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EXECUTIVE SUMMARY 

I Executive summary 
This report gives an overview on the results of a research study exploring the potential of laboratory 
reflectance spectroscopy and of remote sensing spectral reflectance data for the estimation of top soil 
organic carbon (SOC), respectively soil organic matter (SOM) content of Mediterranean agricultural 
soils at regional level as required for addressing soil quality/state aspects in the context of land 
degradation and desertification assessment and monitoring. 
Part of the in-situ data analysis had started under the JRC FP6 exploratory research programme 
2003/2004 and as contribution to the DesertLinks project (http://www.kcl.ac.uk/projects/desertlinks/) 
resulting in a web based desertification indicator system for Mediterranean Europe (Brandt et al., 
2003).  
But most of the overall work, in particular the satellite application, was conducted under the FP6 
Integrated Project DeSurvey (A Surveillance System for Assessing and Monitoring of Desertification) 
overall aiming at complementing assessment of desertification status with early warning of risks and 
vulnerability evaluation of the involved land use systems, operating primarily on the entire 
Mediterranean basin and selected non-Euro-Mediterranean test areas in Africa, Asia and South 
America (http://www.desurvey.net/;http://www.nateko.lu.se/desurvey10/DeSurvey.htm).  
 
SOM is a key component in soil functioning, as it is an essential part of several processes maintaining 
soil fertility and stability as well as an important carbon pool, which is increasingly considered a 
highly relevant component for the mitigation of climate change (Stolbovoy et al., 2008). 
It is a complex association of organic material (plant root remains, leaves and excrements), living 
organisms (bacteria, fungi, earthworms and other soil fauna) and humus, the stable end-product of the 
decomposition of organic material in the soil by the slow action of soil organisms. 
A decrease of soil organic matter content is an indicator for lowered soil quality as well as the 
degradation of ecosystem functioning. Following the expansion and intensification of agriculture 
during the 20th century, there is clear evidence of a decline in the SOM contents in many soils as a 
consequence (Jones et al., 2005). In Southern Europe the decline in soil organic matter content of 
many soils has been identified as a major element of land degradation processes (Zdruli et al., 2004). 
Accordingly, the EC Communication ‘Towards a Thematic Strategy for Soil Protection’ (Commission 
of the European Communities [CEC], 2002) and the ‘Thematic Strategy for Soil Protection’ 
(Commission of the European Communities [CEC], 2006) consider declining soil organic matter as 
one of the most serious of eight main threats to soil, which implies the necessity to assessing and 
monitoring the abundance and geographical distribution of SOM across Europe.  
In the context of Mediterranean land degradation and desertification the DesertLinks project had 
identified SOM as a physical and ecological indicator of desertification risk and included it in the web-
based DIS4ME indicator system (http://www.kcl.ac.uk/projects/desertlinks/accessdis4me.htm). 
Recently, with reference to the work of DesertLinks, the FP 6 project ENVironmental ASsessment of 
Soil for MOnitoring (ENVASSO), has emphasized SOM decline being a key issue of soil degradation 
in dry sub-humid, semi-arid and arid regions in Europe and consequently proposed topsoil SOC 
content as one of six headline indicators out of a larger set of so-called soil-linked desertification 
indicators (SLDIs) which should be applicable at S-European and Mediterranean levels (Kibblewhite 
et al., 2007).  
 
In most cases organic matter in soil is measured as organic carbon, and the values are converted to 
SOM using a standard conversion ratio OC:OM of 1:72, being considered satisfactory for providing 
broad scale environmental assessments and monitoring in support to the policy making process, as 
SOC is more clearly definable and measurable with less uncertainty (Jones et al., 2004; Jones et al., 
2005). Recently the distribution of topsoil SOC was mapped throughout Europe by Jones et al. (2005) 
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EXECUTIVE SUMMARY 

and it was found that the largest areas of soils with SOC contents <1% are found within the arid, semi-
arid and dry sub-humid regions of Mediterranean Europe typically with lowest levels on arable lands. 
Given the need to avoid further decline in SOM, ENVASSO proposed that current SOC contents 
should be considered as thresholds for these regions (Kibblewhite et al., 2007). 
Currently, measurement of SOC is included in most of the existing field-sampling based soil 
monitoring networks but due to gaps in the geographical coverage of sampling sites, especially in 
Southern Europe, ENVASSO estimates a requirement for measurements at about 800 additional field 
measurement sites in Mediterranean Europe alone (Kibblewhite et al., 2007). That appears at its best 
an ambitious long term objective for the next 10 years in European conditions while comparable 
measurement network density may be beyond feasibility e.g. in the non-European southern and eastern 
Mediterranean regions not speaking of even more affected regions e.g. in the South-Saharan Africa. 
Hence there is a vital interest to investigate alternative methods possibly allowing to complement 
existing networks of monitoring sites and to contribute to the filling of significant gaps in SOC 
monitoring especially in areas susceptible to land degradation and desertification.  
As a consequence, the DeSurvey-IP project (2005-2010) included as part of its monitoring component 
the investigation of advanced remote sensing techniques to derive indicators related to soil surface 
parameters such as organic and inorganic carbon or iron content as an exploratory element, to which 
this study contributed, in particular with its part on the satellite data application. 
 
Against this background our work focused on the derivation of soil organic carbon (SOC) as proxy for 
soil organic matter (SOM), by investigating: 

 Firstly, in a laboratory study the potential of chemometric modelling using hyperspectral 
reflectance measurements of available Italian national sets of field samples for the estimation 
of soil organic matter and carbonate content  

 Secondly, based on results of the laboratory study, the potential of ENVISAT MERIS data for 
the regional derivation of SOC of arable lands 

 
The strong potential of using hyperspectral in-situ and airborne data for quantitative derivation of soil 
properties has been discussed and successfully demonstrated in numerous studies world wide. Up-to-
date overview on the published literature, current progress and the state-of-the art of the applied 
methodologies can be found in recent publications such as Ben-Dor et al. (2008) or Stevens (2008).  
 
The application of chemometric models for the quantitative estimation of soil organic matter (SOM) 
from laboratory reflectance data from samples taken on the regional/national level from Italian sites is 
explored in Part 1 of this report. In addition, the possibility to transfer the developed models from the 
spectral resolution of lab/field instrumentation to the one of operational satellite systems has been 
evaluated, by using the laboratory spectra to simulate the respective soil reflectance signatures of 
Landsat-TM, MODIS and MERIS.  
Soil physical and chemical laboratory analyses results were provided by the JRC-IES SOIL action 
(formerly JRC FP6 MOSES action). The 376 soil samples, used in this study, were collected for 
previous projects of the IES SOIL action and its partners within a wide range of environmental settings 
in Italy. Reflectance measurements were obtained on disturbed soil samples using an ASD Field Spec 
Pro spectro-radiometer. Data transformation methods (standardisation, vector-normalisation and first 
and second order derivatives) have been applied on the spectral data. The transformed spectral data 
have been used for the prediction of SOM and carbonate content using the partial least squares 
regression (PLSR). The results (R2 between 0.57 and 0.8) demonstrate the successful application of 
reflectance spectroscopy combined with chemometric modelling for the estimation of SOM and 
carbonate content. The calibration models demonstrated a tolerable stability over a variety of different 
soil types, which is a positive factor for opening the opportunity to use this methodology for 

6 



EXECUTIVE SUMMARY 

monitoring larger areas. Furthermore it could be shown, that the spectral resolution of the MERIS 
sensor is sufficient for approximation of the SOC/SOM content from pure soil spectra.  
Consequently, the second part of the study focused on the use of MERIS satellite data for the 
estimation of soil organic carbon content of bare soils at regional scale. The study concentrated on the 
Apulia region, where we had high density of available field sampling sites, and on parts of the coastal 
areas of the Abruzzi region South of Pescara, which are known to be amongst the more critical areas in 
Italy suffering from land degradation problems and desertification risk.  
For specific morphological-lithological units simple spectral models, based on soil colour and spectral 
shape attributes, were built to derive soil organic carbon content.  
In order to apply these models to MERIS satellite data, a time series of images covering the years 2003 
and 2004 were acquired for Southern Italy. Pre-processing of image data aimed at extracting those 
pixels with negligible vegetation abundance at least at one date of observation per year, i.e. practically 
showing pure bare soil signatures only, and consisted of: 

• Geometrical co-registration and superposition of images from different acquisition dates 
• Derivation of minimum vegetation composites for each year applying simple minimum value 

criteria for MERIS vegetation indices 
• Determination of soil and vegetation abundance at sub-pixel level based on spectral mixture 

modelling. 
• Removal of residual vegetation influence from image spectra 
 

Soil colour attributes (soil lightness, R coordinate of R-G-B model) and coefficients of a second order 
polynomial fitted through the pixel reflectance signatures were derived from the minimum vegetation 
composites of both years. The spatial distribution of soil organic carbon was estimated for each year 
within specific morphological-lithological units in the Apulia region. In addition models could be 
applied to other regions in Southern Italy. Estimation results showed good agreement with independent 
field data and the pedo-transfer rules based estimations of Jones et. al. (2004; 2005).  
It is worth noting that the field samples used for the development, calibration and validation of the 
chemometric and spectral models were sampled independently from our study, mainly in the 
framework of regional to national studies of field based characterisation of soil mapping units in view 
of their vulnerability to soil degradation (European Soil Bureau and Regione Puglia, 2001). While the 
results of most other studies were obtained primarily at local levels addressed by highly site specific 
sampling (e.g. Kooistra et al., 2003), the samples used here were collected country-wide in a wide 
range of environmental conditions. Nevertheless the performance of our models was close to the 
results of the more detailed site specific studies, which indicates the robustness of the field/laboratory 
spectrometry based chemometric models, which is an important pre-requisite to establish a limited 
number of calibration models that are stable over a variety of different soil types thus opening the 
possibility to use the methodology quasi operationally in support of SOM field monitoring campaigns 
of larger areas. 
The MERIS based remote sensing study demonstrated that the simplified spectral models resulting 
from the MERIS data simulation can in principle be successfully applied to real satellite data, 
however, with some constraints presumably primarily related to the uncertainties in the removal of 
residual green and senescent vegetation from image spectra. Currently the most reliable way to 
minimise these effects is the application of a very strict FAPAR minimum value threshold, which 
however considerably reduces the number of pixels available for the SOM estimates, which in 
addition may vary from year to year. Nevertheless, the reasonable agreement of the MERIS based 
SOM estimates with the modelled values of the OCTOP data base indicates the good potential of the 
method to obtain spatially coherent information on SOM in arable top-soils at landscape level, 
provided that the method of removing residual vegetation influence from the MERIS spectra can be 
further improved. 
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II Part 1: Chemometric modelling of soil organic matter from 
laboratory data 
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PART 1: CHEMOMETRIC MODELLING OF SOIL ORGANIC MATTER FROM LABORATORY DATA 

1 Introduction and objectives 
Soil reflectance spectra are very rich in information, which allows inferring chemical, physical or 
biological properties of soils from a single spectrum. In comparison to conventional analysis, 
reflectance spectroscopy is faster, more cost-efficient and non-destructive. In this respect it could be an 
alternative to costly field survey campaigns and has therefore raised interest of the soil science 
community.  
Soil organic matter (SOM) is a soil property that significantly influences the reflectance characteristics 
of a soil. Stoner and Baumgardner (1981) studied the spectral reflectance of 239 soils mainly from the 
United States. They identified five characteristic curve shapes on the basis of visual inspection (Figure 
1). Each shape is associated with certain soil characteristics. The classes are: organic dominated 
(organic carbon > 2%, iron oxide < 1%, fine texture), minimally altered (organic carbon < 2%, iron 
oxide < 1%), iron affected (organic carbon > 2%, iron oxide 1–4%), organic affected (organic carbon > 
2%, iron oxide < 1%), iron dominated (iron oxides > 4%). 

