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Abstract—Demand for wireless and mobile data is increasing

along with development of virtual reality (VR), augmented re-

ality (AR), mixed reality (MR), and extended reality (ER) ap-

plications. In order to handle ultra-high data exchange rates

while offering low latency levels, fifth generation (5G) net-

works have been proposed. Energy efficiency is one of the key

objectives of 5G networks. The notion is defined as the ratio

of throughput and total power consumption, and is measured

using the number of transmission bits per Joule. In this paper,

we review state-of-the-art techniques ensuring good energy ef-

ficiency in 5G wireless networks. We cover the base-station

on/off technique, simultaneous wireless information and power

transfer, small cells, coexistence of long term evolution (LTE)

and 5G, signal processing algorithms, and the latest machine

learning techniques. Finally, a comparison of a few recent re-

search papers focusing on energy-efficient hybrid beamform-

ing designs in massive multiple-input multiple-output (MIMO)

systems is presented. Results show that machine learning-

based designs may replace best performing conventional tech-

niques thanks to a reduced complexity machine learning en-

coder.

Keywords—5G, energy efficiency, wireless networks.

1. Introduction

Conventional fuels used for power generation, heating and

transport have contributed to an 80% increase in green-

house gas emissions compared to 1970. According to pro-

jections pertaining to 2040, global energy demand is ex-

pected to increase even further, by 30%, with the pace of

growth being even faster in developing countries [1]. 5G

networks would inevitably be responsible for an increase

in the amount of energy used by consumers, therefore con-

tributing to climate change. As the amount of space within

the wave spectrum in which consumer devices may operate

is increased by the use of millimeter waves, energy usage

grows as well, leading to faster global warming. 3GPP

standards, including those related to 5G networks, aim to

increase capacity and coverage of the system, with energy

efficiency gains considered at architectural and functional

level [2]. Ensuring that hardware is capable of working

within extended operating condition ranges (temperature

and humidity levels prevailing in rooms in which equip-

ment is located) may lead to a decrease in the amounts

of power consumed by air conditioning systems. Small

cells used to provide 5G connectivity are claimed to be en-

ergy efficient and powered in a sustainable way. However,

maintenance- and production-related issues may cause con-

siderable cost implications [1]. Deployment of 5G systems

is also expected to improve energy efficiency (EE) of the

entire industry as a whole, as the cost of energy per bit of

data transferred is, in 5G, equal to one tenth of the level

experienced in 4G [2]. However, base stations still remain

energy-hungry locations of the network, due to the foresee-

able increase in traffic that is expected to grow by several

thousand percent.

A few papers exist that focus on analyzing EE of 5G net-

works. Report [3] surveys various optimization techniques,

the game theory and machine learning approaches that have

been proposed for enhancing power allocation to downlink

and uplink channels. Other energy-saving approaches are

described therein as well. In paper [1], some of the sig-

nificant examples discussed include deployment of newer

radio resource control (RRC) for context signaling and for

reducing the number of redundant state changes. Utiliza-

tion of advanced clustering and caching techniques on the

radio access network (RAN) side has been highly valued

for improving latency requested by a group of users and for

eliminating the factor of clogging the network by a huge

number of requests for the same data. Commercial resource

sharing between different operators offers encouraging re-

sults in terms of reduced deployment costs and good data

rates, while ensuring minimum interference. In a paper [4]

a detailed discussion of the various advantages and disad-

vantages of green and energy efficiency techniques is pre-

sented, contributing to understanding the ways in which

green radio architecture may be used in 5G and future

mobile networks, and presenting the challenges that will

be encountered in the process. In this paper, three most

promising green solutions are analyzed. Extreme mobile

broadband (xMBB) is a service characterized by high data

rates, low latency communication (LLC), and extreme cov-

erage. Its spectrum resources include lower bands, and new

higher bands with large contiguous bandwidth, (license +

LSA + LAA). Its target values are defined by the peak data
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rate of up to 20 Gbps for downlink and 10 Gbps for uplink.

