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Abstract—Massive multiple-input multiple-output (MIMO) is

considered to be an emerging technique in wireless communi-

cation systems, as it offers the ability to boost channel ca-

pacity and spectral efficiency. However, a massive MIMO

system requires huge base station (BS) antennas to handle

users and suffers from inter-cell interference that leads to pi-

lot contamination. To cope with this, time-shifted pilots are

devised for avoiding interference between cells, by rearranging

the order of transmitting pilots in different cells. In this pa-

per, an adaptive-elephant-based spider monkey optimization

(adaptive ESMO) mechanism is employed for time-shifted op-

timal pilot scheduling in a massive MIMO system. Here, user

grouping is performed with the sparse fuzzy c-means (Sparse

FCM) algorithm, grouping users based on such parameters as

large-scale fading factor, SINR, and user distance. Here, the

user grouping approach prevents inappropriate grouping of

users, thus enabling effective grouping, even under the worst

conditions in which the channel operates. Finally, optimal

time-shifted scheduling of the pilot is performed using the

proposed adaptive ESMO concept designed by incorpo-

rating adaptive tuning parameters. The efficiency of the

adaptive ESMO approach is evaluated and reveals supe-

rior performance with the highest achievable uplink rate of

43.084 bps/Hz, the highest SINR of 132.9 dB, and maximum

throughput of 2.633 Mbps.

Keywords—massive MIMO, pilot contamination, sparse FCM,

time-shifted pilot scheduling, user grouping.

1. Introduction

The advancement of big data and the demand for commu-

nication networks has increased considerably, meaning that

classical wireless networks, such as 4G, are not able to

meet the demand of network users [1]. Massive MIMO

is a fundamental technique for establishing 5G wireless

communications and maximizing spectral efficiency. It

offers the ability to deploy different communication mod-

els, like cooperative communication, orthogonal frequency

division multiplexing (OFDM), and multicarrier commu-

nication. Massive MIMO relies on varying frequencies in

the frequency division duplex (FDD) mode. Thus, mas-

sive MIMO is based on the time division duplex (TDD)

system [2], which utilizes channel reciprocity for obtaining

the channel state information (CSI) [3] required. How-

ever, as anticipated, the lower coherence interval limits the

count of orthogonal pilots assigned to a user. The use of

similar pilots by various cell users means that pilot contam-

inations cannot be distinguished at the base station (BS).

Furthermore, massive MIMO has acquired much interest

because of gains in energy and spectrum efficiency affect-

ing BS with huge antennas that serve a set of users concur-

rently [4]. Under multi-cell scenarios, inevitable reuse of

pilots in varying cells is experienced and channel estimates

generated from certain cells are prejudiced by the reused

pilots which are then sent by users from other cells. The

phenomenon is termed as pilot contamination [5].

Despite its potential, the massive MIMO model poses var-

ious limitations. One of them is the effect of pilot con-

tamination. The problem occurs when users of adjoining

cells utilize similar sequences of pilots. The most unpleas-

ant cases are supposed to occur when neighboring cells

transmit similar sequences of a pilot at a similar time. For

avoiding the issue of synchronized pilots between adjoining

cells, a time-shifted pilot method is devised in which some

of the cells transmits downlink data, whereas others send

pilots. This technique enhances transmission rates of the

system. However, the assessment is based on the supposi-

tion that the number of antennas at BS is unlimited. Due

to the infinite number of antennas, some interference may

be considered to be negligible [6]. Pilot contamination un-

avoidably limits the efficiency of a huge-scale antenna of

a massive MIMO model, because of the corrupted esti-

mation of channels. The recycling of frequency amongst

adjacent cells led to interference that limited the quality of

service offer to cellular users, especially those positioned

at cell edges. Service providers look for solutions to re-

store performance at low SINR cell locations. Numerous

methods are devised to mitigate inter-cell interference.
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Among these are solutions that rely on multiple antennas,

meaning that on the BS side, these arrays become more

affordable [7].

