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Abstract—Security is a critical concern for cloud service

providers. Distributed denial of service (DDoS) attacks are

the most frequent of all cloud security threats, and the conse-

quences of damage caused by DDoS are very serious. Thus,

the design of an efficient DDoS detection system plays an im-

portant role in monitoring suspicious activity in the cloud.

Real-time detection mechanisms operating in cloud environ-

ments and relying on machine learning algorithms and dis-

tributed processing are an important research issue. In this

work, we propose a real-time detection of DDoS attacks us-

ing machine learning classifiers on a distributed processing

platform. We evaluate the DDoS detection mechanism in

an OpenStack-based cloud testbed using the Apache Spark

framework. We compare the classification performance us-

ing benchmark and real-time cloud datasets. Results of the

experiments reveal that the random forest method offers bet-

ter classifier accuracy. Furthermore, we demonstrate the ef-

fectiveness of the proposed distributed approach in terms of

training and detection time.

Keywords—cloud, DDoS, distributed processing, OpenStack,

Apache Spark, random forest.

1. Introduction

Cloud computing is a model of computing resources, such

as storage devices, servers, services, applications and net-

works, that are accessible from any location via the Inter-

net. Cloud technology enables hardware infrastructure to

be considered a common shared service on which applica-

tions and different services are provided in a cost-effective

manner.

Private cloud is one of the deployment models which pro-

vides computing services offered over a private internal

network. However, security issues are the primary concern

affecting the data entered by and the cloud services relied

upon by users. DDoS attacks are one of the major threats

that are faced in cloud computing [1], [2]. The main strat-

egy behind a DDoS attack is to target the victim by sub-

mitting a lot of requests in a distributed manner in order to

exhaust the victim’s resources, and therefore rendering the

target resources unavailable, over a specific period of time,

to the legitimate users. Hence, detection of such attacks in

the cloud requires that special attention be paid. OpenStack

is an open-source software platform that provides a set of

software tools for creating and managing virtual servers.

When a private cloud is deployed using OpenStack, the

firewall alone is not sufficient to counter DDoS attacks, so

the administrator requires an additional intrusion detection

system supplementing the firewall in order to detect DDoS

attacks.

Classification algorithms are utilized to classify traffic pack-

ets and to predict intrusions. Selection of the appropriate

machine learning algorithm for each dataset is an impor-

tant issue. For accurate classification of data, one must

select the right classifier. Thus, the estimation of the algo-

rithms and the comparison of their performance are nec-

essary while choosing the classifier. Furthermore, there

is a trade-off between choosing classifiers based on their

accuracy, precision and computational time. Most classi-

fiers suffer from issues in terms of the pace of intrusion

detection and the related performance. This motivates re-

searchers to seek new approaches enabling more efficient

and faster detection of DDoS attacks.

The system we propose follows an anomaly-based detection

approach in a private cloud. Network traffic from the cloud

is captured and analyzed using a model trained to detect in-

trusions. Next, we deploy these algorithms on a distributed

platform for faster processing. The Apache Spark frame-

work is used for the detection of anomalous traffic in the

data captured. Spark uses a stream-oriented approach, re-

lying on in-memory computations to process real-time data

faster. This helps in real-time detection of DDoS attacks.

An efficient classification model is selected for the classi-

fication of traffic packets.

The contributions of the work are as follows:

• we designed Spark as a service in an OpenStack

cloud for provisioning of on-demand Spark clusters,

• we determined the best classifier for detection of

DDoS attacks,

• we designed a DDoS attack detection system in a dis-

tributed framework using Spark,

62

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/386176965?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Detection of DDoS Attacks in OpenStack-based Private Cloud Using Apache Spark

• we evaluated the proposed system using a real-time

cloud testbed.

The rest of this paper is organized as follows. In Sec-

tion 2, we discuss DDoS attacks, related works and the

Apache Spark framework. Section 3 describes the proposed

methodology and the algorithms used. Section 4 presents

the results of machine learning classifiers and the DDoS

detection system deployed on the experimental testbed. Fi-

nally, conclusions and future work are presented in Sec-

tion 5.

2. Background Study

In this section, we introduce the concept of DDoS attacks.

