# Heuristic Coloring Algorithm for the Composite Graph Coloring Problem 

Johnnie C. Roberts<br>Billy E. Gillett<br>Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports
Part of the Computer Sciences Commons

## Recommended Citation

Roberts, Johnnie C. and Gillett, Billy E., "Heuristic Coloring Algorithm for the Composite Graph Coloring Problem" (1987). Computer Science Technical Reports. 93.
https://scholarsmine.mst.edu/comsci_techreports/93

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

# HEURISTIC COLORING ALGORITHM FOR THE COMPOSITE GRAPH COLORING PROBLEM 

Johnnie C. Roberts* and Billy E. Gillett

$$
\operatorname{CSc}-87-19
$$

[^0]*This report is substantially the Ph.D. dissertation of the first author, completed December 1987.


#### Abstract

A composite graph is a finite undirected graph in which a positive integer known as chromaticity is associated with each vertex of the graph. The composite graph coloring problem (CGCP) is the problem of finding the chromatic number of a composite graph. i.e.. the minimum number of colors (positive integers) required to assign a sequence of consecutive colors to each vertex of the graph in a manner such that adjacent vertices are not assigned sequences with colors in common and the sequence assigned to a vertex has the number of colors indicated by the chromaticity of the vertex. The CGCP problem is an NP-complete problem that has applications to scheduling and resource allocation problems in which the tasks to be scheduled are of unequal durations.

The pigeonhole principle gives rise to a problem reduction technique for the $C G C P$ and a vertex ordering used in the vertex-sequential-with-interchange (VSI) algorithm. LFPHI. An upper bound on the chromatic number of a composite graph is obtained from the definition of a color-sequential coloring algorithm for the CGCP.

The performances of twelve heuristic coloring algorithms are compared on a variety of random composite graphs. Three VSI algorithms (LFII. LFPHI, and LFCDI) performed superior to the other algorithms on graphs having the lower numbers of vertices and low edge densities while two color-sequential algorithms (RLFl and RLFD1) were superior on graphs having the higher numbers of verices and high edge densities.


## TABLE OF CONTENTS

Page
ABSTRACT ..... i
ACKNOWLEDGEMENT ..... ii
TABLE OF CONTENTS ..... iii
LIST OF ILLUSTRATIONS ..... vi
LIST OF TABLES ..... Xi
I. INTRODUCTION ..... l
II. PRELIMINARY DEFINITIONS ..... 8
A. NOTATION ..... 8
B. FINITE UNDIRECTED GRAPH ..... 8
C. STANDARD GRAPH COLORING PROBLEM ..... 10
D. COMPOSITE GRAPH ..... 11
E. COMPOSITE GRAPH COLORING PROBLEM ..... 12
III. REVIEW OF LITERATURE ..... 14
A. HEURISTIC COLORING ALGORITHMS FOR THE STANDARD GRAPH COLORING PROBLEM ..... 14

1. Vertex-sequential Coloring Algorithms ..... 14
2. Vertex-sequential-with-interchange
Coloring Algorithms ..... 15
3. Color-sequential Coloring Algorithms ..... 17
4. Other Heuristic Coloring Algorithms ..... 22
B. EXACT COLORING ALGORITHMS FOR THE STANDARD GRAPH COLORING PROBLEM ..... 23
C. PROBLEM REDUCTION TECHNIQUES FOR THESTANDARD GRAPH COLORING PROBLEM25
D. HEURISTIC COLORING ALGORITHMS FOR THE COMPOSITE GRAPH COLORING PROBLEM ..... 27
5. Vertex-sequential Coloring Algorithms ..... 27
6. Vertex-sequential-with-interchange
Coloring Algorithms ..... 28
7. Experimental Results ..... 31
E. APPLICATIONS OF GRAPH COLORING ..... 32
8. Applications of the Standard Graph Coloring Problem ..... 32
9. Applications of the Composite Graph Coloring Problem ..... 35
F. RELATED PROBLEMS ..... 35
IV. RECURSIVE LARGEST-FIRST ALGORITHMS ..... 37
A. COLOR-SEQUENTIAL COLORING ALGORITHMS FOR THE COMPOSITE GRAPH COLORING PROBLEM ..... 37
B. AN UPPER BOUND ON THE CHROMATIC NUMBER OF A COMPOSITE GRAPH ..... 40
C. THE RECURSIVE LARGEST-FIRST ALGORITHMS ..... 41
V. PIGEONHOLE MEASURES ..... 48
VI. LARGEST-FIRST ALGORITHMS ..... 54
VII. DYNAMIC PIGEONHOLE MEASURE ALGORITHMS ..... 57
VIII. PROBLEM REDUCTION TECHNIQUES ..... 60
IX. RESULTS AND CONCLUSIONS ..... 66
A. EXPERIMENTS: COLORING RANDOM COMPOSITE GRAPHS ..... 66
10. Goals of the Experiments ..... 66
11. The Chromaticity Distributions ..... 67
12. The Groups of Random Composite Graphs for the Experiments ..... 72
13. The Experiments and Their Results ..... 73
B. ANALYSIS OF THE RESULTS OF THE EXPERIMENTS ..... 93
C. CONCLUSIONS ..... 135
X. FUTURE RESEARCH ..... 143
BIBLIOGRAPHY ..... 146
VITA ..... 149
APPENDICES ..... 150
A. INTEGER PROGRAMMING FORMULATION OF THECOMPOSITE GRAPH COLORING PROBLEM . . . . . . . 150
B. PROCEDURE LISTINGS ..... 154

## LIST OF ILLUSTRATIONS

Figures Page

1. Example of a finite undirected graph ..... 9
2. Number of Excess Colors vs. Number of Vertices forRandom Composite Graphs with $\mu=0.10$ and $d=T R P$.97
3. Number of wins vs. Number of Vertices for RandomComposite Graphs with $\mu=0.10$ and $d=T R P$974. Number of Excess Colors vs. Number of Vertices forRandom Composite Graphs with $\mu=0.15$ and $d=T R P$.98
4. Number of Wins vs. Number of Vertices for RandomComposite Graphs with $\mu=0.15$ and $d=T R P$98
5. Number of Excess Colors vs. Number of Vertices forRandom Composite Graphs with $\mu=0.20$ and $d=T R P$.99
6. Number of Wins vs. Number of Vertices for Random
Composite Graphs with $\mu=0.20$ and $d=T R P$ ..... 99
7. Number of Excess Colors vs. Number of Vertices forRandom Composite Graphswith $\mu=0.10$ and $d=D N R .100$
8. Number of Wins vs. Number of Vertices for RandomComposite Graphs with $\mu=0.10$ and $d=$ DNR100
9. Number of Excess Colors vs. Number of Vertices for Random Composite Graphs with $\mu=0.15$ and $d=D N R .101$
10. Number of Wins vs. Number of Vertices for RandomComposite Graphs with $\mu=0.15$ and $d=$ DNR101
11. Number of Excess Colors vs. Number of Vertices for Random Composite Graphs with $\mu=0.20$ and $d=$ DNR . 102
12. Number of Wins vs. Number of Vertices for Random Composite Graphs with $\mu=0.20$ and $d=$ DNR ..... 102
13. Number of Excess Colors vs. Number of Vertices for Random Composite Graphswith $\mu=0.10$ and $d=$ BIN . 103
14. Number of Wins vs. Number of Vertices for Random Composite Graphs with $\mu=0.10$ and $d=\operatorname{BIN}$ ..... 103
15. Number of Excess Colors vs. Number of Vertices for Random Composite Graphs with $\mu=0.15$ and $d=B I N$. 104
16. Number of Wins vs. Number of Vertices for Random Composite Graphs with $\mu=0.15$ and $d=B I N$104
17. Number of Excess Colors vs. Number of Vertices for Random Composite Graphs with $\mu=0.20$ and $d=$ BIN . 105
18. Number of Wins vs. Number of Vertices for Random Composite Graphs with $\mu=0.20$ and $d=B I N$ ..... 105
19. Number of Excess Colors vs. Number of Vertices for Random Composite Graphs with $\mu=0.10$ and $d=U N I$ ..... 106
20. Number of Wins vs. Number of Vertices for Random Composite Graphs with $\mu=0.10$ and $\mathrm{d}=\mathrm{UNI}$ ..... 106
21. Number of Excess Colors vs. Number of Vertices for Random Composite Graphs with $\mu=0.15$ and $d=U N I$ ..... 107
22. Number of Wins vs. Number of Vertices for Random Composite Graphs with $\mu=0.15$ and $d=U N I$ ..... 107
23. Number of Excess Colors vs. Number of Vertices for Random Composite Graphs with $\mu=0.20$ and $d=U N I$ ..... 108
24. Number of Wins vs. Number of Vertices for Random Composite Graphs with $\mu=0.20$ and $d=U N I$ ..... 108
25. Number of Excess Colors vs. Number of Vertices for Random Composite Graphs with $\mu=0.10$ and $d=U P R$ ..... 109
26. Number of Wins vs. Number of Vertices for Random Composite Graphs with $\mu=0.10$ and $d=U P R$ ..... 109
27. Number of Excess Colors vs. Number of Vertices for Random Composite Graphs with $\mu=0.15$ and $d=U P R .110$
28. Number of Wins vs. Number of Vertices for Random Composite Graphs with $\mu=0.15$ and $d=U P R$ ..... 110
29. Number of Excess Colors vs. Number of Vertices for Random Composite Graphs with $\mu=0.20$ and $d=U P R$. 111
30. Number of Wins vs. Number of Vertices for Random Composite Graphs with $\mu=0.20$ and $d=U P R$ ..... 111
31. Number of Excess Colors vs. Edge Density for Random Composite Graphs with $\mathrm{n}=100$ and $\mathrm{d}=\mathrm{TRP}$ ..... 112
32. Number of Wins vs. Edge Density for Random Composite Graphs with $n=100$ and $d=T R P$ ..... 112
33. Number of Excess Colors vs. Edge Density for Random Composite Graphs with $n=100$ and $d=D N R$. ..... 11335. Number of Wins vs. Edge Density for RandomComposite Graphs with $\mathrm{n}=100$ and $\mathrm{d}=\mathrm{DNR}$.113
34. Number of Excess Colors vs. Edge Density for Random Composite Graphs with $\mathrm{n}=100$ and $\mathrm{d}=\mathrm{BIN}$. . . . 114
35. Number of Wins vs. Edge Density for Random Composite Graphs with $n=100$ and $d=B I N$
36. Number of Excess Colors vs. Edge Density for Random Composite Graphs with $\mathrm{n}=100$ and $\mathrm{d}=\mathrm{UNI}$. . . . 115
37. Number of Wins vs. Edge Density for Random Composite Graphs with $n=100$ and $d=U N I$115
38. Number of Excess Colors vs. Edge Density for Random Composite Graphs with $\mathrm{n}=100$ and $\mathrm{d}=\mathrm{UPR}$. . . . 116
39. Number of Wins vs. Edge Density for Random Composite Graphs with $\mathrm{n}=100$ and $\mathrm{d}=\mathrm{UPR}$. . . . . 116
40. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=100$ and $\mu=0.10$117
41. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $\mathrm{n}=100$ and $\mu=0.10$. 117
42. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=100$ and $\mu=0.15$
43. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=100$ and $\mu=0.15 .118$
44. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=100$ and $\mu=0.20$119
45. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=100$ and $\mu=0.20 .119$
46. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphswith $n=100$ and $\mu=0.30$120
47. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=100$ and $\mu=0.30 .120$
48. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=100$ and $\mu=0.40$121
49. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=100$ and $\mu=0.40$. 121
50. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=100$ and $\mu=0.50$122
51. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=100$ and $\mu=0.50 .122$
52. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=200$ and $\mu=0.10$123
53. Number of Wins vs. Chromaticity Distribution for Random Composite Graphswith $n=200$ and $\mu=0.10$. 123
54. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=200$ and $\mu=0.15$
55. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=200$ and $\mu=0.15 .124$
56. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=200$ and $\mu=0.20$
57. Number of Wins vs. Chromaticity Distribution for Random Composite Graphswith $\mathrm{n}=200$ and $\mu=0.20 \cdot 125$
58. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=300$ and $\mu=0.10$126
59. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=300$ and $\mu=0.10 .126$
60. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=300$ and $\mu=0.15$127
61. Number of Wins vs. Chromaticity Distribution for Random Composite Graphswith $\mathrm{n}=300$ and $\mu=0.15 .127$
62. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=300$ and $\mu=0.20$128
63. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=300$ and $\mu=0.20 .128$
64. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=400$ and $\mu=0.10$129
65. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=400$ and $\mu=0.10 .129$
66. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=400$ and $\mu=0.15$130
67. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=400$ and $\mu=0.15 .130$
68. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=400$ and $\mu=0.20$131
69. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=400$ and $\mu=0.20$. 131
70. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=500$ and $\mu=0.10$
71. Number of Wins vs. Chromaticity Distribution for Random Composite Graphswith $n=500$ and $\mu=0.10 .132$
72. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=500$ and $\mu=0.15$
73. Number of Wins vs. Chromaticity Distribution for Random Composite Graphswith $n=500$ and $\mu=0.15 \cdot 133$
74. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=500$ and $\mu=0.20$134
75. Number of Wins vs. Chromaticity Distribution for
Random Composite Graphswith $n=500$ and $\mu=0.20$. 134

## LIST OF TABLES

Tables Page
I. PROBABILITIES FOR THE CHROMATICITY DISTRIBUTIONS $P(X=k)$ ..... 71
II. RESULTS OF COMPOSITE GRAPH COLORING EXPERIMENTS ( $n=100 . \mu=0.10$ ) ..... 75
III. RESULTS OF COMPOSITE GRAPH COLORING EXPERIMENTS ( $n=100, \mu=0.15$ ) ..... 76
IV. RESULTS OF COMPOSITE GRAPH COLORING EXPERIMENTS ( $n=100 . \mu=0.20$ ) ..... 77
V. RESULTS OF COMPOSITE GRAPH COLORING EXPERIMENTS ( $\mathrm{n}=100, \mu=0.30$ ) ..... 78
VI. RESULTS OF COMPOSITE GRAPH COLORING EXPERIMENTS ( $\mathrm{n}=100, \mu=0.40$ ) ..... 79
VII. RESULTS OF COMPOSITE GRAPH COLORING EXPERIMENTS ( $n=100 . \mu=0.50$ ) ..... 80
VIII. RESULTS OF COMPOSITE GRAPH COLORING EXPERIMENTS ( $\mathrm{n}=200, \mu=0.10$ ) ..... 81
IX. RESULTS OF COMPOSITE GRAPH COLORING EXPERIMENTS ( $n=200, \mu=0.15$ ) ..... 82
X. RESULTS OF COMPOSITE GRAPH COLORING EXPERIMENTS ( $n=200, \mu=0.20$ ) ..... 83
XI. RESULTS OF COMPOSITE GRAPH COLORING EXPERIMENTS ( $n=300, \mu=0.10$ ) ..... 84
XII. RESULTS OF COMPOSITE GRAPH COLORING EXPERIMENTS ( $n=300, \mu=0.15$ ) ..... 85
XIII. RESULTS OF COMPOSITE GRAPH COLORING EXPERIMENTS ( $\mathrm{n}=300, \mu=0.20$ ) ..... 86
XIV. RESULTS OF COMPOSITE GRAPH COLORING EXPERIMENTS ( $n=400, \mu=0.10$ ) ..... 87
XV. RESULTS OF COMPOSITE GRAPH COLORING EXPERIMENTS ( $\mathrm{n}=400, \mu=0.15$ ) ..... 88
XVI. RESULTS OF COMPOSITE GRAPH COLORING EXPERIMENTS ( $\mathrm{n}=400, \mu=0.20$ ) ..... 89
XVII. RESULTS OF COMPOSITE GRAPH COLORING EXPERIMENTS( $\mathrm{n}=500, \mu=0.10$ )90
XVIII. RESULTS OF COMPOSITE GRAPH COLORING EXPERIMENTS ( $n=500, \mu=0.15$ ) ..... 91
XIX. RESULTS OF COMPOSITE GRAPH COLORING EXPERIMENTS ( $\mathrm{n}=500, \mu=0.20$ ) ..... 92
XX. COMPARISON OF COLORING ALGORITHMS: NUMBER OFEXPERIMENTS FOR WHICH ALGORITHM A REQUIRED NOMORE COLORS THAN ALGORITHM B94
XXI. STATISTICS FOR THE NUMBER OF EXCESS COLORSCONSIDERED AS A PERCENTAGE OF "TOTAL COLORS" . . 140

## I. INTRODUCTION

A coloring of a finite undirected graph $G$ which has no loops is an assignment of color, a positive integer, to each vertex of $G$ in a manner such that two adjacent vertices are not assigned the same color. The chromatic number of $G$ is the minimum number of colors required for a coloring of G. The standard graph coloring problem (GCP) is the problem of finding the chromatic number of a graph G. The GCP has been applied to a variety of problems. Among these problems is a class of scheduling and resource allocation problems in Which the tasks to be scheduled are of equal duration and use a set of serially reusable resources.

The composite graph coloring problem (CGCP) was introduced to solve similar scheduling and resource allocation problems in which the tasks to be scheduled can have unequal durations [1]. A composite graph is a finite undirected graph which has no loops and in which each vertex has associated with it a positive integer known as the chromaticity of the vertex. The chromaticity of a vertex indicates the number of consecutive colors that are to be assigned to the vertex in a coloring. A coloring of a composite graph $G$ is an assignment of a sequence of consecutive colors to each vertex of $G$ in a manner such that the sequence has the number of colors determined by the chromaticity of the vertex and two adjacent vertices of $G$ are not assigned sequences of colors that have a color in
common. The chromatic number of a composite graph $G$ is the minimum number of colors required for a coloring of $G$. The CGCP is the problem of finding the chromatic number of a composite graph G.

The standard graph coloring problem [2] and the composite graph coloring problem are NP-complete, so the existence of polynomial-time algorithms that will solve these problems exactly is doubtful. For the GCP. several heuristic algorithms have been developed to color a graph yielding an upper bound on the chromatic number of the graph. This upper bound is often considered an approximation of the chromatic number, but the quality of the approximarion can be rather poor [3.4].

Three such algorithms for the GCP serve as motivation for the algorithms for the CGCP to be discussed in this paper. These algorithms for the GCP are: (1) the largestfirst (LF) algorithm, (2) the largest-first-with-interchange (LFI) algorithm, and (3) the recursive largest-first (RLF) algorithm.

The LF and the LFI algorithms use the degrees of the vertices as a measure to determine the order in which the vertices are to be colored. In these algorithms, vertices of higher degrees are colored prior to those of lower degrees. The order in which the vertices will be colored is determined prior to any vertex being colored. The vertices are ordered in decreasing order according to their degrees. In the LF algorithm, the veritices in this order are assigned
the least color possible. The LFI algorithm colors the vertices in the same fashion as the LF algorithm except when a vertex is to be assigned a color that has not been assigned previously. In this case, an interchange technique is used to attempt to rearrange the colors of some of the previously colored vertices to prevent the use of the new color.

Clementson and Elphick [1] presented four heuristic algorithms (LF1, LF2. LF1I. LF2I) for coloring a composite graph. The largest-first-by-chromaticity (LFi) and the largest-first-by-chromatic-degree (LF2) algorithms are generalizations of the LF algorithm for the GCP. The LFII and the LFRI algorithms use an interchange technique in a fashion similar to the LFI algorithm to reduce the number of colors assigned by the LFl and the LF2 algorithms. respectively. The measures used to determine the order in which the vertices are colored are the chromaticities of the vertices and the chromatic degrees of the vertices. These algorithms order the vertices in decreasing order according to a primary measure and suborder the vertices of equal primary measure in decreasing order according to a secondary measure. In the LFl ordering, the primary measure is the chromaticity of a vertex and the secondary measure is the chromatic degree of a vertex. In the LF2 ordering, the primary measure is the chromatic degree of a vertex and the secondary measure is the chromaticity of a vertex.

Clementson and Elphick reported that the ordering according
to decreasing chromaticities of the vertices yielded better results than the ordering according co decreasing chromatic degrees of the vertices. These results indicate that vertices of high chromaticities are reasonable candidates for preference when ordering the vertices for a coloring algorithm.

The composite graph coloring problem inherits all the difficulties inherent in the standard graph coloring problem and includes any additional difficulties associated with the chromaticities. The LF and the LFI algorithms for the GCP achieve their results by giving preference to vertices of high degrees. The LFI and the LFII algorithms for the CGCP achieve their results by giving preference to vertices of high chromaticities. The new "largest-first" algorithms for the CGCP to be discussed blend these strategies so that the chromaticity of a vertex is not the overriding factor to determine when the vertex is to be colored. In some situations, it may be desirable to color a vertex of intermediate (or even low) chromaticity and high degree prior to a vertex of high chromaticity and low degree. The algorithms being presented order the vertices according to a function of two or more of the following measures: (1) the chromaticities of the vertices. (2) the chromatic degrees of the vertices, and (3) the degrees of the vertices. The largest-first-by-pigeonhole-measure (LFPH) algorithm orders the vertices in decreasing order according to the vertices ' pigeonhole measures. The pigeonhole measure of a vertex is
a function of the three measures mentioned above motivated by the pigeonhole principle. The largest-first-by-chromaticity-times-degree (LFCD) algorithm orders the vertices in decreasing order according to the product of the chromaticity and the degree of a vertex. This product has the desirable properties being sought and is a major term in the pigeonhole measure of a vertex. The LFPHI and the LFCDI algorithms use the interchange technique of Clementson and Elphick to reduce the number of colors assigned by the LFPH and the LFCD algorithms. respectively.

The RLF algorithm for the GCP does not preorder the vertices as do the $L F$ and the LFI algorithms. The RLF algorithm proceeds through the colors in order coloring as many vertices as possible with a color before proceeding to the next color. The algorithm starts with $l$ as the current color. The vertex of the highest degree is selected to be the first vertex to be colored with the current color. The algorithm continues to select vertices to be colored with the current color until all remaining uncolored vertices are adjacent to colored vertex of the current color. A vertex to be selected is in some manner "closest" to the colored vertices of the current color. (The vertex is an uncolored vertex adjacent to the greatest number of uncolored verifes that are adjacent to colored vertices of the current color.) When no more vertices can be colored with the current color. the algorithm is applied to the induced subgraph on the set of remaining uncolored vertices using the next color as the
current color. In the RLF algorithm, the measures to determine the next vertex to be colored are of a dynamic nature. The measures are modified as the coloring progresses. The RLF1 and the RLFD1 algorithms are generalizations of the RLF algorithm using the maximum chromaticity of the vertices as the primary measure for selecting the next vertex to be colored. The remaining measures retain the dynamic nature evident in the RLF algorithm.

The remaining two new algorithms to be presented are the dynamic-pigeonhole-measure (DYNPH) and the dynamic-floating-point-pigeonhole-measure (DYNFPH) algorithms. These algorithms use measures based upon the pigeonhole measure to determine the next vertex to be colored. For each iteration of these algorithms, the vertex with the largest measure is selected to be colored and is assigned the lowest possible sequence of colors. After the vertex is colored. the measures are updated to reflect the effects of coloring the vertex. The measures for these algorithms are of a dynamic nature. These measures are also dependent on the colors that are assigned unlike the measures used in the RLF1 and the RLFD algorithms.

Two problem reduction techniques for the CGCP are described in Chapter VIII. These techniques can be used to reduce the size of the graph to be colored by eliminating vertices from the graph that are guaranteed not to increase the number of colors required for a coloring. The colors
for the eliminated vertices can be determined easily after the remaining vertices are colored.

To compare the algorithms that have been described for the CGCP. the algorithms were used to color a variety of random composite graphs. These random composite graphs have various numbers of vertices, edge densities, and distributions of the chromaticities. The results of these experiments and the conclusions drawn from these results are presented in Chapter IX.

## II．PRELIMINARY DEFINITIONS

## A．NOTATION

The set of integers is denoted by $\mathbb{Z}$ and the set of positive integers by $\mathbb{Z}^{+}$．A sequence of consecutive integers is represented by $I[a, b]$ where $I[a, b]$ denotes the set of integers in the closed interval［a，b］．

$$
I[a, b]=\{i \in \mathbb{Z}: a \leq i \leqslant b\}=[a, b] \cap \mathbb{Z} .
$$

The notation（ $u, v$ ）denotes an unordered pair and 〈u，v＞ denotes an ordered pair．So，if $u \neq v$, then（u．v）$=(v . u)$ but 〈u．v〉 $\neq\langle v, u\rangle$ ．

## B．FINITE UNDIRECTED GRAPH

A finice undirected graph is an ordered triple＜V．E．$\Phi$ 〉 where $V$ is a nonempty finite set of elements known as vertices．E is a finite set of elements known as edges．and $\Phi$ is a function from $E$ into the set of unordered pairs on $V$ ［5］．The endpoints of an edge e are the vertices $u$ and $v$ such that $\Phi(e)=(u, v)$ ．An edge e is incident to a vertex $v$ and vertex $v$ is incident to edge e provided $v i s$ an endpoint of e．Two vertices $u$ and $v$ are adiacent provided $(u, v) \in \Phi(E)$ ．that is，there is an edge with $u$ and $v$ as its endpoints．Two edges $e_{1}$ and $e_{2}$ are adiacent provided $e_{1}$ and $e_{2}$ have a common endpoint．An edge e is a loop provided $\Phi(e)=(v, v)$ for some $v \in V$ ．Two distinct edges $e_{1}$ and $e_{2}$ are multiple edges provided $\Phi\left(e_{1}\right)=\Phi\left(e_{2}\right)$ ，that is，they have the same endpoints．The degree of a vertex $v$ in a graph G．denoted $d_{G}(v)$ or $d(v ; G)$ ．is the number of edges in

G incident to with loops being counted twice. When the graph $G$ is clear from the context, $d_{G}(v)$ will be written $d(v)$. An isolated vertex is a vertex that is not adjacent to any other vertices in the graph. A complete graph is a graph in which every vertex is adjacent to all other vertices.

Figure 1 illustrates an example of a finite undirected graph $G=\langle V, E, \Phi\rangle$ where $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.
$E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\}$, and $\Phi$ is defined as follows:
$\Phi\left(e_{1}\right)=\left(v_{1}, v_{2}\right), \Phi\left(e_{2}\right)=\left(v_{2}, v_{4}\right), \Phi\left(e_{3}\right)=\left(v_{3}, v_{4}\right)$,
$\Phi\left(e_{4}\right)=\left(v_{1}, v_{3}\right), \Phi\left(e_{5}\right)=\left(v_{1}, v_{4}\right), \Phi\left(e_{6}\right)=\left(v_{3}, v_{4}\right)$, and $\Phi\left(e_{7}\right)=\left(v_{2}, v_{2}\right)$. Edges $e_{3}$ and $e_{6}$ are a pair of multiple edges connecting vertices $\mathrm{v}_{3}$ and $\mathrm{v}_{4}$. Edge $\mathrm{e}_{7}$ is a loop. Vertex $v_{5}$ is an isolated vertex.


Figure 1. Example of a finite undirected graph

A graph $H=\left\langle V_{H}, E_{H}, \Phi_{H}\right\rangle$ is a subgraph of a graph $G=\langle V, E . \Phi\rangle$ provided
(1) $\quad V_{H} \subseteq V$.
(2) $E_{H} \subseteq E$, and
(3) $\quad \Phi_{H}($ e $)=\Phi(e)$ for each $e \in E_{H}$.

An induced subgraph of a graph $G=\langle V . E . \Phi\rangle$ on a set of vertices $U$ where $U \subseteq V$ is the graph $H=\left\langle U, E_{H} \cdot \Phi_{H}\right\rangle$ where $E_{H}=\{e \in E: \Phi(e)=(u, v)$ for some $u \in U$ and $v \in U\}$ and
$\Phi_{H}(e)=\Phi(e)$ for each $e \in E_{H}$. If $U \subset V$, then the notation $G$ - U denotes the induced subgraph of $G=\langle V, E . \Phi\rangle$ on the set of vertices $V-U$. If $U$ is a singleton, say $U=\{u\}$, then the shorthand notation $G-u$ is used for $G-\{u\}$. If $U \subseteq V$. then the notation $\langle U\rangle$ denotes the induced subgraph of $G$ on U.

In the graph coloring problems to be considered. multiple edges do not change the result of the problem. A group of multiple edges connecting two vertices can be replaced by a single edge connecting the two veritices. For a graph $G=\langle V, E, \Phi\rangle$ with no multiple edges. $\Phi$ maps E one-toone onto $\Phi(E)$. In such a graph. $E$ is "essentially" the same as $\Phi(E) . S o, G$ is commonly referred to as an ordered pair〈V,E〉 where E is a set of unordered pairs on $V$.

## C. STANDARD GRAPH COLORING PROBLEM

Let $G=\langle Y . E . \Phi\rangle$ be a finite undirected graph with no loops and no multiple edges. A coloring of the graph $G$ is a function from $V$ into $Z^{+}$such that for each $u \in V$ and $v \in V$.
if $u$ is adjacent to $v$. then $f(u) \neq f(v)$. The positive integer $f(u)$ is called the color of the vertex $u$. For a coloring $f$ of $G$. the highest color assigned to any vertex is denoted by $x(f: G)$.

$$
x(f: G)=\max \{f(u): u \in V\} .
$$

For an integer $k$, a coloring $f$ of $G$ is a k-coloring of $G$ provided $X(f ; G) \leqslant k$. The graph $G$ is $k$-colorable provided $G$ has a $k$-coloring. The chromatic number of $G$, denoted $\mathscr{X}(G)$. is the minimum number of colors required for a coloring of G .

$$
\mathscr{X}(G)=\min \{X(f ; G): f \text { is a coloring of } G\} .
$$

If $G$ is $k$-colorable but not ( $k-1$ )-colorable, then $\mathscr{X}(G)=k$. A coloring $f$ of $G$ is an optimal coloring if $x(f: G)=x(G)$. The standard graph coloring problem (GCP) is the problem of finding the chromatic number of a finite undirected graph.

## D. COMPOSITE GRAPH

A composite graph is an ordered quadruple 〈V, E, Ф. C〉 where $\langle V, E, \Phi\rangle$ is a finite undirected graph with no loops and no multiple edges and $C$ is a function from $V$ into $\mathbb{Z}^{+}$. The value $C(v)$ for $v \in V$ is known as the chromaticity of the vertex $v$. The chromatic degree of a vertex $v$, denoted $\Delta_{G}(v)$ or $\Delta(v ; G)$, is the sum of the chromaticity of $v$ and the chromaticities of all vertices adjacent to $v$.

$$
\Delta_{G}(v)=C(v)+\sum_{u \in \Gamma(v)} C(u)
$$

where $\Gamma(v)=\{u \in V: u$ is adjacent to $v\}$. When the graph $C$ is clear from the context. $\Delta_{G}(v)$ will be written $\Delta(v)$.

## E. COMPOSITE GRAPH COLORING PROBLEM

Let $G=\langle V, E, \Phi, C\rangle$ be a composite graph. A coloring $F$ of $G$ is a function from $V$ into (I[a,b]: a $\epsilon \mathbb{Z}^{+}, b \in \mathbb{Z}^{+}$.
$a \leq b\}$ such that
(1) for each $v \in V .|F(v)|=C(v)$ and
(2) for each $v \in V$ and $u \in V$. if $u$ is adjacent to $v$, then $F(u) \cap F(v)=\phi$.

For a coloring $F$. each positive integer in the sequence of consecutive integers, $F(v)$, assigned to a vertex $v$ is a color of $v$. For a coloring $F$ of $G$, the highest color used in the coloring is denoted by $\mathscr{X}(F ; G)$.

$$
x(F ; G)=\max \left[\bigcup_{v \in V} F(v)\right] .
$$

The chromatic number of a composite graph $G$, denoted $\mathscr{X}(G)$. is the minimum number of colors required for a coloring of G.

$$
x(G)=\min \{x(F ; G): F \text { is a coloring of } G\} .
$$

A coloring $F$ of $G$ is an optimal coloring if $\mathscr{X}(F ; G)=\mathscr{X}(G)$. The composite graph coloring problem (CGCP) is the problem of finding the chromatic number of a composite graph.

The composite graph coloring problem for a composite
graph with the chromaticities of all the vertices equal to 1 (or any positive integer) is equivalent to the standard graph coloring problem. Thus. the standard graph coloring problem is a special case of the composite graph coloring problem.

## III. REVIEW OF LITERATURE

## A. HEURISTIC COLORING ALGORITHMS FOR THE STANDARD GRAPH

## COLORING PROBLEM

For the standard graph coloring problem, several polynomial-time algorithms have been developed to color a graph and yield an approximation of the chromatic number of the graph. Most of these algorithms are from three types of coloring algorithms: vertex-sequential coloring algorithms. vertex-sequential-with-interchange coloring algorithms, and color-sequential coloring algorithms.

## 1. Vertex-sequential Coloring Algorithms. Vertex-

 sequential coloring algorithms arrange the vertices of the graph in some order and then assign to each vertex in sequence the least color possible. A vertex-sequential coloring algorithm coloring a graph $G$ whose vertices are arranged in the order $v_{1}, v_{2}, v_{3}, \ldots v_{n}$ would generate a coloring $f$ for which $f\left(v_{1}\right)=1$ and $f\left(v_{k}\right)=m i n\left\{i \in \mathbb{Z}^{+}\right.$: i $\neq f\left(v_{j}\right)$ if $v_{j}$ is adjacent to $v_{k}$ for some $\left.j \in I[1, k-1]\right\}$ for each $k \in I[2 . n]$. Two vertex-sequential algorithms that are commonly discussed in the literature are the largestfirst (LF) and the smallest-last (SL) algorithms [6]. The LF algorithm orders the vertices in order of decreasing degrees. The $S L$ algorithm arranges the vertices in an order in which each vertex has the smallest degree in the induced subgraph on the set of vertices preceding and including the vertex. If $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ is a $S L$ ordering of thevertices of a graph $G$ and $G_{i}$ is the induced subgraph of $G$ on $\left\{v_{1}, v_{2} \cdot v_{3}, \ldots v_{i}\right\}$ for each $i \in I[1, n]$, then $d_{G_{i}}\left(v_{i}\right) \leq d_{G_{i}}\left(v_{j}\right)$ for each $j \in I[1, i]$ and $i \in I[1, n]$. The determining of a $S L$ ordering for the $n$ vertices of a graph $G$ can be described recursively as follows:
(1) Select a vertex $u$ with the smallest degree to be the $n$-th vertex in the ordering.
(2) Order the remaining $n$ - 1 vertices by determining a $S L$ ordering of the $n-1$ vertices of the graph $G-u$.

The LF and SL orderings are both based on the rationale that vertices of higher degrees should be colored before those of lower degrees.
2. Vertex-sequential-with-interchange Coloring

Algorichms. A vertex-sequential-with-interchange (VSI) algorithm colors a graph in the same fashion as a vertexsequential algorithm except when a vertex is to be assigned a color that has not been assigned previously. In this case, a VSI algorithm uses an interchange technique to attempt to prevent the use of the new color. The interchange technique searches previously colored vertices to determine whether interchanging two colors on some of these vertices can prevent the use of the new color. Suppose $G=\langle V, E, \Phi\rangle$ is a graph that is being colored and f is the coloring that is being generated. For two distinct vertex colors i and $j$, if $U \subseteq V$ such that $f(v) \in\{i, j\}$ for each $v \in U$, then an (i,i)-interchange on $U$ is a redefinition
of $f$ such that for each vertex $v \in U$ which originally had $f(v)=i, f(v)$ is redefined to $f$, and vice versa.

Two interchange techniques have been presented in the literature for the standard graph coloring problem. To discuss these interchange techniques, let us assume that a graph $G$ is being colored by a VSI coloring algorithm and a coloring $f$ is being generated. The vertices of $G$ are arranged in the order $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$. Suppose the first $k$ - 1 vertices have been assigned colors and $v_{k}$ is the next vertex to be colored. Let $M$ be the number of colors used to color the first $k$ - 1 vertices, that is. $M=\max \left\{f\left(v_{i}\right): \quad i \in I[1, k-1]\right\}$. Let $p$ be the least color that can be assigned to $v_{k}$ if the colors for the previous vertices are left unchanged, that is, $p=\min \left\{i \in \mathbb{Z}^{+}\right.$:
i $\neq f\left(v_{j}\right)$ if $v_{j}$ is adjacent to $v_{k}$ for some $\left.j \in I[1, k-1]\right\}$. If $p \leq M$, then the vertex $v_{k}$ is assigned the color $p$, else an interchange technique is applied at this time.

The interchange technique described by Matula, Marble, and Isaacson [6] considers the colors that are currently assigned to exactly one vertex adjacent to $v_{k}$ as the candidate colors to participate in an interchange. Let $K$ be the set of these colors. $K=\{i \in \mathbb{I}[1, M]$ : there is exactly one $j \in I[1, k-1]$ such that $v_{j}$ is adjacent to $v_{k}$ and $\left.f\left(v_{j}\right)=i\right\}$. For $i, j \in I[1, M]$. define $G_{i j}$ to be the induced subgraph of $G$ on $\left\{v_{h}: h \in I[1, k-1]\right.$ and $\left.f\left(v_{h}\right) \in\{i, j\}\right\}$. If. for some $i, j \in K$, there is a component of $G_{i j}$ that has exactly one vertex adjacent to $v_{k}$, then perform an
(i.j)-interchange on that component of $G_{i j}$. The (i, $j$ )-interchange will result in either i or $j$ not being assigned to a vertex adjacent to $v_{k}$. Assign $v_{k}$ that color. If no interchange was possible, assign $v_{k}$ the color $M+1$. The interchange technique described by Johnson [3.7] is an extension of the interchange technique of Matula, Marble. and Isaacson. In this interchange technique, if there are i.j $\in I[1 . M]$ such that each component of $G_{i j}$ has vertices adjacent to $v_{k}$ of only one color, then an interchange can be performed. Select such an $i$ and $j$ and perform an (i,j)-interchange on each component of $G_{i j}$ which contains a vertex $v$ which is adjacent to $v_{k}$ and $f(v)=i$. If no interchange was possible, assign $v_{k}$ the color $M+1$.

The largest-first-with-interchange (LFI) and the smallest-last-with-interchange (SLI) algorithms are VSI algorithms in which the vertices are arranged in a $L F$ ordering and a $S L$ ordering, respectively. In the literature, the names, "LFI" and "SLI", have referred to algorithms using either of the two interchange techniques.

## 3. Color-sequential Coloring Algorithms. Color-

 sequential coloring algorithms color a graph in a manner such that before a vertex is assigned a color $k$ all vertices that are to have colors less than $k$ have already been assigned those colors. A color-sequential algorithm starting with the color 1 assigns a color to as many vertices as possible before proceding to assign the next color to vertices. Upon completion of assigning a color $k$to vertices of a graph, each remaining uncolored vertex is adjacent to at least one vertex that has been assigned the color $j$ for each $j \in I[1, k]$. Below is a pseudocode description of a color-sequential coloring algorithm to color a graph $G=\langle V, E, \Phi\rangle$. This description serves as a framework for four color-sequential algorithms that have appeared in the literature. These algorithms differ in the manner in which the next vertex to be colored is selected. In the algorithm description. $U$ is the set of all uncolored vertices, initially $V$, is the current color being assigned by the algorithm, and $U_{1}$ is the set of all uncolored vertices that are not adjacent to vertices of the current color.

## Color-sequential Coloring Algorithm

Let $i=0$.
Let $U=V$.
WHILE U $\neq \phi$

$$
\begin{aligned}
& \mathrm{i}=\mathrm{i}+1 . \\
& \mathrm{U}_{1}=\mathrm{U} .
\end{aligned}
$$

WHILE $U_{1} \neq \phi$
Select a vertex $v \in U_{1}$ to be colored.
Assign $v$ the color 1.
$U_{1}=U_{1}-\left(\{v\} U\left\{u \in U_{1}: u\right.\right.$ is adjacent to $\left.\left.v\right\}\right)$.
$\mathbf{U}=\mathbf{U}-\{\mathbf{v}\}$.
END WHILE
END WHILE

Welsh and Powell [8] described a color-sequential coloring algorithm that is equivalent to the $L F$ vertexsequential coloring algorithm. The two algorithms are equivalent in the sense that there is a LF ordering of the vertices of the graph being colored for which the LF algorithm generates the same coloring as the Welsh and Powell algorithm. The Welsh and Powell algorithm selects an uncolored vertex that is not adjacent to a vertex of the current color to be the next vertex to be colored. The algorithm selects a vertex $v \in U_{1}$ such that $d(v)=\max \left\{d(u): u \in U_{1}\right\}$. Williams [9] refers to this algorithm as the "Peck-Williams heuristic procedure".

Williams described a variation of the Peck-Williams heuristic procedure in which the next vertex to be colored is not determined by the degree vector but by a vector abtained by multiplying a power of the adjacency matrix of the graph by the degree vector. If the vertices of the graph are labelled $v_{1}, v_{2}, v_{3}, \ldots . v_{n}$. then the degree vector $\bar{d}$ is the vector whose components are $d_{i}=d\left(v_{i}\right)$ for all $i \in I[1, n]$. Let $A$ be the adjacency matrix of the graph being colored. For $k \in \mathbb{Z}^{+}$, the vector $A^{k} \bar{d}$ approximates an eigenvector corresponding to the dominant eigenvalue of the adjacency matrix of the graph. For a particular $k \in \mathbb{Z}^{+}$. calculate $\bar{d}^{(k)}=A^{k-1} \tilde{d}$. To select the next vertex to be colored, the algorithm selects an uncolored vertex $v_{i} \in U_{1}$ such that $d_{i}^{(k)}=\max \left\{d_{j}^{(k)}: j \in I[1, n]\right.$ and $\left.v_{j} \in U_{1}\right\}$. According to williams, for a graph having $n$ vertices.
choosing $k \approx \sqrt[3]{n}$ is generally sufficient to observe a significant improvement in the heuristic. In [10], it was reported that proceeding beyond $k=1$ does not appear to result in significant improvements.

Johnson [3] described a color-sequential coloring algorithm known as the approximately maximum independent set (AMIS) coloring algorithm. The AMIS algorithm exhibits a better worst case behavior than the previously described heuristic algorithms. On a graph $G$ with $n$ vertices, the AMIS algorithm uses at most $O\left(\frac{n}{\log n}\right) \mathscr{O}(G)$ colors, while the previously described algorithms can use $O(n) \mathscr{X}(G)$ colors. In the AMIS algorithm, the next vertex to be colored is an uncolored vertex of minimum degree in the induced subgraph of $G$ on the set of uncolored vertices that are not adjacent to a vertex of the current color. The AMIS algorithm selects a vertex $v \in U_{1}$ such that $d\left(v:\left\langle U_{1}\right\rangle\right)=\min \left\{d\left(u:\left\langle U_{1}\right\rangle\right): u \in U_{1}\right\}$. Computational experience has shown that, on the average, the AMIS algorithm produces colorings that are substantially inferior to those produced by the $L F$ and the $S L$ algorithms [7].

Leighton [7] described a color-sequential coloring algorithm known as the recursive largest-first (RLF) algorithm that "combines the strategy of the LF algorithm With the structure of the AMIS algorithm." The RLF algorithm selects the next vertex to be colored by considering an uncolored vertex's relationship ro two disjoint subsets, $U_{1}$ and $U_{2}$, of $U$, the set of all uncolored
vertices. $U_{1}$ is the set of all uncolored vertices that are not adjacent to vertex of the current color and $U_{2}$ is the set of all uncolored vertices that are adjacent to a vertex of the current color. The first vertex to be assigned a color $k$ is a vertex of the highest degree in the induced subgraph on $U_{1}$. Each remaining vertex to be assigned the color $k$ is selected by choosing a vertex in $U_{1}$ that is adjacent to the greatest number of vertices in $U_{2}$. If there is more than one such vertex, then a vertex with the lowest degree in $\left\langle U_{1}\right\rangle$ is selected from among these vertices. The number of vertices in $U_{2}$ adjacent to a vertex $v$ is $d\left(v:\left\langle U_{2} U\{v\}\right\rangle\right)$. Below is a pseudocode description of the RLF algorithm to color a graph $G=\langle V, E, \Phi\rangle$.