In the literature, various methods are devised to mitigate the

effects of pilot contamination. The greedy pilot allocation

technique allows to alleviate the effect of contaminating pi-

lots by using arithmetical channel covariance information,

but still suffers from a number of complications. A blind

technique using subspace partition [8] is used for minimiz-

ing inter-cell interference (ICI), wherein channel vectors

of different users are supposed orthogonal. An adaptive

pilot clustering technique [9] is devised based on coali-

tional game theory. It may alleviate pilot contamination

by employing a subset of pilot resources in an individual

cell, thus causing spectral efficiency loss. In [10], the pilot

contamination precoding (PCP) method is devised, wherein

a precoding matrix is using zero-forcing (ZF) for obtaining

an infinite signal-to-interference plus noise ratio (SINR),

but it affects entire systems. In [11], an optimal technique

for determining a simple suboptimal algorithm and an op-

timum pilot contamination precoding matrix are devised.

In paper [12], an intelligent pilot allocation method is de-

vised that could increase uplink SINR of every user in

a target cell with large-scale fading. The pilot power con-

trol method shown in [13], [14] is devised for classified

cells and allows to minimize pilot contamination, improve

downlink reachability and foster efficiency of the entire

system.

In [15], a ZF time-shifted pilot scheme is utilized for alle-

viating pilot contamination by using conjugate beamform-

ing. In [16], the interference cancelation (IC) precoding

method is devised for mitigating pilot contamination in

massive MIMO models. The method improves service

quality and allows for effective user scheduling. In [17],

a pilot contamination reduction method is devised that is

based on complicated exponentials. In this paper, linear

time-varying (LTV) channels are evaluated with optimum

pilot symbols and they are devised using minimum mean

square error (MMSE) criteria. It is proved that the op-

timum pilot method is capable of setting successive pilot

tones and allocating all pilot clusters uniformly within the

frequency domain.

The goal is to use time-shifted pilots for mitigating pilot

contamination, and thereby assuring effective pilot schedul-

ing in massive MIMO. The motive of the proposed schedul-

ing technique is to utilize time-shifted pilots to initiate pi-

lot scheduling. Initially, user grouping is performed based

on an algorithm that gather users as center and edge user

groups, depending on various pilot contamination levels.

The grouping of users is performed using sparse FCM,

based on attributes that involve large-scale fading factors,

SINR and user distance in such a way that inappropriate

grouping of users is prevented, enabling effective group-

ing even under the worst channel conditions. Then, pilot

scheduling is performed based on the proposed adaptive

ESMO algorithm designed by incorporating adaptive tun-

ing parameters in the ESMO algorithm.

The major contribution of the research performed is to de-

vise an approach enabling time-shifted optimal schedul-

ing of pilots using the adaptive ESMO algorithm that is

designed by combining adaptive tuning parameters with

ESMO.

The remaining sections of the paper are arranged in the

following manner: Section 2 elaborates on the description

of conventional pilot scheduling strategies and on the chal-

lenges faced. The model of a massive MIMO system is

illustrated in Section 3. The proposed method for time-

shifted pilot scheduling is portrayed in Section 4. Out-

comes of the proposed strategy and its comparisons with

other methods are depicted in Section 5. Section 6 presents

the conclusions.

2. Literature Survey

Akgun et al. devised, in [18], an attack model in which

the foe infected the uplink pilot transmissions of multiple

users, i.e. they conducted a pilot contamination attack. The

downlink transmission rates with/without the attack were

derived by exploiting the channel hardening effect of mas-

sive MIMO. This model did not consider attack models

that involved multiple frequencies and time slots. Wu et

al. in [19] devised secure communication for the time du-

plex MIMO model, considering eavesdropping. The eaves-

dropper attacked the transmission of the uplink pilot before

eavesdropping on downlink transmissions. Moreover, pi-

lot signals and data signals were utilized for estimating the

uplink channel. This method maximized the asymptotic es-

timation error and suffered from loss of performance. Fan

et al. in [20] devised a fractional pilot reuse (FPR) mech-

anism for minimizing the contamination of pilots from the

massive MIMO model. In FPR, users are split into the cen-

ter and edges of the cell. Then, cell users utilize orthogonal

pilots for preventing interference caused by adjoining cells,

meanwhile the cell center reutilizes similar pilots for en-

hancing the efficiency of pilots. The throughput of the

network was influenced by the count of service users and

pilots.