 
Figure 1. Reflectance spectra of mineral soils representing different soil characteristics: organic dominated (A), 
minimally altered (B), iron affected (C), organic affected (D) and iron dominated (E) (from Stoner& Baumgardner 
1981) 

From this and other studies [e.g. Condit (1970), Baumgardner et al.(1985)] it is understood that SOM, 
on the one hand, influences the general brightness (albedo) of soil and, on the other hand, affects the 
shape of the spectral continuum in the visible to near infrared part of the spectrum (0.35 – 1.4 µm). In 
case of soils with low SOM content the reflectance curve tends to be convex and the overall albedo 
relatively high (Figure 3, curve B). In case of soils with a high content of SOM the overall albedo 
decreases, but mainly the shape of the soil spectrum becomes more concave from the visible (VIS) to 
near infrared (NIR) (Figure 3, curve A). However, soil reflectance is also influenced by other 
parameters like iron content, soil moisture, texture or mineralogy, which make a simple quantification 
of SOM from soil reflectance difficult. Diffuse reflectance spectroscopy and multivariate calibration 
techniques have been successfully applied to estimate soil properties from reflectance spectra in 
different wavelength ranges of the electromagnetic spectrum [VIS, NIR, mid-infrared (MIR)]. 
Most of the early studies focussed on the VIS part of the solar spectrum (Al-Abbas & Baumgardner, 
1972; Krishnan et al., 1980; Leger et al., 1979; Page, 1974; Shields et al., 1968). Krishnan et al. (1980) 
extended the range to the NIR part and tried to include also variables describing more closely the 
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shape of the spectral profile. Ben-Dor & Banin (1990; 1994) were the first to apply multivariate 
statistics on the full spectral range for the prediction of different soil constituents.  
Viscarra Rossel et al (2006b) demonstrated the potential of diffuse reflectance spectroscopy using VIS, 
NIR, MIR regions for the prediction of several soil properties.  
Research focussed mainly on spectral calibration and prediction of soil properties using multivariate 
calibration using methods like multiple linear regression (MLR) (Ben-Dor et al., 1991; Kemper & 
Sommer, 2002), principal component regression (PCR) (Chang et al., 2001), partial least square 
regression (PLS) (Cohen et al., 2005; Cozzolino & Morón, 2006; Kooistra et al., 2003; Masserschmidt 
et al., 1999; McCarty et al., 2002; Reeves et al., 2002) and artificial neural networks (Fidêncio et al., 
2002; Udelhoven & Schütt, 2000). Several studies targeted specifically at the determination of soil 
organic carbon/ organic matter content (Cozzolino & Morón, 2006; Fidêncio et al., 2002; 
Masserschmidt et al., 1999; Reeves et al., 2002; Stevens, 2008).  
Recently, McBratney et al. (2006) presented an interference system for the determination of soil 
properties whereby latent predictor variables are derived from spectra in contrast to the classical pedo-
transfer rule approach for the determination of functional soil properties. In the first step, soil MIR 
spectra and PLS regression were used to estimate soil pH, clay, silt, sand and organic carbon and 
cation exchange capacity (CEC). In the second step, predictions and uncertainties of predictions were 
used in the interference system to obtain soil water content and soil pH buffering from defined pedo-
transfer rules (PTF). 
Apart from a few studies, which are valid for a large geographical region (Chang et al., 2001; McCarty 
et al., 2002), chemometric models are often limited to the local scale or even single fields (McBratney 
et al., 2006; Udelhoven et al., 2001). Furthermore the potential to determine soil properties from recent 
satellite sensor systems (MERIS, ASTER, MODIS) has not been assessed in this context.  
Our objectives were therefore: 

• to build a robust chemometric model for the estimation of SOM from laboratory data for 
soils in different environmental settings in Italy 

• to evaluate possibilities to transfer the developed models to operational satellite systems 
(Landsat TM, MODIS, MERIS) 

The model should be applicable on a regional/countrywide level in order to allow large area surveys in 
contrast to previous local studies. For a better understanding of the model principles a thorough 
statistical analysis was carried out to overcome the often criticised black-box character of statistically 
based calibration models.  

2 Material and methods 

2.1 Data set 
Soil samples used in this study consist of two subsets: INTERREG ‘Italia II-Albania’ and NATURA 
2000 (Figure 2). Data had been acquired for other projects and hence, sampling strategies and physical 
and chemical analysis methods were not harmonised and adapted to the purpose of this study. This 
may have implications on the quality of the modelling, because the concentrations obtained with 
different analytical methods may not be directly comparable. Furthermore, not all parameters were 
analysed for both data sets. Therefore, only those soil parameters were included in the analysis, which 
were available for both subsets [texture (sand, silt, clay), SOM, cation exchange capacity, pH, total 
carbonate]. 
The two data sets will be described in the following section. 
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Figure 2. Sampling locations from the INTERREG data set (green) and from the NATURA 2000 data set (blue). 

2.1.1 Physical-chemical analysis of soil properties 
The first subset was prepared within the INTERREG project ‘Italia II-Albania’ (INTERREG). The 
Soil & Waste Unit developed in collaboration with the region of Apulia a soil information system. For 
the information system 250 soil profiles were analysed, which include in total 652 samples from 
different profiles. 
The analysed parameters are:  

• Texture (sand, silt, clay) [%] 
• pH (H O & KCl) 2

• Total carbonates [%] (tot. carb.) 
• Active carbonates [%] 
• Organic carbon [%] 
• Total sulphur 
• Cation exchange capacity [meq/100g] 
• Ca & Mg exchange capacity [meq/100g] 
• Base saturation, conductivity [mS/cm] 

 
1Methods for the laboratory analysis of soil properties followed Italian standard methods . 

 
276 samples were selected from the samples provided by the INTERREG project. Selected samples 
come mainly from the upper horizons, because the main objective of the study is the determination of 
the soil organic matter content, which is usually limited to the A-horizons. Moreover, the final goal is 

                                                 
1 Methods are described in: Gazzetta Ufficiale del 25 maggio 1992, decreto ministeriale 11/5/92 “Metodi ufficiali di analisi 
chimica del suolo” and Gazzetta Ufficiale del 2 settembre 1997, decreto ministeriale 1/8/97 “Metodi ufficiali di analisi 
fisica del suolo” e “Metodi di analisi fisica del suolo” MIPA coor. M.Pagliai, Franco Angeli 1997 
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the application of the models to spectra derived by field-spectrometry or remote sensing data, which 
are also limited to the surface horizons. The descriptive statistics for this data set are listed in Table 1. 
The soil organic matter concentration was derived from the measured organic carbon content by 
multiplying it with 1,724, which is derived from the assumed average organic carbon concentration of 
humus of 58 % (Schlichting et al., 1994). 
The average values for SOM are with 1.76 % relatively low. Moreover, the high coefficient of 
variation (C.V.) and the strong positive skewness and kurtosis values indicate an asymmetrical 
distribution with few high values. However, the Kolmogorov-Smirnov test for normal distribution 
showed that the data still can be considered normally distributed with a high significance (alpha > 
0.01). 
 

Table 1. Descriptive statistics of selected constituents of 276 surface samples from Apulia. 

276 samples Min Max Mean Std.Dev. C.V. Skew. Kurtosis 
pH 5.96 9.67 7.81 0.41 5.28 -0.74 3.36 
Tot. carb. [%] 0.00 86.60 11.67 16.26 139.34 2.07 4.92 
Clay [%] 0.00 68.90 28.47 13.41 47.12 0.34 -0.35 
CEC 4.40 95.00 25.40 9.95 39.17 1.31 8.19 
Sand [%] 1.00 88.70 34.24 20.93 61.12 0.79 -0.16 
Silt [%] 4.80 86.90 37.29 16.17 43.36 0.02 -0.26 
SOM [%] 0.03 12.42 1.76 1.40 79.55 3.42 18.65 
 
The correlation matrix of elements (Table 2) does not highlight any close relation between selected 
constituents. There are some significant negative correlations mainly between the texture classes. 
Another negative correlation is found between cation exchange capacity (CEC) and sand. SOM only 
shows some positive correlations with CEC. 
Table 2. Correlation matrix of selected soil constituents for surface samples from Apulia. 

276 samples pH Total 
carbonate. 

Clay CEC Sand Silt SOM 

pH 1.000    
Tot. carb. 0.194 1.000   
Clay 0.147 -0.139 1.000   
CEC 0.243 0.225 0.300 1.000   
Sand -0.342 0.020 -0.635 -0.525 1.000   
Silt 0.321 0.091 -0.008 0.427 -0.768 1.000  
SOM -0.012 0.092 -0.225 0.477 -0.034 0.265 1.000 
 
The second subset used in this study was collected for the NATURA 2000 sites in Italy (NATURA 
2000). It consists of 100 samples, which were collected from the different regions in Italy and analysed 
in a laboratory of ARPA Emilia-Romagnia in Podenzano (S.I.L.P.A., 2001) using Italian standard 
methods2. 
The following soil properties were analysed: 

• Soil texture (sand, silt, clay (g/100g)  
• pH 
• Carbonate content. (g/100g)  
• Organic Carbon (g/100g)  
• Nitrogen (g/kg) C/N-Relation 
• Phosphorus (mg/kg)  

                                                 
2 Methods are described in: “Supplemento ordinario alla Gazetta Ufficiale, n. 248 del 21 ottobre 1999”. 
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• Cation exchange capacity (meq/100g)  
 

Table 3. Descriptive statistics of selected constituents of 100 surface samples from the NATURA 2000 sites in Italy. 

100 samples Min Max Mean Std.Dev. C.V. [%] Skew Kurtosis 
pH 4.75 8.65 6.89 1.05 15.22 -0.22 -1.32 
Tot. carb. 0.00 95.00 8.79 18.76 213.38 2.72 7.68 
Clay 0.00 70.00 16.28 14.88 91.43 1.29 1.36 
CEC 2.27 36.92 20.08 9.89 49.28 0.07 -1.18 
Sand 5.25 94.00 51.27 24.88 48.53 -0.33 -1.05 
Silt 2.75 67.25 32.46 14.41 44.40 0.06 -0.35 
SOM 0.16 17.67 3.25 3.70 114.08 1.96 3.79 
 
Table 4. Correlation matrix of selected soil constituents for surface samples from NATURA 2000 sites in Italy. 

100 samples pH Total 
carbonate 

Clay CEC Sand Silt SOM 

pH 1   
Tot. carb. 0.542 1  
Clay 0.564 0.217 1  
CEC 0.110 -0.116 0.391 1  
Sand -0.446 -0.229 -0.855 -0.611 1  
Silt 0.188 0.170 0.443 0.651 -0.844 1  
SOM -0.171 -0.163 -0.210 0.634 0.023 0.177 1 
 
The comparison of the descriptive statistics highlights some differences between the two data sets. The 
average values of total carbonates, clay, CEC and silt are considerably higher in the INTERREG data 
set, while average sand and organic matter concentrations are higher in the NATURA 2000 data set 
(Figure 3). These differences are statistically significant as confirmed by a t-test (alpha = 0.05). 

 
Figure 3. Average concentrations of the two data sets used in this study. Concentrations of total carbonates, clay, 
sand, silt and organic matter (OM) are weight percentages, pH between zero and seven, cation exchange capacity 
(CEC) in meq/100g. 
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The differences are due to the different areas of soil sampling. While the INTERREG data set is 
restricted to samples from the relatively homogeneous region of Apulia, the NATURA 2000 data set 
consists of samples from geologically very heterogeneous areas of Italy. Furthermore, the land use for 
the samples from Puglia was restricted to agricultural land, whereas the NATURA 2000 set includes 
different land cover classes. 
This has also consequences for the modelling, since it can be expected that calibrating a model with 
one data set may not allow the estimation of soil constituents in the other, because the data ranges are 
too different. 

2.1.2 Spectral measurements 
Spectral measurements were obtained with the ASD FieldSpec FR® (Analytical Spectral Devices) 
spectroradiometer, which is a portable spectroradiometer designed for field use with a sampling 
interval of 2 nm and a spectral resolution of 10 nm. It covers a spectral range from 350 to 2500 nm, 
interpolated to 1 nm full width half maximum (FWHM). The spectrometer has a line array of Si-
photodiodes in the VIS and NIR (350 to 1000 nm); the shortwave-infrared (SWIR) part is measured 
with two spectrometers with anindium gallium arsenide (InGaAs) detectors. Reflectance was measured 
relative to a calibrated Spectralon® and converted to absolute reflectance. As illumination source the 
ASD High Intensity Reflectance Probe® was used. It is designed for measuring small surfaces of not 
more than 60 mm with a built in light source. 
The samples were measured four times with a different field-of-view; each measurement is an average 
of 50 scans with the ASD Fieldspec FR. 

2.2 Chemometric modelling 

2.2.1 Multivariate calibration 
In this study, the relationship between soil constituents and soil reflectance has been analysed and 
multivariate calibration is used to predict different soil constituents using the spectra measured in the 
laboratory. 
Using chemometric modelling we can formalize the process of correlating properties to spectra. In 
chemometrics this modelling is often referred to as multivariate calibration. Multivariate calibration is 
the collective term used for the development of a quantitative method for the reliable prediction of 
properties of interest (y1, y , …, y ) from a number of predictor variables (x , x , …, x2 q 1 2 p). The goal of 
the calibration is to replace a measurement of the property of interest by one that is cheaper, faster, or 
better accessible, yet sufficiently accurate (Figure 4). Developing the calibration model includes 
stating of the objective of the study, designing the experiment (sample measurement, data treatment), 
choosing the type of model, estimating its parameters and finally assessing the precision of the 
predictions (Massart et al., 1998). 
A major application of multivariate calibration is in analytical chemistry, specifically the development 
and application of quantitative predictive calibration models, e.g. for simultaneous determination of 
the concentrations of various analytes in a multi-component mixture, where one may choose from 
different spectroscopic methods [e.g. ultraviolet (UV), infrared (IR), NIR, X-ray fluorescence (XRF)]. 
The application of near infrared analysis (NIRA) to analyse samples, needing little or no pre-treatment, 
has found widespread use in chemical and food industries (Hildrum et al., 1992; Williams & Norris, 
1987). The use of multivariate calibration in the field of environmental science particularly in soil 
sciences is still limited. Relatively few researchers have extended the methods for the extraction of 
soil/sediment information. The ultimate goal of multivariate calibration is the indirect determination of 
a property of interest by measuring the predictor variables only. Therefore, it is not sufficient to 
describe the calibration data as adequate, but the model must be able to generalise unknown 
observations. The assessment of the optimum extent to which this is possible has to be done carefully. 
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When the calibration model chosen is too simple (underfitting) systematic errors are introduced, when 
it is too complex (overfitting) large random errors may result. 
In order to understand chemometric models, a deeper understanding of the underlying chemistry and 
physics is as important as a set of statistical parameters describing the models. This means for spectral 
data that a basic understanding of spectra and their errors is useful and that spectral representation 
should be included in the utility of the data treatment (Geladi & Martens, 1996). 
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Figure 4. Principles of chemometric modelling. 