Next, we discuss the related research on DDoS attacks de-

tection, focusing on cloud environment and distributed pro-

cessing. Furthermore, we discuss features of Apache Spark

in order to facilitate understanding of the distributed ap-

proach to make the system scalable and efficient.

2.1. Distributed Denial of Service Attacks

DDoS attacks are the most widely used type of cyber-

attacks where the attacker uses a botnet consisting of

malware-infected machines. As shown in Fig. 1, the at-

tacker uses a command and control center and the botnet

to perform a DDoS attack on the victim machine. The

foe machine specifies the attack type and the victim’s IP

address to the command and control server. Then, the com-

mand and control server sends this information to the botnet

network. Multiple machines comprising the botnet network

send a stream of attack requests to the victim machine, by

throwing a wrong input or by sending a huge number of

requests simultaneously. Even after the victim server re-

sponds to this request, the botnet machines throw the same

request again and again. Thus, resources of the victim

server become exhausted, the server crashes and its perfor-

mance degrades. The scenario in which the victim’s server

is bombarded with a huge number of requests leading to

server crash, is called a denial of service, as authorized

Fig. 1. DDoS attack scheme.

users are unable to access the server or a given service. As

the attacks originate from different machines of the bot-

net, they are referred to as distributed DoS attacks. As

the number of DDoS attacks has been increasing in recent

years, detection or mitigation of DDoS attack has become

an important issue.

2.2. Related Work

An intrusion detection system (IDS) is a security mech-

anism deployed for detecting malicious activities. IDS

involves two types of detection methods that may be

signature- or anomaly-based. Signature-based IDS uses the

signature of known attacks. Snort is an open source IDS

that relies on signature-based techniques for detecting at-

tacks know from experiments [3]. The authors presented

a DDoS detection mechanism based on machine learning

and signature detection techniques. In [4], the authors

proposed an NIDS framework operating in the cloud and

consisting of a snort and signature-based apriori algorithm

to detect known attacks in the network. However, signa-

ture-based mechanisms cannot detect unknown attacks or

variants of known attacks.

Anomaly-based detection captures network data or logs to

detects anomalies. It detects a new form of attacks rather

than their signatures only. In [5], the authors proposed an

entropy- based DDoS attack detection approach deployed

in a cloud-based network system. The normalized entropy

value is calculated to check changes in the randomness be-

tween packet header field samples. This system is main-

tained and represented by a third party which sends a noti-

fication to the client. In [6], the authors proposed a DDoS

detection mechanism that focuses on various features of at-

tack packets. The features are obtained by studying incom-

ing network traffic. The features are then analyzed using

radial basis function (RBF) neural networks. The authors

evaluated the proposed method using a simulated network

and the UCLA dataset. In [7], the authors presented an

IDS operating in the cloud environment and focusing on

the software-as-a-service (SaaS) model to provide applica-

tion level security to the cloud customer. They consider

a virtual private network for information exchange. How-

ever, research has not been conducted with regard to real

cloud infrastructures. The authors in [8] present a DDoS at-

tack detection methods using OpenStack cloud. OpenStack

is an open source cloud operating system which used for

academic research and for commercial cloud applications.

The above techniques do not use distributed processing for

detecting DDoS attacks. In cloud environments, huge num-

bers of packets or connections with customers’ networks

exist. Thus, protecting the organizations’ networks from

DDoS attacks requires huge amounts of processing power.

So, there is a trend towards using distributed environments,

like Hadoop and Spark, for detection of DDoS attacks. The

work proposed by [9] focuses on a reliable DDoS attack

detection approach based on HTTP GET flooding. It uses

MapReduce processing for flooding detection. The results
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show that processing time is better than in snort detection.

In [10], the authors designed a DDoS prevention scheme

based on the Hadoop framework, using the MapReduce

technique and a genetic algorithm (GA) to detect and pre-

vent DDoS attacks. They generate the filtering rules with

an entropy-based detection scheme. The rules are updated

accordingly as well. In [11], the authors presented a DDoS

attack detection system utilizing classification algorithms

in the Spark framework. In this work, T-shark is used

for network analysis. The fuzzy logic algorithm chooses

the next candidate for classification. Classification algo-

rithms are designed to predict DDoS attacks affecting traffic

packets.

