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ABSTRACT

One of the primary areas of application of Artificial Intelligence is diagnosis. 

Diagnosis from first principles is a diagnostic technique which uses knowledge of the 

designed structure and function of a device to determine the possible causes of the 

malfunction.

This work builds on the foundation of a theory of diagnosis by implementing and 

extending the theory. A correction to the algorithm which defines the theory is 

presented. The theory is extended for multiple sets of observations of the system and 

measurement data.

A fundamental problem in diagnosis is selecting the measurement which will be 

of the most benefit in reducing the number of competing diagnoses for a system. A 

heuristic which selects a component whose measurement is likely to be beneficial in 

isolating the actual diagnosis is also presented.
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I. INTRODUCTION

The computer has become an important tool used in the design and manufacture 

of complex devices. When these devices fail, however, their complexity makes it 

difficult to diagnose the problem and determine the cause. The complex design 

information in a machine usable form can serve as the foundation of a system for 

diagnosis.

There are three parts to the diagnostic problem. The first is to determine 

whether a system is exhibiting the correct behavior in a given situation. The second 

aspect of diagnosis is to determine what could be causing the observed misbehavior. 

The third is that of diagnostic testing. When there is more than one potential 

diagnosis, it is the goal of diagnostic testing to establish tests which will confirm or 

eliminate some of the multiple diagnoses. The test designer may suggest 

measurements to be taken under current conditions or observations to be made under 

different conditions. For example, the output(s) of a circuit may be observed under 

different sets of inputs. An automated diagnostician must address each of these 

issues. However, the area of diagnostic testing has not been explored to the same 

extent as the first two areas.

A change may be on the horizon for automated diagnostic reasoning. The first, 

and to this time most successful, attempts to replicate human performance in the area 

of diagnostic reasoning have involved using human experience and knowledge of the 

problem domain. The knowledge and experience of human experts in a particular 

domain arc captured in the form of rules and implemented as a rule-based expert 

system. While rule-based expert systems have achieved significant results in a number 

of domains and are widely used, such systems have a number of weaknesses. In 

particular, if a rule-based expert system is to be developed, a human expert for the 

domain must be available and his or her knowledge extracted and coded as "rules" by
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a knowledge engineer. This is a difficult process since an expert is not always 

conscious of the rules he or she is applying in a given situation.

A different approach to diagnosis has been termed reasoning from first 

principles or reasoning from deep knowledge. In this approach, the automated 

diagnostician uses a description of the system structure and observations describing 

the system's performance to determine if any faults are apparent. If there is evidence 

that the system is faulty, the diagnostician uses the system description and 

observations to ascertain which component(s), if faulty, would explain the behavior. 

The first principles approach clearly addresses these first two aspects of the diagnostic 

process. However, there are few results which address diagnostic testing within this 

framework.

Diagnosis from first principles is a more recent approach to diagnostic reasoning 

than the more well-known expert system approach. There are many expert systems in 

use and much is known about when to apply and how to construct expert systems. 

However, issues such as these need to be addressed within the context of diagnosis 

from first principles.

Within the artificial intelligence community, a dichotomy seems to exist between 

those supporting the use of diagnosis from first principles and those supporting the 

use of so-called shallow reasoning systems. However, it may be that a hybrid 

approach to diagnosis is ultimately the most successful. The strengths of the one 

method can cover some of the weaknesses of the other.

Human experts in some domains use both methods. It is well known that a 

technician diagnosing a malfunctioning device first applies heuristics and experiential 

knowledge (a rule-based approach). If the rule-based approach fails, the technician 

will turn to schematics and a more precise model and reason from that model and the 

observations (a first principles approach) to determine the diagnosis. Work related to
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the development of automated diagnosticians which employ a dual approach have 

recently begun to appear in the literature ([//a88], [A7/88J, E^Z-88]). However, 

the level of development of first principles methods must be improved in order to 

build powerful hybrid systems.

What is now termed reasoning from first principles first appeared in the work of 

de Kleer \_dK16~\ on the diagnosis of faults in circuits. The primary application area 

of diagnosis from first principles has been manufactured devices and especially 

circuits. Major contributions to the development of this type of diagnostic reasoning 

have been made by Davis CZ)a8421, de Kleer and Williams [_DW81~\, Gencscreth 

COY84], and Reiter C^e87X The significance of diagnosis from first principles and 

more general reasoning about physical systems can be seen in the literature. A 

special issue of the Journal of Artificial Intelligence [/1/84] was devoted to reasoning 

about physical systems. Also, the topic of a special issue of IEEE Transactions on 

Systems, Man, and Cybernetics [SM87J is causal and diagnostic reasoning.

The purpose of this work is to build on the theory of diagnosis from first 

principles which was developed by Reiter. Chapter II reviews the previous work 

related to this type of diagnosis.

First principles diagnosticians reason from a description of the designed 

structure and function of a device to determine diagnoses. Thus, the crucial 

components of the diagnostician are (1) the representation used to describe structure 

and function and (2) the reasoning component. A representation based on predicate 

calculus is discussed in Chapter II. Various types of inference mechanisms are 

presented in Chapter III.

Chapter IV contains an analysis of Reiter's approach to diagnosis and a 

correction of an error in his work. Reiter did not implement a diagnostician based on
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his theory. Some results of the implementation developed within the context of this 

work are also presented.

Three extensions to the theory of diagnosis from first principles are discussed in 

Chapter V. The extensions are: ways of handling multiple sets of observations, a 

method for determining the effect of new measurement information on diagnoses, and 

a heuristic for selecting where to take a measurement in a device.

Chapter VI contains implementation notes and several example circuits which 

have been diagnosed using the system. Chapter VII concludes the work and suggests 

directions for future research.
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II. DIAGNOSIS USING A FIRST PRINCIPLES APPROACH

A. INTRODUCTION

The hallmark of diagnosis from first principles is the use of information 

describing the structure of the device, its component parts and interconnections, and 

its intended behavior. The fact that the system description consists exclusively of 

information about correct behavior is significant. Thus, it is not necessary to know 

the ways in which a device or component might fail in order to use the the approach 

of diagnosis from first principles. However, if the types of failure can be enumerated, 

that information can be included in the model and used by the diagnostician. The 

fact that the possible faults need not be known means that, unlike rule-based systems, 

a first principles diagnostician can deal with faults which have never manifested 

themselves before.

Diagnosis from first principles is not applicable to all domains. Not all domains 

have a finite set of principles which define the domain, or the principles may not be 

known. However, where applicable, the first principles approach can simplify the 

process of building diagnosticians for new devices, thus allowing an automated 

diagnostician to be available sooner than would be the case for a rule-based system. 

The development of a rule-based system requires lead time while human expertise is 

gained. In the structure-based approach, however, once a reasoning component for 

the general domain is developed, all that is needed is the specification of the design 

information. For manufactured devices, the design information is usually available.

There arc several advantages of the first principles approach in addition to those 

already mentioned. A detailed discussion of the some of the advantages is presented 

by Davis [Da84]. First, the diagnostic technique offers a high degree of device 

independence as compared to the device specific nature of rule-based systems.
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Second, the requirements for a structure-based approach are clear. Design 

information describing the structure and behavior of the device must be completely 

defined. It is easier to ascertain when these requirements have been met than to 

determine whether all of the essential rules have been provided by a human expert 

when building a rule-based system. Further, since a rule-based diagnostic system is 

symptom driven, it may not be possible to define all of the symptoms and rules.

It is also much easier to define the limits of a diagnostician based on first 

principles. The rules of an expert system can interact in non-obvious ways, so the 

limitations of the system are not always apparent. The interaction of the rules also 

make it difficult to maintain the rule base when a device changes. Such changes can 

be readily handled in a system based on first principles by simply updating the design 

information.

The advantages of the first principles approach do have a cost, however. The 

approach is not applicable to all diagnostic domains. Even where applicable, the 

computational cost is high. All of the implemented diagnosticians use simplifying 

assumptions to reduce the complexity of the diagnostic process. As a result, the 

completeness of the diagnostician cannot be guaranteed. Even if these assumptions 

were not applied, the currently available reasoning mechanisms are not powerful 

enough to guarantee completeness.

When design information is used in diagnosis, it is assumed that the design has 

been verified. The diagnostic process is not intended to uncover design flaws, but 

certainly the general scrutiny of the process may lead to the discovery of such flaws 

by the human diagnostician. Current systems operate under the assumption that the 

device is manufactured correctly and that the physical structure matches the design 

description. This limits the types of faults which can be diagnosed. In general, 

automated diagnosticians reasoning from design information cannot identify problems



7

such as bridge faults where there arc connections present in the device that are not 

represented in the design description. Some progress has been made in developing a 

first principles diagnostician which can identify faults such as bridge faults and shorts. 

See [DoX4] for a discussion of this.

As will be seen, the system description of a device to be diagnosed is quite 

detailed and the description of even simple devices is very large. However, there arc 

two aspects of the design process which can lessen these problems.

First, complex devices are often designed in a hierarchical manner. The general, 

overall structure of the device is developed first, illustrating the interconnections of 

large components. The design of these components is then treated as a separate 

design problem. Diagnosis can be handled in the same hierarchical fashion. The 

fault is first isolated to a component at a high level in the hierarchy. The diagnosis of 

the fault(s) within that component becomes a different diagnostic problem. 

Genesercth [Ge84] discusses diagnosis as a hierarchical process. It should be noted 

that the complexity of the diagnostic problem is not uniform across all levels of the 

hierarchy. High level components generally have complex functions and behavior 

which make it more difficult to isolate the fault. Nonetheless, the extremely large 

number of subcomponents at the lower levels in the hierarchy make the hierarchical 

approach not only effective but necessary.

Secondly, many complex devices, particularly electronic components, arc 

designed through the use of computer-aided design tools. The results of interactive 

design sessions can form the basis of the design description information required by 

the automated diagnostician. Diagnosis is not tied to any single description format. 

Any description which captures the structure and operation of the device and can be 

used by the reasoning component of the diagnostician is acceptable. For example, 

when diagnosing computer hardware, the design information required by the
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diagnostician could be extracted from the hardware description language data which 

describes the device.

Because of the amount of design information necessary for diagnosis from first 

principles, the ultimate success of this diagnostic approach will depend upon 

capturing and making use of already stored design information. The development 

and acceptance of a standard hardware description language for electronic 

components will aid in this. The specification of the design information is too 

complex and tedious to be done by humans working from charts and diagrams. 

Thus, the process of specifying the design to the diagnostician must be automated.

B. REVIEW OF PREVIOUS WORK ON DIAGNOSIS FROM FIRST

PRINCIPLES

In the following sections, diagnosis from first principles as developed by 

Genesereth, Davis, de Kleer and Williams, and Reiter is presented. The approach of 

each of these researchers is first discussed individually and then comparisons are 

made. Genesereth's work is described in more detail than the work of Davis and de 

Kleer and Williams. Much of what is described in conjunction with Genesereth's 

work is common to the work of the others and will be referred to in the summary of 

their work.

One device which appears throughout the literature to illustrate diagnosis from 

first principles is a full adder. This simple circuit is shown in Figure 1 and will be 

used for examples in this work. Several other circuits are included in Chapter VI and 

these will also be used for examples.

In the circuit examples, a naming convention is employed. The name of a 

component is one or more letters which describe the component type, for example EX 

for EXCLUSIVE-OR, and a distinguishing number. Components of each type are
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numbered as they occur in the device. The inputs and outputs of a component are 

named INI through INm and OUT1 through OUTn according to their relative 

position from top to bottom.

Figure I. Diagram of a full adder

1. Diagnostic Method of Genesereth.

The major reference for Genesereth's work is which is an expanded

version of [Ge82]. Genesereth has developed an automated diagnostic program 

called DART. A "tester" who can observe and possibly manipulate the device to be 

diagnosed provides the diagnostic session information to DART. One of the 

significant contributions resulting from the development of DART is the use of a 

hierarchical approach in the diagnostic process. Another contribution is in the area 

of diagnostic testing. Genesereth proposes a method for suggesting tests, whose 

outcome may result in a decrease in the number of possible diagnoses.
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The design description language and notation which is used by the DART 

program is based on prefix predicate calculus. The description (structural and 

behavioral) of the full adder which DART uses is shown in Figures 2 through 4. The 

full adder is referred to as the device FI in the description. Variables are indicated by 

lower case letters. The lowest level components of the device are the 

FXCLUSIVE-OR gates EX1 and EX2, the AND gates A1 and A2, the OR gate Ol, 

and the connections between these components. The fact that all connections must 

be explicitly defined affects the type of faults which can be diagnosed. Note that the 

description is quite lengthy and is clearly based on first order logic.

(EXORG EX1)
(EXORG EX2)
(ANDG Al)
(ANDG A2)
(ORG 01)
(CONN (IN 1 FI) (IN 1 EX1)) 
(CONN (IN 1 FI) (IN 1 Al)) 
(CONN (IN 2 FI) (IN 2 EX1)) 
(CONN (IN 2 FI) (IN 2 Al)) 
(CONN (IN 3 FI) (IN 2 EX2)) 
(CONN (IN 3 FI) (IN 1 A2)) 
(CONN (OUT 1 EX 1) (IN 1 EX2)) 
(CONN (OUT 1 EX 1) (IN 2 A2)) 
(CONN (OUT 1 Al) (IN 2 Ol)) 
(CONN (OUT 1 A2) (IN 1 Ol)) 
(CONN (OUT 1 EX2) (OUT 1 FI)) 
(CONN (OUT 1 01) (OUT 2 FI))

Figure 2. Structural description of the full adder components and connections
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(IF (AND (VAL (IN 1 Fl) t OFF) (VAL (IN 2 FI) t OFF)
(VAL (IN 3 FI) t OFF))

(AND (VAL (OUT 1 Fl) t OFF) (VAL (OUT 2 Fl) t OFF)))

(IF (AND (VAL (IN 1 Fl) t OFF) (VAL (IN 2 Fl) t OFF)
(VAL (IN 3 FI) t ON))

(AND (VAL (OUT 1 FI) t ON) (VAL (OUT 2 FI) t OFF)))

(IF (AND (VAL (IN I Fl) t OFF) (VAL (IN 2 Fl) t ON)
(VAL (IN 3 Fl) t OFF))

(AND (VAL (OUT 1 Fl) t ON) (VAL (OUT 2 Fl) t OFF)))

(IF (AND (VAL (IN 1 Fl) t OFF) (VAL (IN 2 Fl) t ON)
(VAL (IN 3 Fl) t ON))

(AND (VAL (OUT 1 Fl) t OFF) (VAL (OUT 2 Fl) t ON)))

(IF (AND (VAL (IN 1 Fl) t ON) (VAL (IN 2 Fl) t OFF)
(VAL (IN 3 Fl) t OFF))

(AND (VAL (OUT 1 Fl) t ON) (VAL (OUT 2 Fl) t OFF)))

(IF (AND (VAL (IN 1 Fl) t ON) (VAL (IN 2 Fl) t OFF)
(VAL (IN 3 Fl) t ON))

(AND (VAL (OUT 1 Fl) t OFF) (VAL (OUT 2 Fl) t ON)))

(IF (AND (VAL (IN 1 Fl) t ON) (VAL (IN 2 Fl) t ON)
(VAL (IN 3 Fl) t OFF))

(AND (VAL (OUT 1 Fl) t OFF) (VAL (OUT 2 F l) t ON)))

(IF (AND (VAL (IN I Fl) t ON) (VAL (IN 2 Fl) t ON)
(VAL (IN 3 Fl) t ON))

(AND (VAL (OUT 1 Fl) t ON) (VAL (OUT 2 Fl) t ON)))

Figure 3. Behavioral description of the full adder

The last proposition of Figure 4 defines the connections to be ideal. Thus the 

program cannot diagnose faulty behavior resulting from non-ideal connections, for 

example, shorts. Theoretically, the DART program could reason with the possibility 

that connections other than those explicitly defined existed. However, this would 

necessitate the use of non-monotonic reasoning and result in a much larger number
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(IF (AND (ANDG d) (VAL (IN 1 d) t ON) (VAL (IN 2 d) t ON)) 
(VAL (OUT 1 d) t ON))

(IF (AND (ANDG d) (VAL (IN 1 d) t OFF))
(VAL (OUT 1 d) t OFF))

(IF (AND (ANDG d) (VAL (IN 2 d) t OFF))
(VAL (OUT 1 d) t OFF))

(IF (AND (ORG d) (VAL (IN 1 d) t OFF) (VAL (IN 2 d) t OFF)) 
(VAL (OUT 1 d) t OFF))

(IF (AND (ANDG d) (VAL (IN 1 d) t ON))
(VAL (OUT 1 d) t ON))

(IF (AND (ANDG d) (VAL (IN 2 d) t ON))
(VAL (OUT 1 d) t ON))

(IF (AND (EXORG d) (VAL (IN I d) t ON) (VAL (IN 2 d) t ON)) 
(VAL (OUT I d) t OFF))

(IF (AND (EXORG d) (VAL (IN 1 d) t ON) (VAL (IN 2 d) t OFF)) 
(VAL (OUT 1 d) t ON))

(IF (AND (EXORG d) (VAL (IN I d) t OFF) (VAL (IN 2 d) t ON)) 
(VAL (OUT 1 d) t ON))

(IF (AND (EXORG d) (VAL (IN 1 d) t OFF) (VAL (IN 2 d) t OFF)) 
(VAL (OUT 1 d) t OFF))

(IF (AND (VAL (IN 1 d) t x) (VAL (IN 2 d) t y) (VAL (OUT 1 d) t z) 
(VAL (IN 1 d) s x) (VAL (IN 2 d) s y))

(VAL (OUT 1 d) s z))
(IF (AND (CONN x y) (VAL x t z))

(VAL y t z))

Figure 4. Behavioral description of gates and connections

of possible diagnoses for the observed system behavior. Abstractions such as the 

assumption of ideal connections are necessary to keep the diagnostic problem 

tractable. However, as in any application where details are suppressed, there is the 

risk that the model does not truly reflect the structure and operation of the device 

and as a result the true diagnosis is not determined by the diagnostician.
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Another assumption which is applied by DART is the non-intermittcncy 

assumption. This assumption appears as the next to last proposition in Figure 4. 

The non-intermittency assumption requires that all components behave consistently 

when presented the same conditions at different times.

Genesereth classifies the information present in the design into four types. 

Theoretical information describes the components, connections, and functional 

behavior of components. Achievable data are conditions which the tester can 

control, for example, setting inputs to particular values. Observable data correspond 

to information which can be obtained by the tester but not controlled. An example 

of this type of data is the observed output(s) of a circuit. The fourth type of 

information is the collection of simplifying assumptions to be used in the diagnostic 

process.

As discussed, these assumptions are necessary to keep the diagnostic problem to 

a reasonable size. However, it may be that advances in the theory of diagnosis and 

the development of more powerful automated reasoning systems will lessen the need 

for these assumptions. This is the case with the single fault assumption. Early first 

principles diagnostic systems (CG£84], [Da84]]) depended heavily on this 

assumption. More recently developed automated diagnosticians ([£e87], [Z)fF873) 

can operate effectively without it. The assumptions which are commonly applied in a 

diagnostic setting are the single fault assumption, the non-intermittency assumption, 

and the assumption that certain parts of the device are not faulted. The proposition 

which defines the connections as ideal is an example of this last assumption.

The single fault assumption states that if a component is faulted, then only that 

component is faulted and all other components are functioning correctly. Genesereth 

provides formal characterizations of each of the simplifying assumptions which the 

user can include in the system description as appropriate for the domain of the
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diagnostic problem. However, the situation is more complex than Genesereth leads 

his readers to believe.