 

Data pre-treatment 
Spectral data obtained with the spectroradiometer have a very high level of detail, which for the 
application of multivariate statistics may cause problems due to noise and a high level of collinearity. 
These can be reduced by resampling the spectra to wider wavelength intervals and to transform the 
spectra, which enhances subtle but important spectral features. 
The spectral resampling smoothes the spectra and reduces the number of wavelengths, which will be 
used later as independent variables in multivariate calibration, speeding up calculations and reducing 
the problems of over-fitting (Otto, 1999). The resampling, also termed ‘spectral channel degradation 
technique’, has been found effective for prediction of different soil properties (Ben-Dor & Banin, 
1994). Kemper (2003) found in a study for estimation of heavy metals that the best results were 
obtained with bandwidths between 10 and 20 nm. Furthermore, the final goal is the application of 
multivariate calibration to airborne and eventually satellite imaging spectrometers, which usually have 
a bandwidth between 10 and 50 nm. Accordingly, the spectra were resampled to a bandwidth of 10 
nm, which reduces the number of spectral bands from 2151 to 215. 
The spectral data were transformed applying three different methods widely used in chemometrics 
modelling: standardisation, vector-normalisation and first and second order derivatives. 
The standardisation transforms the data to a set of data with a mean of zero and a standard deviation of 
one: 

s
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=* Eq. II-1   

 
where i = row index,  

k = column index, 
xk = column mean and  
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where  n = number of objects 
 
The length of a vector x = (x1, x , …, x2 n) is defined as the square root of the sum of the squared 
elements in a vector. The normalisation of a data vector to length one is achieved by division of the 
vector x with the length of the vector (Otto 1999): 
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Derivatives are a well-established signal processing approach in analytical chemistry. Derivatives of 
VIS/NIR spectra carry predominantly chemical information of the sample, because albedo effects are 
reduced and overlapping spectral features are resolved. For example, the OH-absorption of a soil at 
1400 nm is shown in the second derivative of this spectrum as a distinct peak. The FWHM is smaller 
for the peak in the second derivative compared with the original spectrum. Consequently, the smaller 
FWHM of the derivatives allows overlapping absorption features that are recognised as a single broad 
absorption in the reflectance spectrum to be distinguished. Baseline shifts are removed because the 
curvature of a straight line is zero and hence, the derivative of a spectrum plus a constant offset is the 
same as the derivative of the pure spectrum. The first order derivative has also these effects, but to a 
lesser extent. It can be interpreted as the slope of a spectrum at each wavelength. Higher order 
derivatives have the same two basic effects and will resolve overlapping absorptions even better than 
lower order derivatives. However, they are more sensitive to noise and generate more artefacts than 
lower order derivatives. Furthermore, they do not have any easily visualised geometric interpretation 
and hence, have not been widely used in VIS/NIR spectroscopy (Hruschka, 1987). 
There are three common methods of calculating derivatives: the finite-differences, Fourier transform 
and Savitzky-Golay methods; each has its advantages and disadvantages. The Fourier transform is 
most useful, if the Fourier transform of a spectrum is already available for other purposes. The finite-
difference is easiest to calculate but is more sensitive to noise than the Savitzky-Golay method, which 
includes a smoothing based on a polynomial function. Therefore the latter has been used for this study. 
The Savitzky-Golay method fits the spectrum in a wavelength interval with a polynomial and then 
takes the derivative of that polynomial. Savitzky-Golay (1964) used simplified least-square-fit 
convolution for smoothing and computing of derivatives of a spectrum. The general equation is 
represented as follows: 
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Eq. II-4    

 
where Y is the original spectrum, Y* is the resultant spectrum, Ci is the coefficient of the i-th spectral 
value of the filter window, and N is the number of convoluting integers. The index j is the running 
index for the wavelength of the original spectrum data table. The filter window consists of 2m+1 
points, where m is the half width of the filter window. Savitzky & Golay (1964) provided several 
tables of coefficient values. Corrections to these tables were provided by Steinier et al. (1972). The use 
of these tables limits the application of the method. The maximum filter window size of the tables 
provided by Savitzky & Golay (1964) is 25 (m=12). Furthermore, for application of several 
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combinations of polynomials and derivatives, a general analytical form for calculation would be 
preferable. According to Madden (1978), equation Eq. II-4 can be rewritten as: 
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Eq. II-5    

 
where is the coefficient of the i-th point of the filter in the zeroth order of derivative computation. 
Accordingly, the smoothed q-th order derivative point of the midpoint is represented as: 
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Madden’s equations allow calculation of the coefficients of least-square-fit convolution from zeroth 
order to the sixth order of smoothed derivatives. 
It has to be mentioned that the derivative spectra obtained with the procedures described above are 
shorter than the original spectrum by the width of the filter because the procedures cannot be applied 
correctly at the ends of the spectrum. 
The data set of elements, which was chemically analysed using conventional methods, represents quite 
different properties of the soils, so that the metric differs substantially. This implies absolute values as 
well as variances. Both types of distortion may affect the statistically based multivariate methods. 
Scaling, e.g. by standardisation (see Eq. II-1) or range scaling, the data to similar ranges can eliminate 
these differences (Otto, 1999). 

Partial least squares regression 

The spectral data described above will be used for the prediction of the chemical soil components. If it 
is possible to model known data, the models could then be transferred to unknown spectral 
measurements. However, the first step in the modelling process is calibration. Calibration plays an 
important role in analytical chemistry. All analytical instrumentation is dependent on a calibration that 
uses some regression model for a set of calibration samples. This has lead to the development of a 
number of different calibration methods, which cannot all be treated here (more detailed discussions 
can be found in the standard literature for chemometrics such as Martens and Naes (1989), Massart et 
al. (1997; 1998) and Otto (1999). 
A valuable classification is given by Martens and Naes (1989). The most basic distinction is between 
univariate and multivariate calibration. Due to the huge number of variables that are produced with 
today’s spectrometers, we will concentrate on multivariate data. 
Another basic distinction is between linear and non-linear calibration, e.g. methods that yield linear or 
non-linear functions for the X-variables. Most of the models focus on linear models, because theory 
may indicate a linear relationship, e.g. the Lambert-Beer law of the linear relationship between 
concentration and absorption. Even when the linear relationship does not hold, it can be a sufficiently 
good local approximation (Massart et al., 1998). 
An important question in multivariate calibration is whether all available X-variables should be used or 
only a few of them. Many methods can employ only a limited number of predicting variables for 
purely mathematical reasons. In contrast, the full spectrum methods use all available wavelengths of 
relevance. 
The distinction between direct and indirect calibration is related to the amount of a priori information 
available. All model parameters are known for direct calibration and can be used to construct a 
predictor. This may be possible in some simple situations (e.g. linear mixtures), but in most analytical 
situations, such causal calibration is not possible because not all parameters are known due to 
unknown interferents. 
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The last distinction concerns two ways of thinking about the calibration modelling: causal vs. 
predictive modelling. The latter is referred to as forward or inverse modelling, the causal modelling as 
reverse or classical; this method was the original and basic approach to calibration and is therefore 
sometimes referred to as classical calibration. In controlled calibration experiments, the X-variables 
are designed. They can be set exactly at the values prescribed by the experimental design, e.g. 
calibration standards of known composition can be prepared. In the classical way of thinking, a 
spectrum can be expressed as a function of its composition. It may work well for one-constituent 
problems and simple mixtures, but it does not work with spectra, which are affected by unidentified 
constituents or whose constituents interact. 
In this study partial least squares regression (PLSR) was selected for modelling. It is a multivariate, 
indirect models, which perform forward calibration from X to Y. It is a linear full-spectrum method. 
PLSR is a so-called bilinear modelling method such as principal components regression (PCR) or 
PLSR. It is a powerful, flexible approach and yields informative and reliable predictors  by 
projecting the many variables X = (x

)(ˆ XfY =

1,x2, …, xk) onto the few variables . The 
compressed variables are then used as regressors for Y. In this way, the common structures in the X-
variables are compressed into a stabilised, more easily interpretable model, leaving out much of the 
noise and not relevant information (Martens & Naes, 1989). 

)ˆ,,ˆ,ˆ(ˆ
21 tttT aK=

The data compression applied in PCR gives substantial improvement over ordinary MLR in the 
modelling of collinear data. The important problem is the choice of the right number of eigenvectors. 
Nevertheless, sometimes improvements in PCR can be obtained by leaving out some major 
eigenvectors, since they correspond to phenomena in X of no relevance for modelling Y. 
PLSR is an extension of classical PCR. The concept of partial least squares (PLS) was developed by 
H. Wold (1982) in the field of economy and social sciences and propagated to the field of 
chemometrics by his son S. Wold (1983). PLSR differs from PCR by using the Y-variables actively 
during the bilinear decomposition of X. By balancing the X- and Y-information, the method reduces 
the impact of large, but irrelevant variations in the calibration modelling (Martens & Naes, 1989). 
PLSR is now dominating the practice in multivariate calibration because of the quality of calibration 
models and because it is implemented in many commercial software packages (Brown et al., 1996) and 
Lavine (1998) and references therein). For more detailed discussions of the algorithm, see e.g. Haaland 
& Thomas (1988a; 1988b)or Massart et al. (1997); (1998). The description used here is based on the 
review of Wold et al. (2001). 
The PLSR model is developed from a training set of N observations (soil samples in this study) with K 
X-variables (spectral bands) and M Y-variables (soil constituents). These training data form the 
matrices X and Y with dimensions (N*K) and (N*M), respectively. 
The linear PLSR model finds new variables, which are estimates of the latent variables or their 
rotations. They are few in number and orthogonal. These new variables T are called X-scores and are 
linear combinations of the original variables X and with the weights (or coefficients) W: 
 

Eq. II-7 XWT =   
 

 
The X-scores T, multiplied by the loadings P, good summaries of X, so that the residuals E are small: 

Eq. II-8   ETPX += '
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Figure 5: Data arrangement for PLSR from Wold et al. (2001). The variables are described in the text. 

 
With multivariate Y (when M > 1), the corresponding Y-scores U, multiplied by the loadings Q are 
good summaries of Y, so that the residuals F are small: 

Eq. II-9 GUCY += '  
 

 
The X-scores T are also good predictors of Y: 

Eq. II-10 FTCY += '  
 

 
The Y residuals G express the deviations between observed and modelled responses and comprise the 
elements of the Y residual matrix G. 
Because of Eq. II-7, Eq. II-10 can be rewritten to resemble a multiple regression model: 

Eq. II-11 FXBFCXWY +=+⋅= '   
 

 
The PLS-regression coefficients can be written as: 

Eq. II-12 CWB ⋅= '  
 

 
The score matrices T and U contain information about the objects and their similarities/dissimilarities 
with respect to the given model and problem for the interpretation of the PLSR model. The weights W 
and C give information about how the variables combine to form a quantitative relationship between X 
and Y, thus providing an interpretation of the weights T and U. Therefore, the weights are important 
for an understanding of which X-variables are important (e.g. having large numerical weight values) 
and which provide the same information (e.g. having similar profiles of weights) (Wold et al., 2001). 
All parameters T, U, W, P and C are calculated by a PLSR algorithm. There are several variants 
developed for different types of data. The algorithms work either with (scaled and centred) original 
data or with variance-covariance matrices. The most common algorithm is the non-linear partial least 
squares (NIPALS) algorithm, which is numerically and statistically very stable (Wold et al., 1983). It 
is also used in this study. The calibration with PLSR was achieved using the N-way toolbox for 
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Matlab, which is a freely available collection of functions and algorithms for modelling multiway data 
sets by a range of multilinear models (Andersson & Bro, 2000). 

2.2.2 Modelling results 

Correlograms 
The influence of the different transformations becomes obvious when comparing the correlations 
between soil constituents, reflectance values and transformed values, respectively (Figure 6). The 
correlations for the reflectance values are generally relatively low with a maximum correlation 
coefficient for total carbonates of about r = 0.55. They show for all soil constituents negative 
correlations (that is, for an increase in their amounts there is a decrease in reflectance), except for total 
carbonate and sand, whose reflectance increases with increasing concentrations, due to the bright 
colour of calcite and quartzite, respectively. The similarity in the shape of the majority of the 
correlation curves is associated with the strong positive covariance relationships between some soil 
constituents. After the standardisation the soil spectra are much more congruent; the albedo differences 
are removed, retaining the shape differences. Hence, the correlation curves show strong enhanced 
features. With respect to SOM the most prominent feature is a negative correlation at about 0.6 µm. 
This feature is very interesting; because it is clearly linked to the concavity/convexity of the 
reflectance curve of SOM affected soils. Two other positive correlations at about 1.4 µm and 1.9 µm 
are related to water absorption bands. The smaller positive feature at 2.2 µm is related to the hydroxyl 
groups, often related to clay mineralogy. The vector normalised data show a similar correlation 
structure. The first derivative describes the slope or gradient of the spectrum. Hence, the maxima of 
the derivative are located at the wavelengths with the steepest slope and absorption maxima or minima 
have a value of zero. Consequently, there is a negative correlation at about 0.5 µm and a positive 
feature at about 0.8 µm; the first is caused by the strong increase of reflection of not SOM affected 
soil, the latter is caused by the convexity of SOM affected soils. Another strong feature is the hydroxyl 
absorption at about 2.2 µm, which is expressed by a strong positive feature before and a negative 
feature after the actual absorption feature. 
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Figure 6. Reflectance and transformed values of selected spectra (left) and correlations between all soil constituents 
and reflectance for different transformations (right): reflectance, standardised, vector normalised and first 
derivative (from top to bottom). Sample P0004 with low SOM (0.25 %), sample P0071 with high SOM (5.23 %). 