The authors of [12] proposed a DDoS detection sys-

tem which uses the feature selection technique known as

ensemble-based multi-filter to select optimal features by

combining the output of four filter methods. The method

is evaluated using an NSL-KDD dataset and a decision

tree classifier. However, the discussion covers the efficient

feature selection technique only. Furthermore, the system

suffers from an overhead in the form of a processing de-

lay. In [13], the authors use the Hadoop map to reduce the

architecture for faster processing of log files. Furthermore,

abnormal behavior of sources that generate packets errat-

ically is predicted. The architecture uses prediction-based

time series analysis, which helps in faster detection of sus-

picious hosts. However, research is limited to threshold-

based detection.

In [14], the authors proposed a live DDoS detection mech-

anism to detect 4 types of flooding attacks in real-time,

using the map reduce approach. The results were validated

on a real-time testbed using low cost hardware. The au-

thors of [15] proposed a technique to detect DDoS attacks

using the Hadoop framework for processing and analyzing

large scale attacks in real-time. The entropy of source ad-

dresses is used as a metric for detection. The results are

validated using the testbed. In [16], the authors proposed

a distributed and collaborative approach to the processing

of a large amount of data by distributing it among a number

of mappers and reducers. The proposed work is validated

using benchmark datasets, as well as real datasets generated

using the experimental testbed, based on various metrics.

In [17], the authors proposed a distributed and collabo-

rative technique for early detection of DDoS attacks and

flash crowds. However, due to non-cooperation between

various ISPs, it is difficult to modify routers to detect at-

tacks in real-time. The authors validate the results using

a real-time testbed. In [18] the authors designed a DDOS

attack detection mechanism using different classifiers for

OpenStack cloud. The authors validate the results using

a testbed with real-time and benchmark datasets. The au-

thors also proposed a DDoS attack detection mechanism in

the SDN environment using a Mininet simulator [19]. The

authors use SVM and DNN to classify attacks by captur-

ing real-time packets. However, the authors of [18], [19]

have not used any distributed environments for the detec-

tion of DDoS attacks. As the millions of packets are cap-

tured per second in the cloud, the design of a distributed

processing approach relied upon by the detection system

constitutes a crucial research issue.

2.3. Distributed Processing using Spark

Apache Spark is a distributed platform built on the YARN

infrastructure. Spark supports in-memory processing which

is iterative in nature. Spark supports many languages, such

as Scala, R, Java and Python. As Python is an efficient

high-level language and allows us to develop the system

faster, we use Python. The proposed system employs RDD,

Spark streaming and MLlib features. RDD is the key for

Spark to offer failure recovery and data dependency func-

tionalities. RDD stores intermediate results in the memory,

which significantly improves computation speed. Unlike

MapReduce in Hadoop, MapReduce in Spark is well pack-

aged into RDD.

MLlib is Spark’s distributed machine learning (ML) library.

It provides ML algorithms with libraries used for such pur-

poses as regression, classification, clustering, collaborative

filtering, etc. Spark streaming is used for real-time calcula-

tion that relies on RDD. RDD helps in seamless connection

with Spark to fuse historical data and real-time data. Spark

streaming divides the streaming data into small time inter-

vals and into RDD data sets. Later, it processes the RDD

in batches and helps process complex streaming data faster.

Thus, RDD helps in processing huge numbers of packets

in real-time, extracts the features and detects the attacks

affecting cloud environments.

3. Proposed Methodology

This section offers a description of the proposed system

that allows to detect DDOS attacks using the distributed

processing approach. The chapter has been divided into

two subsections, focusing on the design of a Spark cluster

as a service on an OpenStack private cloud, and on the

detection of DDoS attacks using real-time cloud traffic and

the KDD Cup dataset, respectively.

3.1. Spark as a Service

The design of this service involves setting up an Open-

Stack private cloud and configuring a multi-node setup.

The multi-node setup is done on virtual machines (VMs)

by configuring compute, neutron and controller nodes. The

VMs are spawned on the compute node of OpenStack. De-

ployment of the Spark cluster is done, firstly, by executing

the machines with single node Spark configuration steps.

One of the single nodes is designated as a master and the

remaining nodes are configured to be working as slaves

under the supervision of the master. The user interface is

provided by relying on the Django framework with Python.