Saraereh et al. in [21] presented a method deployed in

a massive MIMO model for decontaminating the set of

pilot sequences. The first step is based on path loss to per-

form grouping, and the second step is based on the pseudo-

random code. However, the method failed to consider pi-

lot contamination in sectoral cells. Shaalan et al. [22]

developed two pilot assignment methods for minimizing

the impact of pilot contamination. Time-shifted pilot as-

signment (TSPA) method were utilized, splitting the cel-

lular network into different groups in which users belong-

ing to the same group were transmitted to uplink-pilots,

whereas others received downlink data. Also, the heuristic

weighted graph coloring-based pilot assignment (WGC-PA)

method was utilized for minimizing intra-group interfer-

ence. The method showed that two consecutive cells be-

long to the same group in the time-shifted method. Hua

and Chang in [23] devised a “cocktail” method for com-
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bining two classic countermeasures, namely time-shifted

pilots (TSP) and fractional pilot reuse methods for address-

ing the issue of pilot contamination in a full-duplex massive

MIMO model. The TSP method was adapted for dupli-

cating inner cell regions, such that the count of gathered

users is twofold. Also, the base station must function in the

full-duplex mode and the symbols of the pilot are em-

ployed for attaining the user diversity gain. The outcomes

of the simulation verified the accuracy and enhanced the

overall uplink and downlink rates. Salh et al. [24] devel-

oped a channel estimation method which relied on com-

prehensive knowledge of huge-scale expansion by adapt-

ing the orthogonal pilot sequence for eliminating pilot

contamination among edge users with minimized channel

quality losses, using huge-scale fading. Channel quality

available to users was improved. The performance of the

methods was analyzed and it was shown that performance

losses were minimized, with better channel approximation

leading to elevated data rates. However, the method was

unable to deal with complex signal processing methods.

Wei et al. [25] devised a method using time-shifted pi-

lots based on joint position-power optimization for mas-

sive MIMO. Here, an effective user scheduling strategy

was applied for optimizing pilot power, using the aver-

age power constraint. Furthermore, the power and the po-

sitions of pilots were optimized iteratively. The analysis

performed revealed that the method offered substantial co-

ordination gains in terms of performance, based on spectral

efficiency.

2.1. Research Challenges

The research challenges confronted by the conventional

time-shifted pilot-based scheduling schemes are:

• in [22], the time-shifted pilot assignment (TSPA)

method is devised for reducing the impacts of pilot

contamination. However, the TSPA method suffered

from intra-group interference that occurred between

the cells of similar groups, and offered no approach

to grouping cells and to tackling pilot-to-downlink

data interference. Moreover, there is a lack of per-

fect synchronization between cells;

• in massive MIMO-TDD models, the BS obtains CSI

using uplink pilots sent by the user with channel reci-

procity. However, owing to lower coherence time

rates, the reuse of pilots from user terminals in a dif-

ferent cell is foreseeable, which results in pilot con-

tamination issues. Thus, the evaluation of CSI is

correlated and produced imprecise beamforming sig-

nals [25];

• in massive MIMO-TDD models, the BS obtains CSI

using the uplink pilots sent by the user with chan-

nel reciprocity. However, owing to less coherence

time, the reuse of pilots from user terminals in a dif-

ferent cell is foreseeable, which results in a pilot

contamination issue. Thus, the evaluation of CSI is

correlated and produced imprecise beamforming sig-

nals [25];

• the major issue in massive MIMO is related to pi-

lot contamination effects impacting channel estima-

tion. Pilot contamination leads to inaccurate channel

estimation in 5G downlink transmissions. Besides,

various issues need to be faced while executing

a massive MIMO model that included noise contam-

ination affecting spectral efficiency.

3. System Model

Massive MIMO is a fundamental element of upcoming

applications of 5G networks. MIMO is a wireless net-

work that permits the transmission and reception of large

amounts of data signals at the same time and via the same

radio channels. In order to satisfy the high data rates and to

ensure improved service quality, massive MIMO is favored

as it relies on huge antennas at access points. Figure 1 illus-

trates a massive MIMO model with pilot contamination in

the uplink transmission. It comprises antenna arrays, base

stations (BS), and different user terminals. The BS sends

data packets from various antennas to different terminals

at a similar frequency. Massive MIMO [21] is adopted to

offer enhanced coverage, high energy efficiency and high

data rates. However, various performance restricting issues

need to be confronted in this approach in connection with

channel estimation and pilot design.

Fig. 1. Model of a massive MIMO system with uplink transmis-

sion pilot contamination.