It is not simply a matter of modifying the device description by adding or 

deleting a few statements. Whether or not an assumption is included can determine 

the type of reasoning of which the diagnostician must be capable. While the 

assumptions do represent efficiency concerns, as Genesereth characterizes them, they 

also determine how powerful the reasoning component of the diagnostician must be 

as well as the computational complexity of the process.

The diagnostic operation of DART is based on the determination and 

explanation of symptoms. A symptom is observable data which is inconsistent with 

the system design and achievable data. A symptom might be, for example, observing 

an output value to be 1 when the value of the input(s) and the proper operation of 

the device predict it to be 0. Based on one or more symptoms, DART computes a 

suspect set which will contain the faulty components).

Given a suspect set, DART suggests tests to be carried out to distinguish among 

the suspects. Genesereth (CGe84], page 422) defines a test to consist of "zero or 

more propositions to be achieved and at least one proposition to be observed". Thus 

a test will supply additional measurements or observed data under a different set of 

conditions. The difficulty of suggesting tests lies in determining a test which will 

provide new information and whose outcome depends on the suspected components.

Let au ..., am be the achievable and ob the observable data prescribed by the test. 

A check which DART carries out to determine whether any new information may be 

provided by the test is to try to prove each of the following propositions.

(IF (AND a„ ..., am) ob)
(IF (AND a„ ..., am) (NOT ob))

If either can be proved, the test will provide no new information.



15

The above "novelty check" as Genesereth calls it is useful, but other criteria need 

to be developed. The area of measurement and testing theory is largely unexplored. 

Certainly, as Genesereth states, considerations such as the cost of a test should be 

taken into account. Also needed is a means of estimating the value of a test based on 

its ability to decrease the number of possible diagnoses. Obviously, a test which is 

expensive to carry out and does little to prune the suspect set has little merit. A 

heuristic for suggesting measurements within the framework of Reiter's theory of 

diagnosis is discussed in Section D of Chapter V.

The DART system uses an inference method called resolution residue to carry 

out inferences. Reiter's theory of diagnosis establishes that the underlying inference 

mechanism can take any form so long as it is a sound decision procedure for the 

domain. A strength of the resolution residue procedure within DART is that its use 

provides a means of generating suggested tests. However, it is not clear that 

Genesereth's method for suggesting tests can be extended for use with other types of 

inference mechanisms.

Resolution residue is a direct proof procedure which begins with a set of facts 

and produces new clauses from them. Resolution residue is sound and complete but 

in the general case, of course, is not a decision procedure for consistency. However, 

Genesereth (CGc843, page 427) points out that "Fortunately, the problems that arise 

in diagnosing most computer hardware faults are decidable."

Singh [S/87] has built on Genesereth's DART system. He has worked on 

improving test generation methods by abstracting information from various levels in 

the design hierarchy. His method also applies focusing techniques to the resolution 

residue procedure. Since resolution residue is a general proof procedure, without 

focusing it can be very inefficient and generate a large amount of useless information. 

It should be noted that the problems of being unfocused and generating useless
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information are not problems which are unique to the resolution residue procedure. 

All automated reasoning systems share these problems.

2. Diagnostic Method of Davis.

Davis's work on diagnostic reasoning from first principles is significant

for its use of multiple representations of the device to be diagnosed. As a result, the 

system has been successful in diagnosing bridge faults. Other diagnosticians which 

reason from descriptions of structure and function have been unable to identify such 

faults. When a bridge fault or short is present in a device, the structural and 

behavioral descriptions no longer match the actual device.

Where other researchers on diagnosis from first principles have developed 

general diagnosticians, the approach of Davis is highly specific to the diagnosis of 

faults in digital electronic hardware. The extensions necessary to carry out diagnosis 

in other domains are discussed, but at the time of the paper these extensions had not 

been implemented.

The diagnostician is based on the assumption that the faulty behavior is caused 

by a single component. In addition, all components, even if faulty, are assumed to be 

functioning in a consistent manner over multiple sets of observations. Thus, the 

non-intermittency assumption is built into the model.

A significant feature of the work is the use of multiple representations. The 

"structure" description of the device consists of separate representations for physical 

organization and functional or behavioral organization. The reasoning about 

behavior is based on what Davis terms paths of causal interaction which arc built 

into the representation. Another important feature is the general concept of 

adjacency which the model exploits. There are different kinds of adjacency. 

Components which are physically adjacent may not be functionally adjacent and vice
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versa. For example, two chips can be adjacent on a board without necessarily having 

a designed connection between them. There can, however, be unintentional paths of 

causal interaction.

In order to deal with the computational complexity of the diagnostic problem, 

only single faults can be diagnosed. Obviously, the cost of this limitation is a loss of 

completeness. Given that the focus of the work is the diagnosis of faults in digital 

electronic hardware, the single fault assumption is not without foundation. Another 

feature of this domain is that the device was functioning correctly and has now failed. 

In this case, the cause of the fault is more likely to be a single fault diagnosis than if 

the device is newly assembled and may have multiple malfunctioning components. Of 

course, the single fault assumption will not allow diagnosis of a fault which has 

cascaded and caused several components to fail.

Davis's work preceded the work of Reiter and de Kleer and Williams on the 

diagnosis of multiple faults. Davis discusses how to remove the assumption of a 

single fault although it had not been implemented. The method which he proposes 

would first consider possible single faults. If no candidate diagnosis is found, faults 

involving two components are considered, then faults involving three components, 

and so on. It appears that the methods of Reiter or de Kleer and Williams for 

handling multiple faults could be used to extend Davis's diagnostician.

The inference mechanism is guided by discrepancy detection. A discrepancy is a 

symptom of a fault representing a difference between predicted and observed 

behavior. A technique which Davis terms constraint suspension is also used. In 

constraint suspension, the rules under which a component normally functions are 

temporarily ignored in order to determine whether there is some behavior of the 

component, not necessarily correct behavior, which would explain the behavior of the 

system as a whole.
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One difference between this system and other diagnosticians using the first 

principles approach is in the use of experiential knowledge. Expert diagnosticians in 

the domain of electronic components classified various categories of failure as to their 

likelihood. The system first attempts to generate candidates in the category of a 

localized failure, which is considered the most likely category. If no candidate is 

found in that category, the system moves to the category of bridge faults, and so 

forth.

The advantage of such an ordering scheme is that it keeps the diagnostician on a 

path of reasoning with clear goals. However, it also has some of the disadvantages of 

rule-based expert systems: the categories are domain specific and will differ 

depending on the diagnostic area, there must be human experts for the domain, and 

the specific categories must be enumerated.

As is common in diagnostic work, the inference mechanism is based on 

constraint propagation. The constraint propagator combines simulation (outputs of a 

component are determined from its inputs) and inferences (the inputs of a component 

are predicted from its output values.).

3. Diagnostic Method of de Kleer and Williams.

One of the major contributions of the work of de Kleer and Williams EZW87] 

is that multiple faults can be diagnosed. Another contribution is a means of 

effectively decreasing the number of possible diagnoses through the use of 

probabilities of failure of the components. Their work has a number of 

characteristics in common with the general theory of diagnosis developed by Reiter.

In the earlier diagnostic work, such as that done by Genesereth and Davis, the 

single fault assumption played a prominent role. Even if it was not strictly part of 

the model, as was the case in Genesereth's work, it was necessary to keep the size of
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the diagnostic problem reasonable. The general diagnostic engine (GDE) system of 

de Kleer and Williams can deal effectively with the complexity which is introduced by 

allowing multiple faults.

As in Genesereth's DART system, GDE is guided by symptoms, with a 

symptom implying which components might be faulty. These components form what 

is termed a conflict. The components in a conflict cannot all be functioning correctly. 

An obvious characteristic of a conflict is that a superset of it is also a conflict. 

However, the GDE system must find and manipulate minimal conflicts. The 

discovery of symptoms and minimal conflicts leads to the determination of what de 

Kleer and Williams call minimal candidates. These are diagnoses in Reiter's 

terminology. Reiter makes use of the concept of a conflict, which was originally 

developed by de Kleer [_dK16]. In his theory of diagnosis, Reiter uses the term 

conflict set instead of conflict.

The process of candidate generation is an incremental one of combining the 

information gained from new minimal conflicts with the known minimal candidates. 

Initially, the device is assumed to be working correctly and the empty set is the first 

minimal candidate. The candidate space is viewed as a lattice. At the lowest level is 

the empty candidate. Above that are all possible candidates containing a single 

component, then all possible candidates containing two components, and so on until 

at the top there is the single candidate consisting of all of the components. Each 

candidate on a level is linked to its supersets on the level above it.

The goal of candidate generation and diagnosis is to start at the empty 

candidate and move up the lattice the minimum distance necessary to explain the 

behavior of the system. If a new minimal conflict is not explained by an existing 

candidate, then that candidate is replaced by one or more of its supersets. The 

supersets consist of the existing candidate with one of the elements of the new
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conflict added. The candidate generation process divides the candidate space lattice 

into two parts. Above the dividing line are the supersets of the minimal candidates. 

Below the dividing line are the sets of components which do not explain the 

observations. The sets of components on the dividing line define the minimal 

candidates or diagnoses.

The above process allows the diagnostician to identify multiple faults while at 

the same time guaranteeing that the multiple fault diagnoses found are minimal sets 

of components. Note that if the single fault assumption were to be applied, the task 

of candidate generation would be much simpler. All that would be necessary is that 

the intersection of the minimal conflicts be found. The members of the resulting set 

define the possible single faults.

A disadvantage of the candidate generation procedure is that it requires that 

minimal conflicts be determined by the inference mechanism. In order to guarantee 

minimality, the inference mechanism must explore potential conflicts in increasing 

order of size until an inconsistency in the form of a difference between predicted and 

observed behavior is found. The inference mechanism of GDE contains a number of 

refinements which make minimal conflict discovery more efficient. One of these is a 

refinement which exploits the sparseness of the search space.

The inference mechanism of GDE is based on constraint propagation and the 

supporting environment of a value is recorded with the value. The supporting 

environment represents the components which determine the value. Recall that the 

diagnostic approach of de Kleer and Williams requires minimality for the conflicts. 

In order to guarantee the minimality of the conflicts, the supporting environment of a 

value must be minimal.
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De Kleer and Williams propose a method for suggesting measurements in order 

to decrease the number of candidates. The method makes use of the probability of 

failure of the individual components along with the set of components which caused 

an incorrect value. GDE uses a one step lookahead procedure to estimate the effect 

of a measurement on the set of candidates. De Kleer and Williams state: 

(CZW87], page 116)

The initial probabilities of candidates are computed from the initial 
probabilities of component failure (obtained from their manufacturer or by 
observation). We make the assumption that components fail 
independently. (This approach could be extended to dependent faults 
except that voluminous data is required.)

The probability-based approach for suggesting measurements and determining 

diagnoses is well'known. Most rule-based expert systems use probability information 

to select the most promising paths of reasoning in determining the diagnosis, order 

the possible diagnoses according to likelihood, and suggest measurements. However, 

the use of probability information has the disadvantage that such information may 

not be available or, if available, may not be complete. Furthermore, simplifying 

assumptions, such as the assumption that components fail independently, are 

generally necessary in order to keep computations reasonable. De Kleer and Williams 

make use of several such assumptions and estimates of probabilities. A heuristic for 

suggesting measurements which does not require knowledge of the probability of the 

failure of a component and a further discussion of measurements is presented in 

Chapter V.

The diagnostician also uses the probability information to guide the candidate 

generation process. Recall that the candidate space is viewed as a lattice and the 

diagnostician explores the lattice starting with the empty candidate. It then moves to 

candidates containing one or more components as necessary to explain the symptoms. 

The search of the lattice is done in a best-first manner based on the probabilities of
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the candidates. A path is abandoned as soon as the probability of the candidates 

further up the path falls below some limit.

4. Diagnostic Theory of Reiter.

Reiter has developed what he terms a theory of diagnosis. The goal of

the theory is to establish a firm foundation on which to develop automated 

diagnosticians. His theory appears to be applicable to many diagnostic domains. 

The focus of this dissertation is the diagnosis of circuit faults. Thus, examples and 

extensions to Reiter's work will be in that field.

The first point to note about Reiter's work is that it is theoretical in nature. He 

makes no statements to indicate that an automated diagnostician based on the theory 

has been built. Further, de Kleer and Williams refer to Reiter's theory as

unimplemented. Part of the work of this dissertation involves an implementation of a 

diagnostician based on Reiter's theory. This implementation has facilitated the 

discovery of an error in one of Reiter's algorithms and has allowed for the 

development and testing of a heuristic for suggesting measurements.

Because of the generality of Reiter's theory, issues which are the central focus of 

some of the earlier work on diagnosis from first principles are ignored. One of these 

issues is that of the representation logic. Since the theory is independent of the 

representation logic, the underlying theorem prover (inference mechanism) can be 

implemented in a manner appropriate for the diagnostic domain. In contrast, the 

diagnostic systems of Genesereth, Davis, and de Kleer and Williams seem to be 

dependent on a particular type of inference mechanism. However, Reiter has not 

demonstrated that the approach of his theory is more general than the approaches of 

these other researchers. The examples and representation which he uses are the same 

as those of the other researchers.
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De Kleer and Williams also claim that their diagnostic approach is independent 

of the type of inference mechanism used. However, this seems unlikely given that 

their diagnostic system is dependent on finding and manipulating minimal conflicts. 

It is possible to guarantee minimality when constraint propagation is used. Such a 

guarantee would be very difficult to achieve for an inference mechanism based on a 

general proof procedure such as resolution.

Some of the terminology of the diagnostic problem domain has already been 

presented. In the following section, this terminology is expanded and rephrased 

within the context of Reiter's general theory. The definitions arc taken from 

C/?e87].

The concept of a system which is to be diagnosed is central to the first principles 

approach. A system is a pair (SD, COMPONENTS) where SD is the system 

description represented as a set of first-order sentences and COMPONENTS is a 

finite set of constants representing the constituent parts of the system.

This approach to diagnosis uses the description of a correctly functioning set of 

components and does not assume any particular mode of failure. Thus the concept 

of a malfunctioning component must be very general. The predicate A ̂ (component) 

is used for this purpose. Consider again the example of the full adder. A complete 

representation of the circuit which makes use of the Tffriormal predicate is shown in 

Figure 5. Four types of information are included in the description.

The correct behavior of components as a function of their input(s) is described 

by items 1 through 3. These functions must also be defined. In the case of the full 

adder, this is accomplished by the inclusion of function definitions for AND, OR, and 

EXCLUSIVE-OR. The name and type of each component is specified in items 4 

through 8. The interconnections of the components are defined in 9 through 15. In 

the case of the full adder, all values are binary and this constraint is specified by items
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1) ANDG(jc)a - iAB(jt) zd out(jc) = and(inl(Ar), in2(jr))
2) EXORG(x)a~iAB(jc) zd out(x) = exor(inl(x), in2(jc))
3) ORG(jr)A~,AB(jir) out(jc) = or(inl(;c), in2(jc))

4) ANDG(Al)
5) ANDG(A2)
6) EXORG(EXl)
7) EXORG(EX2)
8) ORG(Ol)

9) out(EXl) -  in2(A2)
10) out(EXl) = inI(EX2)
11) out(A2) = inl(Ol)
12) out(Al) = in2(01)
13) inl(A2) = in2(EX2)
14) inl(EXl) «  inl(Al)
15) in2(EXI) = in2(Al)

16) inl(jc) = 0 v in l(x )= l
17) in2(jr) = 0 v in2(jc) = 1
18) out(.x)=0 v  out(x) = 1

Figure 5. System description with the ABnormal predicate

16 through 18. A constraint on the values of the inputs and outputs may be absent 

or may be quite general, depending on the device to be diagnosed. For example, 

values might be constrained to be integer or positive in some application and without 

any constraint in another application.

The generality of the approach and representation does not preclude the use of 

domain specific information concerning faults. One of the primary advantages of the 

first principles approach is that it is not necessary to know the ways in which a 

component can be faulted. However, Reiter states that if such information is 

available, it can be included in the system description. The general form of such 

information is:
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COMPONENT TYPE(x) a  AB(jt) a  FAULT.(jc) v  ... v FAULT„(jc) 

where FAULT, through FAULT* enumerate the possible behaviors of the faulted 

component.

Also necessary for diagnosis are one or more sets of observations of the system.

An observation is simply defined to be a finite set of first order sentences. In the full

adder example, observations provide information about known input and output

values, such as:

INl(EXl) = 1 
IN2(EX1) = 0 
IN1(A2) -  1 
OUTl(EX2) = 1 
OUTl(Ol) = 0

Reiter does not address the problem of representing and reasoning about multiple sets 

of observations. This issue is discussed in Section B of Chapter V.

As discussed earlier, the goal of diagnostic work is to determine the 

component(s) which if ABnormal would explain the observed behavior. Since the 

system description and observations have an underlying logical representation, the 

concept of a diagnosis is tied to logical consistency. Formally, Reiter defines a 

diagnosis for a device with constituent COMPONENTS and a system description SD 

under a set of observations OBS to be a minimal set A £  COMPONENTS such that 

SD U OBS u {-iAB(c) | c e COMPONENTS -  A} U {AB(c) | c e A}  

is consistent. A slightly simpler characterization of a diagnosis for (SD, 

COMPONENTS, OBS) is a minimal set A such that

SD U OBS U {-.AB(c) | c e COMPONENTS -  A) 

is consistent. For a proof of the equivalence of the two definitions see

Two major points arise from this definition. First, a diagnosis must be minimal. 

As will be seen, Reiter has developed an elegant means of identifying the minimal sets 

of components which form the diagnoses. Secondly, in order to identify a diagnosis,
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there must be a consistency test for the logic used in the representation in the domain 

of the diagnostic problem. This second point presents a serious problem since, in 

general, there is no decision procedure for determining the consistency of a first order 

logic formula. Does Reiter's approach have any merit? The answer is yes. There is 

no decision procedure for the general question of consistency but for certain domains 

the question of consistency is decidable. This is true, for example, in the area of 

boolean circuits.

There are a number of similarities between the work of Reiter and that of de 

Kleer and Williams. For example, what Reiter terms a diagnosis, de Kleer and 

Williams refer to as a minimal candidate. The difference, however, between their 

work is not just a matter of nomenclature. Reiter's approach appears more general 

than that of de Kleer and Williams and provides a formal basis for studying diagnosis 

from first principles.

In order to determine the diagnoses, Reiter makes use of the concept of a 

conflict set which was developed by de Kleer \_dK16] in his early work on diagnosis 

from first principles. Informally, de Kleer described a conflict set as a collection of 

components, all of which could not be functioning correctly. Reiter provides a formal 

characterization of a conflict set. A conflict set for (SD, COMPONENTS, OBS) is a 

set of components (c„... ,c*} such that SD U OBS U {~iAB(c,),... , -iAB(c*)} is 

inconsistent. A conflict set is minimal if and only if no proper subset of it is a 

conflict set for (SD, COMPONENTS, OBS).

Reiter's procedure for determining diagnoses for (SD, COMPONENTS, OBS) is 

based on determining what he terms the minimal hitting sets for the collection of 

conflict sets for (SD, COMPONENTS, OBS). He defines hitting sets and the related 

minimal hitting sets as follows.
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Let C be a collection of sets. A hitting set for C is set //<= uS€CS such that 
H  fl S ^  {} for each S eC . A hitting set for C is minimal if and only if no 
proper subset of it is a hitting set for C.