Validation of modelling set-up 
Validation of the models is of fundamental importance for multivariate calibration. To achieve this, the 
data set was split into a calibration set and a validation set and a test data set. The data were sorted 
from lowest to highest SOM concentration. The samples were divided into two groups by taking odd-

21 



PART 1: CHEMOMETRIC MODELLING OF SOIL ORGANIC MATTER FROM LABORATORY DATA 

numbered spectra for the calibration group and even-numbered samples for the validation group. In 
such a way, both sets represent approximately the full range of concentrations. 
The prediction quality of the models and the selection of the best model are based on the validation set. 
This approach gives the best estimate of the model’s performance since none of the samples in the 
validation set were used to build the model. In general, the prediction error is calculated as predictive 
residuals sum of squares (PRESS) from: 

Eq. II-13 ∑ −= 2)ˆ( ii yyPRESS   
 

 
The root mean square value of the prediction error is derived from PRESS as: 

n
PRESSRMSPE =

Eq. II-14   
 

 
Correlations of measured versus predicted concentration are expressed as coefficients of determination 
(R²). Due to the skewed distribution of concentration values, the coefficient of determination would 
overestimate the quality of the results. Therefore, additional error measures were calculated. The 
standard error of prediction (SEP) was calculated as standard deviation of differences between 
reference values and predicted values. From the SEP, two other measures were derived for the 
evaluation of the model quality. The relative percent difference (RPD) is the ratio of the standard 
deviation of the reference chemistry to the SEP. It should be as high as possible (RPD > 3 for 
prediction purposes). The relative error ratio (RER) is the ratio of the range in the prediction set to the 
SEP. It should be greater than 10 (Malley & Williams, 1997). 

Single data set 
The 276 INTERREG samples were sorted from lowest to highest SOM content and then split into two 
parts as described earlier. The first part with 138 samples was used for the model calibration. The 
second part was split again into a validation and a test data set with 69 samples each. 
One of the most difficult tasks in using PLSR is determining the correct number of loading vectors to 
use to model the data. The first vectors in the model are most likely to be the ones related to the 
constituents of interest, while vectors of higher order generally have less information that is useful for 
predicting concentration. In fact, if these vectors are included in the model, the predictions can actually 
be worse than if ignored altogether. Thus, decomposing spectra with PLSR and selecting the correct 
number of loading vectors is a very effective way of filtering out noise. However, if too few vectors 
are used to construct the model, the prediction accuracy for unknown samples will suffer since not 
enough terms are used to model all the spectral variations that make up the constituents of interest. 
Therefore, it is very important to define a model that contains enough vectors to properly model the 
components of interest without adding too much contribution from noise. 
To avoid building a model that is either an overfit or an underfit, the number of factors where the 
PRESS plot reaches a minimum would be the obvious choice for the best model. While the minimum 
of the PRESS may be the best choice for predicting the particular set of samples, it is however, 
unlikely to be the optimum choice for all unknown samples. 
A solution to this problem has been suggested by Haaland & Thomas (1988a) in which the PRESS 
values for all previous factors are compared to the PRESS value at the minimum. The ratio between 
these values can be calculated and assigned a statistical significance based on the number of samples 
used in the calibration set: 
 

minPRESS
PRESSFratio i

i =   Eq. II-15 
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This ratio is an indicator of the relative significance of each model to the model with the number of 
factors at the minimum of the PRESS. The number of factors where the F-ratio falls below a 
predefined significance level determines the optimum number of factors for a model used for 
predicting unknowns: 
Fratio  < Fi α;m,m, where F α;m,m is the (1-α) percentile of Snedecor’s F distribution with m and m degrees 
of freedom (m is the number of calibration samples). Haaland & Thomas (Haaland & Thomas, 1988a) 
found that α = 0.25 is a good compromise in practice. However, in this study better results were 
obtained with a more restrictive significance of α = 0.05. 
The presence of outliers may have a detrimental effect on the quality of the calibration model. 
Therefore, the identification of outliers is an important part of the modelling process. Outliers usually 
arise from some incorrect measurement, whether it is in the concentration data, or in the spectral data. 
The inclusion of outlier samples in the training set will introduce a bias to the final model. In effect, 
outlier samples will tend to ‘pull’ the model in their direction, causing the predicted concentrations of 
valid samples to be less accurate (or even erroneous) than if the sample was completely eliminated 
from the training set. A discussion of standard diagnostic tools for the detection of calibration and 
prediction outliers is given by Martens & Naes (1989). There are two approaches for outlier detection. 
The first approach is to fit the data with least squares, construct regression diagnostics and remove the 
outliers. The second approach is to construct estimators that fit the majority of data and examine the 
residuals from this fit to detect the outliers (Pell, 2000).  
A tool for outlier detection is the cross-validation procedure, which is often used as a validation 
method. The most common approach is the Leave-Out-One (LOO) procedure, where n calibration 
steps are calculated leaving out one sample at a time. The samples not included are then used to assess 
the PRESS of the cross validation. The model attempts to account for all the variations in the training 
data when the calibration calculations are performed, thus rendering approximately the same 
prediction error for most of the samples should be approximately the same. Samples that have 
significantly larger concentration residuals than the rest of the training set are known as concentration 
outliers. The F-test method for determining the optimum number of factors from PRESS analysis is 
also useful for determining the statistical significance of a sample’s concentration residual with respect 
to the rest of the training set. In this case, the F-ratio value is calculated by: 
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 i is the number of the sample being tested, nwhere  is the number of samples in the training set and 

is the difference between measured and predicted concentration for the i-th sample left out during 
cross validation. Generally, samples that exhibit probabilities of 0.99 (α=0.01) are considered outliers 
and should be removed from the training set before calculating the final calibration model (Haaland & 
Thomas, 1988a). 

ice

 
The first models were built to test the general ability to predict the different soil constituents. However, 
as shown in Table 5 only for total carbonate and SOM significant results could be obtained. The same 
could be observed for the other transformation methods. Thus, in the following we will concentrate on 
these two constituents. Nevertheless, the models were built for all seven soil parameters. 
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Table 5. Prediction results for ‘unknown’ test data with a PLSR model. Calibration with standardised spectra. 

 SOM Total 
carbonates. pH CEC Clay Silt Sand 

R2 0.56 0.72 0.09 0.35 0.27 0.26 0.05 
SEP 0.54 0.93 0.47 0.60 0.78 0.68 0.51 
RPD 2.45 1.88 0.76 1.53 1.74 1.46 0.73 
RER 14.34 10.53 3.72 8.06 7.49 6.68 4.82 

 
The modelling with the different transformations produced very similar results for all transformations 
(Table 6 and Table 7). The two results (test 1, test 2) refer to the exchange of test and validation set. In 
the models using standardised and vector normalised spectra there are some consistent differences in 
quality between the two results, which may be caused by outliers in the data set. The models based on 
the first derivative seem to handle such differences better, but with a minor overall model 
performance. Compared to the SOM model the total carbonate estimation perform slightly better. 
 
Table 6. Prediction results for SOM contents of unknown test data with PLSR models for different transformation 
methods. 

 Standardised Vector 
normalised 1st derivative 

 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 
R2 0.56 0.67 0.56 0.67 0.62 0.63 

SEP 0.54 0.73 0.54 0.73 0.52 0.58 
RPD 2.45 2.55 2.45 2.55 2.01 1.57 
RER 14.34 16.08 14.33 16.05 10.12 8.93 

 

Table 7. Prediction results for total carbonates contents of unknown test data with PLSR models for different 
transformation methods. 

 Standardised Vector 
normalised 

1st derivative 

 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 
R2 0.72 0.71 0.72 0.71 0.76 0.71 

SEP 0.93 0.64 0.93 0.64 0.88 0.60 
RPD 1.88 2.12 1.88 2.12 2.07 1.93 
RER 10.53 8.31 10.53 8.32 11.59 7.89 

 

Combined data set 
In the next step the models developed for the first data set (INTERREG) were directly applied to the 
second data set (NATURA 2000). The model performance on this new data set was only for the first 
derivative satisfactory (Table 8). This confirms the observation that the derivative-model is less 
sensitive to influencing factors. However, when analysing also the other error measures and the 
scatterplots it becomes obvious that the model underestimated the SOM concentrations strongly. This 
highlights the problem of extrapolation with chemometric models: The model was calibrated for a 
small data range, but the new data set has a significantly wider range and higher average. In contrast to 
the SOM prediction, the estimation of total carbonates is possible, because the range of the new data 
match better the range in the calibration model. 
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Table 8. Prediction result for the second data set (NATURA 2000) with a PLSR model calibrated and validated with 
the first data set (INTERREG). 

 Standardised Vector normalised 1st derivative 

 SOM total 
carbonates 

total 
carbonates

total 
carbonatesSOM SOM 

R2 0.464 0.379 0.465 0.379 0.638 0.819 
SEP 0.963 0.882 0.964 0.883 0.752 0.964 
RPD 5.849 8.408 5.865 8.434 0.744 3.139 
RER 1.065 1.491 1.067 1.493 4.348 18.831 
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Figure 7. Scatterplots of measured versus predicted contents of SOM (left) and total carbonates (right) using first 
derivatives and PLSR. 

 
As a consequence, it was necessary to combine both data sets into the calibration model in order to 
improve the estimation of SOM. The combined data set of 376 samples was split into three data sets 
with an equivalent data range and size. For the modelling all combinations of calibration, validation 
and test data sets were applied. 
The following gives an example for the results obtained in one calibration run. In the first step the 
model is calibrated. The results for the calibration data set after the removal of outliers reach an R2 of 
almost 0.9 (Figure 7). During the calibration the validation set was used to estimate the number of 
factors to be used in the calibration model and to monitor the generalisation capability of the model. 
The validation results are after the removal of outliers comparable to the results of the unknown test 
data sets (with R2 of 0.79 for SOM and 0.85/0.89 for total carbonates (Figure 8, Figure 9). This proves 
that the generalization capability is still preserved. The scatterplots show some problems for the 
prediction in the low concentration range, especially for total carbonates. 
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Figure 8. Scatterplots of measured versus predicted contents of SOM (left) and total carbonates (right) for the 
calibration set using first derivatives and PLSR. 
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Figure 9. Scatterplots of measured versus predicted contents of SOM (left) and total carbonates (right) for the 
validation set using first derivatives and PLSR. 
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Figure 10. Scatterplots of measured versus predicted contents of SOM (left) and total carbonates (right) for the test 
set using first derivatives and PLSR. 

The prediction results without outlier removal in the predicted data set are listed in Figure 9 and Figure 
10. The differences between the prediction results show that there is still some variation in the data sets 
despite the large amount of data. 
Table 9. Prediction results for SOM contents of unknown test data with PLSR models for the combined data set. 

SOM test 1 test 2 test 3 
R2 0.63 0.57 0.67 

SEP 0.62 0.82 0.98 
RER 8.07 12.60 13.74 
RPD 1.23 1.89 2.05 

 
Table 10. Prediction results for total carbonate contents of unknown test data with PLSR models for the combined 
data set. 

Total 
carbonates test 1 test 2 test 3 

R2 0.80 0.58 0.81 
SEP 0.84 0.84 1.10 
RER 17.52 10.85 20.25 
RPD 2.86 1.61 3.05 
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For a better understanding of the calibration models, the factor loadings of the PLSR were analysed 
(Figure 11), which should be compared to the first derivative spectra and the correlograms in Figure 6. 
There are four important spectral regions: The first one between 500 and 600 nm can be attributed to 
the slope of soils in the visible, which is determined strongly by the SOM content. The areas 1350-
1450 nm and 1850-1950 nm are clearly related to the major water absorptions and the area between 
2130 and 2250 nm is mainly related to the hydroxyl absorption at 2200 nm, which is strongly 
influenced by the content of clay minerals. There are also some smaller regions, amongst which the 
most prominent one is the 2350 nm feature. It can be attributed to the calcite absorption and is thus 
very important for the estimation of total carbonates. 
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Figure 11. Sum of absolute values of factor loadings for the PLSR calibration with 20 factors. 