Thus, an effective method is devised for eliminating pilot

contamination in order to solve pilot-related problems. It

stems from Fig. 1 that each hexagonal cell utilizes the cen-

tral BS associated with A antennas for D users (DÀ A).
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Thus, the channel propagation matrix for every user in the

cell communicating with the cell site is:

bde f = ade f
√

Cde f , (1)

where ade f indicates the small scale fading vector, Cde f =
d(dde f 1,cde f 2,cde f 3, . . . , cde f K) is a K×K order diagonal

matrix that describes the large-scale fading factor of each

user to the BS of e-th cell. The large-scale fading factor of

f -th user of e-th cell to BS of d-th cell is:

cde f K =







Mde f K

kde f K

N







η

, (2)

where Mde f K describes shadow fading, kde f K is the distance

evaluated between f -th user in e-th cell and BS in d-th cell,

N represents the radius of the cell, and η is the path loss

factor.

The channel vector is given by a constant at coherence

time and varies autonomously in varying intervals. Here,

the BS produces a downlink channel based on the uplink

pilot sequence in coherence time. When data is sent, all

users send uplink data to the BS and get downlink at d-th

cell as:

su
d =
√

Ku

T

∑
e=1

D

∑
f=1

bde f xu
e f + vu

d , (3)

where symbol sent from f -th user in e-th cell is xu
e f with

ε
{

|xu
e f |2
}

= 1, and uplink is Ku.

Let θd = (θ1, θ2, . . . , θD)D be the pilot sequence matrix of

all users in the e-th cell, which satisfies θdθ R
d = XD. The

pilot sequence matrix received in BS at d-th cell is:

st
d =
√

Nt

( T

∑
d=1

bde f θD

)

+ vu
d , (4)

where Nt is the pilot signal transmission power and vu
d is

the additive white Gaussian noise matrix. For this scenario,

the BS of d-th cell evaluates channel matrix Rdd with con-

volutional channel estimation and is:

b∧de f =
1√
Nt

st
dθ R

d = bde f + ∑
e6=d

bde f +
1√
Nt

vu
dθ R

d . (5)

After the user sends the pilot, every user transmits the data

signal to the BS and utilizes the same time frequency re-

source. The linear blend of channel bde f for 1 ≤ e ≤ T is

expressed as ddd f , which contains channel users in other

cells associated with pilot sequences and is termed pilot

contamination. Then, the determined symbol generated

from f -th user in d-th cell using a low complexity matched

filter detector, offers computed channel matrix b∧de f given

as:

x̂u
d f = bR

dd f su
d , (6)

x̂u
d f =

( T

∑
e=1

bF
de f +wR

d f

)(√
Ku

T

∑
e=1

D

∑
f=1

dde f xu
e f + vu

d

)

, (7)

x̂u
d f =

T

∑
e=1

bR
de f ·
√

Ku

T

∑
e=1

D

∑
f=1

bde f xu
e f +ρu

d, f , (8)

x̂u
d f =

√
Ku

(

bR
de f bdd f xu

d f +∑
e6=d

bR
de f bde f xu

e f ·
)

+ρu
d, f , (9)

x̂u
d f = A

√
Ku

(

αdd f xu
d f + ∑

e 6=d
αde f xu

e f ·
)

+ρu
d, f , (10)

where wdc indicates f -th column of
vt

dθ R
d√s j

and ρu
d, f repre-

sents orthogonality between channels of many users. When

the BS antenna count reaches to infinity, the detected sym-

bol is:

xu
d f ≈ A

√
Ku

(

αdd f xu
d f + ∑

e 6=m
αde f xu

e f

)

. (11)

4. Scheduling Using Adaptive ESMO

Algorithm

The proposed scheduling algorithm utilizes time-shifted

pilots. At first, the grouping of users is performed based

on the user grouping algorithm which assists in grouping

users (center user and edge user) based on various lev-

els of contaminating pilots. The grouping of users is per-

formed using sparse FCM, based on such parameters as

large-scale fading factor, SINR, and user distance. Finally,

pilot scheduling is performed using adaptive ESMO, i.e.

a method that combines adaptive tuning parameters with

ESMO. Figure 2 shows a schematic view of the time-shifted

pilot-based scheduling process using the proposed adaptive

ESMO algorithm.