The following theorem ties together the concepts of minimal hitting sets, conflict sets 

and diagnoses and forms the foundation of Reiter's theory of diagnosis 

( [> 8 7 ] , page 84).

Theorem: AS COMPONENTS is a diagnosis for (SD, COMPONENTS,
OBS) if and only if A is a minimal hitting set for the collection of conflict 
sets for (SD, COMPONENTS, OBS).

Thus the problem of computing diagnoses becomes one of computing the 

minimal hitting sets for the conflict sets of (SD, COMPONENTS, OBS). Note that 

the problem is phrased in terms of conflict sets and not minimal conflict sets as is the 

case in the work of de Kleer and Williams. Since the conflict set returned by the 

reasoning component need not be minimal, the reasoning component may be simpler. 

However, it will be shown that the inference mechanism of an automated 

diagnostician based on this theory will eventually find all of the minimal conflict sets.

Reiter provides an elegant means of computing hitting sets through the use of a

hitting set tree (HS-tree). Minimal hitting sets are determined by a pruned HS-tree.

Let C be a collection of sets. An HS-tree, T, for C is a smallest 
edge-labeled and node-labeled tree with the following properties:

(1) The root of T is labeled by V if C is empty. Otherwise the root is 
labeled by a set of C.

(2) If n is a node of T, define H(n) to be the set of edge labels on the 
path in T from the root node to node n. If node n is labeled by V then it 
has no successor nodes in T. If node n is labeled by a set L of C then for 
each a e £, node n has a successor node n0 joined to node n by an edge 
labeled by a. The label for node na is a set S e C such that S n H(n,) = {} if 
such a set S exists. Otherwise, V is the label for node n„.

Reiter states that H(n) for a node n labeled by V is a hitting set for C and each

minimal hitting set for C is H(n) for some node n for which V is the label. In

diagnosis, only minimal hitting sets are desired. A pruned HS-tree will be constructed
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in such a way that only the minimal hitting sets are in the tree. Thus, for any node n 

in the pruned HS-tree labeled by -J, #(«) is a minimal hitting set.

Some difficulties arise in applying the HS-tree structure to the process of 

computing diagnoses. First, in the diagnostic process, the sets in the collection are 

conflict sets for (SD, COMPONENTS, OBS). These sets arc not explicitly known 

and it will be shown that all of the minimal conflict sets must appear in the 

collection. Secondly, the determination of a set S  e C to label a node is 

computationally expensive since S is computed by the reasoning component. 

Therefore, it is necessary to use a method which incrementally builds and prunes the 

HS-tree so that only minimal hitting sets are found and the number of invocations of 

the reasoning component is kept small. The method as stated by Reiter is:

(1) Generate the pruned HS-tree breadth-first, generating nodes at any fixed level 

in the tree in left-to-right order.

(2) Reusing node labels: If node n is labeled by a set S e C, and if ri is a node 

such that //(«') fl S = {}, then label ri by S. Such a node ri requires no access 

to C. The label of node ri is underlined to indicate that it is a label determined 

by reusing an existing label.

(3) Tree pruning:

(i) If node n is labeled by V and node ri is such that H(n) £  //(«'), then close 

the node ri. A label is not computed for ri nor are any successor nodes 

generated. A closed node is denoted by x .

(ii) If node n has been generated and node ri is such that H(ri) — H{ri) then 

close node ri.

(iii) If nodes n and ri have been respectively labeled by sets S and S' of C, and 

if S' is a proper subset of S, then for each a e  S — S' mark as redundant 

the edge from node n labeled by a. Reiter claims that a redundant edge, 

together with the subtree beneath it, may be removed from the HS-tree
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while preserving the property that the resulting pruned HS-tree will yield all 

minimal hitting sets for C. A redundant edge in a pruned HS-tree is 

indicated by cutting it with "X"

Reiter's claim that a tree pruned in this manner will yield all of the minimal hitting 

sets is not correct. The interaction of the closing rules, (i) and (ii) above, and the 

removal of redundant edges, (iii) above, can result in the loss of minimal hitting sets 

and therefore, an incomplete diagnostician. This is discussed in detail in Section B of 

Chapter IV.

In the context of the diagnostic process, an access to the collection of sets C in 

the HS-tree algorithm is an invocation of the inference mechanism. When a label for 

a node n must be computed (that is, the node cannot be closed or relabeled) then the 

underlying reasoning component must return one of two possible values. If there 

exists a conflict set S such that H(n) n S = {}, then the reasoning component must 

return vS\ otherwise the distinguished value >/ is returned. Thus, when invoked, the 

reasoning component is passed the set COMPONENTS — H(ri) as well as the system 

description and observations. If SD U OBS U (-iAB(c) j c e COMPONENTS — //(«)} 

is consistent, then >/ is returned. Otherwise, a conflict set (not necessarily minimal) is 

returned.

Testing the consistency of SD U OBS U {->AB(c) | c e COMPONENTS — H(n)} 

corresponds to the concept of constraint suspension which Davis used. Since the 

components in H{n) are considered abnormal, the usual functional constraints on 

their behavior are not applied.

Consider the example of the full adder under the set of observations specified on 

page 25. An HS-tree for the example is shown in Figure 6 . Clearly, this is not the 

only HS-tree which could be constructed. The shape of the tree and the number of
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invocations of the inference mechanism which are needed to complete the tree 

depends on the order in which node labels are computed.

Note that the single fault diagnoses are determined by the nodes labeled with V 

at level 1 (the root is level 0) in the tree. If diagnoses of cardinality k or less are 

desired, then the construction of the HS-tree can be halted as soon as level k is 

complete. Thus, the single fault assumption which is prevalent in diagnostic work fits 

in well with the HS-tree structure.

Another common assumption in diagnostic work is the non-intermittency 

assumption. The non-intermittency assumption requires components to behave 

consistently over time. The relationship of the non-intermittency assumption to the 

HS-tree is discussed in the section on handling multiple sets of observations (Section 

B of Chapter V).
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Recall that the diagnostician developed by de Kleer and Williams makes use of 

probability information. The candidate lattice is explored in a best-first manner based 

on the probability of the diagnosis being developed by a particular path. This 

technique could be incorporated into the construction of the hitting set tree. Rather 

than building the pruned tree in a breadth first fashion, the node for which the H(n) 

value represents the partial diagnosis with the highest probability would be expanded 

first. If the probability of any diagnosis emanating from a particular node falls below 

some threshold value, that node is not expanded.

When multiple diagnoses are indicated by the observations, it is desirable to 

reduce the number of diagnoses by taking additional measurements on the system. 

Genesereth [Ge84] presents a method for suggesting measurements. Part of that 

method involved the used of the novelty check which was discussed in the section on 

Genesereth's work. The use of the novelty check, however, is directly tied to the use 

of resolution residue as the inference mechanism. It is not clear whether the novelty 

check can be extended for an inference mechanism based on some other technique.

Reiter provides a general theorem concerning how new measurement

information relates to the diagnoses for a system.

Theorem: Suppose every diagnosis for (SD, COMPONENTS, OBS) 
predicts one of n , -.fl. Then:

1) Every diagnosis for (SD, COMPONENTS, OBS) which predicts n  is a 
diagnosis for (SD, COMPONENTS, OBS U {II}).

2) No diagnosis for (SD, COMPONENTS, OBS) which predicts - ,n  is a 
diagnosis for (SD, COMPONENTS, OBS U {El}).

3) Any diagnosis for (SD, COMPONENTS, OBS U {n}) which is not a 
diagnosis for (SD, COMPONENTS, OBS) is a strict superset of some 
diagnosis for (SD, COMPONENTS, OBS) which predicts —«n. In other 
words, any new diagnosis resulting from the new measurement n  will be a 
strict superset of some old diagnosis which predicted —i fl.
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Reiter's theorem on measurements is important to an overall theory of 

diagnosis, but it does not address a very significant question. That question is: At 

what points in a device should measurements be taken in order to provide the most 

useful information in the diagnostic process? A measurement heuristic is discussed in 

Section D of Chapter V.

The difficulty of reducing the number of diagnoses is illustrated by point three of 

the theorem. While it is true that measurements can confirm or reject existing 

diagnoses, the number of diagnoses can increase. Further, the number of components 

involved in a particular diagnosis can also increase resulting in new diagnoses. Reiter 

raises an important research question with respect to measurements. Is is possible to 

identify which measurement(s) will simply filter existing diagnoses and not result in 

any new diagnoses? The answer to this open question would be a significant result 

for diagnosis from first principles.

Another question which Reiter raises is how to make use of the existing HS-tree 

with the new measurement information. Because of the amount of computation 

necessary to build an HS-tree, it is desirable to make use of already known value 

information when rejecting existing diagnoses or computing new diagnoses. A 

method for extending the existing HS-tree to determine the diagnoses in the presence 

of measurement information is discussed in Section C of Chapter V.

C. REPRESENTATION OF A DEVICE

1. Introduction.

A language which is suitable for representing the type of information found in 

an annotated schematic must be selected as the representation language for a 

diagnostician based on first principles. The representation of the device must convey
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the information necessary to make simulation of the the device possible and allow for 

the determination of conflict sets when the device is malfunctioning.

In the life cycle of a device, different types of data are required in different 

phases. Major tasks in the life cycle include design verification, manufacturing, 

production line quality control testing, and diagnosis. While there is clearly some 

overlap among these tasks, they all require a different view of the device. Some of 

the information necessary to carry out one phase is relevant to other phases but 

much of the information is irrelevant. Therefore, a single, universal description of a 

device that includes all of the information necessary for all of the phases is not 

practical.

Another problem inherent in representing a device symbolically is the amount of 

information which must be included. This is particularly true of complex devices. 

However, these are precisely the devices for which automated diagnosticians, 

especially those utilizing the first principles approach, are most needed. Certainly the 

use of hierarchical design information can alleviate this problem by reducing the 

amount of information needed to describe any given level in the hierarchy as 

compared to the entire device.

Singh [5/873 has investigated the use of design information and description 

languages. He examines the problem of making use of essential information in the 

descriptions of a device which are used in the various phases of the life cycle. He also 

considers automatically reformulating design information in order to make better use 

of it. The goal of his work is the efficient generation of tests to verify that a device is 

manufactured correctly.

A discussion of the requirements for a description language which is appropriate 

for diagnosis begins with a device. A device is a set of components with a defined 

and unchanging physical configuration. Along with a physical structure, the
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components of the device and the device itself have defined functions when operating 

correctly. If the components are rearranged or the function of a component is 

changed, a new device results.

In any language, a distinction is made between the syntax of a language and its 

semantics. A design description language should not admit ambiguous sentences, as 

that would imply that the device does not have a definite physical structure or 

function. A desirable characteristic of a device description language for diagnosis is 

device independence. The advantage of using a device independent language is that 

the various descriptions corresponding to the different hierarchical views can be 

provided in the same language.

In general, a language for specifying information to be used in manufacturing a 

device cannot be device independent. Whether it is practical to maintain a device 

independent language for diagnosis is an open question. In order for the first 

principles approach to be widely applicable, automated translation of information 

expressed in a design language to the descriptive language of the diagnostician must 

be accomplished.

2. Representation Based on Predicate Calculus.

The use of predicate calculus provides a device independent language for 

describing the device and making inferences about its operation. The syntax and 

semantics of sentences in the predicate calculus are well-defined. The information 

expressed by the design includes the specific sentences in the design and all other 

sentences which can be derived from the design by sound inference rules.

There are different types of symbols: constants, variables, functions, and 

predicates. Functions and predicates have associated with them an arity. These 

symbols can be combined to form terms where
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1) A constant is a term
2) A variable is a term.
3) I f / is  an n-ary function and /„ ..., /„ are terms th e n / / , , ..., /„) is a term.
4) Terms are generated by a finite number of applications of rules 1 through 3.

Functions and predicates may be written using infix rather than the prefix notation 

used above. Predicates are mapped to TRUE or FALSE and inferences are made 

based on predicates.

If P is an n-ary predicate and /„ ..., /„ are terms, then / ’(/„..., /„) is an atom. 

Atoms are themselves sentences and can also be combined with logical operators to 

form other sentences. The logical operators used in this work are negation (-.), 

conjunction ( a ) ,  disjunction ( v  ), and implication (=>).

The expressive power of the predicate calculus is due to the use of variables and 

the quantification of those variables. Variables in the context of sentences are 

universally or existentially quantified. A variable, v, which is universally quantified is 

denoted by adding (Vv) to the beginning of the sentence. The meaning of the 

resulting sentence is that the sentence is true regardless of the object which is used for 

the variable v. If the variable v is existentially quantified, (3v) is added to the 

beginning of the sentence. The meaning of the resulting sentence is that there is at 

least one object which can be used for v that makes the sentence true. When 

describing combinational devices, the use of universal rather than existential 

quantifiers in the design description is typical. The reader is referred to [CL73]] or 

[ m i ]  for a more detailed discussion of predicate calculus.

As with any language, the meaning of a sentence in the predicate calculus is 

defined through the semantics of the language. The basic element of the semantics is 

an interpretation. The interpretation of a sentence provides a domain and an 

assignment to constants, functions, and predicates which occur in the sentence. In 

the case of Boolean combinational circuits, the interpretation which is applied to the 

description of the circuit is the standard interpretation of Boolean algebra.
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Consider again the description provided by Reiter of the full adder which was 

presented in Figure 5. The variables occurring on each line of the description are 

distinct and are universally quantified. The constants which appear in the description 

are 0, 1, EX1, EX2, Al, A2, and Ol. When inferences are carried out on the 

description, the individual sentences are combined to form a single sentence. The 

single sentence is the conjunction of the simpler sentences with the appropriate 

distinction of the variables. For readability, = is written as an infix operator.

In the predicate calculus, a sentence is either satisfiablc (consistent) or 

unsatisfiable (inconsistent). A sentence is satisfiable if and only if there is at least one 

interpretation which makes the sentence true. It is unsatisfiable if and only if no 

interpretation exists which makes the sentence true. A sentence is valid if and only if 

every interpretation makes the sentence true.

According to Reiter's characterization of a diagnosis, a diagnosis is a minimal 

set of components (which are constants in the description) such that under the 

assumption that only those components are malfunctioning, an interpretation exists 

which makes the system description consistent. The difficulty lies in determining the 

consistency of the system description and observations. In general, the question is 

undecidable.

A language based on predicate calculus has been used as the representation 

language in first principles diagnosticians. The description given by Genesereth of the 

full adder (Figures 2 through 4) is based on the predicate calculus. The syntax is 

modified slightly for the resolution residue inference mechanism. The predicate VAL 

is used instead of the operator =.

The primary advantage in using predicate calculus as the description language is 

its generality and robustness. The difficulty lies in developing inference mechanisms 

which can efficiently use the design information. Genesereth uses a very general
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format for the description of the device and then uses focusing techniques within the 

inference mechanism. Reiter does not discuss the form of the inference mechanism 

and ignores efficiency concerns.

The approach taken in this work has been to identify the critical areas in the 

design description and tailor the representation and the inference mechanism to 

emphasize these areas. An example of a critical area is the definition of connections. 

It is well known that automated reasoning systems cannot effectively deal with 

equality. Because a connection represents an instance where equality reasoning is 

applied, it can be a source of inefficiency. By handling connections separately from 

the rest of the description, the inference mechanism can reason more effectively.

The disadvantage of specializing the description and inference mechanism is that 

adding assumptions like the non-intermittency assumption can be more difficult. 

Genesereth states that assumptions such as the non-intermittency assumption can be 

included as deemed appropriate by the user. This is true in theory since the 

representation and inference mechanism are general. The practicality of this is 

another matter. The non-intermittency assumption and the assumption of ideal 

connections (sec Figure 4) each contain several variables. This will allow these 

assumptions to enter into many inferences and can cause a general inference 

mechanism to become unfocused. In addition, if the assumption of ideal connections 

is not used, the inference mechanism must be capable of non-monotonic reasoning.

In this work, the assumption of ideal connections is built into the model. An 

area of future research is to investigate ways of removing this assumption without 

causing a great loss of efficiency. The non-intermittency assumption can be applied 

or not. However, when the assumption is applied it is not included as a sentence in 

the design description. Rather, it is part of the inference mechanism. This allows for
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control over how reasoning about the assumption is applied. A more detailed 

discussion of the implementation appears in Chapter VI.

Another question which is related to the representation of devices is how to 

represent sequential devices. None of the diagnosticians based on first principles have 

been designed to handle devices which have feedback. It is not known whether the 

use of predicate calculus as the representation language is appropriate for these 

devices.
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III. INFERENCE MECHANISM

A. INTRODUCTION

An inference mechanism is a procedure which applies inference rules to a 

collection of assumptions in order to derive additional information. In a 

diagnostician which is based on Reiter's theory of diagnosis, it is the role of the 

inference mechanism to determine whether the system description and observations 

are consistent when a particular set of components is assumed to be functioning in an 

(unspecified) abnormal manner. If so, the set of components is a diagnosis for the 

system. Otherwise, the inference mechanism must identify a set of components, 

known as a conflict set, for which the assumption that the components were 

functioning correctly resulted in the inconsistency. The conflict set will allow the 

correct combination of components to be tested so that the set of diagnoses can be 

determined. Clearly, the inference mechanism plays a central role in diagnosis.

The inference mechanism is a theorem prover, although the domain of the 

theorem prover is usually specialized. A theorem prover is sound when the 

conclusions drawn by it are true when the premises are true. In a theorem proving 

environment, the goal is to find the proof. If a set of clauses is to be shown to be 

valid, the clauses are negated and a refutation is sought. If a theorem prover is 

guaranteed to find a refutation when one exists, the theorem prover is said to be 

refutationally complete.

The behavior of a theorem prover for first order logic cannot be predicted if a 

refutation does not exist. The theorem prover may halt. If so, and if the theorem 

prover is complete, then it can be correctly concluded that the original clauses are 

satisfiable. However, the theorem prover may never halt. The question of 

determining the consistency of a set of clauses in first order logic is undecidable; that
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is, there is not procedure which can in all cases determine whether the clauses are 

consistent or inconsistent. Since there are, however, procedures which are sound and 

complete for determining inconsistency in first order logic, the problem is said to be 

scmi-decidablc.

B. THEOREM PROVING IN FIRST ORDER LOGIC

In the theory of diagnosis developed by Reiter, some very general criteria were 

established for the inference mechanism of an automated diagnostician based on the 

first principles approach. The inference mechanism must be a decision procedure for 

testing the consistency of the clauses which describe the system under a set of 

observations. If an inconsistency is found, the components contributing to that 

inconsistency must be returned as a conflict set.

In most first principles diagnostic systems currently under development, the 

representation language is based on first order logic. First order logic provides for a 

rich representation, but two major problems arise. First, even when in a decidable 

domain such as boolean circuits, a theorem prover for first order logic generally is not 

a decision procedure. The second problem is that a general theorem prover is too 

inefficient for use in a diagnostic setting. In developing his theory, Reiter chose to 

ignore issues of representation, implementation, and computational costs. However, 

even very simple diagnostic problems illustrate that these issues should be of major 

concern. Consider two examples: the full adder shown in Figure 1 and the more 

complex two bit adder-subtracter shown in Figure 31. These examples will illustrate 

the need for a specialized reasoning system, rather than a general theorem prover, as 

the inference mechanism.
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1. ITP.