## Recursive Largest-first Coloring Algorithm

Let $i=0$.
Let $U=V$.
WHILE U $\neq \varnothing$
$\mathrm{i}=\mathrm{i}+1$.
$U_{1}=U$.
Select a vertex $v \in U_{1}$ such that
$d\left(v:\left\langle U_{1}\right\rangle\right)=\max \left\{d\left(u:\left\langle U_{1}\right\rangle\right): u \in U_{1}\right\}$.
Assign $v$ the color $i$.
$U_{2}=\left\{u \in U_{1}: u\right.$ is adjacent to $\left.v\right\}$.
$U_{1}=U_{1}-\left(\{v\} U\left(u \in U_{1}: u\right.\right.$ is adjacent to $\left.\left.v\right\}\right)$.
$\mathbf{U}=\mathbf{U}-\{\mathbf{v}\}$.

WHILE $U_{1} \neq \phi$
Let $s=\max \left\{d\left(u:\left\langle U_{2} U\{u\}\right\rangle: u \in U_{1}\right\}\right.$.
Let $Q=\left\{u \in U_{1}: d\left(u:\left\langle U_{2} U\{u\}\right\rangle\right)=s\right\}$.
Select a vertex $v \in Q$ such that
$d\left(v:\left\langle U_{1}\right\rangle\right)=m i n\left(d\left(u:\left\langle U_{1}\right\rangle\right): u \in Q\right\}$.
Assign $v$ the color i.
$U_{2}=\left\{u \in U_{1}: u\right.$ is adjacent to $\left.v\right\}$.
$U_{1}=U_{1}-\left(\{v\} U\left\{u \in U_{1}: u\right.\right.$ is adjacent to $\left.\left.v\right\}\right)$.
$U=U-\{v\}$.
END WHILE
END while

## 4. Other Heuristic Coloring Algorithms. The

 previously described heuristic algorithms are by no means an exhaustive list of the heuristic algorithms that have been described in the literature but a list of algorithms that are related to the heuristic algorithms for the CGCP to be discussed. A few other algorithms are described briefly below.Brelaz [11] described three heuristic algorithms (Dsatur, DSI. Matula-Dsatur) that yielded good experimental results. The Dsatur algorithm selects an uncolored vertex of highest saturation degree to be the next vertex to be colored. If there is more than one such vertex, then one of these vertices with the highest degree in the induced subgraph on the set of uncolored vertices is selected. The saturation degree of a vertex is the number of distinct
colors assigned to adjacent vertices. The least possible color is assigned to the selected vertex. The DSI algorithm is obtained by using the interchange technique of Matula. Marble, and Isaacson with the Dsatur algorithm. The Dsatur and SL algorithms may be used to obtain "approximately" maximal cliques of a graph. The Matula-Dsatur algorithm selects the larger of the two cliques to begin the coloring of the graph and completes the coloring of the graph using the Dsatur algorithm.

In [12]. Wood described an algorithm that colors pairs of vertices in decreasing order of similarity. If two vertices are not adjacent, then the similarity of the pair of vertices is the number of vertices that are adjacent co both vertices of the pair. Otherwise, the similarity is 0 .

In [13]. Dutton and Brigham described an algorithm that determines a coloring of a graph by merging nonadjacent vertices until a complete graph is formed.

Schneider [14] presented a classification scheme for heuristic coloring algorithms for the GCP and the results of an experimental study of twenty-three heuristic algorithms.

## B. EXACT COLORING ALGORITHMS FOR THE STANDARD GRAPH

## COLORING PROBLEM

Two articles [15,16] provide a good survey of the exact coloring algorithms for the GCP. Korman gives a broad survey of exact coloring algorithms while Kubale and Jackowski provide a survey of Brown's algorithm [17] and its
variations. The topics discussed by Korman include (1) (0,1) integer programming formulations of the GCP. (2) vertex-sequential coloring algorithms for the GCP. and (3) color-sequential coloring algorithms for the GCP. The GCP can be formulated as a set partitioning problem and as a set covering problem. The vertex-sequential and the colorsequential coloring algorithms use implicit enumeration co find an optimal coloring of a graph. The vertex-sequential coloring algorithms include Brown's algorithm and a dichotomous search algorithm based on a theorem of Zykov. Brown's algorithm first colors the vertices of a graph using a vertex-sequential coloring algorithm (as described previously in Section $A$ of this chapter) and then attempts to improve the resulting coloring by means of backtracking. At each level of its search, the dichotomous search algorithm either coalesces two nonadjacent vertices or joins two nonadjacent vertices by an edge until a complete graph is created. In the color-sequential algorithms at each level of the search, the vertices of maximal independent set of the current uncolored subgraph are all assigned the same color.

A number of the exact coloring algorithms that have appeared in the literature are variations of Brown's algorithm. A recent article of Kubale and Jackowski [16] presented a generalized implicit enumeration algorichm which serves as a framework for Brown's algorithm and its variations. This article provides an excellent survey of
these algorithms and describes corrected versions of two erroneous algorithms [18(p. 70-71), 11] that have appeared in the literature.

## C. PROBLEM REDUCTION TECHNIQUES FOR THE STANDARD GRAPH

## COLORING PROBLEM

A problem reduction technique is a method of changing the problem of finding the chromatic number and an optimal coloring of a graph into the problem of finding the chromatic numbers and optimal colorings of one or more subgraphs of the original graph. The chromatic number and an optimal coloring of the original graph should be easily obtainable from the chromatic numbers and optimal colorings of the subgraphs. Three problem reduction techniques that have appeared in the literature are briefly discussed below.

A rather obvious problem reduction technique is to remove those vertices with relatively low degrees from the graph being colored. The following theorem determines the vertices that can be removed by this technique.

Theorem. Let $G=\langle V, E . \Phi\rangle$ be a finite undirected graph with no loops. Let $M$ be a positive integer. If $d_{G}(v)<M$ for $v \in V$, then any coloring $f$ of $G-v$ can be extended to a coloring of $G$ in which $f(v) S M$.

In a problem in which the chromatic number. $\mathscr{X}(G)$, is being sought. M could be a known lower bound on $\mathscr{X}(G)$. In some practical applications (for examples. see [19] and [10]), a
coloring that is not optimal may be acceptable. In these cases. M could be the largest acceptable number of colors for the application. A vertex $v$ with $d_{G}(v)<M$ can be removed from the graph and be assigned a color less than or equal to $M$ after the graph $G$ - $v$ has been colored. Several vertices can be removed from the graph $G$ and upon coloring the remaining subgraph, the removed vertices can be colored in reverse order as they were removed.

A second problem reduction technique [15] results from the following theorem.

Theorem. Let $G=\langle V, E, \Phi\rangle$ be a finite undirected graph with no loops. For each $v \in V$, let $\Gamma(v)$ be the set of vertices that are adjacent to $v$. If $u \in V$ and $v \in V$ such that $\Gamma(u) \subseteq \Gamma(v)$, then any coloring $f$ of $G-u$ can be extended to be a coloring of $G$ such that $\mathscr{X}(f ; G-u)=\mathscr{X}(f ; G)$ by defining $f(u)=f(v)$.

By repeated applications of the theorem. several vertices can be removed from the graph and upon coloring the remaining subgraph, the removed vertices can be assigned colors as prescribed by the theorem in reverse order as they were removed.

Korman [15] describes another problem reduction technique in which the problem of finding an optimal coloring of a graph $G$ can be transformed into the problems of finding optimal colorings of two or more subgraphs of $G$. The colorings of the subgraphs are easily combined to obtain
an optimal coloring of $G$. Use of this problem reduction technique is possible if $G$ contains a clique whose removal divides $G$ into two or more disjoint components.
D. HEURISTIC COLORING ALGORITHMS FOR THE COMPOSITE GRAPH

## COLORING PROBLEM

1. Vertex-sequential Coloring Algorithms. A vertexsequential (VS) coloring algorithm for the CGCP arranges the vertices of the composite graph to be colored in some order and then assigns to the vertices in this order the lowest possible sequence of colors. A VS coloring algorithm coloring a composite graph $G=\langle V, E, \Phi, C\rangle$ whose vertices are arranged in the order $v_{1}, v_{\hat{2}}, v_{\hat{3}}, \ldots, v_{n}$ would generate a coloring $F$ for which $F\left(v_{1}\right)=I\left[1 . C\left(v_{1}\right)\right]$ and, for each $k \in I[2, n], F\left(v_{k}\right)=I\left[A\left(v_{k}\right), A\left(v_{k}\right)+C\left(v_{k}\right)-1\right]$ where $A\left(v_{k}\right)=\min \left\{i \in \mathbb{Z}^{+}: I\left[i, i+C\left(v_{k}\right)-1\right] \cap \tilde{F}\left(v_{j}\right)=\phi\right.$ when $v_{j}$ is adjacent to $\mathbf{v}_{\mathrm{k}}$ for $\left.\mathrm{j} \in \mathbb{I}[1 . \mathrm{k}-1]\right\}$.

Clementson and Elphick [1] described two VS algorithms. LF1 and LF2, which are generalizations of the LF algorithm for the GCP. The largest-first-by-chromaticity (LF1) algorithm orders the vertices in decreasing chromaticity order and sub-orders vertices with equal chromaticities in decreasing chromatic degree order. The largest-first-by-chromatic-degree (LF2) algorithm orders the vertices in decreasing chromatic degree order and sub-orders vertices with equal chromatic degrees in decreasing chromaticity order.

## 2. Vertex-sequential-with-interchange Coloring

Algorithms. A vertex-sequential-with-interchange (VSI) coloring algorithm for the CGCP uses an interchange technique in a fashion similar to a VSI coloring algorithm for the GCP. After arranging the vertices of a composite graph in some order. a VSI algorithm assigns to each vertex in this order the lowest possible sequence of colors. When the sequence of colors assigned to a vertex contains a color greater than the colors assigned to the previous vertices. the VSI algorithm applies an interchange technique to attempt to reduce the number of colors currently assigned by the algorithm. Unlike the interchange techniques described for the VSI algorithms for the GCP in which several vertices can be involved in the interchange of colors, the
interchange technique for the VSI algorithms for the CGCP involves changing the colors of two vertices, the current vertex and a vertex adjacent to the current vertex. The interchange technique searches for a possible recoloring of the current vertex and an adjacent vertex in which the current vertex is assigned some of the colors currenty assigned to the adjacent vertex and for which the number of colors used in the coloring is reduced.

Suppose that a composite graph $G=\langle V, E, \Phi, C\rangle$ is being colored by a VSI coloring algorithm and a coloring $F$ is being generated. The vertices of $G$ are arranged in the order $v_{1}, v_{2}, v_{3}, \ldots . v_{n}$. Suppose the first $k$ - 1 vertices have been assigned sequences of colors and $v_{k}$ is the next
vertex to be colored. Let $M=\max \left[\bigcup_{i=1}^{k} F\left(v_{i}\right)\right]$, the highest color assigned to the previous vertices. Let $p=\min \left\{i \in \mathbb{Z}^{+}: I\left[i, i+C\left(v_{k}\right)-1\right] \cap F\left(v_{j}\right)=\phi\right.$ when $v_{j}$ is adjacent to $v_{k}$ for $\left.j \in I[1, k-1]\right\}$. The VSI algorithm assigns the color sequence with initial color $p$ to $v_{k}$ that is. $F\left(v_{k}\right)=I\left[p, p+C\left(v_{k}\right)-1\right]$. If $p+C\left(v_{k}\right)-1 S M$, then the algorithm proceeds to color $v_{k+1}$. Otherwise. the interchange technique is applied to attempt to reduce the number of colors currently being used in the coloring. A description of the interchange technique is given below.
(1) Determine a set $P$ of candidate initial colors for the vertex $v_{k}$. A color $i$ is an element of $P$ provided exactly one vertex adjacent to $v_{k}$ has colors in the sequence $I\left[i . i+C\left(v_{k}\right)-1\right]$. $P=\{i \in I[1 . p-1]:$ there is exactly one $j \in I[1, k-1]$ such that $v_{j}$ is adjacent to $v_{k}$ and $\left.I\left[i, i+C\left(v_{k}\right)-1\right] \cap F\left(v_{j}\right) \neq \phi\right\}$. If $P=\phi$, then no interchange is possible and the algorithm proceeds to color $v_{k+1}$. Let us assume $P \neq \phi$.
(2) Determine possible recolorings of $v_{k}$ and an adjacent vertex for each i $\in P$. For each $i \in P$. define $J(i) \in I[1, k-1]$ where $v_{J(i)}$ is the vertex that is adjacent to $v_{k}$ and $I\left[i, i+C\left(v_{k}\right)-1\right] \cap F\left(v_{J(i)}\right) \neq \phi$. For each $i \in P$, define $Q(i)$ to be the lowest permissible
initial color for $v_{J(i)}$ if $v_{k}$ were assigned the color sequence $I\left[1, i+C\left(v_{k}\right)-1\right]$. For each $i \in P, Q(i)=\left\{r \in \mathbb{Z}^{+}:\right.$
$I\left[r . r+C\left(v_{J(i)}\right)-1\right] \cap I\left[i . i+C\left(v_{k}\right)-1\right]=\phi$ and $I\left[r, r+C\left(v_{J(i)}\right)-1\right] \cap F\left(v_{j}\right)=\phi$ when $v_{j}$ is adjacent to $V_{J(i)}$ for $\left.j \in I[1, k-1]\right\}$. Note that. for any $i \in P$, the vertices $v_{k}$ and $v_{J(i)}$ could be validly recolored by redefining
$F\left(v_{k}\right)=I\left[i \cdot i+C\left(v_{k}\right)-1\right]$ and
$F\left(v_{J(i)}\right)=I\left[Q(i) \cdot Q(i)+C\left(v_{J(i)}\right)-1\right]$.
(3) Choose, if possible, a recoloring that reduces the number of colors being used for the coloring. Define $R=\left\{i \in P: Q(i)+C\left(v_{J(i)}\right)<p+C\left(v_{k}\right)\right\}$. If $R=\phi$, then any recoloring as described above will not reduce the number of colors currently used in the coloring. So, no interchange is possible and the VSI algorithm proceeds to color $\mathbf{v}_{\mathrm{k}+1}$. Let us assume $\mathrm{R} \neq \phi$. Choose $\mathrm{i}^{*} \in \mathrm{R}$ such that $\max \left\{i^{*}+C\left(v_{k}\right), Q\left(i^{*}\right)+C\left(v_{J(i *}^{*}\right)\right\}=$
$\min _{i \in R} \max \left\{i+C\left(v_{k}\right), Q(i)+C\left(v_{J(i)}\right)\right\}$. Recolor $v_{k}$ and $\left.v_{J(i}{ }^{*}\right)$ by redefining $F\left(v_{k}\right)=I\left[i^{*}, i^{*}+C\left(v_{k}\right)-1\right]$ and $F\left(v_{J}\left(i^{*}\right)\right)=I\left[Q\left(i^{*}\right), Q\left(i^{*}\right)+C\left(v J\left(i^{*}\right)\right)-1\right]$. The interchange technique is completed and the VSI algorithm proceeds to color $\mathbf{v}_{k+1}$.

The LF1I and the LF2I algorithms are the VSI algorithms
corresponding to the LF1 and the LF2 VS algorithms. respectively.
3. Experimental Results. Clementson and Elphick compared the four algorithms on a series of random composite graphs. The random composite graphs had 100 vertices and edge densities $\mu=0.2,0.3,0.4$. For a random composite graph having $n$ vertices, each of the possible $\frac{n(n-1)}{2}$ edges has probability $\mu$ of being placed in the graph. The chromaticities of the vertices were distributed according to the truncated Poisson distribution with parameter $\lambda=1$. The probability that vertex $v$ has chromaticity $k$ is given by

$$
P(C(v)=k)=\frac{\lambda^{k}}{\left(e^{\lambda}-1\right)(k!)} \text { for } k=1,2,3, \ldots
$$

These random composite graphs had a high percentage of vertices with low chromaticities. Approximately $58 \%$ of the vertices had chromaticity 1 and approximately $29 \%$ had chromaticity 2. The LF1 and the LFII algorithms yielded colorings superior to those of the LF2 and the LF2I algorithms, respectively. Each of the vertex-sequential-with-interchange algorithms performed better than its corresponding vertex-sequential algorithm. In the results on fifteen random composite graphs documented in the article, the LFII algorithm produced colorings at least as good as those produced by the other three algorithms. Results for composite graphs with other distributions of chromaticity were not reported.

## E. APPLICATIONS OF GRAPH COLORING

1. Applications of the Standard Graph Coloring

Problem. Graph coloring has a variety of applications.
Schneider [14] listed several areas in which graph coloring has applications: "code design, circuit troubleshooting. decomposition of Boolean functions and automata, distribution of computer memory. design of multilayer integrated circuits, and quality control of printed paths. object classification, and timetabling." In an application of graph coloring, a graph is used to represent conflicts or incompatibilities between objects or events. This graph (its adjacency matrix) is referred to in the literature as a conflict graph (matrix), an interference graph (matrix), or an incompatibility graph (matrix).

As an example, let us consider one of the more commonly mentioned applications of graph coloring, examination timetabling. The examination timetabling problem is the problem of finding the minimum number of periods required to schedule final examinations for several classes without scheduling two examinations for a student during the same period. For this application, a vertex represents a final examination for a class, an edge represents that the final examinations for two classes cannot be given during the same period, and the color to be assigned to a vertex represents the period in which the final examination for the class is scheduled.

The GCP is directly applicable to a scheduling (resource allocation) problem in which (1) the tasks to be scheduled use serially reusable resources. (2) the tasks are of equal duration, say one time period, (3) each task requires a specific set of resources (one resource cannot be used in place of another), (4) a resource is assigned to a task for the duration of the task, and (5) the objective is to minimize the number of time periods required to complete the tasks. The examination timetabling problem described above is an example of such a problem in which the students are the "resources" and the final examinations for the classes are the "tasks." In practical applications. a variety of additional constraints are necessary or desirable to be satisfied. Two examples of such constraints are preassignments of some tasks to certain time periods and precedence constraints that require that one task precede another. For examples of various additional constraints. see [7], [10], [20]. and [21].

To provide an insight into the variety of practical applications that have been reported on in the literature. six articles are briefly described below. Each article provides a description of a particular practical application of graph coloring.

In [19]. Chaitin describes a graph coloring approach to perform register allocation and to make spill decisions in an optimizing compiler.

Ambler and Trawick [22] used a graph coloring algorithm
to allocate positions for atributes within the nodes of a Diana graph. Diana is an intermediate language for Ada that specifies a graph representation for an Ada program.

Garey, Johnson. and So [23] describe a method for testing printed circuit boards for possible defects in the form of short circuits. The problem of minimizing the number of tests is the problem of finding an optimal coloring of a special graph, called a line-of-sight graph.

Butler and Matthews [20] describe an application of graph coloring to scheduling of work at a railway depot. The article describes how several constraints were handled in the graph or in the heuristic algorithm to color the graph.

Coleman and More [24] use the GCP to attack the problem of minimizing the number of function evaluations needed to estimate a sparse Jacobian matrix by differences. The authors provide results for two sets of "real-world" problems. The authors give the number of vertices and the edge density for each of the sixty-three graphs that result from these problems.

Carter [10] presents a survey of practical applications of examination timetabling algorithms. Many of these algorithms are based on graph coloring. Carter gives statistics (for example. number of examinations, number of students, number of periods available, conflict density) for some of the practical problems to which these algorithms have been applied.

## 2. Applications of the Composite Graph Coloring

Problem. The composite graph coloring problem was introduced to overcome the limitation of the standard graph coloring problem to hande school timetabling problems with multiple period lessons [1]. The CGCP is applicable to scheduling (resource allocation) problems as described for the GCP in which the tasks to be scheduled are allowed to have unequal durations.

The store economy problem can be modeled by the CGCP. The store economy problem involves minimizing the memory required by a program by determining which variables can occupy the same locations in store [1].

## F. RELATED PROBLEMS

In our discussion of graph coloring, we have restricted the discussion to vertex colorings. In the literature, two other forms of colorings of a graph have been presented: edge coloring [25] in which the edges of a graph are assigned colors and total coloring [26] in which both the vertices and the edges of a graph are assigned colors. The problems of finding an edge coloring and a total coloring of a graph can be easily transformed to an equivalent problem of finding a vertex coloring.

The composite graph which we have defined is a vertexcomposite graph as defined by Clementson and Elphick [1]. Clementson and Elphick also define an edge-composite graph and describe a corresponding edge coloring problem.

In a survey of developments in deterministic sequencing and scheduling. Lawler. Lenstra, and Rinnooy Kan [27] describe a disjunctive graph model of the general job shop problem. The $G C P$ and the CGCP can be modeled by the disjunctive graph model. The disjunctive graph can be obtained from the graph to be colored by: (1) adding two new vertices, a source and a sink, with weights 0 . (2) inserting directed edges from the source to each vertex of the original graph, (3) inserting directed edges from each vertex of the original graph to the sink, (4) assigning a weight equal to the chromaticity of the vertex to each vertex of the original graph, and (5) replacing each edge of the original graph by a pair of directed edges in opposite directions. An acyclic directed subgraph of the disjunctive graph in which one directed edge of each pair of oppositely directed edges is selected corresponds to a coloring that could be produced by a VS algorithm. The number of colors used by the coloring is the weight of the maximum weight path from the source to the sink in the acyclic directed subgraph.
IV. RECURSIVE LARGEST-FIRST ALGORITHMS

Two color-sequential coloring algorithms. RLF1 and RLFD1, for the CGCP are presented. The concept of a colorsequential coloring algorithm for the CGCP is a generalization of the concept of a color-sequential coloring algorithm for the GCP. In a color-sequential coloring algorithm for the CGCP. The current color being assigned by the algorithm is the initial color of the color sequences being assigned to the vertices. Before describing the recursive largest-first algorithms, RLF1 and RLFD1. colorsequential algorithms for the CGCP are described more fully and an upper bound on the chromatic number of a composite graph resulting from the color-sequential algorithms is presented.

## A. COLOR-SEQUENTIAL COLORING ALGORITHMS FOR THE COMPOSITE

## GRAPH COLORING PROBLEM

Color-sequential algorithms to color a composite graph assign color sequences to the vertices in manner such that all vertices that are to be assigned color sequences with initial colors less than a color $k$ are assigned their color sequences prior to the vertices that are to be assigned color sequences with initial color $k$. Starting with the color 1 as the current color, a color-sequential algorithm assigns color sequences with the current color as the
initial color to as many vertices as possible before proceeding to assign color sequences with the next possible initial color? Upon completion of assigning color sequences with initial color $k$ to vertices of the composite graph, each remaining uncolored vertex is adjacent to at least one vertex that has been assigned the color j for each $j \in I[1, k]$. Below is a pseudocode description of a colorsequential algorithm to color a composite graph $G=\langle V, E, \Phi, C\rangle . \quad$ This description can serve as a framework for several algorithms which differ in the manner in which the next vertex to be colored is selected. The recursive largestfirst algorithms. RLF1 and RLFD1, to be described are two such algorithms. In the color-sequential algorithms. a quantity $L B(v)$ is introduced for each vertex $v \in V$ to indicate the lowest possible color that can be assigned to the vertex v. In the algorithm description, U is the set of all uncolored vertices, i is the current color which is the initial color of the color sequences being assigned by the algorithm, and $U_{1}$ is the set of all uncolored vertices that are not adjacent to a vertex that has been assigned the current color.

## Color-sequential Coloring Algorithm

For each $v \in V$, let LB (v)=1.
Let $i=1$.

Let $U=V$.
Let $\mathrm{U}_{1}=\mathrm{U}$.

WHILE U $\neq \phi$
WHILE U ${ }_{1} \neq \phi$
Select a vertex $v \in U_{1}$ to be colored.
Assign vertex $v$ the color sequence $I[i, i+C(v)-1]$.
For each $u \in U$ such that $u$ is adjacent to $v, l e t$
$L B(u)=\max \{L B(u) \cdot i+C(v)\}$.
$U_{1}=U_{1}-\left(\{v\} U\left\{u \in U_{1}: u\right.\right.$ is adjacent to $\left.\left.v\right\}\right)$.
$\mathrm{U}=\mathrm{U}-\{\mathrm{v}\}$.
END while $\omega_{1} \neq \phi$
IF $U \neq \phi$ THEN
$i=\min \{\operatorname{LB}(u): u \in U\}$.
$U_{i}=\{u \in U: L B(u)=i\}$.
END IF
END WHILE $W \neq \phi$
The quantity $L B$ for each vertex is not needed in the colorsequential algorithms for the GCP since each vertex is assigned on l) one color. (After a color $k$ has been assigned to as many vertices as possible, all remaining uncolored vertices are available to be colored with color $k+1$. In the color-sequential algorithms for the CGCP. the quantity LB for each vertex is used to determine the next initial color to be assigned and to determine those vertices that can be assigned color sequences with that initial color. After color sequences with an initial color $k$ have been assigned to as many vertices as possible, some (possibly all) of the remaining uncolored vertices may not be able to
be assigned color sequences with initial color $k+1$.

## B. AN UPPER BOUND ON THE CHROMATIC NUMBER OF A COMPOSITE

## GRAPH

An obvious upper bound on the chromatic number of a chromatic graph $G=\langle V, E, \Phi, C\rangle$ is the sum of the chromaticities of the vertices of $G, \sum_{V \in V} C(v)$. The colorsequential algorithms provide a tighter upper bound on the chromatic number. From the description of a colorsequential coloring algorithm, note that, for each uncolored vertex $v$ and for each $j \in I[1, L B(v)-1]$, there is a vertex that is adjacent to $v$ and has been assigned the color $j$. Using this fact, it can be shown that the maximum chromatic degree of a vertex, $\max \{\Delta(v): v \in V\}$, is an upper bound on the chromatic number of a composite graph G.

Consider a coloring $F$ of a composite graph $G=\langle V, E, \Phi, C\rangle$ generated by a color-sequential coloring algorithm. Let $v^{*}$ be any vertex of $G$ such that $\max F\left(v^{*}\right)=g(F ; G)$. Let $m=m i n F\left(v^{*}\right)$. For each $j \in \operatorname{I}[1 . m-1]$. there is a vertex adjacent to $v^{*}$ that has been assigned the color j. Hence.

$$
\begin{gathered}
\bigcup_{v \in \Gamma\left(v^{*}\right)} F(v)=I[1, m-1] . \\
m-1=\left.\right|_{v \in \Gamma\left(v^{*}\right)} F(v)\left|s \sum_{v \in \Gamma\left(v^{*}\right)}\right| F(v) \mid=\Delta\left(v^{*}\right)-C\left(v^{*}\right)
\end{gathered}
$$

where $\Gamma\left(v^{*}\right)=\left\{u \in V: u\right.$ is adjacent to $\left.v^{*}\right\}$.

$$
\begin{aligned}
x(G) & \leq x(F ; G)=m+C\left(v^{*}\right)-1 \\
& \leq\left(\Delta\left(v^{*}\right)-C\left(v^{*}\right)+1\right)+C\left(v^{*}\right)-1=\Delta\left(v^{*}\right) \\
& \leq \max \{\Delta(v): v \in V\} .
\end{aligned}
$$

So. $\mathscr{X}(G) \leq \max \{\Delta(v): v \in V\}$. The upper bound. $\max \{\Delta(v): v \in V\}$, on the chromatic number. $\mathscr{X}(G)$. is mainly of theoretical interest because in most cases the bound is not close enough to the chromatic number to be of practical interest.

## C. THE RECURSIVE LARGEST-FIRST ALGORITHMS

The RLFl and the RLFDl coloring algorithms are generalizations of the RLF coloring algorithm for the GCP. The results of Clementson and Elphick [1] indicate that it is advantageous to give preference to vertices of high chromaticity in a coloring algorithm. The RLFI and the RLFD1 algorithms do this by interposing an additional criterion for selecting the next vertex to be colored in front of the criteria used by the RLF algorithm. As in the discussion of the RLF algorithm, $U$ denotes the set of all uncolored vertices. $U_{1}$ the set of all uncolored vertices that are not adjacent to a vertex that has been assigned the current color, and $U_{2}$ the set of all uncolored vertices that are adjacent to a vertex that has been assigned the current color. In the RLFi and the RLFD1 algorithms, the next vertex to be colored is a vertex from $U_{1}$ with the maximum chromaticity. For a composite graph, the chromatic degree of a vertex is a measure of the neighborhood of a vertex as
is its degree. The RLFI algorithm uses the chromatic degree of a vertex in place of the degree of the vertex as used in the RLF algorithm. The RLFDl algorithm uses the degree of a vertex as used in the RLF algorithm.

For a particular initial color, the first vertex to be assigned a color sequence with that initial color is selected to be a vertex that is "difficult" to color and the remaining vertices to be/ assigned color sequences with that initial color are chosen to be vertices that are "difficult" to color and are "close" to the vertices that have already been assigned the current color. The "difficulty" to color a vertex is measured by its chromaticity. In the RLF1 algorithm, the "closeness" of a vertex $u$ to the vertices that have been assigned the current color is measured by the sum of the chromaticities of the vertices that are adjacent to the vertex $u$ and also adjacent to vertices that have been assigned the current color. This sum can be written as
$C D-\left(u ;\left\langle U_{2} U\{u\}\right\rangle\right)-C(u)$ and will be referred to as the $U_{2}$ chromatic degree of $u$. In the RLFDl algorithm. the "closeness" of $/ \underset{\sim}{a}$ vertex $u$ to the vertices that have been assigned the current wiser is measured by the number of vertices that are adjacent to the vertex $u$ and also adjacent to vertices that have been assigned the current coteror. This number can be written as $\stackrel{D}{(a)}\left(u_{i}\left\langle U_{2} U\{u\}\right\rangle\right)$ and will be referred to as the $U_{2}$ degree of $u$.

In the following discussion, two or three criteria are listed for the selection of a vertex to be colored. A
higher numbered criterion serves as a tie breaker in the case where more than one vertex satisfies the preceding criteria. If, after all the criteria are applied and more than one vertex remains, any of the remaining vertices can be selected. In the implementations of these algorithms (see Appendix B) the vertex that appeared first in the vertex list is selected.

In the RLF 1 coloring algorithm, the first vertex to be assigned ansecutive intones initial motor is selected from $U_{1}$ according to the following criteria:
(1) maximum chromaticity and
(2) maximum chromatic degree in the uncolored subgraph. 〈U〉. The remaining vertices to be assigned consecutive merges with the current integer as their initial color are selected from $U_{1}$ according to the following criteria:
(1) maximum chromaticity.
(2) maximum $U_{2}$ chromatic degree, and
(3) minimum $U_{1}$ chromatic degree (the chromatic degree in the subgraph $\left\langle\mathrm{U}_{1}\right\rangle$ ).

Below is a pseudocode description of the RLF1 coloring algorithm.

Recursive Largest-first Coloring Algorithm
Using Chromatic Degree - RLF1 Coloring Algorithm
. 5 For each $v \in V$. let $L B(v)=1$.
Let $1=1$.

Let $U=V$.
Let $U_{1}=U$.
Let $U_{2}=\phi$.
WHILE U $\neq \varnothing$
/* Select the first vertex to be assigned the current in ger cor integer $\begin{gathered}\text { colter. }\end{gathered}$

Let $s=\max \left\{C(u): u \in U_{1}\right\}$.
Let $Q=\left\{u \in U_{1}: C(u)=s\right\}$.
Select a vertex $v \in Q$ such that
$C \mathcal{D}(\Delta)(v:\langle U\rangle)=\max \{\stackrel{C D}{\Delta}(u:\langle U\rangle): u \in Q\}$.
Assign vertex $v$ the corse cotornine intequense $I[1, i+C(v)-1]$.
For each $u \in U$ such that $u$ is adjacent to $v$, let
$L B(u)=\max \{L B(u), i+C(v)\}$.
$U_{2}=U_{2} U\left\{u \in U_{1}: u\right.$ is adjacent to $\left.v\right\}$.
$U_{1}=U_{1}-\left(\{v\} U\left\{u \in U_{1}: u\right.\right.$ is adjacent to $\left.\left.v\right\}\right)$.
$\mathrm{U}=\mathrm{U}-\{\mathrm{v}\}$.
/* Select the remaining vertices to be assigned the current


WHILE $U_{1} \neq \phi$
Let $s=\max \left\{C(u): u \in U_{1}\right\}$.
Let $Q=\left\{u \in U_{1}: C(u)=s\right\}$.
Let $t=\max \left\{\frac{D}{\Delta}\left(u ;\left\langle U_{2} U\{u\}\right\rangle\right)-C(u): u \in Q\right\}$.
Let $R=\left\{u \in Q:{ }^{C}{ }^{D}\left(u ;\left\langle U_{2} U\{u\}\right\rangle\right)-C(u)=t\right\}$.
Select a vertex $v \in R$ such that
CD $(\Delta)\left(v ;\left\langle U_{1}\right\rangle\right)=\min \left\{\Delta\left(u ;\left\langle U_{1}\right\rangle\right): u \in R\right\}$.
Assign vertex $v$ the consombine infer $\operatorname{cofor}$ sequence $I[1 . i+C(v)-1]$.

For each $u \in U$ such that $u$ is adjacent to $v$, let $L B(u)=\max \{L B(u) \cdot 1+C(v)\}$ ．
$U_{2}=U_{2} U\left\{u \in U_{1}: u\right.$ is adjacent to $\left.v\right\}$ ．
$U_{1}=U_{1}-\left(\{v\} U\left\{u \in U_{1}: u\right.\right.$ is adjacent to $\left.\left.v\right\}\right)$ ．
$\mathrm{U}=\mathrm{U}-\{\mathrm{v}\}$.
END WHILE／ヶ W
IF $U \neq \phi$ THEN
$i=\min \{\operatorname{LB}(u): u \in U\}$.
$U_{1}=\{u \in U: L B(u)=i\}$ ．
$U_{2}=U-U_{1}$.
END IF
END WHILE $\quad \omega \neq \phi \quad / * \omega \neq \phi * /$

The RLFD1 algorithm is very similar to the RLFI
algorithm except that degree is used instead of chromatic degree．In the RLFDl coloring algorithm，the first vertex to be assigned consecutive witages with the current colorer as its initial kitiger is selected from $U_{1}$ according to the following criteria：
（1）maximum chromaticity and
（2）maximum degree in the uncolored subgraph．〈U〉．
The remaining vertices to be assigned color sequences with the current integer as their initial color are selected from $U_{1}$ according to the following criteria：
（1）maximum chromaticity．
（2）maximum $U_{2}$ degree，and
（3）minimum $U_{1}$ degree（the degree in the subgraph $\left\langle U_{1}\right\rangle$ ）．

$$
\text { ( } 5+0 \mathrm{l} \text { hare) }
$$

Below is a pseudocode description of the RLFDl coloring algorithm.

## Recursive Largest-first Coloring Algorithm

Using Degree - RLFDl Coloring Algorithm
For each $v \in V$, let $L B(v)=1$.
Let $i=1$.
Let $U=V$.
Let $U_{1}=U$.
Let $U_{2}=\phi$.
WHILE U $\neq \phi$
/* Select the first vertex to be assigned the current color
i as its initial color. */
Let $s=\max \left\{C(u): u \in U_{1}\right\}$.
Let $Q=\left\{u \in U_{1}: C(u)=s\right\}$.
Select a vertex $v \in \mathbb{Q}$ such that $d(v ;\langle U\rangle)=\max \{d(u ;\langle U\rangle): u \in Q\}$.

Assign vertex $v$ the color sequence $I[i . i+C(v)-1]$.
For each $u \in U$ such that $u$ is adjacent to $v$. let
$L B(u)=\max \{L B(u), i+C(v)\}$.
$U_{2}=U_{2} U\left\{u \in U_{1}: u\right.$ is adjacent to $\left.v\right\}$.
$\mathrm{U}_{1}=\mathrm{U}_{1}-\left(\{\mathrm{v}\} \cup\left\{u \in \mathrm{U}_{1}: u\right.\right.$ is adjacent to v$\left.\}\right)$.
$\mathrm{U}=\mathrm{U}-\{\mathbf{v}\}$.
/* Select the remaining vertices to be assigned the current color i as their initial color. */

WHILE $U_{1} \neq \phi$
Let $s=\max \left\{C(u): u \in U_{1}\right\}$.

Let $Q=\left\{u \in U_{1}: C(u)=s\right\}$.
Let $t=\max \left\{d\left(u ;\left\langle U_{2} U\{u\}\right\rangle\right): u \in Q\right\}$.
Let $R=\left\{u \in Q: d\left(u_{i}\left\langle U_{2} U\{u\}\right\rangle\right)=t\right\}$.
Select a vertex $v \in R$ such that
$d\left(v ;\left\langle U_{1}\right\rangle\right)=\min \left\{d\left(u_{i}\left\langle U_{1}\right\rangle\right): u \in R\right\}$.
Assign vertex $v$ the color sequence $I[1.1+C(v)-1]$.
For each $u \in U$ such that $u$ is adjacent to $v$, let
$L B(u)=\max \{L B(u), i+C(v)\}$.
$U_{2}=U_{2} U\left\{u \in U_{1}: u\right.$ is adjacent to $\left.v\right\}$.
$U_{1}=U_{1}-\left(\{v\} U\left\{u \in U_{1}: u\right.\right.$ is adjacent to $\left.\left.v\right\}\right)$.
$\mathrm{U}=\mathrm{U}-\{\mathrm{v}\}$.

## END WHILE

IF $U \neq \phi$ THEN

$$
\begin{aligned}
& i=\min \{\operatorname{LB}(u): u \in U\} \\
& U_{1}=\{u \in U: L B(u)=i\} \\
& U_{2}=U-U_{1}
\end{aligned}
$$

END IF

## END WHILE

## V. PIGEONHOLE MEASURES

When coloring a composite graph one vertex at a time. some of the vertices remaining to be colored may not require that any new colors be used to color them regardless of how the other uncolored vertices are eventually colored. These vertices can be considered to be "easy" to color and their coloring may be postponed until after the vertices that are more "difficult" to color are colored. The pigeonhole measures to be presented assign low values to vertices that are easy to color as described above and higher values to vertices that are likely to require that new colors be used in the coloring being generated. The word "pigeonhole" was chosen to identify these measures because they are based upon the pigeonhole principle of combinatorics.

The pigeonhole principle is an easily understood principle whose generalizations involve some of the most difficult results of combinatorial theory. Tucker describes the pigeonhole principle in the following manner:
"If there are more pigeons than pigeonholes, then some pigeonhole must contain two or more pigeons. More generally, if there are more than $k$ times as many pigeons as pigeonholes, then some pigeonhole must contain at least $k+1$ pigeons." [28(p. 15)]

The following observation about the average of a list of
real numbers is closely related to the pigeonhole principle:
For a list of real numbers. there is at least one
number in the list that is at least as large as
the average of the list. If $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$
are real numbers with average $\bar{x}$, then there is an $i \in I[1, n]$ such that $x_{i} \geq \bar{x}$. In particular. if $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ are integers, then there is an $i \in I[1, n]$ such that $x_{i} \geq \mathbb{x} \mathbb{I}$.
The relationship between the pigeonhole principle and the observation can be seen easily by letting $n$ correspond to the number of pigeonholes and $x_{j}$ correspond to the number of pigeons in pigeonhole $j$ for each $j \in I[1, n]$.

To discuss how the pigeonhole measures are obtained from the pigeonhole principle, the assumptions to be used need to be set forth. Let us assume a composite graph $G=\langle V, E, \Phi, C\rangle$ is partially colored and $U$ is the set of uncolored vertices. Let $M$ be the highest color that we wish to use in the coloring of $G$. In other words. if $F$ is the coloring of $G$ that is being generated, we desire $\mathscr{X}(F ; G) \leq M$. This is a goal which may or may not be attained. To continue coloring $G$, a vertex is to be selected from $U$ to be colored next. For each uncolored vertex $v \in U$, define an adjacent colors bit array. $A(v)$, as follows: for each $j \in I[1, M]$, if a vertex adjacent to $v$ has been assigned the color $j$, then $A(v)[j]=1$; otherwise, $A(v)[j]=0$. The term gap will be used to describe maximal contiguous sequence of zeroes in an adjacent colors bit array. For the following discussion, $v$ is assumed to be any uncolored vertex.

If a gap in $A(v)$ has length greater than or equal to $C(v)$, then some of the colors corresponding to the gap could
be used to color the vertex $v$. But if some vertices adjacent to $v$ are colored prior to $v$, then the gaps may become smaller and $v$ may possibly no longer be able to be colored with colors less than or equal to M. We desire to find a condition to indicate when a vertex $v$ is guaranteed to be able to be colored with colors less than or equal to $M$ regardless of what colors are eventually assigned to the remaining uncolored adjacent vertices.

If, after the vertices adjacent to are colored, the average length of a gap is greater than $C(v)-1$, then there is a gap of length at least as large as $C(v)$ and consequently the vertex $v$ can be colored with colors less than or equal to $M$. We will find a lower bound on the average length of the gaps after the adjacent vertices are colored. If this lower bound is greater than $C(v)-1$, then v will be able to be colored with colors less than or equal to $M$ regardless of the colors to eventually be assigned to the uncolored adjacent vertices.

Let $F$ be any partial coloring of $G$ in which the vertices in $V-U$ have the same colors assigned by the partial coloring previously described, the vertices adjacent to $v$ have been colored, and $v$ has not been colored. Let $B(v)$ be the adjacent colors bit array for $v$ for the partial coloring $F$. Define $\bar{g}$ to be the average length of a gap in $B(v)$, that is,

$$
\overline{\mathbf{g}}=\frac{\text { number of zeroes in } B(v)}{\text { number of gaps in } B(v)} .
$$

(If the number of gaps in $B(v)$ is 0 , assume $\bar{g}=0$.) Now. for the use of the pigeonhole principle, consider the zeroes in $B(v)$ as being stored in the gaps in $B(v)$. If there are any gaps in $B(v)$, then there must be a gap with length at least $\mathbb{g} \mathbb{g}$. If $\mathbb{G} \bar{g} \mathbb{Z} \geq \mathrm{C}(\mathrm{v})$ or equivalently $\overline{\mathrm{g}} \geq \mathrm{C}(\mathrm{v})-1$. then $v$ can be colored with colors less than or equal to $M$. To obtain a lower bound on $\bar{g}$. we find a lower bound on the above fraction.

$$
\overline{\mathrm{g}} \geq \frac{\text { minimum possible number of zeroes }}{\text { maximum possible number of gaps }} .
$$

For each uncolored adjacent vertex that is subsequently colored, a gap in $A(v)$ could become two smaller gaps yielding a possible net gain of one gap per uncolored adjacent vertex. So. the maximum possible number of gaps is the current number of gaps in $A(v)$ plus the number of uncolored adjacent vertices. The minimum possible number of zeroes is $M$ reduced by the number of distinct colors already assigned to vertices adjacent to $v$ and the number of distinct colors that could possibly be assigned to the uncolored vertices adjacent to $v$. In the worst case, each uncolored adjacent vertex could be assigned colors not previously assigned to other adjacent vertices. In this case, the number of colors used for the presently uncolored adjacent vertices would be the sum of the chromaticities of these vertices. Define the following identifiers for the quantities mentioned above:

UC(v) : the number of distinct colors currently assigned to vertices adjacent to vertex $v$ ("used colors")
$\operatorname{RCD}(v)$ : the sum of the chromaticities of the uncolored vertices adjacent to vertex $v$ ("reduced chromatic degree")
$N G(v)$ : the number of gaps in the adjacent colors bit array of vertex $v$ ("number of gaps")
$R D(v)$ : the number of uncolored vertices adjacent to vertex $v$ ("reduced degree")

If $N(v)+R D(v) \neq 0, d e f i n e$

$$
L(v)=\frac{M-(U C(v)+R C D(v))}{N G(v)+R D(v)} .
$$

If $N G(v)+R D(v)=0$, the colors to be eventually assigned
to vertex $v$ must all be greater than $M$. In this case.
define $L(v)=-\infty . L(v)$ is a lower bound on $\bar{g}$ that is independent of the colors that are eventually to be assigned to the uncolored vertices adjacent to $v$. If $L(v)>C(v)-1$, then $\bar{g}>C(v)-1$ and $\mathbb{g} \rrbracket \geq C(v)$. So, if $L(v)>C(v)-1$, then the vertex is "easy" to color.