4.1. Grouping of Users with Sparse FCM

Users are divided into different groups in order to minimize

the complexity of processing by serving each group indi-

vidually. In a specific time slot, a subset of users is sched-

uled within each group for transmission. Additionally, the

precise SINR of each user is essential for user grouping.

However, in conventional user grouping methods, channel

covariance matrices are adopted for grouping users, which

causes inter-group interference. Here, user computing pa-

rameters and sparse FCM are employed for facilitating the

grouping process. The parameters include user distance,

SINR, and the large-scale fading factor [21]. These param-

eters are essential for designing the user grouping method

in order to improve system capacity.

The uplink SINR of v-th user in b-th cell is:

SINRu
d f =

|bR
dd f bdd f |2

∑
e6=d

∣

∣bR
de f bde f

∣

∣

2
+
|ρu

d,d |2

Ku

, (12)

With large numbers of BS, the uplink SINR is expressed

as:
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Fig. 2. Schematic view of the time-shifted pilot-based scheduling using proposed adaptive ESMO.

SINRu
d f =

α2
dd f

∑
e6=d

α2
de f

. (13)

Hence, the SINR of the user is expressed as G1.

The large scaling factor of f -th user of e-th cell to BS of

d-th cell is obtained in Eq. (2). This factor is expressed

as G2. User distance is computed between the location of

f -th user and the center of the cell:

∂ =

√

√

√

√

L

∑
f=1

(

ω loc
f , zcell

)

, (14)

where ∂ indicates the user distance, ω loc
f indicates the loca-

tion of f -th user, zcell represents the center of the cell, and

G3 indicates user distance. Hence, user grouping-related

parameters are formulated as:

T = G1, G2, G3 . (15)

User grouping is performed with sparse FCM – a method

that relies on such parameters as large-scale fading factor,

SINR, and user distance. The goal of sparse FCM is to

group users into center user and edge user categories. In

sparse FCM [27], dimensional reduction is essential. Here,

the advantage consists in grouping users without any de-

lay, and in reducing the level of complexity caused by the

optimization method. The steps of sparse FCM are:

• Initialization. The foremost step is to initialize the

feature weights, which are:

ϖ = ϖn
1 = ϖn

2 = . . . = ϖn
z =

1√
z

, (16)

where z indicates features and n-th attribute weights

based on z-th feature indicated as ωn
z ;

• Update the partition matrix. Set cluster centers and

attribute weights as q and ω . The constraint is ϑ(W ),
which must be reduced to:

ωic =



























































1
Ic

if ric and

Ic = cardinality{e : ric = 0}

0 if ric 6= 0 but riy = 0
for some y, y 6= l

1
o
∑

y=1

(

ric
ryc

)

(

1
γ−1

) otherwise

,

(17)

where ric =
o
∑

c=1
ϖe(υei−kci)

2 and cardinality(U) rep-

resent cardinality of set U .

The distance measure is ric which indicates the dis-

tance between i-th node and c-th cluster center;

• Determine cluster centers. For evaluating cluster

centers, it is important to set attribute weight ω and

data matrix Z, and estimation of cluster center is:

yce =



























0 if ϖe = 0

n
∑

i=1
ωγ

icυei

n
∑

i=1
ωγ

ic

if ϖe 6= 0
, (18)

where c = 1, . . . , v and e = 1, . . . , d. The c index

indicates the cluster center and e represents data at-

tribute. The evaluation of the cluster center is done

based on attribute weight ϖe. The response of e-th
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feature to the objective function is indicated as ϖe
and constant Y symbolizes dissimilarity measure;

• Derive the class. The class is determined using

specified clusters y = {y1, y2, . . . , yc, . . . , yo} having

a membership ω . Class Ye is detected with the use

of an objective function:

max
ϖ

z

∑
e=1

ϖe.Ye , (19)

such that
∥

∥ϖ
∥

∥

2
2 ≤ 1,

∥

∥ϖ
∥

∥

κ
κ ≤ λ produces ϖ∗,

where λ indicates tuning parameter (0≤ κ ≤ 1) and
∥

∥ω
∥

∥

κ
κ =

d
∑

e=1
|ϖe|κ ;

• Terminate. The iteration is repeated until the maxi-

mum count is reached. The stopping criterion is:

z
∑

e=1

∣

∣ϖ∗
e −ϖo

e
∣

∣

z
∑

e=1

∣

∣ϖo
e
∣

∣

< 10−4 . (20)

Hence, the count of users in the individual cell is chosen

vibrantly. The proposed user grouping approach mitigates

inapt grouping of users and facilitates effective grouping

even under the worst channel conditions.