Massive machine-type communications (mMTC) is another

type of service that offers the following features: dense mo-

bile networks, wide-area coverage and deep penetration. It

relies on lower band frequencies and its spectrum resources

include licensed shared access (LSA) and licensed-assisted

access (LAA). The target connectivity density value equals

1 million devices per square kilometer. The third service

offers ultra-reliable and low-latency communication links,

such as V2X. Its spectrum resources are based on lower

bands, exclusive licenses, and its target user latency quals

0.5 ms. A typical 5G network is shown in Fig. 1. Mathe-

matically, energy efficiency of the base station side is de-

fined as:

EE =
R

ηPt +Pc
[bits/Joule] , (1)

where, R is the average overall data rate in bits per second,

η is the reciprocal of the transmit power (amplifier effi-

ciency), Pt is the transmission power, and Pc is total power

dissipated in the transmitter circuit.

Fig. 1. Model of a multiuser massive MIMO downlink system.

The rest of the paper is organized as follows: in Section 2,

on/off techniques are presented and energy harvesting is

described. Section 3 presents heterogeneous networks and

energy efficiency-related considerations. Energy-efficient

physical layer hardware designs are reviewed in Section 4,

and machine learning techniques ensuring EE are presented

in Section 5.

2. Energy Efficiency Using On/Off

Techniques and Energy Harvesting

Authors in [5] propose three independent energy efficiency

optimization solutions to minimize energy consumption by

either forcing idle base stations to go to sleep, or by dynam-

ically adjusting the signal range of base stations through

software-defined networking. This means that the stream

table of the base stations is reconfigured to modify the con-

nections between users and base stations in order to free as

high a number of base stations that is feasible under spe-

cific circumstances. Secondly, the maximum transmission

time required for given content to be downloaded from the

server is minimized in order to let the base station to go

to rest. Finally, at times a stronger signal may be used by

base stations in situations in which weaker signal might be

sufficient to cover the needs of all customers. Therefore,

the power level of such a station may be adjusted to save

energy.

In [6], the authors proposed a strategy for dense femtocell

deployment based on sleep mode and hybrid access poli-

cies. In most studies, a femtocell base station awakens from

rest when its clients are active. However, in this work, the

femtocells with dynamic clients may continue to sleep if

the reallocation of their clients is feasible based on hybrid

access to their neighbors, with throughput enhancements

ensured simultaneously. Simulations indicate that ab in-

crease in femtocell density boosts the number of clusters

formed and femtocells remaining in the sleep mode, hence

improving energy efficiency.

Paper [7] describes the efficiency of harvesting energy

through radio frequency (RF). Two mathematical simula-

tions are conducted as part of the study, verifying the en-

ergy efficiency to training interval ratio and checking how

EE is affected by the change in block size and in the num-

ber of users. Simulations show that EE is low for large

Tt values due to the amount of energy dissipated, which

means that the factor that is of most significance for EE

deteriorates. Larger amounts of energy may be harvested

with more receivers (users). This is because one of the

users is decoding information while others harvest energy.

In paper [8], the authors propose an iterative hybrid analog-

digital beamforming scheme for simultaneous wireless in-

formation and power transfer (SWIPT) for MIMO systems

with limited RF chains at the base station. Compared to

fully-digital SWIPT, the proposed scheme is reported to be

a better solution for energy harvesting with significant gains

in total power consumption.

3. Energy Efficient Heterogeneous

Networks

A potential solution to improve energy efficiency of 5G

heterogeneous networks consists in offloading traffic from

macro cells to small cells. Paper [9] presents a scheme

conditionally offloading traffic from macro cells to picocells

and femtocells under the condition that the cell system load

of all cells is maintained below a certain threshold. The

proposed scheme is developed using an online reinforce-

ment learning methodology capable of surmising that other

macro cells are pursuing offloading strategies, which re-

duces the base station information exchange overhead. The

study found that cell load is a key factor that impacts inter-
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ference, small cell traffic congestion, and energy efficiency.