We will refer to the quantity $C(v)-1-L(v)$ as the floating-point pigeonhole measure of the vertex $v, F P H(v)$. If $N G(v)+R D(v) \neq 0$, then

$$
\operatorname{FPH}(v)=\frac{(C(v)-1)(N G(v)+R D(v))+(U C(v)+R C D(v))-M}{N G(v)+R D(v)}
$$

Otherwise. $\mathrm{FPH}(\mathrm{v})=+\infty$. If $\mathrm{FPH}(\mathrm{v})<0$, the vertex v is "easy" to color. Notice that the sign of $\operatorname{FPH}(v)$ is determined by the numerator of the fraction. We will refer
to the quantity

$$
(C(v)-1)(N G(v)+R D(v))+(U C(v)+R C D(v))
$$

as the pigeonhole measure of the vertex $v, ~ P H(v)$. If $\mathrm{PH}(\mathrm{v})<\mathrm{M}$, then the vertex $v$ is "easy" to color. PH(v) can be interpreted as the highest color that could be assigned to an uncolored vertex adjacent to while not leaving a gap of length $C(v)$ (taking into account the number of colors already assigned to vertices adjacent to $v$ ), that is, all present gaps and potential gaps from coloring the adjacent vertices being of length $C(v)-1$.

The following three chapters discuss applications of the pigeonhole measures PH and FPH. Chapter VI discusses a vertex-sequential coloring algorithm and a vertex-sequential-with-interchange coloring algorithm using the pigeonhole measure PH. Chapter VII discusses two coloring algorithms that use PH and FPH in a dynamic fashion to determine the next vertex to color. Chapter VIII discusses a problem reduction technique derived from the pigeonhole measure PH.

## VI. LARGEST-FIRST ALGORITHMS

Two VS coloring algorithms for the CGCP and their corresponding VSI algorithms are described. The vertex orderings for these algorithms are not primarily determined by one simple measure such as the chromaticity, the chromatic degree, or the degree of a vertex. For the LFl vertex ordering, the ordering is primarily determined by the chromaticities of the vertices. For the LF2 vertex ordering, the ordering is primarily determined by the chromatic degrees of the vertices. The orderings for the algorithms to be discussed are compromises for giving preference to vertices of high chromaticity and to vertices of high degree (or chromatic degree). The vertex orderings are determined by ordering the vertices in decreasing order according to a function of two or more of the three measures mentioned above. For each of these functions, the function value increases as the chromaticity increases and as the degree (or chromatic degree) increases.

The largest-first-by-pigeonhole-measure (LFPH) coloring algorithm is a VS coloring algorithm that orders the vertices in decreasing static pigeonhole measure order. The static pigeonhole measure (SPH) of a vertex is the pigeonhole measure of the vertex for the conditions prior to coloring any vertices of the graph. The number of colors to be used in the coloring will be at least 1 . so it is reasonable to consider $M 2$. For a vertex $v$ of the
composite graph to be colored, the following quantities have the indicated values prior to coloring any vertices:
$N G(v)=1, U C(v)=0, \operatorname{RCD}(v)=\Delta(v)-C(v)$, and
$R D(v)=d(v)$. By substituting these values into the formuat

$$
P H(v)=U C(v)+R C D(v)+(C(v)-1)(N G(v)+R D(v)) .
$$

we obtain

$$
S P H(v)=\Delta(v)+(C(v)-1) d(v)-1 .
$$

SPH(v) is the maximum number of colors that can be used in a coloring without guaranteeing that agap of length $C(v)$ appears in the adjacent colors bit array of the vertex $v$. This number of colors is attained if all colors assigned to the vertices adjacent to $v$ are distinct and the sequences of colors assigned to the adjacent vertices are separated. preceded, and followed by gaps of length $C(v)-1$. When coloring the composite graph, $v$ can be colored with colors less than or equal to $\operatorname{SPH}(v)+1$.

The largest-first-by-chromaticity-times-degree (LFCD) coloring algorithm is a $V$ coloring algorithm in which the vertices are arranged in decreasing order according to the product of a vertex's chromaticity and its degree. If the vertices of a composite graph $G=\langle V, E, \Phi, C\rangle$ are arranged in the order $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ by the LFCD algorithm, then $C\left(v_{i-1}\right) d\left(v_{i-1}\right) S C\left(v_{i}\right) d\left(v_{i}\right)$ for each $i \in I[2, n]$. The product of the chromaticity and the degree of a vertex is of interest because it has the properties being sought and also it can possibly be a large portion of the SPH of a vertex.

The LFPH and the LFCD algorithos are generalizations of
the LF algorithm for the GCP. This can be easily seen by noting that $S P H(v)=d(v)$ and $C(v) d(v)=d(v)$ when $C(v)=1$.

The largest-first-by-pigeonhole-measure-withinterchange (LFPHI) and the largest-first-by-chromaticity-times-degree-with-interchange (LFCDI) coloring algorithms are the VSI coloring algorithms corresponding to the LFPH and the LFCD algorithms. respectively.

## VII. DYNAMIC PIGEONHOLE MEASURE ALGORITHMS

The dynamic-pigeonhole-measure (DYNPH) and the dynamic-floating-point-pigeonhole-measure (DYNFPH) coloring algorithms use the pigeonhole measure PH and the floatingpoint pigeonhole measure $F P H$, respectively, to determine the order in which the vertices of a composite graph are colored. For the LFPH and the LFPHI algorithms, the pigeonhole measure PH is calculated once for each vertex and is not modified during the coloring of the graph. Upon coloring a vertex, the dynamic pigeonhole measure algorithms update the pigeonhole measures of the uncolored vertices to reflect the effect of coloring the vertex. In the RLFl and the RLFDI algorithms, some of the measures that determine the next vertex to be colored are updated after the coloring of a vertex. The changes in these measures reflect the fact that $a \operatorname{ver} t e x$ has been colored but are not dependent upon the particular colors assigned to that vertex. The dynamic pigeonhole measures are dependent upon the particular vertices that are colored (through the quantities $R C D$ and RD) and upon the particular colors assigned to those vertices (through the quantities UC and NG).

In the DYNPH (DYNFPH) algorithm, a vertex with the largest PH (FPH) is selected to be the next vertex to be colored. After a vertex is colored, the PH (FPH) of each uncolored adjacent vertex is updated. Below is a pseudocode description of the DYNPH coloring algorithm in which $V$ is
the vertex set of the composite graph being colored and $U$ is the set of uncolored vertices. (For selecting the initial value of $M$. see Chapter $V$. In our implementation. $M$ is initially chosen to be 0 and subsequently increased after the first vertex is colored.)

Dvnamic Pigeonhole Measure Coloring Algorithm
Select an initial value for $M$.
Initialize $\mathrm{PH}(\mathrm{v})$ for each $\mathrm{v} \in \mathrm{V}$.
$\mathrm{U}=\mathrm{V}$.

## WHILE U $\neq \phi$

Select a vertex $v \in U$ such that
$\mathrm{PH}(\mathrm{v})=\max \{\mathrm{PH}(\mathrm{u}): \mathbf{u} \in \mathrm{E}\}$.
Color the vertex $v$ with the lowest possible sequence of colors.
$\mathrm{U}=\mathrm{U}-\{\mathrm{v}\}$.
Update $P H(u)$ for each $u \in U$ such that $u$ is adjacent to $v$.
IF the highest color assigned to the vertex $v$ is greater
than $M$ THEN
Update M.
Update the $P H(u)$ for each $u \in U$. (The color range has expanded. A new gap at the end of the color range may be created for some vertices.)

END IF
END WHILE

A description of the DYNFPH algorithm can be obtained by replacing the pigeonhole measure $P H$ by the floating-point pigeonhole measure in the description of the DYNPH algorithm.

## VIII. PROBLEM REDUCTION TECHNIQUES

For the CGCP, it is desirable to determine those vertices of the composite graph whose coloring will not affect the number of colors used in the coloring of the graph. The coloring of these vertices may be postponed until the other vertices in the graph are colored. Two problem reduction techniques will be discussed here.

The first problem reduction technique results from the following theorem.

Theorem. Let $G=\langle V, E, \Phi, C\rangle$ be a composite graph. For each $v \in V$. let $\Gamma(v)$ be the set of vertices adjacent to the vertex $v$, that is, $\Gamma(v)=\{u \in V:(u, v) \in \Phi(E)\}$. If $u \in V$ and $v \in V$ such that $C(u) \leq C(v)$ and $\Gamma(u) \subseteq \Gamma(v)$, then $\mathscr{X}(G)=\mathscr{X}(G-u)$. Furthermore. if $F$ is a coloring of $G-u$. then $F$ can be extended to be a coloring of $G$ such that $x(F ; G)=x(F ; G-u)$.

Proof. Let $F$ be a coloring of $G$ - $u$. To extend $F$ to be a coloring of $G$. define $F(u)=I[A(v) \cdot A(v)+C(u)-1]$ where $A(v)=m i n f(v)$. To show that $F$ is a valid coloring of $G$. we need to show that $F(u) \cap F(w)=\phi$ for each $w \in \Gamma(u)$. Since $C(u) \leq C(v), F(u) \subseteq F(v)$. Letw $\in \Gamma(u)$. Since $\Gamma(u) \subseteq \Gamma(v)$, it follows that $w \in \Gamma(v)$ and $F(v) \cap F(w)=\phi$. $F(u) \cap F(w) \subseteq F(v) \cap F(w)$. Hence, $F(u) \cap F(w)=\phi$.

To show that $\mathscr{X}(G)=\mathscr{X}(G-U)$, assume $F$ is an optimal coloring of $G$ - $u$ and extend $F$ to be coloring of $G$ as
described above. Since $G$ - $u$ is a subgraph of $G$. $x(G-u) \leq x(G)$.
$x(G-u) \leq x(G) S x(F ; G)=x(F ; G-u)=x(G-u)$.
Hence, $\mathscr{X}(G)=\mathscr{X}(G-u)$.

By the theorem above, if there are vertices $u$ and $v$ such that $C(u) S C(v)$ and $\Gamma(u) \subseteq \Gamma(v)$, then the graph $G-u$ can be colored and the coloring of $G$ - $u$ can easily be extended to be a coloring of $G$ without requiring any new colors. Several vertices may be removed from the graph $G$ and upon coloring the remaining subgraph, the removed vertices can be assigned colors in reverse order as they were removed.

Coloring a graph by first applying this problem reduction technique can be described recursively as follows.

To reduce-and-color a composite graph G:
IF there are vertices $u$ and $v$ of $G$ such that
$C(u) \leq C(v)$ and $\Gamma(u) \subseteq \Gamma(v)$ THEN
Reduce-and-color the composite graph G - u.
Assign $u$ the first $C(u)$ colors assigned to $v$.
ELSE
Color the composite graph G.
END IF

The second problem reduction technique is obtained by means of the pigeonhole principle PH . The problem reduction rechnique requires a number $M$ that specifies the number of colors that is acceptable to be used in the coloring to be
generated. M might be a lower bound on the chromatic number obtained by prior analysis of the composite graph or a number of colors that would be acceptable for a particular application. for example, the number of time periods available for a schedule in a resource allocation problem. Prior to coloring any vertices. the pigeonhole measure of a vertex $v$ simplifies to

$$
P H(v)=\Delta(v)+(C(v)-1) d(v)-1
$$

where $\Delta(v)$ is the chromatic degree. $C(v)$ is the chromaticity, and $d(v)$ is the degree of the vertex $v$. If $\mathrm{PH}(\mathrm{v})<\mathrm{M}$, then the vertex v will be able to be colored with colors less than or equal to Megardiess of what colors are assigned to the other vertices. In this case, the graph G - v can be colored and the coloring can be extended to be a coloring of $G$ by assigning the lowest possible sequence of colors to the vertex $v$. Several vertices can be removed from a composite graph. After the removal of a vertex, the pigeonhole measures of the vertices that were adjacent to the removed vertex can be updated to reflect the removal of the vertex. After the remaining vertices are colored, the vertices that were removed can be restored to the composite graph and assigned colors in reverse order as they were removed from the graph.

If the coloring algorithm used to color the composite graph does not recolor a vertex once it has been colored. then the problem reduction technique can continue to be used to remove vertices from the graph. The pigeonhole measure

PH of a vertex $v$ is given by the formula

$$
\mathrm{PH}(v)=\mathrm{UC}(v)+\mathrm{RCD}(v)+(C(v)-1)(N G(v)+R D(v))
$$

as described in Chapter $V$. While coloring the composite graph, it is reasonable to have $M$ at least as large as the number of colors currently being used by the coloring and to update $M$ as the number of colors increases. As before, if PH(v) < M for some vertex $v$. the vertex $v$ can be removed from the graph. A pseudocode description of an algorithm that uses the problem reduction technique prior to and during the coloring of the composite graph is given below.

## Pigeonhole Measure Problem Reduction Technique

WHILE there is a vertex $v$ in the graph such that $\operatorname{PH}(v)<M$ Remove the vertex $v$ from the graph.

Update PH of each vertex that was adjacent to $v$.
Place the vertex $v$ on the removed vertex stack.

## END WHILE

WHILE some vertex in the graph is uncolored
Select a vertex to be colored. (The vertex is determined by the coloring algorithm being applied to the graph.)

Color the vertex.
Update PH for each uncolored vertex adjacent to the current vertex.

IF the highest color assigned to the vertex is greater than M THEN

Update M.

Update the $P H$ for each uncolored vertex. (The color range has expanded. A new gap at the end of the color range may be created for some vertices.)

END IF
WHILE there is an uncolored vertex $v$ in the
graph such that $\mathrm{PH}(\mathrm{v})$ < M
Remove the vertex $v$ from the graph.
Update PH of each vertex that was adjacent to $v$.
Place the vertex $v$ on the removed vertex stack.
END WHILE
END WHILE
WHILE removed vertex stack is not empty
Pop a vertex off the stack, call it $v$.
Restore the vertex $v$ to the graph.
Color the vertex $v$ with the lowest possible sequence of colors.

END WHILE

The updating of the pigeonhole measures of the vertices can involve a great deal of overhead. If the overhead is too great for a particular application, the overhead can be reduced by using the technique in a fashion that would potentially remove fewer vertices from the graph but is considerably simpler. Instead of updating the pigeonhole measures of adjacent vertices when a vertex is colored or a vertex is removed from the graph, calculate the pigeonhole
measure only when the vertex is selected to be colored. If the PH of the selected vertex is less than $M$. then remove the vertex from the graph and select another vertex to be colored.

## IX. RESULTS AND CONCLUSIONS

## A. EXPERIMENTS: COLORING RANDOM COMPOSITE GRAPHS

$\rightarrow$ To assess the performance of the heuristic coloring v-compsite gruph coluningioblem
algorithms for the CGCP that have been described, the algorithms were applied to several groups of random composite graphs. Each random composite graph is described by three characteristics of the graph: $n_{;}$the number of vertices. $\mu$; the edge density. and ${ }^{d^{\prime}}$ the distribution of the chromaticities of the vertices. A random composite graph G(n. $\mu . d$ ) is a composite graph of $n$ vertices in which each of the $\frac{n(n-1)}{2}$ possible edges has probability $\mu$ of being in the graph and the chromaticities of the $n$ vertices are a random sample of size $n$ from the probability distribution d. The edges of $G(n, \mu, d)$ are selected by $\frac{n(n-1)}{2}$ independent Bernoulli trials, one for each possible edge, in which the probability of success (the edge being included in the graph) is $\mu$. The probability distributions for the chromaticities of the vertices used in the experiments will be described later.
$\leftarrow \quad$ Goals of the Experiments. The experimental results of Clementson and Elphick [1] were for the four coloring algorithms. LF1, LF2, LF1I, and LF2I, on random composite graphs of 100 vertices with chromaticities distributed according to a truncated Poisson distribution with parameter $\lambda=1$ and with edge densities $\mu=0.2,0.3,0.4$. Xnowetypecineata, groups of random composite graphs were selected to be used.

In our experiments. Each group consisted of 25 random composite graphs of a type $G(n, \mu, d)$. The ordered triple ( $n, \mu, d$ ) can be used to identify the group of random composite graphs of type $G(n, \mu, d)$. The ninety ordered triples that were selected were chosen to produce experiments to achieve the following goals:
(1) to corroborate and to expand upon the results of Clementson and Elphick ${ }^{3}$.
(2) to investigate the effect of changing the number of vertices of a graph on the performance of the coloring algorithms.
(3) to investigate the effect of changing the edge density of a graph on the performance of the coloring algorithms, and
(4) to investigate the effect of changing the chromaticity distribution of a graph on the performance of the coloring algorithms.

Before proceeding to describe the ordered triples (n. $\mu, d$ ) that were selected. the chromaticity distributions that were used need to be described.
2. The Chromaticity Distributions. Five probability distributions were chosen to be the distributions of the chromaticities of the vertices in the random composite graphs. These distributions were assigned three-letter identifiers: TRP. DNR, BIN. UNI. UPR.

The TRP distribution is the truncated Poisson
distribution with parameter $\lambda=1$. If $X$ is a random
variable distributed according to the truncated Poisson distribution with parameter $\lambda$, then

$$
P(X=k)=\frac{\lambda^{k}}{\left(e^{\lambda}-1\right)(k!)} \text { for } k=1,2,3, \ldots
$$

Also, if $Y$ is a Poisson random variable with mean $\lambda$, then
 as a "down ramp" distribution. Consider the following probability density function $f$ where

$$
f(x)=-\frac{2}{w^{2}} x+\frac{2}{w} \text { for } 0<x<w
$$

This pdf is a decreasing linear function on the interval ( $0, W$ ). We refer to this distribution as the continuous down ramp distribution on (0.w). We now define the discrete down ramp distribution on $I[a, b]$ where $a, b \in \mathbb{Z}$ and $a<b$. Let $Y$ be a random variable distributed according to the continuous down ramp distribution on ( $0, W$ ) where $w=b-a+1$. $A$ random variable $X$ is distributed according to the discrete down ramp distribution on $I[a, b]$ provided

$$
P(X=k)=P(\mathbb{K} Y \mathbb{I}=k-a) \text { for each } k \in \mathbb{I}[a, b]
$$

undere $\left.\sum y\right]$ is the geatest witesen leas than $n$ equal to $Y$. Evaluating the probability on the right hand side of the equation yields

$$
P(X=k)=\frac{2 w-2 k+1}{w^{2}} \text { for each } k \in I[a, b]
$$

The DNR distribution is the discrete down ramp distribution on $I[1,10]$.

The BIN distribution is a shifted binomial
distribution. Let $Y$ be a random variable distributed according to a binomial distribution with parameters $n$ and p. Recall that

$$
P(Y=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \text { for each } k \in I[0, n] .
$$

We define the shifted binomial distribution on $[a, b]$ with parameter $p$ as the binomial distribution with parameters $n$ and $p$ where $n=b-a$ and the distribution has been shifted a units to the right. If $X$ is a random variable distributed according to the shifted binomial distribution on $I$ [a.b] with parameter $p$, then

$$
P(X=k)=P(Y=k-a) \text { for each } k \in I[a, b]
$$

where $Y$ is a random variable distributed according to a binomial distribution with parameters $n$ and $p$ where $\mathrm{n}=\mathrm{b}-\mathrm{a}$. The BIN distribution is the shifted binomial distribution on $I[1.10]$ with parameter $p=0.5$.

The UNI distribution is the uniform distribution on I[1.10]. So. if $X$ is a random variable distributed according to the UNI distribution, then

$$
P(X=k)=0.1 \text { for each } k \in I[1,10]
$$

The UPR distribution is what we have chosen to refer to as an "up ramp" distribution. Consider the following probability density function frere

$$
f(x)=\frac{2}{w^{2}} x \text { for } 0<x<w .
$$

This pdf is an increasing linear function on the interval ( $0, W$ ). We refer to this distribution as the continuous up ramp distribution on ( $0 . W$ ). We now define the discrete up
ramp distribution on $I[a, b]$ where $a, b \in \mathbb{Z}$ and $a<b$. Let $Y$ be a random variable distributed according to the continuous up ramp distribution on (0,w) where $w=b-a+1$. A random variable $X$ is distributed according to the discrete up ramp distribution on $I[a, b]$ provided

$$
P(X=k)=P(\mathbb{U} Y \mathbb{D}=k-a) \text { for each } k \in I[a, b] .
$$

Evaluating the probability on the right hand side of the equation yields

$$
P(X=k)=\frac{2 k-2 a+1}{w^{2}} \text { for each } k \in I[a, b]
$$

The UPR distribution is the discrete up ramp distribution on I $[1,10]$.

The TRP distribution was chosen as a chromaticity distribution so comparisons could be made to the experimental results of Clementson and Elphick. The other four distributions were chosen to give a variety of distributions of chromaticities taken from the integers from 1 to 10. For the DNR distribution, the lower integers are more probable. For the BIN distribution, the central integers are more probable. For the UPR distribution, the higher integers are more probable. For the UNI distribution, each of the integers is equally probable. Table $I$ contains the probabilities (to three decimal places) of the integers from 1 to 10 for the five distributions as well as the mean, the variance, and the standard deviation for each distribution.

TABLE I
PROBABILITIES FOR THE CHROMATICITY DISTRIBUTIONS

$$
P(X=k)
$$

DISTRIBUTION

| k | RP | DR | BIN | UNI | UR |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.582 | 0.190 | 0.002 | 0.100 | 0.010 |
| 2 | 0.291 | 0.170 | 0.018 | 0.100 | 0.030 |
| 3 | 0.097 | 0.150 | 0.070 | 0.100 | 0.050 |
| 4 | 0.024 | 0.130 | 0.164 | 0.100 | 0.070 |
| 5 | 0.005 | 0.110 | 0.246 | 0.100 | 0.090 |
| 6 | 0.001 | 0.090 | 0.246 | 0.100 | 0.110 |
| 7 | 0.000 | 0.070 | 0.164 | 0.100 | 0.130 |
| 8 | 0.000 | 0.050 | 0.070 | 0.100 | 0.150 |
| 9 | 0.000 | 0.030 | 0.018 | 0.100 | 0.170 |
| 10 | 0.000 | 0.010 | 0.002 | 0.100 | 0.190 |
| Mean | 1.582 | 3.850 | 5.500 | 5.500 | 7.150 |
| Variance | 0.661 | 5.528 | 2.250 | 8.250 | 5.528 |
| Std. Der. | 0.813 | 2.351 | 1.500 | 2.872 | 2.351 |

## 3. The Groups of Random Composite Graphs for the

Experiments. Eighteen pairs $(n, \mu)$ of a number of vertices and an edge density were selected. For each pair (n, $\mu$ ). each of the five chromaticity distributions was used to complete the description of a group of random composite graphs. According to Leighton ${ }^{4}$, $]$. the edge densities of the graphs tend to be small (generally less than 0.25) for most large-scale applications for the GCP. Leighton cited a particular examination timetabling application which resulted in a graph having 273 vertices and an edge density of approximately 0.18 . Since similar applications should exist for the CGCP, the edge densities for the experiments were chosen with these observations in mind. The numbers of vertices were chosen to be the multiples of 100 from 100 to 500. For the random composite graphs of 100 vertices. it was decided to perform experiments for all chosen edge densities $\mu=0.10,0.15,0.20,0.30,0.40,0.50$. For the remaining numbers of vertices ( $\mathrm{n}=200.300 .400,500$ ). the experiments were restricted to the edge densities $\mu=0.10$. $0.15,0.20$. In summary. The ordered triples ( $n, \mu, d$ ) that were selected are all possible triples that satisfy the following conditions:
(1) $n \in\{100,200,300,400,500\}$.
(2) if $n=100$.
then $\mu \in\{0.10,0.15,0.20\}: 0.30,0.40,0.50\}$ :
chemise, $\mu \in\{0.10,0.15,0.20\}$, and
(3) $d \in\{T R P, D N R, B I N, U N I, U P R\}$.
4. The Experiments and Their Results. Each experiment consisted of coloring each graph of a group of twenty-five random composite graphs by means of the twelve heuristic coloring algorithms: LEi. Lh, LFRK, LFKD, LF1I, LFKI.
 algorithm. the number of colors used for the coloring of each graph was recorded For each group of graphs, the average -number of co earet-atgeftthim, the minimum-and the maximum numbers of colors used in the colorings of the twenty-fivegraphs-were found for each algorithm, and the number of wins-for-each algorithm was fount. The number of wins for an algorithm is the number of times the algorithm used no more colors to color a graph than any of the other algorithms f $A$ "tie "is considered a win.) Tables II through XIX summarize the results of the ninety experiments. In each table. the column labelled "MIN" corresponds to a thirteenth algorithm y descale that selects a coloring that uses the least number of colors takes from among the twelve colorings produced by the coloring algorithms. Each entry in Tables II through XIX for a particular group of graphs and a particular algorithm consists of four numeric values. From top to bottom, these numbers are:
(1) the minimum number of colors used by the algorithm for a coloring of any of the twenty-five graphs.
(2) the average number of colors used per graph by the algorithm.
(3) the maximum number of colors used by the algorithm for a coloring of any of the twenty-five graphs. and
(4) the number of wins for the algorithm.
table II
RESULTS OF COMPOSITE GRAPH COLORING EXPERIMENTS

$$
\mathrm{n}=100, \mu=0.10
$$

| d | LF1 | LF2 | LFPH | LFCD | LF1I | LF2I | LFPHI | LFCDI | RLF1 | RLFD1 | DYNPH | DYNFPH | MIN |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 | 11 | 10 | 10 | 10 | 11 | 9 | 10 | 9 | 9 | 11 | 10 | 9 |
| TRP | 11.92 | 13.08 | 12.04 | 12.00 | 11.08 | 12.08 | 11.00 | 10.96 | 11.24 | 11.32 | 11.96 | 11.80 | 10.64 |
|  | 14 | 16 | 14 | 14 | 13 | 14 | 13 | 13 | 13 | 13 | 13 | 14 | 12 |
|  | 4 | 0 | 4 | 5 | 15 | 3 | 17 | 17 | 12 | 8 | 5 | 4 |  |
|  | 28 | 29 | 27 | 28 | 24 | 26 | 24 | 24 | 25 | 25 | 25 | 27 | 24 |
| DNR | 31.64 | 34.92 | 33.56 | 32.40 | 29.32 | 30.80 | 28.32 | 29.24 | 30.56 | 30.16 | 32.72 | 31.40 | 27.56 |
|  | 38 | 42 | 40 | 40 | 34 | 37 | 32 | 34 | 36 | 36 | 38 | 38 | 31 |
|  | 2 | 0 | 0 | 0 | 8 | 1 | 17 | 8 | 2 | 5 | 1 | 2 |  |
|  | 38 | 39 | 38 | 37 | 32 | 35 | 33 | 33 | 35 | 34 | 38 | 37 | 32 |
| BIN | $\mathbf{4 2 . 7 6}$ | 44.68 | 43.40 | 42.20 | 38.08 | 38.60 | 36.64 | 36.80 | 39.56 | 39.52 | 41.88 | 40.36 | 35.56 |
|  | 49 | 51 | 50 | 50 | 41 | 44 | 41 | 40 | 44 | 45 | 48 | 44 | 38 |
|  | 0 | 0 | 0 | 0 | 3 | 2 | 11 | 11 | 2 | 3 | 0 | 0 |  |
|  | 38 | 45 | 39 | 38 | 33 | 38 | 34 | 36 | 37 | 36 | 39 | 38 | 33 |
| UNI | 44.04 | 50.48 | 45.28 | 44.76 | 39.80 | 43.16 | 40.32 | 40.24 | 43.44 | 42.04 | 44.72 | 43.20 | 38.24 |
|  | 52 | 58 | 54 | 53 | 47 | 48 | 49 | 45 | 53 | 47 | 56 | 48 | 43 |
|  | 0 | 0 | 1 | 0 | 9 | 1 | 9 | 7 | 1 | 4 | 1 | 0 |  |
|  | 49 | 54 | 51 | 48 | 44 | 45 | 44 | 44 | 47 | 46 | 50 | 49 | 44 |
| UPR | 55.64 | 58.92 | 56.16 | 55.12 | 49.36 | 51.00 | 49.40 | 49.04 | 52.80 | 52.40 | 54.60 | 54.88 | 47.36 |
|  | 63 | 67 | 64 | 67 | 55 | 59 | 56 | 56 | 60 | 58 | 66 | 64 | 53 |
|  | 0 | 0 | 0 | 0 | 9 | 2 | 6 | 9 | 1 | 2 | 0 | 0 |  |

TABLE III
RESULTS OF COMPOSITE GRAPH COLORING EXPERIMENTS

| d | LF1 | LF2 | LFPH | LFCD | $\mathrm{n}=100, \mu=0.15$ |  |  |  | RLF1 | RLFD1 | DYNPH | DYNFPH | MIN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | LF1I | LF2I | LFPHI | LFCDI |  |  |  |  |  |
| TRP | 13 | 13 | 12 | 13 | 12 | 12 | 12 | 11 | 12 | 12 | 12 | 12 | 11 |
|  | 14.24 | 16.28 | 14.56 | 14.64 | 13.28 | 14.88 | 13.24 | 13.32 | 13.68 | 13.72 | 14.28 | 14.08 | 12.88 |
|  | 18 | 20 | 17 | 17 | 16 | 18 | 16 | 15 | 17 | 17 | 16 | 17 | 15 |
|  | 2 | 0 | 2 | 1 | 15 | 4 | 17 | 15 | 11 | 9 | 3 | 3 |  |
| DNR | 33 | 36 | 34 | 33 | 29 | 32 | 28 | 27 | 31 | 30 | 32 | 31 | 27 |
|  | 39.52 | 44.96 | 39.40 | 38.60 | 35.56 | 39.08 | 34.88 | 35.20 | 37.44 | 37.16 | 39.24 | 38.40 | 33.76 |
|  | 45 | 53 | 44 | 43 | 42 | 46 | 40 | 40 | 42 | 42 | 46 | 43 | 38 |
|  | 0 | 0 | 0 | 0 | 8 | 1 | 10 | 11 | 3 | 3 | 0 | 0 |  |
| BIN | 49 | 50 | 48 | 48 | 43 | 44 | 42 | 42 | 44 | 44 | 47 | 46 | 42 |
|  | 52.92 | 56.72 | 52.84 | 52.52 | 47.36 | 49.12 | 46.44 | 46.20 | 49.80 | 48.88 | 52.60 | 52.56 | 45.44 |
|  | 56 | 65 | 58 | 59 | 50 | 53 | 52 | 50 | 55 | 55 | 57 | 60 | 50 |
|  | 0 | 0 | 0 | 0 | 10 | 1 | 11 | 15 | 2 | 4 | 0 | 0 |  |
| UNI | 47 | 52 | 47 | 47 | 43 | 44 | 44 | 44 | 44 | 45 | 46 | 47 | 43 |
|  | 54.68 | 61.76 | 56.08 | 55.32 | 49.36 | 53.20 | 49.36 | 49.56 | 51.40 | 51.32 | 54.76 | 53.56 | 47.44 |
|  | 65 | 76 | 67 | 65 | 59 | 60 | 55 | 57 | 59 | 62 | 60 | 60 | 55 |
|  | 0 | 0 | 0 | 0 | 9 | 1 | 8 | 7 | 5 | 5 | 0 | 1 |  |
| UPR | 62 | 63 | 58 | 61 | 55 | 59 | 54 | 55 | 56 | 57 | 62 | 60 | 54 |
|  | 70.40 | 74.56 | 70.80 | 68.88 | 61.96 | 65.04 | 62.64 | 60.76 | 64.16 | 64.72 | 69.32 | 66.44 | 59.64 |
|  | 77 | 83 | 80 | 76 | 68 | 73 | 69 | 66 | 73 | 73 | 79 | 78 | 65 |
|  | 0 | 0 | 0 | 0 | 6 | 2 | 7 | 13 | 3 | 4 | 0 | 0 |  |

TABLE IV
RESULTS OF OOMPOSITE GRAPH OOLORING EXPERIMENTS

$$
\mathbf{n}=100, \mu=0.20
$$



TABLE V
RESULTS OF ОOMPOSITE GRAPH ODLORING EXPERIMENTS

| d | LF 1 | LF2 | LFPH | LFCD | $\mathrm{n}=100, \mu=0.30$ |  |  |  | RLF 1 | RLFD1 | DYNPH | DYNFPH | MIN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | LF1I | LF2I | LFPHI | LFCDI |  |  |  |  |  |
| TRP | 19 | 21 | 20 | 19 | 17 | 19 | 19 | 17 | 17 | 17 | 19 | 18 | 17 |
|  | 22.20 | 25.84 | 22.16 | 21.96 | 20.68 | 22.56 | 20.40 | 20.36 | 20.28 | 20.52 | 21.84 | 21.28 | 19.72 |
|  | 25 | 30 | 25 | 24 | 24 | 26 | 23 | 22 | 22 | 23 | 24 | 24 | 22 |
|  | 0 | 0 | 0 | 1 | 8 | 2 | 13 | 11 | 14 | 11 | 0 | 4 |  |
| DNR | 51 | 61 | 50 | 49 | 46 | 51 | 47 | 46 | 47 | 48 | 50 | 49 | 46 |
|  | 59.48 | 68.72 | 59.92 | 58.60 | 53.48 | 60.76 | 54.56 | 54.16 | 55.32 | 55.60 | 58.72 | 58.72 | 52.40 |
|  | 67 | 79 | 70 | 64 | 58 | 68 | 62 | 58 | 63 | 64 | 65 | 64 | 57 |
|  | 0 | 0 | 0 | 0 | 13 | 0 | 6 | 9 | 3 | 4 | 0 | 0 |  |
| BIN | 76 | 83 | 77 | 75 | 67 | 73 | 66 | 69 | 70 | 70 | 75 | 74 | 66 |
|  | 83.20 | 90.44 | 84.12 | 82.20 | 75.44 | 79.08 | 75.20 | 73.92 | 75.40 | 75.40 | 83.28 | 80.92 | 72.12 |
|  | 90 | 99 | 90 | 90 | 80 | 87 | 81 | 82 | 81 | 81 | 91 | 90 | 79 |
|  | 0 | 0 | 0 | 0 | 7 | 1 | 4 | 8 | 7 | 7 | 0 | 0 |  |
| UNI |  | 83 | 75 | 72 | 68 | 75 | 66 | 69 | 71 | 70 | 75 | 71 | 66 |
|  | 85.72 | 95.84 | 84.48 | 83.28 | 77.76 | 85.64 | 76.40 | 76.68 | 79.12 | 80.68 | 85.04 | 82.48 | 74.72 |
|  | 103 | 122 | 97 | 94 | 86 | 92 | 90 | 90 | 91 | 98 | 97 | 97 | 86 |
|  | 0 | 0 | 1 | 0 | 7 | 0 | 10 | 12 | 1 | 2 | 0 | 0 |  |
| UPR | 94 | 110 | 98 | 98 | 88 | 94 | 90 | 85 | 89 | 87 | 92 | 97 | 85 |
|  | 106.16 | 119.96 | 109.04 | 108.68 | 97.60 | 104.56 | 98.36 | 97.12 | 98.44 | 99.96 | 106.92 | 106.40 | 94.68 |
|  | 121 | 132 | 122 | 121 | 107 | 116 | 109 | 108 | 109 | 115 | 120 | 115 | 105 |
|  | 0 | 0 | 0 | 0 | 5 | 1 | 5 | 9 | 5 | 4 | 0 | 0 |  |

TABLE VI
RESULTS OF OOMPOSITE GRAPH OOLORING EXPERIMENTS

$$
\mathrm{n}=100, \mu=0.40
$$

| $\mathbf{d}$ | LF1 | LF2 | LFPH | LFCD | LF1I | LF2I | LFPHI | LFCDI | RLF1 | RLFD1 | DYNPH | DYNFPH | MIN |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 25 | 26 | 24 | 23 | 22 | 24 | 22 | 23 | 22 | 22 | 24 | 22 | 22 |
| TRP | 27.76 | 31.24 | 27.04 | 26.92 | 25.28 | 28.20 | 25.20 | 25.08 | 25.04 | 25.00 | 26.56 | 26.04 | 24.32 |
|  | 31 | 35 | 29 | 30 | 28 | 34 | 28 | 27 | 28 | 28 | 30 | 29 | 27 |
|  | 0 | 0 | 0 | 0 | 11 | 0 | 10 | 12 | 12 | 12 | 1 | 2 |  |
|  | 61 | 68 | 62 | 63 | 59 | 64 | 58 | 58 | 56 | 56 | 62 | 59 | 56 |
| DNR | 72.36 | 84.12 | 72.96 | 73.04 | 68.12 | 75.68 | 66.80 | 66.88 | 67.76 | 67.92 | 72.60 | 72.24 | 65.12 |
|  | 83 | 97 | 83 | 81 | 75 | 86 | 74 | 73 | 78 | 77 | 83 | 80 | 71 |
|  | 0 | 0 | 0 | 0 | 1 | 0 | 9 | 8 | 5 | 7 | 1 | 0 |  |
|  | 94 | 100 | 91 | 91 | 86 | 91 | 88 | 85 | 81 | 81 | 95 | 91 | 81 |
| BIN | 101.68 | 113.36 | 104.84 | 101.60 | 93.12 | 99.24 | 94.00 | 92.96 | 92.88 | 93.92 | 101.88 | 99.32 | 90.04 |
|  | 112 | 127 | 113 | 108 | 99 | 107 | 98 | 101 | 101 | 100 | 112 | 111 | 97 |
|  | 0 | 0 | 0 | 0 | 5 | 0 | 5 | 11 | 9 | 5 | 0 | 0 |  |
|  | 95 | 103 | 90 | 92 | 86 | 94 | 85 | 86 | 84 | 88 | 91 | 92 | 84 |
| UNI | 104.84 | 120.20 | 105.28 | 103.92 | 96.08 | 105.32 | 95.80 | 96.24 | 99.44 | 99.12 | 103.36 | 105.24 | 93.60 |
|  | 124 | 157 | 125 | 120 | 112 | 123 | 113 | 111 | 115 | 118 | 124 | 126 | 111 |
|  | 0 | 0 | 0 | 0 | 10 | 0 | 7 | 9 | 2 | 2 | 0 | 0 |  |
|  | 119 | 136 | 120 | 120 | 110 | 122 | 112 | 111 | 111 | 113 | 124 | 118 | 110 |
| UPR | 130.76 | 148.00 | 135.36 | 132.52 | 120.28 | 131.00 | 121.76 | 122.24 | 123.12 | 124.64 | 133.08 | 129.92 | 117.56 |
|  | 143 | 171 | 148 | 144 | 131 | 143 | 133 | 134 | 137 | 138 | 142 | 146 | 128 |
|  | 0 | 0 | 0 | 0 | 8 | 0 | 8 | 5 | 5 | 3 | 0 | 0 |  |

TABLE VII
results of composite craph coloring experiments

| d | LF1 | LF2 | LFPH | LFCD | LF1I | LF2I | LFPHI | LFCDI | RLF1 | RLFD1 | DYNPH | DYNFPH | MIN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRP | 29 | 33 | 29 | 30 | 27 | 29 | 27 | 26 | 26 | 26 | 29 | 27 | 26 |
|  | 33.04 | 37.20 | 32.68 | 32.76 | 30.44 | 33.88 | 30.68 | 30.44 | 30.52 | 30.80 | 32.60 | 31.32 | 29.72 |
|  | 36 | 42 | 36 | 36 | 33 | 38 | 34 | 33 | 34 | 34 | 36 | 34 | 32 |
|  | 0 | 0 | 0 | 0 | 11 | 0 | 9 | 12 | 11 | 8 | 0 | 4 |  |
| DNR | 80 | 86 | 74 | 74 | 73 | 77 | 71 | 70 | 67 | 70 | 72 | 76 | 67 |
|  | 89.04 | 100.44 | 87.16 | 88.28 | 81.20 | 91.00 | 80.44 | 81.76 | 80.60 | 80.76 | 86.16 | 86.80 | 78.56 |
|  | 101 | 116 | 97 | 98 | 92 | 102 | 93 | 90 | 88 | 89 | 100 | 99 | 87 |
|  | 0 | 0 | 0 | 0 | 7 | 0 | 7 | 4 | 10 | 6 | 0 | 0 |  |
| BIN | 112 | 124 | 113 | 112 | 107 | 111 | 103 | 105 | 104 | 103 | 111 | 108 | 103 |
|  | 122.48 | 137.24 | 125.52 | 121.24 | 114.88 | 118.84 | 114.44 | 112.96 | 111.88 | 112.60 | 123.36 | 119.32 | 109.48 |
|  | 137 | 154 | 137 | 132 | 125 | 127 | 122 | 120 | 117 | 119 | 133 | 129 | 117 |
|  | 0 | 0 | 0 | 0 | 3 | 0 | 4 | 6 | 9 | 7 | 0 | 2 |  |
| UNI | 110 | 130 | 115 | 115 | 107 | 115 | 104 | 108 | 104 | 106 | 110 | 109 | 104 |
|  | 126.04 | 144.16 | 128.40 | 125.56 | 117.56 | 129.00 | 116.04 | 116.64 | 116.72 | 118.04 | 124.32 | 125.32 | 113.52 |
|  | 153 | 159 | 154 | 139 | 139 | 150 | 138 | 136 | 129 | 137 | 143 | 143 | 128 |
|  | 0 | 0 | 0 | 0 | 1 |  | 11 | 7 | 7 | 7 | 0 | 0 |  |
| UPR | 141 | 167 | 150 | 147 | 137 | 151 | 138 | 136 | 135 | 135 | 140 | 147 | 135 |
|  | 159.24 | 178.96 | 164.00 | 161.92 | 148.28 | 161.88 | 149.44 | 148.56 | 149.20 | 149.28 | 161.84 | 158.04 | 144.08 |
|  | 176 | 196 | 193 | 179 | 161 | 181 | 161 | 161 | 168 | 172 | 173 | 169 | 157 |
|  | 0 | 0 | 0 | 0 | 3 | 0 | 4 | 5 | 8 | 6 | 0 | 1 |  |