The Interactive Theorem Prover (ITP) [<9L84] is a general theorem proving 

system which was developed by the Mathematics and Computer Science Division of 

Argonne National Laboratory. The system is designed to provide a convenient 

environment for research in automated theorem proving. It is a clause-based 

reasoning system which supports several inference techniques and strategies. The ITP 

input clauses for the example circuits are listed in Figures 7 through 10. The input 

clauses for the full adder were developed directly from Reiter's system description of 

the device. Clauses which are input to ITP are divided into four groups: Axioms, Set 

of Support, Demodulators, and Have Been Given. In both circuit examples, there arc 

no clauses in the Have Been Given group.
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Axioms:
System description axioms from Figure 8

Set of Support:
-AB(EXl);
-AB(EX2);
-AB(A1);
-AB(A2);
-AB(Ol);
ANDG(Al);
ANDG(A2);
EXORG(EXl);
EXORG(EX2);
ORG(Ol);
OUT(EXl) = IN1(EX2); 
OUT(EXl) = IN2(A2); 
OUT(A2) = INl(Ol); 
OUT(Al) = IN2(01); 
INI(A2) = IN2(EX2): 
INl(EXl) = INl(Al); 
IN2(EX1) = IN2(A1);

Demodulators:
INl(EXl) = I;
IN2(EX1) = 0;
IN2(A1) = 0 ;
INl(Al) = 1;
IN2(EX2) = 1;
IN1(A2) = 1;
OUT(Ol) -  0;
OUT(EX2) = 1;

The function definitions for Boolean algebra from Figure 9 are also 
included as demodulators.

Figure 7. ITP clauses describing the full adder



43

Axioms:
x = x;
-(1 -  0 );
-(0 =  1);
-EXORG(x) | AB(x) | OUT(x)= EXOR(INl(x),IN2(x)); 
-ANDG(x) | AB(x) | OUT(x) = AND(INI(x),IN2(x)); 
-ORG(x) | AB(x) | OUT(x) = OR(INl(x),IN2(x)); 
INl(x) = 0  | INl(x) -  1;
IN2(x) = 0 | IN2(x) = 1;
OUT(x) = 0 | OUT(x) = 1;

Figure 8 . Axioms which form the basis of the system description

Demodulators:
AND(0,x) -  0; 
AND(x,0) = 0; 
AND(l.l) = i; 
OR(l,x) = 1; 
OR(x,l) = 1; 
OR(0,0) = 0; 
EXOR(x,x) = 0 
EXOR(1,0) -  1 
EXOR(0,1) = 1

Figure 9. Definition of Boolean functions included as demodulators

The representation of these circuits is heavily dependent on equality. While 

humans can handle equality very easily, automated reasoning systems cannot. 

Paramodulation and demodulation are techniques used by automated reasoning 

systems for dealing with equality. Paramodulation [ 1F7?69] is an inference rule 

which is applied to clauses which contain the equality relation. Demodulation 

C fKo67H is a rewriting process which is designed to simplify clauses through equality 

substitution. It is through the use of paramodulation and demodulation that the 

predicate equals takes on special significance.



44

Axioms:
System description axioms from Figure 8

Set of Support:
EXORG(EXl);

EXORG(EX6);
ANDG(Al);

ANDG(A4);
ORG(Ol);
ORG(()2);
-AB(EXl);

-AB(02);
IN1(EX2)= OUT(EXl);
IN1(A1)=0UT(EX1);
INl(EX3)=OUT(EX2);
IN2(A2)= OUT(EX2);
IN 1(01)= OUT(A2);
IN2(01) = OUT(Al);
IN 1(EX5) = OUT(EX4);
IN1(A3)= OUT(EX4);
IN 1(EX6) = OUT(EX5);
IN1(A4)=0UT(EX5);
IN1(02)= 0UT(A4);
IN2(02)= OUT(A3);
IN2(A4)= OUT(Ol);
IN2(EX6)= OUT(Ol);

Demodulators:
IN1(EX1) = 0;
IN2(EX1) = 0;
IN1(A2) = 0;
IN2(EX3) = 0;
IN2(EX2)= 1;
IN2(A1)= 1;
OUT(EX3)= 0;
IN1(EX4) = 0;
IN2(EX4)= 1;
IN2(EX5)= 1;
IN2(A3)= 1;
OUT(EX6)= 1;
OUT(02)= 1;

The function definitions for Boolean algebra from Figure 9 arc also 
included as demodulators.

Figure 10. ITP clauses describing the two bit adder-subtracter
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Equality is defined by the axioms of reflexivity, symmetry, transitivity, and 

substitution. If reasoning about equality is accomplished through the inclusion of 

these axioms, many inferences arc needed to derive clauses which are obvious 

consequences of the clauses and the properties of equality. In addition, many clauses 

which are sound, but useless in finding an inconsistency or determining consistency, 

can be derived from these axioms. Thus, the clause space becomes cluttered and the 

theorem prover unfocused.

Paramodulation eliminates the need to include the equality axioms except that 

of reflexivity. (The clause x  = x  is included as an axiom.) Since the clause space is 

smaller and the reasoning about equality more natural, the theorem prover is more 

focused. Demodulation, as a rewriting in place, helps to keep the clauses simpler. 

However, the problem of reasoning about equality is far from solved. 

Paramodulation and demodulation are important tools, but developing more powerful 

reasoning systems which handle equality better is an important research topic. This 

and other related research questions in the area of automated reasoning are discussed 

in [JE0 88].

The inference rule of binary resolution [/?o65] is the foundation of clause based 

theorem proving systems. Binary resolution results in a very small sized inference 

since only two clauses are used in an inference step. The use of Unit-Resulting 

resolution (UR-resolution) can increase the step size of inferences. UR-resolution 

combines several clauses simultaneously to produce a unit clause, which is a clause 

that contains only one literal. In addition, UR-resolution allows only one non-unit 

clause to take part in the deduction.

The emphasis that UR-resolution places on unit clauses is appropriate for the 

clauses in the system description of a circuit. The unit equality clauses that arc 

derived will become demodulators which can be used to simplify the clause space. In
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addition, many of the initial clauses are unit clauses. It should be noted that 

UR-resolution is no more powerful than binary resolution in terms of what can be 

deduced. Anything which can be deduced through UR-resolution can be derived 

through one or more applications of binary resolution. However, the intermediate 

clauses which binary resolution creates and retains in the clause space are not present 

if UR-resolution is used.

The set of support strategy and subsumption can aid in the discovery of the 

proof. When a set of support is utilized, any clause which is generated by the 

automated theorem prover must have at least one parent which has support. A 

clause is said to have support if it is a member of the set of support. As new clauses 

arc generated, they are added to the set of support. If the initial members of the set 

of support are judiciously chosen, the theorem prover can be kept more focused.

Subsumption allows the theorem prover to delete a clause which is less general 

than some other clause. This reduces the size of the clause space and retains the 

simplest clauses. Care must be taken when using subsumption and set of support as 

a loss of completeness can occur. See [  JT084] for a discussion of this.

Table I contains statistics for the determination of conflict sets for the two 

example circuits by ITP. In these cases, the input clauses were known to be 

inconsistent and thus yield a conflict set. UR-resolution, paramodulation, 

demodulation, subsumption, and the set of support strategy were used. The CPU 

times are inference times and do not include the time necessary to set the options, 

read in the clauses, or display the proof. The conflict sets represent node labels in a 

hitting set tree and the components listed as abnormal are the collection of 

components on the path from the root to the node labeled by the conflict set. Note 

that the conflict sets returned by ITP, or any other general theorem prover, are not
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necessarily minimal. The effect of non-minimal conflict sets on the computational 

cost of the diagnostic problem is discussed in Chapter IV.

Table I. STATISTICS ON THE DETERMINATION OF CONFLICT SETS BY 

ITP

Circuit Conflict Set
Input

Clauses
New

Clauses
Time
(sec)

Abnormal
Components

(EX1 EX2) 43 27 11.36 —

Full adder (Al A2 01 EX1) 43 30 11.70 EX2

(A2 Ol EX1) 43 28 10.70 EX2 Al

(EX1 EX2 EX3) 69 28 13.08 —

Adder-
subtracter

(EX1 EX4 EX5 EX6 Al 
A2 Ol)

69 43 20.55 EX2

(EX1 EX5 EX6 Al A2 A3 
A4 Ol 02)

69 250 346.33 EX2 EX4

Even if the performance figures from Table I were acceptable, a general theorem 

prover is not a decision procedure for determining the consistency of first order logic 

clauses. When the clause set is satisfiable, the only way that a general theorem 

prover could determine satisfiabilty is by creating new clauses until no more new 

clauses result. Clearly, even when this is theoretically possible, it is not practically 

computable. This work with ITP was done to determine CPU time benchmarks for 

the determination of conflict sets.
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2. Inference Mechanism Based on Term Rewriting.

Hsiang [7/s85a] has developed a method for refutational theorem proving 

which is based on term rewriting. His results indicate that in certain domains, such a 

theorem proving system is very efficient. Further, Hsiang's work has been used by 

Chandrasekhar ct al. [CF87] as the basis of a procedure for verifying the design of 

combinational circuits. The procedure uses theorem proving and makes exhaustive 

simulation of the circuit is unnecessary. Since the problems of verification and 

diagnosis are related, it was thought that an inference mechanism based on term 

rewriting should be investigated. A Common Lisp implementation of a theorem 

prover based on term rewriting was developed in order to determine its applicability 

as an inference mechanism in a diagnostician.

A term rewriting system is a finite set of directed equations of the form A p, 

which are called rewrite rules or reductions. Here, A and p are terms and the equality 

is directed by some ordering scheme. A term t can be reduced by A —> p if there is a 

subterm s of t and a substitution o such that Ao — s. The substitution is a set of 

variable-term pairs. When the substitution o is applied to a term t, for every 

variable-term pair in a, whenever that variable occurs in / it is replaced by the 

associated term. When the term t is reduced by the reduction A -* p, the substitution 

which makes Ao = s is applied only to A. Thus, there is said to be a match between A 

and s and s is said to be an instance of A. The reduction is made by replacing s by 

pa. A term is irreducible or in normal form if no rule can be applied to reduce it.

Of particular interest are rewriting systems which possess the properties of finite 

termination and unique termination. Finite termination means that for all terms, 

after a finite number of applications of the rewrite rules, an irreducible term is 

produced. Unique termination means that if a term t can be reduced in two ways to 

terms r and s, then the normal forms of r and s are the same. A term rewriting
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system which satisfies these properties is called a canonical rewriting system or a 

complete set of reductions.

A complete set of reductions for Boolean algebra using the operations of AND, 

OR, and NOT does not exist since there is no unique representation of a term under 

these operations. However, Hsiang showed that by representing Boolean algebra 

formulas using the Boolean operations of AND ( a )  and EXCLUSIVE-OR (©) that a 

complete set of reductions for Boolean algebra exists using these operations. As a 

consequence of this representation, every formula in the propositional calculus has a 

unique normal form. The normal form is either 0, 1, or t, © ... © r„, where the /, are 

products of distinct positive literals. The rewrite rules in the complete set of 

reductions are:

* © 0  -*• jc
x  © jc -» 0
X  A  1 X
X  A  X  - *  X
X  A  0  0
x a  (y @ z) -* x a  y © x a  z

It should be noted that the operators a  and © are both associative and 

commutative with identity I and 0 respectively. This complete set of reductions 

requires the use of a unification algorithm which incorporates into the unification 

process the associative and commutative properties of the operators a  and ®. The 

procedure for determining a complete set of reductions for an equational theory was 

first developed by Knuth and Bendix [ 0 7 0 ] .  The Knuth-Bendix completion 

procedure could not handle equational theories which contained commutative 

operators. Associative operators could be handled to a limited extent by including a 

rewrite rule of the form J[f[x, y), z) -* J[x, J\y, z)) for each associative operator f. 

Note that this does not represent a complete definition of associativity. Peterson and 

Stickcl [PS81] extended the Knuth-Bendix completion procedure to handle
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associative and commutative theories. Hsiang used the Peterson-Stickel completion 

procedure to determine the complete set of reductions for Boolean algebra.

Terms involving the Boolean operators implication (=>), disjunction, ( v ), 

negation (-i), and bi-implication (<=>) are transformed into terms using the operators 

a  and © by the following rules. The operator a  is indicated by the juxtaposition of 

the operands.

x =>y -* xy © x © 1
x v -*■ xy © x © y
—iX  —► X  1

x -> x ©  y ©  1
The direct application of these rules to transform Boolean terms into their 

EXCLUSIYE-OR and AND equivalents, however, is very inefficient. Hsiang gives a 

strategy for carrying out this transformation more efficiently.

The procedure for showing that a sentence d> is valid is to first find the clausal 

form of the sentence's skolemized negation. Each clause Q of C,a ... a C„ becomes a 

rewrite rule Ct~* 1. Each C, is transformed into its equivalent in terms of © and a  

and reduced to normal form according to the reductions in the complete set of 

reductions for Boolean algebra. The N-strategy refutational procedure is then 

applied. The N-strategy is similar to the Knuth-Bendix completion procedure. The 

rules formed from C,a ... a C„ are overlapped to form new rules until the contradiction 

1 —*• 0 is found. At all times in the process, the rules are kept in normal form and all 

rules in the set are kept inter-reduced.

The theorem prover is refutationally complete and as such the rule 1 -*• 0 will 

result if the input clauses are inconsistent. If the input clauses are consistent, the 

strategy will either produce infinitely many rules or complete the superposition 

process and terminate with a finite set of rules.
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As originally developed by Hsiang, the theorem prover had no "built in" 

understanding of equality. Nonetheless, some impressive results for proving theorems 

in certain domains were obtained. Hsiang C//s85&3 has since incorporated some 

reasoning about equality which is analagous to paramodulation in a resolution based 

theorem prover.

For this work, a prototype system incorporating demodulation was written. 

Hsiang discusses several techniques for improving the efficiency of a theorem prover 

based on rewriting. These include special orderings and lookup procedures, 

generating unifiers in a specific order, splitting a long rule into two or more shorter 

rules, and others. It should be noted that not all of these techniques were 

incorporated in this implementation. Thus, it might be possible to realize significant 

improvements in run times by using these techniques.

Demodulation was a natural addition to the N-strategy since as part of the 

N-strategy rules are kept fully reduced by the reductions in the complete set of 

reductions for Boolean algebra and the other rules in the set. The input included a 

list of demodulators as well as the input clauses. The input for the full adder and the 

two bit adder-subtracter examples is shown in Figures 11 and 12, respectively. Since 

the circuits arc Boolean, two axioms which assert that 0 and 1 are distinct constants 

were added. The input is in clausal form and each input line is a disjunction of 

literals. The input also contains a list of components. The diagnostician builds the 

appropriate clauses asserting that a particular component is to be treated as 

abnormal, AB(c), or functioning correctly, -.AB(c). Note that the function 

definitions for the Boolean functions are included as demodulators.



52

(setq components '(Al A2 Ol EX1 EX2))

(setq origrules '(((- = 1 0 ))
((- = o l))
((- ANDG x) (AB x) (= (OUT x) (AND (INI x) (IN2 x))))
((- EXORG x) (AB x) (= (OUT x) (EXOR (INI x) (IN2 x)))) 
((- ORG x) (AB x) (=  (OUT x) (OR (INI x) (IN2 x)))) 
((ANDG Al))
((ANDG A2))
((EXORG EX1))
((EXORG EX2))
((ORG Ol))))

(setq origDML '(((INI EX2) (OUT EX1) nil)
((IN2 A2) (OUT EXl) nil)
((INI Ol) (OUT A2) nil)
((IN2 Ol) (OUT Al) nil)
((OUT Ol) 0 nil)
((OUT EX2) 1 nil)
((INI EXl) 1 nil)
((IN2 EXl) 0 nil)
((INI A2) 1 nil)
((INI Al) 1 nil)
((IN2 Al) 0 nil)
((IN2 EX2) 1 nil)
((OR 1 x) 1 nil)
((OR x 1) 1 nil)
((OR 0 0) 0 nil)
((AND 0 x) 0 nil)
((AND x 0) 0 nil)
((AND 1 1) 1 nil)
((EXOR x x) 0 nil)
((EXOR 0 1) 1 nil)
((EXOR 1 0) 1 nil)))

Figure 11. Lisp input to the theorem prover for the full adder

When a new rule is formed, a list of particular ancestors of that rule is 

associated with it. Only ancestors of the form -iAB(c) need be carried with the rule. 

A full recreation of the proof is not necessary since only the conflict set is needed. 

Note that the last element of every demodulator in the input is the distinguished Lisp
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(setq components '(EXl EX2 EX3 EX4 EX5 EX6 Al A2 A3 A4 Ol 02))

(setq origrules '(((- = 1 0 ))
((- -  0 1))
((- ANDG x) (AB x) (= (OUT x) (AND (INI x) (IN2 x))))
((- EXORG x) (AB x) (= (OUT x) (EXOR (INI x) (IN2 x)))) 
((- ORG x) (AB x) (=  (OUT x) (OR (INI x) (IN2 x))))
((= (INI x) 1)(= (INI x) 1))
((= (IN2 x) 1)(= (IN2 x) 1))
((= (OUT x) 1)(= (OUT x) 1))
((EXORG EXl))

((EXORG EX6))
((ANDG Al))

((ANDG A4))
((ORG 01))
((ORG 02))))

(setq origDML '(((INI EXl) 0 nil)
((IN2 EXl) 0 nil)
((INI A2) 0 nil)
((IN2 EX3) 0 nil)
((IN2 EX2) 1 nil)
((IN2 Al) 1 nil)
((INI EX2) (OUT EXl) nil)
((INI Al) (OUT EXl) nil)
((INI EX3) (OUT EX2) nil)
((IN2 A2) (OUT EX2) nil)
((INI Ol) (OUT A2) nil)
((IN2 Ol) (OUT Al) nil)
((OUT EX3) 0 nil)
((INI EX4) 0 nil)
((IN2 EX4) 1 nil)
((IN2 EX5) 1 nil)
((IN2 A3) I nil)
((INI EX5) (OUT EX4) nil)
((INI A3) (OUT EX4) nil)
((INI EX6) (OUT EX5) nil)
((INI A4) (OUT EX5) nil)
((INI 02) (OUT A4) nil)
((IN2 02) (OUT A3) nil)
((IN2A4) (OUT 01) nil)
((IN2 EX6) (OUT Ol) nil)
((OUT EX6) 1 nil)
((OUT 02) 1 nil)

The definitions for the Boolean functions are also included as 
demodulators.

Figure 12. Lisp input to the theorem prover for the two bit adder-subtracter



54

symbol nil. This symbol indicates that the demodulator was part of the input and has 

no ancestors.

As implemented, the inference mechanism is not complete. The lack of 

completeness manifests itself when the inference mechanism is called to label deep 

nodes in the hitting set tree. (A deep node is a node with relatively many 

components labeling the edges on the path from the root to the node. Recall that 

these components are treated as functioning abnormally.) Two points should be 

noted. First, none of the diagnosticians based on first principles implemented thus far 

are complete as implemented. While the diagnostic approach is theoretically 

complete, the inference mechanisms are not complete. Second, a loss of completeness 

at deep nodes is not as serious a problem as it might first appear. The deeper the 

node is in the HS-tree, the more components are involved in the potential diagnosis. 

Generally, a diagnosis containing several components is less likely than a diagnosis 

which involves only one or two components.

The intention was to build a prototype and then establish completeness by 

building in more equality reasoning and further specializing the inference mechanism 

by including focusing techniques appropriate to the domain of circuits. However, the 

initial results did not indicate that this type of inference mechanism would perform 

efficiently enough to be of use for the diagnostic problem. Results for the two 

example circuits are shown in Table II.