As network load or cell load increase, energy efficiency,

interference, and quality of service (QoS) decrease.

In [10], an energy efficiency comparison has been per-

formed between single-tier, two-tier, and three-tier networks

by using stochastic geometry tools. Base stations of all

tiers are positioned in accordance with the Poisson point

process, and they are not quite the same as one another in

terms of their size, density, and transmitting power. Simu-

lation results show that energy efficiency of a heterogeneous

network is enhanced by increasing the number of pico and

femtocells. However, the growing number of pico and fem-

tocell base stations increases co-channel interference, since

pico and femtocells are located inside macro cells.

Multi-connectivity is a feature of 5G technology that al-

lows users to connect and consume resources from mul-

tiple base stations concurrently, potentially using different

radio interfaces, i.e. Evolved-LTE and new radio. Authors

in [11] propose new algorithms for multi-connectivity and

compare them with single connectivity scenarios to exam-

ine how multi-connectivity is capable of improving relia-

bility and the system’s overall energy efficiency. The paper

shows that at low speeds, multi-connectivity offers little

improvement in terms of radio link failures. However, at

high speeds, a reduction of up to 50% is observed. The

newly proposed secondary cell selection algorithms pre-

sented in [11] improved energy efficiency of the network

by up to 20% at low speeds.

The proposal [12] is to optimize power using spectrum

sharing in the next generation networks (NGNs) in order to

achieve high spectrum and energy efficiency for both the

primary and the secondary system, without the involvement

of a secondary transmitter. When comparing the perfor-

mance of the proposed model with the opportunistic spec-

trum sharing model and other popular resource allocation

algorithms, the efficiency of the proposed scheme turns

out to be superior. Spectrum sharing is gaining popular-

ity as it allows to expand the spectrum and boost power

efficiency of the network. Spectrum sharing allows for co-

operative or simultaneous use of limited radio frequency

resources by a number of independent users within a par-

ticular geographical area. Spectrum sharing may help ef-

fectively use white spaces or underutilized portions of the

spectrum. Also, there are various power allocation strate-

gies for optimum resource block allocation in the spectrum

sharing process. Optimum resource block allocation strate-

gies aim to optimize the spectrum and energy efficiency of

the system, simultaneously increasing the quality of service

for both primary and secondary receivers.

4. Energy Efficient Physical Layer

Hardware Design

Paper [13] aims to reduce both hardware complexity and

power consumption in hybrid analog-digital beamform-

ing systems. Reduced-dimension training sequence designs

and transmit precoder designs are considered jointly. Pa-

per [19] discusses the minimum number of RF chains re-

quired and trade-offs with the bandwidth of the transmitted

signal needed in order to realize any given fully digital pre-

coder relying on hybrid analog/digital precoding (HADP)

in wide-band mm-Wave systems. The authors of [10] com-

pare different hybrid beamforming architectures and opti-

mize the number of antennas in order to maximize EE. The

combination of phase shifters and switches has been shown

to be superior to the conventional phase shifter-only archi-

tectures in terms of spectral and energy efficiencies. In

the paper [14], the authors propose wireless power transfer

(WPT) based algorithms for the hybrid beamforming de-

sign to achieve optimized performance of the fully digital

beamforming architecture. In HB, the number of RF chains

is in general significantly lower than that of transmit anten-

nas. It is shown that for a general point-to-point MIMO

WPT system, optimized performance may be achieved as

long as the number of RF chains at the energy transmitter

is not lower than twice the number of sub-bands used or

twice the number of channel paths. For MISO WPT, the

required number of RF chains may be reduced even further

to equal the number of channel paths only.