2.2.3 Application to simulated satellite spectra 
Since the regions with high factor loadings are relatively wide it might also be possible to estimate the 
concentrations of SOM and total carbonates also with lower spectral resolution. Therefore, the original 
spectra were resampled to the spectral resolution of the multispectral sensors Landsat TM, MODIS and 
MERIS, which are sensors that are operational and would allow a large scale estimation of SOM. The 
Landsat mission is part of NASA's Earth Science Enterprise (ESE) and gathers remotely sensed images 
of the land surface and surrounding coastal regions for global change research, regional environmental 
change studies and other civil and commercial purposes. Landsat provides repetitive, synoptic 
coverage of continental surfaces with spectral bands in the visible, near-infrared, short-wave, and 
thermal infrared regions of the electromagnetic spectrum at a spatial resolution of 30 meters and 
absolute radiometric calibration. The first Landsat TM (Thematic Mapper) was launched in July 1982, 
which offers the possibility to use historic timeseries. 
MODIS and MERIS are both ‘next-generation’ satellites, whose scope lies beyond simple mapping but 
playing a vital role in the development of validated, global, interactive Earth system models able to 
predict global change accurately enough to assist policy makers in making sound decisions concerning 
the protection of our environment. With its sweeping 2330-km-wide viewing swath, MODIS sees 
every point on our world every 1-2 days in 36 discrete spectral bands (only seven used for land 
applications) at a ground resolution of 250-1000 m. MODIS is a key instrument aboard the Terra (EOS 
AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth is timed so that it passes from north 
to south across the equator in the morning, while Aqua passes south to north over the equator in the 
afternoon. 
MERIS (MEdium Resolution Imaging Spectrometer), aboard ESA’s ENVISAT satellite, is an imaging 
spectrometer that measures the solar radiation reflected by the Earth at a ground spatial resolution of 
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300 m and allows global coverage of the Earth in 3 days. The primary mission of MERIS is the 
measurement of sea colour in the oceans and in coastal areas. However, the MERIS instrument is 
capable of retrieving a variety of geophysical information also interesting for land applications. 
The band settings of Landsat TM and MODIS spectra only allow a standardisation and vector 
normalisation due to the limited and irregular spaced number of bands (Table 11 & Figure 12). For 
MERIS also the first derivative was calculated. 
Table 11. Overview of satellites spectral band settings. Wavelength (WL) and Full Width Half Maximum (FWHM) 
in nm. 

Landsat TM MODIS MERIS 
WL FWHM WL FWHM WL FWHM 

486.57 70.00 469.00 20.00 412.55 9.93 
570.93 80.00 555.00 20.00 442.40 9.95 
660.97 90.00 645.00 50.00 489.74 9.97 
836.88 140.00 858.50 35.00 509.70 9.97 
1676.65 200.00 1240.00 20.00 559.63 9.98 
2215.48 270.00 1640.00 12.00 619.62 9.99 

  2120.00 50.00 664.64 9.99 
    680.90 7.49 
    708.43 10.00 
    753.47 7.49 
    760.35 3.74 
    778.50 15.00 
    864.83 20.00 
    884.85 9.99 
    899.86 9.99 
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Figure 12. Spectral reflectance of sample P100_4 for the high resolution spectrum (1 nm) and the different satellites. 
Note the offset for clarity. 

For Landsat TM and MODIS no significant results could be obtained, because the number of bands is 
too low and it is not possible to model well the spectrum. Moreover, the PLSR algorithm can compute 
only as many factors as spectral bands are available. As could be seen with the calibration of the 10 nm 
data, as much as 20 factors were necessary to model well the data. In contrast, with MERIS simulated 
spectra the prediction of SOM was possible when using the first derivative (Figure 13). The estimation 
of total carbonates was not possible, because the MERIS band setting is limited to the VIS and NIR, 
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and thus the calcite absorption is not covered. But it is this spectral region that is very important for the 
mapping of SOM. 
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Figure 13. Scatterplots of measured versus predicted contents of SOM for the validation set using first derivatives 
and PLSR (13 factors). 

3 Discussion 
The soil properties discussed in this paper, SOM and total carbonates, have been previously predicted 
by laboratory reflectance spectroscopy in combination with PLSR or artificial neural networks 
(Kooistra et al., 2003; Reeves et al., 2002; Salgó et al., 1998). These studies found R2 values for SOM 
between 0.51 and 0.9. These results are comparable with the best results obtained in the present study 
(R2 = 0.8). Results could probably be better, if problems due to inconsistent chemical analysis of SOM 
could be harmonised and the time difference between chemical measurement and spectral 
measurement is minimised, which was not the case in this study. 
Despite the fact that SOM does not exhibit distinct absorption features like for example calcite, the 
transformations enhanced more subtile features like the concavity in the VIS-NIR part of the spectrum. 
Particularly the first derivative, which is a measure of slope, worked well in that respect. Nevertheless, 
the high number of factors used in the PLSR model (up to 20 factors) indicates some non-linearities in 
the relationship. The spectrally important areas identified in this study, correspond well with the results 
of other studies (Kooistra et al., 2003; Salgó et al., 1998). 
The results of most other studies were obtained for small study areas, whereas the samples used here 
were collected country-wide in a wide range of environmental conditions. Having a calibration model 
that is stable over a variety of different soil types opens the possibility to alleviate monitoring of larger 
areas. Today, large area surveys, like ICP Forest survey (Vanmechelen et al., 1997) or the geochemical 
baseline programme FOREGS (Association of the Geological Surveys of the European Union 
(EuroGeoSurveys)/ the Geological Survey of Finland, 2005; Salminen & Tarvainen T., 2006), rely on 
an enormous amount of samples that are analysed in laboratory, which is very time and cost intensive. 
Using a chemometric model in combination with a spectroradiometer, such large area surveys could be 
made faster and cheaper even with a denser sampling grid. Samples would have to be collected in the 
field and the reflectance measured in the laboratory, which would provide almost direct the SOM 
content. For a quality assessment, a part of the samples should still be analysed conventionally and 
could be integrated afterwards into the calibration model for model stabilisation. On a European scale 
(probably also on a regional scale) such an approach would imply a stratification based on a pedo-
climatologic zoning. 
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Nevertheless, these measurements are point samples, which would have to be interpolated in one way 
or the other for deriving a synoptic view. Reflectance spectroscopy can also be used at macroscopic 
scales and can be carried out remotely without direct contact to the sample. As demonstrated in this 
study, the spectral resolution of the MERIS sensor onboard of the ENVISAT satellite is sufficient to 
estimate roughly the SOM content. Other operational sensors (Landsat TM, MODIS) do not have a 
sufficient spectral resolution. However, the MERIS spectra used in this study were simulated 
laboratory spectra. Real image spectra suffer quality losses from a number of influencing factors. 
Besides clouds and the general influence of the atmosphere on the signal, the mixing of different 
surface components has a strong impact on the reflectance signal, particularly for a sensor with a 
spatial resolution of 500 by 500 m2. The problems of mixtures occur already with higher resolution 
sensors and even when trying to estimate soil constituents using spectra measured directly in the field 
(Kemper, 2003; Kooistra et al., 2003). 
 
This study demonstrated successfully the application of reflectance spectroscopy combined with 
chemometric modelling for the estimation of SOM and other soil constituents. However, several 
aspects should to be analysed in order to enhance the models and to apply it eventually to satellite 
imagery. Future work should focus on the following aspects: 

• Robustness of models for field use: influence of particle size, soil humidity, vegetation 
components in a mixed sample 

• Pedo-climatologic zoning: influence of geo-environmental setting on the model performance 
• Application to large scale satellite imagery: influence of scale on the reflectance signal of the 

pixel, mixed pixels 
 
In order to enhance the model there is still a large amount of data available, which could be integrated 
into the modelling for model validation and further model improvement: For the eco-pedological map 
many more samples where analysed. And another independent data set sampled in the Fortore 
Beneventano area, central Italy is available (Leone & Sommer, 2000). 
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III Part 2: Estimation of soil organic carbon from MERIS satellite 
data 
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1 Introduction and objectives 
Soil organic carbon (OC) is a key component in ecosystem functioning, as it is an essential part of 
several processes and an important carbon pool, which may be relevant for the regulation of the 
greenhouse effect. Various important soil characteristics concerning the nutrient budget are determined 
through soil organic matter, such as cation exchange capacity, soil acidity, the capacity of binding 
organic chemicals. Soil organic matter also influences the physical characteristics of the soil with 
regard to soil erosion processes, like soil structure and aggregate stability. A decrease of soil organic 
matter content is an indicator for lowered soil quality as well as the degradation of ecosystem 
functioning. The decline in soil organic matter content of many soils in Southern Europe is becoming a 
major process of degradation according to Zdruli et al. (2004). To assess the status and to monitor 
changes of soil organic carbon content, reliable estimates at regional and global scale are needed.  
Remote sensing imagery could be an alternative to conventional methods to assess and monitor OC 
content of arable lands at regional scale. Condit (1970) and Baumgardner et al. (1985), among others, 
described that OC significantly influences the general brightness and shape of the spectral continuum 
in the visible to near infrared part of the spectrum. Soil colour has been recognised as a good proxy 
indicator for soil organic carbon/ soil organic matter content which is widely used in soil surveys. 
Many studies found significant correlations between soil colour attributes and soil organic carbon 
content (Blume & Helsper, 1987; Jarmer, 2005; Spielvogel et al., 2004; Viscarra Rossel et al., 2006a).  
The relevant VIS-NIR spectral region is well recorded by the Medium Resolution Imaging 
Spectrometer (MERIS) and therefore soil colour attributes and parameters to describe spectral shape 
could be derived from MERIS satellite data.  
 
Accordingly, our objectives were the following: 

• Development of models to derive soil organic carbon (OC) content from MERIS satellite 
images based on laboratory reflectance spectra resampled to MERIS spectral resolution 

• Definition of pre-processing strategy to minimise vegetation related effects in the satellite 
imagery 

• Mapping of soil organic carbon content in Southern Italy 
• Comparison of results with independent modelling results  

A set of laboratory reflectance measurements, limited to soils of the Apulia region (Southern Italy), 
were used for model calibration and validation. To derive stable models and to ensure the applicability 
to areas outside the calibration site, stratification into morphological-lithological units (regional scale) 
was implemented. As the retrieval of soil properties from remote sensing data presumes the absence of 
vegetation in a pixel a multi-temporal approach is needed, combining different acquisition dates in the 
assessment procedure. Pre-processing focussed on the derivation of a minimum vegetation composite 
and a subsequent decomposition of image spectra into soil and vegetation fractions through spectral 
unmixing.  

2 Material and methods 

2.1 Study area and field data 
The study area is located in the South of Italy covering the administrative regions Apulia, Abruzzo, 
Marche and Basilicata (geographic coordinates: upper left corner 12°30’E/ 43°30’ N; lower right 
18°45’E/ 39°6’N). Sampling was limited to the Apulia region, situated in the south-eastern part of the 
study area (Figure 14). The Apulian region is a mostly flat to slightly sloping lowland except the 
Gargano Massiv, which is situated in the North-East. Agricultural lands cover about 72 % of the 
region, mainly cultivated with cereals (27.4 %), olive trees (23.9 %), vineyards and vegetable crops 
(Todorovic & Steduto, 2003). 
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Figure 14. Study areas Apulia and Abruzzo region (Southern Italy). MERIS satellite image from 11/06/2003 (band 
combination 13-8-5) superimposed by administrative boundaries of study regions.  

Soil samples for the study were taken from the INTERREG project ‘Italia II –Albania’ and are 
described in Part I of this report. Only samples from the top horizon (N=185) were included in the 
analysis. The average value for organic carbon is with 1.17 % relatively low. Moreover, a strong 
positive skewness (3.36) and kurtosis values (8.4) indicate an asymmetrical distribution with few high 
values.  

2.2 Reflectance measurements and pre-processing 
Reflectance measurements were obtained on sieved (fine fraction < 2 mm) soil samples using an ASD 
Field Spec Pro (Analytical Spectral Devices) spectroradiometer. Reflectance was measured relative to 
a calibrated Spectralon® and was converted afterwards to absolute reflectance. As illumination source 
the ASD High Intensity Reflectance Probe® was used. Samples were measured four times with a 
different field-of-view; each measurement is an average of 50 scans. Reflectance data were degraded 
to MERIS spectral characteristics (Table 14).  
 
