(©ZONE9A,©ZONEA)
SV(©ZONE9 B,©ZONE B)
SV(©ZONE9C,©ZONEC)
SV(©ZONE9D,©ZONED)
IF(OBJ@2,EQ,1,:FULL9)
IV(©0KRECRQ9)
MA(XY(64,47),0)
LK(’RECVMOVE)
PV(XY(60,39),©ZONE9D)
PV(XY(60,41),©ZONE9C)
PV(XY(60,43),©ZONE9B)
PV(XY(60,45),©ZONE9A)
PV(XY(60,32),OBJ@5)
PV(XY(60,34),OBJ©6)
MA(XY(64,48),0)
JP(:SHPPING9)

Crane #9
See comments for Crane # I

SV(©ZONEA,©ZONE9A)
SV(©ZONEB,©ZONE9B)
SV(©ZONEC,©ZONE9C)
SV(©ZONED.©ZONE9D)
LK(!SHIPZONE)
SV (©ZONE9A,©ZONEA)

:EMPTY9

:CRANEO
:RECVINGO
-.SHPPINGO

:RECO

219

SV(©ZONE9B,©ZONEB)
SV(©ZONE9C,©ZONEC)
SV(©ZONE9D,©ZONED)

IF(OBJ@2,EQ,1,:EMPTY9)

MA(XY(64,49),0)
LK(.'SHIPMOVE)
IV(©OKSHPRQ9)

PV(XY(60,39),©Z0NE9D)
PV (XY (60,41) , ©ZONE 9 C.)
PV(XY(60,43),©Z0NE9B)
PV(XY(60,45),©ZONE9A)

PV(XY(60,32),0BJ@5)
PV(XY(60,34),OBJ@6)
MA(XY(64,50),0)

JP(:RECVING9)
ER

BR(20,XY(71,50),0)
SV(OBJ@5,1)
SV(OBJ@6,1)
DN
IF(@RECRQ0,GT,0,:REC0)
DN
IF(©SHPRQO,GT,0(:SHP0)
JP(:CRANEO)
SV (©ZONEA,©ZONE OA)
SV(©ZONEB,©ZONEOB)
SV(©ZONE C,©ZONE 0 C)
SV(©ZONED,©ZONEOD)
LK(!RECVZONE)
SV(©ZONEOA,©ZONEA)
SV(©ZONEOB,©ZONEB)
SV(©ZONEOC,©ZONEC)
SV(©ZONEOD,©ZONED)
IF (OBJ©2 , EQ, 1, -.FULLO)
IV(©OKRECRQO)
MA(XY(71,47),0)

Crane #0

See comments for Crane # 1

220

FULLO

SHPO

EMPTYO

LK(!RECVMOVE)
PV(XY(67,39),OZONEOD)
PV(XY(67,41),OZONEOC)
PV(XY(67,43),OZONEOB)
PV(XY(67,45),OZONEOA)
PV(XY(67,32),OBJOS)
PV(XY(67,34),OBJ06)
MA(XY(71,48),0)
JP(:SHPPINGO)

SV(OZONEA,OZONEOA)
SV(OZONEB,OZONEOB)
SV(OZONEC,OZONEOC)
SV(OZONED,OZONEOD)
LK('SHIPZONE)
SV(OZONEOA,OZONEA)
SV (OZONEOB,OZONEB)
SV(OZONE OC,OZONEC)
SV(OZONEOD,OZONED)
IF(OBJ02,EQ,1,:EMPTYO)
MA(XY(71,49),0)
LK('SHIPMOVE)
IV(OOKSHPRQO)
PV(XY(67,39),OZONEOD)
PV(XY(67,41),OZONEOC)
PV(XY(67,43),OZONEOB)
PV(XY(67,45),OZONEOA)
PV(XY(67,32),OBJOS)
PV(XY(67,34),OBJ06)
MA(XY(71,50),0)
JP(:RECVINGO)
ER