Based on the clustering result, the distance attribute of the

centroid having the minimum value is considered. The cor-

responding user belongs to center users (group 1), and the

remaining user belongs to edge users (group 2) or nearby

edge users (group 3).

4.2. Time-shifted Optimal Pilot Scheduling

Time-shifted pilot slot allocation using the adaptive ESMO

method is devised for alleviating impacts of contaminating

pilots. The method relies on four time-based scheduling

phases, including pilot sequence transmission, processing

and estimation of the channel at BS, uplink data transmis-

sion, and downlink data transmission. This method as-

signs pilots to cells at different time-shifted slots. Non-

overlapping time slots are assigned to the transmission of

pilots by shifting pilot locations. Thus, the use of time-

shifting is controlled effectively, without any overlaps, and

pilot contamination is removed entirely. A brief illustration

of the proposed adaptive ESMO used for time-shifted pilot

slot allocation is given below.

The goal of solution encoding is to produce a solution vec-

tor using the proposed optimization technique. The so-

lution consists of pilots that match the proposed adaptive

ESMO method (Fig. 3). The count of pilots is chosen

based on a matrix, wherein the count of users is indicated

in a row-wise manner and the count of cells is indicated in

a column-wise manner. Let us assume that the total number

users is U , the count of groups is G and the count of cells

is A. Then, the dimension of the solution is indicated as

A×G. Based on the matrix, a solution vector is described

that indicates the count of pilots, and its size is represented

as (A×G).

Fig. 3. Solution encoding to pilot assignment.

Let us assume that U = 6, G = 3, and A = 2. Let the

number of pilots be 2, meaning that pilot length becomes 2.

The dimension of the solution is 2(A). Figure 4 shows an

example of the pilot assignment process.

Fig. 4. Example of pilot assignment process.

Pilot p1, p2 is assigned to cell 1 with the index of 1 and 3.

The mapping of the above solution in the concept model

using a time-shifted pilot sequence is illustrated in Fig. 5.

Let us assume that P, D, U = {2, 4, 4}, where P indicates

the total number of pilots, D denotes the downlink scenario

and U is an uplink scenario. Then, the solution matrix is

represented as:

Fig. 5. Example of the time-shifted pilot sequence.

The level of fitness helps reveal solution quality worked out

with the use of the achievable sum rate. It is modeled as

a maximization function and is derived below.

The utility function describes the achievable uplink rate,

wherein the pilot sequence θv is assigned to the E f -th user:

Θ(E f , θ f ) = Pu
E f

(E f , θ f ) , (21)

where pilot sequence θ f allocated to user E f is expressed

as (E f , θ f ) {Wv : v = 1, . . . , D!} represents all pilot assign-

ment possibilities, and Wv =
[

W 1
v , W 2

v , . . . , W D
v
]

indicates

v-th assignment. Furthermore, the goal of massive MIMO
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is to enhance the achievable target cell sum rate, which is

the main optimization issue and is given by:

Z : max
{Wv}

{ E

∑
D=1

Pu
E f

(

E f , θW v
u

)

}

. (22)

The enhanced achievable uplink rate is:

P(E,θ) = (1−µ0)
{

log2
[

1+SINR(E,θ)
]

}

+

µ0×
n

∑
a=1

Ba , (23)

where SINR(E,θ) indicates SINR value θ at user E and

he transmit power of pilot is expressed as Ba. The total

pilot is indicated as a. ESMO provides a solution to the

optimization issue by offering optimum pilot assignments.

4.3. Steps of Proposed Adaptive ESMO

Time-shifted optimal pilot scheduling is performed using

the proposed adaptive ESMO algorithm which is a com-

bination of ESMO and adaptive tuning parameters. Here,

ESMO is determined by integrating EHO from [31] and

SMO [39]. The issues of EHO are addressed with SMO

that tends to offer a better convergence rate by generating

a globally optimized solution. Such a method is simple

and may effectively manage several local optima, signifi-

cant nonlinearity, ruggedness, and interdependence. Addi-

tionally, it paves the way to increasing robustness of the

optimization technique.