TABLE VIII
RESULTS OF OOMPOSITE GRAPH COLORING EXPERIMENTS
$n=200, \mu=0.10$

| d | LF1 | LF2 | LFPH | LFCD | LF1I | LF2I | LFPHI | LFCDI | RLF1 | RLFD1 | DYNPH | DYNFPH | MIN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRP | 15 | 17 | 14 | 15 | 13 | 15 | 13 | 14 | 14 | 14 | 14 | 15 | 13 |
|  | 16.88 | 20.04 | 17.12 | 16.96 | 15.32 | 17.92 | 15.48 | 15.52 | 15.80 | 15.68 | 16.80 | 16.36 | 15.00 |
|  | 19 | 24 | 21 | 19 | 18 | 22 | 17 | 18 | 18 | 18 | 20 | 19 | 17 |
|  | 1 | 0 | 1 | 1 | 17 | 0 | 14 | 14 | 10 | 10 | 2 | 4 |  |
| DNR | 44 | 50 | 42 | 41 | 39 | 43 | 38 | 39 | 41 | 41 | 43 | 42 | 38 |
|  | 48.28 | 55.56 | 48.44 | 47.88 | 42.88 | 49.16 | 42.60 | 42.80 | 46.00 | 45.36 | 46.92 | 46.84 | 41.68 |
|  | 54 | 64 | 56 | 53 | 47 | 56 | 47 | 47 | 52 | 52 | 52 | 52 | 46 |
|  | 0 | 0 | 0 | 0 | 11 | 0 | 13 | 10 | 3 | 2 | 0 | 1 |  |
| BIN | 60 | 64 | 60 | 57 | 53 | 56 | 53 | 50 | 54 | 53 | 59 | 59 | 50 |
|  | 64.64 | 69.04 | 65.08 | 63.56 | 57.68 | 60.28 | 57.16 | 56.48 | 58.72 | 58.36 | 63.76 | 62.60 | 55.20 |
|  | 70 | 75 | 75 | 67 | 63 | 66 | 63 | 61 | 62 | 65 | 70 | 69 | 59 |
|  | 0 | 0 | 0 | 0 | 6 | 0 | 7 | 14 | 2 | 4 | 0 | 0 |  |
| UNI | 60 | 67 | 62 | 61 | 55 | 57 | 52 | 57 | 56 | 54 | 61 | 61 | 52 |
|  | 66.24 | 75.04 | 67.20 | 66.56 | 61.20 | 64.96 | 58.48 | 60.16 | 62.28 | 62.44 | 66.68 | 65.64 | 57.56 |
|  | 72 | 82 | 74 | 72 | 68 | 75 | 64 | 67 | 69 | 72 | 75 | 72 | 62 |
|  | 0 | 0 | 0 | 0 | 1 | 1 | 17 | 5 | 3 | 0 | 0 | 0 |  |
| UPR | 76 | 86 | 77 | 77 | 69 | 74 | 70 | 67 | 71 | 71 | 78 | 75 | 67 |
|  | 81.88 | 92.72 | 84.72 | 83.52 | 75.00 | 79.84 | 74.28 | 73.52 | 78.20 | 77.84 | 84.04 | 80.96 | 72.24 |
|  | 88 | 100 | 92 | 89 | 79 | 89 | 78 | 80 | 88 | 84 | 96 | 87 | 77 |
|  | 0 | 0 | 0 | 0 | 5 | 1 | 9 | 14 | 2 | 1 | 0 | 0 |  |

TABLE IX
RESULTS OF OOMPOSITE GRAPH COLORING EXPERIMENTS

| d | LF1 | LF2 | LFPH | LFCD | $\mathrm{n}=200, \mu=0.15$ |  |  |  | RLFI | RLFDI | DYNPH | DYNFPH | MIN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | LFII | LF2I | LFPHI | LFCDI |  |  |  |  |  |
| TRP | 19 | 23 | 19 | 20 | 18 | 18 | 18 | 18 | 17 | 17 | 19 | 18 | 17 |
|  | 21.28 | 25.16 | 21.44 | 21.16 | 19.60 | 22.16 | 19.40 | 19.84 | 19.44 | 19.68 | 21.12 | 20.48 | 18.88 |
|  | 24 | 29 | 24 | 25 | 22 | 25 | 22 | 23 | 22 | 23 | 25 | 23 | 21 |
|  | 0 | 0 | 0 | 0 | 11 | 0 | 13 | 6 | 13 | 9 | 0 | 0 |  |
| DNR | 52 | 61 | 52 | 54 | 48 | 53 | 46 | 48 | 49 | 47 | 50 | 53 | 46 |
|  | 60.52 | 69.88 | 60.60 | 61.00 | 54.28 | 62.92 | 53.88 | 54.84 | 57.68 | 56.84 | 59.80 | 59.48 | 53.12 |
|  | 69 | 78 | 68 | 67 | 60 | 73 | 60 | 59 | 66 | 63 | 69 | 67 | 58 |
|  | 0 | 0 | 0 | 0 | 11 | 0 | 15 | 9 | 2 | 1 | 0 | 1 |  |
| BIN | 76 | 83 | 77 | 76 | 71 | 75 | 71 | 69 | 71 | 70 | 76 | 75 | 69 |
|  | 82.80 | 91.00 | 83.12 | 82.16 | 74.80 | 80.24 | 74.88 | 74.04 | 75.48 | 75.28 | 81.68 | 80.24 | 72.60 |
|  | 90 | 101 | 89 | 90 | 78 | 86 | 80 | 79 | 82 | 81 | 89 | 87 | 77 |
|  | 0 | 0 | 0 | 0 | 5 | 0 | 6 | 13 | 4 | 6 | 0 | 0 |  |
| UNI | 78 | 86 | 79 | 78 | 71 | 79 | 69 | 70 | 73 | 72 | 77 | 79 | 69 |
|  | 84.44 | 96.88 | 85.48 | 83.40 | 76.80 | 85.20 | 75.44 | 76.40 | 79.48 | 80.44 | 84.92 | 84.04 | 74.36 |
|  | 90 | 105 | 92 | 91 | 86 | 90 | 82 | 83 | 90 | 89 | 98 | 90 | 82 |
|  | 0 | 0 | 0 | 0 | 8 | 0 | 12 | 12 | 2 | 2 | 0 | 0 |  |
| UPR | 100 | 109 | 100 | 96 | 89 | 97 | 92 | 90 | 92 | 91 | 100 | 93 | 89 |
|  | 105.32 | 118.16 | 108.12 | 106.04 | 95.28 | 105.80 | 97.60 | 94.92 | 97.92 | 99.92 | 108.08 | 102.88 | 93.56 |
|  | 112 | 133 | 117 | 114 | 104 | 116 | 102 | 101 | 103 | 110 | 118 | 111 | 98 |
|  | 0 | 0 | 0 | 0 | 11 | 0 | 3 | 12 | 4 | 2 | 0 | 1 |  |

TABLE X
RESULTS OF OOMPOSITE GRAPH OOLORING EXPERIMENTS

$$
\mathrm{n}=200 . \mu=0.20
$$

| d | LF1 | LF2 | LFPH | LFCD | LF1I | LF2I | LFPHI | LFCDI | RLF1 | RLFDI | DYNPH | DYNFPH | MIN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRP | 22 | 27 | 23 | 23 | 21 | 24 | 21 | 21 | 21 | 21 | 22 | 21 | 21 |
|  | 25.68 | 30.44 | 25.48 | 25.52 | 23.56 | 27.64 | 23.84 | 23.88 | 23.40 | 23.56 | 25.36 | 24.36 | 23.00 |
|  | 29 | 34 | 28 | 28 | 27 | 32 | 27 | 26 | 26 | 28 | 29 | 28 | 26 |
|  | 0 | 0 | 0 | 0 | 12 | 0 | 7 | 9 | 16 | 15 | 0 | 5 |  |
| DNR | 63 | 74 | 63 | 66 | 59 | 68 | 58 | 59 | 59 | 59 | 65 | 63 | 58 |
|  | 71.64 | 85.16 | 72.44 | 72.44 | 65.64 | 76.44 | 65.40 | 66.12 | 67.24 | 67.68 | 71.72 | 70.96 | 64.04 |
|  | 79 | 96 | 81 | 79 | 72 | 82 | 69 | 73 | 76 | 76 | 77 | 79 | 69 |
|  | 0 | 0 | 0 | 0 | 7 | 0 | 12 | 6 | 5 | 6 | 0 | 0 |  |
| BIN | 96 | 102 | 97 | 92 | 84 | 91 | 87 | 86 | 84 | 84 | 94 | 92 | 84 |
|  | 100.32 | 110.60 | 103.08 | 100.08 | 91.12 | 97.92 | 91.64 | 90.92 | 91.52 | 91.88 | 100.56 | 97.72 | 88.76 |
|  | 106 | 119 | 110 | 106 | 98 | 106 | 97 | 98 | 101 | 99 | 106 | 102 | 94 |
|  | 0 | 0 | 0 | 0 | 6 | 0 | 7 | 11 | 10 | 8 | 0 | 0 |  |
| UNI | 94 | 111 | 94 | 94 | 86 | 96 | 85 | 84 | 85 | 86 | 93 | 91 | 84 |
|  | 100.72 | 118.52 | 103.12 | 101.28 | 92.20 | 105.36 | 92.04 | 92.20 | 93.16 | 93.24 | 100.76 | 98.84 | 89.92 |
|  | 109 | 129 | 112 | 110 | 99 | 115 | 98 | 104 | 99 | 104 | 110 | 107 | 98 |
|  | 0 | 0 | 0 | 0 | 7 | 0 | 11 | 10 | 5 | 3 | 0 | 0 |  |
| UPR | 123 | 137 | 123 | 119 | 111 | 122 | 109 | 108 | 109 | 109 | 118 | 116 | 108 |
|  | 128.28 | 146.96 | 130.88 | 129.24 | 116.16 | 130.84 | 117.24 | 117.20 | 119.68 | 117.88 | 128.96 | 125.24 | 114.12 |
|  | 138 | 157 | 144 | 144 | 124 | 141 | 125 | 126 | 127 | 126 | 144 | 133 | 120 |
|  | 0 | 0 | 0 | 0 | 9 | 0 | 6 | 6 | 2 | 7 | 0 | 0 |  |

TABLE XI
RESULTS OF OOMPOSITE GRAPH COLORING EXPERIMENTS

| d | LF1 | LF2 | LFPH | LFCD | LF 1 I | LF2I | LFPHI | LFCDI | RLF1 | RLFD1 | DYNPH | DYNFPH | MIN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRP | 20 | 23 | 20 | 20 | 18 | 22 | 18 | 18 | 18 | 18 | 19 | 19 | 18 |
|  | 21.56 | 25.92 | 21.56 | 21.76 | 19.76 | 23.76 | 19.96 | 19.76 | 19.60 | 19.96 | 21.16 | 20.84 | 19.28 |
|  | 24 | 29 | 23 | 23 | 21 | 26 | 21 | 22 | 21 | 22 | 23 | 23 | 21 |
|  | 0 | 0 | 0 | 0 | 13 | 0 | 11 | 15 | 18 | 12 | 1 | 1 |  |
| DNR | 53 | 61 | 55 | 54 | 48 | 57 | 49 | 48 | 50 | 48 | 54 | 53 | 48 |
|  | 60.20 | 70.40 | 60.16 | 59.68 | 53.96 | 62.32 | 54.28 | 54.00 | 56.24 | 56.12 | 59.28 | 58.92 | 52.80 |
|  | 69 | 80 | 69 | 66 | 62 | 69 | 60 | 61 | 62 | 62 | 65 | 65 | 57 |
|  | 0 | 0 | 0 | 0 | 12 | 0 | 10 | 11 | 2 | 3 | 0 | 0 |  |
| BIN | 78 | 85 | 78 | 76 | 72 | 75 | 73 | 71 | 69 | 69 | 78 |  |  |
|  | 83.64 | 91.20 | 85.60 | 82.64 | 75.88 | 80.28 | 75.60 | 74.44 | 76.76 | 75.52 | 83.12 | $81.80$ | 73.40 |
|  | $92$ | $97$ | $90$ | $91$ | $80$ | $88$ | $81$ | $78$ | $82$ | 81 | 89 | $89$ |  |
|  | 0 | 0 | 0 | 0 | 6 | 0 | 5 | 13 | 3 | 6 | 0 | 0 |  |
| UNI | 78 | 91 | 80 | 77 | 70 | 83 | 74 | 73 | 74 | 72 | 79 | 76 | 70 |
|  | 85.04 | 99.08 | 86.68 | 84.40 | 76.92 | 88.88 | 77.84 | 77.84 | 79.68 | 80.28 | 86.32 | 83.04 | 75.72 |
|  | 91 | 105 | 94 | 91 | 82 | 96 | 82 | 82 | 87 | 87 | 94 | 88 | 79 |
|  | 0 | 0 | 0 | 0 | 13 | 0 | 6 | 6 | 6 | 2 | 0 | 0 |  |
| UPR | 96 | 114 | 103 | 99 | 90 | 101 | 92 | 91 | 93 | 89 | 102 | 98 | 89 |
|  | 105.64 | 121.16 | 109.40 | 107.36 | 96.12 | 106.60 | 96.96 | 96.16 | 98.68 | 100.08 | 109.08 | 104.48 | 94.36 |
|  | 113 | 136 | 116 | 115 | 102 | 115 | 102 | 100 | 107 | 109 | 121 | 111 | 99 |
|  | 0 | 0 | 0 | 0 | 12 | 0 | 4 | 9 | 2 | 3 | 0 | 0 |  |

TABLE XII
RESULTS OF COMPOSITE GRAPH OOLORING EXPERIMENTS

$$
\mathrm{n}=300 . \mu=0.15
$$

| $\mathbf{d}$ | LF1 | LF2 | LFPH | LFCD | LF1I | LF2I | LFPHI | LFCDI | RLF1 | RLFD1 | DYNPH | DYNFPH | MIN |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 26 | 31 | 25 | 25 | 24 | 27 | 24 | 24 | 24 | 23 | 26 | 25 | 23 |
| TRP | 27.84 | 33.64 | 27.84 | 27.72 | 25.68 | 30.32 | 25.92 | 25.68 | 25.16 | 25.24 | 27.60 | 26.36 | 24.88 |
|  | 30 | 38 | 30 | 30 | 27 | 34 | 28 | 27 | 27 | 27 | 30 | 28 | 26 |
|  | 0 | 0 | 0 | 0 | 8 | 0 | 7 | 11 | 18 | 16 | 0 | 2 |  |
|  | 70 | 81 | 69 | 68 | 66 | 73 | 65 | 65 | 65 | 65 | 69 | 69 | 65 |
| DNR | 76.56 | 91.96 | 75.84 | 76.56 | 70.20 | 82.32 | 70.28 | 69.80 | 70.20 | 71.20 | 76.08 | 76.48 | 68.60 |
|  | 85 | 109 | 84 | 83 | 78 | 92 | 79 | 76 | 77 | 79 | 83 | 87 | 76 |
|  | 0 | 0 | 0 | 0 | 3 | 0 | 9 | 8 | 10 | 2 | 0 | 0 |  |
|  | 100 | 114 | 106 | 102 | 95 | 102 | 96 | 95 | 94 | 92 | 102 | 98 | 92 |
| BIN | 107.16 | 121.20 | 112.12 | 108.48 | 99.48 | 107.60 | 100.32 | 98.92 | 99.48 | 98.16 | 109.48 | 105.08 | 97.00 |
|  | 114 | 131 | 120 | 119 | 105 | 114 | 106 | 102 | 108 | 103 | 117 | 113 | 100 |
|  | 0 | 0 | 0 | 0 | 5 | 0 | 1 | 5 | 8 | 13 | 0 | 1 |  |
|  | 101 | 120 | 102 | 103 | 95 | 108 | 92 | 91 | 94 | 97 | 101 | 100 | 91 |
| UNI | 110.28 | 131.56 | 113.68 | 11.24 | 102.04 | 115.92 | 101.36 | 100.88 | 102.92 | 102.12 | 111.04 | 108.44 | 99.36 |
|  | 116 | 144 | 123 | 121 | 107 | 123 | 106 | 107 | 109 | 107 | 120 | 117 | 104 |
|  | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 14 | 4 | 10 | 0 | 0 |  |
|  | 132 | 151 | 134 | 132 | 121 | 130 | 123 | 122 | 119 | 122 | 135 | 128 | 119 |
| UPR | 137.76 | 159.68 | 144.16 | 140.04 | 126.96 | 141.12 | 128.32 | 127.92 | 129.00 | 129.80 | 142.48 | 135.72 | 124.72 |
|  | 147 | 176 | 152 | 151 | 133 | 154 | 134 | 134 | 140 | 140 | 150 | 147 | 130 |
|  | 0 | 0 | 0 | 0 | 9 | 0 | 6 | 7 | 5 | 3 | 0 | 0 |  |

## TABLE XIII

RESULTS OF COMPOSITE GRAPH OOLORING EXPERIMENTS

$$
\mathbf{n}=300, \mu=0.20
$$

| d | LF1 | LF2 | LFPH | LFCD | LF1 I | LF2I | LFPHI | LFCDI | RLF1 | RLFD1 | DYNPH | DYNFPH | MIN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRP | 32 | 38 | 32 | 31 | 29 | 33 | 30 | 29 | 29 | 29 | 31 | 29 | 29 |
|  | 34.04 | 40.84 | 33.72 | 34.00 | 31.84 | 37.52 | 31.64 | 31.68 | 30.68 | 30.68 | 33.32 | 31.96 | 30.48 |
|  | 36 | 46 | 35 | 38 | 34 | 41 | 34 | 34 | 32 | 32 | 35 | 34 | 32 |
|  | 0 | 0 | 0 | 0 | 3 | 0 | 4 | 4 | 20 | 20 | 0 | 3 |  |
| DNR | 88 | 98 | 84 | 86 | 79 | 93 | 79 | 81 | 79 | 79 | 84 | 84 | 79 |
|  | 93.56 | 113.92 | 93.68 | 93.76 | 85.68 | 101.64 | 85.48 | 86.68 | 86.80 | 86.32 | 93.48 | 92.76 | 83.88 |
|  | 106 | 131 | 101 | 103 | 94 | 114 | 95 | 94 | 98 | 95 | 104 | 102 | 94 |
|  | 0 | 0 | 0 | 0 | 11 | 0 | 11 | 3 | 4 | 7 | 0 | 0 |  |
| BIN | 125 | 138 | 128 | 128 | 116 | 129 | 117 | 116 | 112 | 112 | 127 | 121 | 112 |
|  | 133.16 | 149.36 | 136.28 | 133.52 | 122.12 | 134.80 | 122.84 | 121.76 | 119.88 | 119.80 | 134.32 | 129.00 | 118.00 |
|  | 140 | 158 | 145 | 140 | 130 | 146 | 128 | 131 | 126 | 126 | 147 | 136 | 125 |
|  | 0 | 0 | 0 | 0 | 4 | 0 | $1$ | 5 | 9 | 12 | 0 | 0 |  |
| UNI | 123 | 143 | 126 | 124 | 115 | 133 | 117 | 116 | 117 | 110 | 125 | 124 | 110 |
|  | 133.72 | 161.08 | 137.36 | 135.08 | 124.24 | 143.36 | 124.36 | 123.60 | 124.92 | 123.92 | 136.12 | 132.96 | 121.00 |
|  | 141 | 176 | 148 | 146 | 131 | 152 | 130 | 129 | 136 | 133 | 146 | 142 | 128 |
|  | 0 | 0 | 0 | 0 | 7 | 0 | 4 | 7 | 4 | 9 | 0 | 0 |  |
| UPR | 157 | 181 | 168 | 161 | 145 | 168 | 153 | 148 | 144 | 150 | 161 | 159 | 144 |
|  | 168.32 | 200.16 | 175.88 | 170.72 | 157.04 | 177.56 | 159.88 | 157.92 | 157.28 | 157.44 | 174.92 | 165.48 | 154.08 |
|  | 179 | 210 | 189 | 180 | 165 | 186 | 169 | 164 | 169 | 168 | 188 | 173 | 160 |
|  | 0 | 0 | 0 | 0 | 7 | 0 | 1 | 3 | 10 | 6 | 0 | 0 |  |

TABLE XIV
RESULTS OF COMPOSITE CRAPII COLORING EXPERIMENTS

| $d$ | LF1 | 152 | 1.FPH | LFCD | LFII | L.F2I | LFPHI | LFODI | RLFI | RLFDI | DYNPH | DYNFPH | MIN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRP | 24 | 28 | 24 | 24 | 22 | 26 | 23 | 23 | 22 | 22 | 24 | 23 | 22 |
|  | 25.92 | 31.68 | 25.68 | 25.96 | 23.92 | 28.52 | 23.80 | 24.20 | 23.44 | 23.68 | 25.52 | 24.96 | 23.12 |
|  | 28 | 36 | 28 | 28 | 26 | 32 | 26 | 25 | 26 | 26 | 28 | 28 | 25 |
|  | 0 | 0 | 0 | 0 | 8 | 0 | 10 | 6 | 19 | 12 | 0 | 0 |  |
| DNR | 69 | 81 | 66 | 68 | 62 | 71 | 62 | 61 | 62 | 62 | 67 | 68 | 61 |
|  | 73.04 | 86.64 | 72.76 | 72.28 | 66.24 | 76.72 | 65.32 | 65.76 | 67.08 | 67.60 | 72.28 | 72.08 | 64.28 |
|  | 77 | 93 | 79 | 80 | 72 | 84 | 71 | 69 | 73 | 77 | 77 | 77 | 68 |
|  | 0 | 0 | 0 | 0 | 6 | 0 | 14 | 8 | 3 | 3 | 0 | 0 |  |
| BIN | 94 | 106 | 97 | 95 | 88 | 91 | 88 | 85 | 84 | 87 | 94 | 92 | 84 |
|  | 99.80 | 112.12 | 102.36 | 100.96 | 91.40 | 99.28 | 91.96 | 90.72 | 90.20 | 90.72 | 100.68 | 98.56 | 88.36 |
|  | 107 | 122 | 110 | 108 | 98 | 106 | 96 | 97 | 97 | 97 | 106 | 105 | 92 |
|  | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 6 | 11 | 12 | 0 | 0 |  |
| WHI | 96 | 112 | 96 | 96 | 85 | 98 | 85 | 87 | 90 | 89 | 96 | 93 | 85 |
|  | 100.48 | 121.20 | 102. 32 | 101. 12 | 90.80 | 105.16 | 92.00 | 91.80 | 96.44 | 94.08 | 101.88 | 98.68 | 89.56 |
|  | 106 | 138 | 109 | 107 | 96 | 116 | 96 | 97 | 103 | 103 | 112 | 105 | 93 |
|  | 0 | 0 | 0 | 0 | 11 | 0 | 5 | 6 | 1 | 2 | 0 | 0 |  |
| UPR | 120 | 134 | 126 | 123 | 112 | 123 | 110 | 108 | 109 | 112 | 122 | 118 | 108 |
|  | 126.40 | 149.32 | 133.16 | 128.41 | 115.72 | 129.36 | 118.12 | 115.56 | 118.04 | 118.92 | 129.08 | 123.92 | 113.92 |
|  | 133 | 162 | 143 | 134 | 121 | 138 | 128 | 124 | 126 | 124 | 138 | 130 | 118 |
|  | 0 | 0 | 0 | 0 | 12 | 0 | 3 | 10 | 4 | 3 | 0 | 0 |  |

TABLE XV
results of composite graph coloring experiments
$n=400, \mu=0.15$

| d | LF1 | LF2 | LFPH | LFCD | LFII | LF2I | LFPHI | LFCDI | RLF1 | RLFD1 | DYNPH | DYNFPH | MIN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRP | 31 | 38 | 32 | 31 | 30 | 34 | 30 | 29 | 29 | 29 | 31 | 30 | 29 |
|  | 33.84 | 41.60 | 33.88 | 33.76 | 31.64 | 37.80 | 31.64 | 31.56 | 30.48 | 30.72 | 33.44 | 31.92 | 30.36 |
|  | 36 | 45 | 37 | 36 | 34 | 42 | 33 | 33 | 32 | 34 | 37 | 34 | 32 |
|  | 0 | 0 | 0 | 0 | 4 | 0 | 5 | 5 | 22 | 19 | 0 | 1 |  |
| DNR | 87 | 103 | 89 | 88 | 81 | 96 | 82 | 82 | 81 | 79 | 86 | 90 | 79 |
|  | 94.24 | 113.56 | 94.72 | 94.24 | 86.72 | 101.92 | 86.36 | 87.08 | 86.92 | 86.32 | 93.92 | 93.76 | 83.92 |
|  | 99 | 127 | 103 | 101 | 92 | 114 | 91 | 93 | 92 | 92 | 99 | 98 | 88 |
|  | 0 | 0 | 0 | 0 | 6 | 0 | 7 | 3 | 6 | 8 | 0 | 0 |  |
| BIN | 126 | 139 | 127 | 126 | 117 | 127 | 118 | 118 | 113 | 115 | 130 | 121 | 113 |
|  | 131.92 | 149.68 | 136.00 | 133.36 | 121.64 | 132.72 | 123.12 | 121.68 | 119.04 | 119.08 | 133.92 | 129.36 | 117.52 |
|  | 139 | 161 | 144 | 143 | 130 | 139 | 130 | 128 | 126 | 126 | 140 | 137 | 123 |
|  | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 2 | 11 | 10 | 0 | 0 |  |
| UNI | 126 | 144 | 129 | 125 | 114 | 130 | 114 | 116 | 116 | 113 | 126 | 121 | 113 |
|  | 131.36 | 158.88 | 135.08 | 132.68 | 121.68 | 142.40 | 121.68 | 121.80 | 121.64 | 122.88 | 132.64 | 129.12 | 118.96 |
|  | 141 | 172 | 144 | 142 | 131 | 157 | 128 | 130 | 128 | 130 | 140 | 136 | 127 |
|  | 0 | 0 | 0 | 0 | 5 | 0 | 7 | 5 | 8 | 6 | 0 | 0 |  |
| UPR | 161 | 186 | 167 | 161 | 146 | 171 | 147 | 147 | 145 | 147 | 165 | 157 | 145 |
|  | 167.28 | 198.76 | 175.24 | 169.00 | 153.68 | 176.96 | 156.48 | 154.28 | 154.16 | 156.68 | 171.64 | 163.84 | 151.84 |
|  | 173 | 210 | 187 | 178 | 160 | 188 | 164 | 161 | 163 | 165 | 177 | 172 | 160 |
|  | 0 | 0 | 0 | 0 | 12 | 0 | 2 | 8 | 8 | 4 | 0 | 0 |  |

TABLE XVI
RESULTS OF COMPOSITE GRAPH COLORING EXPERIMENTS
$n=400, \mu=0.20$

| d | LF1 | LF2 | LFPH | LFCD | LF1I | LF2I | LFPHI | LFCDI | RLF1 | RLFD1 | DYNPH | DYNFPH | MIN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRP | 39 | 47 | 39 | 39 | 37 | 42 | 37 | 37 | 36 | 36 | 39 | 36 | 36 |
|  | 41.56 | 50.76 | 41.80 | 41.32 | 39.40 | 46.68 | 39.16 | 39.24 | 37.84 | 37.80 | 40.96 | 38.92 | 37.56 |
|  | 44 | 56 | 45 | 44 | 42 | 52 | 42 | 42 | 41 | 40 | 43 | 43 | 40 |
|  | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 2 | 19 | 21 | 0 | 4 |  |
| DNR | 109 | 130 | 109 | 108 | 101 | 116 | 103 | 102 | 100 | 101 | 109 | 107 | 100 |
|  | 115.76 | 141.52 | 115.80 | 115.16 | 107.36 | 127.72 | 107.00 | 106.96 | 105.08 | 105.28 | 115.52 | 114.80 | 103.72 |
|  | 122 | 152 | 122 | 123 | 113 | 139 | 112 | 112 | 112 | 114 | 125 | 122 | 109 |
|  | 0 | 0 | 0 | 0 | 4 | 0 | 3 | 2 | 10 | 10 | 0 | 0 |  |
| BIN | 157 | 181 | 161 | 159 | 145 | 160 | 146 | 145 | 140 | 142 | 159 | 150 | 140 |
|  | 163.76 | 187.60 | 169.00 | 166.12 | 150.80 | 167.00 | 151.88 | 151.64 | 146.60 | 147.08 | 165.44 | 157.40 | 145.24 |
|  | 173 | 197 | 177 | 172 | 159 | 177 | 158 | 159 | 154 | 157 | 175 | 168 | 149 |
|  | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 3 | 14 | 13 | 0 | 0 |  |
| UNI | 153 | 186 | 158 | 156 | 142 | 166 | 144 | 139 | 141 | 144 | 154 | 152 | 139 |
|  | 160.52 | 198.64 | 165.08 | 161.96 | 150.76 | 177.24 | 150.96 | 150.36 | 148.92 | 149.72 | 162.68 | 160.08 | 146.76 |
|  | 168 | 222 | 175 | 176 | 159 | 187 | 159 | 158 | 159 | 158 | 171 | 168 | 157 |
|  | 0 | 0 | 0 | 0 | 4 | 0 | 2 | 7 | 12 | 7 | 0 | 0 |  |
| UPR | 194 | 228 | 202 | 198 | 185 | 209 | 189 | 186 | 181 | 179 | 202 | 195 | 179 |
|  | 203.28 | 243.40 | 213.20 | 209.28 | 191.04 | 219.16 | 196.64 | 192.80 | 191.00 | 190.36 | 211.52 | 202.48 | 187.48 |
|  | 213 | 266 | 223 | 219 | 199 | 232 | 204 | 203 | 199 | 200 | 223 | 210 | 194 |
|  | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 2 | 8 | 11 | 0 | 0 |  |

TABLE XVII
RESULTS OF OOMPOSITE GRAPH OOLORING EXPERIMENTS

$$
\mathrm{n}=500, \mu=0.10
$$

| d | LF1 | LF2 | LFPH | LFCD | LFII | LF2I | LFPHI | LFCDI | RLF 1 | RLFD1 | DYNPH | DYNFPH | MIN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRP | 29 | 33 | 28 | 28 | 26 | 31 | 26 | 26 | 26 | 26 | 28 | 27 | 26 |
|  | 30.28 | 36.84 | 30.12 | 30.00 | 27.92 | 33.60 | 27.88 | 27.92 | 27.12 | 27.28 | 29.44 | 28.60 | 26.88 |
|  | 33 | 42 | 33 | 33 | 30 | 37 | 29 | 29 | 29 | 29 | 32 | 31 | 29 |
|  | 0 | 0 | 0 | 0 | 6 | 0 | 7 | 4 | 19 | 17 | 0 | 3 |  |
| DNR | 79 | 94 | 77 | 78 | 73 | 86 | 72 | 72 | 72 | 71 | 77 | 78 | 71 |
|  | 83.64 | 101.24 | 84.08 | 83.72 | 76.64 | 92.60 | 76.88 | 76.48 | 77.16 | 77.52 | 82.80 | 82.68 | 74.68 |
|  | 87 | 110 | 92 | 89 | 85 | 102 | 82 | 84 | 86 | 81 | 87 | 91 | 80 |
|  | 0 | 0 | 0 | 0 | 7 | 0 | 7 | 7 | 6 | 6 | 0 | 0 |  |
| BIN | 112 | 122 | 113 | 111 | 101 | 107 | 105 | 103 | 97 | 99 | 111 | 110 | 97 |
|  | 117.20 | 130.24 | 118.88 | 117.44 | 106.28 | 116.24 | 107.64 | 107.64 | 104.32 | 105.40 | 117.68 | 114.04 | 103.24 |
|  | 125 | 141 | 127 | 122 | 110 | 122 | 112 | 113 | 108 | 111 | 125 | 119 | 107 |
|  | 0 | 0 | 0 | 0 | 6 | 0 | 2 | 2 | 13 | 8 | 0 | 0 |  |
| UNI | 110 | 129 | 110 | 108 | 99 | 116 | 102 | 101 | 102 | $98$ | $110$ |  |  |
|  | 116.16 | 140.44 | 118.92 | 116.76 | 107.56 | 125.16 | 107.76 | 107.28 | 109.52 | 108.72 | 117.16 | 114.20 | 105.16 |
|  | 126 | 153 | 128 | 124 | 114 | 135 | 116 | 116 | 123 | 116 | 127 | 121 | 110 |
|  | 0 | 0 | 0 | 0 | 8 | 0 | 6 | 8 | 4 | 6 | 0 | 0 |  |
| UPR | 139 | 164 | 145 | 142 | 129 | 147 | 132 | 130 | 129 | 128 | 144 | 137 | 128 |
|  | 145.20 | 171.88 | 153.28 | 147.96 | 134.40 | 154.44 | 138.36 | 136.24 | 137.48 | 136.20 | 152.40 | 144.40 | 132.92 |
|  | 151 | 181 | 168 | 156 | 143 | 164 | 144 | 143 | 145 | 146 | 159 | 153 | 139 |
|  | 0 | 0 | 0 | 0 | 13 | 0 | 0 | 5 | 3 | 7 | 0 | 0 |  |

TABLE XVIII
RESULTS OF COMPOSITE GRAPH OOLORING EXPERIMENTS

$$
n=500 . \mu=0.15
$$

| d | LF1 | LF2 | LFPH | LFCD | LFII | LF2I | LFPHI | LFCDI | RLF1 | RLFD1 | DYNPH | DYNFPH | MIN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRP | 38 | 44 | 37 | 37 | 36 | 42 | 35 | 35 | 34 | 34 | 37 | 35 | 34 |
|  | 39.84 | 48.44 | 39.52 | 39.60 | 37.28 | 44.56 | 37.32 | 37.20 | 35.56 | 35.76 | 39.24 | 37.20 | 35.36 |
|  | 44 | 53 | 43 | 44 | 40 | 49 | 41 | 40 | 38 | 38 | 42 | 41 | 38 |
|  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 21 | 19 | 0 | 1 |  |
| DNR | 102 | 126 | 103 | 103 | 97 | 114 | 97 | 97 | 96 | 94 | 103 | 103 | 94 |
|  | 109.44 | 134.92 | 110.48 | 109.84 | 102.08 | 122.28 | 101.92 | 101.84 | 101.36 | 100.88 | 109.96 | 108.84 | 99.60 |
|  | 116 | 148 | 117 | 118 | 109 | 130 | 108 | 108 | 110 | 108 | 118 | 117 | 108 |
|  | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 5 | 13 | 14 | 0 | 0 |  |
| BIN | 147 | 163 | 155 | 150 | 138 | 152 | 141 | 139 | 133 | 129 | 151 | 142 | 129 |
|  | 154.08 | 176.96 | 160.00 | 156.48 | 142.48 | 156.84 | 144.52 | 143.52 | 138.84 | 138.68 | 156.44 | 149.20 | 137.44 |
|  | 158 | 187 | 166 | 162 | 148 | 162 | 149 | 151 | 147 | 147 | 164 | 155 | 144 |
|  | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 12 | 13 | 0 | 0 |  |
| UNI | 144 | 172 | 149 | 148 | 135 | 159 | 137 | 134 | 132 | 134 |  |  |  |
|  | 152.92 | 188.04 | 156.68 | 155.08 | 142.28 | 168.20 | 143.60 | 142.56 | 141.96 | 142.16 | 154.60 | 151.04 | 139.52 |
|  | 161 | 204 | 167 | 165 | 151 | 183 | 150 | 150 | 151 | 148 | 164 | 160 | 148 |
|  | 0 | 0 | 0 | 0 | 9 | 0 | 4 | 5 | 8 | 5 | 0 | 0 |  |
| UPR | 184 | 221 | 193 | 190 | 175 | 196 | 179 | 178 | 170 | 174 | 194 | 184 | 170 |
|  | 192.80 | 231.52 | 201.60 | 197.32 | 180.12 | 207.32 | 184.64 | 182.20 | 181.20 | 180.48 | 201.04 | 190.20 | 177.56 |
|  | 209 | 248 | 212 | 205 | 184 | 216 | 194 | 189 | 193 | 189 | 211 | 200 | 184 |
|  | 0 | 0 | 0 | 0 | 12 | 0 | 1 | 2 | 6 | 9 | 0 | 0 |  |

TABLE XIX
RESULTS OF OOMPOSITE GRAPH OOLORING EXPERIMENTS

$$
\mathrm{n}=500 \cdot \mu=0.20
$$

| d | LFI | LF2 | LFPH | LFCD | LF1I | LF2I | LFPHI | LFCDI | RLF1 | RLFD1 | DYNPH | DYNFPH | MIN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRP | 46 | 56 | 47 | 47 | 43 | 51 | 44 | 44 | 42 | 42 | 46 | 43 | 42 |
|  | 49.12 | 60.60 | 49.20 | 49.28 | 46.20 | 55.40 | 46.24 | 46.28 | 44.32 | 44.36 | 48.60 | 46.16 | 44.12 |
|  | 53 | 64 | 53 | 53 | 50 | 57 | 49 | 49 | 47 | 47 | 52 | 51 | 47 |
|  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20 | 19 | 0 | 1 |  |
| DNR | 129 | 155 | 127 | 128 | 119 | 139 | 120 | 120 | 116 | 117 | 128 | 127 | 116 |
|  | 135.96 | 166.16 | 135.96 | 135.56 | 126.84 | 152.24 | 126.24 | 126.36 | 123.96 | 123.60 | 135.76 | 133.72 | 122.44 |
|  | 145 | 183 | 146 | 148 | 134 | 163 | 136 | 133 | 133 | 129 | 145 | 141 | 129 |
|  | 0 | 0 | 0 | 0 | 2 | 0 | 3 | 1 | 11 | 16 | 0 | 0 |  |
| BIN | 183 | 210 | 190 | 180 | 172 | 188 | 176 | 173 | 167 | 166 | 185 | 179 | 166 |
|  | 188.80 | 220.60 | 197.36 | 192.68 | 177.96 | 199.40 | 181.84 | 179.04 | 172.88 | 170.84 | 196.00 | 185.32 | 170.08 |
|  | 195 | 232 | 204 | 202 | 185 | 211 | 189 | 185 | 179 | 176 | 207 | 193 | 175 |
|  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 17 | 0 | 0 |  |
| UNI | 178 | 218 | 180 | 179 | 167 | 195 | 170 | 168 | 165 | 157 | 180 | 178 | 157 |
|  | 189.72 | 234.56 | 192.80 | 189.88 | 176.72 | 210.68 | 178.16 | 177.16 | 174.48 | 174.08 | 192.16 | 187.08 | 172.20 |
|  | 202 | 252 | 207 | 199 | 191 | 226 | 188 | 187 | 188 | 193 | 204 | 194 | 182 |
|  | 0 | 0 | 0 | 0 | 3 | 0 | 1 | 3 | 10 | 12 | 0 | 0 |  |
| UPR | 233 | 277 | 240 | 232 | 222 | 248 | 221 | 219 | 215 | 210 | 237 | 228 | 210 |
|  | 241.36 | 293.36 | 249.44 | 243.48 | 227.32 | 259.88 | 230.96 | 227.08 | 224.44 | 223.20 | 247.36 | 237.16 | 221.60 |
|  | 249 | 306 | 258 | 255 | 237 | 266 | 239 | 237 | 232 | 232 | 258 | 243 | 232 |
|  | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 4 | 10 | 15 | 0 | 0 |  |

Examining Tables II through XIX, it becomes apparent that some algorithms rather consistently use fewer colors to color a group of graphs than other algorithms. Of course. it should be expected that a VSI algorithm would use no more colors than its corresponding VS algorithm to color a group of graphs. (In our experiments, a VSI algorithm rarely used more colors than its corresponding VS algorithm on a graph. In fact, this occurred in approximately $0.8 \%$ of the 9000 possible instances.) Considering the cases in which one algorithm uses no more colors than another algorithm in at least $95 x$ ( 86 or more) of the experiments, the algorithms can be ranked into three tiers:

Tier 1: LF1I, LFPHI, LFCDI, RLF1, RLFD1:
Tier 2: LF1. LFPH. LFCD. LF2I. DYNPH, DYNFPH; and
Tier 3: LF2.
Each algorithm in Tier 1 used no more colors than each algorithm in Tier 2 in at least 86 experiments. Each algorithm in Tiers 1 and 2 used no more colors than the LF2 algorithm in the 90 experiments. Table $X X$ shows for each pair of coloring algorithms the number of experiments for which the first algorithm of the pair used no more colors than the second algorithm of the pair. It should be noted that within $\operatorname{Tier} 2$ there are pairs of algorithms for which one algorithm could be ranked above the other using the same criterion used to determine the tiers. For example, the DYNPH algorithm used no more colors than the LFPH algorithm

TABLE XX
OOMPARISON OF OOLORING ALGORITHMS: NUMBER OF EXPERIMENTS FOR WHICH ALGORITHM A REQUIRED NO MORE OOLORS THAN ALGORITHM B

|  | Algorithm B |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Algorithm A | LF1 | LF2 | LFPH | LFCD | LF1I | LF2I | LFPHI | LFCDI | RLF1 | RLFDI | DYNPH | DYNFPH |
| LF1 | - | 90 | 72 | 51 | 0 | 66 | 0 | 0 | 0 | 0 | 49 | 2 |
| LF2 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| LFPH | 21 | 90 | - | 16 | 0 | 54 | 0 | 0 | 0 | 0 | 4 | 2 |
| LFCD | 41 | 90 | 75 | - | 0 | 62 | 0 | 0 | 0 | 0 | 43 | 4 |
| LF1I | 90 | 90 | 90 | 90 | - | 90 | 50 | 42 | 55 | 57 | 90 | 87 |
| LF2I | 24 | 90 | 36 | 28 | 0 | - | 0 | 0 | 4 | 2 | 29 | 18 |
| LFPHI | 90 | 90 | 90 | 90 | 43 | 90 | - | 34 | 50 | 55 | 90 | 87 |
| LFCDI | 90 | 90 | 90 | 90 | 53 | 90 | 58 | - | 54 | 57 | 90 | 88 |
| RLF1 | 90 | 90 | 90 | 90 | 37 | 86 | 40 | 36 | - | 51 | 90 | 89 |
| RLFD1 | 90 | 90 | 90 | 90 | 34 | 88 | 36 | 34 | 41 | - | 90 | 90 |
| DYNPH | 41 | 90 | 86 | 48 | 0 | 61 | 0 | 0 | 0 | 0 | - | 7 |
| DYNFPH | 88 | 90 | 88 | 86 | 3 | 73 | 3 | 3 | 1 | 0 | 84 | - |

in 86 experiments.
The "raw" numbers as presented in Tables II through XIX do not provide a satisfactory means to observe various trends in the results. In order to more readily visualize various trends in the data, several graphs were ploted using the data in Tables II through XIX. For these graphs. we restricted our consideration to only those algorithms in Tier 1. The graphs were designed to assist in assessing the performance of these algorithms on the random composite graphs as each of the three variables, $n, \mu$, and $d, i s$ varied. To arrange the values of the variable d. the chromaticity distributions were ordered in increasing order according to their means and those distributions with equal means were subordered in increasing order according to their variances.

For the graphs. two dependent variables. the number of excess colors used by an algorithm and the number of wins for an algorithm, were chosen to measure the performance of the algorithm. The number of excess colors for an algorithm is the number of colors used for the group of random composite graphs in excess of the number of colors used by the MIN algorithm. Thirty-eight pairs of graphs were plotted and appear in Figures 2 through 77. The first graph of a pair is the graph of the number of excess colors versus one of the independent variables, $n, \mu$, or $d$. The second graph of a pair is the graph of the number of wins versus the independent variable. Each graph has a curve plotted
for each of the algorithms in Tier 1 . Below an excess colors graph, the row of numbers labelled "TOTAL COLORS" is the number of colors used by the MIN algorithm for each value of the independent variable.

Figures 2 through 31 are the fifteen pairs of graphs having $n$ as the independent variable. There is a pair of graphs for each ordered pair ( $\mu, d$ ) such that $\mu \in\{0.10,0.15,0.20\}$ and $d \in\{T R P, D N R, B I N, U N I . U P R\}$. Figures 32 through 41 are the five pairs of graphs having $\mu$ as the independent variable. There is a pair of graphs for each ordered pair (n.d) such that $n=100$ and d $\in\{T R P, D N R, B I N, U N I, U P R\}$. Figures 42 through 77 are the eighteen pairs of graphs having d as the independent variable. There is a pair of graphs for each ordered pair ( $n, \mu$ ) such that
$n=100$ and $\mu \in\{0.10,0.15,0.20 .0 .30,0.40 .0 .50\}$. or $n \in\{200,300,400,500\}$ and $\mu \in\{0.10,0.15,0.20\}$.