221

APPENDIX B
THE SUPERMARKET PROGRAM

M= (100)
W=(100)
S=(250)

max number of objects that are
allowed to be active at one time
initial num of objects that may
be active at any given time
count of symbols to have storage
reserved for

X=(81)
Y=<47)

x dimension of the overlay
y dimension of the overlay

V=(XY(1,0)) load-time viewing window location

D=
Grocery Store Simulation

A supermarket is scheduled to have 20 shopping carts, 1
regular checkout counter, and 1 express checkout lane.
Customers are expected to arrive at the supermarket every 4
minutes on the average, with the time between successive
arrivals varying between 0 and 8 minutes according to a
discrete uniform distribution. Each arriving customer tries
immediately to obtain a shopping cart. If no shopping cart
is available, the customer will wait until one becomes
available before beginning shopping. It is anticipated that
the 30% of entering customers who intend to perform express
shopping tasks will remain in the store for only 6 +/- 5
minutes and will then join the express checkout line. The
other 70% of entering customers are expected to perform
regular shopping tasks, remaining in the shopping area of
the store for 30 +/- 15 minutes and eventually joining the
regular checkout line. Checkout is expected to require
5+/-2 minutes at the regular checkout counter and 2 +/- 1
minutes at the express checkout counter. After checkout,
the customer returns the shopping cart and leaves the store.
$

0=(=) kept in SM.0LY

@ARRIVE=(240)
@CHANCE=(0)
@SHOPTIME=(0)
@EXPCHK=(0)
@REGCHK=(0)

SYMBOLS
arrival rate of customers
random variable for exp vs reg
time to shop
time for express checking
time for regular checking

222

@TERMCNT—(0)
@GPSSTERM=(500)

count of completed objects
termination count in GPSS model

@NUMBCTS=(0)
@ROUND=(0)
@AVERAGE=(0)

number of statistic counts made
variable for rounding
variable for decimal average

@TTLCARTS=(20)
@NUMCARTS=(0)

number of carts in the store
number of carts available

@CRTINUSE=(0)
@TTLCRTSU=(0)
@MAXCRTSU=(0)
@CKCRTUSE=(0)
%TTLCRTST=(0000 =00:00)

; number of carts being used
; total entries in storage
; max in storage at any one time
; sum of contents at stat times
; sum of object times in cart stg

@REGQUEUE=(0)
@MAXREGQ=(0)
@TTLREGQ=(0)
@CKREGQ=(0)
%TTLREGQT=(0000:00:00)

current contents of reg line que
maximum in reg line at any time
total entries in reg ckout line
sum of contents at stat times
sum of object times in reg queue

@EXPQUEUE=(0)
@HAXEXPQ=(0)
<aTTLEXPQ=(0)
@CKEXPQ=(0)
%TTLEXPQT=(0000:00:00)

current contents of exp line que
maximum in exp line at any time
total entries in exp ckout line
sum of contents at stat times
sum of object times in exp queue

@CRTQUEUE=(0)
@MAXCRTQ=(0)
@TTLCRTQ=(0)
@CKCRTQ=(0)
%TTLCRTQT=(0000:00:00)

current contents of cart queue
max waiting for cart at any time
total entries in line for a cart
sum of contents at stat times
sum of object times in cart queue

%OVERFLOW=(0021=48:00)
%LOOPTIME=(0000=00:00)
%DIFFRNCE=:(0000 =00:00)

gverflow time of stat variables
time of next statistics update
variable for diff of object times

#SEED=(9997)
#PERCENT=(30)

seed of random number sequence
percent express shoppers
(complement is percent regular)

*DUMMY1=(XY(2,2))
*DUMMY2=(XY(1,39))

dummy position for init job
dummy position for statistics job

*ENTRY-(XY(40,0))
*EXIT=(XY(68,4))
*CARTS=(XY(62,2))
*READY=(XY(62,5))
*REGLINE=(XY(44,22))

entry position for shoppers
exit position for shoppers
location to wait for a cart
location where ready to shop
common position all reg shoppers