The user can select the number of slaves required. The

user is provided with options to select the number of VC-

PUs, while RAM and disk size are required for the master
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and the slaves based on standard templates. The user can

also create his/her own flavors for slaves. Once the user

clicks the launch button, the Spark cluster will be installed

in the cloud with the help of an automation script executed

at the OpenStack backend using controller and compute

nodes. The design includes a connection between Spark

and OpenStack, as shown in Fig. 2.

Fig. 2. Spark as a service.

The algorithm for automation of Spark as a service is de-

scribed in Algorithm 1. Spark is built using Hadoop ar-

chitecture. Hence, it involves Hadoop installation. Hadoop

uses a Java framework. For big data processing MapRe-

duce is required, which is written in Java. Java is used

for analyzing and processing large data sets. So, JDK is

installed for supporting the Hadoop platform.

3.2. DDoS Detection System

The incoming packets get captured through a packet snif-

fer stored in the local disk as packet log files in CSV for-

mat. In real life, these log files need faster processing.

So, a distributed computing platform is used for big data

analysis and for faster detection of attacks. Anomaly-based

IDS treats any deviation from the normal pattern as an

attack. As shown in Fig. 3, the model of the proposed

system consists mainly of four modules, i.e. packet snif-

fer, pre-processing using Spark steaming, classification, and

detection. All of them are discussed in detail below.

3.3. Packet Sniffer

Packet sniffer is designed using socket programming to cap-

ture and analyze network traffic by connecting two virtual

machines on a cloud network in order to enable them to

Algorithm 1. Spark as a service on OpenStack cloud

Input: MapReduce cluster name C, number of slave nodes

N, configuration of master and slave nodes S, keypair

name K
Output: Cluster with required number of nodes

1: Create VMs based on master and slave size S using

OpenStack SDK

2: Create a keypair K
3: Create one node as master node

4: Create N slave nodes with configuration S
5: Assign IP address for the master node

6: Change the hostname in hosts file and hostname file

7: For N node

8: Assign the IP address to slave nodes

9: Change the host name in hosts and hostname files

10: End for

11: Add all the IPs of master and slave nodes in private IP

file

12: Install the services on master and slave nodes

13: Configure SSH on master node

14: For N nodes

15: Configure SSH on slave node

16: End for

17: Send the keypair from master to slave nodes

18: Disable the password authentication

19: Do the Hadoop name node format on master node

20: Start all the services on master node

21: Write all the IPs to one file

22: Mail the keypair and master node IP address

Fig. 3. Proposed DDoS attack detection system using Spark.

communicate with each other. Packet sniffer collects net-

work traffic and identifies information pertaining to each

packet. This raw data (packets) is sent to the Spark pro-

cessor for feature extraction, as shown in Fig. 3.

Algorithm 2 is designed for capturing network traffic in

the Neutron node of the OpenStack cloud. Initially, the

socket library is imported and the creation of a raw socket

follows. It listens on a particular port of the neutron node’s

IP, while the other socket reaches out to other VMs to form

a connection. The listener socket is formed at the server

while the client reaches out to the server. Packet sniffer

gathers raw binary data from the connection established.

The selected network interface is switched to promiscuous
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Algorithm 2. Capturing of packets using packet sniffer

Input: Neutron node IP interface

Output: CSV file

1: Create raw socket

2: Bind a raw socket to Eth0 interface of neutron node

3: Set the interface to promiscuous mode

4: Capture data link layer (Ethernet) header

5: Retrieve IP/ICMP/TCP header fields by parsing Ether-

net frame

6: Extract the features as per Table 1

7: Write the extracted features to CSV file

mode. Promiscuous mode is used to direct all network

traffic through the chosen network interface. It captures

various fields of the chosen protocol headers.

The packet sniffer module is designed to collect the cap-

tured network data and to extract packet information by

verifying its protocol. The packet sniffer module captures

incoming packets for a required period of time. All infor-

mation pertaining to the protocol headers is stored as a CSV

file. A DDoS attack is simulated in the cloud environment

with a view to sending packets with large amounts of data,

and to from multiple connections to simulate connection

flooding and to captures the attack. The features captured

in this process are shown in Table 1.