Figure 2. Number of Excess Colors vs. Number of Vertices for Random Composite Graphswith $\mu=0.10$ and $d=T R P$


Figure 3. Number of $\mathbb{W}$ ins vs. Number of Verices for Random Composite Graphs with $\mu=0.10$ and $d=T R P$

| TRP DISTRIBUTION | * LF1I $\quad \square$ LFPHI + LFCDI |
| :--- | :--- | :--- |
| $15 \%$ EDCE DENSITY | ORLF1 RLFD1 |

 TOTAL
COLORS

322
$472 \quad 622$
759
884

Figure 4. Number of Excess Colors vs. Number of Veritices for Random Composite Graphs with $\mu=0.15$ and $\mathrm{d}=\mathrm{TRP}$


Figure 5. Number of Wins vs. Number of Vertices
for Random Composite Graphs with $\mu=0.15$ and $d=T R P$

| TRP olstribution | * LFII | $\square$ LFPHI + LFCD |  |
| :--- | :--- | :--- | :--- |
| $20 \%$ edge oensity | ORLFI | $\otimes$ RLFDI |  |



Figure 6. Number of Excess Colors vs. Number of Vertices for Random Composite Graphs with $\mu=0.20$ and $d=T R P$


Figure 7. Number of Wins vs. Number of Vertices for Random Composite Graphs with $\mu=0.20$ and $d=T R P$

| DNR distribution | $*$ LF1I | $\square$ LFPHI + LFCDI |
| :--- | :--- | :--- |
| $10 \%$ edge density | ORLFI | $\otimes$ RLFDI |




Figure 8. Number of Excess Colors vs. Number of Vertices for Random Composite Graphs with $\mu=0.10$ and $d=D N R$


Figure 9. Number of Wins vs. Number of Vertices for Random Composite Graphs with $\mu=0.10$ and $d=\operatorname{DNR}$


Figure 10. Number of Excess Colors vs. Number of Vericices for Random Composite Graphs with $\mu=0.15$ and $d=$ DNR


Figure 11. Number of Wins vs. Number of Vertices for Random Composite Graphs with $\mu=0.15$ and $d=$ DNR


Figure 12. Number of Excess Colors vs. Number of Vertices for Random Composite Graphs with $\mu=0.20$ and $d=D N R$


Figure 13. Number of Wins vs. Number of Vertices for Random Composite Graphs with $\mu=0.20$ and $d=$ DNR


Figure 14. Number of Excess Colors vs. Number of Vertices for Random Composite Graphs with $\mu=0.10$ and $d=B I N$


Figure 15. Number of Wins vs. Number of Vertices for Random Composite Graphs with $\mu=0.10$ and $\mathrm{d}=$ BIN

| BIN DISTRIBUTION | * LF1I | $\square$ LFPHI + LFCD |
| :--- | :--- | :--- |
| $15 \%$ EDGE DENSITY | ORLF1 | RLFDI |



Figure 16. Number of Excess Colors vs. Number of Vertices for Random Composite Graphs with $\mu=0.15$ and $\mathrm{d}=$ BIN


Figure 17. Number of Wins vs. Number of Vertices for Random Composite Graphs with $\mu=0.15$ and $d=B I N$


Figure 18. Number of Excess Colors vs. Number of Vertices for Random Composite Graphs with $\mu=0.20$ and $d=B I N$


Figure 19. Number of Wins vs. Number of Vertices for Random Composite Graphs with $\mu=0.20$ and $d=B I N$


Figure 20. Number of Excess Colors vs. Number of Vertices for Random Composite Graphs with $\mu=0.10$ and $d=U N I$


Figure 21. Number of Wins vs. Number of Vertices for Random Composite Graphs with $\mu=0.10$ and $d=U N I$

| UNI distribution | ＊LFII | $\square$ LFPHI＋LFCDI |
| :--- | :--- | :--- |
| $15 \%$ edge density | ORLFI | $\otimes$ RLFDI |



Figure 22．Number of Excess Colors vs．Number of Vertices for Random Composite Graphs with $\mu=0.15$ and $d=U N I$


Figure 23．Number of Wins vs．Number of Vertices for Random Composite Graphs with $\mu=0.15$ and $d=U N I$

| 100 vertices | * LF1I $\square$ LFPH! + LFCDI |
| :--- | :--- | :--- |
| $10 \%$ EDCE DENSITY | ORLFI $\otimes$ RLFDI |



Figure 42. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=100$ and $\mu=0.10$


Figure 43. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=100$ and $\mu=0.10$

| 100 vertices | * LFII $\square$ LFPHI + LFCDI |
| :--- | :--- | :--- |
| $15 \%$ edge density | ORLFI $\otimes$ RLFDI |



Figure 44. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=100$ and $\mu=0.15$


Figure 45. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=100$ and $\mu=0.15$

| 100 vertices | $*$ LF 11 | $\square$ LFPHI + LFCDI |  |
| :--- | :--- | :--- | :--- |
| $20 \%$ edge bensity | ORLF1 | RLFDI |  |



Figure 46. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=100$ and $\mu=0.20$


Figure 47. Number of wins vs. Chromaticity Distribution for Random Composite Graphs with $\mathrm{n}=100$ and $\mu=0.20$


Figure 48. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=100$ and $\mu=0.30$


Figure 49. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=100$ and $\mu=0.30$


Figure 50. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=100$ and $\mu=0.40$


Figure 51. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=100$ and $\mu=0.40$


Figure 52. Uumber of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=100$ and $\mu=0.50$


Figure 53. Number of wins vs. Chromaticity Distribution for Random Composite Graphs with $\mathrm{n}=100$ and $\mu=0.50$


Figure 54. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=200$ and $\mu=0.10$


Figure 55. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=200$ and $\mu=0.10$

| 200 vertices | * LFil | $\square$ LFPHI + LFCDI |  |
| :--- | :--- | :--- | :--- |
| $15 \%$ edge density | ORLF1 | RLFD1 |  |



Figure 56. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $\mathrm{n}=200$ and $\mu=0.15$


Figure 57. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=200$ and $\mu=0.15$


Figure 58. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=200$ and $\mu=0.20$


Figure 59. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=200$ and $\mu=0.20$

| 300 vertices | $*$ LF1I $\quad$ LFPHI + LFCDI |  |
| :--- | :--- | :--- |
| $10 \%$ EDGE DENSITY | O RLFI RLFDI |  |



Figure 60. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=300$ and $\mu=0.10$


Figure 61. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=300$ and $\mu=0.10$

| 300 vertices | * LF1I | $\square$ LFPHI + LFCDI |  |
| :--- | :--- | :--- | :--- |
| $15 \%$ EDGE DENSITY | O RLFI | RLFDI |  |



Figure 62. Number of Excess Colors vs. Chromaticity Distribution
for Random Composite Graphs with $n=300$ and $\mu=0.15$


Figure 63. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=300$ and $\mu=0.15$

| 300 verices | * LF1I | $\square$ LFPHI + LFCDI |  |
| :--- | :--- | :--- | :--- |
| $20 \%$ EDGE DensIty | ORLFI | RLFDI |  |



Figure 64. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphswith $n=300$ and $\mu=0.20$


Figure 65. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=300$ and $\mu=0.20$

| 400 vertices | * LF1I | Q LFPHI + LFCDI |
| :--- | :--- | :--- | :--- |
| $10 \%$ EDCE DEKSITY | ORLF1 | RLFDI |



Figure 66. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=400$ and $\mu=0.10$


Figure 67. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=400$ and $\mu=0.10$

| 400 vertices | * LF1I | $\square$ LFPHI + LFCD |
| :--- | :--- | :--- |
| $15 \%$ EDCE DENSITY | ORLF1 | RLFDI |



Figure 68. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=400$ and $\mu=0.15$


Figure 69. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=400$ and $\mu=0.15$


Figure 70. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=400$ and $\mu=0.20$


Figure 71. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=400$ and $\mu=0.20$

| 500 vertices | * LF1I | $\square$ LFPHI + LFCDI |  |
| :--- | :--- | :--- | :--- |
| $10 \%$ EDGE DENSITY | ORLF1 | RLFDI |  |



Figure 72. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=500$ and $\mu=0.10$


Figure 73. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=500$ and $\mu=0.10$


Figure 74. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=500$ and $\mu=0.15$


Figure 75. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=500$ and $\mu=0.15$

| 500 vertices | $*$ LF11 | $\square$ LFPHI + LFCDI |
| :--- | :--- | :--- |
| $20 \%$ EDGE DENSITY | ORLFI | $\otimes$ RLFDI |



Figure 76. Number of Excess Colors vs. Chromaticity Distribution for Random Composite Graphs with $n=500$ and $\mu=0.20$


Figure 77. Number of Wins vs. Chromaticity Distribution for Random Composite Graphs with $n=500$ and $\mu=0.20$

## C. CONCLUSIONS

One rather obvious conclusion concerning the results of the experiments is that no one algorithm of the coloring algorithms investigated is superior to the other algorithms on all composite graphs. Since the CGCP is an NP-complete problem. this conclusion should not come as a complete surprise. Some of the coloring algorithms did show superiority over the other algorithms for certain groups of the random composite graphs.

By considering the fifteen pairs of graphs in figures 2 through 31 , the effects of changing the number of vertices in the random composite graphs upon the performance of the algorithms in Tier 1 can be seen. The LFII, the LFPHI, and the LFCDI algorithms perform better for the lower numbers of vertices. The numbers of excess colors for the LFII, the LFPHI, and the LFCDI algorithms tend to increase as the number of vertices increases. The numbers of wins for the LFII, the LFPHI, and the LFCDI algorithms tend to decrease as the number of vertices increase. Opposite trends are seen for the RLFI and the RLFD1 algorithms. As the number of vertices increase, the numbers of excess colors for the RLF1 and the RLFD1 algorithms tend to decrease and the numbers of wins tend to increase. These opposite trends cause the curves for the recursive largest-first algorithms, RLF1 and RLFD1, and the curves for the largest-first algorithms. LF1I, LFPHI, and LFCDI, to cross over each other in most of the graphs in Figures 2 through 31.

There is an indication that the RLF1 and the RLFD1 algorithms improve compared to the LFII, the LFPHI, and the LFCDI algorithms as the edge density increases. For the experiments on random composite graphs of 100 vertices, this trend is readily apparent for some of the chromaticity distributions, for examples, see Figures 34 through 37 . For the experiments on random composite graphs of a higher number of vertices, the trend can be seen by comparing three consecutive pairs of graphs with d as the independent variable (the graphs in Figures 54 through 77) which are for a particular number of vertices and edge densities $\mu=0.10$. 0.15 . and 0.20 . For example, compare the three pairs of graphs in Figure 54 through 59 for the experiments on random composite graphs having 200 vertices.

The effects of these trends observed for increasing the number of vertices and the edge density culminate in the near separation in Figures 70 and 71 and the separation in Figures 76 and 77 of the curves for the RLF1 and the RLFD1 algorithms from the curves for the LFII, the LFPHI, and the LFCDI algorithms. In these instances. the RLFl and the RLFD1 algorithms are superior to the LFII. the LFPHI, and the LFCDI algorithms. In the graphs for a low number of vertices combined with a low edge density (for examples. see Figures 42 through 45), a similar separation of the curves for the RLF1 and the RLFD1 algorithms from the curves for the LFII, the LFPHI, and the LFCDI algorithms can be observed, but in these instances the LFII, the LFPHI, and
the LFCDI algorithms are superior to the RLF1 and the RLFD1 algorithms.

If the edge density were allowed to approach 1, the coloring algorithms should produce colorings that use approximately the same number of colors. Indeed, any of the coloring algorithms should produce a coloring using a number of colors approximately equal to the sum of the chromaticities of the vertices of the composite graph for edge densities near to 1 . The numbers of excess colors for the algorithms should tend toward 0 for high edge densities.

Concerning the effects of changing the chromaticity distributions, no clear trends in the performance of one algorithm with respect to another algorithm were observed. One effect of changing the chromaticity distribution that should be expected and that was evident in the results is that as the mean of the chromaticity distribution increases. the number of colors used by a coloring algorithm to color a a composite graph increases.

Due to the large amount of data collected as results of the experiments, not all the data could be included in this document. Summarizing the data as done in Tables II through XIX conceals some differences in the performances of two coloring algorithms on a particular composite graph. Some observations that are possible when inspecting the entire data set are not possible when inspecting the summarized data set.

The averages for the number of colors used by the algorithms in Tables II through XIX conceal differences between the algorithms on particular composite graphs. For example, Algorithm 1 may perform superior to Algorithm 2 on Graph A and Algorithm 2 may perform superior to Algorithm 1 on Graph B. For the 100 vertex random composite graphs, the LFII. the LFPHI, or the LFCDI algorithm produced the coloring using the least number of colors for most of these graphs. It was not uncommon for there to be a 5 to $10 \%$ difference between the approximations of the chromatic number by two of these algorithms. For several graphs, only one of the three algorithms produced the lowest approximation of the chromatic number. In a particular application, a 5 to $10 \%$ improvement in the approximation of the chromatic number produced by one of the algorithms could be significant. In such a situation, it could be worthwhile to apply the other two algorithms to the composite graph. The three algorithms can be implemented without requiring three significantly different procedures. A general VSI algorithm can be implemented that arranges the vertices of the composite graph to be colored in decreasing order according to a measure associated with each vertex. An appropriate measure for a vertex $v$ of a composite graph $G=\langle V, E, \Phi, C\rangle$ is given below for each algorithm.

## Measure

LFII
LFPHI $\quad \Delta(v)+(C(v)-1) d(v)-1$
LFCDI $\quad C(v) d(v)$

Though the five coloring algorithms in Tier 1 show superiorities for certain groups of random composite graphs. the number of excess colors used by an algorithm in most cases did not exceed $10 \%$ of the number of colors used by the MIN algorithm. The cases in which the number of excess colors for an algorithm exceeded $10 \%$ of the number of colors used by the MIN algorithm were for the RLF1 and the RLFD1 algorithms coloring groups of random composite graphs with 100 or 200 vertices. Table XXI shows statistics for the number of excess colors used by each algorithm when considered as a percentage of the colors used by the MIN algorithm. For each experiment, the value

$$
\frac{\text { number of excess colors }}{\text { total number of colors }} * 100 \%
$$

was calculated for each algorithm. The "number of excess colors" is the number of excess colors used by the algorithm and the "total number of colors" is the number of colors used by the MIN algorithm to color the group of random composite graphs. The statistics in Table XXI were calculated using the values for the experiments in which $\mu \in\{0.10,0.15,0.20\}$. For the rows indicated by (*), the statistics were calculated including also the values for the experiments in which $n=100$ and $\mu \in\{0.30,0.40 .0 .50\}$.

TABLE XXI
STATISTICS FOR THE NUMBER OF EXCESS COLORS CONSIDERED AS A PERCENTAGE OF "TOTAL COLORS"

| Number of Vertices | LFII | LFPHI | LFCDI | RLF1 | RLFD 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mean |  |  |  |  |
| 100 (*) | 4.06 | 3.48 | 3.35 | 6.29 | 6.29 |
| 100 | 4.61 | 3.59 | 3.66 | 8.73 | 8.02 |
| 200 | 3.05 | 2.71 | 2.93 | 5.59 | 5.59 |
| 300 | 2.59 | 3.08 | 2.47 | 3.11 | 3.18 |
| 400 | 2.96 | 3.47 | 3.08 | 2.23 | 2.57 |
| 500 | 3.07 | 4.00 | 3.36 | 1.73 | 1.59 |
| Overall | 3.25 | 3.37 | 3.10 | 4.28 | 4.19 |
| Overall (*) | 3.30 | 3.37 | 3.09 | 4.21 | 4.25 |
|  | Median |  |  |  |  |
| 100 (*) | 4.07 | 3.42 | 3.21 | 5.76 | 6.02 |
| 100 | 4.23 | 3.32 | 3.49 | 8.35 | 8.18 |
| 200 | 2.66 | 2.75 | 2.70 | 5.00 | 5.68 |
| 300 | 2.49 | 2.89 | 2.49 | 3.24 | 2.89 |
| 400 | 3.34 | 3.16 | 2.84 | 1.53 | 2.42 |
| 500 | 2.62 | 3.99 | 2.88 | 1.32 | 1.29 |
| Overall | 3.11 | 3.16 | 2.88 | 3.48 | 3.52 |
| Overall (*) | 3.25 | 3.24 | 2.93 | 3.52 | 3.69 |
|  | Standard Deviation |  |  |  |  |
| 100 (*) | 1.12 | 0.89 | 0.92 | 3.14 | 2.43 |
| 100 | 1.02 | 0.96 | 1.15 | 2.46 | 1.90 |
| 200 | 1.19 | 0.85 | 0.99 | 2.45 | 2.13 |
| 300 | 0.77 | 0.70 | 0.72 | 1.63 | 1.80 |
| 400 | 1.08 | 0.97 | 1.02 | 1.65 | 1.43 |
| 500 | 1.23 | 1.24 | 1.17 | 1.09 | 0.99 |
| Overall | 1.26 | 1.03 | 1.07 | 3.21 | 2.86 |
| Overall (*) | 1.21 | 1.00 | 1.00 | 2.98 | 2.68 |

TABLE XXI
(continued)

| Number of <br> Vertices | LFII | LFPHI | LFCDI | RLF1 | RLFDI |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Minimum |  |  |  |  |
| $100(*)$ | 2.06 | 2.20 | 1.67 | 2.19 | 2.80 |
| 100 | 3.11 | 2.20 | 1.67 | 5.31 | 5.45 |
| 200 | 1.79 | 1.43 | 1.45 | 1.74 | 2.43 |
| 300 | 1.58 | 1.91 | 1.42 | 0.66 | 0.66 |
| 400 | 1.21 | 1.62 | 1.44 | 0.40 | 0.64 |
| 500 | 1.11 | 2.33 | 2.02 | 0.45 | 0.45 |
| Overall | 1.11 | 1.43 | 1.42 | 0.40 | 0.45 |
| Overall (*) | 1.11 | 1.43 | 1.42 | 0.40 | 0.45 |
|  |  |  | Maximum |  |  |
| $100(*)$ | 7.09 | 5.44 | 6.10 | 13.60 | 11.14 |
| 100 | 7.09 | 5.44 | 6.10 | 13.60 | 11.14 |
| 200 | 6.32 | 4.32 | 5.08 | 10.36 | 8.83 |
| 300 | 4.46 | 4.18 | 3.94 | 6.51 | 6.29 |
| 400 | 4.90 | 4.89 | 4.67 | 6.57 | 5.16 |
| 500 | 5.43 | 6.91 | 5.27 | 4.15 | 3.80 |
| Overall | 7.09 | 6.91 | 6.10 | 13.60 | 11.14 |
| Overall (*) | 7.09 | 6.91 | 6.10 | 13.60 | 11.14 |

Two comments concerning the results of the experiments should be noted. First, the random composite graphs used in the experiments may not be representative of composite graphs that arise from practical problems. So the conclusions that have arisen from these experiments may or may not be applicable to a composite graph arising from a particular practical application. Second. the approximations of the chromatic number produced by the coloring algorithms were compared to each other not the chromatic number. Since, at the present time, no practical method of finding the chromatic number of a composite graph having as many vertices as the graphs used in the experiments exists, no means are now available to compare the approximations of the chromatic number which are produced by the coloring algorithms to the chromatic number. No claims are made about the relative closeness of an approximation of the chromatic number produced by any of the coloring algorithms to the chromatic number.

## X. FUTURE RESEARCH

Very few articles have appeared in the literature concerning the area of composite graph coloring. This area appears rich with opportunities for investigation. Some suggestions for future research in this area are briefly described.

The investigation of heuristic coloring algorithms for the CGCP should be continued. As was seen from the results described in the previous chapter, no one coloring algorithm investigated so far is superior for all composite graphs. A collection of "good" coloring algorithms may be necessary to achieve acceptable results for a variety of composite graphs.

The Dsatur coloring algorithm [11] for the GCP yielded good experimental results. A generalization of this algorithm for the CGCP might yield similar favorable results for the CGCP.

The only improvement technique for vertex-sequential coloring algorithms for the CGCP that has been reported in the literature is the interchange technique described by Clementson and Elphick [1]. One idea for an improvement technique that $I$ intend to pursue is an improvement technique to widen an existing gap of colors that have not been assigned to vertices adjacent to the vertex currently being colored in order that the colors in the newly widened gap can be assigned to the current vertex.

Analysis of the worst case behavior and the average behavior of heuristic coloring algorithms for the CGCP on all composite graphs or classes of composite graphs is needed.

More practical lower and upper bounds on the chromatic number in the CGCP and the GCP would be helpful in assessing the performance of heuristic coloring algorithms.

Even though any exact coloring algorithm for the CGCP is probably an exponential-time algorithm, it would be of interest to find an exact algorithm for the CGCP that would complete in reasonable time for composite graphs which have a small number of vertices (say up to 100) and have vertices with low chromaticities. One major problem in developing a backtracking algorithm to solve the CGCP for such composite graphs is that some of the results that help to eliminate the investigation of unprofitable colorings of the graph for the GCP do not generalize to the CGCP.

A major application of composite graph coloring is scheduling. The coloring algorithms discussed tend to assign the lower colors to several vertices while assigning the high colors to few vertices. In a scheduling application, such a coloring corresponds to an unbanced schedule in which several tasks are assigned to the early time periods and few taskyare assigned to the later time periods. To produce a coloring that corresponds to more balanced schedule, an algorithm is needed that assigns each
color to approximately the same number of vertices, that is. generates a balanced coloring of the graph, or that accepts a coloring of a composite graph and produces a new more balanced coloring of the composite graph.

1 A. PUNEER (1976) Syotems for timilableme by computes based on grape r colouring. Ph.D. thesis, C.N.A. A., Hatfield Polytechnic.
M, A.H. DEmPSTER, D.G,LETHRDDGE and A.M. LLPH (1975) School -Educ. Res. 18,24-31. BIBLIOGRAPHY
[1] Clementson. A. T. and Elphick, C. H. "Approximate Colouring Algorithms for Composite Graphs". Journal of the Operational Research Society. Vol. 34 (1983). No. 6. p. 503-509.
[2] Kara. R. M. "Reducibility Among Combinatorial Problems" in Complexity of Computer Computations. Miller, R. E.. Thatcher, J. W. (editors), Plenum Press. New York. 1972.
[3] Johnson, D. S. "Worst Case Behavior of Graph Coloring Algorithms" in Proceedings of the Fifth Southeast Conference on Combinatorics. Graph Theory, and Computing. Hoffman, F.. Kingsley. R. A., Levow. R. B.. Mulling. R. C.. Thomas. R. S. D. (editors). Utilitas Mathematical Publishing, Winnipeg, Canada, 1974, p. 513-527.
[4] Mitchem. J. "On various algorithms for estimating the chromatic number of a graph". The Computer Journal. Vol. 19 (1976), No. 2, p. 182-183.
[5] Trembly, Jean-Paul, and Manohar, R. Discrete Mathematical Structures with Applications to Computer Science. McGraw-Hill. Inc., New York, 1975. p. 468-515.
[6] Matula. D. W., Marble, G., and Isaacson, J. "Graph Coloring Algorithms" in Graph Theory and Computing. Read, R. (editor). Academic Press, New York, 1972, p. 109-122.
[7] Leighton, Frank Thomson. "A Graph Coloring Algorithm for Large Scheduling Problems". Journal of Research of the National Bureau of Standards. Vol. 84 (1979). No. 6. p. 489-506
[8] Welsh, D. J. A. and Powell, M. B. "An upper bound for the chromatic number of a graph and its application to timetabling problems". The Computer Journal. Vol. 10 (1967). p. 85-86.
[9] Williams, M. R. "The Coloring of Very Large Graphs" in Combinatorial Structures and Their Applications Proceedings of the Calgary International Conference on Combinatorial Structures and Their Applications (June. 1969). Guy. R. Haman. H. Saucer. N.. and Schonheim. J. (editors). Gordon and Breach. New York. 1970, p. 477-478.
[10] Carter. Michael W. "A Survey of Practical Applications of Examination Timetabling Algorithms". Operations Research. Vol. 34, No. 2 (March-April. 1986). p. 193-202.
[11] Brelaz. D. "New Methods to Color the Vertices of a Graph", Communications of the ACM. Vol. 22 (1979). p. 251-256.
[12] Wood. D. C. "A technique for coloring a graph applicable to large scale timetabling problems problems". The Computer Journal. Vol. 12 (1969), p. 317-319.
[13] Dutton, R. D. and Brigham, R. C. "A new graph colouring algorithm". The Computer Iournal. Vol. 24 (1981). No. 1, p. 85-86.
[14] Schneider, A. A. "Classification Analysis of Heuristic Algorithms for Graph Coloring". Cybernetics. Vol. 20. No. 4 (July-August. 1984). p. 484-492.
[15] Korman, S. M. "The Graph-Coloring Problem" in Combinatorial Odtimization. Christofides. N.. Mingozzi, A., Toth. P.. Sandi, C. (editors), Wiley. New York, 1979, p. 211-235.
[16] Kubale, Marek and Jackowski. Bugoslaw. "A Generalized Implicit Enumeration Algorithm for Graph Coloring". Communications of the ACM. Vol. 28, No. 4 (April. 1985). p. 412-418.
[17] Brown, J. Randall. "Chromatic Scheduling and the Chromatic Number Problem", Management Science. Vol. 19. No. 4, Part I (December. 1972), p. 456-463.
[18] Christofides. Nicos. Graph Theory - An Algorithmic Approach. Academic Press. London, 1975, p. 30-78.
[19] Chaitin, G. J. "Register Allocation \& Spilling via Graph Coloring". SIGPLAN Notices. Vol. 17. No. 6 (June, 1982). p. 98-105.
[20] Butler, C. and Mathews. L. R. "An application of graph colouring on the railways" in Applications of Combinatorics. Wilson, R. J. (editor), Shiva Publishing Limited, 1982, p. 19-28.
[21] Dempster, M. A. H., Lethbridge, D. G.. and Ulph, A. M. "School Timetabling by Computer: a Technical History". Educational Research. Vol. 18 (1975). p. 24-31.
[22] Ambler. Arol and Trawick. Robert. "Chatin's Graph Coloring Algorithm as a Method for Assigning Positions to Diana Attributes". SIGPLAN Notices. Vol. 18. No. 2 (February. 1983), p. 37-38.
[23] Garey, M. R.. Johnson, D. S., and So, H. C. "An Application of Graph Coloring to Printed Circuit Testing". IEEE Transactions on Circuits and Systems. Vol. 23 (1976). p. 591-599.
[24] Coleman, Thomas F. and Moré, Jorge J. "Estimation of Sparse Jacobian Matrices and Graph Coloring Problems". SIAM Journal of Numerical Analysis. Vol. 20, No. 1 (February, 1983), p. 187-209.
[25] Bondy. J. A. and Murty, U. S. R. Graph Theorv with Applications. North Holland, 1976, p. 91-134.
[26] Behzad, Mehdi. "The Total Chromatic Number of a Graph: A Survey" in Combinatorial Mathematics and Its Applications. Welsh, D. J. A. (editor), Academic Press, New York, 1971. p. 1-8.
[27] Lawler. E. L., Lenstra, J. K., and Rinnooy Kan. A. H. G. "Recent Developments in Deterministic Sequencing and Scheduling: A Survey" in Deterministic and Stochastic Scheduling. Dempster, M. A. H. and others (editors), D. Riedel Publishing Company, Amsterdam, 1982, p. 35-73.
[28] Tucker, Alan. Applied Combinatorics. John wiley \& Sons. Inc., New York, 1980. p. 15-19.
[29] Dantzig. George B. Linear Programming and Extensions. Princeton University Press. Princeton, New Jersey. 1963. p. 535-540.

## APPENDIX A <br> INTEGER PROGRAMMING FORMULATION <br> OF THE COMPOSITE GRAPH COLORING PROBLEM

The following integer programming formulation of the composite graph coloring problem provides a means of finding an exact solution of the CGCP. Using a general-purpose ILP solver, only instances of the CGCP involving very small composite graphs can be expected to complete in a reasonable amount of time. By means of relaxation techniques or some ad hoc technique, problems involving larger composite graphs might be solved. Further research needs to be done in this area.

For the formulation, let us assume that the vertices of the composite graph to be colored are numbered from 1 to $n$. In the definition of the CGCP. the lowest color that can be assigned to a vertex is the integer 1. In the integer programming formulation of the CGCP. the integers to be assigned to the vertices begin at 0 . Listed below are constants and variables that are to be used in our derivation of the formulation.

$$
\begin{aligned}
I= & i n d e x \text { set for the vertices } \\
= & \{1,2,3 \ldots, n\} \\
J_{i}= & \{j: \text { vertex } j \text { is adjacent to vertex } i \text { and } j<i\} \\
c_{i}= & \text { number of consecutive integers assigned to } \\
& \text { vertex } i \\
x_{i}= & \text { lowest integer assigned to vertex } i
\end{aligned}
$$

$$
\begin{aligned}
& y_{i}=\text { highest integer assigned to vertex } i \\
& z=\text { largest integer to be assigned to any vertex }
\end{aligned}
$$

From the definition of the CGCP, the following mathematical programming problem can be obtained. The choice of either inequality (2a) or (2b) arises from the requirement that the color sequences assigned to adjacent vertices cannot overlap.
minimize $z$
subject to:

$$
\begin{array}{ll}
y_{i} S z & i \in I \\
y_{i}-x_{i}=c_{i}-1 & i \in I \\
\left\{\begin{array}{ll}
x_{j} \geq y_{i}+1 & j \in J_{i}, i \in I \\
o r & \\
x_{i} \geq y_{j}+1 & i \in I
\end{array},\right.
\end{array}
$$

Let $K$ be a known upper bound on the chromatic number of the composite graph. For each pair of inequalities (2a) and (2b), the choice of one of the two inequalities can be implemented by introducing decision variables $\delta_{i j}$ [29]. If $\delta_{i j}=0$, then inequality (2a) is chosen. If $\delta_{i j}=1$, then inequality (2b) is chosen. For any optimal solution, $0 \leq x_{i} S K-1$ and $0 \leq y_{i} S K-1$ for each $i \in I$. So, for any optimal solution, $x_{j}-y_{i}-12-K$ and $x_{i}-y_{j}-12-K$ for each $J \in J_{i}$, $i \in I$. The choice of one of the two inequalities (2a) and (2b) can be replaced by the following two inequalities:

$$
\begin{aligned}
& x_{j}-y_{i}-1-\delta_{i j}(-K) \geq 0 \\
& x_{i}-y_{j}-1-\left(1-\delta_{i j}\right)(-K) \geq 0 \\
& \text { If } \delta_{i j}=0, \text { inequality }(3 a) \text { is equivalent to inequality }
\end{aligned}
$$

$$
\text { and the values of } x_{i} \text { and } y_{j} \text { from any optimal solution will }
$$

$$
\text { satisfy inequality }(3 b) . \quad \text { If } \delta_{i j}=1 \text {. inequality }(3 b) \text { is }
$$ equivalent to inequality $(2 b)$ and the values of $x_{j}$ and $y_{i}$ from any optimal solution will satisfy inequality (3a).

Simplifying inequalities (3a) and (3b) yields

$$
\begin{aligned}
& x_{j}-y_{i}+K \delta_{i j} \geq 1 \\
& x_{i}-y_{j}-K \delta_{i j} \geq-K+1
\end{aligned}
$$

For each $i \in I$, either $X_{i}$ or $y_{i}$ can be eliminated from the model by using equality (1). Substituting the relationship $x_{i}=y_{i}-c_{i}+1$ obtained from equality (1) yields

$$
\begin{aligned}
& \left(y_{j}-c_{j}+1\right)-y_{i}+K \delta_{i j} \geq 1 \\
& \left(y_{i}-c_{i}+1\right)-y_{j}-K \delta_{i j} \geq-K+1
\end{aligned}
$$

The composite graph coloring problem can be formulated as the following integer programming problem:
minimize z
subject to:

$$
\begin{array}{ll}
y_{i} \leq z & i \in I \\
y_{j}-y_{i}+K \delta_{i j} \geq c_{j} & j \in J_{i}, i \in I \\
y_{j}-y_{i}+K \delta_{i j} \leq K-c_{i} & j \in J_{i}, i \in I \\
y_{i} \geq 0 \text { integers } & i \in I \\
\delta_{i j} \in\{0,1\} & j \in J_{i}, i \in I
\end{array}
$$

Let us assume that an optimal solution of the integer programming problem has been found in which $y_{i}^{*}$ is the value
for $y_{i}$ for each $i \in I$ and $z^{*}$ is the value of the objective function. The corresponding coloring of the composite graph is obtained by assigning vertex ithe color sequence $I\left[y_{i}^{*}-c_{i}+2, y_{i}^{*}+1\right]$ for each $i \in I$ and the chromatic number of the composite graph is $z^{*}+1$.

## PROCEDURE LISTINGS

TABLES: PROC OPTIONS(MAIN) REORDER;
DCL
ALGORITHM_MIN
AUX_HEAD_PTR
AVG_WIN_DIFF
BOTTOM_MARGIN
CDSORT
CHROM_DISTRIBUTION
CREGRAF
DYNPH
DYNFPH
EDGE_DENSITY
FLOAT
FREGRAF
GRAPH_MAX
GRAPH_MIN
GRAPH_NO
GROUP_NO
HEAD_PTR
LAMBDA
LFISORT
LF2SORT
LOWER_LIMIT
MAX
MAX_COLOR
MAXIMUM(13)
MEAN (13)
METHOD_MIN
METHOD_NO
METHOD_NAME (13)
FIXED BINARY(15).
POINTER.
FLOAT BINARY(21),
FIXED BINARY(15) INIT(9).
ENTRY.
CHARACTER(5).
ENTRY.
ENTRY.
ENTRY.
FLOAT BINARY(21).
BUILTIN.
ENTRY.
FIXED BINARY(15),
FIXED BINARY(15),
FIXED BINARY(15) INIT(0).
FIXED BINARY(15) INIT(0).
POINTER,
FLOAT BINARY(21).
ENTRY,
ENTRY.
FIXED BINARY(15),
BUILTIN.
FIXED BINARY(15),
FIXED BINARY(15),
FLOAT BINARY(21).
FIXED BINARY(15).
FIXED BINARY(15).
CHARACTER (6) VARYING

'LFCDI'.'RLF1'.'RLFDI', ${ }^{\prime}$ DYNPH', 'DYNFPH'.'MIN'),
MIN
MINIMUM(13)
NEW_SEED
NO_OF_COLORS
NO_OF_GRAPHS
NO_OF_NODES
NO_OF_TRIALS
NO_OF_WINS (13.13)
NULL
OTHER_METHOD
PHSORT
PROB_OF_SUCCESS
BUILTIN.
FIXED BINARY(15),
FIXED BINARY(31).
FIXED BINARY(15).
FIXED BINARY(15) INIT(0).
FIXED BINARY(15).
FIXED BINARY(15),
FIXED BINARY(15),
BUILTIN.
FIXED BINARY(15).
ENTRY.
FLOAT BINARY(31),
ENTRY,
ENTRY.
FIXED BINARY(31).
ENTRY.
ENTRY.

SUM_OF_COLORS
SYSPRINT
TOTAL_WIN_DIFF(13.13)
UPPER_LIMIT

FIXED BINARY(31).
FILE STREAM OUTPUT PRINT.
FIXED BINARY(31).
FIXED BINARY(15):
/* GENERATE THE FIRST GRAPH OF THE FIRST GROUP. */
CALL CREGRAF(HEAD_PTR.NO_OF_NODES.EDGE_DENSITY.NEW_SEED. GROUP_NO, GRAPH_NO, NO_OF_GRAPHS ,CHROM_DISTRIBUTION. LAMBDA, LOWER_LIMIT, UPPER_LIMIT, NO_OF_TRIALS, PROB_OF_SUCCESS):
/* PRINT TABLES UNTIL THERE ARE NO MORE GRAPHS. */
DO WHILE(HEAD_PTR $\neg=$ NULL) ;
SEED=NEW_SEED;
/* ACCUMULATE STATISTICS FOR ONE GROUP OF GRAPHS. */
BEGIN ;
DCL TABLE(13,NO_OF_GRAPHS) FIXED BINARY(15);
DO WHILE('1'B):
/* COLOR GRAPH USING LFl ALGORITHM.
CALL LF1SORT(HEAD_PTR,AUX_HEAD_PTR,NO_OF_NODES):
CALL SEQCOL(AUX_HEAD_PTR.MAX_COLOR):
TABLE(1.GRAPH_NO)=MAX_COLOR:
/* COLOR GRAPH USING LFII ALGORITHM.
CALL SEQINT(AUX_HEAD_PTR.MAX_COLOR) :
TABLE (5,GRAPH_NO) $=$ MAX_COLOR;
/* COLOR GRAPH USING LF2 ALGORITHM. */
CALL LF2SORT(HEAD_PTR,AUX_HEAD_PTR,NO_OF_NODES);
CALL SEQCOL (AUX_HEAD_PTR.MAX_COLOR):
TABLE(2.GRAPH_NO)=MAX_COLOR:
/* COLOR GRAPH USING LF2I ALGORITHM.
CALL SEQINT(AUX_HEAD_PTR,MAX_COLOR);
TABLE(6.GRAPH_NO)=MAX_COLOR:
/* COLOR GRAPH USING LFPH ALGORITHM.
CALL PHSORT(HEAD_PTR.AUX_HEAD_PTR.NO_OF_NODES):
CALL SEQCOL (AUX_HEAD_PTR.MAX_COLOR):
TABLE(3,GRAPH_NO)=MAX_COLOR;
/* COLOR GRAPH USING LFPHI ALGORITHM.

CALL SEQINT(AUX_HEAD_PTR.MAX_COLOR):

TABLE (7.GRAPH_NO) =MAX_COLOR:
/* COLOR GRAPH USING LFCD ALGORITHM.

* /

CALL CDSORT(HEAD_PTR.AUX_HEAD_PTR,NO_OF_NODES):
CALL SEQCOL(AUX_HEAD_PTR,MAX_COLOR):
TABLE (4.GRAPH_NO) =MAX_COLOR;
/* COLOR GRAPH USING LFCDI ALGORITHM. */
CALL SEQINT(AUX_HEAD_PTR,MAX_COLOR):
TABLE(8.GRAPH_NO)=MAX_COLOR;
/* COLOR GRAPH USING RLFI ALGORITHM.
CALL RLF1(HEAD_PTR,AUX_HEAD_PTR.MAX_COLOR);
TABLE (9.GRAPH_NO)=MAX_COLOR;
/* COLOR GRAPH USING RLFD1 ALGORITHM. */
CALL RLFD1(HEAD_PTR,AUX_HEAD_PTR,MAX_COLOR);
TABLE (10.GRAPH_NO)=MAX_COLOR:
/* COLOR GRAPH USING DYNPH ALGORITHM.
CALL DYNPH(HEAD_PTR.AUX_HEAD_PTR.NO_OF_NODES. MAX_COLOR):
$\operatorname{TABLE}\left(11 . G R A P H \_N O\right)=M A X \_C O L O R$ :
/* COLOR GRAPH USING DYNFPH ALGORITHM. */
CALL DYNFPH(HEAD_PTR.AUX_HEAD_PTR.NO_OF_NODES. MAX_COLOR):
TABLE(12.GRAPH_NO)=MAX_COLOR:
/* FREE THE STORAGE USED FOR THE GRAPH. */
CALL FREGRAF(HEAD_PTR):
/* TEST FOR THE END OF A GROUP OF GRAPHS. */
IF GRAPH_NO=NO_OF_GRAPHS THEN LEAVE;
/* GENERATE ANOTHER GRAPH IN THE GROUP.
CALL CREGRAF(HEAD_PTR.NO_OF_NODES, EDGE_DENSITY. NEW_SEED, GROUP_NO. GRAPH_NO. NO_OF_GRAPHS , CHROM_DISTRIBUTION, LAMBDA, LOWER_工IMIT, UPPER_LIMIT, NO_OF_TRIALS,PROB_OF_SUCCESS):
END:
/* PRINT TABLE FOR THE GROUP OF GRAPHS.