2 2 3

*EXPLINE=(XY(62,22))
*REGLANE=(XY(75,10))
*EXPLANE=(XY(68,10))

meet at headed for reg checkout
common position all exp shoppers
meet at headed for exp checkout
spot occupied for reg checkout
spot occupied for exp checkout

*LANE1=(XY(4,6)) reserve pos at head of lane 1
*LANE2=(XY(12,6)) reserve pos at head of lane 2
*LANE3=(XY(14,6)) reserve pos at head of lane 3
*LANE4=(XY(22,6)) reserve pos at head of lane 4
*LANE5=(XY(24,6)) reserve pos at head of lane 5
*LANE6=(XY(32,6)) reserve pos at head of lane 6
*LANE7=(XY(34,6)) reserve pos at head of lane 7
*LANE8=(XY(42,6)) reserve pos at head of lane 8
*LANE9=(XY(44,6)) reserve pos at head of lane 9
*LANEA=(XY(52,6)) reserve pos at head of lane A
*LANEB=(XY(54,6)) reserve pos at head of lane B
*LANEC=(XY(62,6)) reserve pos at head of lane C
*CRTSFREE=(XY(65,2))
*MESSAGE=(XY(2,1))
*COUNTS=(XY(28,25))
*TIME=(XY(60,25))

number of carts available area
overflow & term message spot
position for count of stat calcs
spot for time of last stat update

*CRTSTG1=(XY(16,30))
*CRTSTG2A=(XY(25,30))
*CRTSTG2B=(XY(30,30))
*CRTSTG2C=(XY(27,30))
*CRTSTG3=(XY(37,30))
*CRTSTG4=(XY(46,30))
*CRTSTG5=(XY(60,30))
*CRTSTG6=(XY(71,30))

fields for cart stg statistics
storage capacity
average contents

total entries
total time spent in storage
current contents
maximum contents

*REGQUE1=(XY(14,36))
*REGQUE2A=(XY(24,36))
*REGQUE2B=(XY(29,36))
*REGQUE2C=(XY(26,36))
*REGQUE3=(XY(3 5,36))
*REGQUE4=(XY(44,36))
*REGQUE 5=(XY(58,36))

fields for reg line queue stats
maximum contents
average contents

total entries
total time spent in queue
current contents

*EXPQUE1=(XY(14,37))
*EXPQUE2A=(XY(24,37))
*EXPQUE2B=(XY(29,37))
*EXPQUE2C=(XY(26,37))
*EXPQUE3=(XY(3 5,37))
*EXPQUE4=(XY(44,37))
*EXPQUE5=(XY(58.37))

fields for exp line queue stats
maximum contents
average contents

total entries
total time spent in queue
current contents

*CRTQUE1-(XY(14,38))
fields for cart queue statistics
maximum contents

224

*CRTQUE 2A=(XY(24,38))
*CRTQUE2B=(XY(29,38))
*CRTQUE2C=(XY(26,38))
*CRTQUE3=(XY(35,38))
*CRTQUE4=(XY(44,38))
*CRTQUE5=(XY(58,38))

J=(1,X/1,0,0,0,1)
J=(2,#,2,0,0,1,1)
J=(3,C,3,0,0,2,1000)

U=(l,Reg Chk,*REGLANE)
U=(2,Exp Chk,*EXPLANE)
U= (3,Lane 1,*LANE1)
U=(4,Lane 2,*LANE2)
U=(5,Lane 3,*LANE3)
U= (6,Lane 4,*LANE4)
U=(7,Lane 5,*LANE5)
U=(8,Lane 6,*LANE6)
U=(9,Lane 7,*LANE7)
U= (10,Lane 8,*LANE8)
U=(11,Lane 9,*LANE9)
U=(12,Lane A ,*LANEA)
U=(13,Lane B,*LANEB)
U=(14,Lane C,*LANEC)

BR(1,*DUMMY1,0)
RS(#SEED)