In the self-adaptive method, selection of the learning strat-

egy and control parameters is not required beforehand, and

parameter settings self-adapt based on the learning experi-

ence. Thus, the incorporation of adaptive concepts into the

ESMO algorithm improves the overall performance. The

steps of the proposed adaptive ESMO algorithm are as fol-

lows:

Initialization. The initialization of the solutions in the

search space is:

S =
{

S1, S2, . . . , Sκ , . . . , S`

}

, (24)

where Sκ indicates κ-th solution, and ` is the total number

of solutions.

Evaluation of fitness function. The optimum solution is

detected using the fitness function. The solution with max-

imum fitness is chosen as optimal.

Determination of update solution. After computing their

fitness, the solutions update ESMO, which enhances the

performance of the algorithm as far as discovering optimal

pilots is concerned:

Se, f (y+1)

[

[

µ−1
][

S∗(y)−Se, f (y)
]

µ×
[

S∗(y)−Se, f (y)
]

]

=

Se, f (y)−
Se, f (y)

[

S∗(y)−Se, f (y)
]

µ×
[

S∗(y)−Se, f (y)
] +

T (−1, 1)×
[

So, f (y)−Se, f (y)
]

, (25)

where Se, f (y) indicates the f dimension of e-th SM,

Se, f (y) refers to the f dimension of o-th SM, the random

number is denoted as T (−1, 1), S∗(y) signifies the best so-

lution, and µ denotes the scale factor ranging from 0 to 1.

The update is performed using the ESMO algorithm by

making the constants self-adaptive in ESMO. To incor-

porate the adaptive concept, µ is made self-adaptive,

such as:

µ =
1
4

[

Absolute rate
M

+
t
T

+

(

Number o f index changed
in the count at t-th iteration

d

)

z

]

, (26)

where T indicates total time, M is constant, t is iteration

index, d is a diameter. The solution update obtained in

Eq. (26) is used for time-shifted optimal pilot scheduling.

Determination of best solution. The possible solutions

are ranked based on the fitness function and the one that

ranks the highest is the best solution.

Terminate. The best solutions are obtained iteratively until

the maximum number of iterations are attained.

5. Results and Discussion

The proposed adaptive ESMO approach was analyzed using

Matlab and was compared with existing methods based on

achievable rate, SINR, and throughput by varying the num-

ber of users, the number of antennas and log-normal shad-

owing fading. The evaluated parameters include achievable

rate, SINR, and throughput.

The achievable sum is used to optimize pilot information

acquired from the channel dynamics and is:

Ar = B× log2

(

1+
Ps

N + ∑
i∈L

Ii

)

, (27)

where B indicates bandwidth, Ps refers to received signal

power, N symbolizes background noise, and I i indicates

receiver interference.

SINR is the proportion of signal power and the sum of

interference power from additional interfering signals with

background noise:

SINR =
σ

κ + χ
, (28)
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where σ indicate the incoming signal, κ represents inter-

ference power, and χ is a constant.

The throughput of the network is the rate of successful

exchange of data through a communication channel within

a specific period.

5.1. Experimental Results

Figure 6 shows the experimental results of the proposed

adaptive ESMO with 10 and 15 users. The red trian-

gle indicates BS, whereas the green circle represents mo-

bile devices. Communication between users and BS in-

volves the sending of pilots to evaluate channels. The user

sends pilots at the same time, which results in pilot con-

tamination. Thus, pilot contamination is managed by the

adaptive ESMO model using time-shifted pilot based

scheduling.

Fig. 6. Experimental results of the proposed adaptive ESMO

using: (a) 10 users, (b) 15 users. (For color pictures see the

digital version of the paper).

The remaining techniques used here for the purpose of the

comparative analysis include: degradation-based schedul-

ing from [26], MRT-ZF presented in [30], soft pilot reuse

Fig. 7. Comparative analysis based on altering the number of

users: (a) uplink achievable rate, (b) total SINR, and (c) average

throughput.
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Fig. 8. Comparative analysis based on varying the number of

the antennas in BS: (a) uplink achievable rate, (b) total SINR, and

(c) average throughput.