DO GRAPH_NO=1 TO NO_OF_GRAPHS;
METHOD_MIN=TABLE (1.GRAPH_NO):
DO METHOD_NO=2 TO 12;
METHOD_MIN =
MIN(METHOD_MIN.TABLE (METHOD_NO, GRAPH_NO)):
END:
TABLE(13.GRAPH_NO)=METHOD_MIN:
END;
DO METHOD_NO=1 TO 13;
NO_OF_COLORS=TABLE (METHOD_NO.1):
GRAPH_MIN=NO_OF_COLORS ;
GRAPH_MAX=NO_OF_COLORS:
SUM_OF_COLORS=NO_OF_COLORS:
DO GRAPH_NO $=2$ TO NO_OF_GRAPHS:
NO_OF_COLORS=TABLE (METHOD_NO.GRAPH_NO):
GRAPH_MIN=MIN(GRAPH_MIN,NO_OF_COLORS) :
GRAPH_MAX=MAX (GRAPH_MAX.NO_OF_COLORS) :
SUM_OF_COLORS=SUM_OF_COLORS+NO_OF_COLORS ;
END:
MINIMUM (METHOD_NO) $=$ GRAPH_MIN ;
MAXIMUM (METHOD_NO) =GRAPH_MAX;
MEAN (METHOD_NO)=FLOAT(SUM_OF_COLORS.21)/
FLOAT(NO_OF_GRAPHS.21):
END:
/* PRINT THE HEADING FOR THE TABLE. */
PUT FILE(SYSPRINT) PAGE:
CALL TABHDG:

```
PUT FILE(SYSPRINT) EDIT('GRAPH '||(35)'*'||
    ESTIMATE OF '||'CHROMATIC NUMBER '|(35)'*')
    (SKIP,A);
PUT FILE(SYSPRINT) EDIT('NUMBER'.
    (CENTER(METHOD_NAME(METHOD_NO),6)
    DO METHOD_NO=1 TO 13))(SKIP,A,(13)(X(2),A));
PUT FILE(SYSPRINT) EDIT((14)'----')(SKIP.COL(1).A):
DO GRAPH_NO=1 TO NO_OF_GRAPHS;
    ALGORITHM_MIN=TABLE(13,GRAPH_NO):
    PUT FILE(SYSPRINT) EDIT(GRAPH_NO,' ')
        (COL(2),F(3),A):
    DO METHOD_NO=1 TO 12;
        IF TABLE(METHOD_NO.GRAPH_NO) > ALGORITHM_MIN
            THEN DO;
            PUT FILE(SYSPRINT) EDIT
                    (TABLE(METHOD_NO,GRAPH_NO), ')
                    (X(2).F(4).A):
            END:
            ELSE DO;
                PUT FILE(SYSPRINT) EDIT
                    (TABLE(METHOD_NO.GRAPH_NO),' *')
                    (X(2),F(4),A):
        END:
    END:
```

```
    PUT FILE(SYSPRINT) EDIT(ALGORITHM_MIN)(X(2),F(4)):
END:
PUT FILE(SYSPRINT) EDIT('MINIMUM'.
    (MINIMUM(METHOD_NO) DO METHOD_NO=1 TO 13))
    (SKIP(2).A.X(2).(13)(F(3).X(5)));
PUT FILE(SYSPRINT) EDIT('MEAN`.
    (MEAN(METHOD_NO) DO METHOD_NO=1 TO 13))
    (SKIP.A,X(5),(13)(F(6,2),X(2))):
PUT FILE(SYSPRINT) EDIT('MAXIMUM'
    (MAXIMUM(METHOD_NO) DO METHOD_NO=1 TO 13))
    (SKIP,A,X(2),(13)(F(3),X(5))):
```

/* PRINT ALGORITHM COMPARISON TABLE. */
NO_OF_WINS (*, *) $=0$ :
TOTAL_WIN_DIFF(*,*)=0;
DO METHOD_NO=1 TO 13;
DO OTHER_METHOD=METHOD_NO+1 TO 13;
IF METHOD_NO=OTHER_METHOD THEN GO TO NEXT_METHOD:
DO GRAPH_NO=1 TO NO_OF_GRAPHS:
SELECT:
WHEN(TABLE(METHOD_NO.GRAPH_NO) <
TABLE(OTHER_METHOD,GRAPH_NO)) DO;
NO_OF_WINS (METHOD_NO.OTHER_METHOD) =
NO_OF_WINS (METHOD_NO. OTHER_METHOD ) +1 :
TOTAL_WIN_DIFF(METHOD_NO, OTHER_METHOD) =
TOTAL_WIN_DIFF(METHOD_NO,OTHER_METHOD) +
TABLE(OTHER_METHOD.GRAPH_NO)-
TABLE(METHOD_NO.GRAPH_NO):
END;
WHEN(TABLE(METHOD_NO,GRAPH_NO) >
TABLE(OTHER_METHOD,GRAPH_NO)) DO:
NO_OF_WINS (OTHER_METHOD, METHOD_NO) =
NO_OF_WINS (OTHER_METHOD, METHOD_NO) +1 ;
TOTAL_WIN_DIFF (OTHER_METHOD.METHOD_NO) =
TOTAL_TIN_DIFF(OTHER_METHOD,METHOD_NO) +
TABLE (METHOD_NO.GRAPH_NO)-
TABLE (OTHER_METHOD.GRAPH_NO):
END;
OTHERWISE:
END; /* SELECT */
END:
NEXT_METHOD:
END:
END;
CALL ALGCOMP (1,4):
CALL ALGCOMP(5,13);
/* GENERATE FIRST GRAPH OF A GROUP.
*/
GRAPH_NO=NO_OF_GRAPHS:

CALL CREGRAF (HEAD_PTR.NO_OF_NODES.EDGE_DENSITY.
NET_SEED, GROUP_NO, GRAPH_NO. NO_OF_GRAPHS , CHROM_DISTRIBUTION, LAMBDA, LOWER_LIMIT , UPPER_LIMIT, NO_OF_TRIALS, PROB_OF_SUCCESS ) :
END;

```
/* PROCEDURE TO PRINT ONE PAGE OF THE ALGORITHM */
* COMPARISON TABLE */
ALGCOMP: PROC(FIRST_METHOD,LAST_METHOD);
    DCL (FIRST_METHOD,LAST_METHOD) FIXED BINARY(15);
    PUT FILE(SYSPRINT) PAGE;
    CALL TABHDG:
```

/* PRINT ONE PAGE OF ALGORITHM COMPARISON TABLE. */
PUT FILE (SYSPRINT) EDIT((CENTER(METHOD_NAME(METHOD_NO).9)
DO METHOD_NO=FIRST_METHOD TO LAST_METHOD))
(SKIP,X(6), (9) (X (3), A)) ;
PUT FILE (SYSPRINT) EDIT (
DO METHOD_NO=FIRST_METHOD TO LAST_METHOD))
(SKIP,X(6). (9)A) ;
DO METHOD_NO = 1 TO 13;
PUT FILE(SYSPRINT) EDIT(METHOD_NAME(METHOD_NO))
(SKIP(2).A(6)):
DO OTHER_METHOD=FIRST_METHOD TO LAST_METHOD;
IF METHOD_NO=OTHER_METHOD
THEN DO:
PUT FILE (SYSPRINT) EDIT(. ') (A);
GO TO NEXT_COLUMN:
END;
PUT FILE(SYSPRINT) EDIT
(NO_OF_WINS (METHOD_NO.OTHER_METHOD)) (X(3).F(2)):
IF NO_OF_WINS (METHOD_NO.OTHER_METHOD) $>0$
THEN DO:
AVG_WIN_DIFF=
FLOAT(TOTAL_WIN_DIFF(METHOD_NO,OTHER_METHOD), 2I)
/FLOAT(NO_OF_WINS (METHOD_NO.OTHER_METHOD), 21):
PUT FILE(SYSPRINT) EDIT (AVG_WIN_DIFF)
$(X(2), F(5.2)):$
END;
ELSE DO;
PUT FILE(SYSPRINT) EDIT(' ') (A);
END;
NEXT_COLUMN:
END;
PUT FILE(SYSPRINT) EDIT(. ${ }^{\text {• }}$ ) (SKIP.A);
DO OTHER_METHOD=FIRST_METHOD TO LAST_METHOD;
IF METHOD_NO=OTHER_METHOD
THEN DO:
PUT FILE(SYSPRINT) EDIT(' ') (A):
GO TO NEXT_COLUMN_2;
END;

```
        PUT FILE(SYSPRINT) EDIT
    (NO_OF_GRAPHS-NO_OF_WINS(OTHER_METHOD.METHOD_NO).
    MEAN(OTHER_METHOD)-MEAN(METHOD_NO))
    (X(3),F(2),X(1),F(6,2));
NEXT_COLUMN_2:
        END;
    END:
END ALGCOMP:
    END; /* BEGIN */
/* PROCEDURE TO PRINT TABLE HEADINGS. */
TABHDG: PROC:
    DCL
    STRING_ONE CHARACTER(5) VARYING.
    STRING_TWO CHARACTER(5) VARYING.
    OUTPUTLINE CHARACTER(132) VARYING:
    PUT FILE(SYSPRINT) EDIT('NUMBER OF NODES:`.NO_OF_NODES.
            'EDGE DENSITY: . EDGE_DENSITY*100.0.'% SEED: '.
            SEED)(COL(1),A,F(5),X(5),A,F(5,2),A,F(10));
    PUT FILE(SYSPRINT) EDIT('CHROMATICITY DISTRIBUTION: ')
        (SKIP(2).A):
    SELECT(CHROM_DISTRIBUTION):
    WHEN('TRP ') DO;
        PUT STRING(STRING_ONE) EDIT(LAMBDA)(F(4.1)):
        OUTPUT_INE='TRUNCATED POISSON (LAMBDA = '||
            DEBLANK(STRING_ONE)||')';
        END:
        WHEN('UNI ') DO:
            PUT STRING(STRING_ONE) EDIT(LOWER_LIMIT)(F(5));
            PUT STRING(STRING_TWO) EDIT(UPPER_LIMIT)(F(5));
            OUTPUT_LINE='UNIFORM ('||DEBLANK(STRING_ONE)|)
                    `.||DEBLANK(STRING_TWO)||')';
    END;
    WHEN('DNR ') DO:
        PUT STRING(STRING_ONE) EDIT(LOWER_LIMIT)(F(5)):
        PUT STRING(STRING_TWO) EDIT(UPPER_LIMIT)(F(5));
        OUTPUT_LINE='DOWN RAMP ('||DEBLANK(STRING_ONE)|
            `.||DEBLANK(STRING_TWO)||')':
        END;
    WHEN('UPR ') DO:
        PUT STRING(STRING_ONE) EDIT(LOWER_LIMIT)(F(5));
        PUT STRING(STRING_TWO) EDIT(UPPER_LIMIT)(F(5)):
        OUTPUT_INE='UP RAMP ('||DEBLANK(STRING_ONE)|
            ', ||DEBLANK(STRING_TmO)||')';
        END;
    WHEN('BIN ') DO:
        PUT STRING(STRING_ONE) EDIT(NO_OF_TRIALS)(F(5));
        PUT STRING(STRING_TWO) EDIT(LOWER_LIMIT)(F(5));
        PUT STRING(OUTPUT_LINE) EDIT(
            \cdotSHIFTED BINOMIAL (N = ',DEBLANK(STRING_ONE).
            , P = ',PROB_OF_SUCCESS.'. SHIFT = ',
            DEBLANK(STRING_TMO),')')(A,A,A,F(6,4),A,A,A);
    END:
```

OTHERWISE SIGNAL ERROR;
END: /* SELECT */
PUT FILE(SYSPRINT) EDIT(OUTPUT $ل$ INE)(A):
PUT FILE(SYSPRINT) SKIP:
END TABHDG:

```
/* PROCEDURE TO CENTER A CHARACTER STRING
*/
CENTER: PROC(CHAR_STRING.CENTERED_工ENGTH)
    RETURNS(CHARACTER(132) VARYING);
    DCL
        CENTERED_LENGTH
        CENTERED_STRING
        CHAR_STRING
        LEFT_SPACES
        LENGTH
        FIXED BINARY(15).
        CHARACTER(CENTERED_LENGTH),
        CHARACTER(*) VARYING.
        FIXED BINARY(15).
        BUILTIN.
        NO_OF_SPACES FIXED BINARY(15);
    NO_OF_SPACES=CENTERED_LENGTH-LENGTH(CHAR_STRING):
    LEFT_SPACES=NO_OF_SPACES/2:
    PUT STRING(CENTERED_STRING) EDIT(CHAR_STRING)
        (X(LEFT_SPACES),A,X(NO_OF_SPACES-LEFT_SPACES)):
    RETURN(CENTERED_STRING):
END CENTER;
```

```
/* PROCEDURE TO REMOVE LEADING BLANKS FROM A CHARACTER */
```

/* PROCEDURE TO REMOVE LEADING BLANKS FROM A CHARACTER */
/* STRING.
*/
DEBLANK: PROC(CHAR_STRING) RETURNS(CHARACTER(15) VARYING):
DCL
CHAR_STRING CHARACTER(*) VARYING.
SUBSTR
BUILTIN.
VERIFY BUILTIN:
RETURN(SUBSTR(CHAR_STRING,VERIFY(CHAR_STRING,` `)));
END DEBLANK;
END TABLES:

```
```

CREGRAF: PROC(HEAD_PTR.NO_OF_NODES,EDGE_DENSITY.NEW_SEED.
GROUP_NO.GRAPH_NO,NO_OF_GRAPHS.CHROM_DISTRIBUTION,LAMBDA.
LOWER_LIMIT,UPPER_LIMIT,NO_OF_TRIALS,PROB_OF_SUCCESS)
REORDER:
DCL
ACCUM_DEGREE FIXED BINARY(15),
CHROM_DEG FIXED BINARY(15).
CHROM_DISTRIBUTION
DEG
EDGE_DENSITY
FLOOR
GRAPH_NO
GROUP_NO
HEAD_PTR
J
LAMBDA
LOWER_LIMIT
MORE DATA
NEW_SEED
NO_OF_GRAPHS
NO_OF_NODES
NO_OF_TRIALS
NODE_NO
NODE_PTR
NULL
POISSON
PROB_OF_SUCCESS
RANDOM_NUMBER
RANDU
SEED
SUCCESS_COUNT
SYSIN
TEMP_PTR
TRIAL_NO
UPPER_LIMIT
WIDTH
DCL
1 NODE
2 NUMBER
2 DEGREE
2 CHROMATICITY
2 CHROMATIC_DEGREE
2 LO_COLOR
2 HI_COLOR
2 WORK_VARIABLE_SPACE, /* 40 BYTES */
3 FILLER CHAR(40).
2 ADJ_NODE_PTR(O:DEG REFER(DEGREE)) PTR;
ON ENDFILE(SYSIN) MORE_DATA='O'B;
MORE_DATA='1'B;

```
```

/* GET DATA FOR A GROUP OF GRAPHS.
IF GRAPH_NO=NO_OF_GRAPHS
THEN DO:
GET FILE(SYSIN) EDIT(NO_OF_NODES.EDGE_DENSITY.
NEW_SEED,NO_OF_GRAPHS)
(COL(2),F(4),F(5,3),F(10),X(2),F(3));
IF \negMORE_DATA
THEN DO;
HEAD_PTR=NULL;
RETURN:
END:
GET FILE(SYSIN) EDIT(CHROM_DISTRIBUTION)
(COL(1),A(5));
SELECT(CHROM_DISTRIBUTION):
WHEN('TRP ')
GET FILE(SYSIN) EDIT(LAMBDA)(X(1),F(4.1));
WHEN('UNI '.'DNR ','UPR ')
GET FILE(SYSIN) EDIT(LOWER_LIMIT.UPPER_لIMIT)
((2)F(5)):
WHEN('BIN ')
GET FILE(SYSIN) EDIT(NO_OF_TRIALS,
PROB_OF_SUCCESS,LOWER_LIMIT)(F(5),F(5.4),F(5)):
OTHERWISE SIGNAL ERROR;
END: /* SELECT */
IF NO_OF_GRAPHS=0 THEN NO_OF_GRAPHS=1;
IF NEW_SEED~=0 THEN SEED=NEW_SEED;
GROUP_NO=GROUP_NO+1;
GRAPH_NO=O;
END;
/* GENERATE ONE GRAPH. */
GENERATE_GRAPH: BEGIN;
DCL
FULL_DEGREE(NO_OF_NODES) FIXED BINARY(15).
EDGES(NO_OF_NODES,NO_OF_NODES) BIT(1).
LOCATOR(NO_OF_NODES) POINTER;
GRAPH_NO=GRAPH_NO+1;
NEW_SEED=SEED;
/* GENERATE EDGES. */
/* CalCulate THE DEGREE OF EACH NODE.
*/
EDGES(*.*)='0'B;
FULL_DEGREE(*)=0;
DO NODE_NO=2 TO NO_OF.NODES;
DO J=1 TO NODE_NO-1;
CALL RANDU(SEED,RANDOM_NUMBER);
IF RANDOM_NUMBER <= EDGE_DENSITY
THEN DO:
FULL_DEGREE (NODE_NO)=FULL_DEGREE (NODE_NO)+1;

```

FULL_DEGREE (J) =FULL_DEGREE (J) +1 ;
EDGES (NODE_NO.J) \(=1\) B:
\(\operatorname{EDGES}\left(J . N O D E \_N O\right)=1^{\prime} B:\)
END:
END:
END:
```

/* allocate spaCE FOR EACH NODE.
/* INITIALIZE INFORMATION FOR EACH NODE.
DO NODE_NO=1 TO NO_OF_NODES:
DEG=FULL_DEGREE(NODE_NO):
allocate node:
LOCATOR (NODE_NO) =NODE_PTR ;
NUMBER=NODE-NO:
LO_COLOR=0:
HI_COLOR=0:
END:

```
/* CREATE LINKED LIST.

HEAD_PTR=LOCATOR(1);
NODE_PTR=HEAD_PTR:
DO NODE_NO=2 TO NO_OF_NODES:
TEMP_PTR=LOCATOR (NODE NO):
ADJ_NODE_PTR (O) =TEMP_PTR;
NODE_PTR=TEMP_PTR:
END;
ADJ_NODE_PTR(O)=NULL:
/* DETERMINE THE CHROMATICITY OF EACH NODE. */
NODE_PTR=HEAD_PTR:
SELECT(CHROM_DISTRIBUTION):
/* GENERATE CHROMATICITIES FROM TRUNCATED POISSON */ /* DISTRIBUTION.
```

WHEN(`TRP ") DO WHILE(NODE_PTR}~=NULL):
DO UNTIL(CHROMATICITY>O):
CHROMATICITY=POISSON(SEED,LAMBDA):
END:
NODE_PTR=ADJ_NODE_PTR(O);
END:

```
/* GENERATE CHROMATICITIES FROM UNIFORM DISTRIBUTION. */
VHEN('UNI ') DO:
    WIDTH=UPPER」IMIT-LOWER」IMIT+1:
    DO WHILE(NODE_PTR \(\sim\) =NULL);
            CALL RANDU(SEED, RANDOM_NUMBER):
            CHROMATICITY=LOWER_IMIT+
                FLOOR (MIDTH*RANDOM_NUKBER):
```

            NODE_PTR=ADJ_NODE_PTR(0):
        END:
    END;
    /* GENERATE CHROMATICITIES FROM DOWN RAMP DISTRIBUTION. */
WHEN('DNR ') DO:
WIDTH=UPPER__IMIT-LOWER_LIMIT+1;
DO WHILE(NODE_PTR\neg=NULL);
CALL RANDU(SEED.RANDOM_NUMBER);
CHROMATICITY=UPPER_LIMIT-
FLOOR(WIDTH*(RANDOM_NUMBER**O.5)):
NODE_PTR=ADJ_NODE_PTR(O):
END:
END:
/* GENERATE CHROMATICITIES FROM UP RAMP DISTRIBUTION. */
WHEN('UPR ') DO:
WIDTH=UPPER_\&IMIT-LOWER__IMIT+1:
DO WHILE(NODE_PTR\neg=NULL);
CALL RANDU(SEED,RANDOM_NUMBER):
CHROMATICITY=LOWER_LIMIT+
FLOOR(WIDTH*(RANDOM_NUMBER**0.5));
NODE_PTR=ADJ_NODE_PTR(O):
END:
END;
/* GENERATE THE CHROMATICITIES FROM SHIFTED BINOMIAL */
/* DISTRIBUTION.
*/
WHEN('BIN ') DO WHILE(NODE_PTR ==NULL):
SUCCESS_COUNT=0;
DO TRIAL_NO=1 TO NO_OF_TRIALS;
CALL RANDU(SEED,RANDOM_NUMBER);
IF RANDOM_NUMBER <= PROB_OF_SUCCESS
THEN SUCCESS_COUNT=SUCCESS_COUNT+1;
END:
CHROMATICITY=LOWER_LIMIT+SUCCESS_COUNT;
NODE_PTR=ADJ_NODE_PTR(O);
END:
OTHERWISE SIGNAL ERROR;
END: /* SELECT */
/* CREATE NETWORK TO REPRESENT THE GRAPH. */
DO NODE_NO=1 TO NO_OF_NODES;
NODE_PTR=LOCATOR(NODE_NO):
ACCUM_DEGREE=0;
DO J=1 TO NO_OF_NODES:
IF EDGES(NODE_NO,J)
THEN DO:
ACCUM_DEGREE=ACCUM_DEGREE+1;
ADJ_NODE_PTR(ACCUM_DEGREE)=LOCATOR(J):

```

\section*{END:}

END:
END:
END GENERATE_GRAPH;
/* CALCULATE THE CHROMATIC DEGREE OF EACH NODE. */
NODE_PTR=HEAD_PTR;
DO WHILE (NODE_PTR \(\neg=\) NULL) ;
CHROM DEG = CHROMATICITY;
DO \(\mathrm{J}=1\) TO DEGREE:
CHROM_DEG=CHROM_DEG+ADJ_NODE_PTR(J) \(\rightarrow\) CHROMATICITY; END:
CHROMATIC_DEGREE=CHROM_DEG:
NODE_PTR=ADJ_NODE_PTR(O);
END:
END CREGRAF:
```

/* PROCEDURE `POISSON` GENERATES A POISSON RANDOM */
/* VARIATE.
/* */

* SEED - SEED FOR PROCEDURE 'RANDU' */
/* MEAN - MEAN OF THE POISSON DISTRIBUTION */
/* */
/* PROCEDURES CALLED: EXPON */
POISSON: PROC(SEED,MEAN) RETURNS(FIXED BINARY(31)) REORDER;
DCL (SEED.COUNT) FIXED BINARY(31).
(MEAN.SUM INIT(O.O)) FLOAT BINARY(21).
EXPON ENTRY RETURNS(FLOAT BINARY(21)):
DO COUNT=-1 BY 1 WHILE(SUM<=MEAN);
SUM=SUM+EXPON(SEED):
END:
RETURN(COUNT);
END POISSON:

```
/* PROCEDURE 'EXPON' GENERATES AN EXPONENTIAL RANDOM */
/* VARIATE FROM A NEGATIVE EXPONENTIAL DISTRIBUTION */
/* WITH MEAN 1.0 . */
/* */
/* SEED - SEED FOR PROCEDURE 'RANDU' */
/* */
/ PROCEDURES CALLED: RANDU */
EXPON: PROC(SEED) RETURNS(FLOAT BINARY(21)) REORDER;
    DCL SEED FIXED BINARY(31).
        RANDOM_NUMBER FLOAT BINARY(21).
        RANDU ENTRY,
        LOG BUILTIN:
    CALL RANDU(SEED,RANDOM NUMBER):
    RETURN(-LOG(RANDOM_NUMBER));
    END EXPON:
```

/* THE ROUTINE 'RANDU' GENERATES A UNIFORM (0,1) */
/* VARIATE. */
/* */
/* SEED - SEED FOR THE RANDOM NUMBER GENERATOR */
/* RANDOM_NUMBER - THE RANDOM VARIATE */
(NOFOFL):
RANDU: PROC(SEED.RANDOM_NUMBER):
DCL SEED FIXED BINARY(31),
RANDOM_NUMBER FLOAT BINARY(21);
SEED=SEED*65539;
IF SEED < 0 THEN SEED=(SEED+2147483647)+1;
RANDOM_NUMBER=SEED*O.4656613E-9;
RETURN:
END RANDU:

```
```

SEQCOL: PROC(AUX_HEAD_PTR,MAX_COLOR) REORDER;
DCL

```

AUX_HEAD_PTR
NODE_PTR
DEG
NULL
MAX_COLOR
AVAIL
MAX
DCL
1 NODE
2 NUMBER
2 DEGREE
2 CHROMATICITY
2 CHROMATIC_DEGREE
2 LO_COLOR
2 HI_COLOR
2 WORK_VARIABLE_SPACE. 3 FILLER 3 AUX_F_PTR
2 FORWARD_PTR PTR.
2 ADJ_NODE_PTR(1:DEG REFER(DEGREE)) PTR;
```

/* INITIALIZE COLORS.
NODE_PTR=AUX_HEAD_PTR;
DO WHILE(NODE_PTR $\neg=N U L L)$ :
LO_COLOR=O;
HI_COLOR=0;
NODE_PTR=AUX_F_PTR:
END:
MAX_COLOR=AUX_HEAD_PTR->CHROMATICITY;
/* COLOR THE NODES SEQUENTIALLY. */
NODE_PTR=AUX_HEAD_PTR;
DO WHILE(NODE_PTR $\neg=N U L L):$
/* DETERMINE THE LOWEST SEQUENCE OF COLORS THAT CAN BE */
/* ASSIGNED TO THE CURRENT NODE. */
LO_COLOR=AVAIL(NODE_PTR, MAX_COLOR) ;
HI_COLOR=LO_COLOR+CHROMATICITY-1:
MAX_COLOR=MAX (MAX_COLOR.HI_COLOR) ;
NODE_PTR=AUX_F_PTR:
END:
END SEQCOL;

```
```

AVAIL: PROC(NODE_PTR.MAX_COLOR) RETURNS(FIXED BINARY(15))
REORDER:
DCL
NODE_PTR PTR.
MAX_COLOR
ADJ_COLORS(MAX_COLOR)
UNAVAIL_COLOR
COLOR_COUNT
(I.J)
ADJ_PTR
DCL
1 NODE BASED(NODE_PTR).
2 NUMBER
2 DEGREE
2 CHROMATICITY
2 CHROMATIC_DEGREE
2 LO_COLOR
2 HI_COLOR
2 WORK_VARIABLE_SPACE. /* 40 BYTES */
3 FILLER
3 AUX_F_PTR
2 FORWARD_PTR
2 ADJ_NODE_PTR(1:DEG REFER(DEGREE)) PTR;
/* DETERMINE WHICH COLORS ARE ADJACENT TO THE CURRENT */
/* NODE.
ADJ_COLORS(*)='0'B;
DO I=1 TO DEGREE;
ADJ_PTR=ADJ_NODE_PTR(I):
IF ADJ_PTR->LO_COLOR > O
THEN DO J=ADJ_PTR->LO_COLOR TO ADJ_PTR->HI_COLOR;
ADJ_COLORS(J)=`'1'B:
END;
END;
/* DETERMINE THE LOWEST SEQUENCE OF COLORS THAT CAN BE */
/* ASSIGNED TO THE CURRENT NODE.
*/
COLOR_COUNT=O:
UNAVAIL_COLOR=O;
DO J=1 TO MAX_COLOR UNTIL(COLOR_COUNT=CHROMATICITY);
IF ADJ_COLORS(J)
THEN DO:
COLOR_COUNT=O:
UNAVAIL_COLOR=J;
END:
ELSE COLOR_COUNT=COLOR_COUNT+1:
END;
RETURN(UNAVAIL_COLOR+1);
END AVAIL;

```
```

SEQINT: PROC(AUX_HEAD_PTR,MAX_COLOR) REORDER;
DCL

```

AUX_HEAD_PTR
NODE_PTR
DEG
NULL
MAX_COLOR
AVAIL

INTCHG
MAX
DCL
1 NODE
2 NUMBER
2 DEGREE
2 CHROMATICITY
2 CHROMATIC_DEGREE
2 LO_COLOR
2 HI_COLOR
2 WORK_VARIABLE_SPACE.
```

                    3 AUX_F_PTR
    2 FORWARD_PTR
2 ADJ_NODE_PTR(1:DEG REFER(DEGREE)) PTR:

```

PTR.
PTR.
FIXED BINARY(15).
BUILTIN.
FIXED BINARY(15).
ENTRY
RETURNS (FIXED BINARY(15)). ENTRY.
BUILTIN:

BASED(NODE_PTR).
FIXED BINARY(15).
FIXED BINARY(15).
FIXED BINARY(15).
FIXED BINARY(15).
FIXED BINARY(15).
FIXED BINARY(15).
/* 40 BYTES */
CHAR (36).
PTR.
PTR.

\section*{/* INITIALIZE COLORS.}
*/

NODE_PTR=AUX_HEAD_PTR;
DO WHILE(NODE_PTR \(\sim=\) NULL) ;
LO_COLOR=0;
HI_COLOR=0;
NODE_PTR=AUX_F_PTR;
END:
MAX_COLOR=AUX_HEAD_PTR->CHROMATICITY;
/* COLOR THE NODES SEQUENTIALLY. */

NODE_PTR=AUX_HEAD_PTR:
DO WHILE (NODE_PTR \(\neg=\) NULL) ;
/* DETERMINE THE LOWEST SEQUENCE OF COLORS THAT CAN BE */
/* ASSIGNED TO THE CURRENT NODE.
LO_COLOR = AVAIL (NODE_PTR , MAX_COLOR ) :
HI_COLOR=LO_COLOR + CHROMATICITY-1;
/* IF NUMBER OF COLORS ARE INCREASED, THEN ATTEMPT AN */
* INTERCHANGE.

IF MAX_COLOR < HI_COLOR
THEN CALL INTCHG(NODE_PTR,AUX_HEAD_PTR,MAX_COLOR):
NODE_PTR=AUX_F_PTR;
END:
END SEQINT:

INTCHG: PROC(NODE_PTR,AUX_HEAD_PTR.MAX_COLOR) REORDER:
DCL
NODE_PTR
AUX_HEAD_PTR
MAX_COLOR
SWAP_NODE_PTR
SWAP_LO_COLOR
SWAP_HI_COLOR
NEW_LO_COLOR
NEW_HI_COLOR
ORIG_LO_COLOR
TEST_NODE_PTR
TEST_LO_COLOR
TEST_HI_COLOR
SWAP_MAX_COLOR
TEST_MAX_COLOR
POSS_LO_COLOR
POSS_HI_COLOR
NULL
DEG
J
ADJ_PTR
TEMP_PTR
AVAIL
MIN
MaX
DCL
1 NODE
2 NUMBER
2 DEGREE
2 CHROMATICITY
2 CHROMATIC_DEGREE
2 LO_COLOR
2 HI_COLOR
2 WORK_VARIABLE_SPACE. 3 FILLER 3 AUX_F_PTR
2 FORWARD_PTR
2 ADJ_NODE_PTR(1:DEG REFER(DEGREE)) PTR:
SWAP_NODE_PTR=NODE_PTR;
SWAP_LO_COLOR=LO_COLOR;
SWAP_HI_COLOR=HI_COLOR;
NEW_LO_COLOR=LO_COLOR:
NEW_HI_COLOR=HI_COLOR ;
SWAP_MAX_COLOR=HI_COLOR:
/* DETERMINE POSSIBLE LOW COLORS FOR THE CURRENT NODE. */
POSS_工O_COLOR=1:
ORIG_工O_COLOR=LO_COLOR;
DO WHILE(POSS_LO_COLOR < ORIG_LO_COLOR):
POSS_HI_COLOR=POSS_LO_COLOR+CHROMATICITY-1;
IF POSS_HI_COLOR \(>=\) SWAP_MAX_COLOR THEN LEAVE;

TEST_NODE_PTR=NULL;
DO J=1 TO DEGREE:
ADJ_PTR=ADJ_NODE_PTR(J);
IF ADJ_PTR->LO_COLOR > 0
THEN IF POSS_LO_COLOR <= ADJ_PTR->HI_COLOR \&
POSS_HI_COLOR >=ADJ_PTR->LO_COLOR
THEN IF TEST_NODE_PTR = NULL
THEN TEST_NODE_PTR = ADJ_PTR:
ELSE DO;
POSS_LO_COLOR=MIN(ADJ_PTR->HI_COLOR.
TEST_NODE_PTR->HI_COLOR):
GO TO NEXT_POSS_LO_COLOR:
END:
ELSE:
ELSE:
END:
LC_COLOR=POSS_LO_COLOR:
HI_COLOR=POSS_HI_COLOR;
TEST_MAX_COLOR=MAX (POSS_HI_COLOR.MAX_COLOR):
TEST_ \(10 \_\)COLOR =AVAIL (TEST_NODE_PTR,TEST_MAX_COLOR) ;
TEST_HI_COLOR=TEST_LO_COLOR +
TEST_NODE_PTR->CHROMATICITY-1;
TEST_MAX_COLOR=MAX (TEST_HI_COLOR', POSS_HI_COLOR) :
IF TEST_MAX_COLOR < SWAP_MAX_COLOR
THEN DO:
SWAP_NODE_PTR=TEST_NODE_PTR:
SWAP \(10 \_C O L O R=T E S T \perp O \_C O L O R\) :
SWAP_HI_COLOR=TEST_HI_COLOR:
NEW_LO_COLOR=POSS_LO_COLOR;
NEW_HI_COLOR=POSS_HI_COLOR:
SWAP_MAX_COLOR=TEST_MAX_COLOR:
END:
ELSE:
NEXT_POSS_1O_COLOR:
POSS_LO_COLOR=POSS_LO_COLOR+1; END:
/* COLOR THE NODES IN THE INTERCHANGE.
\(* 1\)
SWAP_NODE_PTR->LO_COLOR=SWAP_LO_COLOR:
SWAP_NODE_PTR->HI_COLOR=SWAP_HI_COLOR;
LO_COLOR=NEW _LO_COLOR;
HI_COLOR=NEW_HI_COLOR;
/* DETERMINE THE NEW MAXIMUM COLOR USED.
MAX_COLOR=SWAP_MAX_COLOR;
TEMP_PTR=AUX_HEAD_PTR:
DO WHILE(TEMP_PTRन=NODE_PTR):
MAX_COLOR=MAX (MAX_COLOR,TEMP_PTR->HI_COLOR) :
TEMP_PTR=TEMP_PTR->AUX_F_PTR:
END;
END INTCHG:
```

/* SORT THE NODE LIST IN THE ORDER: */
/* 1. ORDERED ACCORDING TO DECREASING CHROMATICITY AND */
/* 2. SUB-ORDERED ACCORDING TO DECREASING CHROMATIC */
** DEGREF

```
LFISORT: PROC(HEAD_PTR.AUX_HEAD_PTR,NO_OF_NODES) REORDER;
    DCL

\section*{HEAD_PTR}

AUX_HEAD_PTR
NODE_PTR
NO_OF_NODES
NODE_NO
TAG(NO_OF_NODES)
AUX_TAIL_PTR
TAG_NO
CURRENT_TAG_NO
PARENT_TAG_NO
CHILD_TAG_NO
RIGHT_TAG_NO
TEMP_TAG
REMAINING_NODES
NULL
DCL
1 NODE BASED(NODE_PTR).
2 NUMBER
2 DEGREE
2 CHROMATICITY
2 CHROMATIC_DEGREE
2 LO_COLOR
2 HI_COLOR
2 WORK VARIABLE SPACE IX 40 BYTES
3 FILLER
3 AUX_F_PTR
2 FORWARD_PTR
2 ADJ_NODE_PTR(1:DEG REFER(DEGREE)) PTR:
```

/* INITIALIZE TAG ARRAY.
*/
TAG(1)=HEAD_PTR:
NODE_PTR=HEAD_PTR;
DO NODE_NO=2 -O NO_OF_NODES;
NODE_PTR=FORWARD_PTR:
TAG(NODE_NO)=NODE_PTR;
END;
/* CREATE THE INITIAL hEAP.
*/
DO TAG_NO=2 TO NO_OF_NODES:
CURRENT_TAG_NO=TAG_NO:
DO UNTIL(CURRENT_TAG_NO=1);
PARENT_TAG_NO=CURRENT_TAG_NO/2;
IF GREATER(TAG(CURRENT_TAG_NO).TAG(PARENT_TAG_NO))
THEN DO:
TEMP_TAG=TAG(CURRENT_TAG_NO);

```
```

                            TAG(CURRENT_TAG_NO)=TAG(PARENT_TAG_NO):
            TAG(PARENT_TAG_NO)=TEMP_TAG:
                        CURRENT_TAG_NO=PARENT_TAG_NO:
            END;
            ELSE LEAVE:
            END:
    END:
    /* THE GREATEST NODE IS aT THE TOP OF THE HEAP. */
/* PLACE GREATEST NODE IN SORTED NODE LIST. */

```
```

    AUX_HEAD_PTR=TAG(1);
    ```
    AUX_HEAD_PTR=TAG(1);
    AUX_TAIL_PTR=AUX_HEAD_PTR;
    AUX_TAIL_PTR=AUX_HEAD_PTR;
/* SORT REMAINING NODES AND PLACE IN SORTED NODE LIST. */
    REMAINING_NODES=NO_OF_NODES:
    DO WHILE(REMAINING_NODES>O):
        TEMP_TAG=TAG(REMAINING_NODES):
        REMAINING_NODES=REMAINING_NODES-1;
        PARENT_TAG_NO=1:
        DO CHILD_TAG_NO=2 REPEAT(2*PARENT_TAG_NO)
                WHILE(CHILD_TAG_NO<=REMAINING_NODES):
            IF CHILD_TAG_NO<REMAINING_NODES
                THEN DO:
                    RIGHT_TAG_NO=CHILD_TAG_NO+1:
                        IF GREATER(TAG(RIGHT_TAG_NO),TAG(CHILD_TAG_NO))
                        THEN CHILD_TAG_NO=RIGHT_TAG_NO;
            END;
            IF GREATER(TAG(CHILD_TAG_NO).TEMP_TAG)
            THEN DO:
                    TAG(PARENT_TAG_NO)=TAG(CHILD_TAG_NO);
                    PARENT_TAG_NO=CHILD_TAG_NO:
                    END:
                    ELSE LEAYE;
        END;
        TAG(PARENT_TAG_NO)=TEMP_TAG;
/* APPEND THE GREATEST REMAINING NODE TO SORTED NODE */
/* LIST.
    TEMP_TAG=TAG(1);
    AUX_TAIL_PTR->AUX_F_PTR=TEMP_TAG;
    AUX_TAIL_PTR=TEMP_TAG:
    END:
    AUX_TAIL_PTR->AUX_F_PTR=NULL:
    THE PROCEDURE 'GREATER' DETERMINES WHETHER NODE-A */
/* BELONGS BEFORE NODE-B IN THE ORDERING: */
/* 1. ORDERED ACCORDING TO DECREASING CHROMATICITY AND */
/* 2. SUB-ORDERED ACCORDING TO DECREASING CHROMATIC */
    DEGREE.

GREATER: PROC(TAG_A.TAG_B) RETURNS(BIT(1)) REORDER;
```

    DCL
        TAG_A
        TAG_B
        PTR.
    PTR;
    IF TAG_A->CHROMATICITY > TAG_B->CHROMATICITY
        THEN RETURN('1`B);
    IF TAG_A->CHROMATICITY = TAG_B->CHROMATICITY
        THEN
        IF TAG_A->CHROMATIC_DEGREE > TAG_B->CHROMATIC_DEGREE
            THEN RETURN('1'B):
            ELSE
            IF TAG_A->CHROMATIC_DEGREE = TAG_B->CHROMATIC_DEGREE
                    THEN IF TAG_A->NUMBER < TAG_B->NUMBER
                    THEN RETURN('1'B);
                    ELSE;
                    ELSE:
    RETURN('O'B):
    END GREATER;
END LFISORT:

```
```

/* SORT THE NODE LIST IN THE ORDER:
*/
/* 1. ORDERED ACCORDING TO DECREASING CHROMATIC DEGREE */
/* AND */
/* 2. SUB-ORDERED ACCORDING TO DECREASING CHROMATICITY.*/
LF2SORT: PROC(HEAD_PTR,AUX_HEAD_PTR,NO_OF_NODES) REORDER;
DCL

```

HEAD_PTR
AUX_HEAD_PTR
NODE_PTR
NO_OF_NODES
NODE_NO
TAG(NO_OF_NODES)
AUX_TAIL_PTR
TAG_NO
CURRENT_TAG_NO
PARENT_TAG_NO
CHILD_TAG_NO
RIGHT_TAG_NO
TEMP_TAG
REMAINING_NODES
NULL
DCL
1 NODE
2 NUMBER
2 DEGREE
2 CHROMATICITY
2 CHROMATIC_DEGREE
2 LO_COLOR
2 HI_COLOR
2 WORK_YARIABLE_SPACE.
3 FILLER 3 AUX_F_PTR
2 FORWARD_PTR
2 ADJ_NODE_PTR(1:DEG REFER(DEGREE)) PTR;

PTR.
PTR.
PTR.
FIXED BINARY(15).
FIXED BINARY(15).
PTR.
PTR,
FIXED BINARY(15),
FIXED BINARY(15).
FIXED BINARY(15).
FIXED BINARY(15).
FIXED BINARY(15).
PTR.
FIXED BINARY(15). BUILTIN:

BASED (NODE_PTR).
FIXED BINARY(15).
FIXED BINARY(15).
FIXED BINARY(15),
FIXED BINARY(15).
FIXED BINARY(15).
FIXED BINARY(15).
/* 40 BYTES */
CHAR (36).
PTR.
PTR,
\(\operatorname{TAG}(1)=H E A D \_P T R:\)
NODE_PTR=HEAD_PTR;
DO NODE_NO \(=2\) TO NO_OF_NODES:
NODE_PTR=FORWARD_PTR:
TAG (NODE_NO) \(=\) NODE_PTR;
END:
/* CREATE THE INITIAL HEAP. */
DO TAG_NO \(=2\) TO NO_OF_NODES:
CURRENT_TAG_NO=TAG_NO:
DO UNTIL(CURRENT_TAG_NO=1):
PARENT_TAG_NO=CURRENT_TAG_NO/2;
IF GREATER(TAG(CURRENT_TAG_NO).TAG(PARENT_TAG_NO))
THEN DO;
TEMP_TAG=TAG(CURRENT_TAG_NO):
TAG (CURRENT_TAG_NO)=TAG(PARENT_TAG_NO):
```

```
                    TAG(PARENT_TAG_NO)=TEMP_TAG;
                    CURRENT_TAG_NO=PARENT_TAG_NO;
            END;
                ELSE LEAVE:
                END;
END:
```

```
/* THE GREATEST NODE IS AT THE TOP OF THE HEAP. */
```

/* THE GREATEST NODE IS AT THE TOP OF THE HEAP. */
/* PLACE GREATEST NODE IN SORTED NODE LIST.
*/
AUX_HEAD_PTR=TAG(1):
/* SORT REMAINING NODES AND PLACE IN SORTED NODE LIST. */
REMAINING_NODES=NO_OF_NODES;
DO WHILE(REMAINING_NODES>O);
TEMP_TAG=TAG(REMAINING_NODES);
REMAINING_NODES=REMAINING_NODES-1;
PARENT_TAG_NO=1;
DO CHILD_TAG_NO=2 REPEAT(2*PARENT_TAG_NO)
WHILE(CHILD_TAG_NO<=REMAINING_NODES);
IF CHILD_TAG_NO<REMAINING_NODES
THEN DO:
RIGHT_TAG_NO=CHILD_TAG_NO+1;
IF GREATER(TAG(RIGHT_TAG_NO).TAG(CHILD_TAG_NO))
THEN CHILD_TAG_NO=RIGHT_TAG_NO:
END:
IF GREATER(TAG(CHILD_TAG_NO),TEMP_TAG)
THEN DO;
TAG(PARENT_TAG_NO)=TAG(CHILD_TAG_NO);
PARENT_TAG_NO=CHILD_TAG_NO;
END:
ELSE LEAVE;
END;
TAG(PARENT_TAG_NO)=TEMP_TAG;
/* APPEND THE GREATEST REMAINING NODE TO SORTED NODE */
/* LIST.
*/
TEMP_TAG=TAG(1):
AUX_TAIL_PTR->AUX_F_PTR=TEMP_TAG;
AUX_TAIL_PTR=TEMP_TAG:
END:
AUX_TAIL_PTR - AUX_F_PTR=NULL:
/* THE PROCEDURE 'GREATER' DETERMINES WHETHER NODE-A */
/* BELONGS BEFORE NODE-B IN THE ORDERING: */
/* 1. ORDERED ACCORDING TO DECREASING CHROMATIC DEGREE */
** AND */
/* 2. SUB-ORDERED ACCORDING TO DECREASING CHROMATICITY.*/
GREATER: PROC(TAG_A,TAG_B) RETURNS(BIT(1)) REORDER;

```
```

    DCL
        TAG_A
        TAG_B
        PTR.
        PTR;
    IF TAG_A->CHROMATIC_DEGREE > TAG_B->CHROMATIC_DEGREE
        THEN RETURN('1'B):
    IF TAG_A->CHROMATIC_DEGREE = TAG_B->CHROMATIC_DEGREE
        THEN IF TAG_A->CHROMATICITY > TAG_B->CHRONATICITY
        THEN RETURN(*1'B);
        ELSE IF TAG_A->CHROMATICITY = TAG_B->CHROMATICITY
            THEN IF TAG_A->NUMBER < TAG_B->NUMBER
                THEN RETURN('1'B);
                ELSE;
            ELSE;
    RETURN('O'B):
    END GREATER:
END LF2SORT;

```
```

/* SORT THE NODE LIST IN THE ORDER OF DECREASING
/* PIGEONHOLE MEASURE.
PHSORT: PROC(HEAD_PTR,AUX_HEAD_PTR,NO_OF_NODES) REORDER:
DCL
HEAD_PTR PTR.
AUX_HEAD_PTR PTR.
NODE_PTR PTR,
NO_OF_NODES FIXED BINARY(15).
NODE_NO FIXED BINARY(15).
TAG(NO_OF_NODES)
AUX_TAIL_PTR
TAG_NO
CURRENT_TAG_NO
PARENT_TAG_NO
CHILD_TAG_NO
RIGHT_TAG_NO
TEMP_TAG
REMAINING_NODES
NULL
DCL
1 NODE BASED(NODE_PTR).
2 NUMBER
2 DEGREE
2 CHROMATICITY
2 CHROMATIC_DEGREE
2 LO_COLOR
2 HI_COLOR
2 WORK_VARIABLE_SPACE. /* 40 BYTES */
3 PIGEON_HOLE FIXED BINARY(31),
3 FILLER CHAR(32).
3 AUX_F_PTR PTR,
2 FORWARD_PTR PTR,
2 ADJ_NODE_PTR(1:DEG REFER(DEGREE)) PTR;

```
/* INITIALIZE TAG ARRAY.
*/
    TAG(1)=HEAD_PTR:
    NODE_PTR=HEAD_PTR;
    DO NODE_NO=2 TO NO_OF_NODES:
        NODE_PTR=FORWARD_PTR;
        TAG(NODE_NO) \(=\) NODE_PTR;
    END:
/* Calculate the pigeonhole measure of each node. */
    NODE_PTR=HEAD_PTR;
    DO WHILE(NODE_PTR \(\neg=N U L L)\);
    PIGEON_HOLE=CHROMATIC_DEGREE+(CHROMATICITY-1)*DEGREE;
    NODE_PTR=FORWARD_PTR;
END:
```

/* CREATE THE INITIAL HEAP.
*/
DO TAG_NO=2 TO NO_OF_NODES:
CURRENT_TAG_NO=TAG_NO;
DO UNTIL(CURRENT_TAG_NO=1);
PARENT_TAG_NO=CURRENT_TAG_NO/2;
IF GREATER(TAG(CURRENT_TAG_NO),TAG(PARENT_TAG_NO))
THEN DO:
TEMP_TAG=TAG(CURRENT_TAG_NO);
TAG(CURRENT_TAG_NO)=TAG(PARENT_TAG_NO):
TAG(PARENT_TAG_NO)=TEMP_TAG:
CURRENT_TAG_NO=PARENT_TAG_NO:
END;
ELSE LEAVE:
END:
END:
/* THE GREATEST NODE IS AT THE TOP OF THE HEAP. */
/* PLACE GREATEST NODE IN SORTED NODE LIST. */
AUX_HEAD_PTR=TAG(1):
/* SORT REMAINING NODES AND PLACE IN SORTED NODE LIST. */
REMAINING_NODES=NO_OF_NODES;
DO WHILE(REMAINING NODES>O):
TEMP_TAG=TAG(REMAINING_NODES);
REMAINING_NODES=REMAINING_NODES-1:
PARENT_TAG_NO=1;
DO CHIID_TAG_NO=2 REPEAT(2*PARENT_TAG_NO)
WHILE(CHILD_TAG_NO<=REMAINING_NODES);
IF CHILD_TAG_NO<REMAINING_NODES
THEN DO;
RIGHT_TAG_NO=CHILD_TAG_NO+1:
IF GREATER(TAG(RIGHT_TAG_NO),TAG(CHILD_TAG_NO))
THEN CHILD_TAG_NO=RIGHT_TAG_NO:
END;
IF GREATER(TAG(CHILD_TAG_NO),TEMP_TAG)
THEN DO:
TAG(PARENT_TAG_NO)=TAG(CHILD_TAG_NO);
PARENT_TAG_NO=CHILD_TAG_NO:
END;
ELSE LEAVE;
END;
TAG(PARENT_TAG_NO)=TEMP_TAG:
/* APPEND THE GREATEST REMAINING NODE TO SORTED NODE */
/* LIST.
*/
TEMP_TAG=TAG(1):
AUX_TAIL_PTR->AUX_F_PTR=TEMP_TAG:
AUX_TAIL_PTR=TEMP_TAG;
END;

```

> AUX_TAIL_-PTR->AUX_F_PTR=NULL;
/* THE PROCEDURE 'GREATER' DETERMINES WHETHER NODE-A */ /* BELONGS BEFORE NODE-B IN THE ORDER OF DECREASING */ /* PIGEONHOLE MEASURE.