SV(©ARRIVE,240)
SV(@TERMCNT,0)
SV(©NUMCARTS,0TTLCARTS)
SV(@NUMBCTS,0)

; average contents

; total entries
; total time spent in queue
; current contents

; JOBS
; initialization
; statistics
; shoppers

; UTILIZATION LOCATIONS
; regular checkout
; express checkout
reserve position of lane 1
reserve position of lane 2
reserve position of lane 3
reserve position of lane 4
reserve position of lane 5
reserve position of lane 6
reserve position of lane 7
reserve position of lane 8
reserve position of lane 9
reserve position of lane A
reserve position of lane B
reserve position of lane C

; INITIALIZATION ROUTE

; initialize random number sequence
init variables defined above

SV(@CRTINUSE,0)

225

SV(©TTLCRTSU,0)
SV(©MAXCRTSU,-0)
SV(©CKCRTUSE,0)
SV(%TTLCRTST,0)
SV(@REGQUEUE,0)
SV(©MAXREGQ,0)
SV(@TTLREGQ,0)
SV(©CKREGQ,0)
SV(%TTLREGQT,0)
SV(©EXPQUEUE,0)
SV(©MAXEXPQ,0)
S V (©TTLEXPQ , 0)
SV(©CKEXPQ,0)
SV(%TTLEXPQT,0)
SV(©CRTQUE UE,0)
SV(©MAXCRTQ,0)
SV(©TTLCRTQ,0)
SV(©CKCRTQ,0)
SV(%TTLCRTQT,0)

; check for termination count
IF(©TERMCNT,LT,©GPSSTERM,THEN,WAIT)

; if count reached, output message
PM(*MESSAGE,500 OBJECTS COMPLETED)
WK ; pause for ouput of statistics

; erase message to go on
PM(̂ MESSAGE,xkxxxxxxxxxxxxxxxxxxx)
ER

BR(2,*DUMMY2,240)
SV(%LOOPTIME,240)

TOP IV(@NUMBCTS)
PV(̂ COUNTS,0NUMBCTS)
SV(©ROUND,©NUMBCTS)
AO(©ROUND,/,2)

PV(*CRTSTG1,©TTLCARTS)
AO(©CKCRTUSE,+,©CRTINUSE)
SV(©AVERAGE,©CKCRTUSE)
AO(©AVERAGE,*,10)

; STATISTICS ROUTE

; initialize loop time
; update number of statistic counts
; output with statistics
; copy to get value for rounding
; ©ROUND to be added in before div
; by ©NUMBCTS to provide rounding
; Statistics for cart storage
; capacity of storage
; sum # currently in use for check
; copy check-cart-use for average
; multiply by 10; then int division

226

AO(©AVERAGE,+,©ROUND)
AO(©AVERAGE,/,©NUMBCTS)

PV(*CRTSTG2C,©AVERAGE)
PM(*CRTSTG2B,.)
AO(©AVERAGE,/,10)
PV(*CRTSTG2A,©AVERAGE)
PV(*CRTSTG3,©TTLCRTSU)
PV(*CRTSTG4,%TTLCRTST)
PV(*CRTSTG5,©CRTINUSE)
PV(*CRTSTG6,©MAXCRTSU)

PV(*RE GQUE1,©MAXREGQ)
AO(©CKREGQ,+,©REGQUEUE)
SV(©AVERAGE,©CKREGQ)
AO(©AVERAGE,*,10)
AO(©AVERAGE,+,©ROUND)
AO(©AVERAGE,/,©NUMBCTS)
PV(*REGQUE2C,©AVERAGE)
PM(*REGQUE2B,.)
AO(©AVERAGE,/,10)
PV(*REGQUE2A,©AVERAGE)
PV(*REGQUE3,©TTLREGQ)
PV(*REGQUE4,%TTLREGQT)
PV(*REGQUE5,©REGQUEUE)