Paper [15] compares spectral and energy efficiency of hy-

brid beamforming and digital beamforming systems, tak-

ing into account the effects of channel estimation, trans-

mitter impairments, and multiple simultaneous users for

a wideband multipath model. Considering the model of

the quantization error at each antenna, better EE and

achievable rates are obtained with 5-bit ADC resolution at

high SNR.

The digital beamforming model with low resolution ADCs

outperforms hybrid beamforming in terms of spectral effi-

ciency and energy efficiency for single-user and multi-user

scenarios with multipath propagation [15], [16]. Low res-

olution ADC DBF is resistant to small automatic gain con-

trol (AGC) imperfections. Energy efficiency and spectrum

efficiency (SE) of wireless communication systems may

be significantly enhanced by large-scale antenna systems.

These systems are deployed in hybrid digital and analog BF

structures. The analysis of this kind of structures presented

in [17] provides an insight into optimal analog and digital

BF designs, EE-SE relationship at the green point, and the

impact of the number of transceivers on the green EE point,

i.e. the point with the highest EE along the EE-SE curve. In

paper [18], the authors compare the energy efficiency max-

imization problem for three different types of precoding

scenarios, namely zero-forcing (ZF), general beamforming

and conjugate-beamforming, in a multiuser downlink dis-

tributed antenna system with a hybrid energy supply. The

proposed algorithm, based on joint power allocation and

energy cooperation, allows to maximize EE and shows that

ZF achieves better EE with low noise variance, while conju-

gate beamforming performs better in high-noise scenarios.

Paper [8] proposes different hybrid beamforming schemes

in which phase-only weights are applied for the analog pre-

coder and combiner in a mm-Wave MU-MIMO transmis-
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sion. The proposed design is applied in fully-connected

structures and is then extended to their sub-connected coun-

terparts. In [19], the authors propose an energy efficient

optimization model for multi-user massive MIMO, based

on the joint optimization problem involving computation

and communication power. An upper bound of energy ef-

ficiency is provided for multi-user massive MIMO systems

with partially-connected structures of RF transmission sys-

tems. The proposed design aims to find an EE suboptimal

solution capable of jointly improving computation and com-

munication power in massive MIMO systems. Paper [20]

addresses the implications of highly directional communi-

cation for the design of an efficient medium access control

(MAC) layer. It discusses the key MAC layers options

available and design physical control channel aspects that

may improve performance, spectral efficiency and energy

efficiency. An energy-efficient hybrid beamforming design

for a partially-connected structure is investigated in [21].

The authors design a two-layer optimization method to

solve the non-convex problem by exploiting interference

alignment and fractional programming. First, an analog

beamformer is obtained using the alternating-direction opti-

mization method, and then the minimum mean square error

(MMSE)-based digital precoder and combiner are formed.

5. Energy Efficiency Using Machine

Learning Techniques

In recent research, machine learning techniques are widely

explored in various sections of the 5G networks to enhance

their performance in terms of spectral and energy efficiency.

In [22], the authors propose a centralized resource alloca-

tion scheme that exploits online learning techniques, guar-

anteeing mitigation of interference and maximization of en-

ergy efficiency, while avoiding dropping QoS requirements

for all users. The priority of users in resource block (RB)

allocation and compact state representation-based learning

methodology was considered to enhance the learning pro-

cess in the design with a model-free reinforcement learning.

The outcome of the simulation clearly shows that the pro-

posed resource allocation scheme is capable of mitigating

interference, considerably increasing energy and spectral

efficiency, as well as sustaining the users’ QoS require-

ments. Centralized joint RBs and the power allocation

scheme rely on a single controller integrated into the cen-

tralized baseband unit. This controller gathers the network

state information through its interface with the macro BSs

and uses this knowledge to select the most appropriate ac-

tions that ensure energy efficiency enhancements, while si-

multaneously maintaining QoS requirements from different

tier users. The proposed online learning model ensures

compact state representation in order to reduce the size

of the state space, augments the algorithm’s convergence

and manages the curse of dimensionality. The conventional

base station is separated into two parts within a heteroge-

neous cloud radio access network structure. This allows to

centralize the signal processing part as the baseband unit,

and the signal transceiver part as the radio remote head:

the centralized baseband unit and the radio remote head

unit are associated through fronthaul links. Paper [23] pro-

poses a joint transmission mode selection and power con-

trol algorithm with reinforcement learning to ensure en-

ergy optimization via fifth-generation communication for

the heterogeneous cloud radio access network architecture

in a vehicular social network. It considers cellular and

D2D communication coexisting in a single cell environ-

ment. Two Q-learning algorithms have been designed that

enable to take optimal communication mode selection and

transmission power control decisions by altering the target

SINR. The two Q-learning models are centralized and dis-

tributed Q-learning. The agent in the baseband unit uses

centralized Q-learning to maximize the system’s energy

efficiency while guaranteeing compliance with QoS con-

straints. The vehicles use distributed Q-learning to maxi-

mize their achievable data rate.

In [24], a sub-connected switch-based hybrid precoding ar-

chitecture with lens array for beamspace MIMO systems is

proposed to overcome the issue of high energy consump-

tion. The hybrid precoding scheme aiming to maximize

the achievable sum rate is based on the cross-entropy (CE)

optimization approach developed in machine learning [24].

But this paper does not focus on inter-user interference in

the beam domain.

In [25], a machine learning approach was applied to a joint

hybrid beamforming and radio resource management for

a rank constrained mm-Wave MU-MIMO downlink. For-

mulation of the optimization problem aimed to maximize

the total throughput constraint while taking into account

the total transmit power and the number of RF chains. The

energy efficiency aspect has not been investigated in this

paper. Three different machine learning methods, namely

random forest, deep learning, and ridge regression, were

applied in [26] to forecast the resulting uplink transmission

power based on the passive network quality indicators and

application-level information available. The random forest

model was reported as offering the best performance. How-

ever, this framework cannot be utilized to optimize energy

efficiency without the channel feedback overhead. Ma-

chine type communications also need a low latency 5G

technology. Fast establishment of uplink transmission for

machine type communications (MTCs) is one of the main

challenges affecting future wireless systems. The optimal

selection of machine type devices (MTDs) to be used in the

establishment of a fast uplink can be achieved by applying

machine learning-based techniques, namely multi-armed

bandit theory and deep reinforcement learning [27]. The

deep reinforcement learning and multi-armed bandit theory-

based uplink resource allocation methodology presented

only works for dominant uplink traffic networks, such as

sensor networks or MTDs. It cannot be applied to mobile

users who require mostly downlink data transmissions. The

authors of [28] proposed a genetic algorithm (GA) approach

to resource block allocation in a multi-cell network. This
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approach allows to minimize inter-cell interference by max-

imizing channel capacity in the resource allocation process.

The proposed genetic algorithm-based resource allocation

methods for cell-edge users uses the multipath Rayleigh

channel. However, 5G communication is supposed to rely

on the mm-Wave channel, with dominant line-of-sight

(LOS) transmission paths. The resource allocation problem

of small LTE-U base stations (SBSs) was modeled based on

the deep learning approach in [29]. Dynamic channel se-

lection, carrier aggregation, and fractional spectrum access

operations are performed proactively, while guaranteeing

fairness with existing Wi-Fi networks and other LTE-U op-

erators. Again, this work does not consider mm-Wave chan-

nels and the proposed solution is intended for the multipath

channel model.

The author of [30] proposed an actor-critic reinforcement

learning (RL) approach based on the stochastic policy gra-

dient to improve the system’s throughput and to boost D2D

throughput. Compared to the value-based scheme, such

as Q-learning, the policy-based method was reported to

be better, since it maximized the expected throughput by

searching in the policy space. Due to the near-optimal

and direction beam transmission in the mm-Wave channel,

D2D communication will exert lower impact on the exist-

ing cellular network. Reinforcement learning has also been

proposed for the resource allocation stage in mobile edge

computing systems [31]. It offers a near-optimal solution

for the joint task of offloading and resource allocation, si-

multaneously minimizing energy consumption and delays.