Certainly, part of the inefficiency of the process is due to the use of 

BN-unification in the superposition of the rules. BN-unification is a form of 

associative-commutative unification and its use is necessary because of the associative 

and commutative properties of the operators © and a . Even so, the performance of 

the theorem prover on the circuit problems was much worse than was expected based 

on the results in Hsiang's paper.
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Table II. STATISTICS ON THE DETERMINATION OF CONFLICT SETS BY 

A TERM REWRITING THEOREM PROVER

Circuit Conflict Set
Input
Rules

New
Rules

Time
(sec)

Abnormal
Components

(EXl EX2) 39 14 28.74 —

Full adder (Al A2 Ol EXl) 38 31 87.60 EX2

(A2 Ol EXl) 37 22 54.01 EX2 Al

(EXl EX2 EX3 EX4 A2) 68 129 2482.50 —

(EXl EX2 EX3 Al) 67 64 593.57 A2

(EXl EX2 EX4 EX5 EX6 
Al A2 Ol)

67 122 1720.58 EX 3

Adder-
subtracter

(EXl EX4 EX5 EX6 Al 
A2 A3 Ol)

67 122 1626.01 EX2

(EXl EX2 EX3 EX4) 66 103 1414.47 A2 Al

(EXl EX4 EX5 EX6 Al 
A2 Ol)

66 101 1205.84 EX2 A3

(EXl EX2 EX3 A2) 66 64 577.58 EX4 Al

(EXl EX2 EX3) 65 58 498.32 EX4 Al A2

However, on examples from Hsiang's paper the theorem prover performed 

efficiently and comparable results were obtained. This raises a significant research 

question in the area of automated reasoning. Researchers in automated reasoning 

have long pointed to the need to be able to determine from the characteristics of the 

problem to be solved what type of inference mechanism and techniques should be 

used. This is something that mathematicians seem to learn through experience. A
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more specific research question raised by this work is to characterize the 

circumstances under which a theorem prover based on term rewriting and the 

complete set of reductions for Boolean algebra performs well.

C. CONSTRAINT PROPAGATION

When reasoning within a specific domain, it is common to use focusing 

techniques in conjunction with a general theorem prover. When one knows how the 

proof is likely to be found or where the proof will not be found, the use of weighting 

strategies or specific inference rules can be helpful in directing the theorem prover.

The use of constraint propagation as the inference mechanism is appropriate for 

the diagnostic domain. This can be seen by considering the source of an 

inconsistency in SD U OBS U (-iAB(c) | ce  C £  COMPONENTS}. If the system 

description is correct, then SD U (-iAB(c) | ce  COMPONENTS} is consistent. An 

inconsistency in SD U OBS U {-iAB(c) | ce  C E  COMPONENTS} will occur when a 

behavior predicted by SD U (-iAB(c) | c e C £  COMPONENTS} differs from the 

observed behavior. Therefore, the emphasis should be placed on the determination of 

predicted values. If a weighting function is used, the function should attach more 

importance to unit equality clauses. These clauses will determine the value of the 

inputs and outputs of the components. A specialized inference rule, such as the 

UR-resolution rule discussed earlier, also emphasizes unit clauses.

When techniques such as weighting functions and special inference rules are 

used in this manner, the goal is to guide the inference mechanism so that in some 

ways it mimics what a human would do in the given situation. When given a diagram 

of a circuit or other device and values for inputs and outputs, a person would use the 

known values to determine the unknown, internal values in the circuit. The new 

values would be calculated by applying the laws or rules which govern the correct
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operation of the components. When all components are assumed to be functioning 

correctly, the reasoning can be done in a "forward'' fashion with the outputs of the 

components determined by inputs. This represents simulation of the operation of the 

device.

When one or more components is assumed to be functioning abnormally, the 

reasoning task becomes more complex and simulation is no longer sufficient for 

discovering contradictions. The output of an abnormally functioning component 

cannot be predicted from its inputs. However, there may be enough constraints on 

the operation of the other components in the device that the outputs of the 

malfunctioning component may be predicted from the behavior and interconnections 

of the other components. This may require that inferences be made about the value 

of inputs based on output values of a functioning component. Thus, the reasoning 

proceeds in both a forward (outputs determined from inputs by simulation) and 

backward (inputs determined from outputs by inferences) fashion. Note that the 

possibility exists that neither forward nor backward reasoning will be able to 

determine all of the values in the device.

The preceding discussion represents an informal description of constraint 

propagation (CSS77], [Z)S80D). The basis of the method lies in the determination 

of a new value (either an input or output of a component) whenever enough 

information about other inputs and outputs is known. The connections between 

components, which in this work are assumed to be ideal, function as conduits of 

values. When a new value is determined, the components which led to the 

determination of the value are recorded along with the value. These components are 

referred to as the antcccdants of the value. When a contradiction is found, the 

antecedants determine the components in the conflict set.
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The value of a particular input or output of a component can usually be 

determined in more than one way. When two values are calculated for the same 

input or output, a coincidence [Z)S80] is said to have occurred. The two values may 

be identical, in which case nothing need be done. The two values may be consistent 

but establish a new constraint. For example, the output of a component may at one 

point be determined to be some variable value represented as xv The same output 

might be determined to be 0 by another set of constraints. The coincidence is 

consistent and also establishes that x, = 0. The third possibility is that the values 

disagree which means that an inconsistency has been found. The antecedants of the 

inconsistency are the union of the antecedants of the two values.

When using constraint propagation as an inference mechanism, the choice of 

what value to propagate next is usually controlled by a queue. The queue may be 

structured in a first-in-first-out manner or the values in the queue may be ordered in 

some way. For example, if the size of the antecedant set is significant, the queue is 

ordered on that basis. This is the case in diagnosis when the inference mechanism 

must return minimal conflict sets.
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IV. ANALYSIS OF HITTING SET TREE APPROACH

A. INTRODUCTION

As mentioned in the review of Reiter's work in Chapter II, a subtle error in the 

algorithm for constructing a pruned HS-tree can result in the loss of minimal hitting 

sets. An analysis of the error, a correction to the algorithm, and a discussion of the 

effectiveness of pruning in reducing the number of calls to the inference mechanism 

are presented in this chapter.

A crucial component of a first principles diagnostician is the inference 

mechanism. Theoretical bounds are developed for the number of calls which must be 

made to the inference mechanism to determine the diagnoses and the empirical results 

of the implementation are compared to these bounds.

B. ANALYSIS OF PRUNING

One of the strengths of using Reiter's theory and the hitting set tree structure as 

the basis of a diagnostician is that the conflict sets returned by the inference 

mechanism need not be minimal. Thus, it is likely that the inference mechanism can 

be kept simpler than is the case if minimality must be guaranteed. However, Reiter's 

techniques for handling the non-minimal conflict sets can result in an incomplete 

diagnostician as it is possible to prune diagnoses from the tree.

Recall the algorithm for generating a pruned hitting set tree for a collection of 

sets C. Reiter proposes that when a node ri is labeled by a set S' and there exists a 

node n labeled by a set S such that S'czS, the redundant edges emanating from node 

n and their associated subtrees should be removed. The redundant edges are those 

edges which are labeled by the elements of S — S'. Reiter considers these edges
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redundant since the minimal hitting sets for C and the minimal hitting sets for 

C — {5} are the same. While this is true, removing redundant edges is analagous to 

the "cut" operator in Prolog [CA/81]. Just as the "cut" can result in a loss of 

completeness by pruning solutions, removing redundant edges can result in minimal 

hitting sets being lost.

The problem arises from the interaction of the pruning rule and the closing 

rules. A closing rule will close the node n when it finds another node ri which will 

lead to the same minimal hitting set(s). This, of course, assumes that the node ri will 

remain in the HS-tree. The pruning rule, however, may remove the node ri, meaning 

that the path to any potential hitting sets will be totally lost, lost from the node n 

path when node n was closed and lost from the node ri path when node ri was 

pruned.

Consider the following example. Figure 13 shows an HS-tree for the collection 

of sets C = {{abc} [b d) {fa} {bee} {b}}. The tree was generated according to the 

method for generating a pruned HS-tree except that redundant edges were not 

removed. The minimal hitting sets are {a b} and {b f). Figure 14 shows the same tree 

except that when the set {b} is discovered, the redundant edges and their subtrees 

emanating from the node labeled by the set {a b c} are removed. This reduces the tree 

to the one shown in Figure 15. Note that the minimal hitting set {a b) is not 

contained in this tree because the node under the a branch of the node labeled (f a)

has been closed.
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In addition to the potential loss of minimal hitting sets, the removal of the 

so-called redundant edges can also lead to an increase in the number of calls to the 

underlying theorem prover. This can occur when there is a set labeling a node in the 

removed subtree which is not represented anywhere else in the tree. The set may 

have to be recomputed through a call to the theorem prover in order to label some 

node m. However, had the subtree not been pruned, node m could have made use of 

the existing label and a duplicate call to the theorem prover would not have been 

necessary.

It should be noted that it is possible for the removal of redundant edges to 

reduce the number of calls to the theorem prover. However, in numerous test cases 

using the implementation of this work, the number of calls has never been decreased 

by removing these edges and their associated subtrees. The following theorem will 

help to characterize when this type of pruning will decrease the number of 

invocations of the inference mechanism.

Theorem 1: Let 5 be a collection of sets which are minimal with respect to set 

inclusion. That is, for all distinct X e S and Y e S, X <£ Y and Y<p X. If T  is a hitting 

set tree for S, then for all X  e S, X  labels a node in T.

Proof. Suppose that there exists a n l e S  that does not appear in T. Let X0 be 

the root node of T. For each x e X0, there is an edge emanating from the root. 

Consider the edge labeled jc0 where x0 ^ X. Such an x„ exists, otherwise X0 £  X, which 

violates the condition that the sets are minimal with respect to set inclusion. Further, 

arrange the elements in X0 so that x0 is the first element in the set. Now, 

X  fl {x0} = { }, so X  is a possible label for the node which is connected to the root by 

the edge labeled jc0. However, since X is not in the tree, some other set X{ was chosen 

to label the node. But there is an x, e X{ such that x, $ X  by minimality with respect 

to set inclusion and x, #  x„ since X{ fl {x0} = {} by definition of hitting set tree.
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Again, arrange the elements in the node label Xl so that x, is the first element in the 

set. Let X ^ X  label the node connected by the edge labeled x, to the node labeled 

Xv Continue building the hitting set tree in this manner. Since the tree is finite, the 

process will terminate.

Let node n be the last node on the path labeled by a set of S and let Xn be the 

node label. H(n) = {x„,... , x„_,} and H(n) n X = { } because of the manner in which 

the tree was constructed. Let node ri be the leaf connected to node n via the edge 

labeled x„ where xn $ X. Again, such an x„ exists. Two cases arise.

i) Node ri is labeled V- #(«') = {x„, •••. U {*„}• However, 

X  fl { {x0, ..., x„_,} U {x„} } = { }, so X  is a candidate label for node ri and therefore, 

node ri cannot be labeled >/.

ii) Node ri is closed. Two cases arise here.

1) There exists a node m labeled V such that H(m) £  H(ri) = {x0, ..., x„}. 

But, X  fl {x0, ... ,x„} = { } so X  D H{m) = {} and X  is a candidate for labeling 

node m. Therefore, node m cannot exist.

2) For some node m, H{m) = //(«')• However, the elements of the sets 

XQ, ..., Xn were always arranged so that the xa, . . . ,x n were first in each. 

Therefore, this path is the left-most path in the tree and the node ri is the first 

node labeled at this level in the tree. Thus, there can be no such node m.

Since these cases are exhaustive and a contradiction was found in each case, there 

exists a node in the hitting set tree T which is labeled by the set X. □

Corollary to Theorem 1: Let S be a collection of sets which are not necessarily 

minimal with respect to set inclusion. Let S' £  S be the collection of all X e S such 

that X  is not a superset of any other set in S. Thus, the collection of sets S' is
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minimal with respect to set inclusion. If T is a hitting set tree for S, then for all 

X  e S', the set X  labels some node in T.

Proof: Suppose that there exists some X e S' such that X  does not label a node 

in T. Consider the construction of T  as in the proof of Theorem 1. Since X  is not a 

superset of any other set in S, for all Xt e S there exists an x, e X, such that x, <£ X. 

Therefore, the proof from Theorem 1 holds. □

Since all of the minimal sets in the collection must label a node of the hitting set 

tree T, in the diagnostic setting all of the minimal conflict sets for 

(SD,COMPONENTS,OBS) will eventually have to be found by the inference 

mechanism and will appear in the hitting set tree.

For any set c' e C such that c' is a superset of some set in the collection, 

whether c' labels a node depends on the order in which the sets are discovered. 

Because node labels are reused whenever possible, a superset can never be computed 

as a label when its subset is already known.

Consider the following example. Figures 16 and 17 show HS-trees for the 

collection of sets {{c a} {ad} {d] {b a) {be} (e b] {a} {e}}. In the tree in Figure 16, 

the redundant edges are not removed and ten references to the collection of sets (calls 

to TP) are required in order to build the tree. In Figure 17, the redundant edges and 

subtrees are removed and the reference to the collection of sets which returned the set 

{e b} is eliminated. It should be noted that this example was constructed by hand 

and in all of the diagnostic problems studied, the number of calls to TP has never 

decreased when the redundant edges are removed.
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Figure 16. HS-tree to illustrate number of calls to TP when pruning is not used

By the Corollary to Theorem 1 all of the minimal sets in the collection will 

appear in the tree. Therefore, removing redundant edges and their associated subtrees 

will decrease the number of calls to the theorem prover only if all three of the 

following conditions hold:

1) Suppose that the redundant subtree is not removed and it contains a node ri 

which is labeled through a call to TP after the subtree is found to be redundant. 

Let c' be the label for node ri. (This is the node labeled (e b) in the example.)
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Figure 17. HS-tree to illustrate number of calls to TP when pruning is used

2) After ri is labeled, a node n outside of the redundant subtree is labeled by a call 

to TP. The set c which labels node n is a proper subset of c'. (This is the node 

labeled by the set (<?) which is not underlined in the example.)

3) The tree has to be such that if the redundant subtree is removed, the set c' is not 

returned by TP as the label for some other node before the set c is returned as the 

label for node n. This would mean that the call to TP which returned the 

superset c' is eliminated by the pruning.

The advantages to removing the redundant subtrees are that the size of the

IlS-trcc is reduced and potentially fewer calls are necessary to construct the HS-trcc.

However, the construction algorithm must be modified to ensure that all minimal
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hitting sets are found and to keep from making extra calls to the theorem prover. 

When a redundant edge and associated subtree are to be removed, it is necessary to:

1) Reopen any node ri which was closed on the basis of H(ri) = H(ri) where n is 
a node in the redundant subtree being pruned. This will prevent the loss of any 
minimal hitting sets.

2) Save any node labels which do not occur elsewhere in the tree. Such a label 
may be reused and thus an unnecessary call to the underlying theorem prover 
can be avoided.

The difficulty with these modifications is that they require a significant amount 

of overhead and are not straightforward to implement. When a closed node is 

reopened, the subtree rooted at that node must be expanded to the same depth as the 

rest of the HS-tree before the breadth-first construction of the tree can be continued. 

Also, the node labels which are saved for possible reuse must be maintained in a 

separate list and that list must be checked whenever a new node is to be labeled. As 

discussed in the next section, the inference mechanism used in this work returns 

conflict sets which are close to minimal. Thus, no benefit has been gained through 

pruning and it has been removed from the system.

The difficulties associated with pruning can be overcome through the use of a 

directed acyclic graph instead of the tree structure. This is discussed in more detail in 

CGS88]. Reiter presents the definition of the HS-tree and then develops the 

algorithm to build a pruned HS-tree. That pattern is followed here with respect to 

the construction of an HS-dag (directed acyclic graph). Reiter did not present a proof 

of correctness for the pruned HS-tree construction algorithm. Such a proof for the 

HS-ifag is presented in [GS88J.

Let D represent the growing HS-rfag for an ordered collection of sets, C. Note 

that Reiter does not order the collection of sets used by the HS-tree algorithm. An 

ordering can be imposed, however, without loss of generality. An HS-cfag, D, for C 

is constructed as follows.
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1) Select the first set in C as the label for the root of the HS-dfog. If C is empty, 
label the root by V-

2) Process the nodes in D in a breadth-first order. To process a node n

i) Define H(n) to be the set of edge labels on the path in D from the root to 
node n.

ii) If for all c e C, c D H(n) { } then label the node n by V- Otherwise, let 
Z be the first member of C such that Z fl //(«) = {}. Note that by selecting Z 
to be the first such member of C the algorithm will reuse node labels 
whenever possible.

iii) If node n is labeled by a set Z then for each o e Z  generate a downward 
arc from node n and label the arc by a. The node to which this arc leads will 
be processed after all nodes belonging to the same generation as node n have 
been processed.

The above represents the directed acyclic graph equivalent of Reiter's basic 

definition of a hitting set tree without pruning. Pruning by closing nodes and 

removing redundant subgraphs is added to the construction of the HS-<̂ ag according 

to the following. Note that the unintended interaction of closing nodes and pruning 

which resulted in the loss of minimal hitting sets from the HS-tree cannot occur in 

the HS-^ag.

1) Let n be the node being processed. The algorithm will not always generate a 
new node m as the descendant of node n. There are two cases to consider:

i) If there is a node ri in D such that H{ri) = H{ri) U o, then let the arc under 
n which is labeled by a point to the existing node ri. Hence node ri will have 
more than one parent. In a pruned HS-tree node ri would have been closed.

ii) If the downward arc from node n labeled by a cannot point to an existing 
node, generate a new node m at the end of the <r-arc as described in the basic 
HS-^ag algorithm.

2) If the set Z is to label a node and it has not been used previously, then 
attempt to prune D.

i) If there is a node n which has been labeled by a set S of C such that Z c S , 
then relabel n with Z.

ii) For any a e S — Z the edge under node n which is labeled by a is no longer 
allowed. In the subgraph connected to node n by the edge labeled a delete all 
nodes except those which have an ancestor which is not being removed. 
Note that this may eliminate the n which is currently being processed.

iii) As discussed in Reiter's description of the HS-tree, the minimal hitting 
sets for the collection C are the same as the minimal hitting sets for C — S.



70

Therefore, the set S  should not be used to label any other nodes in D and 
should be removed from C.

3) If there is a node n which is labeled by f  and whose //(«) is a strict subset of
H(ri) for some node ri then close the node ri. A label is not computed for ri
nor are any successor nodes generated. A closed node is denoted by x .

As is the case with the HS-tree, the particular HS-<fog which the algorithm 

constructs depends on the order of the sets in the collection. If n (Q  refers to the n  

rearrangement of the sets in C, the HS-<fag for C and the HS-*/ag for n (Q  may be 

different but the minimal hitting sets determined by the two directed cyclic graphs will 

be the same.

Consider again the collection of sets which was used earlier to illustrate the 

problem with pruning the HS-tree. This is the collection of sets 

C =  {{a be) {b d) {fa} {bee} {&}}. The unpruned HS-tree for C is shown in Figure 

13. Figure 18 shows the HS-rfag constructed up to the point where the set {b} is first 

used to label a node. Since this is the first use of the set {b} and it is a proper subset 

of a set already labeling a node (in fact, several nodes are labeled by sets which are 

supersets of {6}), pruning as described in Step 2 of the pruning algorithm is to be 

applied.