PV(*EXPQUE1,©MAXEXPQ)
AO(©CKEXPQ,+,©EXPQUEUE)
SV(©AVERAGE,©CKEXPQ)
AO(©AVERAGE,*,10)
AO(©AVERAGE,+,©ROUND)
AO(©AVERAGE,/,©NUMBCTS)
PV(*EXPQUE2C,©AVERAGE)
PM(*EXPQUE2B,.)
AO(©AVERAGE,/,10)
PV(*EXPQUE2A,©AVERAGE)
PV(*EXPQUE3,©TTLEXPQ)
PV(*EXPQUE4,%TTLEXPQT)
PV(*EXPQUE5,©EXPQUEUE)

PV(*CRTQUE1,©MAXCRTQ)
AO(©CKCRTQ,+,©CRTQUEUE)
SV(©AVERAGE,©CKCRTQ)
AO(©AVERAGE,*,10)
AO(©AVERAGE,+,©ROUND)
AO(©AVERAGE,/,©NUMBCTS)

will leave tenths in one's place
add half divisor for rounding
div by number of counts taken
note: *CRTSTG2 A, B, & C overlay
one another to get decimal place

print average-multiplied-by-10
overlay a decimal point on it
divide by 10 again; this throws
away the one's (tenths) position

overlay integer part of average
on the field
total entries in storage
total of times spent in cart stg
current number in use
max in storage at any one time
Statistics for regular line queue
maximum in queue at any one time
the avg queue size is calculated
to tenths by the technique used
for the cart storage average

total entries into regular queue
total of times spent in reg queue
current contents of reg queue
Statistics for express line queue
see comments for reg line queue

Statistics for cart queue
see comments for reg line queue

227

SKIP

PV(*CRTQUE2C,©AVERAGE)
PM(*CRTQUE2B,.)
AO(©AVERAGE,/,10)
PV(*CRTQUE2A,©AVERAGE)
PV(*CRTQUE3,©TTLCRTQ)
PV(*CRTQUE4,%TTLCRTQT)
PV(*CRTQUE5,©CRTQUEUE)
IF(CLOCK,LT,%OVERFLOW,:SKIP) ; check clock against time that

it would be possible for stat
variables to overflow

PM(^MESSAGE,STATISTICS CAN OVERFLOW)
WK ; halt simulation for user action

; erase message to go on
PM(̂ MESSAGE,xxxxxxxxxxxxxxxxxxxxxxx)
PV(*TIME,%L00PTIME)
AO(%LOOPTIME,+,240)
ST(240)
JP(:TOP)
ER

output time of current update
calculate next update time
wait until time of next update
jump to computation of stats

; SHOPPERS 1 ROUTE

PASS

BR(3,*ENTRY,©ARRIVE)
RV(©ARRIVE,0,480)
MD(1,5)
IV(©TTLCRTQ)
IV(©CRTQUEUE)
SV(OBJ%l,CLOCK)
MR(22,5)

next arrival in 4+/-4 min
come inside store for shopping
total number entering cart queue
current number in cart queue
%start time in cart queue
move to the cart storage area
branch if current is not a max

IF (©CRTQUEUE , LT , ©MAXCRTQ, THEN, -.PASS)
SV(©MAXCRTQ,©CRTQUEUE) ; save max waiting at any one time

; proceed if a cart is available
IF(©NUMCARTS,GT,0,THEN,NEXT,ELSE,WAIT)
DV(©CRTQUEUE)
SV(%DIFFRNCE.CLOCK)
AO(%DIFFRNCE,-,0BJ%1)
AO(%DIFFRNCE,-,110)
AO(%TTLCRTQT,+,%DIFFRNCE)

got cart, so no longer waiting
end time in cart queue
time spent in queue
required time in queue
update tot of times spent in que

IV(©TTLCRTSU)
IV(©CRTINUSE)
SV(0BJ%2,CLOCK)

total number using a cart
current number of carts in use
start time in cart storage
branch if current is not a max