The close relation between soil colour and organic matter is widely applied in soil surveys to assess the 
status of soil organic matter in the field (AG Boden, 1996). Many studies found significant correlations 
between soil colour attributes and soil organic carbon content (Blume & Helsper, 1987; Jarmer, 2005; 
Spielvogel et al., 2004; Viscarra Rossel et al., 2006a). Viscarra Rossel et al. (2006a) compared 
correlations between soil colour parameters from different colour space models (MUNSELL HVC, R-
G-B, CIE XYZ, CIELUV and CIELAB) and organic carbon content for a wide range of soil samples 
from France, Canada and Australia. Organic carbon was correlated with the lightness parameters of 
different colour systems and to a lesser extent to their chromaticity. The strongest single parameters 
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relationship was obtained with the R coordinate of the R-G-B model. Good correlation was also 
obtained for the L and v* parameter of the CIELUV model. Jarmer (2005) found significant 
correlations between soil organic carbon and CIE chromaticity coordinates for soils developed on 
Cretaceous limestone in Israel.  
Chromaticity coordinates (CIE xyz) of the 1931 colorimetric system of the Commission Internationale 
de l’ Éclairage (CIE) (Wyszecki & Stiles, 1982) were included in our analysis. Furthermore soil colour 
parameters of the R-G-B, CIELAB and CIELUV colour models (Commission Internationale de 
l'Eclairage, 1978) were calculated from laboratory reflectance spectra. The CIE XYZ tristimulus 
values, obtained from the reduced resolution of the MERIS spectra, were corrected to full spectra 
chromaticity coordinates using empirical equations obtained from the laboratory dataset. Colour 
attributes for the CIELAB and CIELUV colour space were calculated from corrected CIE XYZ 
tristimulus values. 
Besides soil brightness, soil organic matter influences the shape of the spectral continuum. Hill & 
Schütt (2000) used a parameterisation of the spectral shape through the coefficients of a polynomial 
for the estimation of soil organic carbon. Following this approach we described the shape of the 
reflectance curve by coefficients of a second order polynomial fitted through the vector-normalised 
reflectance spectra (413 nm – 890 nm): 
 

 Eq. III-1  p(λ) = b3+b1 λ+b2 λ2

 
where  p = fitted polynomial 

b , b1 2, b  = coefficients of the polynomial 3

λ = wavelength. 
The equation for the vector-normalisation of spectra is given in Eq. II-3 in part I of this report. 
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2.3 Adaptation of laboratory SOC modelling to MERIS satellite data 

2.3.1 Re-grouping of laboratory spectra according to landscape units 
Soils are complex dynamic systems, formed and developed as a result of the combined effect of 
climate and biotic activities, modified by topography, and acting on a parent material over periods of 
time (Brady & Weil, 1999). Chemical, physical and mineralogical properties of soil, which are 
reproduced in distinct spectral properties, are modified during soil development.  
Many studies to predict soil organic carbon content from reflectance measurements were conducted 
successfully at local scale. Predictive ability may diminish for the calibration of spectral data over 
heterogeneous areas in terms of geology or soil type (Stevens, 2008; Udelhoven et al., 2003). 
Therefore, Baumgardner et al. (1985) suggested to study local geographic areas of similar parent 
material separately when trying to relate soil reflectance to other soil parameters.  
Spatial variability of soil properties (excluding random variability) arises mainly from pedogenetic 
factors (climate, organisms, relief, parent material and time) and land use and management practices 
(Stevens, 2008). Spatial variability is scale dependent because soil properties are influenced by driving 
factors acting at different levels (Lin. et al., 2005).  
A strategy to decrease spatial variability of soil properties could be a stratification based on “uniform” 
initial conditions at a specific scale. We propose stratification into units with a common landscape 
genesis, which reflects in characteristics of the actual mesorelief and lithology.  
This approach seemed to be effective to improve soil organic matter predictions from ASTER satellite 
images as shown in a previous study conducted with the data set from the Apulia region (Machwitz, 
2005). In addition, it would allow the transfer of models to areas with similar morpho-lithological 
characteristics beyond the calibration site within the same climatic region. Note that only arable land is 
considered in this study and therefore, variability due to different land use and management practice is 
negligible. 
For the classification of soil samples into basic morphological-lithological units, classification into 
(nano)morphochores (ambito / paesaggio di riferimento), provided by the database of the soil 
information system (INTERREG II project) at a scale of 1.50,000 for each sample point was used. 
Data were successively aggregated to bigger units, similar in morphology and parent material. Three 
basic stratification units for modelling OC could be defined (see Figure 15):  

a) River terraces and floodplains characterised by alluvial deposits (unit 1),  
b) Morpho-structural depressions characterised by unconsolidated deposits (unit 2) and  
c) Structural highs characterised by limestone (unit 3).  

For the transfer of models to the Abruzzo region, the correspondence of identified units with eco-
pedological units from the eco-pedological map of Italy (European Soil Bureau, 2003.) has been 
assessed. The eco-pedological map of Italy delineates eco-pedological units at a spatial scale of 
1: 250,000 (minimum mapping unit 1.5 km2). Stratification was also performed according to criteria: 
mesoform and lithology.  
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Figure 15. Stratification and sampling locations in the Apulia region (Southern Italy) for the estimation of soil 
organic carbon content from MERIS satellite data. 

Despite stratification into morpho-lithological units, the ternary diagram of soil texture in Figure 16 
reveals strong heterogeneity of texture within strata with a dominance of finer texture for soils 
developed on alluvial deposits. Heterogeneity of soil texture might hinder modelling of soil organic 
carbon content in function of soil reflectance since soil texture influence soil reflectance (Schulze et 
al., 1993). 
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Figure 16.  Ternary diagram of soil texture for stratification units: ● River terrace/ floodplain- alluvial deposits, ∆ 
Morpho-structural depression – unconsolidated deposits and + Soils developed on limestone. 

 
A correlation analysis was performed between spectral parameters (colour and shape) and soil organic 
carbon content to identify important parameters for modelling OC. The results for each morphological-
lithological unit are listed in Table 12. Samples from areas characterised by alluvial deposits showed 
highest linear correlation of soil organic carbon content with coefficients of the second order 
polynomial fitted through the spectral reflectance curve. Significant correlations were also obtained for 
CIE chromaticity coordinates (CIE xyz), CIELAB a and b component, the CIELUV v component and 
the difference of the first derivative at 890 nm and 620 nm (R’890nm –R’620nm). For the second unit, 
correlations were highest (negative) with soil lightness L (CIELAB, r = -0.76, α = 0.01), the X and Y 
(both r = -0.76, α =0.01) coordinate of the CIE colour space. Soils developed on limestone showed 
similar correlation patterns as soils on alluvial deposits with highest correlation between the 
coefficients of a second order polynomial and soil organic carbon.  
Regression models for unit 1 and 3, areas characterised by alluvial deposits and limestone, were built 
using the coefficients of a second order polynomial (see Figure 17) and the parameter R’890nm –R’620nm, 
whereas soil lightness L, and the R component were chosen for the unit characterised by 
unconsolidated deposits. Due to the small sampling size, the leave-out-one procedure was applied for 
model validation. The procedure assures a nearly unbiased validation according to Otto (1999). The 
regression equations and modelling errors (cross-validation) are shown in Table 13. 
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Table 12. Correlations between soil organic carbon  and spectral parameters for morphological-lithological units in 
the Apulia region. 

 River terrace, 
floodplain, alluvial 

deposits 

Depression, 
calcareous sandstone 

und Pleistocene 
deposits (N=56) 

Structural highs; 
limestone (N=30) 

 
(N=39) 

Spectral parameter PEARSON  
correlation coefficient  

PEARSON 
correlation coefficient 

SPEARMAN 
correlation coefficient 

CIE X -0.76** -0.40* -0.28 
CIE Y -0.76** -0.40* -0.28 
CIE Z -0.66** -0.24 0.1 
CIE x -0.6** -0.63** -0.23 

-0.63** CIE y -0.7** 0.10 
CIE z 0.65** 0.64** 0.17 

CIELAB L -0.76** -0.4* -0.28 
CIELAB a 0.50** 0.08 -0.25 
CIELAB b -0.69** -0.68** -0.26 
CIELUV u -0.24 -0.11 -0.52** 
CIELUV v -0.69** -0.65** -0.32* 
R-G-B R -0.75** -0.37* -0.24 

R’890nm – R’ 0.68** -0.54** 0.77** 620nm
coefficient b1 2nd order 

polynomial 
  

0.80** 0.76** 0.29* 
coefficient b2 2nd order 

polynomial 
  

-0.79** -0.78** -0.24 
coefficient b3 2nd order 

polynomial 
  

0.79** 0.74** 0.17 
* Correlation is significant at the 0.05 level 
** Correlation is significant at the 0.01 level 
 

 
Figure 17. Relationship between OC content [%] and the coefficient b2 of a second order polynomial fitted through 
the vector-normalised reflectance curve for soils developed on alluvial deposits and limestone. 
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Table 13. Regression equations for the estimation of soil organic carbon content based on laboratory spectra 
resampled to MERIS spectral resolution. 

Structural 
highs; 

limestone 

River terrace, floodplain, 
alluvial deposits 

Depression, calcareous sandstone 
und Pleistocene deposits 

 

Coefficient b2 
2nd order 

polynomial 

Coefficient b2 
2nd order 
polynomial 

R’890nm-R’ R (R-G-B) L (CIELAB) 620nm
 

OC range 
[%] 

0.69 – 3.4 0.15 – 2.5 0.16 -1.5 

N 30 39 39 56 56 
Regression 
equation 

Y=3.43e-624.63x Y=2.53e-1061..8x Y=1.62e4318.47x Y=-2.24x-0.25 Y=-0.04x+2.67 

R2adj 0.69 0.68 0.67 0.56 0.56 
RMSE 0.40 0.31  0.40 0.20 0.19  CV
R2 0.74 0.59 0.37 0.52 0.55 CV

 
In contrast to results obtained by Viscarra Rossell et al. (2006a) and Spielvogel et al. (2004), the 
relationship between soil lightness and soil organic carbon content could be described by a linear 
model for unit 2, which is mainly due to the small range of OC values (0.16 – 1.5 %). For specific 
homogenous subunits regression equations could be improved: for calcarenits (formazione di Gallipoli, 
N=39) using soil lightness with R2=0.70. A model, applicable to a wider range of soils, is preferred in 
this study. 
The river terrace and floodplains, characterised by alluvial deposits, show a wider range of OC content 
and can be modelled by curve shape attributes, as the spectral shape is highly varying within this 
group. Again, a rather simple model is preferred to more accurate models for a sub regions [pure 
Holocene deposits using polynomial coefficient with R2=0.75 (N=33)].  
 

a)   b)

Figure 18. Cross-validation results for the estimation of OC content based on the coefficient b2 of a polynomial fitted 
on the reflectance spectra for (a) areas characterised by alluvial deposits and (b) for soil developed on limestone. 
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a) b)  
Figure 19. Cross-validation result for the estimation of OC content based on a) soil lightness L (CIELAB) and b) R 
(R-G-B) for areas characterised by calcareous sandstones and unconsolidated Pleistocene deposits. 

Best cross-validation results were obtained using the coefficient b2 of a second order polynomial 
(R2=0.59 for unit 1 and R2=0.74 unit 3) and soil lightness L (R2=0.54 unit 2) as dependent variable in 
the regression equation. Regression results are with R2 values between 0.5 – 0.7 in the same range as 
results by Viscarra Rossel et al. (2006a). Cross-validation results are shown in Figure 18 and Figure 
19. Although model accuracy is rather low, regression equations are assumed to reflect still the general 
behaviour within a specific morpho-lithological unit and are therefore appropriate at regional scale.  
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2.3.2 Sensitivity of models to vegetation influence 
The application of models, developed on laboratory reflectance spectra, to satellite imagery needs to 
address, among others, the problem of spectral mixture of different surface types in one pixel. 
Therefore the sensitivity of models to green and dry vegetation influences was assessed by synthetic 
linear mixtures of green and dry vegetation spectra and soil spectra for the specific morphological-
lithological units. Green and dry vegetation spectra were both taken from the spectral library of the 
United States Geological Survey (USGS) (Clark et al., 1993). The percentage of green and dry 
vegetation in the spectral mixture was successively increased from 5 % to 30 %. OC estimates from 
pure spectra were compared to estimates from mixtures of soil and green vegetation and soil and dry 
vegetation, respectively.  
 
Figure 20 and Figure 21 illustrate the results of the regression analysis between OC contents calculated 
from pure soil spectra with the ones calculated from mixtures of soil and green vegetation and soil and 
dry vegetation. 
 
As with increasing vegetation amount the spectral shape changes strongly, the parameterisation of the 
spectral shape through a second order polynomial is highly sensitive to green vegetation influences, 
leading to an overestimation of OC content with increasing vegetation amount (see Figure 20). The 
influence of green vegetation is stronger for samples with higher content of soil organic carbon 
(maximal error 1.6 % for samples with OC 2.5 % and minimal 0.03 % for OC of 0.15 %). 
Dry vegetation, present in the pixel, leads to an underestimation of OC content when applying the 
polynomial model (Figure 21). Assuming a fraction of 5% dry vegetation within a pixel, a minimum 
deviation of -0.1 % for OC content of 0.15 % and maximum deviation of -0.5 % at OC content of 
2.5 % were obtained.  
 
Models based on the parameter R’890nm – R’620nm and on colour attributes are less affected by green and 
dry vegetation in comparison to the model based on polynomial coefficients (Figure 20 and Figure 21). 
Estimations of OC show an offset to higher values with increasing vegetation for the parameter 
R’890nm–R’620nm, leading to a small error between +0.23 % (for 0.15 % OC) and + 0.18% (for OC 
content of 2.5 %).  
The influence of dry vegetation for the model based on parameter R’ – R’890nm 620nm is tolerable up to 
20% with a maximal error of 0.35 % for samples with 2.5 % OC content.  
 
Soil lightness L (CIELAB) is less sensitive to vegetation influence for both green and dry vegetation 
mixtures than the R component of the R-G-B colour space model (Figure 20 and Figure 21). The 
maximal error for a mixture of 30 % green vegetation and soil is -0.16 %, whereas for R a maximal 
error value of +0.48 % is obtained. Green vegetation fraction up to 30 % can be tolerated for the model 
based on L.  
The obtained maximal error is higher regarding dry vegetation influence; 30 % dry vegetation in the 
mixture leads to an underestimation of OC content of -0.67 % and -0.80 % for a model based on L and 
R, respectively. Again, the L model is more stable with a tolerable error of 0.29% for a dry vegetation 
contribution to the mixture of 10 %.  
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Figure 20. Regression analysis results between estimations of organic carbon form pure soil spectra and spectral 
mixtures of soil and green vegetation (5, 10, 20 and 30 %) showing the coefficient (left) and constant (right) of the 
regression equation. 