In order to simplify the discussion, let the root node be pruned first. After these 

redundant edges and subgraphs connected to the root are removed, no other pruning 

will be necessary. However, it should be noted that the order in which the redundant 

edges are pruned is irrelevant. Ultimately, the same result would have been attained 

had a node other than the root node been pruned first.

The pruning is done by first relabeling the root by the set (b}. The subgraphs 

which are connected to the root by the edges labeled a and c are no longer valid. 

Thus, these subgraphs are removed, except that any node which has an ancestor that 

is not being removed remains in the HS-*fag. In this example, the node labeled V
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Figure IB. Partial HS-dag for a collection of sets

which corresponds to the minimal hitting set {a b} remains since not all of its 

ancestors are removed. After the HS-dag is pruned, any set which is a strict superset 

of the set {b} is removed from the collection. Thus, C becomes {{f a} {£>}}. The 

pruned HS-dag constructed by the algorithm is shown in Figure 19. Note that both 

of the minimal hitting sets, {a b} and {b J), are in the HS-dag.
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C. COMPLEXITY ANALYSIS AND PERFORMANCE RESULTS OF 

IMPLEMENTATION

In order to evaluate the performance of the program which implements the 

diagnostic theory, it is necessary to establish theoretical bounds for the best case 

performance and then compare these to the results of the implementation. The heart 

of the diagnostic algorithm is the underlying theorem prover. Thus, the theoretical 

bounds will be determined based on the number of calls to the inference mechanism 

which are necessary to determine the set of diagnoses.

The HS-tree must contain all of the minimal conflict sets and the determination 

of a minimal conflict set requires an invocation of the inference mechanism. In 

addition, there must be a node labeled V which corresponds to a diagnosis. Labeling 

a node by V also requires an invocation of the inference mechanism. Thus, in the 

best case, the number of calls to the theorem prover is given by:
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IV = number of minimal conflict sets + number of diagnoses.

This quantity is bounded below by

N' = number of diagnoses + max { \d\ where d is a diagnosis}.

There is a large gap between the best case and worst case performance. In the 

worst case, the theorem prover returns the largest possible conflict set when an 

inconsistency is found. The maximum number of calls in any diagnostic session 

depends on: 1) the number of components in the system description, 2) the number of 

diagnoses for the observed behavior, and 3) the distribution of the diagnoses over the 

set of components. For example, consider a device which has 4 components, 

(c„ c2, c3, c„), and 2 diagnoses each consisting of 2 components. If the diagnoses are 

(c,c2) and (c3c„), the maximum number of calls to the theorem prover is 11. If the 

diagnoses are (c, c3) and (c, c3), the maximum number of calls is 12.

In considering the best case performance, the number of diagnoses is generally 

the larger contributor to the number of calls. In addition, calls to the theorem prover 

when SD U OBS U {-.AB(c) | c e CECOMPONENTS) is consistent are usually more 

time consuming than those calls where an inconsistency is found. When the system 

description and observations are consistent, every possible path must be explored by 

the theorem prover in order to verify the consistency. When inconsistent, the 

theorem prover can return the conflict set as soon as the inconsistency is found. 

Therefore, where appropriate, methods such as halting construction of the HS-tree 

beyond a certain level and expanding the tree according to the probability of the 

diagnosis can significantly reduce the number of the most costly calls to the theorem 

prover by eliminating some calls which return sj.

Reiter's theory allows the inference mechanism to return a conflict set which is 

not minimal. However, anytime a non-minimal set is returned, the computational 

effort of the call is, in essence, wasted. The advantage to allowing the inference



74

mechanism to return a non-minimal conflict set is that the inference mechanism need 

not employ ordering schemes in order to guarantee minimality. The most desirable 

course is to have the theorem prover return conflict sets that are as close to minimal 

as possible without significantly increasing the complexity of the theorem prover. 

The details of the implementation of the inference mechanism based on constraint 

propagation are presented in Chapter VI.

Table III shows statistics from representative example problems. Diagrams of 

the circuits, except for the full adder which is shown in Figure 1 in Chapter II, are 

presented in Chapter VI. The statistics were collected from runs which diagnosed the 

circuit under all possible combinations of input and output values for the circuit.

Table III. STATISTICS ON THE PERFORMANCE OF THE 

DIAGNOSTICIAN

Circuit
Number 
of Runs

Total time 
(seconds)

Conflict Sets 
Returned

Minimal 
Conflict Sets

Full adder 
Figure 1 32 63.88 39 39

Two bit adder 
Figure 29 128 592.48 286 252

Overflow detector 
Figure 30 256 8767.06 1096 661

Adder-subtracter 
Figure 31 256 10690.15 1268 962

BCD-binary 
Figure 32 256 6686.19 868 680

TOTAL 928 26799.76 3557 2594
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Two points should be noted concerning the data in Table III. First, the times 

given are CPU times for the entire diagnostic process over all possible input and 

output values. Therefore, they represent a significant improvement over the times 

presented in Tables I and II for the determination of conflict sets by ITP and the 

theorem prover based on term rewriting. Second, 73% (2594 of 3557) of the conflict 

sets returned by the inference mechanism are minimal. Thus, despite the fact that the 

control structure used within the implementation of the diagnostician is relatively 

simple, the conflict sets being returned are close to minimal.
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V. EXTENSIONS TO THE THEORY OF DIAGNOSIS

A. INTRODUCTION

Several important research questions arise with respect to the general problem of 

diagnosis as well as the specific approach of diagnosis from first principles. In this 

chapter, some of these questions are addressed through extensions to Reiter's theory. 

These are: the determination of the diagnosis when there are multiple sets of 

observations, using new measurement information in conjunction with the existing 

hitting set tree, and a heuristic for suggesting measurements to decrease the number 

of diagnoses.

B. MULTIPLE SETS OF OBSERVATIONS

It is often the case that diagnoses are to be found for a system and those 

diagnoses must explain the system behavior under several different sets of input 

values. Let OBSu OBS2, ..., OBSn be sets of observations. Different situations can 

arise when multiple observations are available and a method for finding the diagnoses 

in each of these situations is necessary. Three cases can be identified:

1) All of the OBS, are available from the start of the diagnostic process. Although 

Reiter does not discuss multiple observations and it is not apparent from his 

presentation, the HS-tree algorithm is applicable in this case providing that an 

appropriate representation and underlying theorem prover are available.

2) An HS-tree has been constructed for OBSu ..., OBSm and new observations 

OBSm+u..., OBS„ become available. This could be handled under case 1) with a 

new HS-tree for OBSu ..., OBSm U 0Z?Sm+i, ..., OBSn constructed. However, in 

some cases this will result in a significant duplication of work. A method for 

augmenting the existing HS-tree to account for the new observations is needed.
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3) The third possibility is that the device is diagnosed under each of the 

OBS{, ..., OBSn individually yielding the diagnosis sets Dlt ..., Dn. The composite 

diagnosis A can be determined from the individual diagnoses Z)„..., D„. This set 

A is the set of minimal hitting sets for Du ..., Dn.

Each of these cases is discussed in the following sections.

One of the benefits of having multiple sets of observations available is that more 

information is available about how the system is functioning. This information can 

decrease the number of possible diagnoses. This is usually the case if the

non-intermittency assumption is applied.

The non-intermittency assumption is frequently applied in diagnostic work, 

particularly in the case of circuit diagnosis. It requires that all components, even 

those which are faulty, behave consistently over time. Thus, if the inputs to some 

component at times r, andry are the same, under the non-intermittency assumption, 

the output values of the component are also the same. As Genesereth [G<?84] points 

out, the assumption is not valid when applied to long intervals of time since it would 

imply that no component would ever fail. However, when dealing with a short period 

of time, such as the time between observations in a diagnostic session, it may be a 

reasonable assumption.

A comprehensive theory of diagnosis from first principles should not be based 

on assumptions such as the single fault assumption or the non-intermittency 

assumption. These assumptions, however, are commonly applied so they must fit 

into the theory. Reiter addresses the single fault assumption and points out that the 

single fault diagnoses are precisely those diagnoses which occur at level 1 in the 

HS-tree. No mention is made of the non-intermittency assumption.



78

Building the non-intermittency assumption into an automated diagnostician 

requires that the assumption be implemented in the model and that the underlying 

theorem prover be able to apply the assumption. In the DART system discussed 

earlier [Ge84], the user can include or exclude the assumption as appropriate for the 

domain of the diagnostic problem.

A difficulty that arises in implementing the non-intermittency assumption is that 

it requires that the underlying theorem prover be more complex. Information 

concerning the input and output values of the components must be maintained and 

this information must then be used to determine if the non-intermittency assumption 

is violated by a result. If so, the line of reasoning which led to the violation must be 

rejected. The relationship of the non-intermittency assumption to the various 

methods for handling multiple sets of observations must be considered.

Initially, Reiter's definition of a diagnosis does not appear applicable when there 

are multiple observations. The definition is applicable, but what is not discussed is 

the information which must be represented within the model and the type of 

reasoning of which the theorem prover must be capable in order to compute the 

diagnosis. The representation and underlying theorem prover must make use of a 

time indicator or an observation number. Suppose the following observed data for 

the full adder are available.

The representation must allow the theorem prover to handle these data separately but 

all of the observations must be explained by the same diagnosis. This can be 

accomplished by the use of a representation such as:

I: IN1(EX1) = 0 II: IN1(EX1)= 1
IN2(EX1)= 1 
1N1(A2)= 1 
OUTl(EX2)= 1 
OUTl(Ol) = 0

IN2(EX1)= 1 
IN1(A2) = 0 
OUT1(EX2) = 0 
OUTl(Ol) — 0

(INI EXl t= l  0) 
(INI EXl t= 2 1)
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(IN2 EXl t=  1 1)
(IN2 EXl t = 2 1)
(INI A2 t = 1 1)
(INI A2 t = 2 0)
(OUT1 EX2 t = 1 1)
(OUT1 EX2 t = 2 0)
(OUT1 Ol t = l  0)
(OUT1 Ol t = l  0)

where the first two parameters identify the input/output descriptor of the component, 

the third parameter identifies the time or observation set, and the fourth parameter is 

the value.

Whatever the implementation of the underlying theorem prover, it must reason 

within the time or observation set classification to find a contradiction and the 

corresponding conflict set. The theorem prover must return V when all time 

classifications are consistent. The techniques of closing a node and reusing node 

labels are applicable as before. The tree in Figure 20 is one of the HS-trees which 

could be built as a result of these data. The labels I and II identify the set of data for 

which the contradictions and resulting conflict set were found. Recall that an 

underlined node label is a label which could be determined from another label in the 

tree without making a call to the theorem prover.

For efficiency concerns, the theorem prover should be told when a set of 

observations has already been found to be consistent along some path in the HS-tree. 

This can avoid unnecessary computations, which is especially important since it 

generally requires more time to show a set of clauses consistent than to find an 

inconsistency. Suppose that SD U OBS, U [-iAB(c) | c e COMPONENTS — (53 has 

been found to be consistent at node n where 6 = H{n). For any superset S' of 

(5, SD U OBS, U [-tAB(c) | c e COMPONENTS — <5'3 will also be consistent. Thus, 

in the general case, OBSt need not be considered in the determination of the node 

labels of the descendants of node n. This is not the case, however, when the 

non-intermittency assumption is to be applied. In that case, all of the observations
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Figure 20. Diagnosis with multiple sets of observations used to build the HS-tree

must be considered simultaneously in order to verify that the behavior of each 

component is consistent over time.

If an HS-tree already exists for OBSu ..., OBSm, it is possible to make use of that 

HS-tree as a starting point for adding new observations OBSm+l, ..., OBSn. The 

resulting HS-tree may yield a larger or smaller number of diagnoses. The following 

procedure results in an augmented tree which yields the diagnoses for 

SD U {OBSlt ..., OBSm} U {OBSm+lt..., OBS„}.

1. Begin with the node k which is closest to the root and labeled by >/•

2. For j  = m + 1,..., n test the consistency of OBSjU SD U C-iAB(c) | 
c e COMPONENTS — H(k)^\. If inconsistent, relabel node k with the 
conflict set returned by the underlying theorem prover.

3. Continue checking nodes originally labeled V and expanding relabeled 
nodes in a modified breadth-first fashion. Check all nodes labeled 7  on a 
level before determining the labels of any new nodes on that level. The 
techniques of reusing node labels and closing nodes are to be applied as in 
the construction of the hitting set tree.
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Note that it is not necessary to consider nodes which were closed when the 

original HS-tree was constructed. A node n which is closed has an H(n) value which 

is a subset of the H(ri) value for some node ri where node ri is labeled >/• Since any 

node labeled J  is expanded until its label is again V or can be closed, H(n) will still 

be a subset of some node which is labeled by >/•

Suppose the HS-tree in Figure 21 for OBS, is known and the additional

observation set OBS„ becomes available. The observed values are given below.

I: IN1(EX1) = 0 II: IN1(EX1)= 1
IN2(EX1)= 1 IN2(EX1)— 1
IN1(A2)= 1 IN1(A2) = 0
OUTl(EX2)= 1 OUTl(EX2) = 0
OUTl(01) = 0 OUTl(Ol) = 0

The tree which results from augmenting the HS-tree for OBS, with the values from

OBS„ is shown in Figure 22. The new conflict sets are enclosed in brackets. The

superscript of a new label indicates the order in which the node was added to the tree.

Figure 21. HS-tree for full adder under a single observation set
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A third means of determining the composite diagnosis A under the observations 

OBSu ..., OBSn is to determine the individual diagnoses Z>„... D„ and then create a 

DHS-tree. The DHS-tree will identify the collection of minimal hitting sets for 

Dl t ..., D„ which is the composite diagnosis. The definition of a DHS-tree is similar to 

that of an HS-tree. Define a DHS-tree for Du ..., Dn to be the smallest edge labeled 

and node labeled tree T with the following properties:

(1) If Du ..., Dn are all empty, label the root by >/• Otherwise, the root is 
labeled by one of the non-empty diagnosis sets Dlt ..., Dn.

(2) If n is a node of T, define H(n) to be the union of the sets labeling the 
edges on the path in T  from the root node to node n. If node n is labeled 
by V then it has no successor nodes. If node n is labeled by a set Z)„ then 
for each d e  Dit node n has a successor node joined to node n by an edge 
labeled by d. The label for the node nd is a non-empty set D1 such that 
'id' e Dj, d  $  H(nd) if such a set of diagnoses exists. Otherwise, V is the 
label for node nd.
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The same properties which hold for the HS-tree hold for the DHS-tree. If n is a 

node of the tree labeled by >/, then //(«) is a hitting set for Dt, ..., D„. Also, each 

minimal hitting set for Dlt ..., Dn is H{n) for some node n of the the tree which is 

labeled by V-

The techniques for building a pruned HS-tree were designed to accomplish two 

goals: minimize the number of calls to the underlying theorem prover and generate 

only those hitting sets which are minimal. When the DHS-tree is built, no calls to 

the theorem prover are necessary since D„..., D„ are already known. Therefore, the 

technique of reusing node labels is not necessary, but it can be applied. However, 

closing nodes is necessary since only minimal hitting sets are desired.

In an HS-tree, the edges are labeled by a single value and the tree is built 

breadth-first. In a DHS-tree, the edges are labeled by sets. In order to generate the 

smallest tree with the above properties, the tree is not built in a strict breadth-first 

fashion. Rather, nodes are added in increasing size of the //(«) set. This will 

guarantee that the nodes labeled by 7 are the minimal hitting sets.

Suppose three sets of observations result in the individual diagnoses shown 

below. Z)„ Dz, and Z)3

A: {(Al) (Ol)}
D2: {(Al) (Ol) (A2)}
D3: {(EXl) (EX2 Al) (EX2 Ol) (EX2 A2)}

A DHS-tree for D„ D2, and Z)3 is shown in Figure 23. The order in which the nodes 

were labeled is indicated by the superscript of the node label. The composite 

diagnosis set is { (EXl Al) (EXl Ol) (EX2 Al) (EX2 O l) }

The question which naturally arises as a result of this discussion is: Are there 

any advantages to using one of these methods of determining the composite diagnosis 

over the other two? The answer depends on whether all OBS, are known initially or
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are made known incrementally and is also tied to whether the non-intermittency 

assumption is to be applied.

If the non-intermittency assumption is to be applied, the composite diagnosis 

cannot be determined from the DHS-tree for D„ ..., Z>„. The individual diagnoses do 

not contain the necessary information concerning output values under a particular set 

of input values to determine whether a diagnosis violates the non-intermittency 

assumption. Thus, the use of the assumption requires that the composite diagnosis 

be determined by reasoning about all sets of observations at once, or that the 

required data values are stored as information associated with a node label so that it 

is available when the HS-tree is augmented.

The following example illustrates the effect that the non-intermittency 

assumption can have on the set of possible diagnoses. Suppose that two sets of 

observations are available for the full adder.

I: IN l(E X l)-0  
IN2(EX1) = 0

II: IN1(EX1) = 0 
IN2(EX1) = 0
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IN1(A2) = 0 
OUTI(EX2) = 0 
0UT1(01)= 1

IN1(A2)= 1 
OUT1(EX2) = 0 
0UT1(01)= 1

Without the non-intermittency assumption, the diagnosis set is { (EXl Al) (EXl Ol) 

(EXl A2) (EX2 Al) (EX2 Ol) (EX2 A2) }.

Consider the three diagnoses involving the component EXl. Under both sets of 

observations, the inputs to EXl are the same. If EXl is faulty but functioning in a 

consistent manner, then its output in both cases is some value c. This value c is the 

value of the first input of EX2. Since EX2 is not included in any of the diagnoses 

which involve EXl, EX2 is assumed to be functioning correctly and two cases must 

be considered. In the first case, the inputs to EX2 are c and 0 resulting in an output 

of 0. Since EX2 is functioning correctly c must be 0. In the second case, the inputs 

to EX2 are c and 1 resulting in an output of 0. In this case c must be 1. There is no 

value for c which under the assumption of non-intermittency and the assumption that 

EX2 is not faulted that can explain this behavior. Thus, the non-intermittency 

assumption eliminates the three diagnoses involving EXl and the diagnosis set 

becomes { (EX2 Al) (EX2 Ol) (EX2 A 2)}.

It should be noted that explanations for the system behavior other than those 

included in the above diagnosis set are possible. A short, for example, is a possible 

explanation. Additionally, the non-intermittency assumption may not be valid in this 

case. Considerations such as these are beyond the scope of the model, however.
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C. USING THE HS-TREE WITH MEASUREMENT INFORMATION

In the diagnostic process, measurement information often becomes available 

after a hitting set tree has been built and a set of diagnoses have been determined for 

a system under an initial set of observations. The new measurement information will 

likely affect the set of possible diagnoses. In this section, a method for extending the 

original hitting set tree with the measurement information in order to obtain the new 

diagnoses is discussed. The method for extending the tree with measurement 

information is similar to that of extending the hitting set tree for multiple sets of 

observations.

Let T be an HS-tree generated for (SD.COMPONENTS,OBS) and A be the 

resulting set of diagnoses. Suppose that for all nodes which are labeled by V the 

value of all of the components' inputs and outputs have been saved. Associated with 

each value is a list of components which led to the determination of that value. This 

list is referred to as the list of antecedants. These requirements are easily met when 

an inference mechanism based on constraint propagation is used. Let FI be a single 

measurement on the system, for example, OUT(EX1) = 0. The method for handling 

such single measurements will be given. The extension for handling multiple 

simultaneous measurements is straightforward.