228

OVER

REGLOOP

SHPLANE1

SHPLANE2

IF(@CRTINUSE, LE , ©MAXCRTSU, THEN, :OVER)
SV(©MAXCRTSU,©CRTINUSE) ; save max in use at any one time
MA(*CARTS,0)
DV(©NUMCARTS)
PV(*CRTSFREE,©NUMCARTS)
MD(3,1)
RV(©CHANCE,1,100)
IF(©CHANCE,LT,̂ PERCENT,

; move to get cart
; one less cart available
; print num available in cart area
; move to pt from which to branch
; chance for reg vs exp shopper
; branch depending on #PERCENT

THEN,:EXPLOOP)

JC(1,*LANE1,:SHPLANE1)
JC(1,*LANE2,:SHPLANE2)
JC (1,*LANE3,:SHPLANE3)
JC (1,*LANE4,:SHPLANE4)
JC(1,*LANE5,:SHPLANE5)
JC (1,*LANE 6, :SHPLANE6)
J C (1,*LANE 7, :SHPLANE7)
JC (1,*LANE8,:SHPLANE8)
JC (1,*LANE9,:SHPLANE9)
DN
JP(:REGLOOP)

to prevent shoppers who will be
staying in the simulation for
varying amounts of time from
interfering with one another,
each successive shopper object
is sent to a different lane
(assuming 9 lanes will be
sufficient for regular shoppers)

pause if all lanes occupied
try again

R=(*READY)
PO(*LANEl)
ML(10,1)
ML(48,5)
CL(*LANE1)
MD(1,5)
RV(©SHOPTIME,900,2700)
AO(©SHOPTIME,-,610)

AO(©SHOPTIME,-,240)
ST(©SHOPTIME)
MD(15,10)
MD(1,5)
MR(40,5)
JP(:REGCHK)

reference for relative moves
post reserve position of lane # 1
exp rate thru common rt (10 sec)
move to lane 1 (48 * 5 = 240 sec)
clear reserve position for object
take reserve pos. (1 * 5 = 5 sec)
determine shop time (30+/-15 min)
subtract time spent by regular
shoppers peculiar to lane # 1
sum (10,240,5,150,5,200) = 610

time common to all reg shoppers
delay at reserve pos for the rest
down lane (15 * 10 = 150 sec)
move to back wall (5 sec)
move to common position for reg
shoppers (40 * 5 = 200 sec)
transfer to common route for regs

R-(*READY) ; see comments for :SHPLANE1
P0(*LANE2)
ML(10,1)
ML(40,5)
CL(*LANE2)
MD(1,5)
RV(©SHOPTIME,900,2700)
AO(©SHOPTIME,-,530)
AO(©SHOPTIME,-,240)
ST(©SHOPTIME)
MD(15,10)

229

MD(1,5)
MR(32,5)
JP(:REGCHK)

:SHPLANE3 R=(*READY) ; see comments for :SHPLANE1
P0(*LANE3)
ML(10,1)
ML(38,5)
CL(*LANE3)
MD(1,5)
RV(0SHOPTIME,900,2700)
AO(@SH0PTIME,-,510)
AO(ASHOPTIME,-,240)
ST(0SHOPTIME)
MD(1S,10)
MD(1,5)
MR(30,5)
JP(:REGCHK)

:SHPLANE4 R=(*READY) ; see comments for :SHPLANE1
PO(*LANE4)
ML(10,1)
ML(30,5)
CL(*LANE4)
MD(1,5)
RV(0SHOPTIME,900,2700)
AO(@SH0PTIME,-,430)
AO(0SHOPTIME,-,240)
ST(0SHOPTIME)
MD(15,10)
MD(1,5)
MR(22,5)
JP(:REGCHK)

:SHPLANE5 R=(*READY) ; see comments for :SHPLANE1
PO(*LANE5)
ML(10,1)
ML(28,5)
CL(*LANE5)
MD(1,5)
RV(0SHOPTIME,900,2700)
AO(0SHOPTIME,-,410)
AO(0SHOPTIME,-,240)
ST(0SHOPTIME)
MD(15,10)
MD(1,5)
MR(20,5)
JP(:REGCHK)