Table 1

Dataset features captured

Features

Source MAC Acknowledgement number

Destination MAC SYN bit

Protocol ACK bit

Service FIN bit

Source address Src bytes

Destination address Time stamp

Sequence number

3.4. Processing of Captured Data

Real-time data captured in the previous module needs to

be processed. The processing of a dataset is performed to

obtain the specific features required for testing the model.

The distributed computing approach is introduced to accel-

erate the process. Spark is one of the distributed frame-

works that enable processing based on in-memory comput-

ing. Initially, the features are recorded once every millisec-

ond. Additionally, the derived features need to be com-

puted for the past two seconds of the connection. The data

stream captured by the sniffer module is pre-processed in

a batch of 2 s. The algorithm is designed to perform cer-

tain actions for feature selection, as not all features that

are captured contribute to DDoS detection. Thus, it is im-

portant to select the required features. The pre-processor

sends this information to the detection engine. Later, the

dataset is processed in a big data environment using the

Spark engine.

Algorithm 3. Processing of the captured data

Input: Generated log file CSV

Output: Processed test dataset

1: Count = number of connections to the same host

2: Src bytes = number of data bytes from source to des-

tination

3: Dest bytes = number of data bytes from destination to

source

4: Srv count = number of connections to the same service

5: Same srv rate = percentage of connections to the same

service

6: Initialize Spark context and Spark streaming context

7: Stream captured data every 2 s

8: Read the captured data as dstream

9: For every RDD from dstream

10: Convert RDD to dataframe

11: Initialize Count, Src bytes, Dest bytes, Srv count,

Same Srv rate to zero

//Apply map and reduce to get the features

12: For each connection i.e. combination of protocol

type and service

13: Apply map and reduce technique to compute

the Count, Src bytes, Dest bytes, Srv count,

Same Srv rate

14: End for

15: Append all computed features along with proto-

col type and service to data frame

16: Write transformed dataframe to a file

17: End for

The processing of captured data collected through the

packet sniffer is represented in Algorithm 3. This is basi-

cally performed for the test dataset collected and the results

are used for further detection analysis. Distributed process-

ing is carried out on the Spark framework. The packets

sniffed over a specific duration serve as an input for this

module. The processing is performed for each 2 s inter-

vals of data in order to analyze network traffic. Initially,

Spark context and configuration are created. The packet

log data file is read and converted as a dstream object.

Finally, each RDD of dstream is converted into a Spark

data frame and the selected features are computed using

the map reduce function (Protocol type, Service, Src bytes,

Dest bytes, Count, Srv count, Same srv rate).

3.5. Classification using ML Algorithms

Machine learning is an effective technique allowing to

detect any anomaly-based attacks. Real-time detection of

a DDoS attack in a cloud environment requires a trained

model. This module builds a trained model using a real-

time dataset. The real-time training dataset is generated

by recording network activity over the period of 24 hours

by simulating an ICMP flooding attack. We compare three
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classification algorithms based on accuracy, precision and

false-positive rate parameters and choose the best classi-

fier for our model. Such classification algorithms as ran-

dom forest, decision tree and logistic regression are used

for modeling the training dataset. We apply these classi-

fication algorithms to both the benchmark dataset and the

real-time dataset. Later, we use the Spark MLlib library

to implement the selected classification algorithm. As the

Spark framework is designed to work in a distributed en-

vironment, we use a distributed file system. The selected

training model is stored in HDFS for further retrieval. This

trained model is accessed by the detection module to detect

attacks as shown in Fig. 3.

3.6. Detection Module

The process of identifying anomalous attacks in normal

traffic is known as detection. Existing cloud behaviors re-

lated to attacks are modeled using the trained model. As

shown in Algorithm 4, a real-time test dataset is generated

using the packet sniffer, by simulating a DDoS attack. This

test dataset is processed using Spark streaming. The cap-

tured data is considered as a test dataset and is fed into the

trained classifier. If a connection is considered to constitute

an attack, then we log the suspicious IPs. The administra-

tor checks the suspicious IP addresses and can observe the

traffic anomaly over a period of time and may block the

IP addresses. All four modules are implemented on the

private cloud testbed.