Recall Reiter's theorem concerning the effect of a measurement on the set of 

diagnoses. The theorem states that if a new measurement n  becomes available, those 

diagnoses which predicted n  will remain diagnoses. However, new diagnoses which 

are strict supersets of some of the diagnoses which predicted - in  can arise. Using as 

much of the existing hitting set tree T  as possible, the diagnoses in the presence of the 

measurement n  are to be determined. The method for expanding T is as follows:

1. Start with the node in T which is closest to the root and labeled -J.
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2. If node rt is labeled V and the measurement n  is consistent with the 
value predicted at node n, then H(n) remains a diagnosis. Otherwise, 
relabel n with the antecedants of the inconsistent value.

3. Proceed in a modified breadth-first manner checking nodes and applying 
the techniques of reusing node labels and closing nodes. Check all nodes 
labeled J  on a level before adding any new nodes to the level. Label all 
nodes on level k before moving to level k + I.

Two points should be noted. First, if the components' values and antecedants 

are saved when the tree is built, the consistency test of step 2 is simplified. If the 

values agree, a call to the underlying theorem prover is not necessary. Second, step 3 

does not yield a strict left-to-right breadth-first expansion of the hitting set tree. 

Nodes on a level which are labeled V are tested before any new labels are added on 

that level. This allows for the maximum use of the pruning techniques. Verifying 

that H{n) for a node n is still a diagnosis may allow one or more of the descendants 

of a newly created node to be closed, thus reducing the number of calls to the 

inference mechanism.

The following example will illustrate the method for expanding the existing

HS-tree to account for new measurement information. Consider the full adder under

the set of observations used previously, namely,

INl(EXl) = 1 
IN2(EX1) = 0 
IN1(A2) = 1 
OUTl(EX2) = 1 
OUTl(Ol) = 0

An HS-tree for diagnosing the device is shown in Figure 24. Suppose that a 

measurement specifying that the output of component A2 is 1 is made available. If 

the input and output values of the components are saved when a node is labeled V, 

the computations necessary to extend the tree arc minimized.

The node corresponding to the diagnosis (EXl) is checked first since it is the 

node labeled 7 which is closest to the root. The value predicted at the node for the 

output of A2 is 0 which disagrees with the measured value. The component which
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Figure 24. HS-tree for full adder before measurement information

determined this value is Ol. Therefore, (Ol) is a conflict set and becomes the new 

label for the node. The nodes labeled V which correspond to the two double fault 

diagnoses are checked next. The value predicted for A2 at the node corresponding to 

the original diagnosis (EX2 Ol) matches the measurement. Thus, (EX2 Ol) remains 

a diagnosis. The predicted value for the output of A2 at the node corresponding to 

the original diagnosis (EX2 A2) need not be checked. There is no intersection 

between H{n) for the node and the conflict set (Ol), so the node is relabeled by this 

conflict set. The label for the descendant of the node with the superscript 1 is 

determined next. This is done through a call to the inference mechanism, under the 

assumption that components Ol and EXl are not functioning correctly. The conflict 

set (A2 EX2) is returned. The expansion of the tree continues according to the 

algorithm for constructing a pruned HS-tree.

The augmented tree is shown in Figure 25. The new label of a node originally 

labeled V is shown below the original label. New conflict sets are enclosed in 

brackets. The superscripts of the node labels show the order in which the labels were
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assigned. The diagnoses which reflect the measurement are (EXl A2 Ol) and (EX2

O l ) .

Figure 25. HS-tree for full adder after measurement information

A question arises concerning the amount of storage necessary to save all of the 

values and antecedants for nodes in the HS-tree which are labeled V- Clearly, the 

space requirement is dependent on the number of components and the number of 

diagnoses. However, the number of diagnoses which are possible for a system is also 

dependent on the number of components in the system. If a hierarchical approach is 

taken, the number of components involved at a level in the hierarchy is kept small 

compared to the total number of components at the lowest level system description.
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D. MEASUREMENT HEURISTIC

The diagnostic problem is known to be underconstrained. Without sets of 

observations covering a range of behaviors for the device and a complete set of 

measurements for all internal components, there can be no guarantee of determining 

a single diagnosis which is, in fact, the actual diagnosis. Clearly, such exhaustive 

observations and measurements cannot be attained.

Diagnosis is generally an incremental process. When there are competing 

diagnoses for a system under a set of observations, measurements are taken or 

additional observations made in an attempt to reduce the number of possible 

diagnoses. However, not all measurements or additional observations are equally 

effective in reducing the size of the diagnosis set. Further, it may not be possible or 

cost effective to take certain measurements. A theory of measurements is needed to 

identify the best course to follow in order to reduce the number of diagnoses.

Reiter's theorem on measurements provides a very broad characterization of the 

effect of a measurement on the diagnosis set. Recall that the theorem states that 

every diagnosis which predicts some behavior n  (for example, a specific value of an 

output of some component) remains a diagnosis when n  is added to the observations 

as a measurement. Diagnoses which predicted —. n  are rejected. However, new 

diagnoses can arise when n  is added as a measurement. Any new diagnosis is a strict 

superset of some original diagnosis which predicted the behavior ->n. Therefore, 

when a measurement is added to the observations, the number of diagnoses can 

decrease or increase. Also, the individual diagnoses can become more complex, as 

they can involve more components.

Reiter's theorem provides no guidelines for where to take measurements. The 

problem lies with the possibility that an individual diagnosis can become more 

complex after a measurement is added to the observations. An important research
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question is to characterize when a measurement filters, that is, only confirms or 

rejects additional diagnoses without adding any new diagnoses.

Consider the two bit adder-subtracter shown in Figure 31 under the set of

observations given below.

(INI EXl) = 0 
(IN2 EXl) = 0 
(IN2 EX2) = 1 
(IN2 EX4) = 1 
(IN2 EX5) = 1 
(OUT1 EX3) = 0 
(OUT1 EX6) = 1 
(OUT1 02) = 1

Without additional information from other sets of observations or measurements, 

there are 17 diagnoses which explain the system behavior. These diagnoses are: 

(EXl), (EX2 EX5), (EX2 EX6), (EX2 Al), (EX2 A2), (EX2 Ol), (EX3 EX5), (EX3 

EX6), (EX3 Al), (EX3 A2), (EX3 Ol), (EX2 EX4 02), (EX2 EX4 A4), (EX2 EX4 

A3), (EX3 EX4 02), (EX3 EX4 A4), and (EX3 EX4 A3). Of the 17 possible 

diagnoses, only the single fault diagnosis (EXl) predicts that the output of 

component EXl is 1. If the output of component EXl is measured, regardless of the 

value found, the measurement will filter the set of diagnoses. The reason that the 

measurement filters the set is related to the fact that (EXl) is a single fault diagnosis 

and is not related to the number of diagnoses which predict a particular value for the 

output of component EXl. Only two diagnoses predict the output of component A4 

to be 1. However, if the output of component A4 is measured and found to be 1, 27 

diagnoses will result. Of these 27 diagnoses, only the two which predicted the output 

of component A4 to be 1 are from the original set. The other 25 diagnoses are 

supersets of some of the original 15 diagnoses which predicted the output of 

component A4 to be 0.
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There is also a problem in characterizing what constitutes the "best" 

measurement to take. A measurement can be evaluated according to: I) the 

potential for a large decrease in the number of diagnoses, 2) a significant decrease in 

the size of the diagnosis set regardless of the value found when the measurement is 

taken, 3) the complexity of the resulting diagnoses. Generally, no single measurement 

will perform best when evaluated with respect to each of these three criteria. 

However, it is usually the case that when a measurement produces a relatively small 

number of diagnoses, the individual diagnoses in the set are less complex.

In the adder-subtracter example just discussed, measuring the output of 

component EXl offers the potential for the greatest decrease in the size of the 

diagnosis set. The effect of measuring the output of component EX2 is somewhat 

different. If the output of component EX2 is measured and found to be 0, nine 

diagnoses result. Nine diagnoses also result if the output of component EX2 is found 

to be 1. Thus, a measurement on component EX2 is an example of a measurement 

which yields a significant decrease in the size of the diagnosis set regardless of the 

result of the measurement. It should be noted that such a measurement does not 

always exist.

Path sensitization algorithms such as the ^-algorithm are well known for testing 

devices. The ^-algorithm is designed to determine settings for the inputs of a circuit 

which will result in a particular component being exercised. The algorithm does not 

select the component to be exercised. Rather, given a particular component and type 

of fault (specifically, a stuck-af), it specifies how to set the inputs of the device in 

order to test the component. The algorithm is part of a theory of testing rather than 

a theory of measurement.
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An application area related to diagnostic testing is the generation of tests to be 

used in the quality control phase of the manufacturing process. The goal is to design 

a series of tests such that if a device passes all of the tests, one can be reasonably 

confident that the device is manufactured correctly. Often, these tests are also 

applied in a diagnostic setting. Useful information can be gained since the tests 

generally exercise individual components. Thus, given a component to be tested, the 

input settings used to test the component when it was manufactured can be used to 

test the component for diagnosis.

The problem of test generation is a difficult one. The ^/-algorithm is not general 

enough. It can only be applied at the gate level and gate level descriptions of 

complex devices are far too large for the algorithm to be effective. Singh CS/87] has 

developed a representation for a device which facilitates the test generation process. 

His method is more general than the ^-algorithm in that devices need not be Boolean 

and a hierarchical approach is used. Work done by Shirley CS/186]  may prove useful 

for diagnostic testing within the framework of diagnosis from first principles. He has 

developed a means for generating tests for quality control which exploit the design 

information and the desired behavior of the device. Such a method for generating 

tests could become a significant part of an integrated, automated system for the 

design, manufacture, testing, and diagnosis of complex devices. However, as with any 

test generation procedure designed to be used in quality control and not diagnostic 

testing, the method does not address the problem of selecting the component to be 

tested.

Shirley and Davis [SZ)83] have addressed the problem of generating diagnostic 

tests for a device. The method is generally based on path sensitization and the goal is 

to "generate a test whose result depends only on parts known to be good and exactly 

one of the possibly faulty parts" (CSD83X page 455). The major weakness of their 

method is that it assumes a single point of failure and that failure is non-intermittent.
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When the single fault assumption is applied, the choice of the component for which 

to generate a test is straightforward. One simply selects one of the components which 

represents a single fault diagnosis. The choice of the component to test becomes 

more difficult, and at the same time more crucial, when faced with a large number of 

multiple fault diagnoses for a device.

When the probability of failure of the individual components is available, that 

information can be of use in the determination of the components to be measured. 

The components which correspond to the most likely diagnosis are either measured 

directly or are indirectly tested through methods such as the ^-algorithm or testing 

procedures such as that developed by Singh and Shirley and Davis. Another 

approach to the problem of determining what to measure is applied within expert 

systems. These systems often utilize experiential knowledge to suggest what to 

measure or test and how to carry out the test.

The difficulty that arises in relying on experiential knowledge and probability 

information is that such knowledge and information is not always available. This is 

generally the case in the domain which diagnosis from first principles was developed 

to address. One of the primary strengths of diagnosis from first principles is its 

applicability to the diagnosis of new, complex devices. Diagnosis from first principles 

allows automated diagnosticians for these devices to be developed much earlier than 

would be possible if an expert systems approach were used. When a first principles 

diagnostician is used, it is not necessary to wait for human expertise to be developed 

and then written in the form of rules.

A heuristic for suggesting what measurement to make or component to test has 

been developed. It docs not require the use of any information which is not already 

included in the system description and observation set. Thus, it can be applied when



95

experiential knowledge and knowledge of the probability of component failures is not 

available.

When an input of some component n is connected to the output of some other 

component m either directly or indirectly, then n is dependent on m. Since this 

dependency is defined only through the physical interconnections of the components, 

this type of dependency will be referred to as a structural dependency. If the 

diagnoses for the device indicate that component n might be faulty, then measuring or 

testing any component on which component n is structurally dependent, including 

component n itself, may reduce the number of diagnoses.

Structural dependency, while of some value in selecting a component to be 

measured or tested, does not provide as strong of a criterion as is needed. Structural 

dependency does not take into account the specific information available concerning 

the observations under which the diagnoses were computed. Functional dependency 

combines the information contained in the structural dependencies with the 

observation data to provide the basis of a heuristic for selecting a measurement which 

will be valuable in reducing the number of diagnoses.

Component n is functionally dependent on component m if and only if n is 

structurally dependent on m and the value of the output of the component m must be 

known in order to determine the value of the output of component n. In addition, 

component n is functionally dependent on itself. Let the dependency set of a 

component n be {m | component n is functionally dependent on component m}.

Functional dependency is determined by structure as well as the value of the 

observed inputs for the device. The operation of the device is simulated and the 

antecedants of the predicted values are recorded in order to determine the dependency 

set for a particular component. A crucial aspect of the definition of functional
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dependency is the value of the output of component m must be known in order to 

determine the output of component n.

Consider a device which has a component A, where A, is a logical and gate. 

Suppose that, based on the inputs to the circuit and the simulation of the device, the 

first input of A, is predicted to be 0 and the second input is predicted to be 1. The 

output of A, is functionally dependent on A, and all components which determined 

the value of the first input to be 0. Those components which determined the value of 

the second input of A, are not included in the dependency set unless, of course, they 

also contributed to the determination of the value of the first input of A,.

Note that there may be more than one dependency set for an output of a 

component. For example, if both inputs to component A, had been predicted to be 0, 

there would have been two choices for the dependency set: A, and all components 

which led to the determination of the first input of A„ or A, and all components 

which led to the determination of the second input of A,. When there are competing 

dependency sets, the set with the smallest number of components is selected. In the 

event of a tie, the selection of the dependency set may be made arbitrarily. This does 

not occur very often, but a question for future research is to determine whether there 

are criteria for breaking ties which improve the effectiveness of the heuristic.

The heuristic is based on the functional dependencies of the components and the 

minimal conflict sets which determine the diagnoses. It has the advantage of being 

relatively simple to implement and not requiring any information other than the input 

values from the observation set and the system description. Constraint propagation 

can be used to simulate the operation of the device and determine the dependency set 

for the components. The system description provides the rules by which the device is 

designed to operate and the inputs to the device provide the starting values. Thus, 

elements necessary to implement the heuristic arc already part of the diagnostician.
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The only requirement which may be lacking is that the dependency set should be 

minimal. The inference mechanism of a first principles diagnostician based on 

Reiter's theory of diagnosis need not produce a minimal set of antecedants for a value 

since minimal conflict sets are not required. It is, however, easier to determine 

minimal dependency sets than minimal conflict sets since dependency sets are 

produced through simulation while conflict sets must be computed through 

inferences. It should be noted that the heuristic can be applied using non-minimal 

dependency sets, but it is not as effective.

Assume that a single observation set is available for a device. First, the 

dependency set for each component under the given observations is determined. A 

weight which is based on the dependency sets and minimal conflict sets is then 

determined for each component. The component with the largest weight is selected 

to be measured or tested. The procedure for calculating the weights is shown in 

Figure 26.

Suppose that the following input and output values have been observed for the

two bit adder-subtracter shown in Figure 31.

INl(EXl) = 0 
IN2(EX1) = 0 
IN2(EX2) = 0 
IN2(EX4) = 1 
IN2(EX5) = 1 
OUTl(EX3) = 0 
OUTl(EX6) = 1 
OUT 1(02) = 0

The symptoms of the faulty component(s) are that the outputs of components EX6 

and 02 are incorrect. The above observation set leads to the diagnoses: (EX4), (02 

Al), (02 A2), (02 01), (02 EX5), (02 EX6), (A3 Al), (A3 A2), (A3 01), (A3 EX5), 

and (A3, EX6).
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Procedure Determine-Weight (COMPONENTS, OBS, S)

Let S be the collection of minimal conflict sets for the observations.

For each c e COMPONENTS, Wc = 0

For each c e COMPONENTS determine the dependency set for c for the 
inputs.

For each mcs e S 
For each c e mcs

For each component d such that c is functionally dependent on d 
Wd =  Wt+ 1 

End For 
End For 

End For

Figure 26. Procedure for calculating the weight of the components

Component EX4 is identified by the heuristic for selecting the component to be 

tested. Any component which is a single fault diagnosis appears in every minimal 

conflict set and is therefore emphasized by the weighting function. This is 

appropriate, but does not illustrate the strength of the heuristic. Single fault 

diagnoses are considered the most likely diagnoses. Certainly, when there are eleven 

diagnoses, with one being a single fault diagnosis and ten being multiple fault 

diagnoses, the obvious choice for the component to be measured is the component 

involved in the single fault diagnosis.

Suppose that the output of component EX4 is measured and found to be 1. As 

this is the value that is predicted for the output when EX4 is functioning correctly, 

the single fault diagnosis involving EX4 is eliminated by this measurement. The 

measurement does not produce any new diagnoses, so the diagnosis set now contains
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the ten double fault diagnoses from the original set. The minimal conflict sets which 

produce these diagnoses are {02 A2} and (EX5 EX6 Al A2 Ol}.

With the measurement 0UT1(EX4) = 1 included, the dependency set for each

component is:

COMPONENT DEPENDENCY SET

EXl {EXl}
EX2 {EXl EX2}
EX 3 {EXl EX2 EX3}
EX4 {}
EX5 {EX5}
EX6 {EX5 EX6 Al A2 01}
Al {Al}
A2 {A2}
A3 {A3}
A4 {EX5 A4}
0 1 {Al A2 01}
0 2 {A2 02}

Since the value for the output of EX4 is given, EX4 does not appear in any 

dependency set. More than one dependency set exist for components Al, A2, and 

A4. These components are logical and gates with both inputs equal to 0. The 

dependency set shown above for each of these components represents the set with the 

fewer number of components. The weight of each component is calculated according 

the the procedure in Figure 26. The resulting weights, W, are:

= 0 
w m  = 0

= o

= 1
WM = 3 

= 3 
WA 3 = 2 
WM = 0 
Wm = 2 
Wm = 1

The component with the largest weight is selected to be measured. In this case, 

there is a tie between components Al and A2. Measuring the output of either of 

these components, in fact, offers the same potential for reducing the number of
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diagnoses. If the output of component Al is measured and found to be 0, eight 

diagnoses result. If it is found to be 1, two diagnoses result. The same is true if the 

output of component A2 is measured.

Table IV shows the results of all possible single measurements under the given 

inputs and outputs with the previous measurement on component EX4 also included. 

A measurement on component EX5, Al or A2 offers the potential for the greatest 

reduction in the number of diagnoses, followed by (in order) components Ol, A3, and 

A4. Note that this ordering corresponds very well to the ordering of the weights 

which were determined by the heuristic.

Table IV. EFFECT OF MEASUREMENTS ON THE NUMBER OF 

DIAGNOSES

COMPONENT
No. of Diagnoses 

If Output = 0
No. of Diagnoses 

If Output = 1
Rank

by Weight

EXl 10 20 4

EX2 10 20 4

EX5 8 2 2

Al 8 2 1

A2 8 2 1

A3 5 5 2

A4 10 8 4

Ol 4 6 2
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Several tests were made in order to evaluate the effectiveness of the heuristic for 

selecting the component to be measured. Three combinations of input and output 

values were randomly selected for each device from combinations which result in 

several diagnoses. In addition, the combinations were selected so that there would be 

a choice of several components whose output could be measured. The heuristic was 

applied and the effect of measuring the output of the component was evaluated with 

respect to reducing the number of diagnoses. The effect of measuring the output of 

the other components which appear in a diagnosis was also determined.