:SHPLANE6 R=(*READY) ; see comments for :SHPLANE1
PO(*LANE6)
ML(10,1)
ML(20,5)

230

SHPLANE7

SHPLANE8

SHPLANE9

CL(*LANE6)
MD(1,5)
RV(©SH0PTIME,900,2700)
AO(©SHOPTIME,-,330)
AO(©SHOPTIME,-,240)
ST(©SHOPTIME)
MD(15,10)
MD(1,5)
MR(12,5)
JP(:REGCHK)

; see comments for rSHPLANEl
R=(*READY)
PO(*LANE7)
ML(10,1)
ML(18,5)
CL(*LANE7)
MD(1,5)
RV(©SHOPTIME,900,2700)
AO(©SHOPTIME,-,310)
AO(©SHOPTIME,-,240)
ST(0SHOPTIME)
MD(15,10)
MD(1,5)
MR(10,5)
JP(:REGCHK)

; see comments for :SHPLANE1
R=(*READY)
P0(*LANE8)
ML(10,1)
ML(10,5)
CL(*LANE8)
MD(1,5)
RV(@SHOPTIME,900,2700)
AO(0SHOPTIME,-,230)
AO(0SHOPTIME,-,240)
ST(0SHOPTIME)
MD(15,10)
MD(1,5)
MR(2,5)
JP(:REGCHK)

; see comments for ;SHPLANE1
R=(*READY)
PO(*LANE9)
ML(10,1)
ML(8,5)
CL(*LANE9)
MD(1,5)
RV(@SHOPTIME,900,2700)
AO(©SHOPTIME,-,210)
AO(©SHOPTIME,-,240)
ST(©SHOPTIME)
MD(15,10)
MD(1,5)

231

REGCHK

D0WN1

EXPLOOP

SHPLANEA

JP(:REGCHK)
R=(*REGLINE)
IV(@TTLREGQ)
IV(©REGQUEUE)
SV(0BJ%1.CLOCK)

total num of entries into queue
current number in the queue
start time in reg line queue
jump if current is not a maximum

IF(©REGQUEUE,LT,©MAXREGQ,THEN,:DOWN1)
SV(©MAXREGQ,©REGQUEUE) ; update the queue size maximum
MR(6,8)
MR(1,9)
MR(18,1)
MR(6,9)
MU(12,9)
DV(©REGQUEUE)
SV(%DIFFRNCE,CLOCK)
AO(%DIFFRNCE,-,0BJ%1)
AO(%DIFFRNCE,-,237)
AO(%TTLREGQT,+,%DIFFRNCE)
RV(©REGCHK,180,420)
ST(©REGCHK)
DV(©CRTINUSE)
SV(%DIFFRNCE,CLOCK)
AO(%DIFFRNCE,-,OBJ%2)
AO(%TTLCRTST,+,%DIFFRNCE)
IV(@NUMCARTS)
PV(*CRTSFREE,©NUMCARTS)
MU(6,5)
ML (7,5)
JP(:EXITSTOR)

move to point common with express
extra move to balance timing
move at exp rate thru common rt
move to reg checkout aisle
move up to checkout counter
leave the queue
end time in reg line queue
time spent in queue
required time in queue
update tot of times spent in que
determine ckout time (5+/-2 min)
delay during checkout
cart is no longer being used
end time in cart storage
time spent in storage
update tot of times spent in stg
cart is free for use
update number available
up to go out
left to common pt to leave store
transfer to route for reg & exp

JC(1,*LANEA,:SHPLANEA)
JC(1,*LANEB,:SHPLANEB)
JC(1,*LANEC,:SHPLANEC)