 

Figure 21. Regression analysis results between estimations of organic carbon form pure soil spectra and spectral 
mixtures of soil and dry vegetation (5, 10, 20, and 30 %) showing the coefficient (left) and constant (right) of the 
regression equation. 

2.4 MERIS satellite data and pre-processing 
MERIS is a fine spectral and medium spatial resolution satellite sensor, which is part of the core 
instrument of Envisat, the European Space Agency’s (ESA) environmental research satellite, launched 
in 2002.  
MERIS is a ‘push broom’ instrument with five optical modules, each containing a two-dimensional 
charged-couple-device (CCD) array, scanning the Earth’s surface in the across-track direction. Optical 
modules have a 14º field of view (FOV), providing an overlap of 10 pixels between modules and 
resulting in a FOV at nadir of 68.5º, covering a swath width of 1150 km from the platform altitude of 
799 km (ESA online at http://envisat.esa.int/instruments/meris). Data is available in dual spatial 
resolution: reduced spatial resolution (RR) with 1200 m at nadir and full spatial resolution (FR) with 
300 m at nadir.  
The instrument was primarily designed for ocean and coastal remote sensing and its radiometric 
performance is therefore beyond that of a sensor required for land applications. Radiometric error is 
less than 2 % of the detected signal between 400 to 900 nm and less than 5 % of the detected signal 
between 900 to 1050 nm (Curran & Steele, 2005). MERIS has a 12 bit signal digitization (4096 
intensity levels). Visible and near infrared radiation is recorded in 15 narrow bands (within the 390 – 
1040 spectral region). Default band centres and band width are given in Table 14. 
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Table 14. MERIS full resolution (FR) level 2 spectral band settings. Wavelength (WL) and Full Width Half 
Maximum (FWHM) in nm.

MERIS 
Band WL FWHM 

1 412.5 9.93 
2 442.5 9.95 
3 490 9.97 
4 510 9.97 
5 560 9.98 
6 620 9.99 
7 665 9.99 
8 681.25 7.49 
9 705 10.00 

10 753.75 7.49 
11 775 15.00 
12 865 20.004 
13 890 9.99 

 
For land applications the MERIS level 2 data products, which contain measurements of geophysical 
variables, are provided by ESA. They include calibrated reflectance in all channels, the Normalised 
Difference Vegetation Index (NDVI) and the MERIS Global vegetation index (MGVI) (Gobron et al., 
2004). The MERIS level 2 product consists of top of aerosol reflectance for 13 MERIS bands, which 
means reflectance corrected for gaseous absorption and Rayleigh scattering (Santer et al., 1999). The 
correction of surface reflectance for aerosol absorption and scattering is not included yet. Reflectance 
is only derived for the 13 bands which are not strongly contaminated by atmospheric gaseous 
absorption. The channels at 760 nm and at 900 m are devoted to the retrieval of gaseous abundances 
(O2 and water vapour respectively). Information on aerosol is given in the MERIS level 2 product in 
terms of aerosol optical thickness and angstrom coefficient over dark dense vegetation (DDV) 
(Université du Littoral Côte d'Opale, 2000). For the retrieval of aerosol optical thickness, angstrom 
coefficient over land surfaces and a subsequent aerosol correction, the Bremen Aerosol Retrieval 
(BAER) algorithm (von Hoyningen-Huene et al., 2006) was developed and implemented in the BEAM 
VISAT software (Brockmann Consult). However, the retrieval of aerosol optical thickness using the 
BAER algorithm has limitations for bright surfaces, which leads to voids in the data layer, in particular 
for bare soils. The improvement of the aerosol retrieval procedure for bright surfaces was outside the 
scope of this study. [A void filling through interpolation of retrieved aerosol optical thickness by 
incorporating a Digital Elevation Model can be proposed.].  
 
MERIS FR level 2 data for land applications were acquired for different acquisition dates, covering the 
years 2003 and 2004. (in total 12 images, listed in Table 15). For the analysis MERIS level 2 data 
without any further atmospheric correction was used.  
 
The presence of vegetation in image pixels hinders the derivation of soil properties of the soil surface. 
Agricultural soils are bare at different times of the year according to management. Therefore a multi-
temporal assessment is necessary to obtain a maximum share of bare soil for the test site. The 
following pre-processing steps to minimize the effect of vegetation on image spectra were applied: 

• Superposition of images from different acquisition dates 
• Masking of clouds 
• Derivation of a minimum vegetation composite 
• Masking of vegetation  
• Determination of residual vegetation at sub-pixel level through linear spectral unmixing 
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• Removal of the contribution of the vegetation fraction to surface reflectance  
• Masking of dry vegetation 
• Vector-normalisation of image spectra 
• Fitting of second-order polynomials to image spectra 
• Calculation of colour attributes  

 
The pre-processing steps will be described in detail. 
Geolocation accuracy of provided MERIS level 2 products was not sufficient for multi-temporal 
analysis. In order to improve geolocation accuracy between imagery, images were superposed on 
Landsat Image 2000 data (EUROPEAN COMMISSION, 2005). The original resolution of Landsat Image 
2000 data of 25 m was reduced by averaging 6 x 6 pixels. The semi-automatic procedure FINDGCP 
(Mehl, 2004,Unpublished Work.) was applied to extract ground control points (GCP) between 
imagery. The geometric transformation was determined through linear interpolation within each 
triangle of a Delaunay triangulation at any point and described on a regular grid. The image was 
resampled through the grid file using cubic convolution as interpolation method. The root mean square 
error (RMSE) varied between 0.53 – 0.68 for the 12 corrected images. Nearest neighbour resampling 
from raw data in the distributed MERIS imagery limits the geolocation accuracy and could account for 
an error up to 0.5 pixels. Additional geolocation errors might be due to the five camera optics 
subassembly (COSA), which causes displacements in the overlapping area of two adjacent COSAs. 
 
Clouds were masked using an improved MERIS level 2 cloud flag by applying the algorithm of von 
Hoyningen-Huene et al. (2006). Remaining clouds and cloud shadows, especially in mountain areas, 
can be neglected in this study.  
 
Minimum compositing technique was applied using the lowest value of the fraction of absorbed 
photosynthetically active radiation (FAPAR equal to MGVI) throughout a year for each pixel as 
selection criterion. The MGVI product is recognised to have a high sensitivity to presence and changes 
of healthy green vegetation, while minimizing the sensitivity to atmospheric scattering and absorption 
effects, to soil colour and brightness effects and to temporal and spatial variations in the illumination 
and observation geometry (Gobron et al., 2000; Gobron et al., 2006). It has an uncertainty range of +/-
 0.1. However, a validation exercise showed good agreement with ground based measurement also for 
sparse vegetation cover (Gobron et al., 2006). 
 
Figure 22 demonstrates the composition of the minimum vegetation composite of the year 2003, 
showing the acquisition date for each pixel. The proportion of single images in the minimum 
composite of year 2003 and 2004 are given in Table 15. Highest proportions for both years stem from 
images in September, followed by July acquisitions.  
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Figure 22. Acquisition dates for the MERIS minimum vegetation composite of the year 2003. 

 

Figure 23. FAPAR value of MERIS minimum vegetation composite 2003. 
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Table 15. MERIS images used for the derivation of minimum vegetation composite and their proportion on 
minimum vegetation composite of the years 2003 and 2004.

Acquisition dates Proportion 
minimum composite 

[%] 

Acquisition dates Proportion 
minimum composite 

[%] 2003 2004  

05/04/2003 21.89 26/05/2004 6.72 
11/06/2003 4.43 11/06/2004 1.93 
03/07/2003 30.98 24/06/2004 0.77 
21/09/2003 42.70 06/07/2004 11.21 

19/07/2004 9.45 
17/08/2004 3.42 
23/08/2004 11.33 
11/09/2004 55.17 

 
The spatial distribution of FAPAR values of the minimum vegetation composite is shown in Figure 23. 
Arable lands in the Apulian plain demonstrate low values of FAPAR between 0 – 0.1. 
 
To minimize further the influence of photosynthetic-active vegetation on image spectra, pixels with 
FAPAR value greater than 0.1 were masked. Furthermore water bodies and urban areas were excluded 
from further analysis using corresponding Corine Land Cover 2000 classes [CLC2000,EEA (2006)].  
 
The proportions of CLC2000 classes for pixels retrieved using the FAPAR threshold (0.1) are given in 
Figure 24. About 70 % of the pixels correspond to arable land (irrigated and non-irrigated). Other 
agricultural classes (mainly complex cultivation patterns, olive groves, vineyards, fruit trees and 
pasture) account for 24 % and 22 % in year 2003 and 2004, respectively. Only about 7 % of the pixels 
in each year derive from non-agricultural land cover classes (e. g. natural grassland, sparsely vegetated 
areas).  
Pixels not coinciding with CLC 2000 arable land were masked. 
The minimum value compositing and subsequent masking of pixels with the FAPAR threshold 
allowed the monitoring of approximately 50 % of arable land as classified by CLC2000 for each year 
in Southern Italy. 

 
Figure 24. Proportions of land cover classes for pixels with FAPAR values lower or equal to 0.1 in the MERIS 
minimum vegetation composites of the years 2003 and 2004. 

The residual amount of photosynthetic-active vegetation at subpixel level was determined through 
linear spectral mixture analysis using green vegetation, soil and shade as endmember (EM). The 
vegetation endmember was extracted from a single image (July 2003). The soil EM was deduced from 
the minimum vegetation composite by principle component analysis. The extracted soil endmember 
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spectrum was spectrally matched with a spectral library of soils from Apulia using spectral angle, 
standardised reflectance difference and reflectance difference as criteria (Garcia-Haro et al., 2005). 
The vegetation fraction determined by spectral unmixing ranges between 0 –15 % (mean value 2 %) 
for 2003 and between 0 and 20% (mean 9 %) for the year 2004. Spectral reflectance was corrected to 
“bare” soil reflectance by discarding the part of the reflectance related to residual vegetation. 
Accordingly, spectral reflectance of each pixel is determined using the normalised abundance of the 
soil endmember. Residuals between modelled and original reflectance in each channel are added to the 
vegetation-corrected reflectance, as they result partly from varying soil properties (Jarmer, 2005).  

 
Figure 25. Spectral endmembers green vegetation, soil and shade. 

In addition to photosynthetic-active vegetation, the influence of dry vegetation has to be considered in 
the pre-processing. Senescent vegetation and bare soil reflectance show distinct and separable features 
in the shortwave-infrared spectral region between 2100 and 2400 nm (Asner & Lobell, 2000), but are 
featureless in the spectral domain covered by the MERIS sensor. Information on ploughing date and 
management after harvesting of test areas was not available.  
In order to assess the amount of dry vegetation, Spectral Angle Mapping (Kruse et al., 1993) has been 
applied. Spectral Angle Mapping (SAM) considers reflectance spectra of individual pixel as n-
dimensional vector, where n is the number of image channels. The length of the vector represents 
brightness of the target whereas the direction represents spectral feature of the target. Variation in 
illumination mainly affects changes in the length of the vector. An endmember spectrum of straw was 
taken from field measurements by Sommer (personal communication). Pixels classified as straw 
(criteria: angle lower than 0.1 radians between pixel and endmember straw) have been excluded from 
further analysis. An analysis based on the laboratory spectra of field samples from Apulia (only top 
horizon) revealed that with this criterion also 15 % of the soil spectra would be classified as straw. 
However, pixels classified as straw in the minimum composites of both years stem mainly from July 
images (58 % in 2003 and 83 % in 2004). This finding seems to support the chosen approach as 
harvesting of crops occurs primarily in July. 
 
In the next step, second order polynomials were fitted to vector-normalised image spectra and soil 
colour attributes (as described before) were calculated. Except from few outliers, obtained data ranges 
of derived parameters were similar to ranges of field samples.  

3 Model application to MERIS minimum vegetation composites 
Regression equations, as listed in Table 13, were applied to MERIS minimum vegetation composites 
of the years 2003 and 2004 to estimate OC content. Results have been analysed regarding data ranges, 
value distribution and the spatial coherency between two observations (2003 and 2004) in Apulia and 
in the Abruzzo region.  
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3.1 Organic carbon estimates for Apulia and Abruzzo test areas 

Unit 1-River terraces and floodplains characterised by alluvial deposits 
Figure 26 depicts the distribution of OC in unit 1, estimated from MERIS minimum composites. The 
histogram is positively skewed with few high values of OC. Mean values of OC content are with 0.97 
% (2003) and 0.87 % (2004) in agreement with the average value of the calibration set (1 %). For 1 % 
of the data an OC content higher than the maximum value of laboratory measurements (2.5 %) was 
obtained. The minimum value (0.28 % OC) is in line with measurements (0.15 % OC). Results from 
two subsequent years revealed spatial instabilities which might be due to an overcorrection of 
vegetation abundance in image spectra. Spatial stability of OC estimations increased when considering 
only pixels with a vegetation fraction lower than 5 %. A graphical representation of the linear 
relationship between satellite observations from 2003 and 2004 is given in Figure 27. The coefficient 
of determination (R2) for the linear regression is 0.85 (see Figure 27). Calculated organic carbon 
content in 2004 is lower than in 2003. 
 