Table V summarizes the results of these tests. The circuits used in the tests 

appear in the Section C of Chapter VI. The third column shows the number of 

diagnoses without measurement information. The fourth column is the number of 

diagnoses which can result if the component selected by the heuristic is measured. 

The fifth column is the rank of the selected component among all components which 

could be measured, with respect to the potential decrease in the size of the diagnosis 

set. The last column is the number of components which were involved in diagnoses 

and could be measured.



102

Table V. EVALUATION OF HEURISTIC FOR SELECTING COMPONENT

Test Original Diag. After Rank of Possible
Circuit Number Diagnoses Measurement Measurement Measurements

1 4 1 1 3
Full adder 2 4 1 1 3

3 4 2 1 3
1 10 4 2 4

Two bit Adder 2 4 3 3 4
3 7 1 1 4
1 13 1 1 14

Overflow detector 2 11 1 1 10
3 31 7 6 11

1 12 1 1 9
Adder-subtracter 2 28 13 3 9

3 53 22 5 9
1 21 3 1 6

BCD to binary 2 22 8 3 8
3 12 3 1 5
1 9 3 1 6

Decoder 2 94 30 4 13
3 21 9 4 9
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VI. IMPLEMENTATION OF THE DIAGNOSTICIAN

A. INTRODUCTION

A significant part of this work has been the implementation of a diagnostician 

based on Reiter's theory of diagnosis. Many diagnostic problems have been studied 

using this implementation and this led to the discovery of the error related to pruning 

the HS-tree. Having an implemented diagnostician provided a means for the 

development and testing of the measurement heuristic. In this chapter, an overview 

of the implementation is presented. Section C presents several devices which have 

been diagnosed by the system.

B. IMPLEMENTATION NOTES

The diagnostician is written in Common Lisp and has been developed on a 

MicroVAX II running VMS. All of the CPU times which are reported are from runs 

on the MicroVAX. All components, component types, component functions, 

constants, variables, elements of HS-tree node labels and HS-tree edge labels are 

represented by LISP atoms. Many of these atoms have information stored on their 

property lists, as discussed in the following sections. Throughout the description of 

the implementation, the representation and diagnosis of the full adder will be used as 

an example.

There are two major groups of functions within the diagnostician: those 

functions related to building the HS-tree and those functions which implement the 

inference mechanism. This follows Reiter's theory of diagnosis from first principles 

and allows questions related to the HS-tree and questions related to the inference 

mechanism to be treated separately.
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1. Implementation of the HS-tree.

The HS-tree consists of two structures: a structure which contains the node 

label information from the tree and a structure which contains the edge label 

information. Both of these structures are lists.

In the node structure, the first element of the list is the root level of the HS-tree, 

the second element is level 1 of the HS-tree and so on. Within a level, the elements 

appear in the left-to-right order in which they occur in the HS-tree. The tree 

construction algorithm can determine when the tree is complete by examining the list 

which is the last element of the node structure. If every element of this list is either T 

(represents V) or nil (represents x ), the tree is complete.

In processing the HS-tree, many computations involve the collection of edge 

labels on the path from the root to a node. These sets are used in subset tests to 

determine if a node can be closed and ultimately represent the diagnoses for the 

device. The edge labels could be computed from the information in the node label 

structure, but it is more efficient to maintain the edge labels in a separate structure. 

In the path structure, the nth element is a list of the collections of edge labels from 

the root to the nodes at level n — 1 in the tree. The first clement of the path structure 

is (nil) since the root is at the root level. For every node value in the node structure, 

the edge labels on the path to that node arc found in the corresponding location in 

the path structure.

For convenience, Figure 27 repeats the HS-tree for the full adder which has 

appeared elsewhere in this dissertation. The representation of the tree is:

NODE structure:(((EXl EX2)) (T (01 EXl A2)) (T nil T))

PATH structure: {{nil) ((EXl) (EX2)) ((EX2 EXl) (EX2 A2) (EX2 Ol)))
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The construction of the HS-tree follows Reiter's algorithm except that pruning 

by the removal of redundant edges is not used. Also, when there is a choice of labels 

to be reused, the set with the smallest number of elements is used. This does not 

affect the number of calls to the underlying theorem prover, but it is a way of keeping 

the tree smaller. By using the smallest possible label for a node, if both a minimal 

conflict set and a superset of the minimal conflict set could be reused, the minimal 

conflict set is used as the label.

2. Implementation of the inference mechanism.

The representation of a device is basic to the operation of the inference 

mechanism. A global variable, COMPONENTS, is a list of the names of all 

components in the device. Each component is an atom and has the following 

properties associated with it.

ABnormal: T or nil

type: EXORG, ANDG, ORG, etc.
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numinputs: Integer representing the number of input lines of the component.
The input lines are referred to as INI, IN2, ... .

numoutputs: Integer representing the number of output lines of the component. 
The output lines are referred to as OUT1, OUT2......

line values: All of the input and output values for a component are stored on 
the property list of the component under the input or output 
name.

The value for a particular input or output is an ordered list of value information. 

Each element of the list contains the value associated with the input or output at a 

particular time or state. The value information for a state consists of the value itself 

and the list of antecedant components which determined the value. State numbers 

can be any non-negative integer, although the value information is stored in order 

starting with the information for state 0 .

The variable Connection-List, also global, defines the connections. Each element 

of Connection-List is a pair which describes a connection between two components, 

for example, ((OUT1 EXl) (INI EX2)). The order of the elements in the list, both 

within the pair and within Connection-List, is not significant.

Each output of a component type has associated with it the pattern which 

defines the function that the output represents and the inputs to which the function is 

applied. This is stored on the property list of the component type under the output 

name. For example, OUT1 of EXORG would have the pattern (EXOR INI IN2) 

associated with it. The definition of function is stored under the property definition 

on the function name. Definitions must be provided for all functions of the 

components. The information which would be provided for the full adder is shown in 

Figure 28.

The information concerning the components, connections, output patterns, 

function definitions, and observed values is defined once for the device to be 

diagnosed. When the inference mechanism is invoked, the values associated with the
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components' inputs and outputs are initialized to null values. The inference 

mechanism then uses the observed values along with the data stored on the property 

lists to determine consistency or compute the conflict set.

COMPONENTS = (EXl EX2 Al A2 Ol)

Connection-List = (((OUT1 EXl) (INI EX2)) 
((OUT1 EXl) (IN2 A2)) 
((OUT1 A2) (INI Ol)) 
((OUT1 Al) (IN2 Ol)) 
((INI EXl) (INI Al)) 
((IN2 EX1)(IN2 Al)) 
((INI A2) (IN2 EX2)))

type on EXl = EXORG 
type on EX2 = EXORG 
type on Al = ANDG 
type on A2 = ANDG 
type on Ol = ORG

numinputs on EXl = 2 
numinputs on EX2 = 2 
numinputs on A 1 = 2 
numinputs on A2 = 2 
numinputs on Ol = 2

numoutputs on EXl = 1 
numoutputs on EX2 = 1 
numoutputs on Al = 1 
numoutputs on A2 = 1 
humoutputs on Ol = 1

OUTl on EXORG = (EXOR INI IN2)
OUT1 on ANDG = (AND INI IN2)
OUT1 on ORG = (OR INI IN2)

Figure 28. Representation of the full adder used in the implementation

When the inference mechanism is invoked to determine the label for a node, n, 

the following operations precede the call. First, the property ABnormal is set to T for 

all components in H{n) and it is set to nil for all members of
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COMPONENTS — H(n). Second, elements which define each output of every 

abnormal component to be a unique variable are added to the observed values. The 

antecedant list of such a variable value is empty.

The inference mechanism is invoked by calling the function Process-Values and 

passing it the observed values. The list of values is processed one element at a time. 

When a value from the list is processed, it is compared to the value already stored on 

the component for the particular input or output. If an inconsistency is found, the 

inference mechanism immediately returns the conflict set, which is the union of the 

antecedants of the inconsistent values. If no inconsistency is found, the value being 

processed is stored on the property list as long as it provides new information. A 

value provides new information if it is more specific. For example, if the value 

already stored is a variable and the value being processed is a constant, the stored 

value is updated to the constant value. If the stored value is a constant, it is not 

replaced by a variable.

When a new value is recorded, that value is propagated through the device in 

two ways. Based on the information in the Connection-List, the value is passed along 

the defined connections. These new values are added to the list of the values to be 

processed. The other way that a value can be propagated is through a component. 

If a component is not abnormal, values may be propagated by applying the definition 

of the function of the component. However, values cannot be propagated through a 

malfunctioning component.

The values are not processed in any particular order and, as a result, the conflict 

sets returned by the inference mechanism arc not necessarily minimal. However, the 

conflict sets are kept close to minimal. When the value being processed agrees with 

the already recorded value, the two antecedant lists may not be the same as a value
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can often be determined in more than one way. When this occurs, the antecedant list 

with the fewer components is retained.

C. EXAMPLES

The following circuits have been referred to throughout the text. For each 

example, a diagram of the circuit and the diagnoses for a given set of observations are 

presented. In the diagrams of the circuits, standard logic symbols are used and the 

inputs and outputs of a component are numbered consecutively from the top.

1. Two Bit Adder.

The circuit shown in Figure 29 adds two two-bit binary numbers in parallel.

INI of EXl is the least significant bit of the first number and INI of EX2 is the most

significant bit of the first number. The least significant bit of the second number is

IN2 of EXl and the most significant bit is IN2 of EX2 . The output of EXl is the

least significant bit of the sum, the output of EX3 is the most significant bit of the

sum and the output of Ol is the carry out. Given the input and output values shown

below, the diagnoses are: (Al), (EX2), (EX3 Ol), and (EX3 A3). Determining the

diagnoses required 4.90 seconds of CPU time.

INl(EXl) = 1 
IN2(EX1) = 1 
IN1(EX2) = 1 
IN2(EX2) = 0 
OUTl(EXl) = 0 
OUTl(Ol) = 0 
OUTl(EX3) = 1

2. Overflow Detector.

The following circuit is taken from (CZ/PSl], page 39) and is an additive 

overflow detector. The meaning of the inputs and output of the circuit is:
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Figure 29. Diagram for the two bit adder

Operation is addition 
Operation is subtraction 
Sign of the augend is negative 
Sign of the addend is negative 
Sign of the minuend is negative 
Sign of the subtrahend is negative 
Carry from the most significant digit 
Additive overflow error has occurred

INI of Al = I 
INI of A5 = 1 
INI of N1 = 1 
IN2 of A4 = I 
INI of N4 = I 
IN2 of A6 = 1 
IN2 of AI 
OUT1 of 03

The diagnoses for the overflow detector under the following inputs and output

are: (A12), (All), (02), (01), (A9), (A10), (03), (Al, AS), (A3 A4), (A5 A6), (Al

A2), and (Al NI). Determining the diagnoses required 85.46 seconds of CPU time.

IN 1 (A 1) = 0 
IN2(A1) = 0 
INl(Nl) = 1 
INI(N2) = 0 
IN1(A5) = 0 
IN1(N4) = 0 
IN2(A6) = 1 
OUTl(03) = 1
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3. Two Bit Adder-subtracter.

The circuit in Figure 31 performs addition or subtraction on two two-bit 

numbers. INI of EXl is the control bit. If the control bit is 0, the circuit performs 

the addition of the binary numbers. If the control bit is 1, subtraction is performed. 

The least significant bit of the sum/difiercnce is OUT1 of EXl, the most significant 

bit is OUT1 of EX6 and OUT1 of 02 is the carry out.
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The diagnoses for the 2 bit adder-subtracter under the following inputs and

outputs are: (EXl), (EX2 EX5), (EX2 EX6), (EX2 Al), (EX2 A2), (EX2 Ol), (EX3 

EX5), (EX3 EX6), (EX3 Al), (EX3 A2), (EX3 Ol), (EX2 EX4 02), (EX2 EX4 A4), 

(EX2 EX4 A3), (EX3 EX4 02), (EX3 EX4 A4), and (EX3 EX4 A3). Determining the

diagnoses required 34.43 seconds of CPU time.

INl(EXl) = 0 
IN2(EX1) = 0 
IN2(EX2) = 1 
IN2(EX4) = 1 
IN2(EX5) = 1 
OUTl(EX3) = 0 
0UT1(EX6) = 1 
OUTl(02) = 1

4. BCD to Binary Converter.

The circuit in Figure 32 (C/K873, page 160) converts a decimal digit stored in a 

binary coded decimal (BCD) 4 bit code to its binary equivalent. INI of component 

N1 is the least significant bit and INI of component N4 is the most significant bit of 

the BCD value. OUT1 of EXl is the least significant bit and OUT1 of 03 is the most 

significant bit of the binary value.

The diagnoses for the BCD to binary converter under the following inputs and 

outputs are: (EXl 02), (EXl N3), (EXl Nl), and (EXl A4). Determining the 

diagnoses required 13.22 seconds of CPU time.

INl(Nl) = 0 
IN1(N2) = 0 
IN1(N3) = 0 
IN1(N4) = 1 
OUTI(EXI) = 0 
OUTl(Ol) = 0 
0UT1(02) = 0 
0UT1(03) = 0
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Figure 31. Diagram for the 2 bit adder-subtracter

5. Decoder.

An /i-to-2* line decoder is a combinational circuit for which all of the output 

values are 1 except a single selected line whose output is 0. There is a one-to-one 

correspondence between the selected line and the value of the input. In the 4-to-16
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Figure 32. Diagram for a BCD to binary converter

line decoder shown in Figure 33 (C-Z/^87], page 179), INI of component NA4 is the 

most significant bit and INI of NA1 is the least significant bit of the 4 bit input. 

OUT1 of component NA5 is the selected line for inputs of 0000 and OUT1 of NA20 

is the selected line for inputs of 1111.

The diagnoses for the 4-to-16 line decoder under the following inputs and 

outputs are: (NA4), (NA5), (NA2), (NA1), (Al), (NA3), and (A5). Determining the 

diagnoses required 63.21 seconds of CPU time.
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IN l(N A l) = 0 
IN1(NA2) = 0 
IN1(NA3) = 0 
IN1(NA4) = 0 
0UT1(NA5) = 1 
OUTl(NA6) = 1 
OUTl(NA7) = 1 
OUTl(NA8) = 1 
OUTl(NA9) -  1 
OUTI(NAIO) = 1 
O U T l(N A ll) = 1 
OUTl(NA12) = 1 
OUTl(NA13) = 1 
OUTl(NA14) = 1 
OUTl(NA15) = 1 
OUTl(NA16) = 1 
OUTl(NA17) = 1 
OUTl(NA18) = 1 
OUTl(NA19) = 1 
OUT1(NA20) = 1

6 . Sequential Circuit.

The circuit illustrated in Figure 34 is a simple sequential circuit. This example is 

taken from ([JA37], page 214). The feedback within the flipflop is not represented 

in the model. The flipflop functions simply as another component within the circuit. 

The inference mechanism assumes that the clock is functioning correctly and is thus 

unable to diagnose faults which arise as a result of timing problems. As such, the 

diagnostician should be viewed as diagnosing faults which occur as a result of the 

failure of one or more components.

Applying the assumption that the timing of the device is not at fault is 

analagous to the use of the assumption of ideal connections. When assumptions such 

as these are applied, there is the risk that the description of the device and inferences 

concerning its operation do not match those of the actual device. However, at this 

point in the development of diagnosis from first principles, these assumptions arc

necessary.
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Figure 33. Diagram for a 4 to 16 line decoder



117

Figure 34. Diagram of a circuit utilizing a flipflop and feedback

7. Arithmetic Circuit.

The device in Figure 35 has been used in examples by Davis [Da84], de Kleer

and Williams [Z)fF87], and Reiter [Re87]. The inference mechanism of this

diagnostician is not yet capable of handling the arithmetic reasoning which is

necessary to diagnose the device. However, it is possible to utilize a a symbolic

mathematics package such as MACSYMA as part of the inference mechanism so that

devices such as this can be diagnosed. At this time, the link to MACSYMA is not

automatic, so the user acts as the interface between the diagnostician and the

mathematics package. Under the inputs and outputs shown below, the diagnoses are:

(Ml), (Al), (M2 M3), (A2 M2).

INl(M l) = 3 
IN2(M1) = 2 
IN1(M2) = 3 
IN2(M2) = 2 
IN1(M3) = 3 
IN2(M3) = 2 
OUTl(Al) = 10 
OUTl(A2) = 12



Figure 35. Diagram of an arithmetic circuit
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VII. CONCLUSION AND FUTURE RESEARCH

Diagnosis from first principles is one of the most recent areas of application of 

Artificial Intelligence techniques. The foundation of diagnosis based on the structure 

of a device has been built in earlier work. This work has addressed a number of 

issues, both pragmatic and theoretical in nature, which are important to the overall 

development of first principles diagnosticians.

The community of researchers in Artificial Intelligence has long been divided 

into two camps: those who pursue the theoretical development of an area while 

ignoring questions of implementation and those who believe in building (or 

attempting to build) first and perhaps providing a theoretical foundation later. The 

premise of this work has been that theoretical development and implementation 

should parallel each other in Artificial Intelligence research.

The problem of suggesting measurements the result of which will decrease the 

number of diagnoses is an example of why theoretical and pragmatic issues should be 

addressed simultaneously. The theory of diagnosis, at its current level of 

development, provides no guidelines as to where to take measurements. It may be 

that the problem of determining the best measurement to take is, in general, 

unsolvable. Thus, heuristics such as the one presented in this work are important if 

effective diagnosticians are to be built.

There are many open questions concerning both the theory and implementation 

of diagnosticians based on the first principles approach. Two of the most significant 

questions which must be addressed are the removal of the assumption of ideal 

connections and the development of first principles diagnosticians which can handle 

devices with feedback. Some of the significant open questions are briefly discussed

below.
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In order to diagnose devices with feedback, suitable representations and 

inference mechanisms must be developed. Temporal logic has been used as the basis 

of the representation ([5o82], [Mo85]) of devices with feedback in the same way 

that first order logic is used as the basis for representing combinational devices. In 

addition, temporal logic has been used by Browne et al. [5C86] in verifying 

sequential circuits. It is known that the problems of verification and diagnosis are 

related, so it may be that the reasoning used in the verification process can be 

extended for use in diagnosis.

Expert systems have been used very successfully for diagnosis. Typically, these 

systems can "explain" the reasoning behind a diagnosis by tracing the rules which 

were applied. Such explanations are a crucial part of the process of debugging the 

system and extending the rule set. The role of explanations in diagnosis from first 

principles is a question which has not been addressed.

A heuristic for selecting the component to be measured has been presented in 

this work. Other heuristics need to be developed and tested. However, a more 

significant research result would be the development of a method of determining, 

without invoking the inference mechanism, what effect a measurement is going to 

have on the minimal conflict sets. If such a method were available, it would be 

possible to determine the best component to measure. It would also allow the new 

diagnoses to be computed without calling the underlying theorem prover.

In Q#S88], the use of heuristics and shortcuts within the inference mechanism 

is discussed. For example, it is often the case when diagnosing a malfunctioning 

device that a device of the same design which is working is available. If the device is 

complex, it may be more efficient to use the functioning device to determine values 

than to use the system description. Methods such as this are important because they
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represent a way of dealing with the complexity of the reasoning task without 

weakening the power of the diagnostician.

An ultimate goal should be the development of diagnosticians which integrate 

the methods of expert systems and diagnosis from first principles. The integrated 

approach should be dynamic in that the diagnostician should learn from experience. 

This would allow for the most effective use of both methods of diagnosis.
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