Algorithm 4. Detection module

Input: Processed test dataset

Output: List of suspicious IP’s

1: Capture the network packets for training using packet

sniffer

2: Compute the features using Spark streaming

3: Read processed test dataset

4: Feed the processed test dataset into trained model to

check for intrusion

5: If intrusion is detected Then

6: Log the suspicious IP’s for admin analysis

7: End if

4. Results and Discussions

In this section, we describe the configuration of the experi-

mental OpenStack-based cloud testbed. We also discuss the

results obtained while selecting the machine learning clas-

sification algorithm. Finally, we discuss the training and

prediction times for the selected ML classifier, execution

time for detection of multiple slave nodes, and duration for

capturing various packets.

4.1. OpenStack Cloud Environment

OpenStack [20], is a real-time cloud environment used to

capture network data and to classify attacks. The private

cloud setup comprises 5 nodes, namely a controller node,

a neutron node and three compute nodes. The controller

node provides OpenStack services and APIs to carry out the

various tasks performed by the network and by the compute

nodes. The neutron node helps in networking services, such

as DHCP which assigns IPs to virtual machine instances.

The compute node provides VM nodes using a hypervisor.

Details of the real-time private cloud setup are described

in Table 2.

Table 2

OpenStack testbed configuration

Nodes IP Address Memory

Controller 192.168.31.2 1 GB

Neutron 192.168.31.3 1 GB

Compute node 1 192.168.31.4 4 GB

Compute node 2 192.168.31.5 4 GB

Compute node 3 192.168.31.6 4 GB

The packet sniffer module was designed for capturing net-

work traffic. The objective of the analysis is to understand

the behavior experience during an attack behavior on the

private cloud testbed.

Fig. 4. Integration of packet sniffer and IDS on OpenStack.

Figure 4 shows the integration of the packet sniffer and

IDS in an OpenStack cloud. The packet sniffer module is

installed on the neutron node of the cloud to capture activ-

ities of the cloud. An ICMP flooding attack is performed

to simulate attacks on the cloud. The behavior of the cloud

is captured. The intrusion detection system designed on

the spark cluster is deployed in the cloud to detect any

suspicious activity.

4.1.1. Apache Spark Platform

In this experiment, we have used one master node and vary-

ing numbers of slave nodes (up to 3). We used Apache

Spark [21] for distributed processing. Spark clusters are

generated with the use of OpenStack virtual machines, re-

lying on the automated process described earlier. It should
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be noted that the configuration in both the slave machines

and the master machine are the same.

The Spark configuration has been set as follows:

• Spark executor instances = 4,

• Spark executor cores = 10,

• size of Spark executor memory = 20,

• size of Spark driver memory = 9 B.

As the Spark framework is designed to work in a dis-

tributed environment, the Hadoop distributed file system

(i.e. HDFS) was adopted.

4.2. Selection of Machine Learning Classifier

We use three parameters to select the best machine learning

classifier:

Accuracy. Accuracy is the percentage ratio between the

number of correctly classified samples from the dataset and

the total number of samples of the dataset, and it reflects

the discrimination capability of the classifier:

Accuracy =
T P+T N

T P+T N +FP+FN
· 100% ,

where T P – true positive, T N – true negative, FP – false

positive, FN – false negative.

False Positive Ratio (FPR). FPR indicates the proportion

between wrong classified normal samples and all normal

samples. FPR is a parameter that indicates the probability

of falsely rejecting the null hypothesis for a particular test:

FPR =
FP

FP+T N
.

Precision. Precision is defined as the number of true pos-

itives divided by the number of true positives with the ad-

dition of the number of false positives. Precision describes

the ability of a classification model to return relevant in-

stances only:

Precision =
T P

FP+T P
· 100

Classification is a major factor in identifying an intrusion

attack. It is essential to deploy the best data model to ob-

tain accurate classification results. Table 3 presents a com-

Table 3

Comparison of three classification models

Dataset ML model Accuracy FPR Precision

KDD
Random forest 99.21% 0.003 99.91%

Cup
Decision tree 98.82% 0.024 99.37%

Logistic regression 84.97% 0.095 98.84%

Real
Random forest 94.40% 0.111 89.87%

time
Decision tree 88.24% 0.208 78.74%

Logistic regression 81.43% 0.293 72.42%

parison of performance of 3 ML classifiers, namely random

forest, decision tree, and logistic regression. Furthermore,

accuracy, false positive rate and precision are defined for

two types of datasets. The real time dataset is used as

training dataset and cross validation is applied. Accuracy

is noted for all 3 algorithms, i.e. random forest, decision

tree and logistic regression. For KDD Cup 99 dataset the

same pattern of accuracy is observed, but the accuracy level

being higher than in the case of the real time dataset. From

Fig. 5, one may observe that the random forest model offers

better accuracy and precision, which renders it suitable for

detection.