This work does not consider transmission power consump-

tion. In [32], the resource allocation problem in virtual

reality wireless networks is considered for both uplink and

downlink scenarios. Formulation of the has led to the es-

tablishment of a non-cooperative game and a distributed al-

gorithm based on the machine learning framework of echo

state networks (ESNs) being proposed to solve this game.

Such a model is used for determining VR metrics, such as

tracking accuracy, processing delay, and transmission delay.

Deep reinforcement learning was applied to develop a de-

centralized resource allocation mechanism with minimum

transmission overhead for vehicle-to-vehicle (V2V) com-

munications [33]. The decisions concerned with finding

the optimal sub-band and power level for the transmission

are autonomously taken to support each V2V link. This ap-

proach does not use massive MIMO or hybrid beamform-

ing. In [34], the authors proposed a simple reinforcement

learning algorithm based on an epsilon-greedy multi-hop to

achieve significant energy savings in low-power wide area

networks relying on multi-hop topologies. In single-hop

topologies, uplink (UL) communications from distant nodes

are established with high power levels, whereas transmis-

sions to closer hops are enabled by multi-hop routing in UL,

in order to reduce energy consumption. This LoWAN net-

work uses remote with IEEE 802.15.4 physical and MAC

layers. The proposed multi-hop dynamic routing approach

is not always energy efficient. There is a tradeoff between

circuit power consumption and transmission power. There

is a need for cross-layer machine learning techniques cov-

ering PHY, MAC, and network layers to ensure optimal EE

and SE levels.

6. Performance Study

In this section, we summarize our preliminary studies

concerning machine learning techniques deployed for user-

beam pair selection in the hybrid beamforming design used

in 5G communications. Hybrid beamforming is an imper-

ative part of 5G massive MIMO millimeter wave com-

munications [35]. Hybrid beamforming divides the pro-

cessing of signal for beamforming into two stages: ana-

log beamforming and digital beamforming. Analog beam-

forming is realized by analog phase shifters, while digi-

tal beamforming usually relies on zero-forcing precoders/

combiners. This arrangement reduces the number of radio

frequency chains required in the digital beamforming and

reduces energy consumption. Energy consumption may be

further reduced by user-beam allocation in the analog beam

domain.

6.1. Hybrid Beamforming and User-Beam Selection

Architecture

In hybrid beamforming, beamforming is performed in two

stages: an analog beamforming FAB ∈ C
N×NRF , and digital

beamforming FDB ∈ C
NRF×Ns as shown in Fig. 2.

We consider a single base station scenario. The base station

is equipped with N = 128 transmit antennas and is serving

K = 8 users. There are NRF = K RF chains available within

the base station. We use an extended Saleh-Valenzuela

model which accurately captures the mathematical structure

of in mm-Wave channels [36]. For simplicity, we assume

that each scattering cluster around the transmitter and the

receiver contributes a single propagation path [37]. The

near optical line-of-sight (LOS) wave propagation at mm-

Wave frequencies results in a limited number of scattering

paths, say L. The N×K MIMO channel matrix at the BS

can be written as:

H =

√

KN
L

L

∑
l=1

αla(φl) , (2)

where αl represents the complex gain of the l-th path with

i.i.d. C N (0,1). Moreover, a is the transmit steering vec-

tor. The variable φl ∈ [0,2π) is the l-th path’s azimuth

angle.