DN
JP(:EXPLOOP)

to prevent shoppers who will be
staying in the simulation for
varying amounts of time from
interfering with one another,
each successive shopper object
is sent to a different lane
(assuming 3 lanes will be
sufficient for express shoppers)

pause if all lanes occupied
try again

R=(*READY)
P0(*LANEA)
ML (10,1)
CL(*LANEA)
MD(1,1)
RV(©SHOPTIME,60,660)
AO(©SHOPTIME,-,37)

reference for relative moves
post reserve position of lane A
move to lane A (10 * 1 = 10 sec)
clear reserve position for object
assume reserve position (1 sec)
determine shppng time (6+/-5 min)
subtract time spent by express
shoppers peculiar to lane A
(10 + 1 + 15 + 1 + 10 = 37 sec)

232

SHPLANEB

SHPLANEC

EXPCHK

DOWN 2

AO(©SHOPTIME,-,21)
ST(©SHOPTIME)
MD(15,1)
MD(1,1)
MR(10,1)
JP(:EXPCHK)

time common to all exp shoppers
delay at reserve pos for the rest
move down lane (1 5 * 1 = 1 5 sec)
move to back wall (1 sec)
move to common position for exp
shoppers (10 * 1 = 10 sec)
transfer to common rt for exp

R=(*READY) ; see comments for :SHPLANEA
P0(*LANEB)
ML(8,1)
CL(*LANEB)
MD(1,1)
RV(©SHOPTIME,60,660)
AO(©SHOPTIME,-,33)
A0(@SH0PTIME,-,21)
ST(©SHOPTIME)
MD(15,1)
MD(1,1)
MR(8,1)
JP(rEXPCHK)
R=(*READY)
MD(1,1)
RV(©SHOPTIME,60,660)
AO(©SHOPTIME,-,17)
AO(©SHOPTIME,-,21)
ST(©SHOPTIME)
MD(15,1)
MD(1,1)
JP(:EXPCHK)

see comments for :SHPLANE1
(note that lane C is in the same
col as *READY so no need
to move left & right to and from
the column, as in lanes A & B;
further, as *READY is directly
above the reserve pos for lane
C, there is no need to post it
since shpper is already here)

R=(*EXPLINE)
IV(©TTLEXPQ)
IV(©EXPQUEUE)
SV(0BJ%1,CLOCK)
IF(©EXPQUEUE,LT,©MAXEXPQ
SV(©MAXEXPQ,©EXPQUEUE)

; total num of entries into queue
; current number in the queue
; start time in express queue
; jump if current is not a maximum

,THEN,:D0WN2)
; update the queue size maximum

MR(6,1)
MU(12,1)
DV(©EXPQUEUE)
SV(%DIFFRNCE,CLOCK)
A0(%DIFFRNCE,-,OBJ%1)
A0(%DIFFRNCE,-,18)
AO(%TTLEXPQT,+,%DIFFRNCE)
RV(©EXPCHK,60,180)
ST(©EXPCHK)
DV(©CRTINUSE)
SV(%DIFFRNCE,CLOCK)
A0(%DIFFRNCE,-,OBJ%2)
A0(%TTLCRTST,+,%DIFFRNCE)

move to exp checkout aisle
move up to checkout counter
leave the queue
end time in exp line queue
time spent in queue
required time in queue
update tot of times spent in que
determine ckout time (2+/-1 min)
delay during checkout
cart is no longer being used
end time in cart storage
time spent in storage
update tot of times spent in stg

233

IV(@NUMCARTS)
PV(*CRTSFREE,©NUMCARTS)
MU(6,5)
JP(:EXITSTOR)

EXITSTOR R=(*EXIT)
ML(5,5)
RM(-2,+0,5)
ML(31,5)
MU(4,5)
IV(©TERMCNT)
ER

cart is free for use
update number available
up to go out
trans to common rt for reg & exp

head for the door
jump over position common with
incoming customers

move left to aisle of door
move to the door
update num completing simulation
exit the store & the simulation

	Industrial Simulation with Animation
	Recommended Citation

	tmp.1632247051.pdf.UvIZm