Fig. 5. Accuracy of ML models for two datasets.

Fig. 6. False positive rate of ML models for two datasets.

The false positive ratio (FPR) is the most important pa-

rameter in anomaly detection. As the traffic pattern in

the cloud network changes along with the varying intervals

and events, traffic bursts are experienced. Thus, a sudden

change in traffic volume may result in more FPR. This may

trigger a lot of alerts for the administrator. Thus, choosing

a classifier with better FPR is important in DDoS attack

detection. As shown in Fig. 6, the value of FPR for the

KDD Cup 99 dataset is 0.003 for random forest, 0.022 for

decision tree and 0.095 for logistic regression algorithms,

respectively. The value of FPR for the real time dataset is

0.111 for random forest, 0.208 for decision tree and 0.293
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for logistic regression. The rate of detection of false posi-

tive samples from benchmark and real time datasets is, in

random forest, lower than in the case of logistic regression

and decision tree algorithms. In summary, the random for-

est algorithm performs better in terms of accuracy, FPR,

and precision. Thus, we choose this classifier for detection

of DDoS attacks in a distributed environment.

4.3. Results using Apache Spark

In this section, we discuss the results obtained using the

random forest model, with different parameters and scenar-

ios applied.

The process of providing the random forest model with

training data to learn is known as training time. The learn-

ing algorithm finds patterns in the training data that map

the input data attributes to the target, and it outputs an ML

model that captures these patterns. The time taken for this

process is training time. Figure 7 provides different train-

ing times along different spark cluster sizes for the random

forest algorithm. MLlib libraries of Spark provide train-

ing and prediction times while training the classifier. The

results illustrate processing speed increases as cluster size

increases.

Fig. 7. Training and prediction time vs. different cluster sizes.

Figure 8 shows that as the Spark cluster size increases, the

DDoS attack detection time reduces for distributed proces-

sing using Spark. The packet sniffer is executed for 4000 s

and the CSV file is created and used as an input dataset

for the detection of DDoS attacks. The Spark distributed

detection algorithm is executed for the random forest clas-

sification model and the captured test dataset. The figure

shows also a comparison between non-distributed process-

ing and distributed processing using Spark for the scenario

in question. The distributed detection process varies with

different cluster sizes, such as a single node, 2 node and 3

node master-slave Spark cluster, as shown in Fig. 8.

The detection time is executed in a 2-node Spark cluster

for different durations of the packets captured. The packet

sniffer is executed for 10, 20 and 30 seconds ·1024 and

log CSV files are created. These log files are tested against

Fig. 8. Detection time vs. different cluster sizes.

Fig. 9. Detection time vs. duration of captured packets.

the classification model to detect the attacks. The detection

time is longer for the larger duration of captured packets.

Based on the Fig. 9, we infer that as the capturing time

increases, log file size increases. Thus, the execution time

increases.

5. Conclusions

This work proposed a system for efficient detection of

DDoS attacks in a private cloud environment. Initially, we

designed Spark as a service in an OpenStack-based private

cloud for on- demand provisioning of Spark clusters. Then,

we evaluated three machine learning models using bench-

mark and real-time datasets and selected the random forest

model for the classification of DDoS attacks. Then, we used

this algorithm in the distributed environment. By using

RDD Spark streaming, we performed the pre-processing,

training and testing stages. The results reveal that the time

for detecting DDoS attacks is reduced and the detection ef-

ficiency is improved significantly thanks to the advantages

offered by the Spark framework. OpenStack was used to

setup the private cloud with which the intrusion detection

system is integrated.

As future work, we plan to use a deep learning model

and detect different types of DDoS attacks. Furthermore,
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the work may be extended to include parameter tuning

of the Spark framework for increased computational effi-

ciency.
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