GREATER: PROC(TAG_A.TAG_B) RETURNS(BIT(1)) REORDER:
DCL TAG_A PTR. TAG_B

PTR:
IF TAG_A->PIGEON_HOLE \(>\) TAG_B->PIGEON_HOLE THEN RETURN('1'B);
IF TAG_A->PIGEON_HOLE = TAG_B->PIGEON_HOLE THEN IF TAG_A->NUMBER < TAG_B->NUMBER

THEN RETURN('1'B);
ELSE:
ELSE:
RETURN('O'B):
END GREATER:
END PHSORT:
```

/* SORT THE NODE LIST IN THE ORDER OF DECREASING PRODUCT */
/* OF CHROMATICITY AND DEGREE.
*/
CDSORT: PROC(HEAD_PTR,AUX_HEAD_PTR,NO_OF_NODES) REORDER;
DCL

```

HEAD_PTR
AUX_HEAD_PTR
NODE_PTR
NO_OF_NODES
NODE_NO
TAG(NO_OF_NODES)
AUX_TAIL_PTR
TAG_NO
CURRENT_TAG_NO
PARENT_TAG_NO
CHILD_TAG_NO
RIGHT_TAG_NO
TEMP_TAG
REMAINING_NODES NULL
DCL
1 NODE
2 NUMBER
2 DEGREE
2 CHROMATICITY
2 CHROMATIC_DEGREE
2 LO_COLOR
2 HI_COLOR
2 WORK_VARIABLE_SPACE. \(/ * 40\) BYTES */
3 C_TIMES_D
3 FILLER
3 AUX_F_PTR
2 FORWARD_PTR
2 ADJ_NODE_PTR(1:DEG REFER(DEGREE)) PTR;

PTR.
PTR.
PTR.
FIXED BINARY(15).
FIXED BINARY(15).
PTR.
PTR.
FIXED BINARY(15).
FIXED BINARY(15).
FIXED BINARY(15).
FIXED BINARY(15).
FIXED BINARY(15).
PTR.
FIXED BINARY(15).
BUILTIN:
BASED (NODE_PTR).
FIXED BINARY(15).
FIXED BINARY(15).
FIXED BINARY(15).
FIXED BINARY(15).
FIXED BINARY(15).
FIXED BINARY(15).
FIXED BINARY(31).
CHAR(32).
PTR.
PTR.
```

/* INITIALIZE TAG ARRAY.
TAG(1)=HEAD_PTR:
NODE_PTR=HEAD_PTR;
DO NODE_NO=2 TO NO_OF_NODES:
NODE_PTR=FORWARD_PTR:
TAG(NODE_NO) $=$ NODE_PTR;
END;
/* Calculate the product of Chromaticity and degree for */
/* EACH NODE.
NODE_PTR=HEAD_PTR:
DO WHILE(NODE_PTR $\neg=N U L L):$
C_TIMES_D=CHROMATICITY*DEGREE;
NODE_PTR=FORWARD_PTR:
END:

```
```

/* CREATE THE INITIAL HEAP.
DO TAG_NO=2 TO NO_OF_NODES;
CURRENT_TAG_NO=TAG_NO:
DO UNTIL(CURRENT_TAG_NO=1):
PARENT_TAG_NO=CURRENT_TAG_NO/2;
IF GREATER(TAG(CURRENT_TAG_NO).TAG(PARENT_TAG_NO))
THEN DO:
TEMP_TAG=TAG(CURRENT_TAG_NO):
TAG(CURRENT_TAG_NO)=TAG(PARENT_TAG_NO);
TAG(PARENT_TAG_NO)=TEMP_TAG;
CURRENT_TAG_NO=PARENT_TAG_NO:
END;
ELSE LEAVE:
END:
END:
/* THE GREATEST NODE IS AT THE TOP OF THE HEAP. */
/* PLACE GREATEST NODE IN SORTED NODE LIST.
*/
AUX_HEAD_PTR=TAG(1):
AUX_TAIL_PTR=AUX_HEAD_PTR:
/* SORT REMAINING NODES AND PLACE IN SORTED NODE LIST. */
REMAINING_NODES=NO_OF_NODES;
DO WHILE(REMAINING_NODES>O):
TEMP_TAG=TAG(REMAINING_NODES):
REMAINING_NODES=REMAINING_NODES-1:
PARENT_TAG_NO=1:
DO CHILD_TAG_NO=2 REPEAT(2*PARENT_TAG_NO)
WHILE(CHILD_TAG_NO<=REMAINING_NODES);
IF CHILD_TAG_NO<REMAINING_NODES
THEN DO:
RIGHT_TAG_NO=CHILD_TAG_NO+1:
IF GREATER(TAG(RIGHT_TAG_NO),TAG(CHILD_TAG_NO))
THEN CHILD_TAG_NO=RIGHT_TAG_NO:
END:
IF GREATER(TAG(CHILD_TAG_NO).TEMP_TAG)
THEN DO;
TAG(PARENT_TAG_NO)=TAG(CHILD_TAG_NO):
PARENT_TAG_NO=CHILD_TAG_NO:
END;
ELSE LEAVE;
END:
TAG(PARENT_TAG_NO)=TEMP_TAG;
/* APPEND THE GREATEST REMAINING NODE TO SORTED NODE */
/* LIST.
*/
TEMP_TAG=TAG(1):
AUX_TAIL_PTR->AUX_F_PTR=TEMP_TAG;
AUX_TAIL_PTR=TEMP_TAG;
END;

```

> AUX_TAIL_PTR->AUX_F_PTR=NULL:
/* THE PROCEDURE 'GREATER' DETERMINES WHETHER NODE-A */
/* BELONGS BEFORE NODE-B IN THE ORDER OF DECREASING */
/* PRODUCT OF CHROMATICITY AND DEGREE.
```

GREATER: PROC(TAG_A,TAG_B) RETURNS(BIT(1)) REORDER:
DCL
TAG_A PTR.
TAG_B PTR:
IF TAG_A->C_TIMES_D > TAG_B->C_TIMES_D
THEN RETURN('1'B):
IF TAG_A->C_TIMES_D = TAG_B->C_TIMES_D
THEN IF TAG_A->NUMBER < TAG_B->NUMBER
THEN RETURN('1'B):
ELSE:
ELSE;
RETURN('O'B):
END GREATER:
END CDSORT;

```

RLF1: PROC(HEAD_PTR,AUX_HEAD_PTR.MAX_COLOR) REORDER; DCL
\begin{tabular}{|c|c|}
\hline HEAD_PTR & PTR. \\
\hline COLOR_HEAD_PTR & PTR, \\
\hline COLOR_TAIL_PTR & PTR, \\
\hline U1_HEAD_PTR & PTR, \\
\hline U1_TAIL_PTR & PTR. \\
\hline AUX_HEAD_PTR & PTR. \\
\hline AUX_TAIL_PTR & PTR, \\
\hline MAX_COLOR & FIXED BINARY(15). \\
\hline MaX & BUILTIN. \\
\hline NULL & BUILTIN. \\
\hline CURRENT_COLOR & FIXED BINARY(15) INIT(1). \\
\hline NEXT_COLOR & FIXED BINARY(15) INIT(32767). \\
\hline NODE_PTR & PTR. \\
\hline DEG & FIXED BINARY(15). \\
\hline CHROM_DEG & FIXED BINARY(15). \\
\hline CURRENT_CHROMATICITY & FIXED BINARY(15). \\
\hline NODE_CHROMATICITY & FIXED BINARY(15). \\
\hline ADJ_CHROMATICITY & FIXED BINARY(15). \\
\hline CURRENT_NODE_PTR & PTR, \\
\hline U2_CHROM_DEGREE & FIXED BINARY(15) \\
\hline CURRENT_TOTAL_CHROM_DEGR & EE FIXED. BINARY(15). \\
\hline CURRENT_U1_CHROM_DEGREE & FIXED BINARY(15). \\
\hline CURRENT_U2_CHROM_DEGREE & FIXED BINARY(15). \\
\hline LB & FIXED BINARY(15). \\
\hline ADJ_PTR & PTR. \\
\hline ADJ2_PTR & PTR, \\
\hline (I.K) & FIXED BINARY(15) ; \\
\hline
\end{tabular}

DCL
1 NODE BASED(NODE_PTR).
2 NUMBER FIXED BINARY(15),
2 DEGREE FIXED BINARY(15).
2 CHROMATICITY FIXED BINARY(15).
2 Chromatic_degree fixed binary (15).
2 LO_COLOR FIXED BINARY(15),
2 HI _COLOR FIXED BINARY(15),
2 WORK_VARIABLE_SPACE, /* 40 BYTES */
3 TOTAL_CHROM_DEGREE FIXED BINARY(15).
3 U1_CHROM_DEGREE FIXED BINARY(15),
3 LOWER_BOUND FIXED BINARY(15).
3 FILLER CHAR(18).
3 U1_B_PTR PTR.
3 U1_F_PTR PTR,
3 AUX_B_PTR PTR.
3 AUX_F_PTR PTR.
2 FORWARD_PTR PTR,
2 ADJ_NODE_PTR(1:DEG REFER(DEGREE)) PTR;
/* INITIALIZE COLORED NODE LIST. */
COLOR_HEAD_PTR=NULL:
COLOR_TAIL_PTR=NULL:
```

    MAX_COLOR=0;
    /* CREATE UNCOLORED NODE LIST AND U1 NODE LIST. */
/* INITIALIZE mORK VARIABLES FOR EACH NODE.
*/
AUX_HEAD_PTR=HEAD_PTR:
Ul_HEAD_PTR=HEAD_PTR:
NODE_PTR=HEAD_PTR;
U1_TAIL_PTR=NULL:
DO WHILE(NODE_PTR}~=NULL)
CHROM_DEG=CHROMATIC_DEGREE;
U1_CHROM_DEGREE=CHROM_DEG;
TOTAL_CHROM_DEGREE=CHROM_DEG;
LOWER_BOUND=1:
LO_COLOR=0:
AUX_F_PTR=FORWARD_PTR:
U1_F_PTR=FORWARD_PTR:
AUX_B_PTR=U1_TAIL_PTR:
Ul_B_PTR=U1_TAIL_PTR;
U1_TAIL_PTR=NODE_PTR:
NODE_PTR=FORWARD_PTR:
END;
AUX_TAIL_PTR=U1_TAIL_PTR;
/* SELECT NODES TO COLOR UNTIL ALL NODES ARE COLORED. */
DO WHILE('1'B):
/* SELECT FIRST NODE TO BE COLORED WITH THE CURRENT */
/* COLOR ACCORDING TO: */
/* 1. MAXImUM CHROMATICITY */
/* 2. MAXIMUM CHROMATIC DEGREE */
CURRENT_CHROMATICITY=0:
NODE_PTR=U1_HEAD_PTR:
DO WHILE(NODE_PTRᄀ=NULL):
NODE_CHROMATICITY=CHROMATICITY:
SELECT;
WHEN(NODE_CHROMATICITY > CURRENT_CHROMATICITY) DO:
CURRENT_NODE_PTR=NODE_PTR:
CURRENT_CHROMATICITY=NODE_CHROMATICITY;
CURRENT_TOTAL_CHROM_DEGREE=TOTAL_CHROM_DEGREE:
END:
\#HEN(NODE_CHROMATICITY = CURRENT_CHROMATICITY \&
TOTAL_CHROM_DEGREE > CURRENT_TOTAL_CHROM_DEGREE)
DO:
CURRENT_NODE_PTR=NODE_PTR:
CURRENT_TOTAL_CHROM_DEGREE=TOTAL_CHROM_DEGREE:
END:
OTHERWISE:
END;
NODE_PTR=U1_F_PTR;
END:

```
```

/* COLOR THE SELECTED NODE.
*/
CALL COLOR_NODE:

```
/* SELECT REMAINING NODES TO BE COLORED WITH THE CURRENT */
```/* COLOR ACCORDING TO:*/
```

/* 1. MAXIMUM CHROMATICITY ..... */
/* 2. MAXIMUM CHROMATIC DEGREE IN U2 ..... */
/* 3. MINIMUM CHROMATIC DEGREE IN U1 ..... */

```
DO WHILE(U1_HEAD_PTR\neg=NULL):
        CURRENT_CHROMATICITY=0;
        NODE_PTR=U1_HEAD_PTR:
        DO WHILE(NODE_PTR\neg=NULL);
        NODE_CHROMATICITY=CHROMATICITY:
        SELECT:
            WHEN(NODE_CHROMATICITY > CURRENT_CHROMATICITY)
            DO:
                CURRENT_NODE_PTR=NODE_PTR;
                CURRENT_CHROMATICITY=NODE_CHROMATICITY:
                CURRENT_U1_CHROM_DEGREE=U1_CHROM_DEGREE:
                CURRENT_U2_CHROM_DEGREE=
                TOTAL_CHROM_DEGREE-CURRENT_U1_CHROM_DEGREE:
            END:
            WHEN(NODE_CHROMATICITY = CURRENT_CHROMATICITY)
            DO:
                    U2_CHROM_DEGREE=TOTAL_CHROM_DEGREE-
                    U1_CHROM_DEGREE:
                    SELECT:
                    WHEN
                    (U2_CHROM_DEGREE > CURRENT_U2_CHROM_DEGREE)
                    DO:
                            CURRENT_NODE_PTR=NODE_PTR:
                            CURRENT_U1_CHROM_DEGREE=U1_CHROM_DEGREE:
                            CURRENT_U2_CHROM_DEGREE=U2_CHROM_DEGREE:
                    END;
                    WHEN
                            (U2_CHROM_DEGREE = CURRENT_U2_CHROM_DEGREE
                    & U1_CHROM_DEGREE < CURRENT_U1_CHROM_DEGREE)
                    DO:
                                    CURRENT_NODE_PTR=NODE_PTR:
                                    CURRENT_U1_CHROM_DEGREE=U1_CHROM_DEGREE:
                    END;
                    OTHERWISE;
                END;
            END:
            OTHERWISE;
        END;
        NODE_PTR=U1_F_PTR:
    END:
CALL COLOR_NODE:
```

END:
/* U1 IS EMPTY.
/* ARE ALL NODES COLORED?
IF AUX_HEAD_PTR=NULL THEN DO:
/* ALL NODES ARE COLORED. COMPLETE COLORED NODE LIST. */
CURRENT_NODE_PTR->AUX_F_PTR=NULL; AUX_HEAD_PTR=COLOR_HEAD_PTR;
RETURN:
END:
ELSE:
/* CREATE NEW UI LIST FOR THE NEXT COLOR. */
DO UNTIL(U1_HEAD_PTRᄀ=NULL):
NODE_PTR=AUX_HEAD_PTR:
CURRENT_COLOR=NEXT_COLOR:
NEXT_COLOR=32767:
DO WHILE(NODE_PTR - =NULL):
IF LOWER_BOUND=CURRENT_COLOR
THEN DO:
/* INITIALIZE U1_CHROM_DEGREE OF EACH NODE IN NEW U1 */
/* LIST.
U1_CHROM_DEGREE=CHROMATICITY:
/* APPEND NODE TO U1 LIST. */
IF U1_HEAD_PTR=NULL
THEN U1_HEAD_PTR=NODE_PTR;
ELSE U1_TAIL_PTR->U1_F_PTR=NODE_PTR;
U1_B_PTR=U1_TAIL_PTR;
Ul_TAIL_PTR=NODE_PTR;
END:
ELSE IF NEXT_COLOR > LOWER_BOUND THEN NEXT_COLOR=LOWER_BOUND: ELSE:
NODE_PTR=AUX_F_PTR:
END: END;
/* END NEW U1 LIST. */ U1_TAIL_PTR->U1_F_PTR=NULL;
/* COMPUTE U1 ChROMATIC DEGREE OF EACH NODE IN Ul LIST. */ NODE_PTR=U1 HEAD_PTR:

```
DO WHILE(NODE_PTR~=NULL);
    NODE_CHROMATICITY=CHROMATICITY:
    DO I=1 TO DEGREE;
        ADJ_PTR=ADJ_NODE_PTR(I):
        IF ADJ_PTR->Ul_CHROM_DEGREE > 0
            THEN ADJ_PTR->U1_CHROM_DEGREE=
                    ADJ_PTR->U1_CHROM_DEGREE+NODE_CHROMATICITY:
        END;
        NODE_PTR=U1_F_PTR:
        END:
    END:
```

```
/* COLOR THE NODE POINTED TO BY CURRENT_NODE_PTR.
```

/* COLOR THE NODE POINTED TO BY CURRENT_NODE_PTR.
COLOR_NODE: PROC:
COLOR_NODE: PROC:
NODE_PTR=CURRENT_NODE_PTR:
NODE_PTR=CURRENT_NODE_PTR:
/* REMOVE THE NODE TO BE COLORED FROM THE UNCOLORED NODE */
/* LIST.
IF AUX_F_PTR=NULL
THEN AUX_TAIL_PTR=AUX_B_PTR:
ELSE AUX_F_PTR->AUX_B_PTR=AUX_B_PTR;
IF AUX_B_PTR=NULL
THEN AUX_HEAD_PTR=AUX_F_PTR;
ELSE AUX_B_PTR->AUX_F_PTR=AUX_F_PTR:
/* REMOVE THE NODE TO BE COLORED FROM THE U1 NODE LIST. */
U1_CHROM_DEGREE=0;
IF Ul_F_PTR=NULL
THEN U1_TAIL_PTR=U1_B_PTR:
ELSE U1_F_PTR->U1_B_PTR=U1_B_PTR;
IF U1_B_PTR=NULL
THEN U1_HEAD_PTR=U1_F_PTR:
ELSE U1_B_PTR->U1_F_PTR=U1_F_PTR:
/* Place the node to be COLORED at the END OF THE */
/* COLORED NODE LIST.
*/
IF COLOR_TAIL_PTR=NULL
THEN COLOR_HEAD_PTR=NODE_PTR;
ELSE COLOR_TAIL_PTR->AUX_F_PTR=NODE_PTR;
COLOR_TAIL_PTR=NODE_PTR;

* ASSIGN COLORS TO THE NODE. */
LO_COLOR=CURRENT_COLOR;
LB=CURRENT_COLOR+CURRENT_CHROMATICITY:
HI_COLOR=LB-1 ;
MAX_COLOR=MAX(MAX_COLOR,HI_COLOR):

```
```

/* ADJUST DEGREE INFORMATION OF ADJACENT NODES.
*/
DO I=1 TO DEGREE:
ADJ_PTR=ADJ_NODE_PTR(I):
IF ADJ_PTR->LO_COLOR=0
THEN DO:
ADJACENT NODE IS UNCOLORED.
*/
ADJ_PTR->TOTAL_CHROM_DEGREE=
ADJ_PTR->TOTAL_CHROM_DEGREE-CURRENT_CHROMATICITY:
IF LB > ADJ_PTR->LOWER_BOUND
THEN ADJ_PTR->LOWER_BOUND=LB;
ELSE:
IF ADJ_PTR->U1_CHROM_DEGREE > 0
THEN DO:
ADJ_PTR->U1_CHROM_DEGREE=0:
IF ADJ_PTR->U1_F_PTR=NULL
THEN U1_TAIL_PTR=ADJ_PTR->U1_B_PTR:
ELSE ADJ_PTR->U1_F_PTR->U1_B_PTR=
ADJ_PTR->U1_B_PTR;
IF ADJ_PTR->U1_B_PTR=NULL
THEN U1_HEAD_PTR=ADJ_PTR->U1_F_PTR;
ELSE ADJ_PTR->U1_B_PTR->U1_F_PTR=
ADJ_PTR->U1_F_PTR;
IF NEXT_COLOR > LB
THEN NEXT_COLOR=LB:
ELSE:
/* REDUCE Ul DEGREES. */
ADJ_CHROMATICITY=ADJ_PTR->CHROMATICITY:
DO K=1 TO ADJ_PTR->DEGREE;
ADJ2_PTR=ADJ_PTR->ADJ_NODE_PTR(K):
IF ADJ2_PTR->U1_CHROM_DEGREE > O
THEN ADJ2_PTR->U1_CHROM_DEGREE=
ADJ2_PTR->U1_CHROM_DEGREE-
ADJ_CHROMATICITY:
ELSE:
END;
END:
ELSE:
END:
ELSE:
END;
END COLOR_NODE:
END RLF1;

```
```

    AUX_TAIL_PTR->AUX_F_PTR=NULL;
    /* THE PROCEDURE 'GREATER' DETERMINES WHETHER NODE-A */
/* BELONGS BEFORE NODE-B IN THE ORDER OF DECREASING */
/* PIGEONHOLE MEASURE. */
GREATER: PROC(TAG_A.TAG_B) RETURNS(BIT(1)) REORDER;
DCL
TAG_A PTR.
TAG_B PTR;
IF TAG_A->PIGEON_HOLE > TAG_B->PIGEON_HOLE
THEN RETURN('1'B);
IF TAG_A->PIGEON_HOLE = TAG_B->PIGEON_HOLE
THEN IF TAG_A->NUMBER < TAG_B->NUMBER
THEN RETURN('1'B);
ELSE;
ELSE:
RETURN('O'B):
END GREATER:
END PHSORT:

```
/* SORT THE NODE LIST IN THE ORDER OF DECREASING PRODUCT */ /* OF Chromaticity and degree.
*/
CDSORT: PROC(HEAD_PTR,AUX_HEAD_PTR,NO_OF_NODES) REORDER:
DCL

HEAD_PTR
AUX_HEAD_PTR
NODE_PTR
NO_OF_NODES
NODE_NO
TAG(NO_OF_NODES)
AUX_TAIL_PTR
TAG_NO
CURRENT_TAG_NO
PARENT_TAG_NO
CHILD_TAG_NO
RIGHT_TAG_NO
TEMP_TAG
REMAINING_NODES
NULL
DCL
1 NODE
2 NUMBER
2 DEGREE
2 CHROMATICITY
2 CHROMATIC_DEGREE
2 LO_COLOR
2 HI_COLOR
2 WORK_YARIABLE_SPACE.
3 C_TIMES_D
3 FILLER CHAR(32).
3 AUX_F_PTR
2 FORWARD_PTR
2 ADJ_NODE_PTR(1:DEG REFER(DEGREE)) PTR:

TAG (1) =HEAD_PTR;
NODE_PTR=HEAD_PTR;
DO NODE_NO \(=2\) TO NO_OF_NODES:
NODE_PTR=FORWARD_PTR:
TAG (NODE_NO) \(=\) NODE_PTR:
END:
/* CALCULATE THE PRODUCT OF CHROMATICITY AND DEGREE FOR */
/* EACH NODE.
NODE_PTR=HEAD_PTR:
DO WHILE(NODE_PTR \(\neg=\) NULL) ;
C_TIMES_D=CHROMATICITY*DEGREE;
NODE_PTR=FORWARD_PTR;
END;

DO TAG_NO=2 TO NO_OF_NODES:
CURRENT_TAG_NO \(=\) TAG_NO:
DO UNTIL(CURRENT_TAG_NO=1):
PARENT_TAG_NO=CURRENT_TAG_NO/2;
IF GREATER(TAG(CURRENT_TAG_NO).TAG(PARENT_TAG_NO))
THEN DO:
TEMP_TAG=TAG(CURRENT_TAG_NO):
TAG (CURRENT_TAG_NO) =TAG (PARENT_TAG_NO) ;
TAG (PARENT-TAG_NO) \(=\) TEMP_TAG:
CURRENT_TAG_NO=PARENT_TAG_NO:

\section*{END:}

ELSE LEAVE:
END:
END:
```

/* THE GREATEST NODE IS AT THE TOP OF THE HEAP.
*/

```
/* PLACE GREATEST NODE IN SORTED NODE LIST. */
```

AUX_HEAD_PTR=TAG(1);
AUX_TAIL_PTR=AUX_HEAD_PTR;

```
/* SORT REMAINING NODES AND PLACE IN SORTED NODE LIST. */
REMAINING_NODES = NO_OF_NODES:
DO WHILE(REMAINING_NODES \(>0\) ):
TEMP_TAG=TAG(REMAINING_NODES):
REMAINING_NODES=REMAINING_NODES-1;
PARENT_TAG_NO=1:
DO CHILD_TAG_NO \(=2\) REPEAT(2*PARENT_TAG_NO)
WHILE(CHILD_TAG_NO<=REMAINING_NODES):
IF CHILD_TAG_NO<REMAINING_NODES
THEN DO:
RIGHT_TAG_NO=CHILD_TAG_NO+1:
IF GREATER(TAG(RIGHT_TAG_NO),TAG(CHILD_TAG_NO)) THEN CHILD_TAG_NO=RIGHT_TAG_NO:
END:
IF GREATER(TAG(CHILD_TAG_NO).TEMP_TAG)
THEN DO;
TAG(PARENT_TAG_NO)=TAG(CHILD_TAG_NO):
PARENT_TAG_NO=CHILD_TAG_NO;
END:
else leaye;
END:
TAG (PARENT_TAG_NO) =TEMP_TAG:
```

/* APPEND THE GREATEST REMAINING NODE TO SORTED NODE */
/* LIST.
*/

```
    TEMP_TAG=TAG(1):
    AUX_TAIL_PTR->AUX_F_PTR=TEMP_TAG;
    AUX_TAIL_PTR=TEMP_TAG:
END:

> AUX_TAIL_PTR->AUX_F_PTR=NULL;
/* THE PROCEDURE 'GREATER' DETERMINES WHETHER NODE-A */
/* BELONGS BEFORE NODE-B IN THE ORDER OF DECREASING */
/* PRODUCT OF CHROMATICITY AND DEGREE.
*/
GREATER: PROC(TAG_A,TAG_B) RETURNS(BIT(1)) REORDER; DCL

TAG_A PTR.
TAGB PTR:
IF TAG_A->C_TIMES_D \(>\) TAG_B->C_TIMES_D THEN RETURN ( \({ }^{\prime} 1\) 'B) :
IF TAG_A->C_TIMES_D=TAG_B->C_TIMES_D
THEN IF TAG_A->NUMBER < TAG_B->NUMBER
THEN RETURN(•1'B):
ELSE:
ELSE:
RETURN(' \(\mathrm{O}^{\prime} \mathrm{B}\) ):
END GREATER:
END CDSORT:

RLF1: PROC(HEAD_PTR,AUX_HEAD_PTR,MAX_COLOR) REORDER; DCL

HEAD_PTR PTR.
COLOR_HEAD_PTR PTR.
COLOR_TAIL_PTR PTR.
U1_HEAD_PTR PTR.
Ul_TAIL_PTR PTR.
AUX_HEAD_PTR PTR.
AUX_TAIL_PTR PTR.
MAX_COLOR FIXED BINARY(15).
Max
NULL
CURRENT_COLOR
NEXT_COLOR
NODE PTR
DOEEPTR
CHROM_DEG
CURRENT_CHROMATICITY
NODE_CHROMATICITY
ADJ_CHROMATICITY
CURRENT_NODE_PTR
U2_CHROM DEGREE
CURRENT_TOTAL_CHROM_DEGREE FIXED BINARY(15).
CURRENT_U1_CHROM_DEGREE FIXED BINARY(15).
CURRENT_U2_CHROM_DEGREE FIXED BINARY(15),
LB
ADJ_PTR
ADJ2_PTR
(I.K)

FIXED BINARY(15).
PTR.
PTR.
FIXED BINARY(15);
DCL
1 NODE
2 NUMBER
2 DEGREE
2 CHROMATICITY
2 CHROMATIC_DEGREE
2 LO_COLOR FIXED BINARY(15).
2 HI COLOR FIXED BINARY(15).
2 WORK_VARIABLE_SPACE. /* 40 BYTES */
3 TOTAL_CHROM_DEGREE FIXED BINARY(15).
3 U1_CHROM_DEGREE FIXED BINARY(15).
3 LOWER_BOUND FIXED BINARY(15).
3 FILLER CHAR(18).
3 U1_B_PTR
3 U1_F_PTR
3 AUX_B_PTR
3 AUX_F_PTR
2 FORWARD_PTR
2 ADJ_NODE_PTR(1:DEG REFER(DEGREE)) PTR:
/* INITIALIZE COLORED NODE LIST.
*/
COLOR_HEAD_PTR=NULL;
COLOR_TAIL_PTR=NULL;
\[
\operatorname{MAX} \_C O L O R=0 ;
\]
/* CREATE UNCOLORED NODE LIST AND Ul NODE LIST.
/* INITIALIZE WORK VARIABLES FOR EACH NODE.

\section*{*/}

AUX_HEAD_PTR=HEAD_PTR;
U1_HEAD_PTR=HEAD_PTR:
NODE_PTR=HEAD_PTR;
Ul_TAIL_PTR=NULL:
DO WHILE(NODE_PTR \(\sim\) NULL);
CHROM_DEG=CHROMATIC_DEGREE;
U1_CHROM_DEGREE=CHROM_DEG:
TOTAL_CHROM_DEGREE=CHROM_DEG:
LOWER_BOUND=1:
LO_COLOR=0;
AUX_F_PTR=FORWARD_PTR:
Ul_F_PTR=FORWARD_PTR;
AUX_B_PTR=U1_TAIL_PTR:
Ul_日_PTR=U1_TAIL_PTR:
U1_TAIL_PTR=NODE_PTR:
NODE_PTR=FORWARD_PTR:

\section*{END;}

AUX_TAIL_PTR=U1_TAIL_PTR;
/* SELECT NODES TO COLOR UNTIL ALL NODES ARE COLORED. */
DO WHILE('1'B);
/* SELECT FIRST NODE TO BE COLORED WITH THE CURRENT */
/* COLOR ACCORDING TO:
/* 1. MAXIMUM CHROMATICITY
/* 2. MaXImum Chromatic degree
CURRENT_CHROMATICITY=0:
NODE_PTR=U1_HEAD_PTR;
DO WHILE(NODE_PTR \(\neg=\) NULL):
NODE_CHROMATICITY=CHROMATICITY;
SELECT:
WHEN(NODE_CHROMATICITY > CURRENT_CHROMATICITY) DO; CURRENT_NODE_PTR=NODE_PTR; CURRENT_CHROMATICITY=NODE_CHROMATICITY; CURRENT_TOTAL_CHROM_DEGREE=TOTAL_CHROM_DEGREE;
END:
WHEN (NODE_CHROMATICITY = CURRENT_CHROMATICITY \&
TOTAL_CHROM_DEGREE > CURRENT_TOTAL_CHROM_DEGREE)
DO:
CURRENT_NODE_PTR=NODE_PTR:
CURRENT_TOTAL_CHROM_DEGREE=TOTAL_CHROM_DEGREE:
END:
OTHERWISE;
END:
NODE_PTR=U1_F_PTR:
END:

CALL COLOR_NODE:
```

/* SELECT REMAINING NODES TO BE COLORED WITH THE CURRENT */
/* COLOR ACCORDING TO:
*/
/* 1. MAXIMUM CHROMATICITY */
/* 2. MAXIMUM CHROMATIC DEGREE IN U2 */

* 3. MINIMUM CHROMATIC DEGREE IN Ul */

```
DO WHILE(U1_HEAD_PTR \(=\) NULL) :
    CURRENT_CHROMATICITY=0:
    NODE_PTR=U1_HEAD_PTR:
    DO WHILE(NODE_PTR \(\sim\) NULL);
        NODE_CHROMATICITY=CHROMATICITY:
        SELECT:
            WHEN(NODE_CHROMATICITY > CURRENT_CHROMATICITY)
            DO:
                CURRENT_NODE_PTR=NODE_PTR:
                CURRENT_CHROMATICITY=NODE_CHROMATICITY:
                CURRENT_U1_CHROM_DEGREE=U1_CHROM_DEGREE:
                CURRENT_U2_CHROM_DEGREE=
                    TOTAL_CHROM_DEGREE-CURRENT_U1_CHROM_DEGREE:
            END:
            WHEN(NODE_CHROMATICITY = CURRENT_CHROMATICITY)
            DO:
                U2_CHROM_DEGREE=TOTAL_CHROM_DEGREE-
                    Ul_CHROM_DEGREE:
                    SELECT:
                    WHEN
                    (U2_CHROM_DEGREE > CURRENT_U2_CHROM_DEGREE)
                    DO :
                    CURRENT_NODE_PTR=NODE_PTR;
                    CURRENT_U1_CHROM_DEGREE=U1_CHROM_DEGREE;
                    CURRENT_U2_CHROM_DEGREE=U2_CHROM_DEGREE:
                    END:
                    WHEN
                    (U2_CHROM_DEGREE = CURRENT_U2_CHROM_DEGREE
                    \& U1_CHROM_DEGREE ( CURRENT_U1_CHROM_DEGREE)
                    DO:
                    CURRENT_NODE_PTR=NODE_PTR:
                    CURRENT_U1_CHROM_DEGREE=U1_CHROM_DEGREE:
                    END:
                    OTHERWISE:
                    END:
            END:
            OTHERWISE:
        END:
        NODE_PTR=U1_F_PTR;
    END:
/* COLOR THE SELECTED NODE.

CALL COLOR_NODE:

END:
```

/* U1 IS EMPTY.
/* ARE ALL NODES COLORED?
IF AUX_HEAD_PTR=NULL
THEN DO:
/* ALL NODES ARE COLORED. COMPLETE COLORED NODE LIST. */
CURRENT_NODE_PTR->AUX_F_PTR=NULL;
AUX_HEAD_PTR=COLOR_HEAD_PTR;
RETURN;
END:
ELSE;
/* CREATE NEW UL LIST FOR THE NEXT COLOR. */
DO UNTIL(U1_HEAD_PTR}\neg=NULL):
NODE_PTR=AUX_HEAD_PTR;
CURRENT_COLOR=NEXT_COLOR;
NEXT_COLOR=32767;
DO WHILE(NODE_PTR\neg=NULL);
IF LOWER_BOUND=CURRENT_COLOR
THEN DO:
/* INITIALIZE Ul_CHROM_DEGREE OF EACH NODE IN NEW U1 */
/* LIST.
U1_CHROM_DEGREE=CHROMATICITY;
/* APPEND NODE TO U1 LIST.
IF U1_HEAD_PTR=NULL
THEN U1_HEAD_PTR=NODE_PTR;
ELSE U1_TAIL_PTR->U1_F_PTR=NODE_PTR;
U1_B_PTR=U1_TAIL_PTR:
U1_TAIL_PTR=NODE_PTR:
END:
ELSE IF NEXT_COLOR > LOWER_BOUND
THEN NEXT_COLOR=LOWER_BOUND:
ELSE;
NODE_PTR=AUX_F_PTR:
END:
END:
/* END NEW U1 LIST. */
U1_TAIL_PTR->U1_F_PTR=NULL;
/* COMPUTE U1 CHROMATIC DEGREE OF EACH NODE IN U1 LIST. */
NODE_PTR=U1_HEAD_PTR:

```

NODE_CHROMATICITY=CHROMATICITY;
DO I=1 TO DEGREE:
ADJ_PTR=ADJ_NODE_PTR (I):
IF ADJ_PTR->U1_CHROM_DEGREE > 0
THEN ADJ_PTR->U1_CHROM_DEGREE= ADJ_PTR->U1_CHROM_DEGREE+NODE_CHROMATICITY:
END:
NODE_PTR=U1_F_PTR;
END:
END:
/* COLOR THE NODE POINTED TO BY CURRENT_NODE_PTR.
COLOR_NODE: PROC:
NODE_PTR=CURRENT_NODE_PTR:
/* REMOVE THE NODE TO BE COLORED FROM THE UNCOLORED NODE */ /* LIST.

IF AUX_F_PTR=NULL THEN AUX_TAIL_PTR=AUX_B_PTR;
ELSE AUX_F_PTR->AUX_B_PTR=AUX_B_PTR;
IF AUX_B_PTR=NULL
THEN AUX_HEAD_PTR=AUX_F_PTR;
ELSE AUX_B_PTR->AUX_F_PTR=AUX_F_PTR;
/* REMOVE THE NODE TO BE COLORED FROM THE U1 NODE LIST. */
U1_CHROM_DEGREE=0;
IF U1_F_PTR=NULL
THEN U1_TAIL_PTR=U1_B_PTR:
ELSE U1_F_PTR->U1_B_PTR=U1_B_PTR:
IF U1_B_PTR=NULL
THEN U1_HEAD_PTR=U1_F_PTR:
ELSE U1_B_PTR->U1_F_PTR=U1_F_PTR;
/* Place the node to be colored at the end of the */
/* COLORED NODE LIST.
IF COLOR_TAIL_PTR=NULL
THEN COLOR_HEAD_PTR=NODE_PTR;
ELSE COLOR_TAIL_PTR->AUX_F_PTR=NODE_PTR;
COLOR_TAIL_PTR=NODE_PTR:
/* ASSIGN COLORS TO THE NODE. */
LO_COLOR=CURRENT_COLOR:
LB=CURRENT_COLOR+CURRENT_CHROMATICITY:
HI_COLOR=LB-1;
MAX_COLOR=MAX (MAX_COLOR,HI_COLOR):
```

/* ADJUST DEGREE INFORMATION OF ADJACENT NODES.

```
    DO I=1 TO DEGREE;
        ADJ_PTR=ADJ_NODE_PTR(I):
    IF ADJ_PTR->LO_COLOR=0
        THEN DO:
            ADJACENT NODE IS UNCOLORED. */
ADJ_PTR->TOTAL_CHROM_DEGREE=
    ADJ_PTR->TOTAL_CHROM_DEGREE-CURRENT_CHROMATICITY;
IF LB > ADJ_PTR->LOWER_BOUND
                THEN ADJ_PTR->LOWER_BOUND=LB;
                ELSE;
                    IF ADJ_PTR->U1_CHROM_DEGREE > O
                        THEN DO:
/* ADJACENT NODE IS IN Ul. REMOVE IT FROM Ul. */
ADJ_PTR->U1_CHROM_DEGREE=0:
IF ADJ_PTR->U1_F_PTR=NULL
                                    THEN U1_TAIL_PTR=ADJ_PTR->U1_B_PTR:
                                    ELSE ADJ_PTR->U1_F_PTR->U1_B_PTR=
                                    ADJ_PTR->U1_B_PTR;
                    IF ADJ_PTR->U1_B_PTR=NULL
                THEN U1_HEAD_PTR=ADJ_PTR->U1_F_PTR:
                ELSE ADJ_PTR->Ul_B_PTR->Ul_F_PTR=
                    ADJ_PTR->U1_F_PTR;
                    IF NEXT_COLOR > LB
                THEN NEXT_COLOR=LB;
                ELSE;
/* REDUCE U1 DEGREES. */
                    ADJ_CHROMATICITY=ADJ_PTR->CHROMATICITY;
                DO K=1 TO ADJ_PTR->DEGREE;
                ADJ2_PTR=ADJ_PTR->ADJ_NODE_PTR(K);
                IF ADJ2_PTR->U1_CHROM_DEGREE > 0
                    THEN ADJ2_PTR->U1_CHROM_DEGREE=
                    ADJ2_PTR->U1_CHROM_DEGREE-
                    ADJ_CHROMATICITY:
                    ELSE:
                    END:
            END;
            ELSE:
        END:
        ELSE;
    END:
END COLOR_NODE:
END RLF1;
```

RLFDI: PROC(HEAD_PTR,AUX_HEAD_PTR.MAX_COLOR) REORDER:
DCL

ADJ_PTR
ADJ2_PTR
AUX_HEAD_PTR
AUX_TAIL_PTR
COLOR_HEAD_PTR
COLOR_TAIL_PTR
CURRENT_CHROMATICITY
CURRENT_COLOR
CURRENT_NODE_PTR
CURRENT_TOTAL_DEGREE
CURRENT_U1_DEGREE
CURRENT_U2_DEGREE
DEG
HEAD_PTR
(I,K)
LB
MAX
MAX_COLOR
NEXT_COLOR
NODE_CHROMATICITY
NODE_PTR
NULL
U1_HEAD_PTR
U1_TAIL_PTR
U2_DEGREE
DC:
1 NODE
2 NUMBER
2 DEGREE
2 CHROMATICITY
2 CHROMATIC_DEGREE
2 LO_COLOR
2 HI COLOR
2 WORK_VARIABLE_SPACE. 3 TOTAL_DEGREE
3 U1_DEGREE
3 LOWER_BOUND
3 FILLER
3 Ul_B_PTR
3 Ul_F_PTR
3 AUX_B_PTR
3 AUX_F_PTR
2 FORWARD_PTR
2 ADJ_NODE_PTR(1:DEG REFER(DEGREE)) PTR;