Fig. 9. Comparative analysis based on altering transmission

power: (a) uplink achievable rate, (b) total SINR, and (c) average

throughput.
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Fig. 10. Comparative analysis based on altering log-normal shad-

owing fading: (a) uplink achievable rate, (b) total SINR, and

(c) average throughput.

scheme + weighted coloring graph + pilot decontamina-

tion (SPRS+WGC-PD) from [31], ESMO, grouping-based

ESMO and proposed adaptive ESMO.

Figure 7 illustrates the analysis of methods by altering the

count of users considering the uplink achievable rate, total

SINR, and average throughput.

Figure 8 shows an analysis of the different methods based

on altering the number of antennas in BS, with the same

criteria adopted.

Figure 9 presents an analysis of the methods based on

altering the transmission power, while Fig. 10 shows

alterations of log-normal shadowing fading, performed with

the use of the same parameters as used in Figs. 7–8.

5.2. Discussion Concerning Achieved Results

Table 1 presents an analysis of the different methods

considering the achievable uplink rate, total SINR, and

average throughput. Considering the number of users, the

maximum achievable rate of 43.084 bps/Hz is computed for

adaptive ESMO. In contrast, the existing methods showed

lower achievable rates. The maximum SINR of adaptive

ESMO is 132.882 dB, whereas SINR of the other methods

equals: degradation-based scheduling – 97.438 dB, MRT-

ZF – 109.633 dB, SPRS+WGC-PD – 114.386 dB, ESMO –

118.176 dB, and grouping-based ESMO – 124.318 dB.

The maximum average throughput computed for adaptive

ESMO is 2.633 Mbps. Considering the number of antennas

in BS, the proposed adaptive ESMO reached the maximum

achievable rate of 5.758 bps/Hz, total SINR of 18.843 dB,

and average throughput of 4.229 Mbps. For transmission

power, adaptive ESMO reached the maximum achievable

rate of 4.490 bps/Hz, total SINR of 14.874 dB, and aver-

age throughput of 4.022 Mbps. In the case of log-normal

shadowing fading, adaptive ESMO reached the maximum

achievable rate of 4.513 bps/Hz, total SINR of 14.409 dB,

and average throughput of 4.017 Mbps.

6. Conclusion

In order to mitigate the adverse impact of pilot contam-

ination, time-shifted pilot scheduling is performed using

adaptive ESMO, a method incorporating adaptive tuning

parameters into the ESMO algorithm. Here, the grouping

of users is performed based on attributes including large-

scale fading factor, SINR, and user distance. The sparse-

FCM algorithm is used as well, helping categorize users

as center users or edge users. The grouping of users is

performed in such a way that the method effectively alle-

viates inappropriate grouping of users, and facilitates ef-

fective grouping, even under the worst channel conditions.

Finally, pilot sequences are subjected to time-shifted pi-

lot scheduling using the proposed adaptive ESMO algo-

rithm in order to eliminate pilot contamination. The effec-

tiveness of the proposed method was evaluated using spe-

cific parameters and revealed superior performance with
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Table 1

Comparative data retrieved by the simulations

Degradation-
SPRS+

Grouping- Proposed

Parameter Metric based MRT-ZF
WGC-PD

ESMO based adaptive

scheduling ESMO ESMO

Achievable rate
32.368 36.419 37.998 39.257 41.298 43.084

[bps/Hz]

Number of users Total SINR [dB] 97.438 109.633 114.386 118.176 124.318 132.882

Average through-
1.945 1.221 1.951 2.280 2.495 2.633

put [Mbps]

Number of the

Achievable rate
4.157 4.582 5.055 5.120 5.448 5.758

antennas in BS

[bps/Hz]

Total SINR [dB] 17.353 16.552 17.730 17.877 18.679 18.843

Average through-
3.294 3.515 3.347 4.076 4.194 4.229

put [Mbps]

Achievable rate
3.301 3.689 3.850 3.988 4.227 4.490

[bps/Hz]

Transmission power Total SINR [dB] 13.127 12.915 13.658 13.791 14.315 14.874

Average through-
3.804 3.463 2.820 3.949 3.962 4.022

put [Mbps]

Log-normal
Achievable rate

3.227 3.642 3.785 3.927 4.286 4.513

shadowing fading
[bps/Hz]

Total SINR [dB] 12.676 12.560 13.311 13.437 14.035 14.409

the highest achievable uplink rate of 43.084 bps/Hz, the

highest SINR of 132.882 dB, and maximum throughput

of 2.633 Mbps, respectively.
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