 
Figure 26. Histogram of OC [%] content from MERIS minimum composite for unit 1. Calculation of OC was based 
on the coefficient b2 of a polynomial. 

 
Figure 27. Correlation between OC estimations from MERIS data for the years 2003 and 2004 for unit 1. 
Estimations are limited to areas with a vegetation fraction lower than 5% in both years.  

Unit 2 - Morpho-structural depressions characterised by unconsolidated deposits 
MERIS OC estimates for unit 2, based on R, are in the same range as field samples of the calibration 
set (0.19 – 1.31 % OC mean 0.87). The mean OC value obtained when using the model based on L is ; 
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slightly higher (mean OC 0.98 % in 2003). Although ranges and mean values agreed between two 
subsequent years (see also Figure 32 b), histograms revealed differences in the value distribution in 
2003 and 2004 (Figure 28). This might be due to an overcorrection of the vegetation influence in 2004.  
 

 
Figure 28. Histograms of OC [%] content from MERIS minimum composite for unit 2; using L (left) and R (right) 
as input parameters.  

Unit 3 – Structural highs characterised by limestone  
The distribution of OC content from MERIS data in unit 3 is in good agreement for both years. Values 
are slightly shifted to lower values in 2004 (Figure 29). Mean values are consistent between two 
observations with 1.87 % in 2003 and 1.79 % in 2004. The average OC content of field samples 
(calibration set) is with 1.59 % slightly lower.  

 
Figure 29. Histogram of OC content [%] from MERIS minimum composite for unit 3 using coefficient b2 of a fitted 
polynomial as input parameter. 
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Abruzzo test area 
The application of MERIS satellite models to the Abruzzo test area was limited to small lowland areas, 
as only few pixels remained for the analysis after vegetation masking. Soil organic carbon was 
estimated for unit 2 (eco-pedological unit 9.01) using the model based on R (Table 13). MERIS OC 
estimates from 2004 showed a shift to higher values of OC and a higher standard deviation in 
comparison to the year 2003 (see Figure 33 and Figure 34).  

3.2 Comparison with independent data sets  
In order to verify our OC estimates from MERIS satellite data, results were compared with the map of 
OC content in the topsoil layer (OCTOP), which was calculated based on pedo-transfer rules (Jones et 
al., 2005).  
The OCTOP dataset is a European wide assessment based on the European Soil Database (ESDB) with 
a grid size of 1 km x 1 km (Jones et al., 2005). OCTOP is given in the following classes:  

• Very low: < 1 % 
• Low: 1.1 – 2 %  
• Medium: 2.1 – 6. %  
• High: > 6 %. 

Pedo-transfer rules (PTRs) for the determination of topsoil OC were constructed by Van Ranst et al. 
(1995) and modified by Jones et al. (2005). After assigning the OCTOP values on the basis of soil 
characteristics, these are modified on the basis of land use; for example, under grassland a soil is given 
a higher OCTOP content than the same soil type under cultivation. The OCTOP content obtained from 
applying the revised PTR was further modified to take account of changes in organic carbon content 
caused by variations in temperature. Main inputs, such as soil type and soil texture, can not be 
described more precisely, concerning their spatial location, than the initial Soil Mapping Unit in the 
ESDB. Modifications derive from land use, based on the CORINE LAND COVER at 1km grid 
resolution and the temperature gradient. A comparison of spatial distribution on a pixel by pixel basis 
is therefore not feasible.  
Besides the OCTOP map, the soil profile data base of the eco-pedological map of Italy served as data 
set for comparison of SOC content of arable lands within specific eco-pedological units. 

3.2.1 Comparison for the Apulia test area  
The spatial distribution of OC content of arable land derived from MERIS 2003 and from the OCTOP 
map is demonstrated in Figure 30. Very low values of OC (0 -1 %) are dominating in both maps (50.8 
% MERIS 2003, 53.3 % OCTOP), followed by low content (1 -2 %) of OC (45.4 % MERIS 2003 and 
39.6 % OCTOP) and medium content (2 – 6 %) of OC with a proportion of only 3.7 % and 7.1 % for 
MERIS estimates and OCTOP, respectively. MERIS OC estimates demonstrate a higher heterogeneity 
of organic carbon content in areas characterized by alluvial deposits, showing few areas with medium 
organic carbon content.  
In contrast to MERIS estimates, the OCTOP map shows medium OC values in the Higher Murge area, 
which could not be verified further.  
In general, data comparison revealed a continuous histogram distribution for the satellite derived OC 
content and a n-modal distribution for the OCTOP dataset (Figure 31). The abrupt changes in the 
OCTOP dataset coincide with a change between two adjacent soil mapping units, which represent 
different soil attributes concerning soil type and soil texture and therefore different class of OC 
content. For satellite models (based on soil colour and coefficient of polynomial) good agreement 
could be observed with the OCTOP map concerning data ranges (Figure 32). Maximum values for all 
units revealed few outliers in MERIS estimates in contrast to field data (from Ecopedological map) 
and OCTOP map. 

50 



PART 2: ESTIMATION OF SOIL ORGANIC CARBON FROM MERIS SATELLITE DATA 

Unit 1- River terraces and floodplains characterised by alluvial deposits 
In accordance with MERIS OC estimates for unit 1, OC content modelled by pedo-transfer rules 
demonstrated a lower mean value (0.95 %) as field data (Figure 32 a). OC estimates from MERIS, 
limited to areas with a vegetation cover up to 5 %, suggested a higher mean value (MERIS 2003: 1.34 
%; MERIS 2004: 1.04 %).  

Unit 2- Morpho-structural depressions characterised by unconsolidated deposits 
Mean values of MERIS OC content for 2003 and 2004 were in line with the OCTOP map for this unit. 
Field data from the eco-pedological map indicated a lower mean value and a higher standard deviation 
(Figure 32 b).  

Unit 3- Structural highs characterised by limestone 
Mean values derived for unit 3 from MERIS data were slightly higher than OCTOP estimates (Figure 
32 c).  
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PART 2: ESTIMATION OF SOIL ORGANIC CARBON FROM MERIS SATELLITE DATA 

a)  

b) 
Figure 30. Estimations of OC content [%] for arable land in Apulia a) from MERIS data (2003) and b) modelled 
with pedo-transfer rules [OCTOP map, (JONES ET AL., 2005)]. Areas covered by vegetation in satellite data are 
masked in both maps. 
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PART 2: ESTIMATION OF SOIL ORGANIC CARBON FROM MERIS SATELLITE DATA 

a) b)  

c)  
Figure 31. Distribution of OC content [%] derived from pedo-transfer rules [OCTOP map, (Jones et al., 2004)] for 
stratification unit 1 (a), unit 2 (b), unit 3 (c). 
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PART 2: ESTIMATION OF SOIL ORGANIC CARBON FROM MERIS SATELLITE DATA 

a) b)   

c)  
Figure 32. Basic statistics (mean x, standard deviation ∆, min and max -) of OC content [%] derived from pedo-
transfer rules, MERIS satellite data and ground samples from the eco-pedological map for morpho-lithological units 
1 (a), 2 (b), 3 (c) in Apulia.  

3.2.2 Comparison for the Abruzzo test area 
Results for unit 1 (alluvial floodplains and terraces) could not be validated as only few pixels remained 
after vegetation masking (~ 400 pixels). Furthermore these pixels were located at the edge of the unit 
and might not be representative. Therefore only results for unit 2 (unconsolidated deposits) were 
compared with the OCTOP map. Very low values of OC are dominating for all datasets. OC 
estimations from MERIS data agreed with modelling results from pedo-transfer rules (Figure 33 b) in 
mean values. In contrast to estimations from MERIS and OCTOP modelling results, the average OC 
content of field data (eco-pedological map) showed a lower mean value (0.55 % OC, N = 46, Figure 
33). It has to be noticed that after vegetation masking only 6 % of the stratum (UE 9.01 1,203/21.138 
pixels) remained for the derivation of OC from satellite data. 
Despite stability in descriptive statistics for OC estimates from MERIS data for two observations 
(years 2003 and 2004) (Figure 33 b), local variations can still be observed as shown in Figure 34 for a 
subset of unit 2 in Abruzzo.  
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PART 2: ESTIMATION OF SOIL ORGANIC CARBON FROM MERIS SATELLITE DATA 

a)  b)  

Figure 33. Histogram (a) and basic statistics (b) (mean x, standard deviation ∆, min and max -) of OC content [%] 
derived from pedo-transfer rules, MERIS satellite data and ground samples (eco-pedological map, N = 46) units 9.01 
in Abruzzo.  

 

a)  b)  
 

c)

 
 

 

 
Figure 34. Distribution of organic carbon [%] within a subset of  unit 2 (eco-pedological unit 9.01) in Abruzzo (a) 
from OCTOP map, (b) estimated from MERIS minimum composite of year 2003 and (c) estimated from MERIS 
minimum composite of the year 2004. Areas covered with vegetation in satellite data are masked for all maps. 
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PART 2: ESTIMATION OF SOIL ORGANIC CARBON FROM MERIS SATELLITE DATA 

4 Conclusions 
The estimation of topsoil organic carbon content from MERIS reflectance data could be demonstrated 
for arable land at regional scale in Southern Italy. Simple models using soil colour attributes and 
spectral shape could be derived for specific morphological-lithological units in the Apulia region. 
Stratification into morphological-lithological units takes best into account the dependence of soil 
reflectance from soil parent material and soil development, which can not be well depicted by MERIS 
spectra due to the limited spectral range of the sensor. Furthermore, the  INTEREG project sampling 
strategy being not optimised for our purpose might have been a limiting factor for the quality of 
models. Sampling was adapted to a delineation of soil types based on already known general spatial 
distribution of soil types focussing thus on a high variety of soils (European Soil Bureau & Regione 
Puglia, 2001).  
The above-mentioned stratification approach instead allowed a transfer of models from the calibration 
site to another region in Southern Italy. 
Vegetation related influences in image spectra could be minimised by a multi-temporal minimum 
vegetation criterion and a further decomposition of image spectra into its components soil and 
vegetation. The quantification of the contribution of senescent vegetation to image spectra remains to 
be improved. 
Regarding models based on colour attributes a high stability of OC estimations could be observed for 
two years, since these models show a low sensitivity to vegetation. Stability of estimations with the 
model based on the coefficient of the polynomial fitted through the image spectra remains restricted to 
almost vegetation free pixels. Analysis of OC estimations indicates inaccuracies in the determination 
of vegetation and soil abundance in the pixel, which led to errors in the modelled reflectance for areas 
with overestimated vegetation abundance.  
Hence, monitoring capability is given for models based on colour attribute but remains restricted to 
almost vegetation free areas for models based on polynomial coefficients.  
Organic carbon estimations for the region Apulia and Abruzzo showed good agreement with 
independent modelling results (OCTOP map) in data ranges and mean values.  
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Abstract 
The application of chemometric models for the quantitative estimation of soil organic matter (SOM) from 
laboratory reflectance data on a regional/country-wide level is explored in the first part of this report. In addition, 
the possibility to transfer the developed models to operational satellite systems has been evaluated. 376 soil 
samples were collected for previous projects within a wide range of environmental settings in Italy. Soil physical 
and chemical laboratory analyses results were provided by activities of JRC-IES under the auspices of the 
European Soil Bureau. Reflectance measurements were obtained on disturbed soil samples using an ASD Field 
Spec Pro spectroradiometer. Data transformation methods (standardisation, vector-normalisation and first and 
second order derivatives) have been applied on the spectral data. The transformed spectral data have been 
used for the prediction of SOM and carbonate content using the partial least squares regression (PLSR). The 
results (R2 between 0.57 and 0.8) demonstrate the successful application of reflectance spectroscopy combined 
with chemometric modelling for the estimation of SOM and carbonate content. The calibration models 
demonstrated a tolerable stability over a variety of different soil types, which gives the opportunity for monitoring 
larger areas. Furthermore it could be shown, that the spectral resolution of the MERIS sensor is sufficient to 
estimate roughly the SOM content.  
A second study was conducted on the use of MERIS satellite data for the estimation of soil organic carbon 
content, which is described in the second part of this report. This study concentrated on the Apulia region, as 
sampling in other regions in Italy was not sufficiently dense to assure sound model calibration and validation. 
For specific morphological-lithological units simple spectral models, based on soil colour and shape attributes, 
were applied to derive soil organic carbon content.  
In order to apply these models to MERIS satellite data, a time series of images covering the years 2003 and 
2004 was acquired for Southern Italy. Pre-processing of image data aimed at the reduction of vegetation related 
effects on image spectra including the derivation of minimum vegetation composites and the unmixing of soil 
and vegetation. The spatial distribution of soil organic carbon was estimated for each year within the specific 
morphological-lithological units in the Apulia region. In addition the models could be applied to other regions in 
Southern Italy, especially the Southern part of the Abruzzo region. The results showed good agreement with 
independent field data and with the Europe wide estimations of the OCTOP data base described by Jones et al. 
(2005). 
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