PTR.
PTR.
PTR.
PTR.
PTR.
PTR.
FIXED BINARY(15).
FIXED BINARY(15) INIT(1).
PTR.
FIXED BINARY(15),
FIXED BINARY(15).
FIXED BINARY(15).
FIXED BINARY(15).
PTR.
FIXED BINARY(15).
FIXED BINARY(15).
BUILTIN.
FIXED BINARY(15),
FIXED BINARY(15) INIT(32767).
FIXED BINARY(15).
PTR.
BUILTIN.
PTR.
PTR.
FIXED BINARY(15);

BASED(NODE_PTR),
FIXED BINARY(15).
FIXED BINARY(15).
FIXED BINARY(15).
FIXED BINARY(15).
FIXED BINARY(15),
FIXED BINARY(15).
/* 40 BYTES */
FIXED BINARY(15).
FIXED BINARY(15).
FIXED BINARY(15).
CHAR(18).
PTR,
PTR.
PTR.
PTR.
PTR,
/* INITIALIZE COLORED NODE LIST.
COLOR_HEAD_PTR=NULL:
COLOR_TAIL_PTR=NULL;
MAX_COLOR=0;
/* CREATE UNCOLORED NODE LIST AND U1 NODE LIST.

```
    AUX_HEAD__PTR=HEAD_PTR:
    U1_HEAD_PTR=HEAD_PTR;
    NODE_PTR=HEAD_PTR:
    Ul_TAIL_PTR=NULL;
    DO WHILE(NODE_PTR\neg=NULL);
        DEG=DEGREE+1;
        U1_DEGREE=DEG;
        TOTAL_DEGREE=DEG;
        LOWER_BOUND=1;
        LO_COLOR=0;
        AUX_F_PTR=FORWARD_PTR:
        U1_F_PTR=FORWARD_PTR;
        AUX_B_PTR=U1_TAIL_PTR:
        U1_B_PTR=U1_TAIL_PTR:
        U1_TAIL_PTR=NODE_PTR:
        NODE_PTR=FORWARD_PTR;
    END:
    AUX_TAIL_PTR=U1_TAIL_PTR:
```

/* SELECT NODES TO COLOR UNTIL ALL NODES ARE COLORED. */
DO WHILE('1'B);
/* SELECT FIRST NODE TO BE COLORED WITH THE CURRENT */
$/ *$ COLOR ACCORDING TO: */
/* 1. MAXIMUM CHROMATICITY */
/* 2. MAXIMUM DEGREE */
CURRENT_CHROMATICITY=0:
NODE_PTR=U1_HEAD_PTR;
DO WHILE(NODE_PTRᄀ=NULL);
NODE_CHROMATICITY=CHROMATICITY;
SELECT:
WHEN(NODE_CHROMATICITY > CURRENT_CHROMATICITY) DO;
CURRENT_NODE_PTR=NODE_PTR:
CURRENT_CHROMATICITY=NODE_CHROMATICITY;
CURRENT_TOTAL_DEGREE=TOTAL_DEGREE:
END:
WHEN(NODE_CHROMATICITY = CURRENT_CHROMATICITY \&
TOTAL DEGREE > CURRENT_TOTAL_DEGREE) DO;
CURRENT_NODE_PTR=NODE_PTR;
CURRENT_TOTAL_DEGREE=TOTAL_DEGREE;
END:
OTHERWISE:
END:
NODE_PTR=U1_F_PTR:
END:
/* COLOR THE SELECTED NODE.
CALL COLOR_NODE:

```
/* SELECT REMAINING NODES TO BE COLORED WITH THE CURRENT */
/* COLOR ACCORDING TO: */
/* 1. MAXImUM Chromaticity */
/* 2. MAXIMUM DEGREE IN U2 */
/* 3. MINIMUM DEGREE IN U1 */
DO WHILE(U1_HEAD_PTR}=NULL)
        CURRENT_CHROMATICITY=0;
        NODE_PTR=U1_HEAD_PTR;
        DO WHILE(NODE_PTR\neg=NULL);
            NODE_CHROMATICITY=CHROMATICITY:
            SELECT:
                    WHEN(NODE_CHROMATICITY > CURRENT_CHROMATICITY)
                    DO:
                CURRENT_NODE_PTR=NODE_PTR;
                CURRENT_CHROMATICITY=NODE_CHROMATICITY:
                CURRENT_U1_DEGREE=U1_DEGREE;
                CURRENT_U2_DEGREE=
                    TOTAL_DEGREE-CURRENT_U1_DEGREE;
                END;
                WHEN(NODE_CHROMATICITY = CURRENT_CHROMATICITY)
                DO:
                U2_DEGREE=TOTAL_DEGREE-U1_DEGREE:
                SELECT;
                    WHEN
                    (U2_DEGREE > CURRENT_U2_DEGREE)
                    DO:
                        CURRENT_NODE_PTR=NODE_PTR:
                        CURRENT_U1_DEGREE=U1_DEGREE:
                    CURRENT_U2_DEGREE=U2_DEGREE;
                    END:
                    WHEN
                    (U2_DEGREE = CURRENT_U2_DEGREE
                    & U1_DEGREE < CURRENT_U1_DEGREE)
                    DO;
                    CURRENT_NODE_PTR=NODE_PTR;
                    CURRENT_U1_DEGREE=U1 DEGREE:
                    END;
                    OTHERWISE;
                END;
            END;
            OTHERWISE:
        END;
        NODE_PTR=U1_F_PTR;
    END;
/* COLOR THE SELECTED NODE.
CALL COLOR_NODE:
END;
```

/* U1 IS EMPTY.
/* ARE ALL NODES COLORED?
IF AUX_HEAD_PTR=NULL THEN DO:
/* ALL NODES ARE COLORED. COMPLETE COLORED NODE LIST.
*/
CURRENT_NODE_PTR->AUX_F_PTR=NULL;
AUX_HEAD_PTR=COLOR_HEAD_PTR; RETURN:
END:
ELSE:
/* CREATE NEW U1 LIST FOR THE NEXT COLOR.
DO UNTIL(U1_HEAD_PTR $\neg=$ NULL) :
NODE_PTR=AUX_HEAD_PTR;
CURRENT_COLOR=NEXT_COLOR;
NEXT_COLOR=32767;
DO WHILE(NODE_PTR $=$ NULL) ;
IF LOWER_BOUND=CURRENT_COLOR THEN DO:
/* INITIALIZE U1_DEGREE OF EACH NODE IN NEW U1 LIST.
U1 DEGREE=1;
/* APPEND NODE TO U1 LIST.
IF U1_HEAD_PTR=NULL
THEN U1_HEAD_PTR=NODE_PTR;
ELSE U1_TAIL_PTR->U1_F_PTR=NODE_PTR:
U1_B_PTR=U1_TAIL_PTR;
U1_TAIL_PTR=NODE_PTR;
END:
ELSE IF NEXT_COLOR > LOWER_BOUND THEN NEXT_COLOR=LOWER_BOUND;
ELSE;
NODE_PTR=AUX_F_PTR;
END;
END:
/* END NEW U1 LIST.
U1_TAIL_PTR->U1_F_PTR=NULL:
/* COMPUTE U1 DEGREE OF EACH NODE IN U1 LIST.
NODE_PTR=U1_HEAD_PTR;
DO WHILE(NODE_PTR $二=N U L L)$ :
DO $I=1$ TO DEGREE;
ADJ_PTR=ADJ_NODE_PTR(I):

$$
\text { IF ADJ_PTR->U1 DEGREE }>0
$$

THEN ADJ_PTR->U1_DEGREE=ADJ_PTR->U1_DEGREE+1;
END;
NODE_PTR=U1_F_PTR;
END;
END;
/* COLOR THE NODE POINTED TO BY CURRENT_NODE_PTR. */
COLOR_NODE: PROC;
NODE_PTR=CURRENT_NODE_PTR;
/* REMOVE THE NODE TO BE COLORED FROM THE UNCOLORED NODE */
/* LIST.
IF AUX_F_PTR=NULL
THEN AUX_TAIL_PTR=AUX_B_PTR;
ELSE AUX_F_PTR->AUX_B_PTR=AUX_B_PTR;
IF AUX_B_PTR=NULL
THEN AUX_HEAD_PTR=AUX_F_PTR;
ELSE AUX_B_PTR->AUX_F_PTR=AUX_F_PTR;
/* REMOVE THE NODE TO BE COLORED FROM THE U1 NODE LIST. */
U1 DEGREE=0;
IF Ul_F_PTR=NULL
THEN U1_TAIL_PTR=U1_B_PTR;
ELSE U1_F_PTR->U1_B_PTR=U1_B_PTR;
IF U1_B_PTR=NULL
THEN U1_HEAD_PTR=U1_F_PTR;
ELSE U1_B_PTR->U1_F_PTR=U1_F_PTR;
/* Place the node to be colored at The end of the */
/* COLORED NODE LIST.
IF COLOR_TAIL_PTR=NULL
THEN COLOR_HEAD_PTR=NODE_PTR;
ELSE COLOR_TAIL_PTR->AUX_F_PTR=NODE_PTR;
COLOR_TAIL_PTR=NODE_PTR;
/* ASSIGN COLORS TO THE NODE. */
LO_COLOR=CURRENT_COLOR;
LB=CURRENT_COLOR+CURRENT_CHROMATICITY;
HI_COLOR $=\mathrm{LB}-1$;
MAX_COLOR=MAX (MAX_COLOR.HI_COLOR):
/* ADJUST DEGREE INFORMATION OF ADJACENT NODES. */
DO $I=1$ TO DEGREE;
ADJ_PTR=ADJ_NODE_PTR(I):
IF ADJ_PTR->LO_COLOR $=0$
THEN DO:

```
/* ADJACENT NODE IS UNCOLORED.
    ADJ_PTR \(->\) TOTAL_DEGREE =ADJ_PTR \(->\) TOTAL_DEGREE-1;
    IF LB \(>A D J \_P T R->L O W E R \_B O U N D\)
        THEN ADJ_PTR->LOWER_BOUND=LB;
        ELSE:
IF ADJ_PTR \(\rightarrow\) U1_DEGREE \(>0\)
    THEN DO:
/* ADJACENT NODE IS IN UI. REMOVE IT FROM U1. */
ADJ_PTR \(->\) U1 DEGREE \(=0\);
IF ADJ_PTR->U1_F_PTR=NULL
                            THEN U1_TAIL_PTR=ADJ_PTR->U1_B_PTR;
                    ELSE ADJ_PTR \(\rightarrow\) U1_F_PTR \(->\mathrm{U} 1\) _B_PTR \(=\)
                    ADJ_PTR->U1_B_PTR;
                    IF ADJ_PTR->U1_B_PTR=NULL
                    THEN U1_HEAD_PTR=ADJ_PTR->U1_F_PTR;
                    ELSE ADJ_PTR->U1_B_PTR->U1_F_PTR=
                        ADJ_PTR->U1_F_PTR:
                    IF NEXT_COLOR \(>L B\)
                    THEN NEXT_COLOR=LB;
                    ELSE;
                    REDUCE U1 DEGREES. */
                DO \(K=1\) TO ADJ_PTR->DEGREE;
                ADJ2_PTR=ADJ_PTR->ADJ_NODE_PTR (K) :
                IF ADJ2_PTR->U1_DEGREE > 0
                    THEN ADJ2_PTR \(->\mathrm{U} 1\) DEGREE \(=\)
                    ADJ2_PTR \(->\) U 1 _DEGREE-1 ;
                        ELSE;
                END;
        END:
            ELSE;
        END;
        ELSE:
    END:
END COLOR_NODE:
END RLFDI:
```

DYNPH: PROC(HEAD_PTR.AUX_HEAD_PTR.NO_OF_NODES.MAX_COLOR) REORDER;
DCL

ADJ_COLOR_BIT
ADJ_NODE_NO
ADJ_PTR
AUX_HEAD_PTR
AUX_TAIL_PTR
CEIL
COLOR_COUNT
COLOR_DATA_PTR
COLOR_NO
HEAD_PTR
LOCATOR(NO_OF_NODES)
MAX
MAX_COLOR
NG
NO_OF_ADJ_COLORS
NO_OF_NODES
NODE_NO
NODE_PTR
NULL
OLD_COLOR_DATA_PTR
PREV_COLOR_BIT
REMAINING_NODES
SUBSCRIPT
TEMP_PTR
UC
UNAVAILABLE_COLOR
DCL
1 NODE
2 NUMBER
2 DEGREE
2 CHROMATICITY
2 CHROMATIC_DEGREE
2 LO_COLOR
2 HI_COLOR
2 WORK_VARIABLE_SPACE.
3 USED_COLORS
3 NO_OF_GAPS
3 REDUCED_DEGREE
3 REDUCED FIXED BINARY (15),
3 REDUCED_CHROMATIC_DEGREE FIXED BINARY(15),
3 MAX_ADJ_COLOR FIXED BINARY(15),
3 HEAP_POSITION FIXED BINARY(15).
3 PH FIXED BINARY(31).
3 ADJ_COLOR_PTR
3 FILLER
3 AUX_FORWARD_PTR
2 FORWARD_PTR
2 ADJ_NODE_PTR(DEG REFER(DEGREE)) POINTER;

```
    DCL
    1 COLOR_DATA BASED(COLOR_DATA_PTR).
    2 ADJ_COLOR_SIZE FIXED BINARY(15),
    2 ADJ_COLOR(NO_OF_ADJ_COLORS REFER(ADJ_COLOR_SIZE))
    BIT(1);
```

```
/* ALLOCATE ADJACENT COLOR ARRAY FOR EACH NODE.
```

/* ALLOCATE ADJACENT COLOR ARRAY FOR EACH NODE.
*/
*/
/* INITIALIZE WORK VARIABLES FOR EACH NODE.
NO_OF_ADJ_COLORS=16:
NODE_PTR=HEAD_PTR;
DO WHILE(NODE_PTR\neg=NULL);
ALLOCATE COLOR_DATA;
ADJ_COLOR_PTR=COLOR_DATA_PTR;
ADJ_COLOR(*)='0'B;
LO_COLOR=0;
HI_COLOR=0;
USED_COLORS=0;
NO_OF_GAPS=O;
REDUCED_DEGREE=DEGREE;
REDUCED_CHROMATIC_DEGREE=CHROMATIC_DEGREE-CHROMATICITY;
PH=REDUCED_CHROMATIC_DEGREE+REDUCED_DEGREE*
(CHROMATICITY-1);
MAX_ADJ_COLOR=0;
NODE_PTR=FORWARD_PTR;
END:
/* INITIALIZE LOCATOR ARRAY FOR THE HEAP. */
NODE_PTR=HEAD_PTR;
DO NODE_NO = 1 TO NO_OF_NODES;
LOCATOR(NODE_NO)=NODE_PTR;
HEAP_POSITION=NODE_NO;
NODE_PTR=FORWARD_PTR:
END:
/* CREATE THE HEAP. */
DO NODE_NO=2 TO NO_OF_NODES:
NODE_PTR=LOCATOR (NODE_NO):
CALL UPHEAP(NODE_PTR);
END;
/* COLOR THE NODE OF HIGHEST PIGEONHOLE MEASURE. */
MAX_COLOR=0;
NODE_PTR=LOCATOR (1):
AUX_HEAD_PTR=NODE_PTR:
AUX_TAIL__PTR=NODE_PTR:
LO_COLOR=1:
HI_COLOR=CHROMATICITY;
REMAINING_NODES=NO_OF_NODES ;

```

DO WHILE(REMAINING_NODES \(>1\) ):
```

/* FILL THE TOP OF HEAP WITH NEW NODE.*/
TEMP_PTR=LOCATOR(REMAINING_NODES);
TEMP_PTR->HEAP_POSITION=1;
LOCATOR(1)=TEMP_PTR ;
REMAINING_NODES=REMAINING_NODES-1;
CALL DNHEAP(TEMP_PTR);
/* ADJUST THE PIGEONHOLE MEASURE OF THOSE NODES WITH */
/* "NEW" GAPS AT THE END OF THE COLOR RANGE. */
IF HI_COLOR>MAX_COLOR
THEN DO;
DO SUBSCRIPT=1 TO REMAINING_NODES;
TEMP_PTR=LOCATOR(SUBSCRIPT);
IF TEMP_PTR->MAX_ADJ_COLOR = MAX_COLOR
THEN DO:
TEMP_PTR->PH=TEMP_PTR->PH+
TEMP_PTR->CHROMATICITY-1;
TEMP_PTR->NO_OF_GAPS=TEMP_PTR->NO_OF_GAPS+1:
CALL UPHEAP(TEMP_PTR):
END;
END;

```
/* THE MAXIMUM NUMBER OF COLORS HAS INCREASED. UPDATE */
/* THE MAXIMUM NUMBER OF COLORS USED. */
        MAX_COLOR=HI_COLOR;
        END;
/* UPDATE NODES ADJACENT TO COLORED NODE.

DO ADJ_NODE_NO=1 TO DEGREE:
ADJ_PTR=ADJ_NODE_PTR(ADJ_NODE_NO);
IF ADJ_PTR->LO_COLOR>O THEN GO TO NEXT_ADJ_NODE:
COLOR_DATA_PTR=ADJ_PTR->ADJ_COLOR_PTR;
/* ENLARGE ADJACENT COLORS ARRAY, IF NECESSARY. */
IF HI_COLOR \(>\) ADJ_COLOR_SIZE THEN DO:

NO_OF_ADJ_COLORS=CEIL(HI_COLOR/16)*16:
OLD_COLOR_DATA_PTR=COLOR_DATA_PTR:
ALLOCATE COLOR DATA:
ADJ_PTR->ADJ_COLOR_PTR=COLOR_DATA_PTR;
DO COLOR_NO=1 TO ADJ_PTR->MAX_ADJ_COLOR;
ADJ_COLOR (COLOR_NO) =
OLD_COLOR_DATA_PTR->ADJ_COLOR (COLOR_NO) ;
END:
DO COLOR_NO=ADJ_PTR->MAX_ADJ_COLOR+1 TO NO_OF_ADJ_COLORS:
ADJ_COLOR (COLOR_NO) \(={ }^{\prime} 0^{\prime} B\);

END:
FREE OLD_COLOR_DATA_PTR->COLOR_DATA; END;
```

* UPDATE MAX ADJACENT COLOR.

ADJ_PTR->MAX_ADJ_COLOR= MAX (HI_COLOR, ADJ_PTR->MAX_ADJ_COLOR) ;
/* UPDATE ADJACENT COLORS ARRAY, NUMBER OF GAPS, AND */ /* NUMBER OF USED COLORS.

UC=ADJ_PTR $->$ USED_COLORS ;
NG $=A D J$ _PTR $->N O \_O F \_G A P S$;
IF LO_COLOR>1
THEN PREV_COLOR_BIT=ADJ_COLOR(LO_COLOR-1);
ELSE PREV_COLOR_BIT='1'B;
IF $\rightarrow P R E V \_C O L O R \_B I T$
THEN NG=NG+1:
DO COLOR_NO=LO_COLOR TO HI_COLOR;
ADJ_COLOR_BIT=ADJ_COLOR (COLOR_NO) :
ADJ_COLOR (COLOR_NO) $={ }^{\prime} 1$ 'B;
$I F \rightarrow P R E V \_C O L O R \_B I T \& A D J \_C O L O R \_B I T$
THEN NG=NG-1; $/ *$ END OF A GAP. */
IF $\rightarrow$ ADJ_COLOR_BIT
THEN UC=UC+1; $/ *$ ANOTHER COLOR USED. $* /$
PREV_COLOR_BIT =ADJ_COLOR_BIT:
END:
IF $\rightarrow P R E V \_C O L O R \_B I T$
THEN DO:
IF HI_COLOR〈ADJ_PTR->MAX_ADJ_COLOR
THEN ADJ_COLOR_BIT=ADJ_COLOR (HI_COLOR+1);
ELSE ADJ_COLOR_BIT=(MAX_COLOR=HI_COLOR) ;
IF ADJ_COLOR_BIT
THEN NG=NG-1;
END:
/* UPDATE ALL WORK VARIABLES.
ADJ_PTR->USED_COLORS=UC;
ADJ_PTR->NO_OF_GAPS=NG;
ADJ_PTR->REDUCED_DEGREE=ADJ_PTR->REDUCED_DEGREE-1;
ADJ_PTR $->$ REDUCED_CHROMATIC_DEGREE $=$
ADJ_PTR $->$ REDUCED_CHROMATIC_DEGREE-CHROMATICITY;
ADJ_PTR $->\mathrm{PH}=\mathrm{UC}+\mathrm{ADJ}$ _PTR $->$ REDUCED_CHROMATIC_DEGREE

+ (NG+ADJ_PTR - >REDUCED_DEGREE)
* (ADJ_PTR $->$ CHROMATICITY-1) ;
/* ADJUST ADJACENT NODE'S LOCATION IN THE HEAP. */

CALL DNHEAP(ADJ_PTR):
NEXT_ADJ_NODE:
END;

```
/* COLOR THE NODE OF HIGHEST PIGEONHOLE MEASURE.
    NODE_PTR=LOCATOR(1):
    AUX_TAIL_PTR->AUX_FORWARD_PTR=NODE_PTR;
    AUX_TAIL_PTR=NODE_PTR;
/* DETERMINE LOWEST SEQUENCE OF AVAILABLE COLORS.
                                    */
    COLOR_DATA_PTR=ADJ_COLOR_PTR;
    UNAVAILABLE_COLOR=0;
    COLOR_COUNT=0;
    DO COLOR_NO=1 TO MAX_ADJ_COLOR
                                    UNTIL(COLOR_COUNT=CHROMATICITY);
        IF ADJ_COLOR(COLOR_NO)
            THEN DO:
                COLOR_COUNT=0;
                UNAVAILABLE_COLOR=COLOR_NO:
        END;
        ELSE COLOR_COUNT=COLOR_COUNT+1:
    END;
/* ASSIGN THE COLORS. */
    LO_COLOR=UNAVAILABLE_COLOR+1 :
    HI_COLOR=UNAVAILABLE_COLOR+CHROMATICITY;
END;
/* COMPLETE COLORED NODE LIST. */
    AUX_FORWARD_PTR=NULL;
    MAX_COLOR=MAX(MAX_COLOR.HI_COLOR);
/* FREE ADJACENT COLORS STRUCTURE FOR EACH NODE. */
    NODE_PTR=HEAD_PTR;
    DO WHILE(NODE_PTR}~=NULL)
        COLOR_DATA_PTR=ADJ_COLOR_PTR;
        FREE COLOR_DATA:
        NODE_PTR=FORWARD_PTR;
    END:
    RETURN;
UPHEAP: PROC(NODE_PTR);
    DCL
        NODE_PH FIXED BINARY(31).
        NODE_PTR POINTER.
        NODE_SUBSCRIPT FIXED BINARY(15),
        PARENT_PTR POINTER.
        PARENT_SUBSCRIPT FIXED BINARY(15);
    NODE_SUBSCRIPT=NODE_PTR->HEAP_POSITION:
    NODE_PH=NODE_PTR->PH;
    DO WHILE(NODE_SUBSCRIPT>1);
        PARENT_SUBSCRIPT=NODE_SUBSCRIPT/2;
```

```
    PARENT_PTR=LOCATOR(PARENT_SUBSCRIPT);
    IF NODE_PH<=PARENT_PTR->PH
        THEN LEAVE;
    LOCATOR(NODE_SUBSCRIPT)=PARENT_PTR;
    PARENT_PTR->HEAP_POSITION=NODE_SUBSCRIPT;
    NODE_SUBSCRIPT=PARENT_SUBSCRIPT;
    END;
    LOCATOR(NODE_SUBSCRIPT)=NODE_PTR;
    NODE_PTR->HEAP_POSITION=NODE_SUBSCRIPT;
    RETURN;
END UPHEAP;
DNHEAP: PROC(NODE_PTR):
    DCL
        CHILD_PH FIXED BINARY(31).
        CHILD_PTR
        CHILD_SUBSCRIPT
        NODE_PH
        NODE_PTR
        NODE_SUBSCRIPT
        RIGHT_PH
        RIGHT_PTR
        RIGHT_SUBSCRIPT
        POINTER,
        FIXED BINARY(15).
        FIXED BINARY(31),
        POINTER.
        FIXED BINARY(15).
        FIXED BINARY(31).
        POINTER.
        FIXED BINARY(15):
    NODE_SUBSCRIPT=NODE_PTR->HEAP_POSITION:
    NODE_PH=NODE_PTR->PH;
    CHILD_SUBSCRIPT=2*NODE_SUBSCRIPT:
    DO WHILE(CHILD_SUBSCRIPT<=REMAINING_NODES):
    CHILD_PTR=LOCATOR(CHILD_SUBSCRIPT);
    CHILD_PH=CHILD_PTR->PH;
    RIGHT_SUBSCRIPT=CHILD_SUBSCRIPT+1;
    IF RIGHT_SUBSCRIPT<=REMAINING_NODES
        THEN DO:
            RIGHT_PTR=LOCATOR(RIGHT_SUBSCRIPT);
            RIGHT_PH=RIGHT_PTR->PH:
            IF RIGHT_PH>CHILD_PH
                THEN DO:
                    CHILD_SUBSCRIPT=RIGHT_SUBSCRIPT;
                    CHILD_PTR=RIGHT_PTR;
                        CHILD_PH=RIGHT_PH;
            END;
            END:
        IF NODE_PH>=CHILD_PH
            THEN LEAVE;
        LOCATOR(NODE_SUBSCRIPT)=CHILD_PTR;
        CHILD_PTR->HEAP_POSITION=NODE_SUBSCRIPT;
        NODE_SUBSCRIPT=CHILD_SUBSCRIPT:
        CHILD_SUBSCRIPT=2*NODE_SUBSCRIPT:
    END:
    LOCATOR(NODE_SUBSCRIPT)=NODE_PTR :
    NODE_PTR->HEAP_POSITION=NODE_SUBSCRIPT;
    RETURN:
    END:
END DYNPH;
```

DYNFPH: PROC(HEAD_PTR,AUX_HEAD_PTR.NO_OF_NODES,MAX_COLOR) REORDER:
DCL
ADJ_COLOR_BIT
ADJ_NODE_NO
ADJ_PTR
AUX_HEAD_PTR
AUX_TAIL_PTR
CEIL
COLOR_COUNT
COLOR_DATA_PTR
COLOR_NO
HEAD_PTR
LOCATOR(NO_OF_NODES)
MAX
MAX_COLOR
NG
NO_OF_ADJ_COLORS
NO_OF_NODES
NODE_NO
NODE_PTR
NULL
OLD_COLOR_DATA_PTR
OLD_FPH
PREV_COLOR_BIT
REMAINING_NODES
SUBSCRIPT
TEMP_PTR
UC
UNAVAILABLE_COLOR
BIT(1).
FIXED BINARY(15), POINTER.
POINTER.
POINTER.
BUILTIN,
FIXED BINARY(15),
POINTER.
FIXED BINARY(15),
POINTER.
POINTER.
BUILTIN.
FIXED BINARY(15).
FIXED BINARY(15).
FIXED BINARY(15),
FIXED BINARY(15),
FIXED BINARY(15), POINTER.
BUILTIN.
POINTER,
FLOAT BINARY(21),
BIT(1).
FIXED BINARY(15).
FIXED BINARY(15).
POINTER.
FIXED BINARY(15),
FIXED BINARY(15);
DCL
1 NODE
2 NUMBER
2 DEGREE
2 CHROMATICITY
2 CHROMATIC_DEGREE
2 LO_COLOR
2 HI_COLOR
BASED(NODE_PTR).
FIXED BINARY(15),
FIXED BINARY(15).
FIXED BINARY(15),
FIXED BINARY(15).
FIXED BINARY(15).
FIXED BINARY(15),
2 WORK_VARIABLE_SPACE, /* 40 BYTES */
3 USED_COLORS FIXED BINARY(15),
3 NO_OF_GAPS FIXED BINARY(15).
3 REDUCED_DEGREE FIXED BINARY(15),
3 REDUCED_CHROMATIC_DEGREE FIXED BINARY(15).
3 MAX_ADJ_COLOR FIXED BINARY(15),
3 HEAP_POSITION FIXED BINARY(15),
3 PH FIXED BINARY(31),
3 FLOAT_PH FLOAT BINARY(21).
3 ADJ_COLOR_PTR POINTER.
3 FILLER CHAR(12).
3 AUX_FORWARD_PTR POINTER.
2 FORWARD_PTR POINTER.
2 ADJ_NODE_PTR(DEG REFER(DEGREE)) POINTER:

```
    DCL
    1 COLOR_DATA BASED(COLOR_DATA_PTR).
    2 ADJ_COLOR_SIZE FIXED BINARY(15),
    2 ADJ_COLOR(NO_OF_ADJ_COLORS REFER(ADJ_COLOR_SIZE))
                    BIT(1):
/* ALLOCATE ADJACENT COLOR ARRAY FOR EACH NODE. */
MAX_COLOR=0:
NO_OF_ADJ_COLORS=16;
NODE_PTR=HEAD_PTR:
DO WHILE(NODE_PTR\neg=NULL):
    ALLOCATE COLOR_DATA:
    ADJ_COLOR_PTR=COLOR_DATA_PTR;
    ADJ_COLOR(*)='0'B;
    LO_COLOR=0;
    HI_COLOR=0;
    USED_COLORS=0;
    NO_OF_GAPS=0;
    REDUCED_DEGREE=DEGREE;
    REDUCED_CHROMATIC_DEGREE=CHROMATIC_DEGREE-CHROMATICITY;
    PH=REDUCED_CHROMATIC_DEGREE+
        REDUCED_DEGREE*(CHROMATICITY-1);
    MAX_ADJ_COLOR=0;
    CALL CALCFPH(NODE_PTR);
    NODE_PTR=FORWARD_PTR;
END;
/* INITIALIZE LOCATOR ARRAY FOR THE HEAP. */
    NODE_PTR=HEAD_PTR:
    DO NODE_NO = 1 TO NO_OF_NODES;
    LOCATOR(NODE_NO)=NODE_PTR;
    HEAP_POSITION=NODE_NO;
    NODE_PTR=FORWARD_PTR:
END;
/* Create the heap.
*/
DO NODE_NO=2 TO NO_OF_NODES;
    NODE_PTR=LOCATOR(NODE_NO):
    CALL UPHEAP(NODE_PTR):
END;
/* COLOR THE NODE OF HIGHEST PIGEONHOLE MEASURE.
NODE_PTR=LOCATOR(1):
AUX_HEAD_PTR=NODE_PTR;
AUX_TAIL_PTR=NODE_PTR;
LO_COLOR=1;
HI_COLOR=CHROMATICITY;
```

```
    REMAINING_NODES=NO_OF_NODES;
    DO WHILE(REMAINING_NODES>1);
/* FILL THE TOP OF HEAP WITH NEW NODE.
                                    */
    TEMP_PTR=LOCATOR(REMAINING_NODES):
    TEMP_PTR->HEAP_POSITION=1:
    LOCATOR(1)=TEMP_PTR;
    REMAINING_NODES=REMAINING_NODES-1:
    CALL DNHEAP(TEMP_PTR):
/* ADJUST THE PIGEONHOLE MEASURE OF THOSE NODES WITH */
/* "NEW" GAPS AT THE END OF THE COLOR RANGE. */
    IF HI_COLOR>MAX_COLOR
        THEN DO;
            DO SUBSCRIPT=1 TO REMAINING_NODES;
            TEMP_PTR=LOCATOR(SUBSCRIPT);
            IF TEMP_PTR->MAX_ADJ_COLOR = MAX_COLOR
                THEN DO;
                    TEMP_PTR->PH=TEMP_PTR->PH+
                    TEMP_PTR->CHROMATICITY-1;
                    TEMP_PTR->NO_OF_GAPS=TEMP._PTR->NO_OF_GAPS+1;
            END;
        END;
/* THE MAXIMUM NUMBER OF COLORS HAS INCREASED. UPDATE */
/* THE MAXIMUM NUMBER OF COLORS USED. */
    MAX_COLOR=HI_COLOR:
/* CALCULATE NEW FLOATING POINT PIGEONHOLE MEASURE FOR */
/* EACH NODE. MAINTAIN THE HEAP. */
    DO SUBSCRIPT=1 TO REMAINING_NODES:
    TEMP_PTR=LOCATOR(SUBSCRIPT);
    CALL CALCFPH(TEMP_PTR);
    CALL UPHEAP(TEMP_PTR);
END:
END:
/* UPDATE NODES ADJACENT TO COLORED NODE.
DO ADJ_NODE_NO=1 TO DEGREE:
ADJ_PTR=ADJ_NODE_PTR (ADJ_NODE_NO) ;
IF ADJ_PTR->LO_COLOR>O THEN GO TO NEXT_ADJ_NODE;
COLOR_DATA_PTR=ADJ_PTR->ADJ_COLOR_PTR;
/* ENLARGE ADJACENT COLORS ARRAY, IF NECESSARY.
*/
IF HI_COLOR>ADJ_COLOR_SIZE
THEN DO:
NO_OF_ADJ_COLORS=CEIL(HI_COLOR/16)*16;
OLD_COLOR_DATA_PTR=COLOR_DATA_PTR;
```

ALLOCATE COLOR_DATA;
ADJ_PTR->ADJ_COLOR_PTR=COLOR_DATA_PTR;
DO COLOR_NO=1 TO ADJ_PTR->MAX_ADJ_COLOR:
ADJ_COLOR (COLOR_NO) = OLD_COLOR_DATA_PTR->ADJ_COLOR (COLOR_NO) :
END:
DO COLOR_NO=ADJ_PTR->MAX_ADJ_COLOR+1 TO NO_OF_ADJ_COLORS;
ADJ_COLOR $\left(C O L O R \_N O\right)={ }^{\prime} 0^{\prime} B ;$
END;
FREE OLD_COLOR_DATA_PTR->COLOR_DATA;
END:
/* UPDATE MAX ADJACENT COLOR. */

ADJ_PTR $\rightarrow$ MAX_ADJ_COLOR $=$
MAX (HI_COLOR, ADJ_PTR->MAX_ADJ_COLOR) :
/* UPDATE ADJACENT COLORS ARRAY, NUMBER OF GAPS, AND */ /* NUMBER OF USED COLORS.

```
UC=ADJ_PTR->USED_COLORS ;
```

NG $=$ ADJ_PTR $->$ NO_OF_GAPS ;
IF LO_COLOR > 1
THEN PREV_COLOR_BIT=ADJ_COLOR (LO_COLOR-1):
ELSE PREV_COLOR_BIT='1'B:
IF $\rightarrow$ PREV_COLOR_BIT
THEN NG=NG+1;
DO COLOR_NO=LO_COLOR TO HI_COLOR;
ADJ_COLOR_BIT=ADJ_COLOR (COLOR_NO) ;
ADJ_COLOR (COLOR_NO) $={ }^{\prime} 1^{\prime} \mathrm{B}$;
IF $\rightarrow$ PREV_COLOR_BIT \& ADJ_COLOR_BIT
THEN NG=NG-1; $/ *$ END OF A GAP. */
IF $\neg A D J \_C O L O R \_B I T$
THEN UC=UC+1; /* ANOTHER COLOR USED. */
PREV_COLOR_BIT=ADJ_COLOR_BIT;
END;
IF $\neg$ PREV_COLOR_BIT
THEN DO;
IF HI_COLOR $\left\langle A D J \_P T R->M A X \_A D J \_C O L O R\right.$
THEN ADJ_COLOR_BIT=ADJ_COLOR(HI_COLOR+1);
ELSE ADJ_COLOR_BIT=(MAX_COLOR=HI_COLOR);
IF ADJ_COLOR_BIT
THEN NG=NG-1;
END;
/* UPDATE ALL WORK VARIABLES. */

ADJ_PTR - >USED_COLORS=UC:
ADJ_PTR->NO_OF_GAPS=NG;
ADJ_PTR->REDUCED_DEGREE=ADJ_PTR->REDUCED_DEGREE-1:
ADJ_PTR->REDUCED_CHROMATIC_DEGREE =
ADJ_PTR $\rightarrow$ REDUCED_CHROMATIC_DEGREE-CHROMATICITY;

ADJ_PTR->PH=UC+ADJ_PTR->REDUCED_CHROMATIC_DEGREE + (NG+ADJ_PTR->REDUCED_DEGREE)

* (ADJ_PTR->CHROMATICITY-1) ;

OLD_FPH=ADJ_PTR->FLOAT_PH:
CALL CALCFPH(ADJ_PTR):
/* ADJUST ADJACENT NODE'S LOCATION IN THE HEAP.
IF ADJ_PTR->FLOAT_PH < OLD_FPH
THEN CALL DNHEAP (ADJ_PTR):
ELSE CALL UPHEAP(ADJ_PTR):
NEXT_ADJ_NODE:
END:
/* COLOR THE NODE OF HIGHEST PIGEONHOLE MEASURE. */
NODE_PTR=LOCATOR(1);
AUX_TAIL_PTR->AUX_FORWARD_PTR=NODE_PTR;
AUX_TAIL_PTR=NODE_PTR;
/* DETERMINE LOWEST SEQUENCE OF AVAILABLE COLORS.
COLOR_DATA_PTR=ADJ_COLOR_PTR;
UNAVAILABLE_COLOR=0;
COLOR_COUNT=0;
DO COLOR_NO $=1$ TO MAX_ADJ_COLOR UNTIL(COLOR_COUNT=CHROMATICITY):
IF ADJ_COLOR(COLOR_NO)
THEN DO;
COLOR_COUNT=0:
UNAVAILABLE_COLOR=COLOR_NO:
END:
ELSE COLOR_COUNT=COLOR_COUNT+1;
END:
/* ASSIGN THE COLORS.
LO_COLOR=UNAVAILABLE_COLOR+1;
HI_COLOR=UNAVAILABLE_COLOR+CHROMATICITY;
END;
/* COMPLETE COLORED NODE LIST.
AUX_FORTARD_PTR=NULL;
MAX_COLOR=MAX (MAX_COLOR,HI_COLOR):
/* FREE ADJACENT COLORS STRUCTURE FOR EACH NODE.
NODE_PTR=HEAD_PTR;
DO WHILE(NODE_PTR $\neg=N U L L)$ :
COLOR_DATA_PTR=ADJ_COLOR_PTR ;
FREE COLOR_DATA;
NODE_PTR=FORWARD_PTR;
END:

RETURN:
CALCFPH: PROC(NODE_PTR):
DCL
INFINITY FLOAT BINARY(21) STATIC
NODE_PTR
INIT(1.OE10).
POINTER.
FLOAT
DENOMINATOR
BUILTIN.
FIXED BINARY(15):
DENOMINATOR =NODE_PTR->NO_OF_GAPS+
NODE_PTR->REDUCED_DEGREE;
IF DENOMINATOR $\rightarrow=0$
THEN NODE_PTR->FLOAT_PH=
FLOAT( (NODE_PTR->PH-MAX_COLOR), 21)/
FLOAT(DENOMINATOR, 21);
ELSE NODE_PTR->FLOAT_PH=INFINITY;
END CALCFPH:
UPHEAP: PROC(NODE_PTR):
DCL
NODE_FPH FLOAT BINARY(21),
NODE_PTR
NODE_SUBSCRIPT FIXED BINARY(15).
PARENT_PTR POINTER,
PARENT_SUBSCRIPT FIXED BINARY(15);
NODE_SUBSCRIPT=NODE_PTR->HEAP_-POSITION;
NODE_FPH=NODE_PTR->FLOAT_PH:
DO WHILE(NODE_SUBSCRIPT>1);
PARENT_SUBSCRIPT=NODE_SUBSCRIPT/2:
PARENT_PTR=LOCATOR (PARENT_SUBSCRIPT);
IF NODE_FPH<=PARENT_PTR->FLOAT_PH
THEN LEAVE;
LOCATOR (NODE_SUBSCRIPT)=PARENT_PTR ;
PARENT_PTR->HEAP_POSITION=NODE_SUBSCRIPT;
NODE_SUBSCRIPT=PARENT_SUBSCRIPT;
END;
LOCATOR (NODE_SUBSCRIPT) $=$ NODE_PTR;
NODE_PTR->HEAP_POSITION=NODE_SUBSCRIPT:
RETURN ;
END UPHEAP:
DNHEAP: PROC(NODE_PTR);

DCL
CHILD_FPH
CHILD_PTR
CHILD_SUBSCRIPT
NODE_FPH
NODE_PTR
NODE_SUBSCRIPT
RIGHT_FPH
RIGHT_PTR
RIGHT_SUBSCRIPT
NODE_SUBSCRIPT = NODE_PTR->HEAP_POSITION ;
NODE_FPH=NODE_PTR->FLOAT_PH:

FLOAT BINARY(21), POINTER.
FIXED BINARY(15). FLOAT BINARY(21). POINTER,
FIXED BINARY(15), FLOAT BINARY(21). POINTER. FIXED BINARY(15);
NODE_FPR=NODE-PTK $\quad$ FLOAT_-H:

```
CHILD_SUBSCRIPT=2*NODE_SUBSCRIPT;
DO WHILE(CHILD_SUBSCRIPT<=REMAINING_NODES);
    CHILD_PTR=LOCATOR(CHILD_SUBSCRIPT):
    CHILD_FPH=CHILD_PTR->FLOAT_PH:
    RIGHT_SUBSCRIPT=CHILD_SUBSCRIPT+1;
    IF RIGHT_SUBSCRIPT<=REMAINING_NODES
        THEN DO;
            RIGHT_PTR=LOCATOR(RIGHT_SUBSCRIPT):
            RIGHT_FPH=RIGHT_PTR->FLOAT_PH;
            IF RIGHT_FPH>CHILD_FPH
                THEN DO;
                CHILD_SUBSCRIPT=RIGHT_SUBSCRIPT;
                CHILD_PTR=RIGHT_PTR;
                        CHILD_FPH=RIGHT_FPH;
                    END;
            END:
        IF NODE_FPH>=CHILD_FPH
            THEN LEAVE:
        LOCATOR(NODE_SUBSCRIPT)=CHILD_PTR;
        CHILD_PTR->HEAP_POSITION=NODE_SUBSCRIPT;
        NODE_SUBSCRIPT=CHILD_SUBSCRIPT:
        CHILD_SUBSCRIPT=2*NODE_SUBSCRIPT:
    END:
    LOCATOR(NODE_SUBSCRIPT)=NODE_PTR;
    NODE_PTR->HEAP_POSITION=NODE_SUBSCRIPT;
    RETURN:
END;
END DYNFPH;
```

/* RELEASE STORAGE FOR THE GRAPH.
*/
FREGRAF: PROC(HEAD_PTR) REORDER;

DCL
HEAD_PTR
NODE_PTR
NULL
DCL
1 NODE
2 NUMBER
2 DEGREE
2 CHROMATICITY
2 CHROMATIC_DEGREE
2 LO_COLOR
2 HI_COLOR
FIXED BINARY(15).
2 WORK_VARIABLE_SPACE. /* 40 BYTES */ 3 FILLER

CHAR(40).
2 ADJ_NODE_PTR(O:DEG REFER(DEGREE)) PTR; /* ADJ_NODE_PTR(0) IS THE FORWARD LINK POINTER. */

NODE_PTR=HEAD_PTR;
DO WHILE(NODE_PTR $\sim$ NULL) :
HEAD_PTR=ADJ_NODE_PTR(0);
FREE NODE;
NODE_PTR=HEAD_PTR;
END;
END FREGRAF:


[^0]:    Department of Computer Science University of Missouri-Rolla Rolla, Missouri 65401 (314) 341-4491