The analog beamforming matrix, e.g. discrete Fourier trans-

form (DFT) N×N matrix U may be used to convert spatial

channel H to a beam domain channel as:

Hb = UH . (3)

Now, the row of beam domain channel Hb corresponds

to N beams. The selection of K beams out of N to maximize

the energy efficiency poses a complex user-beam matching
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Fig. 2. Hybrid beamforming and user-beam selection architecture.

problem. User-beam allocation is an NP-hard mixed inte-

ger programming optimization problem. A global optimal

solution to this problem with K ≤ NRF (K is the num-

ber of users and NRF is the number of RF chains) may

only be obtained by using an exhaustive search method.

This solution has very high computational complexity

of:
NRF

∑
i=1

KCi.
NCi.

iPi ,

where aCb = a!
b!(a−b)! and aPb = a!

(a−b)! ,a≥ b.

For the data symbol vector s ∈ C
K×1, the beam domain

representation of the system is given by:

y = HH
b FDB,bs+ z , (4)

where FDB,b = UHFDB ∈C
M×K is the beam domain digital

precoder and z ∈ C
N×1 is the independent and identically

distributed (i.i.d.) complex Gaussian noise with zero-mean

and variance of one, i.e. C N (0,IN). The signal received

at user k is given as:

yk = hH
k,bfDB,k,bs[n]+ zk . (5)

The received SNR γk of the user k is:

γk =
|h̃H

k,bfDB,k,b|
2

∑
j 6=k
|h̃H

j,bfDB,k,b|
2 +

1
ρ
||fDB,k,b||

2
2

, (6)

where ρ is the average received SNR per antenna per user

and h̃k,b is the beam domain channel after the user-beam

selection. The sum-rate is given as:

R =
K

∑
k=1

log2(1+ γk) . (7)

Finally, the energy efficiency is calculated by Eq. (1).

In our machine learning model, training data is obtained

from the Hungarian method [38] and is then applied to

the user-beam matching problem. We use a shallow neural

network with the input layer of 128 neurons, the hidden

layer of 20 neurons and the output layer of 8 neurons. The

Fig. 3. Energy efficiency versus received SNR with 8 users and

128 transmit antennas.

Fig. 4. Energy efficiency and spectral efficiency trade-off with

8 users and 128 transmit antennas.
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Table 1

Energy efficiency comparison of some recent research

works devoted to signal processing

Authors
Reference Energy

paper efficiency

Han et al. [39] High

Liu et al. [41] Low

Khalid [42] Medium

Pal et al. [40] high

ML-based This paper High

Conventional MIMO Benchmark Low

hidden and output layers use sigmoid activation functions.

Figure 3 shows the average system level EE for the received

SNR. EE increases with the received SNR, up to the level

of 5 dB, and then starts decreasing due to interference and

high transmit power. ML-based hybrid beamforming offers

performance that is comparable to that of DFT-based [39]

and DFT+Greedy-based [40] solutions, but required fewer

computational resources (Table 1). It may be observed that

conventional MIMO precoding offers the lowest EE per-

formance because of NRF = N RF chains, while in other

hybrid beamforming designs NRF = K. The trade-off be-

tween EE and spectral efficiency (SE) is shown in Fig. 4.

EE increases with SE up to a certain level, and then EE

starts decreasing. ML-based hybrid beamforming may be

used to reduce the computational complexity and achieve

comparable, good performance.

7. Conclusions

This article reviews energy efficiency of 5G wireless net-

works relying on conventional and machine learning tech-

niques. Energy efficiency may be improved by deploying

the following techniques: base station on/off, energy har-

vesting with simultaneous transfer of wireless information

and power, small cells, coexistence of LTE and 5G and

signal processing algorithms. The latest machine learn-

ing techniques may be applied as well. Having analyzed

the use of various energy efficiency techniques in 5G net-

works, we present a comparison of different hybrid beam-

forming designs in mm-Wave massive MIMO systems. It

has been shown that the two-layered shallow feedforward

neural network-based ML scheme provides a negligible per-

formance gap. It is expected that machine learning will

replace adaptive and computationally intensive portions of

future communication systems.
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